WO2024100999A1 - Chromium-plated component and production method for same - Google Patents

Chromium-plated component and production method for same Download PDF

Info

Publication number
WO2024100999A1
WO2024100999A1 PCT/JP2023/033942 JP2023033942W WO2024100999A1 WO 2024100999 A1 WO2024100999 A1 WO 2024100999A1 JP 2023033942 W JP2023033942 W JP 2023033942W WO 2024100999 A1 WO2024100999 A1 WO 2024100999A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
nickel plating
chrome
potential
layer
Prior art date
Application number
PCT/JP2023/033942
Other languages
French (fr)
Japanese (ja)
Inventor
まどか 中上
景 横山
Original Assignee
株式会社Jcu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jcu filed Critical 株式会社Jcu
Publication of WO2024100999A1 publication Critical patent/WO2024100999A1/en

Links

Images

Definitions

  • the present invention relates to chrome-plated parts, particularly nickel-chrome-plated parts, and to a method for manufacturing the same.
  • Chrome plating has traditionally been used to decorate substrates, provide corrosion protection, and impart electrical conductivity. Chrome plating usually has a silvery-white appearance, which gives it excellent aesthetic decorativeness and makes it useful as a decorative coating film. The chrome plating layer also has excellent corrosion resistance, as it can form a passive film on the surface due to its self-passivating ability. In particular, products in which a chrome plating film is formed on the surface of a resin substrate are lighter and less expensive than products made from metal materials, and are therefore used in a variety of parts, including automobile parts.
  • nickel-chrome plated products are particularly decorative and corrosion-resistant, and are used on a variety of substrates including resin.
  • the high corrosion resistance of nickel-chrome plating is thought to be due to the fact that the nickel layer of the base is sacrificially corroded, preventing corrosion of the chrome-plated layer.
  • the corrosion resistance of the nickel layer itself in nickel-chrome plated products can be improved by combining a semi-bright nickel plating layer that contains almost no sulfur with a bright nickel plating layer that contains sulfur, and even a nickel plating layer of a different composition to create a two-layer or three-layer structure (see, for example, Patent Documents 1 to 4).
  • Patent Documents 1 and 2 disclose a nickel-chrome plated product in which a semi-bright nickel plating layer, a bright nickel plating layer, and a eutectoid nickel plating layer are applied in that order on a base material, and then a chrome plating layer is applied on top of that.
  • the eutectoid nickel plating layer is a layer in which fine particles such as silica are co-deposited to form a microporous structure.
  • the corrosion current is dispersed by the numerous pores, so corrosion of the bright nickel plating layer is suppressed.
  • the invention described in Patent Document 1 further improves corrosion resistance by adjusting the potential difference between each nickel plating layer
  • the invention described in Patent Document 2 improves corrosion resistance by varying the concentration of metal ions at high electrode potential between each nickel plating layer.
  • Patent Document 3 discloses a surface modification method in which the surface of a chrome-plated part having a structure similar to that of Patent Documents 1 and 2 is oxidized to form a chrome oxide film on the surface of the chrome plating film.
  • Patent Document 4 discloses a chrome-plated part having, in this order, copper plating, sulfur-free nickel plating (semi-bright nickel plating), bright nickel plating, noble potential nickel plating, and trivalent chrome plating with a microporous structure or a microcrack structure on a resin substrate.
  • Patent Document 4 also discloses co-deposited nickel plating (MP nickel plating) with a microporous structure as the noble potential nickel plating.
  • the inventions described in Patent Documents 3 and 4 are technologies for improving the corrosion resistance of plated parts by modifying the chrome plating layer, but in both cases the nickel plating layer has a three-layer structure with a semi-bright nickel plating layer as the bottom layer.
  • Patent Document 4 generally has the drawback that it is difficult to obtain sufficient corrosion resistance when making the trivalent chromium plating layer have a microporous structure unless non-conductive fine particles are used to form the micropores.
  • the nickel plating layer has a three-layer structure (even in the plated products described in Patent Documents 2 and 4, in which two types of layers are essential as nickel plating layers), a semi-bright nickel plating layer (sulfur-free nickel plating layer) is formed on the base side, and a bright nickel plating layer is formed on the upper layer.
  • a semi-bright nickel plating layer sulfur-free nickel plating layer
  • a bright nickel plating layer is formed on the upper layer.
  • the present inventors' current discovery if the potential of the nickel plating layer in contact with the base is more noble, when the corrosion of the nickel plating layer on the base side reaches the base, the corrosion tends to progress rapidly. In response to this, the present inventors' investigation has shown that corrosion can be prevented by making the nickel plating layer on the base side a bright nickel plating layer with a more noble potential compared to the semi-bright nickel plating layer.
  • the present invention aims to solve the above problems by providing a chrome-plated part that exhibits excellent corrosion resistance even when the upper layer is a trivalent chrome plating layer, inhibits corrosion of copper or copper alloys, and has a good appearance, as well as a manufacturing method for producing such a chrome-plated part.
  • chrome-plated parts have excellent corrosion resistance, inhibit the corrosion of copper or copper alloys, and have a good appearance by forming two nickel plating layers with a lower potential on the base material and setting the potential of each nickel plating layer within a specific range, which led to the completion of the present invention.
  • a chrome-plated part comprising a substrate having a surface layer made of copper or a copper alloy, a first nickel plating layer formed in contact with the surface layer of the substrate, a second nickel plating layer formed in contact with the first nickel plating layer, and a trivalent chrome plating layer formed in contact with the second nickel plating layer, wherein the second nickel plating layer has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer has a potential that is 15 to 150 mV less potent than the second nickel plating layer.
  • the base material is a substrate made of one or more materials selected from the group consisting of resins, ceramics, and metals, and is provided with the surface layer made of copper or a copper alloy, or is a substrate made of copper or a copper alloy.
  • a method for producing a chrome-plated part comprising the steps of forming a first nickel plating layer on a substrate having a surface layer mainly made of copper or a copper alloy, in contact with the surface layer, forming a second nickel plating layer on the first nickel plating layer, and forming a trivalent chrome plating layer on the second nickel plating layer, wherein the second nickel plating layer has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer has a potential that is 15 to 150 mV less noble than the second nickel plating layer.
  • the chrome-plated parts of the present invention exhibit excellent corrosion resistance even when the upper layer is a trivalent chrome plating layer, and in particular, corrosion of copper or copper alloys is suppressed, and the appearance is also good. Furthermore, according to the manufacturing method of the chrome-plated parts of the present invention, it is possible to manufacture chrome-plated parts that have excellent corrosion resistance and appearance.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a chrome-plated part of the present invention.
  • the chrome-plated part of the present invention is a chrome-plated part comprising a substrate having a surface layer made of copper or a copper alloy, a first nickel plating layer formed in contact with the surface layer of the substrate, a second nickel plating layer formed in contact with the first nickel plating layer, and a trivalent chrome plating layer formed in contact with the second nickel plating layer, wherein the second nickel plating layer has an anode potential of ⁇ 215 to ⁇ 290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer has a potential that is 15 to 150 mV less potent than the second nickel plating layer.
  • FIG. 1 is a schematic diagram showing a cross section of a chrome-plated part according to one embodiment of the present invention.
  • a first nickel plating layer 3 is formed on the surface 2A of a substrate 2
  • a second nickel plating layer 4 is formed on that
  • a trivalent chrome plating layer 5 is formed on top of that, in that order, in contact with the substrate surface or plating layer directly below.
  • the substrate 2 is a plating target on which a plating layer, which will be described later, is formed on its surface 2A.
  • the substrate 2 has a surface layer 22 made of copper or a copper alloy at least on the surface 2A side on which the plating layer is formed.
  • the substrate 2 has a base material 21 and a surface layer 22 made of copper or a copper alloy.
  • a base material 21 and a surface layer 22 made of copper or a copper alloy.
  • the substrate 21 may be made of copper or a copper alloy, and the substrate 21 and the surface layer 22 may be a continuous, integrated body.
  • the substrate 21 corresponds to the main body of the base material 2 to be plated, and there are no particular limitations on its shape and material.
  • the plating layers 3 to 5 are formed on one side of the flat substrate 2 having the surface layer 22 attached to the substrate 21, but the chrome-plated part of the present invention is not limited to this form.
  • the substrate 21 may be of any shape and purpose, for example, automobile parts such as handles, grilles, moldings, and emblems of various shapes, outboard motor parts, faucets, building materials such as doorknobs and window frames, and home appliance parts.
  • the substrate 21 is preferably made of one or more materials selected from the group consisting of resins, ceramics, and metals, and is provided with a surface layer 22 made of copper or a copper alloy to form the base 2, but is not limited to these materials.
  • the substrate 21 may be a composite material of various resins, elastomers, ceramics, metals, carbon materials, etc.
  • the substrate 21 may also be made of copper or a copper alloy, and form the base 2 without a surface layer of a separate element. In this case, the surface layer of the base 2 naturally consists of copper or a copper alloy.
  • "made of copper or a copper alloy” means that the surface layer is mainly made of copper or a copper alloy, and does not exclude the inclusion of trace amounts of additives or unavoidable impurities.
  • the substrate 21 is made of a metal material
  • metals include, but are not limited to, copper, copper alloys, nickel, nickel alloys, iron, stainless steel, zinc, etc. These metals may be appropriately subjected to activation treatment or strike plating to obtain adhesion. If a treatment such as strike plating is performed using copper or a copper alloy, the obtained substrate 21 can be used as it is as the base material 2 in the chrome-plated part 1.
  • resin that constitutes the substrate 21.
  • examples include, but are not limited to, ABS (acrylonitrile-butadiene-styrene resin), PC (polycarbonate), PC-containing ABS, SBS (styrene-butadiene-styrene copolymer), acrylic resin, polyolefin resin such as polypropylene or polyethylene, polyphenylene oxide, polyphenylene sulfide, polyacetal, polyamide, polyimide, polyester, polyvinyl acetate, polyurethane, epoxy resin, phenolic resin, and even CFRP (carbon fiber reinforced plastic) and CNF (cellulose nanofiber)-containing resin.
  • substrates based on ABS resin are suitable as substrates for the chrome-plated part 1 because they are easy to plate and form a copper or copper alloy surface layer.
  • the ceramic or resin substrate 21 is preferably treated with a metal to make it conductive so that it can be easily plated.
  • a metal to make it conductive so that it can be easily plated.
  • various methods such as electroless plating, electrolytic plating, metal sputtering, and metal vapor deposition can be used.
  • electroless plating with copper, a copper alloy, nickel, or a nickel alloy is preferred.
  • the method and conditions for electroless plating and it can be performed using conventional methods and conditions.
  • the substrate 21 that has been electrolessly plated is preferably further subjected to electrolytic copper plating or electrolytic copper alloy plating (electrolytic copper-based plating).
  • Electrolytic copper-based plating can form a surface layer 22 that is particularly excellent in adhesion, etc. Even when electroless plating is performed using copper or a copper alloy and a copper-based layer is formed, it is preferable to perform electrolytic copper-based plating on top of it.
  • There are no particular restrictions on the method and conditions for electrolytic copper-based plating and it can be performed using conventional methods and conditions. In this way, the surface layer 22 on the base material 2 can be prepared.
  • the surface layer 22 is made of copper or a copper alloy, and constitutes the surface of the base material 21 or an upper layer thereof in the base material 2, the surface on which a plating layer described later is formed. In this manner, a plating layer described later, specifically a first nickel plating layer 3, is formed on the surface layer 22 made of copper or a copper alloy in contact with the surface 2A side.
  • the first nickel plating layer 3 is formed on the surface 2A of the base material 2, the second nickel plating layer 4 is formed thereon, and the trivalent chrome plating layer 5 is further formed on top of that.
  • the first nickel plating layer 3 and the second nickel plating layer 4 are collectively referred to as the "nickel plating layer”.
  • the second nickel plating layer 4 on the trivalent chromium plating layer 5 side has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 .
  • the first nickel plating layer 3 in contact with the substrate 2 has a potential that is more base than that of the second nickel plating layer 4. That is, in the chrome-plated part 1, the first nickel plating layer 3, which has a base potential, is formed in contact with the surface layer 22 directly on the substrate 2 without passing through another layer such as a semi-bright nickel layer, which has a noble potential.
  • nickel plating layers will be described in detail below, but first we will explain the second nickel plating layer 4, which has a specified range of potential, and its potential.
  • the second nickel plating layer 4 is a nickel plating layer having an anode potential of ⁇ 215 to ⁇ 290 mV at a current density of 0.1 mA/cm 2.
  • the anode potential is preferably ⁇ 220 to ⁇ 285 mV, more preferably ⁇ 220 to ⁇ 280 mV.
  • the anode potential is a potential that serves as a guide for the equilibrium potential, and clearly indicates the noble-base relationship of the potential.
  • the anode potential can be measured by chronopotentiometry, for example, using a sample (potential measurement sample) obtained by removing the chrome plating layer 5 from the chrome-plated part 1 as the working electrode.
  • a sample potential measurement sample
  • platinum is used as the counter electrode
  • a silver-silver chloride (saturated KCl) electrode is used as the reference electrode
  • 300 g/L of nickel chloride hexahydrate, 50 g/L of sodium chloride, and 25 g/L of boric acid are used as the electrolyte, and the voltage is measured by chronopotentiometry.
  • the voltage value of the working electrode at a current density of 0.1 mA/cm 2 during the measurement is defined as the "anode potential" of the second nickel plating layer 4.
  • the noble-base relationship of potentials is generally evaluated using the equilibrium potential described below, but the present inventors have now discovered that the anode potential reflects the noble-base relationship of potentials several times more sensitively than the equilibrium potential.
  • the anode potential also has the advantage that it can be measured in a simpler manner than the equilibrium potential, so the potential of the second nickel plating layer 4 is determined by the anode potential as described above, and the physical properties of the chrome-plated part 1 are controlled.
  • the above-mentioned anode potential of the nickel plating layer varies depending on the plating type and other conditions, but is generally around -250 mV for an average bright nickel plating layer, a more noble potential value for the top layer of a three-layer nickel plating in general-purpose nickel-chrome plating (e.g., a eutectoid nickel plating layer), and an even more noble potential value of around -150 mV for an average semi-bright nickel plating layer.
  • the second nickel plating layer 4 can be composed of, for example, a general-purpose bright nickel plating layer, or a satin nickel plating layer with an equivalent potential, or even a nickel plating layer whose potential has been adjusted to the less noble or more noble potential side using a potential adjuster or the like.
  • the equilibrium potential of the second nickel plating layer 4 having the above-mentioned anode potential is generally about -402 to -414 mV.
  • the equilibrium potential can be measured, for example, by using platinum as the counter electrode, a silver-silver chloride (saturated KCl) electrode as the reference electrode, and a solution containing 300 g/L of nickel chloride hexahydrate, 50 g/L of sodium chloride, and 25 g/L of boric acid as the electrolyte.
  • the equilibrium potential can be obtained by creating a Tafel plot from the voltage values when the current density is set to 0.01, 0.1, 1, -0.01, -0.1, and -1 mA/cm 2 by chronopotentiometry, using a sample (potential measurement sample) obtained by removing the chrome plating layer 5 from the chrome-plated part 1 as the working electrode.
  • a bright nickel plating layer which is a typical example of the second nickel plating layer 4, is a nickel plating film containing sulfur.
  • the type of the bright nickel plating layer is not particularly limited.
  • the bright nickel plating layer can be formed by electroplating using a known nickel plating solution that contains a primary brightener such as a sulfur compound.
  • a primary brightener such as a sulfur compound.
  • the nickel plating solution is not particularly limited, but examples that can be used include a Watts bath, a sulfamic acid bath, a citric acid bath, and a Weisberg bath.
  • examples of primary brighteners contained in the nickel plating solution for forming the bright nickel plating layer include aromatic sulfonimides and sulfinic acids such as sodium 1,5-naphthalenedisulfonate, sodium 1,6-naphthalenedisulfonate, sodium 2,5-naphthalenedisulfonate, sodium 1,3,6-naphthalenetrisulfonate, sodium benzenesulfonate, sodium benzenesulfinate, and sodium o-sulfobenzimid (saccharin), as well as ethylenically unsaturated sulfonates such as sodium vinylsulfonate and sodium allylsulfonate. These may be used alone or in combination of two or more.
  • gloss/leveling agent for the purpose of imparting gloss/leveling
  • gloss/leveling agents include acetylene-based unsaturated alcohols and their derivatives, such as 1,4-butynediol, hexynediol, and propargyl alcohol, and pyridine-based sodium sulfonate. These can also be used alone or in combination of two or more.
  • examples of the primary gloss agent and the gloss/leveling agent include HI- Commercially available products such as #81, #83, and #810 used in the BRITE #88 process (manufactured by JCU Corporation) can also be used.
  • the nickel plating solution contains the above-mentioned primary brightener at a concentration of, for example, 0.1 to 10 g/L, preferably 1 to 5 g/L, and more preferably 1.5 to 4 g/L.
  • the nickel plating solution also contains a gloss/leveling agent at a concentration of, for example, 0.5 to 300 ppm, preferably 10 to 200 ppm, and more preferably 20 to 200 ppm.
  • the plating solution for bright nickel plating preferably contains a wetting agent.
  • wetting agents include surfactants. There are no particular limitations on the surfactants, but examples include nonionic surfactants such as polyethylene glycol, and anionic surfactants such as sodium polyoxyethylene alkyl ether sulfate. One or more of these surfactants can be used.
  • wetting agents commercial products such as #82, #82-A, and #82-K used in the HI-BRITE #88 process (manufactured by JCU Corporation) may be used.
  • the wetting agents are contained in the nickel plating solution at a concentration of, for example, 10 to 1000 ppm, more preferably about 100 to 500 ppm.
  • the conditions for electroplating to form the bright nickel plating layer are not particularly limited, and conventional conditions can be adopted.
  • the plating can be performed under conditions of a bath temperature of 40 to 60°C, more preferably 45 to 55°C, and a current density of 1 to 10 A/ dm2 , more preferably 2 to 5 A/ dm2 .
  • the bright nickel plating layer prepared in this manner may be formed on the first nickel plating layer as the second nickel plating layer 4.
  • the anode potential of the bright nickel plating layer can be shifted to the lower potential side or the more noble potential side within the range of -215 to -290 mV by adjusting the amount of the primary brightener and the brightness/leveling agent (secondary brightener) in the plating solution and the temperature.
  • the potential of the bright nickel plating layer can also be adjusted by adding a potential adjuster.
  • the potential regulator contained in the nickel plating solution may be any known potential regulator, including, but not limited to, lower potential regulators such as sodium saccharin, sodium benzenesulfinate, S-ethylisothiourea hydrobromide, 3-[[amino(imino)methyl]thio]propanoic acid, 2,4-thiazolidinedione, 5-chloro-2-methyl-4-isothiazolin-3-one, and 2-methyl-4-isothiazolin-3-one; and noble potential regulators such as butynediol, hexynediol, propargyl alcohol, sodium allyl sulfate, formalin, chloral hydrate (2,2,2-trichloro-1,1-ethanediol), and bromal hydrate (2,2,2-tribromo-1,1-ethanediol).
  • lower potential regulators such as sodium saccharin, sodium benzenesulfinate, S-ethylis
  • the potential adjuster for example, commercially available products such as TRI-STRIKE as a potential adjuster on the lower potential side and ADDITIVE-E as a potential adjuster on the higher potential side (both manufactured by JCU Corporation) can also be used.
  • the second nickel plating layer 4 By performing plating using a nickel plating solution in which the concentrations of the primary brightener, secondary brightener, potential adjuster, etc. are appropriately adjusted, the second nickel plating layer 4 having the above-mentioned potential can be formed.
  • the second nickel plating layer 4 may be formed by satin nickel plating, which will be described below. The plating in this case can be performed under the same conditions as the bright nickel plating described above.
  • Satin nickel plating is a plating method that forms fine irregularities on the surface of a plated film, thereby obtaining a semi-glossy or matte pear-like appearance.
  • an emulsion is formed, which is repeatedly adsorbed to and desorbed from the film surface. Film deposition is inhibited at the site where the emulsion is adsorbed, and a concave shape is formed on the surface layer of the film after desorption, resulting in a pear-like appearance.
  • surfactants include, but are not limited to, cationic surfactants and anionic surfactants.
  • the satin nickel plating layer can be produced by using a nickel plating solution in which these surfactants are dispersed. It is also possible to form the satin nickel plating layer by adding non-conductive fine particles such as silica, kaolin, and barium sulfate to the plating solution. Such satin nickel plating is useful for producing a chrome-plated part 1 having a matte appearance.
  • the satin nickel plating layer can also be formed using commercially available products such as the DOUBLET SATIN process (manufactured by JCU Corporation).
  • the second nickel plating layer 4 it is preferable to use a nickel plating solution that does not contain non-conductive fine particles such as silica, and to make the second nickel plating layer 4 free of non-conductive fine particles. Even if non-conductive fine particles are included, the content is preferably about 5 mass % or less, particularly 1 mass % or less, based on the total mass of the second nickel plating layer 4. By making the second nickel plating layer 4 free of non-conductive fine particles, or containing about 5 mass % or less of non-conductive fine particles, the precipitation of the fine particles can be prevented, and the appearance of the chrome-plated part 1 can be improved.
  • non-conductive fine particles means "free of non-conductive fine particles other than unavoidable impurities”. It does not only refer to those with 0 non-conductive fine particles, but also includes layers containing non-conductive fine particles of about 0.1 mass % or less.
  • a second nickel plating layer which has a lower potential than the top nickel plating layer in a conventional nickel-chrome plated part having three nickel plating layers, is formed on the first nickel plating layer 3.
  • the first nickel plating layer 3 is a nickel plating layer having a potential that is 15 to 150 mV less noble than the second nickel plating layer 4. It has a significantly less noble potential than the semi-bright nickel plating layer that is often used as a plating layer directly on a substrate in conventional nickel-chrome plated parts.
  • the first nickel plating layer 3 can be prepared, for example, by using a plating solution in which the types and contents of the primary brightener, the gloss/leveling agent (secondary brightener), and the potential adjuster in the above-mentioned bright nickel plating solution are changed. It can also be prepared by using a commercially available low potential nickel plating solution such as the TRI-STRIKE process (manufactured by JCU Corporation).
  • the electroplating conditions for forming the first nickel plating layer 3 are not particularly limited, and conventional conditions can be adopted.
  • the electroplating can be performed under conditions of a bath temperature of 40 to 60° C., more preferably 45 to 55° C., and a current density of 1 to 10 A/dm 2 , more preferably 2 to 5 A/dm 2 .
  • the first nickel plating layer 3 has a potential that is 15 to 150 mV less potent than the second nickel plating layer 4. From the viewpoint of further enhancing the corrosion resistance of the chromium-plated part 1, the first nickel plating layer 3 has a potential that is preferably 30 to 150 mV, more preferably 40 to 140 mV, even more preferably 50 to 120 mV, and particularly preferably 70 to 100 mV less potent than the second nickel plating layer 4.
  • Such a potential difference can be measured, for example, by a STEP test according to ASTM B764: "Simultaneous Determination of the Thickness and Potential of Individual Layers in a Multilayer Nickel Deposit". More specifically, a silver -silver chloride reference electrode (standard electrode) and a sample (potential measurement sample) obtained by removing the trivalent chromium plating layer 5 from a chrome - plated part 1 are placed in an electrolyte (20°C) containing 300 g/L of NiCl 2.6H 2 O, 50 g/L of NaCl, and 25 g/L of H 3 BO 3, and the potential difference can be measured, for example, by a commercially available device such as a multilayer nickel plating corrosion resistance measuring device.
  • a commercially available device such as a multilayer nickel plating corrosion resistance measuring device.
  • the potential difference here is measured under different conditions from the anode potential and equilibrium potential described above, so that, for example, the potential difference cannot be subtracted from the anode potential or equilibrium potential of the second nickel plating layer 4 to obtain the anode potential or equilibrium potential of the first nickel plating layer 3.
  • the first nickel plating layer 3 is formed directly on the surface layer 22 of the base material 2, and the second nickel plating layer 4 is formed directly on top of that on the chrome plating layer 5 side, and the second nickel plating layer 4 has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer 3 has a potential that is 15 to 150 mV less noble than the second nickel plating layer 4.
  • Such a chrome-plated part 1 exhibits excellent corrosion resistance and a good appearance.
  • the chrome-plated part 1 exhibits the above-mentioned effects is unclear and is not limited to any particular theory, but one reason may be that the first nickel plating layer 3 has a base potential, which effectively suppresses corrosion of the adjacent surface layer 22 made of copper or a copper alloy, making it less likely for voids to form, and as a result, suppressing the occurrence of blistering near the plating layer.
  • the corrosion resistance of the entire chrome-plated part 1 is improved because the second nickel plating layer 4 is suppressed by the sacrificial corrosion of the first nickel plating layer 3, which has a baser potential.
  • the film thickness of the first nickel plating layer 3 and the second nickel plating layer 4 constituting the nickel plating layer is not particularly limited and can be, for example, 100 ⁇ m or less or about 1 to 50 ⁇ m depending on the purpose. From the viewpoint of improving corrosion resistance and reducing the cost of nickel plating, the total film thickness (nickel film thickness) of the first nickel plating layer 3 and the second nickel plating layer 4 is preferably about 1 to 30 ⁇ m, more preferably about 2 to 20 ⁇ m, and particularly preferably about 5 to 15 ⁇ m.
  • the film thickness ratio of the first nickel plating layer 3:second nickel plating layer 4 is preferably 1:10 to 30:1, and more preferably within the range of 1:4 to 14:1. This tends to result in even better corrosion resistance. Furthermore, by having this film thickness ratio within the range of 1:4 to 4:1, and particularly 1:2 to 4:1, the corrosion resistance of the chrome-plated part 1 can be even more remarkable.
  • Trivalent chromium plating layer In the chrome-plated part 1, a trivalent chrome plating layer 5 is formed on and in contact with the second nickel plating layer 4. This trivalent chrome plating layer 5 provides a plated part that is excellent in corrosion resistance and aesthetic decorativeness and is useful for decorative purposes, etc.
  • the method for forming the trivalent chromium plating layer 5 is not particularly limited, and may be performed under desired conditions using a conventional plating method. For example, it may be formed by electroplating using a known trivalent chromium plating solution that contains a trivalent chromium compound, a complexing agent, a conductive salt, a pH buffer, etc.
  • the trivalent chromium compound is not particularly limited.
  • basic chromium sulfate (III) Cr(OH)SO 4
  • chromium sulfate (III) chromium chloride
  • III chromium sulfamate
  • These trivalent chromium compounds may be used alone or in combination of two or more.
  • the content of the trivalent chromium compound in the trivalent chromium plating solution can be, for example, about 1 to 25 g/L in terms of metallic chromium.
  • the complexing agent is not particularly limited. Examples include aliphatic monocarboxylic acids (salts) such as formic acid, ammonium formate, potassium formate, etc.; aliphatic dicarboxylic acids and their salts such as succinic acid, maleic acid, malic acid, etc.; aliphatic tricarboxylic acids (salts) such as citric acid, triammonium citrate, etc.; carboxylic acids (salts) having two or more hydroxyl groups and two or more carboxyl groups such as tartaric acid, diammonium tartrate, sodium tartrate, etc.; aminocarboxylic acids such as glycine, etc. These complexing agents may be used alone or in combination of two or more.
  • the content of the complexing agent in the trivalent chromium plating solution may be, for example, about 0.1 to 50 g/L.
  • the conductive salt is also not particularly limited. Examples include sulfates such as potassium sulfate, ammonium sulfate, and sodium sulfate; chlorides such as potassium chloride, ammonium chloride, and sodium chloride; and sulfamates such as potassium sulfamate, ammonium sulfamate, and sodium sulfamate. These conductive salts may be used alone or in combination of two or more.
  • the content of the conductive salt in the trivalent chromium plating solution may be, for example, about 100 to 500 g/L.
  • the pH buffer is also not particularly limited. Examples include boric acid, sodium borate, potassium borate, phosphoric acid, dipotassium hydrogen phosphate, etc. These pH buffers may be used alone or in combination of two or more.
  • the content of the pH buffer in the trivalent chromium plating solution may be, for example, about 25 to 200 g/L.
  • the trivalent chromium plating solution may further contain blackening agents such as sodium thiocyanate, methionine, and cysteine, ascorbic acid, sodium ascorbate, hydrogen peroxide, polyethylene glycol, tin sulfate, tin chloride, and other tin salts, iron chloride, sodium saccharin, sodium allylsulfonate, and sodium vinylsulfonate.
  • blackening agents such as sodium thiocyanate, methionine, and cysteine, ascorbic acid, sodium ascorbate, hydrogen peroxide, polyethylene glycol, tin sulfate, tin chloride, and other tin salts, iron chloride, sodium saccharin, sodium allylsulfonate, and sodium vinylsulfonate.
  • the trivalent chromium plating solution containing the above-mentioned complexing agent, conductive salt, and pH buffer for example, commercially available products such as JCU TRICHROM JTC series (made by JCU Corporation), Top Fine Chrome series (made by Okuno Chemical Industries Co., Ltd.), Arthas Chrome series (made by SurTec), Trichrome series (made by Atotech), Envirochrome process, and Twilight process (all made by Macdermid) may be used.
  • the chrome plating layer generally has a silvery-white appearance, but a black plating layer can also be formed by adding, for example, the above-mentioned blackening agent to the plating solution.
  • the conditions for electroplating to form the trivalent chromium plating layer 5 are not particularly limited, and conventional conditions can be adopted.
  • the plating can be performed under conditions of a bath temperature of 30 to 60° C., carbon or iridium oxide as the anode, and a cathode current density of 5 to 20 A/dm 2 .
  • the chrome-plated part 1 exhibits excellent corrosion resistance and a good appearance regardless of the type and thickness of the trivalent chrome plating layer 5. Therefore, the thickness of the trivalent chrome plating layer 5 is not particularly limited, and may be, for example, 0.05 ⁇ m or more, which is a typical plating layer thickness for chrome-plated products, specifically 0.1 to 1.0 ⁇ m, and particularly about 0.15 to 0.50 ⁇ m.
  • the chrome-plated part 1 preferably further comprises an electrolytic chemical conversion film and/or an immersion chemical conversion film on the above-mentioned trivalent chromium plating layer 5. This may further enhance the corrosion resistance of the chrome-plated part 1.
  • electrolytic chemical conversion treatment and immersion chemical conversion treatment performed on the surface of the trivalent chromium plating layer 5, and a conventional treatment method can be applied as desired. Examples include, but are not limited to, chromate treatment, wax treatment, treatment with a solution of benzotriazole or triazinethiol, treatment with a solution of a compound having an amino group or an imino group, and further heat treatment.
  • Such post-treatment can further improve the corrosion resistance of the chrome-plated part, or more effectively prevent discoloration, hydrogen embrittlement, etc.
  • chromate treatment Among electrochemical conversion treatments and immersion conversion treatments, it is more preferable to carry out a treatment that includes hexavalent chromium ions, i.e., a so-called chromate treatment. Since a chromate film has a self-repairing property, the corrosion resistance of the chrome-plated part 1 can be further improved.
  • chromate treatments include known electrolytic conversion treatments or immersion conversion treatments that use hexavalent chromium ions such as chromic anhydride and dichromate. Electrolytic conversion treatments can be performed by conventional methods, and may use commercially available processes such as the EBACHRO-500 process and the EBACHRO-900 process (manufactured by JCU Corporation) or treatment agents used therein. Also, instead of chromate treatments, conversion treatments containing trivalent chromium ions or chromium-free conversion coating treatments using metals such as molybdenum, vanadium, phosphoric acid, permanganate, and iron can be used.
  • the chrome-plated part 1 exhibits excellent corrosion resistance and good appearance even when the upper layer is a trivalent chrome plating layer 5.
  • the chrome-plated part 1 exhibits a high evaluation result of a rating number (R.N.) of generally 9 or more, for example 9.3 or more, in a CASS test, which is a corrosion resistance evaluation method conforming to JIS H8502. Therefore, the chrome-plated part 1 can be used as various parts such as automobile parts, outboard motor parts, faucet fittings, building material parts, and home appliance parts.
  • the chrome-plated part 1 is a chrome-plated part that includes a step of forming a first nickel plating layer 3 in contact with a surface layer on a substrate 2 having a surface layer 22 made of copper or a copper alloy, a step of forming a second nickel plating layer 4 in contact with the first nickel plating layer 3, and a step of forming a trivalent chrome plating layer 5 in contact with the second nickel plating layer 4, and the second nickel plating layer 4 has an anode potential of -215 to -290 mV at a current density of 0.1 mA/cm 2 , and the first nickel plating layer 3 has a potential that is 15 to 150 mV less potent than the second nickel plating layer 4.
  • the steps of forming the first nickel plating layer 3, the second nickel plating layer 4, and the trivalent chromium plating layer 5 can be carried out using the methods and conditions described in the explanation of each plating layer.
  • An electrolytic conversion coating and/or an immersion conversion coating as described above may be further formed on the surface of the trivalent chromium plating layer 5.
  • Example 1 Chromium plated parts according to the invention were prepared as follows. (Preparation of the base material) The entire surface of an ABS resin molded product (shape: plate) was etched with chromic acid, and then reduction treatment, catalysis, and activation were performed according to the usual method, and then electroless nickel plating was performed.
  • chromic acid etching a treatment solution containing 400 g/L of chromic anhydride, 400 g/L of sulfuric acid, and 10 g/L of trivalent chromium was used.
  • Electroless nickel plating was performed at 40°C using the ENILEX NI-5 process (manufactured by JCU Corporation). Thereafter, electrolytic copper plating was performed at room temperature and 3 A/ dm2 using the CU-BRITE EP-30 process (manufactured by JCU Corporation) to prepare a base material.
  • the substrate obtained above was immersed in a first nickel plating solution to form a first nickel plating layer having a thickness of 6 ⁇ m under conditions of 50° C. and 3 A/ dm2 for 15 minutes.
  • the first nickel plating solution the following base potential nickel plating solution was used as it is.
  • Base solution for low potential nickel plating ⁇ Watts bath Nickel sulfate 260g/L Nickel chloride 40g/L Boric acid 40g/L ⁇ TRI-STRIKE process (manufactured by JCU Corporation) TRI-STRIKE 3ml/L #82 (wetting agent) 2ml/L
  • a solution was used in which the following bright nickel plating base solution was mixed with TRI-STRIKE (manufactured by JCU Corporation) as a potential adjuster in an amount of 1 ml/L.
  • the second nickel plating layer prepared by this has a lower potential than the average bright nickel plating layer, and is adjusted so that the potential difference with respect to the first nickel plating layer is +60 mV (the potential of the first nickel plating layer is 60 mV lower than that of the second nickel plating layer).
  • ⁇ Bright nickel plating base liquid> ⁇ Watts bath Nickel sulfate 260g/L Nickel chloride 40g/L Boric acid 40g/L ⁇ HI-BRITE #88 process (manufactured by JCU Corporation) #810 (secondary brightener) 3ml/L #82 (wetting agent) 2ml/L #83 (primary brightener) 10ml/L
  • Trivalent chromium plating Next, the plated part was immersed in the following trivalent chromium plating solution and plated at 55° C. and 10 A/dm 2 for 4 minutes to form a white trivalent chromium plating layer in contact with the second nickel plating layer. The obtained chromium-plated part sample had a good appearance.
  • the chrome-plated part samples obtained as described above were evaluated for appearance, and the film thickness was measured, and a corrosion resistance evaluation test was conducted.
  • the test method is as follows. The test results are shown in Table 1 below.
  • the thickness of each nickel plating layer was measured from a cross-sectional micrograph.
  • the thickness of the chrome plating layer was measured using a fluorescent X-ray analyzer "FT-150H” manufactured by Hitachi Technoscience Co., Ltd.
  • the chrome-plated part sample was immersed in 1:1 hydrochloric acid to remove the chrome plating layer, and then masked to prepare a sample (potential measurement sample) in which the second nickel plating layer was exposed on the surface in a circular shape with a diameter of 6 mm.
  • the potential measurement sample was used as the working electrode, platinum as the counter electrode, and a silver-silver chloride (saturated KCl) electrode as the reference electrode, and the voltage was measured by chronopotentiometry.
  • an aqueous solution containing 300 g/L of nickel chloride hexahydrate, 50 g/L of sodium chloride, and 25 g/L of boric acid and having a pH of 2.75 was used.
  • the current density was set to 0.1 mA/ cm2 , and the voltage value of the working electrode when the voltage stabilized was defined as the "anode potential" of the second nickel plating layer.
  • the current density was set to 0.01, 0.1, 1, -0.01, -0.1, and -1 mA/ cm2 , and a Tafel plot was created from the voltage value of the working electrode when the voltage stabilized to determine the equilibrium potential.
  • the anode potential of the second nickel plating layer was -215 to -290 mV
  • the equilibrium potential was -402 to -414 mV.
  • the potential difference of the first nickel plating layer relative to the second nickel plating layer was measured by a STEP test according to ASTM B764: "Simultaneous determination of thickness and potential of individual layers in a multilayer nickel deposit.” Prior to the measurement, an electrolyte (20°C) containing 300 g/L of NiCl2.6H2O , 50 g/L of NaCl, and 25 g/L of H3BO3 was prepared.
  • the above-mentioned potential measurement sample was placed in the electrolyte, and the potential was measured using a multilayer nickel plating corrosion resistance measurement device "ED-3" manufactured by Chuo Seisakusho Co., Ltd., which is equipped with a silver-silver chloride electrode as a reference electrode.
  • ED-3 multilayer nickel plating corrosion resistance measurement device manufactured by Chuo Seisakusho Co., Ltd.
  • the corrosion resistance was evaluated by a CASS test in accordance with JIS H8502.
  • An aqueous solution containing 50 ⁇ 5 g/L of sodium chloride and 0.26 ⁇ 0.02 g/L of cupric chloride ( CuCl2.2H2O ) and adjusted to a pH of 3.0 to 3.2 with acetic acid was sprayed onto a 65 x 50 mm sample under the following conditions, and the rating number ( R.N. ) was measured after 80 hours.
  • Spray volume 1.5 ⁇ 0.5 ml/80 cm 2 /h Temperature inside the test layer: 50 ⁇ 2°C - Salt water tank temperature: 50 ⁇ 2°C Air saturator temperature: 63 ⁇ 2°C ⁇ Compressed air pressure: 70 to 167 kPa
  • Example 2 The surface layer of the chrome-plated part sample obtained by the same operation as in Example 1 was further subjected to electrolytic chromate treatment.
  • the electrolytic chromate treatment was performed using the EBACHRO-500 process (a hexavalent chromium-based treatment solution containing 100 ml/L of ECR-500 manufactured by JCU Corporation) under conditions of 40°C, 0.1 A/ dm2, and 1 minute.
  • the obtained chrome-plated part sample had a good appearance.
  • the test results of this sample in the same manner as in Example 1 are shown in Table 1 below.
  • Example 3 to 8 and Comparative Examples 1 to 4 The same operation as in Example 1 or 2 was performed except that the formulations of the first nickel plating solution and the second nickel plating solution were changed.
  • the first nickel plating solution a solution in which TRI-STRIKE (manufactured by JCU Corporation) was added to the above-mentioned bright nickel plating base solution as a potential adjuster in an amount of 1 to 5 ml/L to make the potential more base (Examples 3 to 8), and a solution in which ADDITIVE-E (manufactured by JCU Corporation) was added to the above-mentioned bright nickel plating base solution in an amount of 0 to 0.1 ml/L to make the potential more noble (Comparative Examples 1 to 4) were used.
  • TRI-STRIKE manufactured by JCU Corporation
  • the above-mentioned bright nickel plating base solution (Examples 3 to 6) and a solution in which ADDITIVE-E (manufactured by JCU Corporation) was added to the above-mentioned bright nickel plating base solution in an amount of 0.1 to 1 ml/L to make the potential more noble (Examples 7 to 8, Comparative Examples 1 to 4) were used.
  • ADDITIVE-E manufactured by JCU Corporation
  • the second nickel plating layer prepared in these examples and comparative examples is adjusted so that it has a potential difference of +60 mV with respect to the first nickel plating layer (the potential of the first nickel plating layer is 60 mV less noble than the second nickel plating layer) and a more noble potential than the second nickel plating layers of Examples 1 and 2. All of the obtained chrome-plated part samples had good appearances immediately after preparation. The test results for these samples are shown in Table 1 below.
  • Comparative Example 5 A sample having a three-layer structure of the nickel plating layer similar to the chrome-plated part described in Patent Document 4 was produced under the following conditions and evaluated in the same manner as in Example 1.
  • MP nickel plating Further, the plate was immersed in the following MP nickel plating solution and subjected to a MP nickel plating layer at 55°C and 3 A/ dm2 for 3 minutes. This MP nickel plating layer had a potential 55 mV more noble than the underlying bright nickel plating layer. The thickness ratio of the semi-bright nickel plating layer:bright nickel plating layer:MP nickel plating layer was 5:4:1.
  • ⁇ MP Nickel Plating Solution> ⁇ Watts bath Nickel sulfate 260g/L Nickel chloride 40g/L Boric acid 40g/L ⁇ MP-NI308 process (manufactured by JCU Corporation) MP-303 10ml/L MP-311 3ml/L MP POWDER 308 3g/L MP-308B 2ml/L ADDITIVE-E 0.15ml/L
  • Comparative Example 6 A sample was prepared in which the nickel plating layer (lower layer) on the substrate side of the two nickel plating layers had a noble potential.
  • a chrome-plated part sample was prepared by plating semi-bright nickel, bright nickel, and trivalent chromium in this order on a substrate prepared in the same manner as in Example 1, and physical properties were tested. Each plating process was performed under the same conditions as in Comparative Examples 1 and 5, except that the plating time for bright nickel plating was 15 minutes.
  • the lower semi-bright nickel plating layer had a potential 145 mV more noble than the upper bright nickel plating layer.
  • the test results of the obtained chrome-plated part sample are shown in Table 1.
  • RN rating number
  • chrome-plated part samples of Examples 1 to 8 in which the anode potential of the second nickel plating layer at a current density of 0.1 mA/cm 2 according to the present invention is in the range of -215 to -290 mV, also showed the highest blister evaluation results, and were found to have excellent corrosion resistance overall.
  • chrome-plated parts with extremely excellent corrosion resistance can be produced, even though the nickel plating process is one step less than that of normal nickel-chrome plating.
  • the thickness of the chrome plating layer was more than three times that of the samples of Examples 3-4 under the same conditions, but the CASS test results were the same. It is suggested that the chrome-plated parts of the present invention exhibit excellent corrosion resistance regardless of the thickness of the trivalent chrome plating layer.
  • the R.N. value was 9.0 or more, which was equal to or higher than that of a chrome-plated part with a nickel film thickness of 25 ⁇ m, as described below. Since the same corrosion resistance was exhibited even though the nickel film thickness was less than half, it was shown that the present invention can improve corrosion resistance without using a large amount of nickel. In other words, the manufacturing method of the present invention can reduce the amount of nickel used, and therefore it is possible to perform the nickel plating process in a shorter time and at a lower cost.
  • Examples 9 to 18 The same operation as in Example 7 or 8 was carried out except that the composition of the first nickel plating solution was changed.
  • the first nickel plating solution a solution prepared by mixing the above-mentioned bright nickel plating base solution (Examples 9 to 14) or the base potential nickel plating solution (Examples 15 to 18) with TRI-STRIKE (manufactured by JCU Corporation) in an amount of 0 to 5 ml/L was used, and in Examples 9 and 10, the bath temperature was set to 60° C. to adjust the potential difference of the first nickel plating layer relative to the second nickel plating layer. All of the obtained chrome-plated part samples exhibited good appearances. The test results for these samples are shown in Table 2 below.
  • Comparative Example 7 The same operation as in Example 3 was carried out, except that the above-mentioned bright nickel plating base solution was used as the first nickel plating solution and the above-mentioned low potential nickel plating base solution was used as the second nickel plating solution.
  • the test results of the obtained chrome-plated part samples are shown in Table 2 below.
  • Comparative Example 8 The same operations as in Example 3 were carried out, except that the bath temperature of the first nickel plating solution was increased to 52° C.
  • the test results of the obtained chrome-plated part samples are shown in Table 2 below.
  • Comparative Example 9 For reference, hexavalent chromium-plated parts were also prepared. The same operations as in Comparative Example 7 were performed except that the following plating solution was used instead of the trivalent chromium plating, and hexavalent chromium plating was performed at 42°C and 10 A/dm2 for 3 minutes. The test results of the obtained chromium-plated part samples are shown in Table 2 below.
  • ⁇ Hexavalent chromium plating solution> ⁇ EBACHROM E-300LN process (manufactured by JCU Corporation) Chromic acid 240g/L Sulfuric acid 1g/L ECR-300LN 10ml/L MISTSHUT NP 0.1ml/L
  • Comparative Examples 7 and 8 in which the potential difference between the first nickel plating layer and the second nickel plating layer was outside the above range, the blister test results were good, but the R.N. was poor. The same was true for the samples of Comparative Examples 9 and 10, which were plated with hexavalent chromium. It became clear that, along with the potential of the second nickel plating layer, the potential difference between the two nickel plating layers must be within the specified range, and that the chromium-plated part samples according to the present invention exhibit corrosion resistance that surpasses that of hexavalent chromium-plated parts.
  • Examples 19 to 70 and Comparative Examples 11 to 34 The potential difference of the first nickel plating layer relative to the second nickel plating layer was fixed at -60 mV, and the nickel film thickness was fixed at 12 ⁇ m, and the effect of the film thickness ratio on corrosion resistance was examined.
  • the treatment times of the first nickel plating and the second nickel plating were set to 1 to 29 minutes and 1 to 29 minutes, respectively, and the film thickness ratio of the two nickel plating layers was changed in various ways, but the same operations as in Examples 1 to 8 and Comparative Examples 1 to 4 were performed.
  • the correlation between the plating time and the film thickness of each nickel plating layer was confirmed by measurements based on the above-mentioned cross-sectional micrographs. All of the obtained chrome-plated part samples had good appearances immediately after production. The test results for these samples are shown in Tables 3 and 4, together with the results of Examples 1 to 4 and Comparative Examples 1 to 4, etc.
  • the chrome-plated part samples of Examples 19 to 70, etc., in which the second nickel plating layer had an anode potential of -215 mV or less at a current density of 0.1 mA/ cm2 all had an R.N. of 8.0 or more and a blister evaluation result of 4 or more, showing excellent corrosion resistance.
  • the chrome-plated part samples in which the second nickel plating layer had a base anode potential particularly the chrome-plated part samples of Examples 1, 2, and 19 to 30 in which the anode potential was as low as -273 mV, showed extremely excellent corrosion resistance.
  • the chrome-plated part samples of Comparative Examples 11 to 34 in which the anode potential of the second nickel plating layer was more noble than -215 mV, all had good R.N. values, but the blister evaluation results were all 3 or less.
  • the chrome-plated part samples of Comparative Examples 3, 4, and 23 to 34 in which the anode potential was more noble than -194 mV, all had a blister evaluation result of 1, and had extremely poor corrosion resistance. This demonstrates the importance of making the potential of the nickel plating layer more noble.
  • Examples 71 to 72> The same operations as in Examples 3 and 4 were carried out except that the total thickness of the first nickel plating layer and the second nickel plating layer was 25 ⁇ m (the potential difference between the two nickel plating layers was 60 mV, and the thickness ratio was 1:1). All of the obtained chrome-plated part samples had good appearances. The test results for these samples are shown in Table 5 below.
  • Examples 73 to 74>> The same operations as in Examples 5 and 6 were performed, except that black trivalent chromium plating was performed instead of white trivalent chromium plating. Black trivalent chromium plating was performed by immersing the sample in the following black trivalent chromium plating solution at 40°C and 10 A/ dm2 for 3 minutes. The obtained chromium-plated part sample had a good appearance. The test results for the obtained sample are shown in Table 6 below.
  • JTC-BK process manufactured by JCU Corporation
  • the chrome-plated part samples of Examples 73 and 74 according to the present invention exhibited excellent corrosion resistance equal to or greater than that of the samples of Comparative Examples 40 and 41, which had three nickel plating layers. It became clear that the effects of the present invention are manifested regardless of the type of trivalent chrome plating layer, such as a white trivalent chrome plating layer or a black trivalent chrome plating layer.
  • Example 75 to 76> The same operations as in Examples 3 and 4 were carried out, except that the second nickel plating layer was formed using the following satin nickel plating solution (pH 4.2) at 52°C and 3 A/dm for 15 minutes. All of the obtained chrome-plated part samples had good appearances. The test results for these samples are shown in Table 7.
  • the chrome-plated parts of the present invention have been shown to exhibit excellent corrosion resistance even when the second nickel plating layer is a satin nickel plating layer.
  • chrome-plated parts that exhibit excellent corrosion resistance and have good appearance, even when the upper layer is a trivalent chromium plating layer, can be manufactured using a simplified process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The purpose of the present invention is to provide: a chromium-plated component which exhibits excellent corrosion resistance even when the upper layer thereof is a trivalent chromium plating layer, in which corrosion of copper or a copper alloy in particular is suppressed, and which also has good appearance; and a production method that makes it possible to produce such a chromium-plated component. Provided is a chromium-plated component comprising a base that has a surface layer which comprises copper or a copper alloy, a first nickel plating layer that is formed in contact with the surface layer of the base, a second nickel plating layer that is formed on and in contact with the first nickel plating layer, and a trivalent chromium plating layer that is formed on and in contact with the second nickel plating layer, said chromium-plated component being characterized in that the second nickel plating layer has an anode potential of -215 to -290 mV at a current density of 0.1 mA/cm2, and the first nickel plating layer has a potential 15-150 mV lower than the second nickel plating layer.

