WO2024100949A1 - インダクタ部品 - Google Patents

インダクタ部品 Download PDF

Info

Publication number
WO2024100949A1
WO2024100949A1 PCT/JP2023/029300 JP2023029300W WO2024100949A1 WO 2024100949 A1 WO2024100949 A1 WO 2024100949A1 JP 2023029300 W JP2023029300 W JP 2023029300W WO 2024100949 A1 WO2024100949 A1 WO 2024100949A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
wiring
inductor wiring
magnetic layer
insulating layer
Prior art date
Application number
PCT/JP2023/029300
Other languages
English (en)
French (fr)
Inventor
隆一朗 冨永
敬介 國森
祐輝 川上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024100949A1 publication Critical patent/WO2024100949A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof

Definitions

  • This disclosure relates to inductor components.
  • the inductor component comprises an element body including a magnetic layer, and a coil disposed within the element body and having an axis. The entire outer surface of the coil is covered with an insulating material.
  • the entire outer surface of the coil is covered with an insulating material, which means that the volume of the magnetic layer cannot be secured, and the desired inductance value cannot always be obtained.
  • the objective of this disclosure is to provide an inductor component that can improve the inductance value.
  • an inductor component comprises: An element including a magnetic layer; a coil disposed within the element body and having an axis; an insulating layer covering a portion of an outer surface of the coil; The coil has an inductor wiring wound along a plane perpendicular to the axis, the inductor wiring has a first surface and a second surface opposed to each other in the axial direction; At least a portion of the first surface of the inductor wiring is in contact with the magnetic layer.
  • the inductance value of the inductor component can be improved.
  • the inductor component according to one aspect of the present disclosure can improve the inductance value.
  • FIG. 1 is a schematic plan view showing a first embodiment of an inductor component; This is a cross-sectional view of FIG. 1 taken along line II-II.
  • FIG. 3 is an enlarged view of part A in FIG. 2 .
  • 11 is a schematic cross-sectional view showing a modified example of the inductor component.
  • FIG. 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • 1A to 1C are explanatory diagrams illustrating a method for manufacturing an inductor component.
  • FIG. 4 is a schematic cross-sectional view showing a second embodiment of the inductor component.
  • FIG. 11 is a schematic cross-sectional view showing a third embodiment of the inductor component.
  • FIG. 13 is a schematic plan view showing a fourth embodiment of an inductor component.
  • FIG. 1 is a schematic plan view showing a first embodiment of an inductor component.
  • Fig. 2 is a cross-sectional view taken along line II-II of Fig. 1.
  • Fig. 1 has oblique lines drawn at positions where the top surface of the covering insulating layer is present.
  • Fig. 2 omits the seed layer.
  • Fig. 2 corresponds to an example of a "cross section perpendicular to the extending direction of the inductor wiring" as set forth in the claims.
  • the inductor component 1 is mounted in, for example, electronic devices such as personal computers, DVD players, digital cameras, TVs, mobile phones, and car electronics, and is, for example, a component having an overall rectangular parallelepiped shape.
  • the shape of the inductor component 1 is not particularly limited, and may be a cylindrical shape, a polygonal columnar shape, a truncated cone shape, or a polygonal truncated cone shape.
  • the inductor component 1 comprises an element body 10, a coil 15 disposed within the element body 10 and having an axis AX, a coating insulating layer 30 and an underlying insulating layer 70 covering a portion of the outer surface of the coil 15, a first external terminal 51 and a second external terminal 52 exposed on the first main surface 10a of the element body 10, and a coating film 60 provided on the first main surface 10a of the element body 10.
  • the coating insulating layer 30 and the underlying insulating layer 70 correspond to an example of an "insulating layer" as defined in the claims.
  • the shape of the element body 10 is not particularly limited, but in this embodiment it is a rectangular parallelepiped.
  • the outer surface of the element body 10 has a first main surface 10a and a second main surface 10b, and a first side surface 10c, a second side surface 10d, a third side surface 10e, and a fourth side surface 10f that are located between the first main surface 10a and the second main surface 10b and connect the first main surface 10a and the second main surface 10b.
  • the first main surface 10a and the second main surface 10b face each other.
  • the first side surface 10c and the second side surface 10d face each other.
  • the third side surface 10e and the fourth side surface 10f face each other.
  • the thickness direction of the element body 10 is the Z direction
  • the direction from the second main surface 10b to the first main surface 10a is the forward Z direction
  • the reverse direction of the forward Z direction is the reverse Z direction.
  • the main surface side of the first main surface 10a and the second main surface 10b on which the external terminals 51 and 52 are provided is the upper side.
  • the forward Z direction is the upper side.
  • the length direction of the element body 10 in which the first external terminal 51 and the second external terminal 52 are arranged is the X direction
  • the width direction of the element body 10 perpendicular to the length direction is the Y direction.
  • the X direction from the first side surface 10c to the second side surface 10d is the forward X direction
  • the reverse direction of the forward X direction is the reverse X direction
  • the direction from the third side surface 10e to the fourth side surface 10f is the forward Y direction
  • the reverse direction of the forward Y direction is the reverse Y direction.
  • the forward Z direction corresponds to an example of the "first direction” described in the claims.
  • the reverse Z direction corresponds to an example of the "second direction" described in the claims.
  • the base body 10 includes a first magnetic layer 11 and a second magnetic layer 12 arranged in sequence along the forward Z direction. This "sequentially” refers simply to the positional relationship between the first magnetic layer 11 and the second magnetic layer 12, and has nothing to do with the order in which the first magnetic layer 11 and the second magnetic layer 12 are formed.
  • the first magnetic layer 11 and the second magnetic layer 12 correspond to an example of a "magnetic layer" as described in the claims.
  • the first magnetic layer 11 and the second magnetic layer 12 each contain a magnetic powder and a resin containing the magnetic powder.
  • the resin is, for example, an organic insulating material such as epoxy, a mixture of epoxy and acrylic, or a mixture of epoxy, acrylic, and other materials.
  • the magnetic powder is, for example, an FeSi-based alloy such as FeSiCr, an FeCo-based alloy, an Fe-based alloy such as NiFe, or an amorphous alloy thereof.
  • the magnetic powder may be ferrite.
  • the average particle size of the magnetic powder is preferably 5 ⁇ m or less.
  • the first magnetic layer 11 and the second magnetic layer 12 may not contain an organic resin, such as a sintered body of ferrite or magnetic powder.
  • the coil 15 has an inductor wiring 150 and a first lead-out wiring 21 and a second lead-out wiring 22 provided in the element body 10 so that their end faces are exposed from the first main surface 10a of the element body 10.
  • the inductor wiring refers to a wiring wound in a spiral shape on a plane including the inner peripheral end 151 and the outer peripheral end 152.
  • the coil is a member including not only the inductor wiring but also wiring (in this embodiment, the first and second lead-out wirings 21 and 22) that extracts the signal of the inductor wiring to the outside of the element body 10.
  • the inductor wiring 150 is wound between the first magnetic layer 11 and the second magnetic layer 12 along a plane (XY plane) perpendicular to the axis AX of the coil 15. Specifically, the first magnetic layer 11 is located in the reverse Z direction from the inductor wiring 150, and the second magnetic layer 12 is located in the forward Z direction from the inductor wiring 150 and in a direction perpendicular to the forward Z direction.
  • the inductor wiring 150 When viewed from the Z direction, the inductor wiring 150 is wound in a spiral shape in the clockwise direction from the outer peripheral end 152 to the inner peripheral end 151.
  • the number of turns of the inductor wiring 150 is preferably one or more turns. This allows the inductance value to be improved.
  • One or more turns refers to a state in which, in a cross section perpendicular to the axis of the inductor wiring, the inductor wiring has parts that are adjacent in the radial direction when viewed from the axial direction and run parallel in the winding direction, and "less than one turn” refers to a state in which, in a cross section perpendicular to the axis, the inductor wiring does not have parts that are adjacent in the radial direction when viewed from the axial direction and run parallel in the winding direction.
  • the number of turns of the inductor wiring 150 is 2.5 turns.
  • the inductor wiring 150 has a top surface 150a and a bottom surface 150b that face the axis AX direction of the coil 15. Specifically, the inductor wiring 150 has a top surface 150a that faces the forward Z direction (i.e., upward) and a bottom surface 150b that faces the reverse Z direction. In this specification, the top surface 150a of the inductor wiring 150 does not include the connection portion with the first and second lead wirings 21 and 22.
  • the top surface 150a corresponds to an example of the "first surface” described in the claims.
  • the bottom surface 150b corresponds to an example of the "second surface” described in the claims.
  • the inductor wiring 150 has both side surfaces 150c and 150d that connect the top surface 150a and the bottom surface 150b. Specifically, the inductor wiring 150 has a first side surface 150c that faces radially outward and a second side surface 150d that faces radially inward.
  • the outer peripheral end 152 of the inductor wiring 150 is connected to the first external terminal 51 via the first outgoing wiring 21 that contacts the top surface of the outer peripheral end 152.
  • the inner peripheral end 151 of the inductor wiring 150 is connected to the second external terminal 52 via the second outgoing wiring 22 that contacts the top surface of the inner peripheral end 151. With the above configuration, the inductor wiring 150 is electrically connected to the first external terminal 51 and the second external terminal 52.
  • the inductor wiring 150 is preferably made of Au, Pt, Pd, Ag, Cu, Al, Co, Cr, Zn, Ni, Ti, W, Fe, Sn, In, or a compound thereof.
  • the inductor wiring 150 is formed, for example, by electrolytic plating.
  • the inductor wiring 150 may also be formed by electroless plating, sputtering, vapor deposition, coating, or the like.
  • the first outgoing wiring 21 extends in the forward Z direction from the top surface of the outer peripheral end 152 of the inductor wiring 150 and penetrates the inside of the covering insulating layer 30 and the second magnetic layer 12.
  • the first outgoing wiring 21 is preferably made of Cu, Ag, Au, Fe, or a compound thereof.
  • the first outgoing wiring 21 includes a first via wiring 212 provided on the top surface of the outer peripheral end 152 of the inductor wiring 150 and penetrating the inside of the covering insulating layer 30, and a first columnar wiring 211 extending in the forward Z direction from the top surface of the first via wiring 212, penetrating the inside of the second magnetic layer 12, and having an end surface exposed to the first main surface 10a of the element body 10.
  • the via wiring is a conductor having a smaller line width (diameter, cross-sectional area) than the columnar wiring.
  • the second outgoing wiring 22 extends in the forward Z direction from the top surface of the inner peripheral end 151 of the inductor wiring 150 and penetrates the inside of the covering insulating layer 30 and the second magnetic layer 12.
  • the second outgoing wiring 22 is preferably made of Cu, Ag, Au, Fe, or a compound thereof.
  • the second outgoing wiring 22 includes a second via wiring 222 provided on the top surface of the inner peripheral end 151 of the inductor wiring 150 and penetrating the inside of the covering insulating layer 30, and a second columnar wiring 221 extending in the forward Z direction from the top surface of the second via wiring 222, penetrating the inside of the second magnetic layer 12, and having an end surface exposed to the first main surface 10a of the element body 10.
  • the first and second outgoing wirings 21 and 22 are preferably made of the same material as the inductor wiring 150.
  • the first and second external terminals 51, 52 are provided on the first main surface 10a of the element body 10.
  • the first and second external terminals 41, 42 are made of a conductive material, and have a three-layer structure in which, for example, Cu, which has low electrical resistance and excellent stress resistance, Ni, which has excellent corrosion resistance, and Au, which has excellent solder wettability and reliability, are arranged in this order from the inside to the outside.
  • the first external terminal 51 contacts the end face of the first outgoing wiring 21 exposed from the first main surface 10a of the element body 10, and is electrically connected to the first outgoing wiring 21. As a result, the first external terminal 51 is electrically connected to the outer peripheral end 152 of the inductor wiring 150.
  • the second external terminal 52 contacts the end face of the second outgoing wiring 22 exposed from the first main surface 10a of the element body 10, and is electrically connected to the second outgoing wiring 22. As a result, the second external terminal 52 is electrically connected to the inner peripheral end 151 of the inductor wiring 150. Note that in FIG. 1, the first and second external terminals 51 and 52 are shown by two-dot chain lines for convenience.
  • the covering insulating layer 30 and the base insulating layer 70 are made of an insulating material that does not contain magnetic material.
  • the insulating material is preferably made of, for example, epoxy, acrylic, phenol, polyimide, or a mixture of these.
