WO2024100869A1 - 回転子、電動機、ファン、及び空気調和機 - Google Patents

回転子、電動機、ファン、及び空気調和機 Download PDF

Info

Publication number
WO2024100869A1
WO2024100869A1 PCT/JP2022/042017 JP2022042017W WO2024100869A1 WO 2024100869 A1 WO2024100869 A1 WO 2024100869A1 JP 2022042017 W JP2022042017 W JP 2022042017W WO 2024100869 A1 WO2024100869 A1 WO 2024100869A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
magnet
axial direction
electric motor
Prior art date
Application number
PCT/JP2022/042017
Other languages
English (en)
French (fr)
Inventor
隆徳 渡邉
貴也 下川
諒伍 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/042017 priority Critical patent/WO2024100869A1/ja
Publication of WO2024100869A1 publication Critical patent/WO2024100869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets

Definitions

  • This disclosure relates to rotors, electric motors, fans, and air conditioners.
  • a rotor has been proposed in which a ring-shaped rare earth magnet is arranged around a ferrite magnet (see, for example, Patent Document 1).
  • the purpose of this disclosure is to solve the above problems and to provide a rotor, electric motor, fan, or air conditioner that can reduce the amount of rare earth magnets in the rotor compared to conventional techniques.
  • a rotor includes: A rotor magnet; a shaft disposed inside the rotor magnet;
  • the rotor magnet is a first permanent magnet magnetized to have a polar anisotropic orientation; and n (n is an even number) second permanent magnets provided on the outer peripheral surface of the first permanent magnet, magnetized to have a polar anisotropic orientation, and having a stronger coercive force than the first permanent magnets;
  • the second permanent magnet has a gate portion which is a gate mark formed in a molding process of the second permanent magnet, The gate portion is located radially outward of the first permanent magnet.
  • An electric motor according to another aspect of the present disclosure includes: The rotor; and a stator disposed outside the rotor.
  • a fan according to another aspect of the present disclosure includes: Feathers and and the electric motor that rotates the blades.
  • An air conditioner according to another aspect of the present disclosure includes: An indoor unit, an outdoor unit connected to the indoor unit; Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit includes the electric motor.
  • This disclosure makes it possible to provide a rotor, electric motor, fan, or air conditioner that can reduce the amount of rare earth magnets in the rotor compared to conventional techniques.
  • FIG. 2 is a top view illustrating a schematic structure of a rotor according to the first embodiment.
  • FIG. 2 is a side view illustrating the structure of the rotor illustrated in FIG. 1 .
  • 3 is a cross-sectional view taken along line C3-C3 in FIG. 2.
  • 3 is a cross-sectional view taken along line C4-C4 in FIG. 2.
  • 2 is a cross-sectional view taken along line C5-C5 in FIG. 1.
  • FIG. 5 is an enlarged view showing the second permanent magnet shown in FIG. 4 .
  • 4 is a flowchart showing an example of a manufacturing process of a rotor.
  • FIG. 11 is a cross-sectional view showing another example of the second permanent magnet.
  • FIG. 9 is an enlarged view showing the second permanent magnet shown in FIG.
  • FIG. 11 is a cross-sectional view showing yet another example of the second permanent magnet.
  • FIG. 11 is an enlarged view showing the second permanent magnet shown in FIG. 10 .
  • FIG. 11 is a cross-sectional view showing yet another example of the second permanent magnet.
  • FIG. 11 is a top view showing another example of a rotor.
  • FIG. 14 is a side view showing the rotor shown in FIG. 13 .
  • 15 is a cross-sectional view taken along line C15-C15 in FIG. 13.
  • FIG. 4 is a top view illustrating a schematic structure of a rotor according to a first comparative example.
  • FIG. 17 is a side view illustrating the structure of the rotor illustrated in FIG. 16 .
  • FIG. 18 is a cross-sectional view taken along line C18-C18 in FIG. 16.
  • 19 is a cross-sectional view taken along line C19-C19 in FIGS. 17 and 18.
  • FIG. 18 is a cross-sectional view taken along line C20-C20 in FIG. 17.
  • FIG. 11 is a top view illustrating a schematic structure of a rotor according to Comparative Example 2.
  • FIG. 22 is a side view illustrating the structure of the rotor illustrated in FIG. 21 . This is a cross-sectional view taken along line C23-C23 in Figure 21.
  • 24 is a cross-sectional view taken along line C24-C24 in FIGS. 22 and 23.
  • FIG. 25 is a cross-sectional view taken along line C25-C25 in FIG. 22.
  • FIG. 11 is a partial cross-sectional view illustrating the structure of an electric motor according to a second embodiment.
  • FIG. 11 is a diagram illustrating a schematic configuration of a fan according to a third embodiment.
  • FIG. 13 is a diagram illustrating the configuration of an air conditioner according to a fourth embodiment.
  • Embodiment 1 The electric motor 1 according to the first embodiment will be described below.
  • the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the motor 1 or rotor 2
  • the x-axis direction (x-axis) indicates a direction perpendicular to the z-axis direction
  • the y-axis direction (y-axis) indicates a direction perpendicular to both the z-axis direction and the x-axis direction.
  • the axis Ax is the center of rotation of the rotor 2, that is, the rotation axis of the rotor 2.
  • the direction parallel to the axis Ax is also referred to as the "axial direction of the rotor 2" or simply as the “axial direction”.
  • the radial direction is the radial direction of the rotor 2, the stator 3, or the rotor magnet 20, and is a direction perpendicular to the axis Ax.
  • the xy plane is a plane perpendicular to the axial direction.
  • the arrow D1 indicates the circumferential direction centered on the axis Ax.
  • the circumferential direction of the rotor 2, the stator 3, or the rotor magnet 20 is also simply referred to as the "circumferential direction”.
  • N and S shown in some figures indicate the north and south poles of the rotor 2, respectively.
  • FIG. 1 is a top view that diagrammatically illustrates the structure of a rotor 2 according to the first embodiment.
  • FIG. 2 is a side view that diagrammatically illustrates the structure of the rotor 2 shown in FIG. 1, the arrows on the rotor 2 indicate the direction of the main magnetic flux.
  • the dashed dotted lines indicate the center positions of the magnetic poles (N or S poles) of the rotor 2.
  • FIG. 3 is a cross-sectional view taken along line C3-C3 in FIG.
  • FIG. 4 is a cross-sectional view taken along line C4-C4 in FIG.
  • the rotor 2 is used in an electric motor (for example, the electric motor 1 described below).