Description

クロムめっき部品及びその製造方法Chromium-plated parts and their manufacturing method
 本発明は、クロムめっき部品、特にニッケル-クロムめっき部品と、その製造方法に関する。 The present invention relates to chrome-plated parts, particularly nickel-chrome-plated parts, and to a method for manufacturing the same.
 従来より、基材の装飾、防食、導電性付与等の目的から、クロムめっきが行われている。クロムめっきは通常、銀白色の外観を有するため、美的装飾性に優れ、装飾用のコーティング膜として有用である。クロムめっき層はまた、自己不動態化能力によって表面に不動態皮膜を形成することができるため、耐食性の点でも優れている。特に、樹脂基材の表面にクロムめっき膜が形成された製品は、金属素材の製品に比べて軽量かつ低コストであるため、自動車部品を始めとする様々な部品として用いられている。 Chrome plating has traditionally been used to decorate substrates, provide corrosion protection, and impart electrical conductivity. Chrome plating usually has a silvery-white appearance, which gives it excellent aesthetic decorativeness and makes it useful as a decorative coating film. The chrome plating layer also has excellent corrosion resistance, as it can form a passive film on the surface due to its self-passivating ability. In particular, products in which a chrome plating film is formed on the surface of a resin substrate are lighter and less expensive than products made from metal materials, and are therefore used in a variety of parts, including automobile parts.
 クロムめっき部品(製品)の内でも、下地としてニッケルめっき層を備える製品(ニッケル-クロムめっき製品)は、装飾性や耐食性が特に優れており、樹脂を始めとする様々な基材に用いられている。ニッケル-クロムめっきの高い耐食性は、下地のニッケル層が犠牲的に腐食を受け、クロムめっき層の腐食を防ぐことに起因すると考えられる。 Among chrome-plated parts (products), products that have a nickel-plated layer as a base (nickel-chrome plated products) are particularly decorative and corrosion-resistant, and are used on a variety of substrates including resin. The high corrosion resistance of nickel-chrome plating is thought to be due to the fact that the nickel layer of the base is sacrificially corroded, preventing corrosion of the chrome-plated layer.
 ニッケル-クロムめっき製品におけるニッケル層自体の耐食性は、硫黄分を殆ど含まない半光沢ニッケルめっき層と、硫黄分を含有する光沢ニッケルめっき層、さらには他の組成のニッケルめっき層とを組み合わせた二層又は三層の構造とすることによって改善できる(例えば、特許文献1~4参照)。これは、電位が卑な光沢ニッケルめっき層が犠牲腐食されるためであり、こうしたニッケルめっき層を有するクロムめっき部品では、耐食性がより高いものとなっている。昨今はクロムめっき部品の耐食性に対する要求がますます高くなり、下地となるニッケルめっき層の構造を始めとする、さらなる耐食性改善検討が続けられている。 The corrosion resistance of the nickel layer itself in nickel-chrome plated products can be improved by combining a semi-bright nickel plating layer that contains almost no sulfur with a bright nickel plating layer that contains sulfur, and even a nickel plating layer of a different composition to create a two-layer or three-layer structure (see, for example, Patent Documents 1 to 4). This is because the bright nickel plating layer, which has a lower electric potential, is sacrificially corroded, and chrome plated parts having such a nickel plating layer have higher corrosion resistance. In recent years, there has been an increasing demand for corrosion resistance in chrome plated parts, and further improvements in corrosion resistance, including the structure of the underlying nickel plating layer, are being investigated.
 例えば特許文献1及び2には、素地上に半光沢ニッケルめっき層、光沢ニッケルめっき層、及び共析ニッケルめっき層をこの順で付与し、その上にクロムめっき層を付したニッケル-クロムめっき製品が開示されている。ここで、共析ニッケルめっき層とは、シリカ等の微粒子が共析し、マイクロポーラス構造が形成された層である。多数のポアによって腐食電流が分散されるため、光沢ニッケルめっき層の腐食が抑制される。特許文献1記載の発明では、さらに各ニッケルめっき層間の電位差を調整することによって、また特許文献2記載の発明では、高電極電位の金属イオンの濃度を各ニッケルめっき層間で相違させることによって、耐食性の改善を図っている。 For example, Patent Documents 1 and 2 disclose a nickel-chrome plated product in which a semi-bright nickel plating layer, a bright nickel plating layer, and a eutectoid nickel plating layer are applied in that order on a base material, and then a chrome plating layer is applied on top of that. Here, the eutectoid nickel plating layer is a layer in which fine particles such as silica are co-deposited to form a microporous structure. The corrosion current is dispersed by the numerous pores, so corrosion of the bright nickel plating layer is suppressed. The invention described in Patent Document 1 further improves corrosion resistance by adjusting the potential difference between each nickel plating layer, and the invention described in Patent Document 2 improves corrosion resistance by varying the concentration of metal ions at high electrode potential between each nickel plating layer.
 特許文献3では、特許文献1及び2と同様の構造のクロムめっき部品の表面を酸化し、クロムめっき膜の表面にクロムの酸化皮膜を形成させる表面改質方法が開示されている。また、特許文献4では、樹脂基材上に銅めっき、硫黄なしニッケルめっき(半光沢ニッケルめっき)、光沢ニッケルめっき、貴電位ニッケルめっき、及びマイクロポーラス構造又はマイクロクラック構造の3価クロムめっきをこの順で備えるクロムめっき部品が開示されている。特許文献4では、貴電位ニッケルめっきとして、マイクロポーラス構造を備える共析ニッケルめっき(MPニッケルめっき)も開示されている。特許文献3及び4記載の発明は、クロムめっき層の改質によってめっき部品の耐食性を改善する技術であるが、いずれにおいてもニッケルめっき層は、半光沢ニッケルめっき層を最下層とする三層構造となっている。 Patent Document 3 discloses a surface modification method in which the surface of a chrome-plated part having a structure similar to that of Patent Documents 1 and 2 is oxidized to form a chrome oxide film on the surface of the chrome plating film. Patent Document 4 discloses a chrome-plated part having, in this order, copper plating, sulfur-free nickel plating (semi-bright nickel plating), bright nickel plating, noble potential nickel plating, and trivalent chrome plating with a microporous structure or a microcrack structure on a resin substrate. Patent Document 4 also discloses co-deposited nickel plating (MP nickel plating) with a microporous structure as the noble potential nickel plating. The inventions described in Patent Documents 3 and 4 are technologies for improving the corrosion resistance of plated parts by modifying the chrome plating layer, but in both cases the nickel plating layer has a three-layer structure with a semi-bright nickel plating layer as the bottom layer.
特開平5-171468号公報Japanese Patent Application Laid-Open No. 5-171468 特開平6-146069号公報Japanese Patent Application Laid-Open No. 6-146069 特開2007-275750号公報JP 2007-275750 A 特開2010-185116号公報JP 2010-185116 A
 しかしながら、ニッケル下地層を有するクロムめっき部品は、耐食性の点でなおも改善の余地がある。近年では環境面への配慮から、クロムめっきにおいて6価クロムの代わりに3価クロムを用いる場合も多いが、こうした3価クロムめっきをニッケルめっき層上に行うと、6価クロムめっきほどの耐食性が必ずしも得られない。特許文献1及び2に記載のめっき製品は、いずれも6価クロムめっきによって製造されており、クロムめっき層が3価クロムめっきにより形成された場合には耐食性が不十分となるおそれがある。また、特許文献3記載の発明のようにクロムめっき層の表面を不動態化する方法では、表面酸化のための工程や設備が必要となり、製造コストの上昇をもたらす。 However, chrome-plated parts with a nickel underlayer still have room for improvement in terms of corrosion resistance. In recent years, due to environmental considerations, trivalent chromium is often used instead of hexavalent chromium in chrome plating, but when such trivalent chromium plating is performed on a nickel plating layer, it does not necessarily achieve the same corrosion resistance as hexavalent chromium plating. The plated products described in Patent Documents 1 and 2 are both manufactured using hexavalent chromium plating, and there is a risk that the corrosion resistance will be insufficient if the chrome plating layer is formed using trivalent chromium plating. In addition, the method of passivating the surface of the chrome plating layer, as in the invention described in Patent Document 3, requires a process and equipment for surface oxidation, resulting in increased manufacturing costs.
 特許文献4記載の発明では概して、3価クロムめっき層をマイクロポーラス構造とする上で、微孔を形成するために非導電性微粒子を使用しない限り、十分な耐食性が得難いという難点がある。 The invention described in Patent Document 4 generally has the drawback that it is difficult to obtain sufficient corrosion resistance when making the trivalent chromium plating layer have a microporous structure unless non-conductive fine particles are used to form the micropores.
 また、多くのニッケル-クロムめっき製品においては、ニッケルめっき層が三層構造を有し(ニッケルめっき層として2種の層を必須とする特許文献2及び4に記載のめっき製品においても)、素地側に半光沢ニッケルめっき層(硫黄なしニッケルめっき層)が、その上層に光沢ニッケルめっき層が形成されている。このように、光沢ニッケルめっき層より貴電位の半光沢ニッケルめっき層によって直下の銅又は銅合金を被覆するのは腐食を防止する観点からである。しかし、本発明者らが今回見出したところによると、素地に接するニッケルめっき層の電位が貴であると、素地側ニッケルめっき層の腐食が素地に到達した場合に、腐食が一気に進行する傾向がある。これに対しては、素地側のニッケルめっき層を半光沢ニッケルめっき層と比較すると電位が卑である光沢ニッケルめっき層とすることで、腐食を防ぎ得ることが、本件発明者らによる検討で分かっている。 Moreover, in many nickel-chrome plated products, the nickel plating layer has a three-layer structure (even in the plated products described in Patent Documents 2 and 4, in which two types of layers are essential as nickel plating layers), a semi-bright nickel plating layer (sulfur-free nickel plating layer) is formed on the base side, and a bright nickel plating layer is formed on the upper layer. In this way, the copper or copper alloy directly below is covered with a semi-bright nickel plating layer with a more noble potential than the bright nickel plating layer from the viewpoint of preventing corrosion. However, according to the present inventors' current discovery, if the potential of the nickel plating layer in contact with the base is more noble, when the corrosion of the nickel plating layer on the base side reaches the base, the corrosion tends to progress rapidly. In response to this, the present inventors' investigation has shown that corrosion can be prevented by making the nickel plating layer on the base side a bright nickel plating layer with a more noble potential compared to the semi-bright nickel plating layer.
 ところが、素地側のニッケルめっき層を光沢ニッケルめっき層としても、銅又は銅合金の腐食によって膨れ等が発生する可能性があることが分かった。 However, it was found that even if the nickel plating layer on the base material is a bright nickel plating layer, there is a possibility that blistering and other problems may occur due to corrosion of the copper or copper alloy.
 本発明は、上記のような課題を解決すべく、上層が3価クロムめっき層であっても優れた耐食性を示し、銅又は銅合金の腐食が抑制され、かつ外観が良好なクロムめっき部品、及びそうしたクロムめっき部品を作製し得る製造方法を提供することを目的とする。 The present invention aims to solve the above problems by providing a chrome-plated part that exhibits excellent corrosion resistance even when the upper layer is a trivalent chrome plating layer, inhibits corrosion of copper or copper alloys, and has a good appearance, as well as a manufacturing method for producing such a chrome-plated part.
 本発明者らは、クロムめっき部品において、慣用のニッケル-クロムめっきとは異なり、卑電位のニッケルめっき層を素地上に二層形成し、かつ各ニッケルめっき層の電位を特定の範囲に規定することによって、優れた耐食性が発現し、銅又は銅合金の腐食が抑制され、かつ外観も良好となることを見出し、本発明を完成するに至った。 The inventors discovered that, unlike conventional nickel-chrome plating, chrome-plated parts have excellent corrosion resistance, inhibit the corrosion of copper or copper alloys, and have a good appearance by forming two nickel plating layers with a lower potential on the base material and setting the potential of each nickel plating layer within a specific range, which led to the completion of the present invention.
 すなわち本発明は、以下の(1)~(10)を提供する。
 (1)銅又は銅合金からなる表面層を有する素地と、前記素地の前記表面層に接して形成された第1ニッケルめっき層と、前記第1ニッケルめっき層上に接して形成された第2ニッケルめっき層と、前記第2ニッケルめっき層上に接して形成された3価クロムめっき層と、を備えるクロムめっき部品であって、前記第2ニッケルめっき層は、電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、前記第1ニッケルめっき層は前記第2ニッケルめっき層に対し、15~150mV卑である電位を有することを特徴とするクロムめっき部品。
 (2)前記第1ニッケルめっき層と前記第2ニッケルめっき層との膜厚比率が1:10~30:1である、上記(1)のクロムめっき部品。
 (3)前記第1ニッケルめっき層と前記第2ニッケルめっき層との膜厚比率が1:4~14:1である、上記(1)のクロムめっき部品。
 (4)前記第1ニッケルめっき層と前記第2ニッケルめっき層との合計膜厚が1~30μmである、上記(1)~(3)のいずれかのクロムめっき部品。
 (5)前記3価クロムめっき層上に、電解化成処理膜及び/又は浸漬化成処理膜をさらに備える、上記(1)~(4)のいずれかのクロムめっき部品。
 (6)前記第2ニッケルめっき層が、非導電性微粒子不含の層である、上記(1)~(5)のいずれかのクロムめっき部品。
 (7)前記素地が、樹脂、セラミックス、及び金属からなる群より選択される1種以上の材料からなり、かつ銅もしくは銅合金からなる前記表面層が付された基材であるか、又は銅もしくは銅合金からなる基材である、上記(1)~(6)のいずれかのクロムめっき部品。
 (8)銅又は銅合金から主としてなる表面層を有する素地上に、前記表面層に接して第1ニッケルめっき層を形成する工程と、前記第1ニッケルめっき層上に接して第2ニッケルめっき層を形成する工程と、前記第2ニッケルめっき層上に接して3価クロムめっき層を形成する工程と、を備えるクロムめっき部品の製造方法であって、前記第2ニッケルめっき層は、電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、前記第1ニッケルめっき層は前記第2ニッケルめっき層に対し、15~150mV卑である電位を有することを特徴とするクロムめっき部品の製造方法。
 (9)前記3価クロムめっき層の表面に、電解化成処理膜及び/又は浸漬化成処理膜を形成する工程をさらに含む、上記(8)のクロムめっき部品の製造方法。
That is, the present invention provides the following (1) to (10).
(1) A chrome-plated part comprising a substrate having a surface layer made of copper or a copper alloy, a first nickel plating layer formed in contact with the surface layer of the substrate, a second nickel plating layer formed in contact with the first nickel plating layer, and a trivalent chrome plating layer formed in contact with the second nickel plating layer, wherein the second nickel plating layer has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer has a potential that is 15 to 150 mV less potent than the second nickel plating layer.
(2) The chrome-plated part according to (1) above, wherein the film thickness ratio of the first nickel plating layer to the second nickel plating layer is 1:10 to 30:1.
(3) The chrome-plated part according to (1) above, wherein the film thickness ratio of the first nickel plating layer to the second nickel plating layer is 1:4 to 14:1.
(4) The chrome-plated part according to any one of (1) to (3), wherein the total thickness of the first nickel plating layer and the second nickel plating layer is 1 to 30 μm.
(5) The chrome-plated part according to any one of (1) to (4), further comprising an electrolytic chemical conversion film and/or an immersion chemical conversion film on the trivalent chromium plating layer.
(6) The chrome-plated part according to any one of (1) to (5) above, wherein the second nickel plating layer is a layer that does not contain non-conductive fine particles.
(7) The chrome-plated part according to any one of (1) to (6) above, wherein the base material is a substrate made of one or more materials selected from the group consisting of resins, ceramics, and metals, and is provided with the surface layer made of copper or a copper alloy, or is a substrate made of copper or a copper alloy.
(8) A method for producing a chrome-plated part, comprising the steps of forming a first nickel plating layer on a substrate having a surface layer mainly made of copper or a copper alloy, in contact with the surface layer, forming a second nickel plating layer on the first nickel plating layer, and forming a trivalent chrome plating layer on the second nickel plating layer, wherein the second nickel plating layer has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer has a potential that is 15 to 150 mV less noble than the second nickel plating layer.
(9) The method for producing a chrome-plated part according to (8) above, further comprising a step of forming an electrolytic chemical conversion film and/or an immersion chemical conversion film on a surface of the trivalent chromium plating layer.
 本発明のクロムめっき部品は、上層が3価クロムめっき層であっても優れた耐食性を示し、特に銅又は銅合金の腐食が抑制され、しかも外観が良好である。また、本発明のクロムめっき部品の製造方法によれば、耐食性と外観に優れるクロムめっき部品を製造することができる。 The chrome-plated parts of the present invention exhibit excellent corrosion resistance even when the upper layer is a trivalent chrome plating layer, and in particular, corrosion of copper or copper alloys is suppressed, and the appearance is also good. Furthermore, according to the manufacturing method of the chrome-plated parts of the present invention, it is possible to manufacture chrome-plated parts that have excellent corrosion resistance and appearance.
本発明のクロムめっき部品の一実施形態を示す、断面模式図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a chrome-plated part of the present invention.
 以下、本発明を実施形態に基づき詳細に説明するが、本発明はこれら実施形態に限定されるものではない。 The present invention will be described in detail below based on the embodiments, but the present invention is not limited to these embodiments.
≪クロムめっき部品≫
 本発明のクロムめっき部品は、銅又は銅合金からなる表面層を有する素地と、素地の表面層に接して形成された第1ニッケルめっき層と、第1ニッケルめっき層上に接して形成された第2ニッケルめっき層と、第2ニッケルめっき層上に接して形成された3価クロムめっき層と、を備えるクロムめっき部品であって、第2ニッケルめっき層は、電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、第1ニッケルめっき層は第2ニッケルめっき層に対し、15~150mV卑である電位を有することを特徴とする。
<Chrome plated parts>
The chrome-plated part of the present invention is a chrome-plated part comprising a substrate having a surface layer made of copper or a copper alloy, a first nickel plating layer formed in contact with the surface layer of the substrate, a second nickel plating layer formed in contact with the first nickel plating layer, and a trivalent chrome plating layer formed in contact with the second nickel plating layer, wherein the second nickel plating layer has an anode potential of −215 to −290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer has a potential that is 15 to 150 mV less potent than the second nickel plating layer.
 図1は、本発明に係る一の実施形態のクロムめっき部品の断面を、模式的に示した概略図である。図1に示されるように、本実施形態のクロムめっき部品1においては、素地2の表面2A上に第1ニッケルめっき層3が、その上に第2ニッケルめっき層4が、さらにその上層に3価クロムめっき層5が、この順で、それぞれ直下の素地表面又はめっき層に接して形成されている。以下、これら各要素について説明する。 FIG. 1 is a schematic diagram showing a cross section of a chrome-plated part according to one embodiment of the present invention. As shown in FIG. 1, in the chrome-plated part 1 of this embodiment, a first nickel plating layer 3 is formed on the surface 2A of a substrate 2, a second nickel plating layer 4 is formed on that, and a trivalent chrome plating layer 5 is formed on top of that, in that order, in contact with the substrate surface or plating layer directly below. Each of these elements will be described below.
 [素地]
 クロムめっき部品1において、素地2は、後述するめっき層がその表面2Aに形成されるめっき対象である。素地2は、銅又は銅合金からなる表面層22を、少なくともめっき層が形成される表面2A側に有するものである。
[Base material]
In the chrome-plated part 1, the substrate 2 is a plating target on which a plating layer, which will be described later, is formed on its surface 2A. The substrate 2 has a surface layer 22 made of copper or a copper alloy at least on the surface 2A side on which the plating layer is formed.
 具体的に、素地2は、基材21と、銅又は銅合金からなる表面層22とを有する。尚、本実施形態では、図1にあるように、基材21と、表面層22とが別々の要素により構成された素地2の例を示しているが、これに限られず、基材21を銅又は銅合金により構成して、基材21と表面層22とが連続した一体のものであってもよい。 Specifically, the substrate 2 has a base material 21 and a surface layer 22 made of copper or a copper alloy. In this embodiment, as shown in FIG. 1, an example of the substrate 2 in which the base material 21 and the surface layer 22 are separate elements is shown, but this is not limited thereto, and the substrate 21 may be made of copper or a copper alloy, and the substrate 21 and the surface layer 22 may be a continuous, integrated body.
  (基材)
 基材21は、めっき対象である素地2の本体部に相当し、その形状及び材質については、特に制限はない。図1に示す実施形態では、基材21に表面層22が付された平板状の素地2の片面側に、各めっき層3~5が形成されているが、本発明のクロムめっき部品はこうした形態に限定されない。基材21は例えば、各種形状のハンドル、グリル、モール、エンブレム等の自動車部品、船外機部品、水栓金具、ドアノブや窓枠を始めとする建材部品、家電部品等、どのような形状及び用途のものであっても良い。
(Base material)
The substrate 21 corresponds to the main body of the base material 2 to be plated, and there are no particular limitations on its shape and material. In the embodiment shown in Fig. 1, the plating layers 3 to 5 are formed on one side of the flat substrate 2 having the surface layer 22 attached to the substrate 21, but the chrome-plated part of the present invention is not limited to this form. The substrate 21 may be of any shape and purpose, for example, automobile parts such as handles, grilles, moldings, and emblems of various shapes, outboard motor parts, faucets, building materials such as doorknobs and window frames, and home appliance parts.
 基材21は、樹脂、セラミックス、及び金属からなる群より選択される1種以上の材料からなり、銅もしくは銅合金からなる表面層22が付されて素地2を構成していることが好ましいが、こうした材質に限定されない。基材21は、各種の樹脂、エラストマー、セラミックス、金属、炭素材料等の複合材であってもよい。基材21はまた、自身が銅もしくは銅合金からなり、別要素の表面層が付されることなく素地2を構成していてもよい。この場合、素地2の表面層は、当然に銅もしくは銅合金からなる。尚、本文において「銅もしくは銅合金からなる」とは、上記表面層が主として銅もしくは銅合金によって構成されていることを意味し、微量の添加物や不可避的不純物の含有を排除するものではない。 The substrate 21 is preferably made of one or more materials selected from the group consisting of resins, ceramics, and metals, and is provided with a surface layer 22 made of copper or a copper alloy to form the base 2, but is not limited to these materials. The substrate 21 may be a composite material of various resins, elastomers, ceramics, metals, carbon materials, etc. The substrate 21 may also be made of copper or a copper alloy, and form the base 2 without a surface layer of a separate element. In this case, the surface layer of the base 2 naturally consists of copper or a copper alloy. In this context, "made of copper or a copper alloy" means that the surface layer is mainly made of copper or a copper alloy, and does not exclude the inclusion of trace amounts of additives or unavoidable impurities.