  • FIG. 3 is an enlarged view of part A in FIG. 2. As shown in FIG. 3, at least a portion of the top surface 150a of the inductor wiring 150 is in contact with at least one of the first magnetic layer 11 and the second magnetic layer 12. In this embodiment, only a portion of the top surface 150a of the inductor wiring 150 is in contact with the second magnetic layer 12.
  • the base insulating layer 70 is laminated on the first magnetic layer 11 so as to cover the entire upper surface of the first magnetic layer 11.
  • the inductor wiring 150 is laminated on the base insulating layer 70.
  • the entire bottom surface 150b of the inductor wiring 150 is in contact with the upper surface of the base insulating layer 70.
  • the covering insulation layer 30 is provided on the base insulation layer 70 and covers a portion of the outer surface of the inductor wiring 150.
  • the covering insulation layer 30 has a top surface portion 31 and a wall portion 32.
  • the wall portion 32 is provided on at least one of the first side surface 150c and the second side surface 150d of the inductor wiring 150.
  • the wall portion 32 is provided on both the first side surface 150c and the second side surface 150d.
  • the wall portion 32 extends in the Z direction in a cross section perpendicular to the extension direction of the inductor wiring 150 (i.e., the cross section shown in FIG. 2).
  • the wall portion 32 is in contact with the entire surface of the first side surface 150c and the entire surface of the second side surface 150d.
  • the lower surface of the wall portion 32 is in contact with the upper surface of the base insulating layer 70.
  • the wall portion 32 is provided on the innermost inner surface 150d1 of the inductor wiring 150, the outermost outer surface 150c1 of the inductor wiring 150, and between the turns of the inductor wiring 150.
  • the innermost circumference of the inductor wiring refers to the radially inner circumference of the inductor wiring if the inductor wiring is less than one turn, and refers to the radially inner circumference of the part of the inductor wiring that constitutes one turn including the inner circumference end if the inductor wiring is one turn or more.
  • the outermost circumference of the inductor wiring refers to the radially outer circumference of the inductor wiring if the inductor wiring is less than one turn, and refers to the radially outer circumference of the part of the inductor wiring that constitutes one turn including the outer circumference end if the inductor wiring is one turn or more.
  • the top surface portion 31 is provided on a part of the top surface 150a of the inductor wiring 150. Specifically, the top surface portion 31 is provided in a predetermined range of the top surface 150a of the inductor wiring 150 around the first outgoing wiring 21 when viewed from the Z direction.
  • the predetermined range is a range in which insulation between the top surface 150a of the inductor wiring and the first outgoing wiring 21 can be ensured.
  • the shape of the predetermined range is a shape that follows the outer shape (rectangle) of the first outgoing wiring 21 when viewed from the Z direction. This makes it easy to ensure insulation between the top surface 150a of the inductor wiring and the first outgoing wiring 21.
  • the top surface portion 31 is provided in a predetermined range of the top surface 150a of the inductor wiring 150 around the second outgoing wiring 22 when viewed from the Z direction.
  • the predetermined range is a range in which insulation between the top surface 150a of the inductor wiring and the second outgoing wiring 22 can be ensured.
  • the shape of the predetermined range is a shape that follows the outer shape (circular) of the second outgoing wiring 22 when viewed from the Z direction. This makes it easy to ensure insulation between the top surface 150a of the inductor wiring and the second outgoing wiring 22.
  • the portion of the top surface 150a of the inductor wiring 150 where the top surface portion 31 of the covering insulating layer 30 is not provided is in contact with the second magnetic layer 12.
  • the inductor component 1 At least a portion of the top surface 150a of the inductor wiring 150 is in contact with either the first magnetic layer 11 or the second magnetic layer 12, so the volumes of the first magnetic layer 11 and the second magnetic layer 12 can be increased compared to when the entire outer surface of the inductor wiring 150 is covered with an insulating material. As a result, the inductance value of the inductor component 1 can be improved.
  • the above-mentioned effect of increasing the volume of the first magnetic layer 11 and the second magnetic layer 12 is greater than when only the inner surface 150d1 of the outer surface of the inductor wiring 150 is in contact with the second magnetic layer 12.
  • the inductor wiring 150 has both side surfaces 150c, 150d connecting the top surface 150a and the bottom surface 150b, and the covering insulating layer 30 has a wall portion 32 provided on at least one of the both side surfaces 150c, 150d.
  • the covering insulating layer 30 has a first wall portion 321 provided on the first side surface 150c and a second wall portion 322 provided on the second side surface 150d.
  • the end surface of the wall portion 32 in the first direction D1 is located closer to the first direction D1 than the position of the top surface 150a of the inductor wiring 150.
  • the first end surface 321a in the first direction D1 of the first wall portion 321 is located closer to the first direction D1 than the position of the top surface 150a of the inductor wiring 150.
  • the second end surface 322a in the first direction D1 of the second wall portion 322 is located closer to the first direction D1 than the position of the top surface 150a of the inductor wiring 150.
  • the distance in the first direction D1 between the top surface 150a of the inductor wiring 150 and the end surface in the first direction D1 of the wall portion 32 is 5 ⁇ m or more and 20 ⁇ m or less.
  • the distance h1 in the first direction D1 between the top surface 150a of the inductor wiring 150 and the first end surface 321a of the first wall portion 321 is 5 ⁇ m or more and 20 ⁇ m or less.
  • the distance h2 in the first direction D1 between the top surface 150a of the inductor wiring 150 and the second end surface 322a of the second wall portion 322 is 5 ⁇ m or more and 20 ⁇ m or less.
  • the distance h1 and the distance h2 are 5 ⁇ m or more, it is possible to prevent the inner surface 150d1 of the innermost circumference of the inductor wiring 150 from shorting through the second magnetic layer 12. Also, as in this embodiment, when the inductor wiring 150 has one turn or more, it is possible to prevent shorting between adjacent turns. Since the distance h1 and the distance h2 are 20 ⁇ m or less, the inductor wiring 150 can be formed in a desired shape. As a result, a desired inductor value can be obtained.
  • the wall portion 32 may be inclined in the forward X direction or the reverse X direction, and the inductor wiring 150 may not be formed in a desired shape. Also, since the distance h1 and the distance h2 are 20 ⁇ m or less, the volume of the second magnetic layer 12 can be further increased.
  • the above distance is 5 ⁇ m or more and 20 ⁇ m or less in all of the wall portions 32.
  • the covering insulating layer 30 is provided on at least a portion of the top surface 150a of the inductor wiring 150.
  • the volume of the second magnetic layer 12 can be increased while ensuring insulation between the top surface 150a and other conductive members.
  • the inductor wiring 150 when the direction from the bottom surface 150b of the inductor wiring 150 toward the top surface 150a in the direction of the axis AX is defined as the first direction D1, the inductor wiring 150 further includes first and second lead-out wirings 21, 22 that are connected to the top surface 150a at the ends in the extension direction of the inductor wiring 150 (i.e., the inner peripheral end 151 and the outer peripheral end 152) and extend in the first direction D1 and are exposed from the outer surface of the element body 10, and the covering insulating layer 30 (i.e., the top surface portion 31) provided on a part of the top surface 150a of the inductor wiring 150 is provided over a range of 80 ⁇ m or more from the periphery of the first and second lead-out wirings 21, 22 on the top surface 150a.
  • first and second lead-out wirings 21, 22 are connected to the top surface 150a at the ends in the extension direction of the inductor wiring 150 (i.e., the inner peripheral end 151 and the outer peripheral end 15
  • the above configuration can suppress the occurrence of a short circuit between the portion of the top surface 150a of the inductor wiring 150 that is in contact with the second magnetic layer 12 and the first and second outgoing wirings 21, 22.
  • a short circuit may occur via the magnetic powder of the second magnetic layer 12.
  • a short circuit is likely to occur between the first and second outgoing wirings 21, 22 and the inductor wiring 150 that exists around the first and second outgoing wirings 21, 22 because the distance between them is relatively short.
  • the inventors have found that even if a portion of the top surface 150a of the inductor wiring 150 is not covered with the insulating coating layer 30 and is in contact with the second magnetic layer 12, the risk of short circuiting can be reduced to the same extent as when the entire top surface 150a of the inductor wiring 150 is covered with the insulating coating layer 30 by providing the top surface portion 31 of the insulating coating layer 30 over a range of 80 ⁇ m or more from the periphery of the first and second lead-out wirings 21 and 22.
  • Modification 4 is a schematic cross-sectional view showing an inductor component 1A according to a modified example, and corresponds to FIG.
  • the inductor wiring 150 has both side surfaces 150c, 150d connecting the top surface 150a and the bottom surface 150b, and both side surfaces 150c, 150d of the inductor wiring located at the innermost circumference include the innermost inner surface 150d1 and the outer peripheral surface 150c2 facing the inner peripheral surface 150d1, and the coating insulating layer 30 has at least a first wall portion 321 and a second wall portion 322 provided on each of the inner peripheral surface 150d1 and the outer peripheral surface 150c2, and the end surface 322a in the first direction D1 of the second wall portion 322 provided on the inner peripheral surface 150d1 is located on the second direction D2 side opposite to the first direction D1, relative to the end surface 321a in the first direction D1 of the first wall portion 321 provided on the outer peripheral surface 150c2.
  • both side surfaces of the inductor wiring located at the innermost circumference refers to both side surfaces of the inductor wiring 150 in a cross section perpendicular to the extension direction of the inductor wiring 150. If the number of turns of the inductor wiring 150 is one turn or more, the above "both side surfaces of the inductor wiring located at the innermost circumference” refers to both side surfaces of the cross section of the inductor wiring including the innermost circumference among the cross sections of multiple inductor wirings that appear in a cross section perpendicular to the extension direction of the inductor wiring 150.
  • the above configuration prevents the magnetic flux from being blocked by the second wall portion 322 of the coating insulation layer 30 in the area where the magnetic flux turns around.
  • the end surface 322a in the first direction D1 of the second wall portion 322 provided on the inner circumferential surface 150d1 is preferably located on the same plane as the top surface 150a of the inductor wiring 150.
  • the above configuration further prevents the magnetic flux from being blocked by the second wall portion 322 of the covering insulation layer 30 in the area where the magnetic flux turns around.
  • Figures 5A to 5J correspond to the cross section taken along line II-II in Figure 1 ( Figure 2).
  • the second escape wiring side is omitted from Figures 5A to 5J.
  • a base insulating layer 70 that does not contain a magnetic material is formed on a substrate 90.
  • the substrate 90 is made of, for example, sintered ferrite and has a flat plate shape.
  • the base insulating layer 70 is made of, for example, a polyimide resin that does not contain a magnetic material.
  • the base insulating layer 70 is formed by coating the polyimide resin on the substrate 90 by printing, painting, or the like. After coating, the base insulating layer 70 may be patterned using a photolithography method to leave only the polyimide resin in the area where the inductor wiring 150 is to be formed. Note that, before forming the base insulating layer 70, an insulating material that will become a grinding protection layer may be formed on the substrate 90.
  • a seed layer 81 is formed on the underlying insulating layer 70.
  • the material of the seed layer 81 e.g., a titanium/copper alloy
  • the material of the seed layer 81 is deposited on the upper surface of the underlying insulating layer 70 by sputtering, and then patterned by photolithography to form the seed layer 81.
  • a wall portion 32 that will become part of the covering insulating layer is formed on the base insulating layer 70.
  • the wall portion 32 is formed, for example, from a photosensitive permanent photoresist.
  • a photosensitive permanent photoresist is a photoresist that is not removed after processing. Specifically, the photosensitive permanent photoresist is laminated on the base insulating layer 70, exposed to light, and developed. This removes the material in the unexposed areas to form the wall portion 32.
  • electrolytic plating is performed while power is supplied to the seed layer 81.
  • the top surface portion 31 of the covering insulating layer 30 is formed on a portion of the top surface 150a of the inductor wiring 150.
  • a dry film resist (DFR) is laminated on the top surface 150a of the inductor wiring 150, exposed to light, and developed. This removes the material from the portion that is not exposed to light, forming the top surface portion 31.
  • the dry film resist located at the portion where the top surface 150a of the inductor wiring 150 and the second magnetic layer 12 contact each other is removed. This allows a portion of the top surface 150a of the inductor wiring 150 to come into contact with the second magnetic layer when the second magnetic layer 12 is pressure-bonded in a later process.