  • the rotor 2 has a rotor magnet 20 and a shaft 23 arranged inside the rotor magnet 20.
  • the rotor magnet 20 has two types of permanent magnets. In the example shown in Figures 1 and 2, the rotor magnet 20 has at least one first permanent magnet 21 and at least one second permanent magnet 22 that is a different type from the first permanent magnet 21.
  • the rotor 2 (specifically, the rotor magnet 20) has n (n is an even number) magnetic poles. In this embodiment, n is 8, and the rotor 2 has eight magnetic poles. In this embodiment, the rotor 2 has one first permanent magnet 21 and n (n is an even number) second permanent magnets 22. Therefore, in this embodiment, the rotor 2 has one first permanent magnet 21 and eight second permanent magnets 22.
  • the first permanent magnet 21 is magnetized to have a polar anisotropic orientation. In other words, the first permanent magnet 21 is magnetized to cause the rotor 2 to have a polar anisotropic orientation.
  • the first permanent magnet 21, together with each second permanent magnet 22, constitutes a magnetic pole in the rotor 2.
  • the first permanent magnet 21 is adjacent to the second permanent magnet 22 in the circumferential direction of the rotor 2, and forms part of the outer circumferential surface of the rotor 2. Specifically, a part of the first permanent magnet 21 is adjacent to the second permanent magnet 22 in the circumferential direction of the rotor 2, and another part is located inside the second permanent magnet 22 in the radial direction of the rotor 2. Therefore, the first permanent magnet 21 is a ring-shaped magnet. In this embodiment, the first permanent magnet 21 is a single structure, i.e., one magnet.
  • the first permanent magnet 21 is a magnet of a different type from the second permanent magnet 22.
  • the first permanent magnet 21 is, for example, a ferrite magnet.
  • the first permanent magnet 21 is a bonded magnet made by mixing a ferrite magnet with resin, i.e., a ferrite bonded magnet.
  • the resin is, for example, nylon resin, PPS (polyphenylene sulfide) resin, or epoxy resin.
  • the first permanent magnet 21 has a lower coercive force than the magnetic force of each of the second permanent magnets.
  • the north poles of the second permanent magnets 22 and the south poles of the second permanent magnets 22 are arranged alternately on the outer circumferential surface of the rotor 2 (specifically, the rotor magnet 20).
  • the second permanent magnets 22 may be connected to each other, for example, by a ring-shaped connecting portion, and the first permanent magnet 21 may be divided into multiple portions.
  • Each second permanent magnet 22 is provided on the outer peripheral surface of the first permanent magnet 21. Each second permanent magnet 22 forms a part of the outer peripheral surface of the rotor 2. As shown in FIG. 2, each second permanent magnet 22 is magnetized to have a polar anisotropic orientation. In other words, each second permanent magnet 22 is magnetized so that the rotor 2 has a polar anisotropic orientation. In this embodiment, a set of second permanent magnets 22 (i.e., n second permanent magnets 22) forms n magnetic poles of the rotor 2 (specifically, the rotor magnet 20).
  • Each second permanent magnet 22 is a magnet of a different type from the first permanent magnet 21.
  • Each second permanent magnet 22 is, for example, a rare earth magnet.
  • each second permanent magnet 22 is a bonded magnet made by mixing a rare earth magnet with resin, i.e., a rare earth bonded magnet.
  • Each second permanent magnet 22 has a stronger coercive force than the first permanent magnet 21.
  • the rare earth magnet is, for example, a magnet containing Nd (neodymium)-Fe (iron)-B (boron), or a magnet containing Sm (samarium)-Fe (iron)-N (nitrogen).
  • the resin is, for example, nylon resin, PPS (polyphenylene sulfide) resin, or epoxy resin.
  • Each second permanent magnet 22 has a gate portion 24.
  • the gate portion 24 is a gate mark formed during the molding process of the second permanent magnet 22.
  • the gate portion 24 is, for example, a gate mark formed at the gate position of a mold during the molding process of the second permanent magnet 22 using a mold.
  • the gate portion 24 is also simply referred to as a "gate.” In the example shown in FIG. 2, each gate portion 24 is located radially outward of the first permanent magnet 21.
  • FIG. 5 is a cross-sectional view taken along line C5-C5 in FIG.
  • each gate portion 24 is located at an end of the rotor magnet 20 in the axial direction.
  • FIG. 6 is an enlarged view showing the second permanent magnet 22 shown in FIG. In the example shown in Figure 6, in a cross section perpendicular to the axial direction, when the length of the side of the second permanent magnet 22 located on the outer peripheral surface of the rotor magnet 20 is Wo and the length of the side of the second permanent magnet 22 facing the radially inner side of the rotor 2 is Wi, the relationship between the length Wo and the length Wi satisfies Wi > Wo.
  • FIG. 7 is a flowchart showing an example of a manufacturing process for the rotor 2 (specifically, the rotor magnet 20).
  • the raw material for the first permanent magnet 21 is filled into a mold for the first permanent magnet 21.
  • the first permanent magnet 21 is molded and oriented.
  • a magnet for magnetization is used to generate a polar anisotropic magnetic field inside a mold for the first permanent magnet 21. This results in the first permanent magnet 21 being molded and oriented.
  • the first permanent magnet 21 is molded, for example, by injection molding.
  • the first permanent magnet 21 is molded so that the first permanent magnet 21 has a polar anisotropic orientation and n magnetic poles.
  • an easy magnetization axis is formed in the first permanent magnet 21 so that the first permanent magnet 21 has n magnetic poles.
  • a recess in which the second permanent magnet 22 is placed is formed on the outer peripheral surface of the first permanent magnet 21.
  • the first step S1 and the second step S2 may be performed simultaneously.
  • a polar anisotropic magnetic field is generated in advance inside the mold for the first permanent magnet 21 using a magnet for magnetization.
  • the raw material for the first permanent magnet 21 is filled into the mold for the first permanent magnet 21 by injection molding. This results in the molding of the first permanent magnet 21, and at the same time, the first permanent magnet 21 is oriented.
  • the first permanent magnet 21 in the mold is cooled.
  • the first permanent magnet 21 is removed from the mold.
  • each second permanent magnet 22 Since a mold corresponding to the shape of each second permanent magnet 22 is formed in the die for the first permanent magnet 21, the shape of each second permanent magnet 22 is molded on the outer peripheral surface of the first permanent magnet 21 at the same time that the first permanent magnet 21 is obtained.
  • the first permanent magnet 21 is demagnetized.
  • the first permanent magnet 21 is demagnetized using a demagnetizer.