 基材21が金属材料からなる場合、金属材料の組成に特に制限はない。金属としては、例えば、銅、銅合金、ニッケル、ニッケル合金、鉄、ステンレス、亜鉛等が挙げられるが、これらに限定されない。これらの金属には、適宜、密着性を得るために活性化処理やストライクめっきを施してもよい。ストライクめっき等の処理を銅又は銅合金を用いて行えば、得られた基材21を、クロムめっき部品1における素地2としてそのまま使用することができる。 When the substrate 21 is made of a metal material, there is no particular restriction on the composition of the metal material. Examples of metals include, but are not limited to, copper, copper alloys, nickel, nickel alloys, iron, stainless steel, zinc, etc. These metals may be appropriately subjected to activation treatment or strike plating to obtain adhesion. If a treatment such as strike plating is performed using copper or a copper alloy, the obtained substrate 21 can be used as it is as the base material 2 in the chrome-plated part 1.
 基材21を構成する樹脂等の種類にも、特に制限はない。例として、ABS(アクリロニトリル-ブタジエン-スチレン系樹脂)、PC(ポリカーボネート)、PC含有ABS、SBS(スチレン-ブタジエン-スチレン共重合体)、アクリル系樹脂、ポリプロピレンやポリエチレン等のポリオレフィン系樹脂、ポリフェニレンオキサイド、ポリフェニレンスルフィド、ポリアセタール、ポリアミド、ポリイミド、ポリエステル、ポリ酢酸ビニル、ポリウレタン、エポキシ樹脂、フェノール樹脂、さらにはCFRP(炭素繊維強化プラスチック)、CNF(セルロースナノファイバー)含有樹脂等が挙げられるが、これらに限定されない。これらの内でもABS樹脂をベースとする基材は、めっきが容易で銅又は銅合金の表面層を形成し易いために、クロムめっき部品1の基材として好適である。 There are no particular limitations on the type of resin that constitutes the substrate 21. Examples include, but are not limited to, ABS (acrylonitrile-butadiene-styrene resin), PC (polycarbonate), PC-containing ABS, SBS (styrene-butadiene-styrene copolymer), acrylic resin, polyolefin resin such as polypropylene or polyethylene, polyphenylene oxide, polyphenylene sulfide, polyacetal, polyamide, polyimide, polyester, polyvinyl acetate, polyurethane, epoxy resin, phenolic resin, and even CFRP (carbon fiber reinforced plastic) and CNF (cellulose nanofiber)-containing resin. Among these, substrates based on ABS resin are suitable as substrates for the chrome-plated part 1 because they are easy to plate and form a copper or copper alloy surface layer.
  (基材のめっき処理)
 上記のようなセラミックスや樹脂製の基材21には、めっきをし易いように金属によって導電化処理をすることが好ましい。金属による導電化処理方法に特に制限はなく、無電解めっき、電解めっき、金属のスパッタリングや、金属蒸着等の種々の方法を用いることができる。特に、銅、銅合金、ニッケル、又はニッケル合金による無電解めっきが好ましい。無電解めっきの方法及び条件にも特に制限はなく、慣用の方法及び条件で行うことができる。
(Plating of substrate)
The ceramic or resin substrate 21 is preferably treated with a metal to make it conductive so that it can be easily plated. There is no particular limitation on the method of the metal-based conductive treatment, and various methods such as electroless plating, electrolytic plating, metal sputtering, and metal vapor deposition can be used. In particular, electroless plating with copper, a copper alloy, nickel, or a nickel alloy is preferred. There is no particular limitation on the method and conditions for electroless plating, and it can be performed using conventional methods and conditions.
 無電解めっきを施した基材21には、さらに電解銅めっき又は電解銅合金めっき(電解銅系めっき)を行うことが好ましい。電解銅系めっきによれば密着性等に特に優れた表面層22を形成することができる。無電解めっきを銅又は銅合金により行い、銅系の層が形成された場合にも、電解銅系めっきを重ねて行うことが好ましい。電解銅系めっきの方法及び条件にも特に制限はなく、慣用の方法及び条件で行うことができる。このようにして、素地2における表面層22を調製することができる。 The substrate 21 that has been electrolessly plated is preferably further subjected to electrolytic copper plating or electrolytic copper alloy plating (electrolytic copper-based plating). Electrolytic copper-based plating can form a surface layer 22 that is particularly excellent in adhesion, etc. Even when electroless plating is performed using copper or a copper alloy and a copper-based layer is formed, it is preferable to perform electrolytic copper-based plating on top of it. There are no particular restrictions on the method and conditions for electrolytic copper-based plating, and it can be performed using conventional methods and conditions. In this way, the surface layer 22 on the base material 2 can be prepared.
  (表面層)
 表面層22は、素地2において、基材21の表面又はその上層であって、後述するめっき層が形成される側の表面を構成し、銅又は銅合金からなる。このように、銅又は銅合金からなる表面層22には、後述するめっき層、具体的には第1ニッケルめっき層3が、表面2A側に接して形成される。
(Surface layer)
The surface layer 22 is made of copper or a copper alloy, and constitutes the surface of the base material 21 or an upper layer thereof in the base material 2, the surface on which a plating layer described later is formed. In this manner, a plating layer described later, specifically a first nickel plating layer 3, is formed on the surface layer 22 made of copper or a copper alloy in contact with the surface 2A side.
 [ニッケルめっき層]
 クロムめっき部品1においては、上記のように素地2の表面2A上に第1ニッケルめっき層3が、その上に第2ニッケルめっき層4が、さらにその上層に3価クロムめっき層5が形成されている。ここでは、第1ニッケルめっき層3と第2ニッケルめっき層4とを併せて「ニッケルめっき層」と称する。
[Nickel plating layer]
In the chrome-plated part 1, as described above, the first nickel plating layer 3 is formed on the surface 2A of the base material 2, the second nickel plating layer 4 is formed thereon, and the trivalent chrome plating layer 5 is further formed on top of that. Here, the first nickel plating layer 3 and the second nickel plating layer 4 are collectively referred to as the "nickel plating layer".
 ニッケルめっき層において、3価クロムめっき層5側の第2ニッケルめっき層4は、電流密度0.1mA/cmでのアノード電位が-215~-290mVである。素地2上に接する第1ニッケルめっき層3は、第2ニッケルめっき層4よりもさらに卑側の電位を有する。すなわち、クロムめっき部品1では、電位が卑である第1ニッケルめっき層3が、電位が貴である半光沢ニッケル層のような他の層を介することなく、素地2の直上に表面層22に接した状態で形成されている。 In the nickel plating layer, the second nickel plating layer 4 on the trivalent chromium plating layer 5 side has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 . The first nickel plating layer 3 in contact with the substrate 2 has a potential that is more base than that of the second nickel plating layer 4. That is, in the chrome-plated part 1, the first nickel plating layer 3, which has a base potential, is formed in contact with the surface layer 22 directly on the substrate 2 without passing through another layer such as a semi-bright nickel layer, which has a noble potential.
 以下ではこれらニッケルめっき層について詳記するが、先ずは電位の数値範囲が規定されている第2ニッケルめっき層4、及びその電位について説明する。 These nickel plating layers will be described in detail below, but first we will explain the second nickel plating layer 4, which has a specified range of potential, and its potential.
 〔第2ニッケルめっき層〕
 第2ニッケルめっき層4は、電流密度0.1mA/cmで-215~-290mVのアノード電位を有するニッケルめっき層である。また、そのアノード電位は、クロムめっき部品1の耐食性をさらに高める観点から、好ましくは-220~-285mVであり、より好ましくは-220~-280mVである。
[Second nickel plating layer]
The second nickel plating layer 4 is a nickel plating layer having an anode potential of −215 to −290 mV at a current density of 0.1 mA/cm 2. In addition, from the viewpoint of further enhancing the corrosion resistance of the chrome-plated part 1, the anode potential is preferably −220 to −285 mV, more preferably −220 to −280 mV.
 アノード電位は、平衡電位の目安となる電位であり、電位の貴卑関係を明確に示す。アノード電位は、例えばクロムめっき部品1からクロムめっき層5を除去した試料(電位測定用試料)を作用極として、クロノポテンショメトリ法によって測定することができる。具体的には、白金を対極、銀-塩化銀(飽和KCl)電極を参照極、塩化ニッケル六水和物を300g/L、塩化ナトリウムを50g/L、ホウ酸を25g/Lを電解液とし、クロノポテンショメトリにより電圧を測定する。測定の際の、電流密度0.1mA/cmにおける作用極の電圧値を、第2ニッケルめっき層4の「アノード電位」とする。 The anode potential is a potential that serves as a guide for the equilibrium potential, and clearly indicates the noble-base relationship of the potential. The anode potential can be measured by chronopotentiometry, for example, using a sample (potential measurement sample) obtained by removing the chrome plating layer 5 from the chrome-plated part 1 as the working electrode. Specifically, platinum is used as the counter electrode, a silver-silver chloride (saturated KCl) electrode is used as the reference electrode, and 300 g/L of nickel chloride hexahydrate, 50 g/L of sodium chloride, and 25 g/L of boric acid are used as the electrolyte, and the voltage is measured by chronopotentiometry. The voltage value of the working electrode at a current density of 0.1 mA/cm 2 during the measurement is defined as the "anode potential" of the second nickel plating layer 4.
 電位の貴卑関係は、後記する平衡電位によって評価するのが一般的であるが、本発明者らは今回、アノード電位が平衡電位に比べ、電位の貴卑関係を数倍鋭敏に反映することを見出した。アノード電位はまた、平衡電位よりも簡便な方法で測定し得る利点も有するので、上記のようにアノード電位によって第2ニッケルめっき層4の電位を規定し、クロムめっき部品1の物性を管理することとしたものである。 The noble-base relationship of potentials is generally evaluated using the equilibrium potential described below, but the present inventors have now discovered that the anode potential reflects the noble-base relationship of potentials several times more sensitively than the equilibrium potential. The anode potential also has the advantage that it can be measured in a simpler manner than the equilibrium potential, so the potential of the second nickel plating layer 4 is determined by the anode potential as described above, and the physical properties of the chrome-plated part 1 are controlled.
 尚、ニッケルめっき層の上記アノード電位は、めっき種等の条件によっても異なるが、一般に平均的な光沢ニッケルめっき層で-250mV前後、汎用のニッケル-クロムめっきにおける三層ニッケルめっきの最上層(例えば共析ニッケルめっき層)ではより貴電位側の値、平均的な半光沢ニッケルめっき層ではさらに貴電位側の-150mV前後の値となる。そのため、第2ニッケルめっき層4は、例えば汎用の光沢ニッケルめっき層や、あるいは同等の電位を有するサテンニッケルめっき層、さらにはそれらの電位を電位調整剤等で卑電位側又は貴電位側に調整したニッケルめっき層で構成することができる。 The above-mentioned anode potential of the nickel plating layer varies depending on the plating type and other conditions, but is generally around -250 mV for an average bright nickel plating layer, a more noble potential value for the top layer of a three-layer nickel plating in general-purpose nickel-chrome plating (e.g., a eutectoid nickel plating layer), and an even more noble potential value of around -150 mV for an average semi-bright nickel plating layer. Therefore, the second nickel plating layer 4 can be composed of, for example, a general-purpose bright nickel plating layer, or a satin nickel plating layer with an equivalent potential, or even a nickel plating layer whose potential has been adjusted to the less noble or more noble potential side using a potential adjuster or the like.
  (平衡電位)
 上記のようなアノード電位を有する第2ニッケルめっき層4の平衡電位は、概して-402~-414mV程度となる。平衡電位は例えば、白金を対極、銀-塩化銀(飽和KCl)電極を参照極、塩化ニッケル六水和物を300g/L、塩化ナトリウムを50g/L、ホウ酸を25g/Lを含む液を電解液として測定することができる。例えばクロムめっき部品1からクロムめっき層5を除去した試料(電位測定用試料)を作用極とし、クロノポテンショメトリで電流密度を0.01、0.1、1、-0.01、-0.1、及び-1mA/cmとした際の電圧値からTafelプロットを作成することにより、平衡電位を求めればよい。
(Equilibrium potential)
The equilibrium potential of the second nickel plating layer 4 having the above-mentioned anode potential is generally about -402 to -414 mV. The equilibrium potential can be measured, for example, by using platinum as the counter electrode, a silver-silver chloride (saturated KCl) electrode as the reference electrode, and a solution containing 300 g/L of nickel chloride hexahydrate, 50 g/L of sodium chloride, and 25 g/L of boric acid as the electrolyte. For example, the equilibrium potential can be obtained by creating a Tafel plot from the voltage values when the current density is set to 0.01, 0.1, 1, -0.01, -0.1, and -1 mA/cm 2 by chronopotentiometry, using a sample (potential measurement sample) obtained by removing the chrome plating layer 5 from the chrome-plated part 1 as the working electrode.
  (光沢ニッケルめっき層)
 第2ニッケルめっき層4の代表例の一つである光沢ニッケルめっき層は、ニッケルめっき皮膜に硫黄を含んだものである。光沢ニッケルめっき層の種類は、特に限定されない。
(Bright nickel plating layer)
A bright nickel plating layer, which is a typical example of the second nickel plating layer 4, is a nickel plating film containing sulfur. The type of the bright nickel plating layer is not particularly limited.
 光沢ニッケルめっき層は、硫黄化合物等からなる一次光沢剤等を含有させた公知のニッケルめっき液を用い、電気めっき処理することにより形成することができる。具体的に、そのニッケルめっき液としては、特に限定されないが、例えば、ワット浴、スルファミン酸浴、クエン酸浴、ワイズベルグ浴等を用いることができる。 The bright nickel plating layer can be formed by electroplating using a known nickel plating solution that contains a primary brightener such as a sulfur compound. Specifically, the nickel plating solution is not particularly limited, but examples that can be used include a Watts bath, a sulfamic acid bath, a citric acid bath, and a Weisberg bath.
 また、光沢ニッケルめっき層を形成するためのニッケルめっき液に含まれる一次光沢剤としては、例えば、1,5-ナフタレンジスルホン酸ナトリウム、1,6-ナフタレンジスルホン酸ナトリウム、2,5-ナフタレンジスルホン酸ナトリウム、1,3,6-ナフタレントリスルホン酸ナトリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルフィン酸ナトリウム、o-スルホベンズイミド(サッカリン)ナトリウム等の芳香族スルホンイミド類やスルフィン酸類、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム等のエチレン系不飽和スルホン酸塩等が挙げられる。これらは1種又は2種以上組み合わせて使用される。 Furthermore, examples of primary brighteners contained in the nickel plating solution for forming the bright nickel plating layer include aromatic sulfonimides and sulfinic acids such as sodium 1,5-naphthalenedisulfonate, sodium 1,6-naphthalenedisulfonate, sodium 2,5-naphthalenedisulfonate, sodium 1,3,6-naphthalenetrisulfonate, sodium benzenesulfonate, sodium benzenesulfinate, and sodium o-sulfobenzimid (saccharin), as well as ethylenically unsaturated sulfonates such as sodium vinylsulfonate and sodium allylsulfonate. These may be used alone or in combination of two or more.
 また、一次光沢剤と共にあるいはそれに代えて、光沢・レベリングを付与する目的の光沢・レベリング付与剤(二次光沢剤)を用いることができる。光沢・レベリング付与剤としては、例えば、1,4-ブチンジオール、ヘキシンジオール、プロパギルアルコール等のアセチレン系不飽和アルコール及びその誘導体、ピリジン系スルホン酸ナトリウム塩等が挙げられる。これらも1種又は2種以上組み合わせて使用される。 Furthermore, together with or in place of the primary gloss agent, a gloss/leveling agent (secondary gloss agent) for the purpose of imparting gloss/leveling can be used. Examples of gloss/leveling agents include acetylene-based unsaturated alcohols and their derivatives, such as 1,4-butynediol, hexynediol, and propargyl alcohol, and pyridine-based sodium sulfonate. These can also be used alone or in combination of two or more.
 尚、一次光沢剤及び光沢・レベリング付与剤(二次光沢剤)としては、例えば、HI-
BRITE #88プロセス((株)JCU製)に使用される#81、#83、#810等の市販品を使用することもできる。
In addition, examples of the primary gloss agent and the gloss/leveling agent (secondary gloss agent) include HI-
Commercially available products such as #81, #83, and #810 used in the BRITE #88 process (manufactured by JCU Corporation) can also be used.
 ニッケルめっき液においては、上述した一次光沢剤を、例えば、0.1~10g/L、好ましくは1~5g/L、より好ましくは1.5~4g/L程度の濃度で含有する。また、ニッケルめっき液においては、光沢・レベリング付与剤を、例えば、0.5~300ppm、好ましくは10~200ppm、より好ましくは20~200ppm程度の濃度で含有する。 The nickel plating solution contains the above-mentioned primary brightener at a concentration of, for example, 0.1 to 10 g/L, preferably 1 to 5 g/L, and more preferably 1.5 to 4 g/L. The nickel plating solution also contains a gloss/leveling agent at a concentration of, for example, 0.5 to 300 ppm, preferably 10 to 200 ppm, and more preferably 20 to 200 ppm.
 光沢ニッケルめっき用のめっき液には、湿潤剤を含有させることが好ましい。湿潤剤としては、例えば界面活性剤が挙げられる。界面活性剤としては、特に限定されないが、例えば、ポリエチレングリコール等のノニオン系、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のアニオン系の界面活性剤等が挙げられる。これら界面活性剤は1種又は2種以上を用いることができる。尚、湿潤剤として、例えばHI-BRITE #88プロセス((株)JCU製)に使用される#82、#82-A、#82-K等の市販品を利用してもよい。上記湿潤剤は、ニッケルめっき液に、例えば、10~1000ppm、より好ましくは100~500ppm程度の濃度で含有させる。 The plating solution for bright nickel plating preferably contains a wetting agent. Examples of wetting agents include surfactants. There are no particular limitations on the surfactants, but examples include nonionic surfactants such as polyethylene glycol, and anionic surfactants such as sodium polyoxyethylene alkyl ether sulfate. One or more of these surfactants can be used. As wetting agents, commercial products such as #82, #82-A, and #82-K used in the HI-BRITE #88 process (manufactured by JCU Corporation) may be used. The wetting agents are contained in the nickel plating solution at a concentration of, for example, 10 to 1000 ppm, more preferably about 100 to 500 ppm.
 光沢ニッケルめっき層を形成するための電気めっきの条件についても、特に限定されず、慣用の条件を採用することができる。例えば、浴温を40~60℃、より好ましくは45~55℃、電流密度を1~10A/dm、より好ましくは2~5A/dmとした条件で行うことができる。 The conditions for electroplating to form the bright nickel plating layer are not particularly limited, and conventional conditions can be adopted. For example, the plating can be performed under conditions of a bath temperature of 40 to 60°C, more preferably 45 to 55°C, and a current density of 1 to 10 A/ dm2 , more preferably 2 to 5 A/ dm2 .
 このようにして調製された光沢ニッケルめっき層を、第2ニッケルめっき層4として第1ニッケルめっき層上に形成してもよい。光沢ニッケルめっき層のアノード電位は、めっき液における一次光沢剤や光沢・レベリング付与剤(二次光沢剤)の量や温度を調整することにより、-215~-290mVの範囲内で卑電位側又は貴電位側にシフトさせることができる。光沢ニッケルめっき層の電位調整はまた、電位調整剤の配合によって行うことも可能である。 The bright nickel plating layer prepared in this manner may be formed on the first nickel plating layer as the second nickel plating layer 4. The anode potential of the bright nickel plating layer can be shifted to the lower potential side or the more noble potential side within the range of -215 to -290 mV by adjusting the amount of the primary brightener and the brightness/leveling agent (secondary brightener) in the plating solution and the temperature. The potential of the bright nickel plating layer can also be adjusted by adding a potential adjuster.
  (電位調整剤)
 ニッケルめっき液に含まれる電位調整剤としても、公知のものを使用することができる。例えば、サッカリンナトリウム、ベンゼンスルフィン酸ナトリウム、S-エチルイソチオ尿素臭化水素酸塩、3-[[アミノ(イミノ)メチル]チオ]プロパン酸、2,4-チアゾリジンジオン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、2-メチル-4-イソチアゾリン-3-オン等の卑電位側電位調整剤;ブチンジオール、ヘキシンジオール、プロパギルアルコール、アリル硫酸ナトリウム、ホルマリン、抱水クロラール(2,2,2-トリクロロ-1,1-エタンジオール)、抱水ブロマール(2,2,2-トリブロモ-1,1-エタンジオール)等の貴電位側電位調整剤が挙げられるが、これらに限定されない。
(Potential Adjuster)
The potential regulator contained in the nickel plating solution may be any known potential regulator, including, but not limited to, lower potential regulators such as sodium saccharin, sodium benzenesulfinate, S-ethylisothiourea hydrobromide, 3-[[amino(imino)methyl]thio]propanoic acid, 2,4-thiazolidinedione, 5-chloro-2-methyl-4-isothiazolin-3-one, and 2-methyl-4-isothiazolin-3-one; and noble potential regulators such as butynediol, hexynediol, propargyl alcohol, sodium allyl sulfate, formalin, chloral hydrate (2,2,2-trichloro-1,1-ethanediol), and bromal hydrate (2,2,2-tribromo-1,1-ethanediol).
 尚、電位調整剤としては、例えば、卑電位側電位調整剤としてTRI-STRIKE、貴電位側電位調整剤としてADDITIVE-E(いずれも(株)JCU製)等の市販品を使用することもできる。 In addition, as the potential adjuster, for example, commercially available products such as TRI-STRIKE as a potential adjuster on the lower potential side and ADDITIVE-E as a potential adjuster on the higher potential side (both manufactured by JCU Corporation) can also be used.
 このような、一次光沢剤、二次光沢剤、及び電位調整剤等の濃度を適宜調整したニッケルめっき液を用いてめっき処理することにより、上記のような電位を有する第2ニッケルめっき層4を形成することができる。勿論、光沢ニッケルめっき液以外のめっき液を用いて、アノード電位が-215~-290mVの第2ニッケルめっき層4を形成することも可能である。例えば以下に述べるサテンニッケルめっきにより、第2ニッケルめっき層4を形成してもよい。その際のめっきは、上記した光沢ニッケルめっきと同様の条件で行うことができる。 By performing plating using a nickel plating solution in which the concentrations of the primary brightener, secondary brightener, potential adjuster, etc. are appropriately adjusted, the second nickel plating layer 4 having the above-mentioned potential can be formed. Of course, it is also possible to form the second nickel plating layer 4 with an anode potential of -215 to -290 mV using a plating solution other than a bright nickel plating solution. For example, the second nickel plating layer 4 may be formed by satin nickel plating, which will be described below. The plating in this case can be performed under the same conditions as the bright nickel plating described above.
  (サテンニッケルめっき層)
 サテンニッケルめっきとは、めっき皮膜表面に微細な凹凸形状を形成し、これにより半光沢や無光沢の梨地状外観を得るめっき手法である。ニッケルめっき浴中に界面活性剤を複数添加することでエマルションが形成され、皮膜表面への吸着・脱離を繰り返す。エマルションが吸着した部位では皮膜析出が阻害され、脱離後に皮膜表層に凹形状が形成されることで、梨地状外観を得ることができる。界面活性剤としては、例えばカチオン系界面活性剤やアニオン系界面活性剤が挙げられるが、これらに限定されない。このようにサテンニッケルめっき層は、これら界面活性剤を分散させたニッケルめっき液を用いることによって製造することができる。シリカ、カオリン、硫酸バリウム等の非導電性微粒子をめっき液に含有させることにより、形成することも可能である。こうしたサテンニッケルめっきは、梨地状外観を有するクロムめっき部品1を製造する際に有用である。
(Satin nickel plating layer)