  • a seed layer 82 is formed by sputtering so as to cover the exposed portion of the top surface 150a of the inductor wiring 150 and the top surface 31 and wall portion 32 of the covering insulating layer 30.
  • the distance between the end face of the wall portion 32 of the covering insulating layer 30 and the top surface 150a of the inductor wiring 150 is 20 ⁇ m or less, the sputtered film can be adhered well even to the step portion between the upper end face of the wall portion 32 and the top surface 150a, and the seed layer 82 can be formed well.
  • the first via wiring 212 and the first columnar wiring 211 are formed on the outer peripheral end 152 of the inductor wiring 150.
  • a resist film 320 is formed on the seed layer 82, and an opening is provided in the resist film 320 at a position corresponding to the first via wiring 212.
  • the distance between the end face of the wall portion 32 of the coating insulating layer 30 and the top surface 150a of the inductor wiring 150 is 20 ⁇ m or less, so that the resist film 320 can be formed into a desired shape.
  • the first via wiring 212 and the first columnar wiring 211 can also be formed into a desired shape.
  • electrolytic plating is performed while supplying power to the seed layer 82, and a plating layer is formed in the above-mentioned opening.
  • the first via wiring 212 and the first columnar wiring 211 are formed in the opening.
  • the resist film 320 is peeled off, the exposed seed layer 82 is removed, and the second magnetic layer 12 is pressed against the inductor wiring 150 from above the substrate 90. This causes the inductor wiring 150, the base insulating layer 70, the covering insulating layer 30, and the first columnar wiring 211 to be covered with the second magnetic layer 12.
  • the top surface of the second magnetic layer 12 is ground to expose the top surface of the first columnar wiring 211.
  • a coating film 60 is formed on the upper surface of the second magnetic layer 12.
  • the coating film 60 is formed of, for example, solder resist.
  • the substrate 90 is then ground to expose the lower surface of the base insulating layer 70.
  • the first magnetic layer 11 is then pressed against the inductor wiring 150 from below the base insulating layer 70. This causes the lower surface of the base insulating layer 70 to be covered with the first magnetic layer 11.
  • the lower surface of the first magnetic layer 11 is then ground to adjust the thickness of the first magnetic layer 11.
  • the first external terminal 51 is then formed so as to cover the upper surface of the first columnar wiring 211.
  • the first external terminal 51 has a three-layer structure of Cu/Ni/Au formed by, for example, electroless plating.
  • the inductor component 1 is then manufactured by dividing the substrate 90 into individual pieces using a dicer or the like.
  • Second Embodiment Fig. 6 is a schematic cross-sectional view showing a second embodiment of the inductor component.
  • Fig. 6 corresponds to the cross-sectional view taken along line II-II in Fig. 1.
  • the second escape wiring side is omitted in Fig. 6.
  • the second embodiment differs from the first embodiment in that the top surface of the covering insulating layer and the underlying insulating layer are not provided. This different configuration will be described below.
  • the other configurations are the same as those of the first embodiment, and the same reference numerals as those of the first embodiment will be used and the description thereof will be omitted.
  • the covering insulating layer 30B has only a wall portion 32 and does not have a top surface portion. As a result, the entire top surface 150a of the inductor wiring 150 is in contact with the second magnetic layer 12.
  • the first outgoing wiring 21B does not have a via wiring, and the first columnar wiring 211 is directly connected to the inductor wiring 150.
  • the volume of the second magnetic layer 12 can be further increased, and the inductance value of the inductor component 1B can be further improved.
  • inductor component 1B no underlying insulating layer is provided, and the upper surface of first magnetic layer 11 and the lower surface of second magnetic layer 12 are in contact. As a result, the entire surface of bottom surface 150b of inductor wiring 150 is in contact with first magnetic layer 11. With this configuration, the thickness of first magnetic layer 11 in the Z direction can be increased compared to when an underlying insulating layer is provided, and therefore the volume of first magnetic layer 11 can be further increased, thereby further improving the inductance value of inductor component 1B.
  • the inductor component 1B can be manufactured, for example, by not providing the top surface portion 31 in the process shown in FIG. 5E, and by removing the base insulating layer 70 after grinding the substrate 90 in the process shown in FIG. 5J.
  • Fig. 7 is a schematic cross-sectional view showing a third embodiment of an inductor component.
  • Fig. 7 corresponds to Fig. 3.
  • the third embodiment differs from the first embodiment in that a wall portion of the covering insulating layer is not provided on the inner peripheral surface of the innermost periphery of the inductor wiring.
  • This different configuration will be described below.
  • the other configurations are the same as those of the first embodiment, and the same reference numerals as those of the first embodiment will be used and the description thereof will be omitted.
  • the innermost inner surface 150d1 of the inductor wiring 150 is in contact with the second magnetic layer 12.
  • the entire innermost inner surface 150d1 of the inductor wiring 150 is in contact with the second magnetic layer 12.
  • the inductor component 1C can be manufactured, for example, by not providing a wall portion 32 that corresponds to the position of the inner surface of the innermost circumference of the inductor wiring in the process shown in FIG. 5C.
  • FIG. 8 is a schematic plan view showing a fourth embodiment of the inductor component.
  • Fig. 8 corresponds to Fig. 1.
  • the fourth embodiment differs from the first embodiment mainly in the position where the top surface of the covering insulating layer is provided. This different configuration will be described below.
  • the other configurations are the same as those of the first embodiment, and the same reference numerals as those of the first embodiment are used and the description thereof will be omitted. Note that in Fig. 8, for convenience, the position where the top surface of the covering insulating layer is provided is shaded.
  • the inductor wiring 150 when the direction from the bottom surface of the inductor wiring 150 toward the top surface along the axis AX is defined as a first direction, the inductor wiring 150 is connected to the top surface at the ends in the extension direction (i.e., the inner peripheral end 151 and the outer peripheral end 152), and further includes first and second outgoing wirings 21, 22 that extend in the first direction and are exposed from the outer surface of the element body 10, and the covering insulating layer 30 (i.e., the top surface portion 31) provided on a portion of the top surface of the inductor wiring 150 is separated from the first and second outgoing wirings 21, 22.
  • the extension direction i.e., the inner peripheral end 151 and the outer peripheral end 152
  • the covering insulating layer 30 i.e., the top surface portion 31
  • the top surface 31 of the covering insulating layer 30 is provided on the entire top surface of the inductor wiring 150, excluding the areas around the first and second outgoing wirings 21 and 22.
  • the top surface 31 of the covering insulating layer 30 may be provided on a part of the top surface excluding the areas around the first and second outgoing wirings 21 and 22, as long as it is separated from the first and second outgoing wirings 21 and 22.
  • the first and second outgoing wirings 21 and 22 do not have the first and second via wirings 212 and 222.
  • the bottom surfaces of the first and second columnar wirings 211 and 221 of the first and second outgoing wirings 21 and 22 are in direct contact with the top surface of the inductor wiring 150.
  • the above configuration allows the top surface portion 31 to be provided at a desired location between the inductor wirings 150 where a short circuit is likely to occur, and since the first and second outgoing wirings 21, 22 do not have the first and second via wirings 212, 222 as shown in FIG. 1, the contact area between the first and second outgoing wirings 21, 22 (i.e., the first and second columnar wirings 211, 221) and the inductor wiring 150 can be increased, increasing the adhesion strength between the first and second outgoing wirings 21, 22 and the inductor wiring 150, and suppressing defects such as breakage due to external stress.
  • first and second lead-out wiring, first and second external terminals, and a coating film are provided, but these components are not essential and may not be provided or may be replaced with other components.
  • the inductor wiring is one layer, but it may be two or more layers.
  • the “top surface of the inductor wiring” refers to the top surface of the inductor wiring in the topmost layer.
  • the “bottom surface of the inductor wiring” refers to the bottom surface of the inductor wiring in the bottommost layer.
  • the top surface of the inductor wiring is in contact with the second magnetic layer, but the entire top surface of the inductor wiring may be covered with a covering insulating layer, and at least a portion of the bottom surface of the inductor wiring may be in contact with the first magnetic layer.
  • the top surface of the inductor wiring corresponds to an example of the "second surface” described in the claims
  • the bottom surface of the inductor wiring corresponds to an example of the "first surface” described in the claims.
  • the wall portion of the insulating coating layer is present in the entire area between adjacent turns of the inductor wiring, but the second magnetic layer may be present between adjacent turns.
  • the wall portion of the insulating coating layer is provided on at least one of both side surfaces of the inductor wiring, and the second magnetic layer may be present between adjacent turns.
  • Chips were fabricated in which the distance h between the top surface of the inductor wiring and the end surface in the first direction of the wall portion of the coating insulating layer was changed to 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, and 10 ⁇ m, and a humidity load test was performed on each chip.
  • a humidity load test a current was passed through the chip in a high-temperature and high-humidity environment, and the insulation resistance of the inductor wiring was measured after a predetermined time.
  • the conditions for the humidity load test were 85° C., 85% RH, 1 A, and 500 hr. Of the 15 chips, the number of chips with normal insulation resistance (the number of good chips) was investigated. The test results are shown in Table 1.
  • Chips were fabricated in which the distance h between the top surface of the inductor wiring and the end surface in the first direction of the wall of the insulating coating layer was changed to 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, and 30 ⁇ m, and the occurrence of defects in the manufacturing process was investigated. Specifically, for samples in which a seed layer was formed by sputtering after the wall of the insulating coating layer was formed, the deposition state of the seed layer was observed using an optical microscope. In addition, for samples in which a resist film was formed after the seed layer was formed, the deposition state of the resist film was observed using an optical microscope. Then, of the 15 chips, the number of chips in which the deposition state of the seed layer and resist film was normal (number of good chips) was investigated. The investigation results are shown in Table 2.
  • An element including a magnetic layer; a coil disposed within the element body and having an axis; an insulating layer covering a portion of an outer surface of the coil;
  • the coil has an inductor wiring wound along a plane perpendicular to the axis, the inductor wiring has a first surface and a second surface opposed to each other in the axial direction; At least a portion of the first surface of the inductor wiring is in contact with the magnetic layer.
  • the inductor wiring has two side surfaces connecting the first surface and the second surface;
  • ⁇ 5> An inductor component as described in ⁇ 4>, wherein when the axial direction is a direction from the second surface of the inductor wiring toward the first surface of the inductor wiring, the end face of the wall portion in the first direction is located on the first direction side relative to the position of the first surface of the inductor wiring.
  • ⁇ 6> The inductor component according to ⁇ 5>, wherein a distance in the first direction between the first surface of the inductor wiring and the end face in the first direction of the wall portion is 5 ⁇ m or more and 20 ⁇ m or less.
  • the inductor wiring has two side surfaces connecting the first surface and the second surface; the two side surfaces of the inductor wiring located at the innermost periphery include an inner periphery surface of the innermost periphery and an outer periphery surface opposite to the inner periphery surface, the insulating layer has at least a wall portion provided on each of the inner circumferential surface and the outer circumferential surface,
  • ⁇ 9> The inductor component according to ⁇ 8>, wherein an end face in the first direction of the wall portion provided on the inner circumferential surface is positioned on the same plane as the first surface of the inductor wiring.
  • ⁇ 10> The inductor component according to any one of ⁇ 1> to ⁇ 9>, wherein the insulating layer is provided on at least a portion of the first surface of the inductor wiring.
  • a first direction is a direction from the second surface to the first surface of the inductor wiring along the axial direction, the first surface being connected to an end of the inductor wiring in an extending direction thereof, the first surface being connected to an end of the inductor wiring along the axial ...
  • a first direction is a direction from the second surface to the first surface of the inductor wiring along the axial direction, the first surface being connected to an end of the inductor wiring in an extending direction thereof, the first surface being connected to an end of the inductor wiring along the axial ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