  • the first permanent magnet 21 is placed in a mold for the second permanent magnet 22.
  • the raw material for the second permanent magnet 22 is filled into a mold for the second permanent magnet 22.
  • the second permanent magnets 22 are molded and each second permanent magnet 22 is oriented.
  • a magnet for magnetization is used to generate a polar anisotropic magnetic field inside the mold for the second permanent magnets 22.
  • a plurality of second permanent magnets 22 are molded and each second permanent magnet 22 is oriented.
  • Each second permanent magnet 22 is molded, for example, by injection molding.
  • n second permanent magnets 22 are molded on the outer peripheral surface of the first permanent magnet 21 so as to form a part of the outer peripheral surface of the rotor 2 (specifically, the rotor magnet 20), and each second permanent magnet 22 is molded so as to have a polar anisotropic orientation.
  • an easy magnetization axis is formed in each second permanent magnet 22 so that the rotor 2 (specifically, the rotor magnet 20) has a polar anisotropic orientation.
  • the seventh step S7 and the eighth step S8 may be performed simultaneously.
  • a polar anisotropic magnetic field is generated in advance inside the mold for the second permanent magnet 22 using a magnetizing magnet.
  • the raw material for the second permanent magnet 22 is filled into the mold for the second permanent magnet 22 by injection molding. This results in each second permanent magnet 22 being molded, and at the same time, each second permanent magnet 22 is oriented.
  • the second permanent magnet 22 in the mold is cooled.
  • the first permanent magnet 21 and the second permanent magnet 22 are removed from the mold.
  • the second permanent magnet 22 is demagnetized.
  • the second permanent magnet 22 is demagnetized using a demagnetizer.
  • the first permanent magnet 21 and the second permanent magnet 22 are magnetized.
  • a magnetizer is used to magnetize the first permanent magnet 21 and the second permanent magnet 22 so that the first permanent magnet 21 and the second permanent magnet 22 have a polar anisotropic orientation.
  • Variation example 1. 8 is a cross-sectional view showing another example of the second permanent magnet 22.
  • the position of the cross section shown in Fig. 8 corresponds to the position of the cross section taken along the line C5-C5 in Fig. 1.
  • FIG. 9 is an enlarged view showing the second permanent magnet 22 shown in FIG.
  • the second permanent magnet 22 has a main body portion 26 that forms the outer peripheral surface of the rotor magnet 20, and a connecting portion 25 that connects the main body portion 26 and the gate portion 24.
  • the connecting portion 25 is formed integrally with the main body portion 26 and the gate portion 24, and is located radially outward of the gate portion 24. In other words, the connecting portion 25 is located between the main body portion 26 and the gate portion 24.
  • the maximum length of the connecting portion 25 in the axial direction is Hr and the maximum length of the gate portion 24 in the axial direction is Hg, the relationship between the maximum length Hr and the maximum length Hg satisfies Hg>Hr.
  • Variation example 2. 10 is a cross-sectional view showing yet another example of the second permanent magnet 22.
  • the position of the cross section shown in Fig. 10 corresponds to the position of the cross section taken along line C3-C3 in Fig. 2.
  • FIG. 11 is an enlarged view showing the second permanent magnet 22 shown in FIG.
  • the second permanent magnet 22 has an inner portion 27A that overlaps with the gate portion 24 in the axial direction, and an outer portion 27B that is located radially outward of the inner portion 27A.
  • the inner portion 27A has a protruding portion that protrudes in the circumferential direction relative to the outer portion 27B.
  • Wr maximum length of the inner portion 27A in the circumferential direction
  • Wh the length of the side of the outer portion 27B located on the outer peripheral surface of the rotor magnet 20
  • Variation example 3. 12 is a cross-sectional view showing yet another example of the second permanent magnet 22.
  • the position of the cross section shown in Fig. 12 corresponds to the position of the cross section taken along line C5-C5 in Fig. 1.
  • the second permanent magnet 22 has a main body portion 26 that forms the outer circumferential surface of the rotor magnet 20, and a connecting portion 25 that connects the main body portion 26 and the gate portion 24.
  • the connecting portion 25 is formed integrally with the main body portion 26 and the gate portion 24, and is located radially outward of the gate portion 24. In other words, the connecting portion 25 is located between the main body portion 26 and the gate portion 24.
  • the surface of the gate portion 24 is located axially inward from the surface of the rotor magnet 20 in the axial direction.
  • FIG. 13 is a top view showing another example of the rotor 2.
  • FIG. 14 is a side view showing the rotor 2 shown in FIG. 13 and 14, the rotor 2 has resin 28 that covers the end of the first permanent magnet 21 in the axial direction and the end of the second permanent magnet 22 in the axial direction.
  • the resin 28 is provided at the end of the rotor magnet 20 in the axial direction.
  • the resin 28 is, for example, ring-shaped.
  • the resin 28 is, for example, unsaturated polyester resin.
  • the resin 28 may be provided at both ends of the rotor magnet 20 in the axial direction.
  • FIG. 15 is a cross-sectional view taken along line C15-C15 in FIG.
  • the resin 28 may have a rib 28 A that connects the shaft 23 and the rotor magnet 20 .
  • FIG. 16 is a top view that diagrammatically illustrates the structure of a rotor 200 according to a first comparative example.
  • FIG. 17 is a side view that diagrammatically illustrates the structure of the rotor 200 shown in FIG.
  • FIG. 18 is a cross-sectional view taken along line C18-C18 in FIG.
  • FIG. 19 is a cross-sectional view taken along line C19-C19 in FIGS.
  • FIG. 20 is a cross-sectional view taken along line C20-C20 in FIG.
  • the arrows in rotor 200 indicate the direction of the main magnetic flux.
  • a ring-shaped rare earth bonded magnet 202 having a higher coercive force than ferrite bonded magnet 201 is arranged on the outer peripheral surface of cylindrical ferrite bonded magnet 201.
  • This ring-shaped rare earth bonded magnet 202 is a single magnet extending in the circumferential direction of rotor 200.
  • ring-shaped rare earth bonded magnet 202 forms the entire outer peripheral surface of rotor 200.
  • gate portion 203 is located at the same position in the radial direction as the inner peripheral surface of ferrite bonded magnet 201.
  • the ring-shaped rare earth bonded magnet 202 forms the entire outer circumferential surface of the rotor 200, so the proportion of the rare earth bonded magnet 202 in the rotor 200 is high. As a result, the cost of the rotor 200 is high.
  • the rotor 2 according to embodiment 1 has a plurality of second permanent magnets 22.