Satin nickel plating is a plating method that forms fine irregularities on the surface of a plated film, thereby obtaining a semi-glossy or matte pear-like appearance. By adding multiple surfactants to a nickel plating bath, an emulsion is formed, which is repeatedly adsorbed to and desorbed from the film surface. Film deposition is inhibited at the site where the emulsion is adsorbed, and a concave shape is formed on the surface layer of the film after desorption, resulting in a pear-like appearance. Examples of surfactants include, but are not limited to, cationic surfactants and anionic surfactants. In this way, the satin nickel plating layer can be produced by using a nickel plating solution in which these surfactants are dispersed. It is also possible to form the satin nickel plating layer by adding non-conductive fine particles such as silica, kaolin, and barium sulfate to the plating solution. Such satin nickel plating is useful for producing a chrome-plated part 1 having a matte appearance.
 サテンニッケルめっき層はまた、DOUBLET SATINプロセス((株)JCU製)等の市販品を用いて形成することもできる。 The satin nickel plating layer can also be formed using commercially available products such as the DOUBLET SATIN process (manufactured by JCU Corporation).
 尚、ニッケルめっき液としては、シリカ等の非導電性微粒子を含有しないものを用い、非導電性微粒子不含の第2ニッケルめっき層4とすることが好ましい。また、非導電性微粒子が含まれる場合も、その含有量は第2ニッケルめっき層4の全質量に対して約5質量%以下、特に1質量%以下とすることが好ましい。非導電性微粒子を不含の、あるいは含んでも5質量%程度以下の第2ニッケルめっき層4とすることにより、当該微粒子の析出等が防止され、クロムめっき部品1の外観をより良好なものとすることができる。また、めっき処理において非導電性微粒子不含のニッケルめっき液を用いることで、めっき液の管理が容易になり、めっき工程を簡略化できる利点も生じる。尚、本発明において「非導電性微粒子不含」とは、「不可避的不純物以外の非導電性微粒子を含まない」ことを指す。非導電性微粒子量が0のもののみを指すものではなく、例えば非導電性微粒子が0.1質量%程度以下混入している層も包含する。 It is preferable to use a nickel plating solution that does not contain non-conductive fine particles such as silica, and to make the second nickel plating layer 4 free of non-conductive fine particles. Even if non-conductive fine particles are included, the content is preferably about 5 mass % or less, particularly 1 mass % or less, based on the total mass of the second nickel plating layer 4. By making the second nickel plating layer 4 free of non-conductive fine particles, or containing about 5 mass % or less of non-conductive fine particles, the precipitation of the fine particles can be prevented, and the appearance of the chrome-plated part 1 can be improved. In addition, by using a nickel plating solution that does not contain non-conductive fine particles in the plating process, there is also the advantage that the plating solution can be easily managed and the plating process can be simplified. In addition, in the present invention, "free of non-conductive fine particles" means "free of non-conductive fine particles other than unavoidable impurities". It does not only refer to those with 0 non-conductive fine particles, but also includes layers containing non-conductive fine particles of about 0.1 mass % or less.
 以上のようにして、ニッケルめっき層を三層有する慣用のニッケル-クロムめっき部品における最上層のニッケルめっき層に比べ、電位が卑である第2ニッケルめっき層が、第1ニッケルめっき層3上に形成される。 In this way, a second nickel plating layer, which has a lower potential than the top nickel plating layer in a conventional nickel-chrome plated part having three nickel plating layers, is formed on the first nickel plating layer 3.
 〔第1ニッケルめっき層〕
 第1ニッケルめっき層3は、第2ニッケルめっき層4に対し、15~150mV卑である電位を有するニッケルめっき層である。慣用のニッケル-クロムめっき部品において素地直上のめっき層として多用される半光沢ニッケルめっき層に比べ、かなり卑な電位を有する。
[First nickel plating layer]
The first nickel plating layer 3 is a nickel plating layer having a potential that is 15 to 150 mV less noble than the second nickel plating layer 4. It has a significantly less noble potential than the semi-bright nickel plating layer that is often used as a plating layer directly on a substrate in conventional nickel-chrome plated parts.
 第1ニッケルめっき層3は例えば、上記した光沢ニッケルめっき液中の一次光沢剤、光沢・レベリング付与剤(二次光沢剤)、及び電位調整剤等の種類や含有量を変えためっき液を用いて調製することができる。また、TRI-STRIKEプロセス((株)JCU製)のような、市販の卑電位ニッケルめっき液を用いて調製することも可能である。 The first nickel plating layer 3 can be prepared, for example, by using a plating solution in which the types and contents of the primary brightener, the gloss/leveling agent (secondary brightener), and the potential adjuster in the above-mentioned bright nickel plating solution are changed. It can also be prepared by using a commercially available low potential nickel plating solution such as the TRI-STRIKE process (manufactured by JCU Corporation).
 また、第1ニッケルめっき層3を形成するための電気めっきの条件についても、特に限定されず、慣用の条件を採用することができる。例えば、浴温を40~60℃、より好ましくは45~55℃、電流密度を1~10A/dm、より好ましくは2~5A/dmとした条件で行うことができる。 The electroplating conditions for forming the first nickel plating layer 3 are not particularly limited, and conventional conditions can be adopted. For example, the electroplating can be performed under conditions of a bath temperature of 40 to 60° C., more preferably 45 to 55° C., and a current density of 1 to 10 A/dm 2 , more preferably 2 to 5 A/dm 2 .
  (電位差、電位の測定)
 上述したように、第1ニッケルめっき層3は第2ニッケルめっき層4に対し、15~150mV卑である電位を有する。クロムめっき部品1の耐食性をさらに高める観点からは、第2ニッケルめっき層4に対して、好ましくは30~150mV、より好ましくは40~140mV、さらに好ましくは50~120mV、特に好ましくは70~100mV卑である電位を有する。
(Measurement of potential difference and potential)
As described above, the first nickel plating layer 3 has a potential that is 15 to 150 mV less potent than the second nickel plating layer 4. From the viewpoint of further enhancing the corrosion resistance of the chromium-plated part 1, the first nickel plating layer 3 has a potential that is preferably 30 to 150 mV, more preferably 40 to 140 mV, even more preferably 50 to 120 mV, and particularly preferably 70 to 100 mV less potent than the second nickel plating layer 4.
 このような電位差は、例えばASTM B764:「多層ニッケル析出物中の個々の層の厚さと電位の同時決定」に従うSTEP試験により、測定することができる。より具体的には、NiCl・6HOを300g/L、NaClを50g/L、HBOを25g/L含有する電解液(20℃)中に、銀-塩化銀参照電極(基準電極)と、クロムめっき部品1から3価クロムめっき層5を除去した試料(電位測定用試料)とを配置し、例えば多層ニッケルめっき耐食性測定装置等の市販の装置によって測定することができる。尚、ここでの電位差は上記したアノード電位や平衡電位とは測定条件が異なるため、例えば当該電位差を第2ニッケルめっき層4のアノード電位又は平衡電位から差し引いて、第1ニッケルめっき層3のアノード電位又は平衡電位とすることはできない。 Such a potential difference can be measured, for example, by a STEP test according to ASTM B764: "Simultaneous Determination of the Thickness and Potential of Individual Layers in a Multilayer Nickel Deposit". More specifically, a silver -silver chloride reference electrode (standard electrode) and a sample (potential measurement sample) obtained by removing the trivalent chromium plating layer 5 from a chrome - plated part 1 are placed in an electrolyte (20°C) containing 300 g/L of NiCl 2.6H 2 O, 50 g/L of NaCl, and 25 g/L of H 3 BO 3, and the potential difference can be measured, for example, by a commercially available device such as a multilayer nickel plating corrosion resistance measuring device. Note that the potential difference here is measured under different conditions from the anode potential and equilibrium potential described above, so that, for example, the potential difference cannot be subtracted from the anode potential or equilibrium potential of the second nickel plating layer 4 to obtain the anode potential or equilibrium potential of the first nickel plating layer 3.
 クロムめっき部品1では、上記のように素地2における表面層22の直上に第1ニッケルめっき層3が、その直上かつクロムめっき層5側に第2ニッケルめっき層4が形成され、そして、第2ニッケルめっき層4は電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、第1ニッケルめっき層3は第2ニッケルめっき層4に対し15~150mV卑である電位を有する。このようなクロムめっき部品1によれば、優れた耐食性と良好な外観が発現する。 In the chrome-plated part 1, as described above, the first nickel plating layer 3 is formed directly on the surface layer 22 of the base material 2, and the second nickel plating layer 4 is formed directly on top of that on the chrome plating layer 5 side, and the second nickel plating layer 4 has an anode potential of -215 to -290 mV at a current density of 0.1 mA/ cm2 , and the first nickel plating layer 3 has a potential that is 15 to 150 mV less noble than the second nickel plating layer 4. Such a chrome-plated part 1 exhibits excellent corrosion resistance and a good appearance.
 クロムめっき部品1において、上述した効果を奏する理由は定かではなく特定の理論により限定されるものではないが、理由の一つとして、第1ニッケルめっき層3の電位が卑であるため、隣接する銅又は銅合金からなる表面層22の腐食が効果的に抑制されて空孔等を生じ難くなり、結果としてめっき層付近での膨れの発生も抑えられている可能性がある。同時に、第2ニッケルめっき層4が、より卑電位の第1ニッケルめっき層3の犠牲腐食によって抑制されるために、クロムめっき部品1全体の耐食性が改善されていると考えられる。 The reason why the chrome-plated part 1 exhibits the above-mentioned effects is unclear and is not limited to any particular theory, but one reason may be that the first nickel plating layer 3 has a base potential, which effectively suppresses corrosion of the adjacent surface layer 22 made of copper or a copper alloy, making it less likely for voids to form, and as a result, suppressing the occurrence of blistering near the plating layer. At the same time, it is believed that the corrosion resistance of the entire chrome-plated part 1 is improved because the second nickel plating layer 4 is suppressed by the sacrificial corrosion of the first nickel plating layer 3, which has a baser potential.
 〔ニッケルめっき層の膜厚、膜厚比率〕
 クロムめっき部品1において、ニッケルめっき層を構成する第1ニッケルめっき層3及び第2ニッケルめっき層4の膜厚は、特に限定されず、目的に応じて、例えば100μm以下や、1~50μm程度とすることができる。また、耐食性をより優れたものとし、かつニッケルめっきのコストを低減する観点からは、第1ニッケルめっき層3と第2ニッケルめっき層4との合計膜厚(ニッケル膜厚)が、1~30μm程度であることが好ましく、2~20μm程度であることがより好ましく、5~15μm程度であることが特に好ましい。
[Thickness and thickness ratio of nickel plating layer]
In the chrome-plated part 1, the film thickness of the first nickel plating layer 3 and the second nickel plating layer 4 constituting the nickel plating layer is not particularly limited and can be, for example, 100 μm or less or about 1 to 50 μm depending on the purpose. From the viewpoint of improving corrosion resistance and reducing the cost of nickel plating, the total film thickness (nickel film thickness) of the first nickel plating layer 3 and the second nickel plating layer 4 is preferably about 1 to 30 μm, more preferably about 2 to 20 μm, and particularly preferably about 5 to 15 μm.
 また、第1ニッケルめっき層3:第2ニッケルめっき層4の膜厚比率は、1:10~30:1であることが好ましく、1:4~14:1の範囲内であることがより好ましい。これによって、より一層優れた耐食性が発現する傾向がある。また、この膜厚比率は、1:4~4:1、特に1:2~4:1の範囲内であることにより、クロムめっき部品1の耐食性が、さらに顕著なものとなり得る。 Furthermore, the film thickness ratio of the first nickel plating layer 3:second nickel plating layer 4 is preferably 1:10 to 30:1, and more preferably within the range of 1:4 to 14:1. This tends to result in even better corrosion resistance. Furthermore, by having this film thickness ratio within the range of 1:4 to 4:1, and particularly 1:2 to 4:1, the corrosion resistance of the chrome-plated part 1 can be even more remarkable.
 [3価クロムめっき層]
 クロムめっき部品1においては、第2ニッケルめっき層4上に接して、3価クロムめっき層5が形成されている。この3価クロムめっき層5により、耐食性及び美的装飾性に優れ、装飾用等として有用なめっき部品が提供される。
[Trivalent chromium plating layer]
In the chrome-plated part 1, a trivalent chrome plating layer 5 is formed on and in contact with the second nickel plating layer 4. This trivalent chrome plating layer 5 provides a plated part that is excellent in corrosion resistance and aesthetic decorativeness and is useful for decorative purposes, etc.
 3価クロムめっき層5の形成方法についても、特に限定されず、慣用のめっき方法により所望の条件で処理を行えばよい。例えば、3価クロム化合物、錯化剤、導電性塩、及びpH緩衝剤等を含有させた公知の3価クロムめっき液を用い、電気めっき処理することにより形成することができる。 The method for forming the trivalent chromium plating layer 5 is not particularly limited, and may be performed under desired conditions using a conventional plating method. For example, it may be formed by electroplating using a known trivalent chromium plating solution that contains a trivalent chromium compound, a complexing agent, a conductive salt, a pH buffer, etc.
 3価クロムめっき層5を形成するための3価クロムめっき液において、3価クロム化合物は、特に限定されない。例えば、塩基性硫酸クロム(III)(Cr(OH)SO)、硫酸クロム(III)、塩化クロム(III)、スルファミン酸クロム(III)、酢酸クロム(III)等が挙げられる。その中でも、塩基性硫酸クロム及び/又は硫酸クロムを使用することが好ましい。これら3価クロム化合物は、1種又は2種以上を組み合わせてもよい。また、3価クロムめっき液における3価クロム化合物の含有量は、例えば金属クロムとして1~25g/L程度とすることができる。 In the trivalent chromium plating solution for forming the trivalent chromium plating layer 5, the trivalent chromium compound is not particularly limited. For example, basic chromium sulfate (III) (Cr(OH)SO 4 ), chromium sulfate (III), chromium chloride (III), chromium sulfamate (III), chromium acetate (III), etc. can be mentioned. Among them, it is preferable to use basic chromium sulfate and/or chromium sulfate. These trivalent chromium compounds may be used alone or in combination of two or more. The content of the trivalent chromium compound in the trivalent chromium plating solution can be, for example, about 1 to 25 g/L in terms of metallic chromium.
 また、錯化剤についても、特に限定されない。例えば、ギ酸、ギ酸アンモニウム、ギ酸カリウム等の脂肪族モノカルボン酸(塩);コハク酸、マレイン酸、リンゴ酸等の脂肪族ジカルボン酸及びその塩;クエン酸、クエン酸三アンモニウム等の脂肪族トリカルボン酸(塩);酒石酸、酒石酸ジアンモニウム、酒石酸ナトリウム等のヒドロキシ基を2つ以上、カルボキシ基を2つ以上有するカルボン酸(塩);グリシン等のアミノカルボン酸等が挙げられる。これら錯化剤は、1種又は2種以上を組み合わせてもよい。3価クロムめっき液における錯化剤の含有量は、例えば0.1~50g/L程度とすることができる。 Furthermore, the complexing agent is not particularly limited. Examples include aliphatic monocarboxylic acids (salts) such as formic acid, ammonium formate, potassium formate, etc.; aliphatic dicarboxylic acids and their salts such as succinic acid, maleic acid, malic acid, etc.; aliphatic tricarboxylic acids (salts) such as citric acid, triammonium citrate, etc.; carboxylic acids (salts) having two or more hydroxyl groups and two or more carboxyl groups such as tartaric acid, diammonium tartrate, sodium tartrate, etc.; aminocarboxylic acids such as glycine, etc. These complexing agents may be used alone or in combination of two or more. The content of the complexing agent in the trivalent chromium plating solution may be, for example, about 0.1 to 50 g/L.
 また、導電性塩についても、特に限定されない。例えば、硫酸カリウム、硫酸アンモニウム、硫酸ナトリウム等の硫酸塩;塩化カリウム、塩化アンモニウム、塩化ナトリウム等の塩化物;スルファミン酸カリウム、スルファミン酸アンモニウム、スルファミン酸ナトリウム等のスルファミン酸塩等が挙げられる。これら導電性塩は、1種又は2種以上を組み合わせてもよい。3価クロムめっき液における導電性塩の含有量は、例えば100~500g/L程度とすることができる。 The conductive salt is also not particularly limited. Examples include sulfates such as potassium sulfate, ammonium sulfate, and sodium sulfate; chlorides such as potassium chloride, ammonium chloride, and sodium chloride; and sulfamates such as potassium sulfamate, ammonium sulfamate, and sodium sulfamate. These conductive salts may be used alone or in combination of two or more. The content of the conductive salt in the trivalent chromium plating solution may be, for example, about 100 to 500 g/L.
 また、pH緩衝剤についても、特に限定されない。例えば、ホウ酸、ホウ酸ナトリウム、ホウ酸カリウム、リン酸、リン酸水素2カリウム等が挙げられる。これらpH緩衝剤は、1種又は2種以上を組み合わせてもよい。3価クロムめっき液におけるpH緩衝剤の含有量は、例えば25~200g/L程度とすることができる。 The pH buffer is also not particularly limited. Examples include boric acid, sodium borate, potassium borate, phosphoric acid, dipotassium hydrogen phosphate, etc. These pH buffers may be used alone or in combination of two or more. The content of the pH buffer in the trivalent chromium plating solution may be, for example, about 25 to 200 g/L.
 3価クロムめっき液には、さらに、チオシアン酸ナトリウム、メチオニン、システイン等の黒色化剤、アスコルビン酸、アスコルビン酸ナトリウム、過酸化水素、ポリエチレングリコール、硫酸スズ、塩化スズ等のスズ塩、塩化鉄、サッカリンナトリウム、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム等を含有させてもよい。 The trivalent chromium plating solution may further contain blackening agents such as sodium thiocyanate, methionine, and cysteine, ascorbic acid, sodium ascorbate, hydrogen peroxide, polyethylene glycol, tin sulfate, tin chloride, and other tin salts, iron chloride, sodium saccharin, sodium allylsulfonate, and sodium vinylsulfonate.
 上記した錯化剤、導電性塩、pH緩衝剤を含有する3価クロムめっき液として、例えば、JCU TRICHROM JTCシリーズ((株)JCU製)、トップファインクロムシリーズ(奥野製薬工業(株)製)、アーサスクロムシリーズ(SurTec製)、トライクロムシリーズ(Atotech製)、エンバイロクロムプロセス、トワイライトプロセス(いずれもMacdermid製)等の市販品を使用してもよい。クロムめっき層は一般に銀白色の外観を有するが、めっき液に例えば上記の黒色化剤を配合して、黒色のめっき層を形成することもできる。 As the trivalent chromium plating solution containing the above-mentioned complexing agent, conductive salt, and pH buffer, for example, commercially available products such as JCU TRICHROM JTC series (made by JCU Corporation), Top Fine Chrome series (made by Okuno Chemical Industries Co., Ltd.), Arthas Chrome series (made by SurTec), Trichrome series (made by Atotech), Envirochrome process, and Twilight process (all made by Macdermid) may be used. The chrome plating layer generally has a silvery-white appearance, but a black plating layer can also be formed by adding, for example, the above-mentioned blackening agent to the plating solution.
 3価クロムめっき層5を形成するための電気めっきの条件についても、特に限定されず、慣用の条件を採用することができる。例えば、浴温を30~60℃、アノードとしてカーボン又は酸化イリジウムを用い、陰極電流密度を5~20A/dmとした条件で行うことができる。 The conditions for electroplating to form the trivalent chromium plating layer 5 are not particularly limited, and conventional conditions can be adopted. For example, the plating can be performed under conditions of a bath temperature of 30 to 60° C., carbon or iridium oxide as the anode, and a cathode current density of 5 to 20 A/dm 2 .
 クロムめっき部品1では、後記する実施例でも示されるように、3価クロムめっき層5がどのような種類及び膜厚であっても、優れた耐食性と良好な外観を示す。そのため、3価クロムめっき層5の膜厚は、特に限定されず、例えばクロムめっき製品で一般的なめっき層厚である0.05μm以上、具体的には0.1~1.0μm、特に0.15~0.50μm程度としてもよい。 As will be shown in the examples described later, the chrome-plated part 1 exhibits excellent corrosion resistance and a good appearance regardless of the type and thickness of the trivalent chrome plating layer 5. Therefore, the thickness of the trivalent chrome plating layer 5 is not particularly limited, and may be, for example, 0.05 μm or more, which is a typical plating layer thickness for chrome-plated products, specifically 0.1 to 1.0 μm, and particularly about 0.15 to 0.50 μm.
 [電解化成処理・浸漬化成処理]
 クロムめっき部品1は、好ましくは上記の3価クロムめっき層5上に、電解化成処理膜及び/又は浸漬化成処理膜をさらに備える。このことによって、クロムめっき部品1の耐食性がさらに高まる場合がある。3価クロムめっき層5の表面に行う電解化成処理及び浸漬化成処理に特に制限はなく、慣用の処理方法を所望に応じて適用することができる。例としてクロメート処理、ワックス処理、ベンゾトリアゾールやトリアジンチオール等の溶液による処理、アミノ基やイミノ基を有する化合物の溶液による処理、さらには熱処理等が挙げられるが、これらに限定されない。こうした後処理によって、クロムめっき部品の耐食性をさらに改善し、あるいは変色や水素脆化等をより有効に防止し得る。
[Electrolytic conversion coating/immersion conversion coating]
The chrome-plated part 1 preferably further comprises an electrolytic chemical conversion film and/or an immersion chemical conversion film on the above-mentioned trivalent chromium plating layer 5. This may further enhance the corrosion resistance of the chrome-plated part 1. There is no particular limitation on the electrolytic chemical conversion treatment and immersion chemical conversion treatment performed on the surface of the trivalent chromium plating layer 5, and a conventional treatment method can be applied as desired. Examples include, but are not limited to, chromate treatment, wax treatment, treatment with a solution of benzotriazole or triazinethiol, treatment with a solution of a compound having an amino group or an imino group, and further heat treatment. Such post-treatment can further improve the corrosion resistance of the chrome-plated part, or more effectively prevent discoloration, hydrogen embrittlement, etc.
  (クロメート処理)
 電解化成処理又は浸漬化成処理の内でも、6価クロムイオンを含む処理、いわゆるクロメート処理を行うことがより好ましい。クロメート皮膜は自己修復性を有するので、クロムめっき部品1の耐食性をさらに向上させ得る。
(chromate treatment)
Among electrochemical conversion treatments and immersion conversion treatments, it is more preferable to carry out a treatment that includes hexavalent chromium ions, i.e., a so-called chromate treatment. Since a chromate film has a self-repairing property, the corrosion resistance of the chrome-plated part 1 can be further improved.
 クロメート処理としては、例えば、無水クロム酸、重クロム酸塩等の6価クロムイオンを利用した公知の電解化成処理又は浸漬化成処理が挙げられる。電解化成処理は慣用の方法で行うことができ、例えばEBACHRO-500プロセス、EBACHRO-900プロセス((株)JCU製)等の市販のプロセスやこれに用いる処理剤を利用してもよい。また、クロメート処理に代えて、3価クロムイオンを含む化成処理や、モリブデン、バナジウム、リン酸、過マンガン酸、鉄等の金属を用いた、クロムフリー化成皮膜処理を活用することもできる。 Examples of chromate treatments include known electrolytic conversion treatments or immersion conversion treatments that use hexavalent chromium ions such as chromic anhydride and dichromate. Electrolytic conversion treatments can be performed by conventional methods, and may use commercially available processes such as the EBACHRO-500 process and the EBACHRO-900 process (manufactured by JCU Corporation) or treatment agents used therein. Also, instead of chromate treatments, conversion treatments containing trivalent chromium ions or chromium-free conversion coating treatments using metals such as molybdenum, vanadium, phosphoric acid, permanganate, and iron can be used.