インダクタンス値を向上させることができるインダクタ部品を提供する。インダクタ部品は、磁性層を含む素体と、素体内に配置され、軸を有するコイルと、コイルの外面の一部を覆う絶縁層と、を備える。コイルは、軸に直交する平面に沿って巻き回されたインダクタ配線を有する。インダクタ配線は、軸方向に対向する第1面および第2面を有する。インダクタ配線の第1面の少なくとも一部は、磁性層に接触している。

Description

インダクタ部品
 本開示は、インダクタ部品に関する。
 従来、インダクタ部品としては、特開2021-174799号公報(特許文献1)に記載されたものがある。インダクタ部品は、磁性層を含む素体と、素体内に配置され、軸を有するコイルと、を備える。コイルの外面の全面は、絶縁材料で覆われている。
特開2021-174799号公報
 しかしながら、従来のインダクタ部品では、コイルの外面の全面が絶縁材料で覆われているため、磁性層の体積を確保できず、所望のインダクタンス値を得られない場合があった。
 そこで、本開示の目的は、インダクタンス値を向上させることができるインダクタ部品を提供することにある。
 前記課題を解決するため、本開示の一態様であるインダクタ部品は、
 磁性層を含む素体と、
 前記素体内に配置され、軸を有するコイルと、
 前記コイルの外面の一部を覆う絶縁層と、を備え、
 前記コイルは、前記軸に直交する平面に沿って巻き回されたインダクタ配線を有し、
 前記インダクタ配線は、前記軸方向に対向する第1面および第2面を有し、
 前記インダクタ配線の前記第1面の少なくとも一部は、前記磁性層に接触している。
 前記態様によれば、インダクタ配線の第1面の少なくとも一部が、磁性層に接触しているため、インダクタ配線の外面の全面が絶縁材料に覆われている場合と比較して、磁性層の体積を増大させることができる。その結果、インダクタ部品のインダクタンス値を向上させることができる。
 本開示の一態様であるインダクタ部品によれば、インダクタンス値を向上させることができる。
インダクタ部品の第1実施形態を示す模式平面図である。 図1のII-II断面図である。 図2のA部の拡大図である。 インダクタ部品の変形例を示す模式断面図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の製法を説明する説明図である。 インダクタ部品の第2実施形態を示す模式断面図である。 インダクタ部品の第3実施形態を示す模式断面図である。 インダクタ部品の第4実施形態を示す模式平面図である。
 以下、本開示の一態様であるインダクタ部品を図示の実施の形態により詳細に説明する。なお、図面は一部模式的なものを含み、実際の寸法や比率を反映していない場合がある。
 <第1実施形態>
 (構成)
 図1は、インダクタ部品の第1実施形態を示す模式平面図である。図2は、図1のII-II断面図である。図1では、便宜上、被覆絶縁層の天面部が存在する位置に斜線を施している。図2では、便宜上、シード層を省略している。図2が、特許請求の範囲に記載の「インダクタ配線の延在方向に直交する断面」の一例に相当する。
 インダクタ部品1は、例えば、パソコン、DVDプレーヤー、デジタルカメラ、TV、携帯電話、カーエレクトロニクスなどの電子機器に搭載され、例えば全体として直方体形状の部品である。ただし、インダクタ部品1の形状は、特に限定されず、円柱状や多角形柱状、円錐台形状、多角形錐台形状であってもよい。
 図1および図2に示すように、インダクタ部品1は、素体10と、素体10内に配置され、軸AXを有するコイル15と、コイル15の外面の一部を覆う被覆絶縁層30および下地絶縁層70と、素体10の第1主面10aにおいて露出する第1外部端子51および第2外部端子52と、素体10の第1主面10aに設けられた被覆膜60と、を備える。被覆絶縁層30および下地絶縁層70が、特許請求の範囲に記載の「絶縁層」の一例に相当する。
 素体10の形状は、特に限定されないが、この実施形態では直方体形状にされている。素体10の外面は、第1主面10aおよび第2主面10bと、第1主面10aと第2主面10bの間に位置し第1主面10aと第2主面10bを接続する第1側面10c、第2側面10d、第3側面10eおよび第4側面10fと、を有する。第1主面10aと第2主面10bは、互いに対向する。第1側面10cと第2側面10dは、互いに対向する。第3側面10eと第4側面10fは、互いに対向する。
 図中、素体10の厚み方向をZ方向とし、第2主面10bから第1主面10aに向かう方向を順Z方向とし、順Z方向の逆方向を逆Z方向とする。この明細書では、第1主面10aおよび第2主面10bのうち、外部端子51,52が設けられている主面側を上側とする。この実施形態では、順Z方向が上側となる。素体10のZ方向に直交する平面において、素体10の長手方向であり、第1外部端子51および第2外部端子52が並ぶ方向である長さ方向をX方向とし、長さ方向に直交する方向である素体10の幅方向をY方向とする。また、X方向であって、第1側面10cから第2側面10dに向かう方向を順X方向とし、順X方向の逆方向を逆X方向とする。Y方向であって、第3側面10eから第4側面10fに向かう方向を順Y方向とし、順Y方向の逆方向を逆Y方向とする。順Z方向が、特許請求の範囲に記載の「第1方向」の一例に相当する。逆Z方向が、特許請求の範囲に記載の「第2方向」の一例に相当する。
 素体10は、順Z方向に沿って順に配置された第1磁性層11および第2磁性層12を含む。この「順に」とは、単に第1磁性層11および第2磁性層12の位置関係を示すだけであり、第1磁性層11および第2磁性層12の形成順とは関係ない。第1磁性層11および第2磁性層12が、特許請求の範囲に記載の「磁性層」の一例に相当する。
 第1磁性層11および第2磁性層12は、それぞれ、磁性粉と当該磁性粉を含有する樹脂とを含む。樹脂は、例えば、エポキシもしくはエポキシとアクリルの混合体もしくはエポキシ、アクリルとその他の混合体である有機絶縁材料である。磁性粉は、例えば、FeSiCrなどのFeSi系合金、FeCo系合金、NiFeなどのFe系合金、または、それらのアモルファス合金である。磁性粉は、フェライトであってもよい。磁性粉の平均粒子径は、5μm以下であることが好ましい。なお、第1磁性層11および第2磁性層12は、フェライトや磁性粉の焼結体など、有機樹脂を含まない場合であってもよい。
 コイル15は、インダクタ配線150と、素体10の第1主面10aから端面が露出するように素体10内に設けられた第1引出配線21および第2引出配線22と、を有する。インダクタ配線とは、内周端151および外周端152を含めた平面上でスパイラル状に巻き回された配線を指す。コイルとは、インダクタ配線に加えて、インダクタ配線の信号を素体10の外部に取り出す配線(この実施形態では、第1,第2引出配線21,22)を含めた部材である。インダクタ配線150は、第1磁性層11と第2磁性層12との間で、コイル15の軸AXに直交する平面(XY平面)に沿って巻き回されている。具体的に述べると、第1磁性層11は、インダクタ配線150よりも逆Z方向に存在し、第2磁性層12は、インダクタ配線150よりも順Z方向、および順Z方向に直交する方向に存在する。
 インダクタ配線150は、Z方向からみて、外周端152から内周端151に向かって時計回り方向に渦巻状に巻回されている。インダクタ配線150のターン数は、1ターン以上であることが好ましい。これにより、インダクタンス値を向上させることができる。1ターン以上とは、インダクタ配線の軸に直交する断面において、インダクタ配線が、軸方向からみて径方向に隣り合って巻回方向に並走する部分を有する状態をいい、1ターン未満とは、軸に直交する断面において、インダクタ配線が、軸方向からみて径方向に隣り合って巻回方向に並走する部分を有さない状態をいう。この実施形態では、インダクタ配線150のターン数は、2.5ターンである。
 インダクタ配線150は、コイル15の軸AX方向に対向する天面150aおよび底面150bを有する。具体的に述べると、インダクタ配線150は、順Z方向(すなわち、上側)を向く天面150aと、逆Z方向を向く底面150bと、を有する。この明細書では、インダクタ配線150の天面150aは、第1,第2引出配線21,22との接続部分は含まないものとする。天面150aは、特許請求の範囲に記載の「第1面」の一例に相当する。底面150bは、特許請求の範囲に記載の「第2面」の一例に相当する。インダクタ配線150は、天面150aと底面150bとを接続する両側面150c,150dを有する。具体的に述べると、インダクタ配線150は、径方向外側を向く第1側面150cと、径方向内側を向く第2側面150dと、を有する。
 インダクタ配線150の外周端152は、その外周端152の天面に接する第1引出配線21を介して、第1外部端子51に接続される。インダクタ配線150の内周端151は、その内周端151の天面に接する第2引出配線22を介して、第2外部端子52に接続される。以上の構成により、インダクタ配線150は、第1外部端子51および第2外部端子52と電気的に接続される。
 インダクタ配線150は、Au、Pt、Pd、Ag、Cu、Al、Co、Cr、Zn、Ni、Ti、W、Fe、Sn、Inもしくはこれらの化合物からなることが好ましい。インダクタ配線150は、例えば電解めっきにより形成される。インダクタ配線150は、無電解めっき法、スパッタリング法、蒸着法、塗布法などにより形成されてもよい。
 第1引出配線21は、インダクタ配線150の外周端152の天面から順Z方向に延在し、被覆絶縁層30および第2磁性層12の内部を貫通している。第1引出配線21は、Cu、Ag、Au、Feもしくはこれらの化合物からなることが好ましい。第1引出配線21は、インダクタ配線150の外周端152の天面に設けられ、被覆絶縁層30の内部を貫通する第1ビア配線212と、該第1ビア配線212の天面から順Z方向に延在し、第2磁性層12の内部を貫通し、端面が素体10の第1主面10aに露出する第1柱状配線211と、を含む。ビア配線は、柱状配線よりも線幅(径、断面積)が小さい導体である。