  • Each second permanent magnet 22 forms a part of the outer peripheral surface of the rotor 2 (specifically, the rotor magnet 20), and does not form the entire outer peripheral surface of the rotor 2. This makes it possible to reduce the amount of second permanent magnets 22 with high coercive force compared to the rotor 200 according to comparative example 1.
  • the second permanent magnets 22 are expensive rare earth bonded magnets, the amount of rare earth bonded magnets can be reduced compared to the rotor 200 according to comparative example 1, thereby reducing the cost of the rotor 2.
  • FIG. 21 is a top view that diagrammatically illustrates the structure of a rotor 300 according to Comparative Example 2.
  • FIG. 22 is a side view that diagrammatically illustrates the structure of the rotor 300 shown in FIG.
  • FIG. 23 is a cross-sectional view taken along line C23-C23 in FIG.
  • FIG. 24 is a cross-sectional view taken along line C24-C24 in FIGS.
  • FIG. 25 is a cross-sectional view taken along line C25-C25 in FIG.
  • each gate portion 303 is located at the same position in the radial direction as the inner circumferential surface of the first permanent magnet 301.
  • a portion of the second permanent magnet 302 is present on the first permanent magnet 301 (i.e., the filling path from the gate portion 303 to the main body of the second permanent magnet 302), but the coercive force of the second permanent magnet 302 present in this filling path only contributes to a small proportion of the coercive force of the rotor 300, and the cost increases by the amount of the second permanent magnet 302 present in this filling path.
  • each gate portion 24 is located radially outward from the first permanent magnet 21. This allows the amount of rare earth magnets in the rotor 2 to be reduced compared to the first and second comparative examples, and the proportion of effective flux linkage can be increased.
  • the second permanent magnet provided on the outer peripheral surface of the first permanent magnet may fall off from the rotor magnet due to temperature changes or centrifugal force. Therefore, as shown in FIG. 6, when the rotor 2 (specifically, the rotor magnet 20) satisfies Wi>Wo, the second permanent magnet 22 is held by the first permanent magnet 21, and the second permanent magnet 22 can be prevented from falling off radially outward. As a result, the reliability of the rotor 2 can be improved.
  • the second permanent magnet provided on the outer peripheral surface of the first permanent magnet may fall off the rotor magnet due to temperature changes or centrifugal force. Therefore, as shown in variant example 1, when the rotor 2 (specifically, the rotor magnet 20) satisfies Hg>Hr, a recess is formed in the axial direction at a position facing the connecting portion 25. Since the first permanent magnet 21 is filled in this recess, the second permanent magnet 22 is held by the first permanent magnet 21, and it is possible to prevent the second permanent magnet 22 from falling off radially outward. As a result, it is possible to improve the reliability of the rotor 2.
  • the second permanent magnet provided on the outer peripheral surface of the first permanent magnet may fall off the rotor magnet due to temperature changes or centrifugal force. Therefore, as shown in variant example 2, when the rotor 2 (specifically, the rotor magnet 20) satisfies Wr>Wh, a recess is formed in the circumferential direction at a position facing the outer portion 27B. Since the first permanent magnet 21 is filled in this recess, the second permanent magnet 22 is held by the first permanent magnet 21, and it is possible to prevent the second permanent magnet 22 from falling off radially outward. As a result, it is possible to improve the reliability of the rotor 2.
  • the gate portion 24 is located at the end of the rotor magnet 20 in the axial direction, the fracture surface that occurs when the gate is cut during the manufacturing process of the rotor magnet 20 may protrude from the end face of the rotor magnet 20, and productivity may decrease due to contact with a jig or tool in a subsequent process. Therefore, as shown in variant example 3, if the surface of the gate portion 24 is located axially inward from the surface of the rotor magnet 20 in the axial direction, the fracture surface can be prevented from protruding from the end face of the rotor magnet 20, and the productivity of the rotor 2 can be increased.
  • the second permanent magnet attached to the outer peripheral surface of the first permanent magnet may fall off the rotor magnet due to temperature changes or centrifugal force. Therefore, when the rotor 2 has resin 28, the second permanent magnet 22 is supported by the resin 28, and it is possible to prevent the second permanent magnet 22 from falling off in the axial direction. As a result, the reliability of the rotor 2 can be improved.
  • the second permanent magnet 22 is firmly supported by the resin 28, effectively preventing the second permanent magnet 22 from falling off in the axial direction. As a result, the reliability of the rotor 2 can be further improved.
  • resin 28 is an unsaturated polyester resin, the increase in the amount of magnets used can be suppressed.
  • the reliability of the rotor 2 can be improved. Furthermore, when the resin 28 has ribs 28A, the manufacturing process of the rotor 2 (specifically, the ribs 28A) can be simplified. By adjusting the circumferential width of the ribs 28A, the vibration eigenvalue and inertia of the rotor 2 can be appropriately adjusted. This allows the vibration and noise during rotation of the rotor 2 to be appropriately adjusted.
  • FIG. 26 is a partial cross-sectional view that illustrates a schematic structure of an electric motor 1 according to the second embodiment.
  • the electric motor 1 has a rotor 2 according to the first embodiment and a stator 3 arranged on the outside of the rotor 2 .
  • the electric motor 1 has a rotor 2, a stator 3, a circuit board 4, a magnetic sensor 5 that detects the rotational position of the rotor 2, a bracket 6, bearings 7a and 7b, and a sensor magnet 8 that serves as a magnet for detecting the rotational position of the rotor 2.
  • the electric motor 1 is, for example, a synchronous motor.
  • the rotor 2 is rotatably arranged inside the stator 3. An air gap is formed between the rotor 2 and the stator 3. The rotor 2 rotates around the axis Ax.
  • the electric motor 1 according to the second embodiment has the rotor 2 according to the first embodiment, and therefore has the advantages of the rotor 2 described in the first embodiment.
  • FIG. 27 is a diagram illustrating a fan 9 according to the third embodiment.
  • the fan 9 includes a blade 91 and an electric motor 1.
  • the fan 9 is also referred to as a blower.
  • the blade 91 is formed of, for example, polypropylene (PP) containing glass fiber.
  • the blade 91 is, for example, a sirocco fan, a propeller fan, a crossflow fan, or a turbo fan.
  • the electric motor 1 is the electric motor 1 according to the second embodiment.
  • the blades 91 are fixed to the shaft of the electric motor 1.
  • the electric motor 1 drives the blades 91. Specifically, the electric motor 1 rotates the blades 91. When the electric motor 1 is driven, the blades 91 rotate and an airflow is generated. This enables the fan 9 to blow air.