 [クロムめっき部品及びその用途]
 クロムめっき部品1は、上層が3価クロムめっき層5であっても優れた耐食性を示し、しかも外観が良好である。クロムめっき部品1は、例えばJIS H8502に準じた耐食性評価法であるCASS試験で、レイティングナンバー(R.N.)が概ね9以上、例えば9.3以上という高い評価結果を示す。そのため、クロムめっき部品1は、例えば、自動車部品、船外機部品、水栓金具、建材部品、家電部品等、様々な部品として利用することができる。
[Chrome plated parts and their uses]
The chrome-plated part 1 exhibits excellent corrosion resistance and good appearance even when the upper layer is a trivalent chrome plating layer 5. The chrome-plated part 1 exhibits a high evaluation result of a rating number (R.N.) of generally 9 or more, for example 9.3 or more, in a CASS test, which is a corrosion resistance evaluation method conforming to JIS H8502. Therefore, the chrome-plated part 1 can be used as various parts such as automobile parts, outboard motor parts, faucet fittings, building material parts, and home appliance parts.
≪クロムめっき部品の製造方法≫
 クロムめっき部品1は、以上でも説明したように、銅又は銅合金からなる表面層22を有する素地2上に、表面層に接して第1ニッケルめっき層3を形成する工程と、第1ニッケルめっき層3上に接して第2ニッケルめっき層4を形成する工程と、第2ニッケルめっき層4上に接して3価クロムめっき層5を形成する工程と、を備えるクロムめっき部品の製造方法であって、第2ニッケルめっき層4は電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、第1ニッケルめっき層3は第2ニッケルめっき層4に対し15~150mV卑である電位を有することを特徴とする製造方法によって、作製することができる。
<Manufacturing method for chrome plated parts>
As described above, the chrome-plated part 1 is a chrome-plated part that includes a step of forming a first nickel plating layer 3 in contact with a surface layer on a substrate 2 having a surface layer 22 made of copper or a copper alloy, a step of forming a second nickel plating layer 4 in contact with the first nickel plating layer 3, and a step of forming a trivalent chrome plating layer 5 in contact with the second nickel plating layer 4, and the second nickel plating layer 4 has an anode potential of -215 to -290 mV at a current density of 0.1 mA/cm 2 , and the first nickel plating layer 3 has a potential that is 15 to 150 mV less potent than the second nickel plating layer 4.
 第1ニッケルめっき層3、第2ニッケルめっき層4、及び3価クロムめっき層5を形成する各工程は、各々のめっき層についての説明で記載した方法及び条件を用いて行うことができる。3価クロムめっき層5の表面に、上記したような電解化成処理膜及び/又は浸漬化成処理膜をさらに形成してもよい。クロムめっき部品1の製造方法においては、ニッケルめっき層を二層形成するだけでもよいため、より少ない工程で製造することも可能となる。 The steps of forming the first nickel plating layer 3, the second nickel plating layer 4, and the trivalent chromium plating layer 5 can be carried out using the methods and conditions described in the explanation of each plating layer. An electrolytic conversion coating and/or an immersion conversion coating as described above may be further formed on the surface of the trivalent chromium plating layer 5. In the method of manufacturing the chromium-plated part 1, it is only necessary to form two nickel plating layers, so that it is possible to manufacture the part with fewer steps.
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these descriptions in any way.
≪実施例1≫
 本発明に従うクロムめっき部品を、以下のようにして作製した。
 (素地の調製)
 ABS樹脂成形品(形状:平板)の全面をクロム酸でエッチングした後、常法に従って還元処理、触媒化、及び活性化を行い、次いで無電解ニッケルめっきに付した。クロム酸エッチングには、無水クロム酸:400g/L、硫酸:400g/L、3価クロム:10g/Lを含有する処理液を使用した。無電解ニッケルめっきは、ENILEX NI-5プロセス((株)JCU製)を用いて40℃で行った。その後、CU-BRITE EP-30プロセス((株)JCU製)を用いて、室温、3A/dmの条件で電解銅めっきを行い、素地を調製した。
Example 1
Chromium plated parts according to the invention were prepared as follows.
(Preparation of the base material)
The entire surface of an ABS resin molded product (shape: plate) was etched with chromic acid, and then reduction treatment, catalysis, and activation were performed according to the usual method, and then electroless nickel plating was performed. For the chromic acid etching, a treatment solution containing 400 g/L of chromic anhydride, 400 g/L of sulfuric acid, and 10 g/L of trivalent chromium was used. Electroless nickel plating was performed at 40°C using the ENILEX NI-5 process (manufactured by JCU Corporation). Thereafter, electrolytic copper plating was performed at room temperature and 3 A/ dm2 using the CU-BRITE EP-30 process (manufactured by JCU Corporation) to prepare a base material.
 (第1ニッケルめっき)
 上記で得られた素地を第1ニッケルめっき液に浸漬し、50℃、3A/dmにて15分間の条件で厚さ6μmの第1ニッケルめっき層を形成した。第1ニッケルめっき液としては、下記の卑電位ニッケルめっきベース液をそのまま使用した。
 <卑電位ニッケルめっきベース液>
・ワット浴
  硫酸ニッケル         260g/L
  塩化ニッケル          40g/L
  ホウ酸             40g/L
・TRI-STRIKEプロセス((株)JCU製)
  TRI-STRIKE       3ml/L
  #82(湿潤剤)         2ml/L
(First nickel plating)
The substrate obtained above was immersed in a first nickel plating solution to form a first nickel plating layer having a thickness of 6 μm under conditions of 50° C. and 3 A/ dm2 for 15 minutes. As the first nickel plating solution, the following base potential nickel plating solution was used as it is.
<Base solution for low potential nickel plating>
・Watts bath Nickel sulfate 260g/L
Nickel chloride 40g/L
Boric acid 40g/L
・TRI-STRIKE process (manufactured by JCU Corporation)
TRI-STRIKE 3ml/L
#82 (wetting agent) 2ml/L
 (第2ニッケルめっき)
 次に、下記の第2ニッケルめっき液に浸漬し、50℃、3A/dmにて15分間の条件で厚さ6μmの第2ニッケルめっき層を形成した(第1ニッケルめっき層と第2ニッケルめっき層との合計膜厚=12μm、第1ニッケルめっき層厚:第2ニッケルめっき層厚=1:1)。第2ニッケルめっき液としては、下記のような光沢ニッケルめっきベース液に、電位調整剤としてTRI-STRIKE((株)JCU製)を1ml/Lとなる量にて配合した液を使用した。これにより調製される第2ニッケルめっき層は、平均的な光沢ニッケルめっき層に比べて卑な電位を有し、第1ニッケルめっき層に対する電位差が+60mV(第1ニッケルめっき層の電位は第2ニッケルめっき層に対して60mV卑)となるように調整されている。
 <光沢ニッケルめっきベース液>
・ワット浴
  硫酸ニッケル         260g/L
  塩化ニッケル          40g/L
  ホウ酸             40g/L
・HI-BRITE#88プロセス((株)JCU製)
  #810(二次光沢剤)      3ml/L
  #82(湿潤剤)         2ml/L
  #83(一次光沢剤)      10ml/L
(Second nickel plating)
Next, the plate was immersed in the second nickel plating solution described below, and a second nickel plating layer having a thickness of 6 μm was formed under conditions of 50° C., 3 A/ dm2 for 15 minutes (total film thickness of the first nickel plating layer and the second nickel plating layer=12 μm, first nickel plating layer thickness: second nickel plating layer thickness=1:1). As the second nickel plating solution, a solution was used in which the following bright nickel plating base solution was mixed with TRI-STRIKE (manufactured by JCU Corporation) as a potential adjuster in an amount of 1 ml/L. The second nickel plating layer prepared by this has a lower potential than the average bright nickel plating layer, and is adjusted so that the potential difference with respect to the first nickel plating layer is +60 mV (the potential of the first nickel plating layer is 60 mV lower than that of the second nickel plating layer).
<Bright nickel plating base liquid>
・Watts bath Nickel sulfate 260g/L
Nickel chloride 40g/L
Boric acid 40g/L
・HI-BRITE #88 process (manufactured by JCU Corporation)
#810 (secondary brightener) 3ml/L
#82 (wetting agent) 2ml/L
#83 (primary brightener) 10ml/L
 (3価クロムめっき)
 次いで、下記の3価クロムめっき液に浸漬し、55℃、10A/dmにて4分間の条件で、白色3価クロムめっき層を上記第2ニッケルめっき層に接するように形成した。得られたクロムめっき部品試料は、良好な外観を呈していた。
 <3価クロムめっき液>
・塩基性硫酸クロム   19.5g/L (クロム濃度3g/L)
・リンゴ酸        3g/L
・硫酸カリウム    150g/L
・ホウ酸        70g/L
・サッカリン       3g/L
・3-アミノロダニン  20mg/L
(Trivalent chromium plating)
Next, the plated part was immersed in the following trivalent chromium plating solution and plated at 55° C. and 10 A/dm 2 for 4 minutes to form a white trivalent chromium plating layer in contact with the second nickel plating layer. The obtained chromium-plated part sample had a good appearance.
<Trivalent chromium plating solution>
Basic chromium sulfate 19.5g/L (chromium concentration 3g/L)
Malic acid 3g/L
Potassium sulfate 150g/L
Boric acid 70g/L
Saccharin 3g/L
3-aminorhodanine 20 mg/L
 上記のようにして得られたクロムめっき部品試料について、外観を評価すると共に、膜厚等を測定し、耐食性評価試験を行った。試験方法は以下のとおりである。試験結果は、後記する表1に示す。 The chrome-plated part samples obtained as described above were evaluated for appearance, and the film thickness was measured, and a corrosion resistance evaluation test was conducted. The test method is as follows. The test results are shown in Table 1 below.
 (膜厚測定)
・各ニッケルめっき層の膜厚は、断面顕微鏡写真から測定した。
・クロムめっき層の膜厚(Cr膜厚)は、(株)日立テクノサイエンス製蛍光X線分析器「FT-150H」で測定した。
(Film thickness measurement)
The thickness of each nickel plating layer was measured from a cross-sectional micrograph.
The thickness of the chrome plating layer (Cr film thickness) was measured using a fluorescent X-ray analyzer "FT-150H" manufactured by Hitachi Technoscience Co., Ltd.
 (アノード電位測定)
 クロムめっき部品試料を1:1塩酸中に浸漬してクロムめっき層を除去し、次いでマスキングして、第2ニッケルめっき層が表面に直径6mmの円形状に露出した試料(電位測定用試料)を作製した。この電位測定用試料を作用極とし、白金を対極、銀-塩化銀(飽和KCl)電極を参照極として、クロノポテンショメトリにより電圧を測定した。電解液としては、塩化ニッケル六水和物を300g/L、塩化ナトリウムを50g/L、ホウ酸を25g/L含有するpH2.75の水溶液を使用した。装置としては北斗電工株式会社製のHZ-7000を用い、25℃、600秒間、攪拌なしの条件で測定した。測定はn=3にて行い、平均値を採用した。
・電流密度を0.1mA/cmとし、電圧が安定した際の作用極の電圧値を、第2ニッケルめっき層の「アノード電位」とした。
 尚、同様に、電流密度を0.01、0.1、1、-0.01、-0.1、及び-1mA/cmとし、電圧が安定した際の作用極の電圧値からTafelプロットを作成して、平衡電位を求めた。その結果、第2ニッケルめっき層のアノード電位が-215~-290mVのとき、平衡電位は-402~-414mVであった。
(Anode potential measurement)
The chrome-plated part sample was immersed in 1:1 hydrochloric acid to remove the chrome plating layer, and then masked to prepare a sample (potential measurement sample) in which the second nickel plating layer was exposed on the surface in a circular shape with a diameter of 6 mm. The potential measurement sample was used as the working electrode, platinum as the counter electrode, and a silver-silver chloride (saturated KCl) electrode as the reference electrode, and the voltage was measured by chronopotentiometry. As the electrolyte, an aqueous solution containing 300 g/L of nickel chloride hexahydrate, 50 g/L of sodium chloride, and 25 g/L of boric acid and having a pH of 2.75 was used. The device used was HZ-7000 manufactured by Hokuto Denko Corporation, and the measurement was performed at 25°C, 600 seconds, and without stirring. The measurement was performed with n=3, and the average value was adopted.
The current density was set to 0.1 mA/ cm2 , and the voltage value of the working electrode when the voltage stabilized was defined as the "anode potential" of the second nickel plating layer.
Similarly, the current density was set to 0.01, 0.1, 1, -0.01, -0.1, and -1 mA/ cm2 , and a Tafel plot was created from the voltage value of the working electrode when the voltage stabilized to determine the equilibrium potential. As a result, when the anode potential of the second nickel plating layer was -215 to -290 mV, the equilibrium potential was -402 to -414 mV.
 (電位差測定)
 ASTM B764:「多層ニッケル析出物中の個々の層の厚さと電位の同時決定」に従うSTEP試験により、第2ニッケルめっき層に対する第1ニッケルめっき層の電位差を測定した。測定に先立ち、NiCl・6HOを300g/L、NaClを50g/L、HBOを25g/L含有する電解液(20℃)を用意した。該電解液中に上記電位測定用試料を配置し、参照電極として銀-塩化銀電極を備える(株)中央製作所製の多層ニッケルめっき耐食性測定装置「ED-3」を用いて測定した。
(potential difference measurement)
The potential difference of the first nickel plating layer relative to the second nickel plating layer was measured by a STEP test according to ASTM B764: "Simultaneous determination of thickness and potential of individual layers in a multilayer nickel deposit." Prior to the measurement, an electrolyte (20°C) containing 300 g/L of NiCl2.6H2O , 50 g/L of NaCl, and 25 g/L of H3BO3 was prepared. The above-mentioned potential measurement sample was placed in the electrolyte, and the potential was measured using a multilayer nickel plating corrosion resistance measurement device "ED-3" manufactured by Chuo Seisakusho Co., Ltd., which is equipped with a silver-silver chloride electrode as a reference electrode.
 (耐食性評価)
 耐食性は、JIS H8502に準じたCASS試験により評価した。塩化ナトリウムを50±5g/L及び塩化第二銅(CuCl・2HO)を0.26±0.02g/L含有し、酢酸でpHを3.0~3.2に調整した水溶液を、下記条件で65×50mmの試料に噴霧して、80時間後のレイティングナンバー(R.N.)を測定した。
・噴霧量:1.5±0.5ml/80cm/h
・試験層内温度:50±2℃
・塩水タンク温度:50±2℃
・空気飽和器温度:63±2℃
・圧縮空気圧力:70~167kPa
(Corrosion resistance evaluation)
The corrosion resistance was evaluated by a CASS test in accordance with JIS H8502. An aqueous solution containing 50±5 g/L of sodium chloride and 0.26±0.02 g/L of cupric chloride ( CuCl2.2H2O ) and adjusted to a pH of 3.0 to 3.2 with acetic acid was sprayed onto a 65 x 50 mm sample under the following conditions, and the rating number ( R.N. ) was measured after 80 hours.
Spray volume: 1.5±0.5 ml/80 cm 2 /h
Temperature inside the test layer: 50±2°C
- Salt water tank temperature: 50±2℃
Air saturator temperature: 63±2°C
・Compressed air pressure: 70 to 167 kPa
 上記CASS試験後試料の外観を目視観察し、膨れ(めっき内層部の空孔)の個数・比率から、以下の基準に従い評価した。
5:膨れなし
4:膨れが5個以下
3:膨れが発生した領域は試料表面の半分以下であるが、6個以上の膨れが発生
2:膨れが発生していない部分もあるものの、試料表面の半分以上の領域で膨れが発生
1:試料全面で膨れが発生
After the CASS test, the appearance of the sample was visually observed, and the number and ratio of blisters (voids in the inner plating layer) were evaluated according to the following criteria.
5: No blisters 4: 5 or less blisters 3: The area where blisters have occurred is less than half of the sample surface, but 6 or more blisters have occurred 2: There are some areas where blisters have not occurred, but blisters have occurred in more than half of the sample surface 1: Blisters have occurred over the entire surface of the sample
≪実施例2≫
 実施例1と同一の操作で得られたクロムめっき部品試料の表面層に、さらに電解クロメート処理を行った。電解クロメート処理は、EBACHRO-500プロセス((株)JCU製ECR-500を100ml/L含有する6価クロム系処理液)を用い、40℃、0.1A/dmにて1分間の条件で行った。得られたクロムめっき部品試料は、良好な外観を呈していた。この試料について、実施例1と同様に試験した結果を、後記する表1に示す。
Example 2
The surface layer of the chrome-plated part sample obtained by the same operation as in Example 1 was further subjected to electrolytic chromate treatment. The electrolytic chromate treatment was performed using the EBACHRO-500 process (a hexavalent chromium-based treatment solution containing 100 ml/L of ECR-500 manufactured by JCU Corporation) under conditions of 40°C, 0.1 A/ dm2, and 1 minute. The obtained chrome-plated part sample had a good appearance. The test results of this sample in the same manner as in Example 1 are shown in Table 1 below.
≪実施例3~8、比較例1~4≫
 第1ニッケルめっき液及び第2ニッケルめっき液の配合を変化させた以外は、実施例1又は2と同様の操作を行った。第1ニッケルめっき液としては、上記光沢ニッケルめっきベース液に電位調整剤としてTRI-STRIKE((株)JCU製)を1~5ml/Lとなる量で配合して電位を卑にした液(実施例3~8)、及びADDITIVE-E((株)JCU製)を0~0.1ml/Lとなる量で配合して電位を貴にした液(比較例1~4)を使用した。第2ニッケルめっき液としては、上記光沢ニッケルめっきベース液(実施例3~6)、及びそれにADDITIVE-E((株)JCU製)を0.1~1ml/Lとなる量で配合して電位を貴にした液(実施例7~8、比較例1~4)を使用した。
Examples 3 to 8 and Comparative Examples 1 to 4
The same operation as in Example 1 or 2 was performed except that the formulations of the first nickel plating solution and the second nickel plating solution were changed. As the first nickel plating solution, a solution in which TRI-STRIKE (manufactured by JCU Corporation) was added to the above-mentioned bright nickel plating base solution as a potential adjuster in an amount of 1 to 5 ml/L to make the potential more base (Examples 3 to 8), and a solution in which ADDITIVE-E (manufactured by JCU Corporation) was added to the above-mentioned bright nickel plating base solution in an amount of 0 to 0.1 ml/L to make the potential more noble (Comparative Examples 1 to 4) were used. As the second nickel plating solution, the above-mentioned bright nickel plating base solution (Examples 3 to 6) and a solution in which ADDITIVE-E (manufactured by JCU Corporation) was added to the above-mentioned bright nickel plating base solution in an amount of 0.1 to 1 ml/L to make the potential more noble (Examples 7 to 8, Comparative Examples 1 to 4) were used.
 これら実施例及び比較例において調製される第2ニッケルめっき層は、第1ニッケルめっき層に対する電位差が+60mV(第1ニッケルめっき層の電位は第2ニッケルめっき層に対して60mV卑)となり、かつ実施例1~2の第2ニッケルめっき層に比べて貴な電位を有するように調整されている。得られたクロムめっき部品試料はいずれも、作製直後の外観は良好であった。これら試料についての試験結果を、後記する表1に示す。 The second nickel plating layer prepared in these examples and comparative examples is adjusted so that it has a potential difference of +60 mV with respect to the first nickel plating layer (the potential of the first nickel plating layer is 60 mV less noble than the second nickel plating layer) and a more noble potential than the second nickel plating layers of Examples 1 and 2. All of the obtained chrome-plated part samples had good appearances immediately after preparation. The test results for these samples are shown in Table 1 below.
≪比較例5≫
 特許文献4記載のクロムめっき部品と同様にニッケルめっき層が三層構造を有する試料を、以下の条件で製造し、実施例1と同様にして評価した。
Comparative Example 5
A sample having a three-layer structure of the nickel plating layer similar to the chrome-plated part described in Patent Document 4 was produced under the following conditions and evaluated in the same manner as in Example 1.
 (半光沢ニッケルめっき)
 実施例1と同様にして調製した素地を、下記の半光沢ニッケルめっき液に浸漬し、55℃、3A/dmにて15分間の条件で半光沢ニッケルめっき層を形成した。
 <半光沢ニッケルめっき液>
・ワット浴
  硫酸ニッケル         260g/L
  塩化ニッケル          40g/L
  ホウ酸             40g/L
・CF-24Tプロセス((株)JCU製)
  CF-24T           1ml/L
  #82-K(湿潤剤)       1ml/L
(Semi-bright nickel plating)
The substrate prepared in the same manner as in Example 1 was immersed in the following semi-bright nickel plating solution and a semi-bright nickel plating layer was formed under conditions of 55°C, 3 A/ dm2 , and 15 minutes.
<Semi-bright nickel plating solution>
・Watts bath Nickel sulfate 260g/L
Nickel chloride 40g/L
Boric acid 40g/L
CF-24T Process (JCU Corporation)
CF-24T 1ml/L
#82-K (wetting agent) 1ml/L
 (光沢ニッケルめっき)
 次に、上記した光沢ニッケルめっきベース液に浸漬し、50℃、3A/dmにて12分間の条件で光沢ニッケルめっき層を形成した。この光沢ニッケルめっき層は、下層の半光沢ニッケルめっき層に対して、145mV卑である電位を有していた。
(bright nickel plating)
Next, the plate was immersed in the above-mentioned bright nickel plating base solution and a bright nickel plating layer was formed under conditions of 50° C. and 3 A/ dm2 for 12 minutes. This bright nickel plating layer had a potential 145 mV lower than the underlying semi-bright nickel plating layer.
 (MPニッケルめっき)
 さらに、下記のMPニッケルめっき液に浸漬し、55℃、3A/dmにて3分間の条件でMPニッケルめっき層を形成した。このMPニッケルめっき層は、下層の光沢ニッケルめっき層に対して、55mV貴である電位を有していた。また、半光沢ニッケルめっき層:光沢ニッケルめっき層:MPニッケルめっき層の膜厚比率は、5:4:1であった。
 <MPニッケルめっき液>
・ワット浴
  硫酸ニッケル         260g/L
  塩化ニッケル          40g/L
  ホウ酸             40g/L
・MP-NI308プロセス((株)JCU製)
  MP-303          10ml/L
  MP-311           3ml/L
  MP POWDER 308    3g/L
  MP-308B          2ml/L
  ADDITIVE-E    0.15ml/L
(MP nickel plating)
Further, the plate was immersed in the following MP nickel plating solution and subjected to a MP nickel plating layer at 55°C and 3 A/ dm2 for 3 minutes. This MP nickel plating layer had a potential 55 mV more noble than the underlying bright nickel plating layer. The thickness ratio of the semi-bright nickel plating layer:bright nickel plating layer:MP nickel plating layer was 5:4:1.
<MP Nickel Plating Solution>
・Watts bath Nickel sulfate 260g/L
Nickel chloride 40g/L
Boric acid 40g/L
・MP-NI308 process (manufactured by JCU Corporation)
MP-303 10ml/L
MP-311 3ml/L
MP POWDER 308 3g/L
MP-308B 2ml/L
ADDITIVE-E 0.15ml/L
 (クロムめっき部品試料の調製)
 次いで、実施例1と同様の条件で3価クロムめっきを行ってクロムめっき部品試料を調製し、物性を評価した。評価結果を、後記する表1に示す。
(Preparation of Chromium-Plated Part Samples)
Next, trivalent chromium plating was carried out under the same conditions as in Example 1 to prepare chromium-plated part samples, and the physical properties were evaluated. The evaluation results are shown in Table 1 below.
≪比較例6≫
 二層のニッケルめっき層の内、素地側のニッケルめっき層(下層)が貴電位である試料を作製した。実施例1と同様にして調製した素地に、半光沢ニッケルめっき、光沢ニッケルめっき、3価クロムめっきをこの順で行ってクロムめっき部品試料を調製し、物性試験を行った。尚、各めっき処理は、比較例1及び5等と同様の条件で、但し光沢ニッケルめっきのめっき時間を15分間として行った。また、本比較例のクロムめっき部品試料においては、下層の半光沢ニッケルめっき層は、上層の光沢ニッケルめっき層に対して、145mV貴である電位を有していた。得られたクロムめっき部品試料の試験結果を、表1に示す。
Comparative Example 6