 第2引出配線22は、インダクタ配線150の内周端151の天面から順Z方向に延在し、被覆絶縁層30および第2磁性層12の内部を貫通している。第2引出配線22は、Cu、Ag、Au、Feもしくはこれらの化合物からなることが好ましい。第2引出配線22は、インダクタ配線150の内周端151の天面に設けられ、被覆絶縁層30の内部を貫通する第2ビア配線222と、該第2ビア配線222の天面から順Z方向に延在し、第2磁性層12の内部を貫通し、端面が素体10の第1主面10aに露出する第2柱状配線221と、を含む。第1,第2引出配線21,22は、インダクタ配線150と同様の材料からなることが好ましい。
 第1,第2外部端子51,52は、素体10の第1主面10aに設けられている。第1,第2外部端子41,42は、導電性材料からなり、例えば、低電気抵抗かつ耐応力性に優れたCu、耐食性に優れたNi、はんだ濡れ性と信頼性に優れたAuが内側から外側に向かってこの順に並ぶ3層構成である。
 第1外部端子51は、第1引出配線21の素体10の第1主面10aから露出する端面に接触し、第1引出配線21と電気的に接続されている。これにより、第1外部端子51は、インダクタ配線150の外周端152に電気的に接続される。第2外部端子52は、第2引出配線22の素体10の第1主面10aから露出する端面に接触し、第2引出配線22と電気的に接続されている。これにより、第2外部端子52は、インダクタ配線150の内周端151に電気的に接続される。なお、図1において、第1,第2外部端子51,52は、便宜上、二点鎖線で示している。
 被覆絶縁層30および下地絶縁層70は、磁性体を含まない絶縁性材料からなる。絶縁性材料は、例えば、エポキシ、アクリル、フェノール、ポリイミドのいずれか、もしくはそれらの混合体からなることが好ましい。
 図3は、図2のA部の拡大図である。図3に示すように、インダクタ配線150の天面150aの少なくとも一部は、第1磁性層11および第2磁性層12のうちの少なくとも一方に接触している。この実施形態では、インダクタ配線150の天面150aの一部のみが、第2磁性層12に接触している。
 具体的に述べると、下地絶縁層70は、第1磁性層11の上面の全面を覆うように、第1磁性層11上に積層されている。インダクタ配線150は、下地絶縁層70上に積層されている。インダクタ配線150の底面150bの全面は、下地絶縁層70の上面と接触している。
 被覆絶縁層30は、下地絶縁層70上に設けられ、インダクタ配線150の外面の一部を覆っている。被覆絶縁層30は、天面部31と壁部32とを有する。
 壁部32は、インダクタ配線150の第1側面150cおよび第2側面150dのうちの少なくとも一方に設けられている。この実施形態では、壁部32は、第1側面150cおよび第2側面150dの両方に設けられている。壁部32は、インダクタ配線150の延在方向に直交する断面(すなわち、図2に示す断面)において、Z方向に延在している。壁部32は、第1側面150cの全面および第2側面150dの全面に接触している。壁部32の下面は、下地絶縁層70の上面に接触している。要するに、壁部32は、インダクタ配線150の最内周の内周面150d1と、インダクタ配線150の最外周の外周面150c1と、インダクタ配線150のターン間に設けられている。
 インダクタ配線の最内周とは、インダクタ配線が1ターン未満の場合、インダクタ配線の径方向内側の内周を指し、インダクタ配線が1ターン以上の場合、インダクタ配線のうち、内周端を含む1ターンを構成する部分における径方向内側の内周を指す。インダクタ配線の最外周とは、インダクタ配線が1ターン未満の場合、インダクタ配線の径方向外側の外周を指し、インダクタ配線が1ターン以上の場合、インダクタ配線のうち、外周端を含む1ターンを構成する部分における径方向外側の外周を指す。
 天面部31は、インダクタ配線150の天面150aの一部に設けられている。具体的に述べると、天面部31は、Z方向からみて、インダクタ配線150の天面150aのうち、第1引出配線21の周囲の所定範囲に設けられている。所定範囲は、インダクタ配線の天面150aと第1引出配線21との間の絶縁性を確保できる範囲である。この実施形態では、所定範囲の形状は、Z方向からみて、第1引出配線21の外形(長方形)に沿った形状にされている。これにより、インダクタ配線の天面150aと第1引出配線21との間の絶縁性を容易に確保できる。
 同様に、天面部31は、Z方向からみて、インダクタ配線150の天面150aのうち、第2引出配線22の周囲の所定範囲に設けられている。所定範囲は、インダクタ配線の天面150aと第2引出配線22との間の絶縁性を確保できる範囲である。この実施形態では、所定範囲の形状は、Z方向からみて、第2引出配線22の外形(円形)に沿った形状にされている。これにより、インダクタ配線の天面150aと第2引出配線22との間の絶縁性を容易に確保できる。
 インダクタ配線150の天面150aのうち、被覆絶縁層30の天面部31が設けられていない部分は、第2磁性層12に接触している。以上の構成により、インダクタ配線150の天面150aのうち、被覆絶縁層30の天面部31が設けられていない部分のみが、第2磁性層12に接触している。
 インダクタ部品1によれば、インダクタ配線150の天面150aの少なくとも一部が、第1磁性層11および第2磁性層12の何れか一方に接触しているため、インダクタ配線150の外面の全面が絶縁材料に覆われている場合と比較して、第1磁性層11および第2磁性層12の体積を増大させることができる。その結果、インダクタ部品1のインダクタンス値を向上させることができる。
 特に、インダクタ配線150の天面150aの面積および底面150bの面積の各々が、インダクタ配線150の最内周の内周面150d1の面積よりも大きいインダクタ部品では、インダクタ配線150の外面のうちの内周面150d1のみが第2磁性層12に接触している場合よりも、第1磁性層11および第2磁性層12の体積を増大させる上記効果が大きくなる。
 好ましくは、図3に示すように、インダクタ配線150の延在方向に直交する断面において、インダクタ配線150は、天面150aと底面150bとを接続する両側面150c,150dを有し、被覆絶縁層30は、両側面150c,150dのうちの少なくとも一方に設けられた壁部32を有する。具体的に述べると、被覆絶縁層30は、第1側面150cに設けられた第1壁部321と、第2側面150dに設けられた第2壁部322と、を有する。この構成によれば、インダクタは配線150の両側面150c,150dと他の導電性部材との間の短絡を抑制できる。
 好ましくは、軸AX方向であってインダクタ配線150の底面150bから天面150aに向かう方向を第1方向D1としたとき、壁部32の第1方向D1の端面が、インダクタ配線150の天面150aの位置よりも第1方向D1側に位置する。具体的に述べると、第1壁部321の第1方向D1の第1端面321aは、インダクタ配線150の天面150aの位置よりも第1方向D1側に位置する。第2壁部322の第1方向D1の第2端面322aは、インダクタ配線150の天面150aの位置よりも第1方向D1側に位置する。この構成によれば、インダクタは配線150の両側面150c,150dと他の導電性部材との間の短絡をより確実に抑制できる。
 好ましくは、インダクタ配線150の天面150aと、壁部32の第1方向D1の端面と、の間の第1方向D1の距離は、5μm以上20μm以下である。具体的に述べると、インダクタ配線150の天面150aと、第1壁部321の第1端面321a、との間の第1方向D1の距離h1は、5μm以上20μm以下である。インダクタ配線150の天面150aと、第2壁部322の第2端面322a、との間の第1方向D1の距離h2は、5μm以上20μm以下である。
 上記構成によれば、距離h1および距離h2が5μm以上であるため、インダクタ配線150の最内周の内周面150d1が、第2磁性層12を介して短絡することを抑制できる。また、この実施形態のように、インダクタ配線150が1ターン以上の場合、隣り合うターン間の短絡を抑制できる。距離h1および距離h2が20μm以下であるため、インダクタ配線150を所望の形状に形成できる。その結果、所望のインダクタ値を得ることができる。距離h1および距離h2が20μmを超える場合、壁部32を形成後に、壁部32が順X方向または逆X方向に傾き、インダクタ配線150を所望の形状に形成できない可能性がある。また、距離h1および距離h2が20μm以下であるため、第2磁性層12の体積をさらに増大させることができる。
 この実施形態のように、インダクタ配線150の延在方向に直交する断面において、壁部32がX方向に複数存在する場合、全ての壁部32において、上記距離が5μm以上20μm以下であることが最も好ましい。しかしこれに限定されず、インダクタ配線150の延在方向に直交する断面において、複数の壁部32のうちの一部の壁部32において、上記距離が5μm以上20μm以下であってもよい。
 好ましくは、図1および図2に示すように、被覆絶縁層30は、インダクタ配線150の天面150aの一部に少なくとも設けられている。この構成によれば、天面150aと他の導電性部材との間の絶縁性を確保しつつ、第2磁性層12の体積を増大させることができる。
 好ましくは、図1および図2に示すように、軸AX方向であってインダクタ配線150の底面150bから天面150aに向かう方向を第1方向D1としたとき、インダクタ配線150の延在方向の端部(すなわち、内周端151および外周端152)における天面150aに接続され、第1方向D1に延在して素体10の外面から露出する第1,第2引出配線21,22をさらに備え、インダクタ配線150の天面150aの一部に設けられている被覆絶縁層30(すなわち、天面部31)は、天面150aのうち、第1,第2引出配線21,22の周縁から80μm以上の範囲に渡って設けられている。