  • the fan 9 according to the third embodiment has the electric motor 1 according to the second embodiment, and therefore can obtain the same advantages as those described in the second embodiment. Furthermore, the performance of the fan 9 can be maintained for a long period of time.
  • FIG. 28 is a diagram illustrating a schematic configuration of an air conditioner 10 according to the fourth embodiment.
  • the air conditioner 10 has an indoor unit 11 as a blower (also referred to as a first blower) and an outdoor unit 13 as a blower (also referred to as a second blower) connected to the indoor unit 11.
  • a blower also referred to as a first blower
  • an outdoor unit 13 as a blower (also referred to as a second blower) connected to the indoor unit 11.
  • the air conditioner 10 has an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13.
  • the outdoor unit 13 is connected to the indoor unit 11 through the refrigerant pipe 12.
  • the indoor unit 11 has an electric motor 11a, an air blowing section 11b that blows air by being driven by the electric motor 11a, and a housing 11c that covers the electric motor 11a and the air blowing section 11b.
  • the electric motor 11a is, for example, the electric motor 1 according to the second embodiment.
  • the air blowing section 11b has, for example, a blade 11d that is driven by the electric motor 11a.
  • the blade 11d is fixed to the shaft of the electric motor 11a and generates an airflow.
  • the outdoor unit 13 has an electric motor 13a, a blower 13b, a compressor 14, a heat exchanger (not shown), and a housing 13c that covers the blower 13b, the compressor 14, and the heat exchanger.
  • the electric motor 13a is, for example, the electric motor 1 according to the second embodiment.
  • the blower 13b blows air by being driven by the electric motor 13a.
  • the blower 13b has, for example, blades 13d that are driven by the electric motor 13a.
  • the blades 13d are fixed to the shaft of the electric motor 13a, and generate an airflow.
  • the compressor 14 has an electric motor 14a, a compression mechanism 14b (e.g., a refrigerant circuit) driven by the electric motor 14a, and a housing 14c that covers the electric motor 14a and the compression mechanism 14b.
  • the electric motor 14a is, for example, the electric motor 1 according to the second embodiment.
  • At least one of the indoor unit 11 and the outdoor unit 13 has the motor 1 described in embodiment 2. That is, the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 each have the motor 1 described in embodiment 2.
  • the motor 1 described in embodiment 2 is applied to at least one of the motors 11a and 13a. That is, the motor 1 described in embodiment 2 is applied to the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 each.
  • the motor 1 described in embodiment 2 may be applied to the motor 14a of the compressor 14.
  • the air conditioner 10 can perform air conditioning, for example, in cooling operation, which blows cool air from the indoor unit 11, and in heating operation, which blows warm air.
  • the electric motor 11a is a drive source for driving the blower unit 11b.
  • the blower unit 11b can blow conditioned air.
  • the motor 11a is fixed to the housing 11c of the indoor unit 11 by, for example, screws.
  • the motor 13a is fixed to the housing 13c of the outdoor unit 13 by, for example, screws.
  • the motor 1 described in the second embodiment is applied to at least one of the motors 11a and 13a, and therefore the same advantages as those described in the second embodiment can be obtained. As a result, the performance of the air conditioner 10 can be maintained for a long period of time.
  • the motor 1 described in the second embodiment is applied to at least one of the motors 11a and 13a, so that a low-cost air conditioner 10 can be provided.
  • the electric motor 1 according to the second embodiment and the blower having the blades (e.g., blades 11d or 13d) driven by the electric motor 1 can be used alone as a device for blowing air.
  • This blower can also be applied to devices other than the air conditioner 10.
  • the electric motor 1 according to the second embodiment is used as the driving source of the compressor 14, the same advantages as those described in the second embodiment can be obtained. As a result, the performance of the compressor 14 can be maintained for a long period of time.
  • the electric motor 1 described in the second embodiment can be mounted on any electrical device that has a drive source, such as a machine tool, an electric vehicle, a drone, or a robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

回転子(2)は、ロータ磁石(20)と、シャフト(23)とを有する。ロータ磁石(20)は、極異方性配向を持つように磁化された第1の永久磁石(21)と、極異方性配向を持つように磁化されたn個(nは偶数)の第2の永久磁石(22)とを有する。各第2の永久磁石(22)は、第1の永久磁石(21)の外周面に設けられており、第1の永久磁石(21)よりも強い保磁力を有する。第2の永久磁石(22)は、第2の永久磁石(22)の成形工程において形成されたゲート跡であるゲート部(24)を有する。ゲート部(24)は、第1の永久磁石(21)よりも径方向外側に位置している。

Description

回転子、電動機、ファン、及び空気調和機
 本開示は、回転子、電動機、ファン、及び空気調和機に関する。
 フェライト磁石の周囲にリング状の希土類磁石が設けられた回転子が提案されている(例えば、特許文献1参照)。
特開2005-151757号公報
 従来の技術では、リング状の希土類磁石の強度を維持するために、希土類磁石の周方向において一定の厚みを必要とする。そのため、回転子における希土類磁石の量が増加し、回転子のコストが増加するという課題がある。
 本開示の目的は、上記の課題を解決するものであり、従来の技術に比べて回転子における希土類磁石を削減可能な、回転子、電動機、ファン、又は空気調和機を提供することを目的とする。
 本開示の一態様に係る回転子は、
 ロータ磁石と、
 前記ロータ磁石の内側に配置されたシャフトと
 を備え、
 前記ロータ磁石は、
 極異方性配向を持つように磁化された第1の永久磁石と、
 前記第1の永久磁石の外周面に設けられており、極異方性配向を持つように磁化されており、前記第1の永久磁石よりも強い保磁力を有するn個(nは偶数)の第2の永久磁石と
 を有し、
 前記第2の永久磁石は、前記第2の永久磁石の成形工程において形成されたゲート跡であるゲート部を有し、
 前記ゲート部は、前記第1の永久磁石よりも径方向外側に位置している。
 本開示の他の態様に係る電動機は、
 前記回転子と、
 前記回転子の外側に配置された固定子と
 を備える。
 本開示の他の態様に係るファンは、
 羽根と、
 前記羽根を回転させる前記電動機と
 を備える。
 本開示の他の態様に係る空気調和機は、
 室内機と、
 前記室内機に接続される室外機と
 を備え、
 前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、前記電動機を有する。
 本開示によれば、従来の技術に比べて回転子における希土類磁石を削減可能な、回転子、電動機、ファン、又は空気調和機を提供することができる。
実施の形態1に係る回転子の構造を概略的に示す上面図である。 図1に示される回転子の構造を概略的に示す側面図である。 図2における線C3-C3に沿った断面図である。 図2における線C4-C4に沿った断面図である。 図1における線C5-C5に沿った断面図である。 図4に示される第2の永久磁石を示す拡大図である。 回転子の製造工程の一例を示すフローチャートである。 第2の永久磁石の他の例を示す断面図である。 図8に示される第2の永久磁石を示す拡大図である。 第2の永久磁石のさらに他の例を示す断面図である。 図10に示される第2の永久磁石を示す拡大図である。 第2の永久磁石のさらに他の例を示す断面図である。 回転子の他の例を示す上面図である。 図13に示される回転子を示す側面図である。 図13における線C15-C15に沿った断面図である。 比較例1に係る回転子の構造を概略的に示す上面図である。 図16に示される回転子の構造を概略的に示す側面図である。 図16における線C18-C18に沿った断面図である。 図17及び図18における線C19-C19に沿った断面図である。 図17における線C20-C20に沿った断面図である。 比較例2に係る回転子の構造を概略的に示す上面図である。 図21に示される回転子の構造を概略的に示す側面図である。 図21における線C23-C23に沿った断面図である。 図22及び図23における線C24-C24に沿った断面図である。 図22における線C25-C25に沿った断面図である。 実施の形態2に係る電動機の構造を概略的に示す部分断面図である。 実施の形態3に係るファンを概略的に示す図である。 実施の形態4に係る空気調和機の構成を概略的に示す図である。
実施の形態1.