A sample was prepared in which the nickel plating layer (lower layer) on the substrate side of the two nickel plating layers had a noble potential. A chrome-plated part sample was prepared by plating semi-bright nickel, bright nickel, and trivalent chromium in this order on a substrate prepared in the same manner as in Example 1, and physical properties were tested. Each plating process was performed under the same conditions as in Comparative Examples 1 and 5, except that the plating time for bright nickel plating was 15 minutes. In addition, in the chrome-plated part sample of this comparative example, the lower semi-bright nickel plating layer had a potential 145 mV more noble than the upper bright nickel plating layer. The test results of the obtained chrome-plated part sample are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2ニッケルめっき層に対して60mV卑である電位を有する第1ニッケルめっき層を素地側に備えた実施例1~8及び比較例1~4のクロムめっき部品試料は、いずれもCASS試験におけるレイティングナンバー(R.N.)が9.0以上と、三層構造のニッケルめっき層を備えた比較例5の試料に比べて優れていた。素地側のニッケルめっき層を卑電位とすることの重要性が、示唆される。中でも、本発明に従い、第2ニッケルめっき層の電流密度0.1mA/cmでのアノード電位が-215~-290mVの範囲内である実施例1~8のクロムめっき部品試料は、膨れ評価結果に関してもいずれも最高値を示し、トータルでの耐食性に優れることが判明した。また、本発明によれば、ニッケルめっき工程が通常のニッケル-クロムめっきよりも一工程少ないにも拘らず、耐食性の点で極めて優れたクロムめっき部品を製造し得ることが明らかとなった。 The chrome-plated part samples of Examples 1 to 8 and Comparative Examples 1 to 4, which have a first nickel plating layer on the base side having a potential 60 mV less than that of the second nickel plating layer, all have a rating number (RN) of 9.0 or more in the CASS test, which is superior to the sample of Comparative Example 5, which has a three-layer nickel plating layer. The importance of making the nickel plating layer on the base side a less potentiostatic potential is suggested. In particular, the chrome-plated part samples of Examples 1 to 8, in which the anode potential of the second nickel plating layer at a current density of 0.1 mA/cm 2 according to the present invention is in the range of -215 to -290 mV, also showed the highest blister evaluation results, and were found to have excellent corrosion resistance overall. In addition, it has been revealed that according to the present invention, chrome-plated parts with extremely excellent corrosion resistance can be produced, even though the nickel plating process is one step less than that of normal nickel-chrome plating.
 一方で、第2ニッケルめっき層のアノード電位が本発明で規定する範囲外の比較例1~4においては、CASS試験後に試料全面に膨れが発生してしまった。膨れを抑制するためには、第2ニッケルめっき層(上層ニッケルめっき層)の電位を特定範囲内に収める必要のあることが、明らかとなった。また、下層側のニッケルめっき層が上層側よりも貴電位である比較例6の試料では、R.N.が低くなっていた。クロムめっき部品の耐食性を高める上で、素地側のニッケルめっき層をより卑な電位とすることの重要性が、再度示された。 On the other hand, in Comparative Examples 1 to 4, where the anode potential of the second nickel plating layer was outside the range specified in the present invention, blistering occurred over the entire surface of the sample after the CASS test. It became clear that in order to suppress blistering, it is necessary to keep the potential of the second nickel plating layer (upper nickel plating layer) within a specific range. Also, the sample of Comparative Example 6, where the lower nickel plating layer has a more noble potential than the upper nickel plating layer, had a lower R.N. This demonstrates once again the importance of making the nickel plating layer on the base side a more noble potential in improving the corrosion resistance of chrome-plated parts.
 尚、実施例5~6の試料においては、同一条件の実施例3~4の試料に比べて、クロムめっき層の膜厚が3倍以上の値となっているが、CASS試験結果は同等であった。本発明のクロムめっき部品は、3価クロムめっき層がどのような膜厚であっても優れた耐食性を発現することが示唆される。また、実施例1~8のクロムめっき部品試料では、ニッケル膜厚が12μmであってもR.N.値が9.0以上と、後記するニッケル膜厚が25μmのクロムめっき部品と同等又はそれ以上の値であった。ニッケル膜厚が半分以下であるにも拘らず同等の耐食性が発現していることから、本発明によってニッケルを多用することなく耐食性を改善し得ることが示された。すなわち、本発明の製造方法によれば、ニッケルの使用量を低減でき、それ故にニッケルめっき工程をより短時間かつ低コストで行うことも可能となる。 In the samples of Examples 5-6, the thickness of the chrome plating layer was more than three times that of the samples of Examples 3-4 under the same conditions, but the CASS test results were the same. It is suggested that the chrome-plated parts of the present invention exhibit excellent corrosion resistance regardless of the thickness of the trivalent chrome plating layer. In addition, in the chrome-plated part samples of Examples 1-8, even though the nickel film thickness was 12 μm, the R.N. value was 9.0 or more, which was equal to or higher than that of a chrome-plated part with a nickel film thickness of 25 μm, as described below. Since the same corrosion resistance was exhibited even though the nickel film thickness was less than half, it was shown that the present invention can improve corrosion resistance without using a large amount of nickel. In other words, the manufacturing method of the present invention can reduce the amount of nickel used, and therefore it is possible to perform the nickel plating process in a shorter time and at a lower cost.
≪実施例9~18≫
 第1ニッケルめっき液の配合を変化させた以外は、実施例7又は8と同様の操作を行った。第1ニッケルめっき液としては、上記の光沢ニッケルめっきベース液(実施例9~14)又は卑電位ニッケルめっきベース液(実施例15~18)にTRI-STRIKE((株)JCU製)を0~5ml/Lとなる量で配合した液を使用し、実施例9及び10では浴温を60℃として、第2ニッケルめっき層に対する第1ニッケルめっき層の電位差を調整した。得られたクロムめっき部品試料はいずれも、良好な外観を呈した。これら試料についての試験結果を、後記する表2に示す。
<Examples 9 to 18>
The same operation as in Example 7 or 8 was carried out except that the composition of the first nickel plating solution was changed. As the first nickel plating solution, a solution prepared by mixing the above-mentioned bright nickel plating base solution (Examples 9 to 14) or the base potential nickel plating solution (Examples 15 to 18) with TRI-STRIKE (manufactured by JCU Corporation) in an amount of 0 to 5 ml/L was used, and in Examples 9 and 10, the bath temperature was set to 60° C. to adjust the potential difference of the first nickel plating layer relative to the second nickel plating layer. All of the obtained chrome-plated part samples exhibited good appearances. The test results for these samples are shown in Table 2 below.
≪比較例7≫
 第1ニッケルめっき液として上記光沢ニッケルめっきベース液を、第2ニッケルめっき液として上記卑電位ニッケルめっきベース液を用いた以外は、実施例3と同様の操作を行った。得られたクロムめっき部品試料の試験結果を、後記する表2に示す。
Comparative Example 7
The same operation as in Example 3 was carried out, except that the above-mentioned bright nickel plating base solution was used as the first nickel plating solution and the above-mentioned low potential nickel plating base solution was used as the second nickel plating solution. The test results of the obtained chrome-plated part samples are shown in Table 2 below.
≪比較例8≫
 第1ニッケルめっき液の浴温を52℃に上げた以外は、実施例3と同様の操作を行った。得られたクロムめっき部品試料の試験結果を、後記する表2に示す。
Comparative Example 8
The same operations as in Example 3 were carried out, except that the bath temperature of the first nickel plating solution was increased to 52° C. The test results of the obtained chrome-plated part samples are shown in Table 2 below.
≪比較例9≫
 参考のため、6価クロムめっき部品も調製した。3価クロムめっきの代わりに下記のめっき液を使用して、42℃、10A/dmにて3分間の条件で6価クロムめっきを行った以外は、比較例7と同様の操作を行った。得られたクロムめっき部品試料の試験結果を、後記する表2に示す。
 <6価クロムめっき液>
・EBACHROM E-300LNプロセス((株)JCU製)
  クロム酸        240g/L
  硫酸            1g/L
  ECR-300LN     10ml/L
  MISTSHUT NP    0.1ml/L
Comparative Example 9
For reference, hexavalent chromium-plated parts were also prepared. The same operations as in Comparative Example 7 were performed except that the following plating solution was used instead of the trivalent chromium plating, and hexavalent chromium plating was performed at 42°C and 10 A/dm2 for 3 minutes. The test results of the obtained chromium-plated part samples are shown in Table 2 below.
<Hexavalent chromium plating solution>
・EBACHROM E-300LN process (manufactured by JCU Corporation)
Chromic acid 240g/L
Sulfuric acid 1g/L
ECR-300LN 10ml/L
MISTSHUT NP 0.1ml/L
≪比較例10≫
 3価クロムめっきの代わりに比較例9と同様の6価クロムめっきを行った以外は、実施例3と同様の操作を行った。得られたクロムめっき部品試料は、外観が極めて悪いものであった。そのため、CASS試験でのR.N.評価は実施していない。膨れ評価等の結果を、表2に示す。
<Comparative Example 10>
The same operation as in Example 3 was performed, except that hexavalent chromium plating similar to that in Comparative Example 9 was performed instead of trivalent chromium plating. The obtained chromium-plated part sample had a very poor appearance. Therefore, R.N. evaluation in the CASS test was not performed. The results of the blister evaluation, etc. are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に従い、第2ニッケルめっき層の電流密度0.1mA/cmでのアノード電位が-215~-290mVの範囲内で、かつ第1ニッケルめっき層が第2ニッケルめっき層に対して15~150mV卑である電位を有する実施例3、4、及び7~18のクロムめっき部品試料は、いずれもR.N.が9.0以上で、膨れ評価結果が4以上と、優れた耐食性を示した。中でも、第1ニッケルめっき層が第2ニッケルめっき層に対して70mV以上卑である電位を有する実施例13~18のクロムめっき部品試料は、R.N.が9.5以上で、膨れ評価結果が5と、特に優れた耐食性を示した。 In accordance with the present invention, the chrome-plated part samples of Examples 3 , 4, and 7 to 18 in which the second nickel plating layer had an anode potential in the range of -215 to -290 mV at a current density of 0.1 mA/cm2 and the first nickel plating layer had a potential 15 to 150 mV less noble than the second nickel plating layer all had an R.N. of 9.0 or more and a blister evaluation result of 4 or more, showing excellent corrosion resistance. Among them, the chrome-plated part samples of Examples 13 to 18 in which the first nickel plating layer had a potential 70 mV or more less noble than the second nickel plating layer all had an R.N. of 9.5 or more and a blister evaluation result of 5, showing particularly excellent corrosion resistance.
 一方で、第1ニッケルめっき層と前記第2ニッケルめっき層との電位差が上記範囲外の比較例7及び8においては、膨れ試験結果は良好であったものの、R.N.が劣っていた。6価クロムめっきを行った比較例9及び10の試料も、同様であった。第2ニッケルめっき層の電位と共に、両ニッケルめっき層間の電位差も規定の範囲内とする必要があること、並びに、本発明に従うクロムめっき部品試料は6価クロムめっき部品を凌駕する耐食性を示すことが明らかとなった。 On the other hand, in Comparative Examples 7 and 8, in which the potential difference between the first nickel plating layer and the second nickel plating layer was outside the above range, the blister test results were good, but the R.N. was poor. The same was true for the samples of Comparative Examples 9 and 10, which were plated with hexavalent chromium. It became clear that, along with the potential of the second nickel plating layer, the potential difference between the two nickel plating layers must be within the specified range, and that the chromium-plated part samples according to the present invention exhibit corrosion resistance that surpasses that of hexavalent chromium-plated parts.
≪実施例19~70、比較例11~34≫
 第2ニッケルめっき層に対する第1ニッケルめっき層の電位差を-60mVに、ニッケル膜厚を12μmに、それぞれ固定して、膜厚比が耐食性に及ぼす影響について検討した。第1ニッケルめっき及び第2ニッケルめっきの処理時間を、それぞれ1~29分間及び1~29分間として両ニッケルめっき層の膜厚比を種々に変化させた以外は、実施例1~8及び比較例1~4と同様の操作を行った。尚、めっき時間と各ニッケルめっき層の膜厚との相関が取れていることは、上記した断面顕微鏡写真に基づく測定により確認した。得られたクロムめっき部品試料はいずれも、作製直後の外観は良好であった。これら試料についての試験結果を、実施例1~4及び比較例1~4等の結果と共に、表3及び4に示す。
Examples 19 to 70 and Comparative Examples 11 to 34
The potential difference of the first nickel plating layer relative to the second nickel plating layer was fixed at -60 mV, and the nickel film thickness was fixed at 12 μm, and the effect of the film thickness ratio on corrosion resistance was examined. The treatment times of the first nickel plating and the second nickel plating were set to 1 to 29 minutes and 1 to 29 minutes, respectively, and the film thickness ratio of the two nickel plating layers was changed in various ways, but the same operations as in Examples 1 to 8 and Comparative Examples 1 to 4 were performed. The correlation between the plating time and the film thickness of each nickel plating layer was confirmed by measurements based on the above-mentioned cross-sectional micrographs. All of the obtained chrome-plated part samples had good appearances immediately after production. The test results for these samples are shown in Tables 3 and 4, together with the results of Examples 1 to 4 and Comparative Examples 1 to 4, etc.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明に従い、第2ニッケルめっき層の電流密度0.1mA/cmでのアノード電位が-215mV以下の値である実施例19~70等のクロムめっき部品試料は、いずれもR.N.が8.0以上で、膨れ評価結果が4以上と、優れた耐食性を示した。中でも、第2ニッケルめっき層のアノード電位が卑であるクロムめっき部品試料、特に、同電位が-273mVと低い実施例1、2、及び19~30のクロムめっき部品試料は、極めて優れた耐食性を示した。 In accordance with the present invention, the chrome-plated part samples of Examples 19 to 70, etc., in which the second nickel plating layer had an anode potential of -215 mV or less at a current density of 0.1 mA/ cm2 , all had an R.N. of 8.0 or more and a blister evaluation result of 4 or more, showing excellent corrosion resistance. Among them, the chrome-plated part samples in which the second nickel plating layer had a base anode potential, particularly the chrome-plated part samples of Examples 1, 2, and 19 to 30 in which the anode potential was as low as -273 mV, showed extremely excellent corrosion resistance.
 一方で第2ニッケルめっき層のアノード電位が-215mVより貴である比較例11~34等のクロムめっき部品試料は、R.N.は良好な値であったものの、膨れ評価結果はいずれも3以下であった。特に、アノード電位が-194mVと貴である比較例3、4、及び23~34のクロムめっき部品試料は、いずれも膨れ評価結果が1と、極めて耐食性の悪いものであった。ニッケルめっき層の電位を卑とすることの重要性が示された。 On the other hand, the chrome-plated part samples of Comparative Examples 11 to 34, in which the anode potential of the second nickel plating layer was more noble than -215 mV, all had good R.N. values, but the blister evaluation results were all 3 or less. In particular, the chrome-plated part samples of Comparative Examples 3, 4, and 23 to 34, in which the anode potential was more noble than -194 mV, all had a blister evaluation result of 1, and had extremely poor corrosion resistance. This demonstrates the importance of making the potential of the nickel plating layer more noble.
 また、R.N.については、両ニッケルめっき層の電位がより卑である試料で、また、第1ニッケルめっき層:第2ニッケルめっき層の膜厚比率が1:9~29:1、中でも1:4~14:1、特に1:4~4:1の試料で、特に良好な結果が得られた。 Furthermore, for R.N., particularly good results were obtained in samples in which the potentials of both nickel plating layers were more base, and in samples in which the film thickness ratio of the first nickel plating layer to the second nickel plating layer was 1:9 to 29:1, of which 1:4 to 14:1 was particularly 1:4 to 4:1.
≪実施例71~72≫
 第1ニッケルめっき層と第2ニッケルめっき層との合計膜厚を25μmとした以外は、実施例3又は4と同様の操作を行った(両ニッケルめっき層間の電位差は60mV、膜厚比率は1:1)。得られたクロムめっき部品試料は、いずれも良好な外観を呈していた。これら試料についての試験結果を、後記する表5に示す。
<Examples 71 to 72>
The same operations as in Examples 3 and 4 were carried out except that the total thickness of the first nickel plating layer and the second nickel plating layer was 25 μm (the potential difference between the two nickel plating layers was 60 mV, and the thickness ratio was 1:1). All of the obtained chrome-plated part samples had good appearances. The test results for these samples are shown in Table 5 below.
≪比較例35~38≫
 また、半光沢ニッケルめっき層:光沢ニッケルめっき層:MPニッケルめっき層の膜厚比率を9:6:1、ニッケル膜厚を25μmとし、かつ光沢ニッケルめっき層に対するMPニッケルめっき層の電位差を+30mV又は+70mVとした以外は、比較例5と同様の操作を行った。比較例36及び38においては、実施例4と同様のクロメート処理も行った。得られた試料についての試験結果を、後記する表5に示す。
<Comparative Examples 35 to 38>
The same operation as in Comparative Example 5 was performed except that the film thickness ratio of the semi-bright nickel plating layer: the bright nickel plating layer: the MP nickel plating layer was 9:6:1, the nickel film thickness was 25 μm, and the potential difference of the MP nickel plating layer relative to the bright nickel plating layer was +30 mV or +70 mV. In Comparative Examples 36 and 38, the same chromate treatment as in Example 4 was also performed. The test results of the obtained samples are shown in Table 5 below.
≪比較例39≫
 3価クロムめっきの代わりに6価クロムめっきを行った以外は、比較例35と同様の操作を行った。6価クロムめっきは、比較例9と同様にして行った。得られた試料についての試験結果を、表5に示す。
<Comparative Example 39>
The same operation as in Comparative Example 35 was performed except that hexavalent chromium plating was performed instead of trivalent chromium plating. The hexavalent chromium plating was performed in the same manner as in Comparative Example 9. The test results for the obtained samples are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明に従う実施例71及び72のクロムめっき部品試料は、ニッケルめっき層が二層であるにも拘らず、三層ニッケルめっき構造を有する比較例35~39と同等の耐食性を示した。 The chrome-plated part samples of Examples 71 and 72 according to the present invention, although they had two nickel-plated layers, exhibited corrosion resistance equivalent to that of Comparative Examples 35 to 39, which had a three-layer nickel-plated structure.
≪実施例73~74≫
 クロムめっきとして白色3価クロムめっきの代わりに黒色3価クロムめっきを行った以外は、実施例5~6と同様の操作を行った。黒色3価クロムめっきは、試料を下記の黒色3価クロムめっき液に浸漬し、40℃、10A/dmにて3分間の条件で行った。得られたクロムめっき部品試料は、良好な外観を呈していた。得られた試料についての試験結果を、後記する表6に示す。
 <黒色3価クロムめっき液>
・JTC-BKプロセス((株)JCU製)
  JTC-CR2   130g/L
  JTC-BK-S  300g/L
  JTC-A     90mL/L
  JTC-BK-B  20mL/L
  JTC-BK-C  20mL/L
  JTC-WA     2mL/L
<<Examples 73 to 74>>
The same operations as in Examples 5 and 6 were performed, except that black trivalent chromium plating was performed instead of white trivalent chromium plating. Black trivalent chromium plating was performed by immersing the sample in the following black trivalent chromium plating solution at 40°C and 10 A/ dm2 for 3 minutes. The obtained chromium-plated part sample had a good appearance. The test results for the obtained sample are shown in Table 6 below.
<Black trivalent chromium plating solution>
・JTC-BK process (manufactured by JCU Corporation)
JTC-CR2 130g/L
JTC-BK-S 300g/L
JTC-A 90mL/L
JTC-BK-B 20mL/L
JTC-BK-C 20mL/L
JTC-WA 2mL/L
≪比較例40~41≫
 クロムめっきとして黒色3価クロムめっきを行い、かつ光沢ニッケルめっき層に対するMPニッケルめっき層の電位差を+35mVとした以外は、比較例35又は36と同様の操作を行った。黒色3価クロムめっきは、実施例73~74と同様にして行った。得られた試料についての試験結果を、表6に示す。
<Comparative Examples 40 to 41>
The same operations as in Comparative Example 35 or 36 were performed except that black trivalent chromium plating was performed as the chromium plating and the potential difference of the MP nickel plating layer relative to the bright nickel plating layer was +35 mV. The black trivalent chromium plating was performed in the same manner as in Examples 73 to 74. The test results for the obtained samples are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明に従う実施例73及び74のクロムめっき部品試料は、三層のニッケルめっき層を備えた比較例40及び41の試料と同等以上の、優れた耐食性を示した。本発明の効果は、3価クロムめっき層が白色3価クロムめっき層や黒色3価クロムめっき層等のどのようなものであっても発現することが、明らかとなった。 The chrome-plated part samples of Examples 73 and 74 according to the present invention exhibited excellent corrosion resistance equal to or greater than that of the samples of Comparative Examples 40 and 41, which had three nickel plating layers. It became clear that the effects of the present invention are manifested regardless of the type of trivalent chrome plating layer, such as a white trivalent chrome plating layer or a black trivalent chrome plating layer.
≪実施例75~76≫
 第2ニッケルめっき液として以下のサテンニッケルめっき液(pH4.2)を用い、52℃、3A/dmにて15分間の条件で第2ニッケルめっき層を形成した以外は、実施例3又は4と同様の操作を行った。得られたクロムめっき部品試料はいずれも、外観が良好であった。これら試料についての試験結果を、表7に示す。
 <サテンニッケルめっき液>
・ワット浴
  硫酸ニッケル           470g/L
  塩化ニッケル            40g/L
  ホウ酸               40g/L
・DOUBLET SATINプロセス((株)JCU製)
  SATIN NICKEL EM1  10mL/L
  SATIN NICKEL EM2   5mL/L
  SATIN NICKEL DS-A  0.1mL/L
  SATIN NICKEL DS-B  0.1mL/L
<Examples 75 to 76>
The same operations as in Examples 3 and 4 were carried out, except that the second nickel plating layer was formed using the following satin nickel plating solution (pH 4.2) at 52°C and 3 A/dm for 15 minutes. All of the obtained chrome-plated part samples had good appearances. The test results for these samples are shown in Table 7.
<Satin nickel plating solution>
・Watts bath Nickel sulfate 470g/L
Nickel chloride 40g/L
Boric acid 40g/L
- DOUBLET SATIN process (manufactured by JCU Corporation)
SATIN NICKEL EM1 10mL/L
SATIN NICKEL EM2 5mL/L
SATIN NICKEL DS-A 0.1mL/L
SATIN NICKEL DS-B 0.1mL/L
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のクロムめっき部品は、第2ニッケルめっき層がサテンニッケルめっき層であっても、優れた耐食性を発現することが示された。 The chrome-plated parts of the present invention have been shown to exhibit excellent corrosion resistance even when the second nickel plating layer is a satin nickel plating layer.
 以上の実施例からも明らかなように、本発明によれば、上層が3価クロムめっき層であっても優れた耐食性を示し、外観が良好なクロムめっき部品を、より簡略化された工程で製造することができる。 As is clear from the above examples, according to the present invention, chrome-plated parts that exhibit excellent corrosion resistance and have good appearance, even when the upper layer is a trivalent chromium plating layer, can be manufactured using a simplified process.
 1  クロムめっき部品
 2  素地
 2A 素地の表面
 3  第1ニッケルめっき層
 4  第2ニッケルめっき層
 5  3価クロムめっき層
 21 基材
 22 表面層
Reference Signs List 1 Chromium-plated part 2 Base material 2A Surface of base material 3 First nickel plating layer 4 Second nickel plating layer 5 Trivalent chromium plating layer 21 Base material 22 Surface layer