 上記構成によれば、インダクタ配線150の天面150aのうちの第2磁性層12と接触している部分と第1,第2引出配線21,22との間の短絡の発生を抑制できる。具体的に述べると、ESD(Electro Static Discharge;静電気放電)などにより、インダクタ部品1の導体部分に電位差が生じた場合、第2磁性層12の磁性粉を介して短絡が発生する可能性がある。特に、第1,第2引出配線21,22と、第1,第2引出配線21,22の周囲に存在するインダクタ配線150との間は、距離が比較的短いため、短絡し易い。本発明者らは、インダクタ配線150の天面150aの一部を被覆絶縁層30で覆わないで第2磁性層12に接触させたとしても、被覆絶縁層30の天面部31を第1,第2引出配線21,22の周縁から80μm以上の範囲に渡って設けることにより、インダクタ配線150の天面150aの全面を被覆絶縁層30で覆った場合と同程度に短絡リスクを減少できることを見出した。
 (変形例)
 図4は、変形例に係るインダクタ部品1Aを示す模式断面図である。図4は、図3に対応する。
 図4に示すように、インダクタ配線150の延在方向に直交する断面において、インダクタ配線150は、天面150aと底面150bとを接続する両側面150c,150dを有し、最内周に位置するインダクタ配線の両側面150c,150dは、最内周の内周面150d1と、内周面150d1と対向する外周面150c2と、を含み、被覆絶縁層30は、内周面150d1および外周面150c2の各々に少なくとも設けられた第1壁部321および第2壁部322を有し、内周面150d1に設けられた第2壁部322の第1方向D1の端面322aは、外周面150c2に設けられた第1壁部321の第1方向D1の端面321aよりも、第1方向D1と逆方向の第2方向D2側に位置する。
 ここで、インダクタ配線150のターン数が1ターン未満の場合、上記「最内周に位置するインダクタ配線の両側面」とは、インダクタ配線150の延在方向に直交する断面におけるインダクタ配線150の両側面を指す。インダクタ配線150のターン数が1ターン以上の場合、上記「最内周に位置するインダクタ配線の両側面」とは、インダクタ配線150の延在方向に直交する断面において現れる複数のインダクタ配線の断面のうち、最内周を含むインダクタ配線の断面における両側面を指す。
 上記構成によれば、磁束が回り込む部分において、被覆絶縁層30の第2壁部322によって磁束が妨げられることを抑制できる。
 好ましくは、図4に示すように、内周面150d1に設けられた第2壁部322の第1方向D1の端面322aは、インダクタ配線150の天面150aと同一平面上に位置する。
 上記構成によれば、磁束が回り込む部分において、被覆絶縁層30の第2壁部322によって磁束が妨げられることをさらに抑制できる。
 (製造方法)
 次に、図5Aから図5Jを参照してインダクタ部品1の製造方法について説明する。図5Aから図5Jは、図1のII-II断面(図2)に対応する。なお、図5Aから図5Jでは、便宜上、第2引出配線側の記載を省略している。
 図5Aに示すように、基板90上に磁性体を含有しない下地絶縁層70を形成する。基板90は、例えば、焼結フェライトからなり、平板状である。
 下地絶縁層70は、例えば、磁性体を含有しないポリイミド系樹脂などからなる。下地絶縁層70は、ポリイミド系樹脂を印刷、塗布などによって基板90上にコーティングすることにより形成される。下地絶縁層70は、コーティングされた後に、フォトリソグラフィ法を用いたパターニングにより、インダクタ配線150を形成する領域のポリイミド系樹脂のみを残してもよい。なお、下地絶縁層70を形成する前に、研削保護層となる絶縁材料を基板90上に形成してもよい。
 図5Bに示すように、下地絶縁層70上にシード層81を形成する。具体的に述べると、シード層81の材料(例えば、チタン/銅合金)をスパッタにより下地絶縁層70の上面に成膜し、フォトリソグラフィ法によりパターニングして、シード層81を形成する。
 図5Cに示すように、下地絶縁層70上に被覆絶縁層の一部となる壁部32を形成する。壁部32は、例えば、感光性の永久フォトレジストにより形成される。感光性の永久フォトレジストとは、加工処理をした後、取り除かないフォトレジストである。具体的に述べると、感光性の永久フォトレジストを下地絶縁層70上にラミネートし、露光および現像する。これにより、露光されなかった部分の材料が除去されて、壁部32が形成される。
 図5Dに示すように、シード層81に給電しながら電解めっきを行う。これにより、壁部32の間にインダクタ配線150が形成される。
 図5Eに示すように、インダクタ配線150の天面150aの一部に被覆絶縁層30の天面部31を形成する。具体的に述べると、インダクタ配線150の天面150a上にドライフィルムレジスト(DFR)をラミネートし、露光および現像する。これにより、露光されなかった部分の材料が除去されて、天面部31が形成される。この際、インダクタ配線150の天面150aと第2磁性層12とが接触する部分に位置するドライフィルムレジストが除去されるようにする。これにより、後工程で第2磁性層12を圧着した際に、インダクタ配線150の天面150aの一部が、第2磁性層に接触する。
 図5Fに示すように、インダクタ配線150の天面150aの露出部分と、被覆絶縁層30の天面部31および壁部32と、を覆うように、シード層82をスパッタにより形成する。この際、被覆絶縁層30の壁部32の端面と、インダクタ配線150の天面150aと、の間の距離が20μm以下であることにより、壁部32の上側の端面と天面150aとの間の段差部分においても良好にスパッタ膜を付着させることができ、シード層82を良好に形成できる。
 図5Gに示すように、インダクタ配線150の外周端152上に第1ビア配線212および第1柱状配線211を形成する。具体的に述べると、シード層82上にレジスト膜320を形成し、レジスト膜320の第1ビア配線212に対応する位置に開口部を設ける。この際、被覆絶縁層30の壁部32の端面と、インダクタ配線150の天面150aと、の間の距離が20μm以下であることにより、レジスト膜320を所望の形状にすることができる。これにより、第1ビア配線212および第1柱状配線211も所望の形状にすることができる。その後、シード層82に給電しながら電解めっきを行い、上記の開口部にめっき層を形成する。これにより、開口部に第1ビア配線212および第1柱状配線211を形成する。
 図5Hに示すように、レジスト膜320を剥離し、露出したシード層82を除去して、基板90の上方から第2磁性層12をインダクタ配線150に向けて圧着する。これにより、インダクタ配線150と下地絶縁層70と被覆絶縁層30と第1柱状配線211とを第2磁性層12により覆う。
 図5Iに示すように、第2磁性層12の上面を研削して、第1柱状配線211の上面を露出させる。
 図5Jに示すように、第2磁性層12の上面に被覆膜60を形成する。被覆膜60は、例えば、ソルダーレジストにより形成される。その後、基板90を研削して、下地絶縁層70の下面を露出させる。その後、下地絶縁層70の下方から第1磁性層11をインダクタ配線150に向けて圧着する。これにより、下地絶縁層70の下面を第1磁性層11により覆う。その後、第1磁性層11の下面を研削して、第1磁性層11の厚みを調整する。その後、第1柱状配線211の上面を覆うように、第1外部端子51を形成する。第1外部端子51は、例えば無電解めっきにより形成されたCu/Ni/Auの3層構成である。その後、ダイサー等により個片化して、インダクタ部品1を製造する。
 <第2実施形態>
 図6は、インダクタ部品の第2実施形態を示す模式断面図である。図6は、図1のII-II断面図に対応する。図6では、便宜上、第2引出配線側の記載を省略している。第2実施形態は、第1実施形態とは、被覆絶縁層の天面部と、下地絶縁層と、が設けられていない点が相違する。この相違する構成を以下に説明する。その他の構成は、第1実施形態と同じ構成であり、第1実施形態と同一の符号を付してその説明を省略する。
 図6に示すように、被覆絶縁層30Bは、壁部32のみを有し、天面部を有していない。これにより、インダクタ配線150の天面150aの全面が、第2磁性層12に接触している。第1引出配線21Bはビア配線を有しておらず、第1柱状配線211がインダクタ配線150と直接接続している。この構成によれば、第2磁性層12の体積をさらに増大させることができるため、インダクタ部品1Bのインダクタンス値をさらに向上させることができる。
 インダクタ部品1Bでは、下地絶縁層は設けられておらず、第1磁性層11の上面と第2磁性層12の下面とが接触している。これにより、インダクタ配線150の底面150bの全面が、第1磁性層11に接触している。この構成によれば、下地絶縁層が設けられている場合と比較して、第1磁性層11のZ方向の厚みを増大させることができるため、第1磁性層11の体積をさらに増大させて、インダクタ部品1Bのインダクタンス値をさらに向上させることができる。
 インダクタ部品1Bは、例えば、図5Eに示した工程において、天面部31を設けないようにし、図5Jに示した工程において、基板90の研削後に、下地絶縁層70を除去することにより製造できる。
 <第3実施形態>
 図7は、インダクタ部品の第3実施形態を示す模式断面図である。図7は、図3に対応する。第3実施形態は、第1実施形態とは、インダクタ配線の最内周の内周面に被覆絶縁層の壁部が設けられていない点が相違する。この相違する構成を以下に説明する。その他の構成は、第1実施形態と同じ構成であり、第1実施形態と同一の符号を付してその説明を省略する。
 図7に示すように、インダクタ配線150の最内周の内周面150d1の少なくとも一部は、第2磁性層12に接触している。この実施形態では、インダクタ配線150の最内周の内周面150d1の全面が、第2磁性層12に接触している。この構成によれば、第2磁性層12の体積をさらに増大させることができるため、インダクタ部品1Cのインダクタンス値をさらに向上させることができる。
 インダクタ部品1Cは、例えば、図5Cに示した工程において、インダクタ配線の最内周の内周面の位置に対応した壁部32を設けないようにすることにより製造できる。
 <第4実施形態>