 実施の形態1に係る電動機1について以下に説明する。
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1又は回転子2の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、回転子2の回転中心、すなわち、回転子2の回転軸である。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」とも称する。径方向は、回転子2、固定子3、又はロータ磁石20の半径の方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。回転子2、固定子3、又はロータ磁石20の周方向を、単に「周方向」とも称する。
 いくつかの図に示される「N」及び「S」は、それぞれ回転子2におけるN極及びS極を示す。
 図1は、実施の形態1に係る回転子2の構造を概略的に示す上面図である。
 図2は、図1に示される回転子2の構造を概略的に示す側面図である。
 図1において、回転子2上の矢印は、主な磁束の向きを示す。図1及び図2において、一点鎖線は回転子2の磁極(N極又はS極)の中心位置を示す。
 図3は、図2における線C3-C3に沿った断面図である。
 図4は、図2における線C4-C4に沿った断面図である。
 回転子2は、電動機(例えば、後述する電動機1)に用いられる。
 回転子2は、ロータ磁石20と、ロータ磁石20の内側に配置されたシャフト23とを有する。ロータ磁石20は、2種類の永久磁石を有する。図1及び図2に示される例では、ロータ磁石20は、少なくとも1つの第1の永久磁石21と、第1の永久磁石21とは種類が異なる少なくとも1つの第2の永久磁石22とを有する。
 回転子2(具体的には、ロータ磁石20)は、n(nは偶数)個の磁極を持つ。本実施の形態では、nは8であり、回転子2は、8個の磁極を持つ。本実施の形態では、回転子2は、1つの第1の永久磁石21と、n(nは偶数)個の第2の永久磁石22とを有する。したがって、本実施の形態では、回転子2は、1つの第1の永久磁石21と、8個の第2の永久磁石22とを有する。
 第1の永久磁石21は、極異方性配向を持つように磁化されている。言い換えると、第1の永久磁石21は、回転子2が極異方性配向を持つように磁化されている。第1の永久磁石21は、各第2の永久磁石22と共に回転子2における磁極を構成する。
 第1の永久磁石21は、回転子2の周方向において第2の永久磁石22に隣接しており、回転子2の外周面の一部を形成している。具体的には、第1の永久磁石21の一部は、回転子2の周方向において第2の永久磁石22に隣接しており、他の一部は、回転子2の径方向において第2の永久磁石22の内側に位置している。したがって、第1の永久磁石21は、リング状の磁石である。本実施の形態では、第1の永久磁石21は、単一の構造体、すなわち、1つの磁石である。
 第1の永久磁石21は、第2の永久磁石22とは種類が異なる磁石である。第1の永久磁石21は、例えば、フェライト磁石である。例えば、第1の永久磁石21は、フェライト磁石と樹脂とを混ぜて作られたボンド磁石、すなわち、フェライトボンド磁石である。樹脂は、例えば、ナイロン樹脂、PPS(ポリフェニレンサルファイド)樹脂、又はエポキシ樹脂である。第1の永久磁石21は、各第2の永久磁石の磁力よりも低い保磁力を持つ。
 例えば、図1及び図2に示されるように、回転子2(具体的には、ロータ磁石20)の外周面上に、第2の永久磁石22のN極及び第2の永久磁石22のS極が交互に配列されている。ただし、複数の第2の永久磁石22は、例えば、リング状の連結部で互いに連結されていてもよく、第1の永久磁石21は、複数の部分に分割されていてもよい。
 各第2の永久磁石22は、第1の永久磁石21の外周面に設けられている。各第2の永久磁石22は、回転子2の外周面の一部を形成している。図2に示されるように、各第2の永久磁石22は、極異方性配向を持つように磁化されている。言い換えると、各第2の永久磁石22は、回転子2が極異方性配向を持つように磁化されている。本実施の形態では、1組の第2の永久磁石22(すなわち、n個の第2の永久磁石22)は、回転子2(具体的には、ロータ磁石20)のn個の磁極を形成する。
 各第2の永久磁石22は、第1の永久磁石21とは種類が異なる磁石である。各第2の永久磁石22は、例えば、希土類磁石である。例えば、各第2の永久磁石22は、希土類磁石と樹脂とを混ぜて作られたボンド磁石、すなわち、希土類ボンド磁石である。各第2の永久磁石22は、第1の永久磁石21よりも強い保磁力を持つ。
 希土類磁石は、例えば、Nd(ネオジム)-Fe(鉄)-B(ホウ素)を含む磁石、又は、Sm(サマリウム)-Fe(鉄)-N(窒素)を含む磁石である。樹脂は、例えば、ナイロン樹脂、PPS(ポリフェニレンサルファイド)樹脂、又はエポキシ樹脂である。
 図1及び図2に示される例では、回転子2の外周面において、複数の第2の永久磁石22と、第1の永久磁石21のうちの複数の部分が、回転子2の周方向に交互に配列されている。
 各第2の永久磁石22は、ゲート部24を有する。ゲート部24は、第2の永久磁石22の成形工程において形成されたゲート跡である。ゲート部24は、例えば、金型を用いた第2の永久磁石22の成形工程において金型のゲート位置に形成されたゲート跡である。ゲート部24を、単に「ゲート」とも称する。図2に示される例では、各ゲート部24は、第1の永久磁石21よりも径方向外側に位置している。
 図5は、図1における線C5-C5に沿った断面図である。
 図1及び図5に示される例では、各ゲート部24は、軸方向におけるロータ磁石20の端部に位置している。
 図6は、図4に示される第2の永久磁石22を示す拡大図である。