Claims (9)

  1.  銅又は銅合金からなる表面層を有する素地と、
     前記素地の前記表面層に接して形成された第1ニッケルめっき層と、
     前記第1ニッケルめっき層上に接して形成された第2ニッケルめっき層と、
     前記第2ニッケルめっき層上に接して形成された3価クロムめっき層と、
    を備えるクロムめっき部品であって、
     前記第2ニッケルめっき層は、電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、
     前記第1ニッケルめっき層は前記第2ニッケルめっき層に対し、15~150mV卑である電位を有する
    ことを特徴とするクロムめっき部品。
    A substrate having a surface layer made of copper or a copper alloy;
    a first nickel plating layer formed in contact with the surface layer of the base material;
    a second nickel plating layer formed on and in contact with the first nickel plating layer;
    A trivalent chromium plating layer formed on and in contact with the second nickel plating layer;
    A chrome-plated part comprising:
    the second nickel plating layer has an anode potential of −215 to −290 mV at a current density of 0.1 mA/ cm2 ;
    The chrome-plated part, wherein the first nickel plating layer has a potential that is 15 to 150 mV less noble than the second nickel plating layer.
  2.  前記第1ニッケルめっき層と前記第2ニッケルめっき層との膜厚比率が1:10~30:1である、請求項1記載のクロムめっき部品。 The chrome-plated part according to claim 1, wherein the thickness ratio of the first nickel plating layer to the second nickel plating layer is 1:10 to 30:1.
  3.  前記第1ニッケルめっき層と前記第2ニッケルめっき層との膜厚比率が1:4~14:1である、請求項1記載のクロムめっき部品。 The chrome-plated part according to claim 1, wherein the thickness ratio of the first nickel plating layer to the second nickel plating layer is 1:4 to 14:1.
  4.  前記第1ニッケルめっき層と前記第2ニッケルめっき層との合計膜厚が1~30μmである、請求項1記載のクロムめっき部品。 The chrome-plated part according to claim 1, wherein the total thickness of the first nickel plating layer and the second nickel plating layer is 1 to 30 μm.
  5.  前記3価クロムめっき層上に、電解化成処理膜及び/又は浸漬化成処理膜をさらに備える、請求項1記載のクロムめっき部品。 The chrome-plated part according to claim 1, further comprising an electrolytic chemical conversion coating and/or an immersion chemical conversion coating on the trivalent chrome plating layer.
  6.  前記第2ニッケルめっき層が、非導電性微粒子不含の層である、請求項1記載のクロムめっき部品。 The chrome-plated part according to claim 1, wherein the second nickel plating layer is a layer that does not contain non-conductive fine particles.
  7.  前記素地が、樹脂、セラミックス、及び金属からなる群より選択される1種以上の材料からなり、かつ銅もしくは銅合金から主としてなる前記表面層が付された基材であるか、又は銅もしくは銅合金から主としてなる基材である、請求項1記載のクロムめっき部品。 The chrome-plated part according to claim 1, wherein the base material is a substrate made of one or more materials selected from the group consisting of resins, ceramics, and metals, and is provided with a surface layer made mainly of copper or a copper alloy, or is a substrate made mainly of copper or a copper alloy.
  8.  銅又は銅合金から主としてなる表面層を有する素地上に、前記表面層に接して第1ニッケルめっき層を形成する工程と、
     前記第1ニッケルめっき層上に接して第2ニッケルめっき層を形成する工程と、
     前記第2ニッケルめっき層上に接して3価クロムめっき層を形成する工程と、
    を備えるクロムめっき部品の製造方法であって、
     前記第2ニッケルめっき層は、電流密度0.1mA/cmで-215~-290mVのアノード電位を有し、
     前記第1ニッケルめっき層は前記第2ニッケルめっき層に対し、15~150mV卑である電位を有する
    ことを特徴とするクロムめっき部品の製造方法。
    forming a first nickel plating layer on a substrate having a surface layer mainly made of copper or a copper alloy in contact with the surface layer;
    forming a second nickel plating layer on and in contact with the first nickel plating layer;
    forming a trivalent chromium plating layer on the second nickel plating layer;
    A method for producing a chrome-plated part comprising:
    the second nickel plating layer has an anode potential of −215 to −290 mV at a current density of 0.1 mA/ cm2 ;
    The method for producing a chrome-plated part, wherein the first nickel plating layer has a potential that is 15 to 150 mV less noble than the second nickel plating layer.
  9.  前記3価クロムめっき層の表面に、電解化成処理膜及び/又は浸漬化成処理膜を形成する工程をさらに含む、請求項8記載のクロムめっき部品の製造方法。 The method for producing a chrome-plated part according to claim 8, further comprising the step of forming an electrolytic chemical conversion coating and/or an immersion chemical conversion coating on the surface of the trivalent chromium plating layer.
PCT/JP2023/033942 2022-11-11 2023-09-19 Chromium-plated component and production method for same WO2024100999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022181192A JP7350965B1 (en) 2022-11-11 2022-11-11 Chrome plated parts and their manufacturing method
JP2022-181192 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024100999A1 true WO2024100999A1 (en) 2024-05-16