 図8は、インダクタ部品の第4実施形態を示す模式平面図である。図8は、図1に対応する。第4実施形態は、第1実施形態とは、被覆絶縁層の天面部が設けられている位置が主に相違する。この相違する構成を以下に説明する。その他の構成は、第1実施形態と同じ構成であり、第1実施形態と同一の符号を付してその説明を省略する。なお、図8では、便宜上、被覆絶縁層の天面部が存在する位置に斜線を施している。
 図8に示すように、軸AX方向であってインダクタ配線150の底面から天面に向かう方向を第1方向としたとき、インダクタ配線150の延在方向の端部(すなわち、内周端151および外周端152)における天面に接続され、第1方向に延在して素体10の外面から露出する第1,第2引出配線21,22をさらに備え、インダクタ配線150の天面の一部に設けられている被覆絶縁層30(すなわち、天面部31)は、第1,第2引出配線21,22と離隔している。
 具体的に述べると、被覆絶縁層30の天面部31は、インダクタ配線150の天面のうち、第1,第2引出配線21,22の周囲の領域を除いた部分の全体に設けられている。なお、被覆絶縁層30の天面部31は、第1,第2引出配線21,22と離隔していれば、第1,第2引出配線21,22の周囲の領域を除いた部分の一部に設けられていてもよい。この実施形態では、被覆絶縁層30の天面部31が、第1,第2引出配線21,22の周囲の領域には設けられていないため、第1実施形態と異なり、第1,第2引出配線21,22は、第1、第2ビア配線212、222を有しない。すなわち、第1,第2引出配線21,22の第1,第2柱状配線211,221の底面は、インダクタ配線150の天面に直接接触している。
 上記構成によれば、インダクタ配線間150の、短絡が発生しやすい所望の箇所に天面部31を設けることができ、また第1、第2引出配線21、22が、図1のように第1、第2ビア配線212、222を有しないため、第1、第2引出配線21、22(すなわち、第1,第2柱状配線211,221)とインダクタ配線150との接触面積を大きくでき、第1、第2引出配線21、22とインダクタ配線150との間の固着強度が増し、外部からの応力による断線などの不具合を抑制できる。
 なお、本開示は上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第4実施形態のそれぞれの特徴点を様々に組み合わせてもよい。
 前記実施形態では、第1,第2引出配線、第1,第2外部端子および被覆膜が設けられていたが、これらの部材は必須ではなく、設けられていなくてもよいし、他の部材に代えてもよい。
 前記実施形態では、インダクタ配線は1層であったが、2層以上であってもよい。この場合、「インダクタ配線の天面」とは、最上層のインダクタ配線の天面を指す。「インダクタ配線の底面」とは、最下層のインダクタ配線の底面を指す。
 前記実施形態では、インダクタ配線の天面の少なくとも一部が第2磁性層に接触していたが、インダクタ配線の天面の全面が被覆絶縁層に覆われているとともに、インダクタ配線の底面の少なくとも一部が第1磁性層に接触していてもよい。この場合、インダクタ配線の天面が特許請求の範囲に記載の「第2面」の一例に相当し、インダクタ配線の底面が特許請求の範囲に記載の「第1面」の一例に相当する。
 前記実施形態では、インダクタ配線の隣り合うターン間の全領域に被覆絶縁層の壁部が存在していたが、隣り合うターンの間に第2磁性層が存在していてもよい。具体的に述べると、インダクタ配線の延在方向に直交する断面において、インダクタ配線の両側面のうちの少なくとも一方に被覆絶縁層の壁部が設けられているとともに、隣り合うターン間に第2磁性層が存在していてもよい。
 (実施例)
 インダクタ配線の天面と、被覆絶縁層の壁部の第1方向の端面と、の間の距離hを3μm、4μm、5μm、6μm、7μm、10μmに変化させたチップを作製し、各チップに対して耐湿負荷試験を行った。耐湿負荷試験では、高温高湿の環境下でチップに電流を流し、所定時間後にインダクタ配線の絶縁抵抗を測定した。耐湿負荷試験の条件は、85℃、85%RH、1A、500hrとした。15チップのうち、絶縁抵抗が正常であったチップ数(良好チップ数)を調査した。試験結果は表1に示した。
Figure JPOXMLDOC01-appb-T000001
 インダクタ配線の天面と、被覆絶縁層の壁部の第1方向の端面と、の間の距離hを10μm、15μm、20μm、25μm、30μmに変化させたチップを作製し、製造プロセス上の不具合の発生有無について調査した。具体的には、被覆絶縁層の壁部を形成後にスパッタによりシード層を形成したサンプルについて、光学顕微鏡によりシード層の成膜状態を観察した。また、シード層を形成後にレジスト膜を形成したサンプルについて、光学顕微鏡によりレジスト膜の成膜状態を観察した。そして、15チップのうち、シード層およびレジスト膜の成膜状態が正常であったチップ数(良好チップ数)を調査した。調査結果は表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表1に示したように、距離hが4μm以下では、絶縁抵抗が異常となるチップが存在した。表2に示したように、距離hが25μm以上では、製造プロセス上の不具合が発生するチップが存在した。
 本開示は、以下の態様を含む。
<1>
 磁性層を含む素体と、
 前記素体内に配置され、軸を有するコイルと、
 前記コイルの外面の一部を覆う絶縁層と、を備え、
 前記コイルは、前記軸に直交する平面に沿って巻き回されたインダクタ配線を有し、
 前記インダクタ配線は、前記軸方向に対向する第1面および第2面を有し、
 前記インダクタ配線の前記第1面の少なくとも一部は、前記磁性層に接触している、インダクタ部品。
<2>
 前記インダクタ配線の前記第1面の全面が、前記磁性層に接触している、<1>に記載のインダクタ部品。
<3>
 前記インダクタ配線の前記第2面の全面が、前記磁性層に接触している、<1>または<2>に記載のインダクタ部品。
<4>
 前記インダクタ配線の延在方向に直交する断面において、
 前記インダクタ配線は、前記第1面と前記第2面とを接続する両側面を有し、
 前記絶縁層は、前記両側面のうちの少なくとも一方に設けられた壁部を有する、<1>から<3>の何れか一つに記載のインダクタ部品。
<5>
 前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記壁部の前記第1方向の端面が、前記インダクタ配線の前記第1面の位置よりも前記第1方向側に位置する、<4>に記載のインダクタ部品。
<6>
 前記インダクタ配線の前記第1面と、前記壁部の前記第1方向の前記端面と、の間の前記第1方向の距離は、5μm以上20μm以下である、<5>に記載のインダクタ部品。
<7>
 前記インダクタ配線の最内周の内周面の少なくとも一部は、前記磁性層に接触している、<1>から<6>の何れか一つに記載のインダクタ部品。
<8>
 前記インダクタ配線の延在方向に直交する断面において、
 前記インダクタ配線は、前記第1面と前記第2面とを接続する両側面を有し、
 最内周に位置するインダクタ配線の前記両側面は、前記最内周の内周面と、前記内周面と対向する外周面と、を含み、
 前記絶縁層は、前記内周面および前記外周面の各々に少なくとも設けられた壁部を有し、
 前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記内周面に設けられた前記壁部の前記第1方向の端面は、前記外周面に設けられた前記壁部の前記第1方向の端面よりも、前記第1方向と逆方向の第2方向側に位置する、<1>から<6>の何れか一つに記載のインダクタ部品。
<9>
 前記内周面に設けられた前記壁部の前記第1方向の端面は、前記インダクタ配線の前記第1面と同一平面上に位置する、<8>に記載のインダクタ部品。
<10>
 前記絶縁層は、前記インダクタ配線の前記第1面の一部に少なくとも設けられている、<1>から<9>の何れか一つに記載のインダクタ部品。
<11>
 前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記インダクタ配線の延在方向の端部における前記第1面に接続され、前記第1方向に延在して前記素体の外面から露出する引出配線をさらに備え、
 前記インダクタ配線の前記第1面の一部に設けられている前記絶縁層は、前記第1面のうち、前記引出配線の周縁から80μm以上の範囲に渡って設けられている、<10>に記載のインダクタ部品。
<12>
 前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記インダクタ配線の延在方向の端部における前記第1面に接続され、前記第1方向に延在して前記素体の外面から露出する引出配線をさらに備え、
 前記インダクタ配線の前記第1面の一部に設けられている前記絶縁層は、前記引出配線と離隔している、<10>に記載のインダクタ部品。
 1、1A、1B、1C、1D インダクタ部品
 10 素体
 10a 第1主面
 10b 第2主面
 10c~10f 第1から第4側面
 11 第1磁性層
 12 第2磁性層
 15 コイル
 21、21B 第1引出配線
 211 第1柱状配線
 212 第1ビア配線
 22 第2引出配線
 221 第2柱状配線
 222 第2ビア配線
 30、30B 被覆絶縁層
 31 天面部
 32 壁部
 321 第1壁部
 321a 第1壁部の端面
 322 第2壁部
 322a 第2壁部の端面
 51 第1外部端子
 52 第2外部端子
 60 被覆膜
 70 下地絶縁層
 81,82 シード層
 150 インダクタ配線
 150a インダクタ配線の天面(第1面)
 150b インダクタ配線の底面(第2面)
 150c インダクタ配線の第1側面
 150c1 インダクタ配線の最外周の外周面
 150c2 インダクタ配線の最内周の内周面と対向する外周面
 150d インダクタ配線の第2側面
 150d1 インダクタ配線の最内周の内周面
 151 内周端
 152 外周端
 AX コイルの軸
 D1 第1方向
 D2 第2方向
 h1、h2 距離