 図6に示される例では、軸方向と直交する断面において、ロータ磁石20の外周面に位置する第2の永久磁石22の辺の長さをWoとし、回転子2の径方向内側に面する第2の永久磁石22の辺の長さをWiとしたとき、長さWo及び長さWiの関係は、Wi>Woを満たす。
 回転子2(具体的には、ロータ磁石20)の製造方法の一例を説明する。
 図7は、回転子2(具体的には、ロータ磁石20)の製造工程の一例を示すフローチャートである。
 第1の工程S1では、第1の永久磁石21の原料を第1の永久磁石21用の金型内に充填する。
 第2の工程S2では、第1の永久磁石21を成形し、第1の永久磁石21に配向を施す。例えば、着磁用の磁石を用いて第1の永久磁石21用の金型の内部に極異方性の磁場を発生させる。これにより、第1の永久磁石21が成形され、第1の永久磁石21に配向が施される。第1の永久磁石21は、例えば、射出成形で成形される。本実施の形態では、第1の永久磁石21が極異方性配向及びn個の磁極を持つように、第1の永久磁石21が成形される。言い換えると、第1の永久磁石21がn個の磁極を持つように第1の永久磁石21に磁化容易軸が形成される。
 第2の工程S2では、第2の永久磁石22が配置される凹部が第1の永久磁石21の外周面に形成される。
 第1の工程S1及び第2の工程S2は同時に行われてもよい。この場合、例えば、着磁用の磁石を用いて第1の永久磁石21用の金型の内部に極異方性の磁場を、予め発生させる。第1の永久磁石21用の金型の内部に極異方性の磁場が発生している状態で、射出成形で第1の永久磁石21の原料を第1の永久磁石21用の金型内に充填する。これにより、第1の永久磁石21が成形され、同時に、第1の永久磁石21に配向が施される。
 第3の工程S3では、金型内の第1の永久磁石21を冷却する。
 第4の工程S4では、第1の永久磁石21を金型から取り出す。
 各第2の永久磁石22の形状に対応する型が、第1の永久磁石21用の金型に形成されているので、第1の永久磁石21が得られるのと同時に、第1の永久磁石21の外周面に各第2の永久磁石22の形状が成形される。
 第5の工程S5では、第1の永久磁石21を脱磁する。例えば、脱磁器で第1の永久磁石21を脱磁する。
 第6の工程S6では、第1の永久磁石21を第2の永久磁石22用の金型内に配置する。
 第7の工程S7では、第2の永久磁石22の原料を第2の永久磁石22用の金型内に充填する。
 第8の工程S8では、第2の永久磁石22を成形し、各第2の永久磁石22に配向を施す。例えば、着磁用の磁石を用いて第2の永久磁石22用の金型の内部に極異方性の磁場を発生させる。これにより、複数の第2の永久磁石22が成形され、各第2の永久磁石22に配向が施される。各第2の永久磁石22は、例えば、射出成形で成形される。本実施の形態では、第1の永久磁石21の外周面に、回転子2(具体的には、ロータ磁石20)の外周面の一部を形成するようにn個の第2の永久磁石22が成形され、極異方性配向を持つように各第2の永久磁石22が成形される。これにより、回転子2(具体的には、ロータ磁石20)が極異方性配向を持つように各第2の永久磁石22に磁化容易軸が形成される。
 第7の工程S7及び第8の工程S8は同時に行われてもよい。この場合、例えば、着磁用の磁石を用いて第2の永久磁石22用の金型の内部に極異方性の磁場を、予め発生させる。第2の永久磁石22用の金型の内部に極異方性の磁場が発生している状態で、射出成形で第2の永久磁石22の原料を第2の永久磁石22用の金型内に充填する。これにより、各第2の永久磁石22が成形され、同時に、各第2の永久磁石22に配向が施される。
 第9の工程S9では、金型内の第2の永久磁石22を冷却する。
 第10の工程S10では、第1の永久磁石21及び第2の永久磁石22を金型から取り出す。
 第11の工程S11では、第2の永久磁石22を脱磁する。例えば、脱磁器で第2の永久磁石22を脱磁する。
 第12の工程S12では、第1の永久磁石21及び第2の永久磁石22を着磁する。例えば、着磁器を用いて第1の永久磁石21及び第2の永久磁石22が極異方性配向を持つように第1の永久磁石21及び第2の永久磁石22を着磁する。
 これにより、ロータ磁石20が得られる。
変形例1.
 図8は、第2の永久磁石22の他の例を示す断面図である。図8に示される断面の位置は、図1における線C5-C5に沿った断面の位置に対応する。
 図9は、図8に示される第2の永久磁石22を示す拡大図である。
 図8及び図9に示される例では、第2の永久磁石22は、ロータ磁石20の外周面を形成する本体部26と、本体部26とゲート部24とを連結する連結部25とを有する。連結部25は、本体部26及びゲート部24と一体的に形成されており、且つ、ゲート部24よりも径方向外側に位置している。すなわち、連結部25は、本体部26とゲート部24との間に位置している。
 軸方向における連結部25の最大長さをHrとし、軸方向におけるゲート部24の最大長さをHgとしたとき、最大長さHr及び最大長さHgの関係は、Hg>Hrを満たす。
変形例2.
 図10は、第2の永久磁石22のさらに他の例を示す断面図である。図10に示される断面の位置は、図2における線C3-C3に沿った断面の位置に対応する。
 図11は、図10に示される第2の永久磁石22を示す拡大図である。
 図11に示される例では、第2の永久磁石22は、軸方向においてゲート部24と重なっている内側部分27Aと、内側部分27Aよりも径方向外側に位置する外側部分27Bとを有する。内側部分27Aは、外側部分27Bに対して周方向に突き出た突出部分を有する。軸方向と直交する断面において、周方向における内側部分27Aの最大長さをWrとし、ロータ磁石20の外周面に位置する外側部分27Bの辺の長さをWhとしたとき、最大長さWr及び長さWhの関係は、Wr>Whを満たす。
変形例3.