Family

ID=88099156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033942 WO2024100999A1 (en) 2022-11-11 2023-09-19 Chromium-plated component and production method for same

Country Status (2)

Country Link
JP (1) JP7350965B1 (en)
WO (1) WO2024100999A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287579A (en) * 1992-04-10 1993-11-02 Toyoda Gosei Co Ltd Ornamental chrome plating film and its formation
WO2006043507A1 (en) * 2004-10-18 2006-04-27 Yamaha Hatsudoki Kabushiki Kaisha Engine part
JP2009074168A (en) * 2007-08-30 2009-04-09 Nissan Motor Co Ltd Chrome-plated part and manufacturing method of the same
JP2010185116A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Chrome-plated part and manufacturing method of the same
JP2015221944A (en) * 2015-08-07 2015-12-10 日産自動車株式会社 Chromium-plated part and production method thereof
JP2016169437A (en) * 2015-03-11 2016-09-23 嘉興敏惠汽車零部件有限公司 Nickel and/or chromium plated member and method for producing the same
CN109554729A (en) * 2019-01-09 2019-04-02 宁波劳伦斯表面技术有限公司 A kind of color chromium structure and processing technology of automobile decoration piece

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287579A (en) * 1992-04-10 1993-11-02 Toyoda Gosei Co Ltd Ornamental chrome plating film and its formation
WO2006043507A1 (en) * 2004-10-18 2006-04-27 Yamaha Hatsudoki Kabushiki Kaisha Engine part
JP2009074168A (en) * 2007-08-30 2009-04-09 Nissan Motor Co Ltd Chrome-plated part and manufacturing method of the same
JP2010185116A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Chrome-plated part and manufacturing method of the same
JP2016169437A (en) * 2015-03-11 2016-09-23 嘉興敏惠汽車零部件有限公司 Nickel and/or chromium plated member and method for producing the same
JP2015221944A (en) * 2015-08-07 2015-12-10 日産自動車株式会社 Chromium-plated part and production method thereof
CN109554729A (en) * 2019-01-09 2019-04-02 宁波劳伦斯表面技术有限公司 A kind of color chromium structure and processing technology of automobile decoration piece

Also Published As

Publication number Publication date
JP7350965B1 (en) 2023-09-26
JP2024070599A (en) 2024-05-23

Similar Documents

Publication Publication Date Title
JP6110049B2 (en) Chrome-plated parts and manufacturing method thereof
RU2445408C2 (en) Chrome-plated component and method of making said component
JP4904933B2 (en) Nickel plating solution and manufacturing method thereof, nickel plating method and copper foil for printed wiring board
EP3067443B1 (en) Nickel and/or chromium plated member and method for manufacturing the same
EP3159436B1 (en) Article having multilayer plating film
JP2014500404A (en) SUBSTRATE HAVING CORROSION-RESISTANT COATING AND METHOD FOR PRODUCING THE SAME
US20060257680A1 (en) Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same
JPH10287986A (en) Magnesium alloy member excellent in adhesion and its production
EP3147389B1 (en) Multicorrosion protection system for decorative parts with chrome finish
JP2007009261A (en) Copper foil for printed circuit board, and its manufacturing method
WO2024100999A1 (en) Chromium-plated component and production method for same
CA1209947A (en) Chromate composition and process for treating zinc- nickel alloys
WO2024100998A1 (en) Chromium plated component and method for producing same
US4591416A (en) Chromate composition and process for treating zinc-nickel alloys
KR100402730B1 (en) Method process for forming copper and nickel-plated of electrolytic plating in magnesium compound
WO2023095774A1 (en) Chromium-plated component and method for manufacturing same
JPH06240490A (en) Corrosion resistant chromium plating
KR100786971B1 (en) Electroplated steel sheets with excellent corrosion resistance and electrolyte thereof
KR100544646B1 (en) Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof
US5730809A (en) Passivate for tungsten alloy electroplating
JPS6134520B2 (en)
JPS6296691A (en) Zn-ni alloy plating method