Claims (12)

  1.  磁性層を含む素体と、
     前記素体内に配置され、軸を有するコイルと、
     前記コイルの外面の一部を覆う絶縁層と、を備え、
     前記コイルは、前記軸に直交する平面に沿って巻き回されたインダクタ配線を有し、
     前記インダクタ配線は、前記軸方向に対向する第1面および第2面を有し、
     前記インダクタ配線の前記第1面の少なくとも一部は、前記磁性層に接触している、インダクタ部品。
  2.  前記インダクタ配線の前記第1面の全面が、前記磁性層に接触している、請求項1に記載のインダクタ部品。
  3.  前記インダクタ配線の前記第2面の全面が、前記磁性層に接触している、請求項1または2に記載のインダクタ部品。
  4.  前記インダクタ配線の延在方向に直交する断面において、
     前記インダクタ配線は、前記第1面と前記第2面とを接続する両側面を有し、
     前記絶縁層は、前記両側面のうちの少なくとも一方に設けられた壁部を有する、請求項1から3のいずれか1項に記載のインダクタ部品。
  5.  前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記壁部の前記第1方向の端面が、前記インダクタ配線の前記第1面の位置よりも前記第1方向側に位置する、請求項4に記載のインダクタ部品。
  6.  前記インダクタ配線の前記第1面と、前記壁部の前記第1方向の前記端面と、の間の前記第1方向の距離は、5μm以上20μm以下である、請求項5に記載のインダクタ部品。
  7.  前記インダクタ配線の最内周の内周面の少なくとも一部は、前記磁性層に接触している、請求項1から6のいずれか1項に記載のインダクタ部品。
  8.  前記インダクタ配線の延在方向に直交する断面において、
     前記インダクタ配線は、前記第1面と前記第2面とを接続する両側面を有し、
     最内周に位置するインダクタ配線の前記両側面は、前記最内周の内周面と、前記内周面と対向する外周面と、を含み、
     前記絶縁層は、前記内周面および前記外周面の各々に少なくとも設けられた壁部を有し、
     前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記内周面に設けられた前記壁部の前記第1方向の端面は、前記外周面に設けられた前記壁部の前記第1方向の端面よりも、前記第1方向と逆方向の第2方向側に位置する、請求項1から6のいずれか1項に記載のインダクタ部品。
  9.  前記内周面に設けられた前記壁部の前記第1方向の端面は、前記インダクタ配線の前記第1面と同一平面上に位置する、請求項8に記載のインダクタ部品。
  10.  前記絶縁層は、前記インダクタ配線の前記第1面の一部に少なくとも設けられている、請求項1から9のいずれか1項に記載のインダクタ部品。
  11.  前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記インダクタ配線の延在方向の端部における前記第1面に接続され、前記第1方向に延在して前記素体の外面から露出する引出配線をさらに備え、
     前記インダクタ配線の前記第1面の一部に設けられている前記絶縁層は、前記第1面のうち、前記引出配線の周縁から80μm以上の範囲に渡って設けられている、請求項10に記載のインダクタ部品。
  12.  前記軸方向であって前記インダクタ配線の前記第2面から前記第1面に向かう方向を第1方向としたとき、前記インダクタ配線の延在方向の端部における前記第1面に接続され、前記第1方向に延在して前記素体の外面から露出する引出配線をさらに備え、
     前記インダクタ配線の前記第1面の一部に設けられている前記絶縁層は、前記引出配線と離隔している、請求項10に記載のインダクタ部品。
PCT/JP2023/029300 2022-11-08 2023-08-10 インダクタ部品 WO2024100949A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022178846 2022-11-08
JP2022-178846 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024100949A1 true WO2024100949A1 (ja) 2024-05-16

Family

ID=91032120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029300 WO2024100949A1 (ja) 2022-11-08 2023-08-10 インダクタ部品

Country Status (1)

Country Link
WO (1) WO2024100949A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021136310A (ja) * 2020-02-26 2021-09-13 株式会社村田製作所 インダクタ部品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021136310A (ja) * 2020-02-26 2021-09-13 株式会社村田製作所 インダクタ部品

Similar Documents

Publication Publication Date Title
US11735353B2 (en) Inductor component and method of manufacturing same
US11562848B2 (en) Coil electronic component and method of manufacturing same
JP5956464B2 (ja) 平面コイルを備えるコイルアセンブリ
US11482357B2 (en) Coil component and method of manufacturing the same
US12033789B2 (en) Inductor component and inductor component embedded substrate
US10832855B2 (en) Electronic component and manufacturing method thereof
US11688544B2 (en) Inductor component
US20200105457A1 (en) Inductor component and method of manufacturing inductor component
CN113948271A (zh) 电子部件
WO2024100949A1 (ja) インダクタ部品
CN112562966A (zh) 电感部件
CN112447359A (zh) 电子部件及其制造方法
JP2021040043A (ja) 電子部品およびその製造方法
US20240153693A1 (en) Inductor component
JP7411590B2 (ja) インダクタ部品およびその製造方法
JP7452517B2 (ja) インダクタ部品および実装部品
US20240153695A1 (en) Inductor component
JP7402627B2 (ja) 基体
US11948726B2 (en) Inductor component
JP2024058406A (ja) インダクタ部品
JP2023062559A (ja) インダクタ部品
JP2023044376A (ja) インダクタ部品
CN117377199A (zh) 电子部件
CN112447357A (zh) 电感器部件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888304

Country of ref document: EP

Kind code of ref document: A1