 図12は、第2の永久磁石22のさらに他の例を示す断面図である。図12に示される断面の位置は、図1における線C5-C5に沿った断面の位置に対応する。
 図12に示される例では、第2の永久磁石22は、ロータ磁石20の外周面を形成する本体部26と、本体部26とゲート部24とを連結する連結部25とを有する。連結部25は、本体部26及びゲート部24と一体的に形成されており、且つ、ゲート部24よりも径方向外側に位置している。すなわち、連結部25は、本体部26とゲート部24との間に位置している。
 図12に示される例では、ゲート部24の表面は、軸方向におけるロータ磁石20の表面よりも、軸方向における内側に位置している。
変形例4.
 図13は、回転子2の他の例を示す上面図である。
 図14は、図13に示される回転子2を示す側面図である。
 図13及び図14に示される例では、回転子2は、軸方向における第1の永久磁石21の端部及び軸方向における第2の永久磁石22の端部を覆う樹脂28を有する。樹脂28は、軸方向におけるロータ磁石20の端部に設けられている。樹脂28の形状は、例えば、リング形状である。樹脂28は、例えば、不飽和ポリエステル樹脂である。軸方向におけるロータ磁石20の両端部に、樹脂28が設けられていてもよい。
 図15は、図13における線C15-C15に沿った断面図である。
 図15に示されるように、樹脂28は、シャフト23とロータ磁石20とを連結するリブ28Aを有してもよい。
 実施の形態1に係る回転子2の利点を以下に説明する。
 図16は、比較例1に係る回転子200の構造を概略的に示す上面図である。
 図17は、図16に示される回転子200の構造を概略的に示す側面図である。
 図18は、図16における線C18-C18に沿った断面図である。
 図19は、図17及び図18における線C19-C19に沿った断面図である。
 図20は、図17における線C20-C20に沿った断面図である。
 図16において、回転子200における矢印は、主な磁束の向きを示す。図16に示される比較例1に係る回転子200では、円筒形状のフェライトボンド磁石201の外周面に、フェライトボンド磁石201よりも高い保磁力を持つリング形状の希土類ボンド磁石202が配置されている。このリング形状の希土類ボンド磁石202は、回転子200の周方向に延在している単一の磁石である。すなわち、リング形状の希土類ボンド磁石202が、回転子200の外周面の全てを形成している。図18に示されるように、比較例1に係る回転子200では、ゲート部203は、径方向においてフェライトボンド磁石201の内周面と同じ位置に位置している。
 比較例1に係る回転子200では、リング形状の希土類ボンド磁石202が、回転子200の外周面の全てを形成しているため、回転子200における希土類ボンド磁石202の割合が大きい。その結果、回転子200のコストが大きい。
 これに対し、実施の形態1に係る回転子2は、複数の第2の永久磁石22を有する。各第2の永久磁石22は回転子2(具体的には、ロータ磁石20)の外周面の一部を形成しており、回転子2の外周面の全てを形成していない。これにより、比較例1に係る回転子200に比べて、高い保磁力を持つ第2の永久磁石22の量を削減することができる。第2の永久磁石22が高価な希土類ボンド磁石である場合、比較例1に係る回転子200に比べて希土類ボンド磁石の量を削減することができるので、回転子2のコストを低減することができる。
 図21は、比較例2に係る回転子300の構造を概略的に示す上面図である。
 図22は、図21に示される回転子300の構造を概略的に示す側面図である。
 図23は、図21における線C23-C23に沿った断面図である。
 図24は、図22及び図23における線C24-C24に沿った断面図である。
 図25は、図22における線C25-C25に沿った断面図である。
 比較例2に係る回転子300では、各ゲート部303は、径方向において第1の永久磁石301の内周面と同じ位置に位置している。。この場合、第2の永久磁石302の一部が第1の永久磁石301上(すなわち、ゲート部303から第2の永久磁石302の本体部までの充填経路)に存在するが、この充填経路に存在する第2の永久磁石302の保磁力は、回転子300の保磁力に寄与する割合が小さく、この充填経路に存在する第2の永久磁石302の量だけコストが増加する。
 これに対し、実施の形態1に係る回転子2では、各ゲート部24は、第1の永久磁石21よりも径方向外側に位置している。これにより、比較例1及び比較例2に比べて回転子2における希土類磁石を削減することができ、有効鎖交磁束の割合を増加させることができる。
 一般に、温度変化又は遠心力により第1の永久磁石の外周面に設けられた第2の永久磁石がロータ磁石から脱落することがある。そのため、図6に示されるように、回転子2(具体的には、ロータ磁石20)がWi>Woを満たす場合、第2の永久磁石22が第1の永久磁石21によって保持され、第2の永久磁石22が径方向外側に脱落することを防ぐことができる。その結果、回転子2の信頼性を高めることができる。
 一般に、温度変化又は遠心力により第1の永久磁石の外周面に設けられた第2の永久磁石がロータ磁石から脱落することがある。そのため、変形例1に示されるように、回転子2(具体的には、ロータ磁石20)がHg>Hrを満たす場合、軸方向において連結部25が面する位置に、凹部が形成される。この凹部に、第1の永久磁石21が充填されているので、第2の永久磁石22が第1の永久磁石21によって保持され、第2の永久磁石22が径方向外側に脱落することを防ぐことができる。その結果、回転子2の信頼性を高めることができる。
 一般に、温度変化又は遠心力により第1の永久磁石の外周面に設けられた第2の永久磁石がロータ磁石から脱落することがある。そのため、変形例2に示されるように、回転子2(具体的には、ロータ磁石20)がWr>Whを満たす場合、周方向において外側部分27Bが面する位置に、凹部が形成される。この凹部に、第1の永久磁石21が充填されているので、第2の永久磁石22が第1の永久磁石21によって保持され、第2の永久磁石22が径方向外側に脱落することを防ぐことができる。その結果、回転子2の信頼性を高めることができる。
 ゲート部24がロータ磁石20の軸方向における端部に位置している場合、ロータ磁石20の製造工程においてゲートを切断した際に生じる破断面がロータ磁石20の端面からはみ出し、後工程において治具又は工具との接触により生産性が低下することがある。そのため、変形例3に示されるように、ゲート部24の表面が軸方向におけるロータ磁石20の表面よりも軸方向における内側に位置している場合、破断面がロータ磁石20の端面からはみ出すことを防止し、回転子2の生産性を高めることができる。
 一般に、温度変化又は遠心力により第1の永久磁石の外周面に設けられた第2の永久磁石がロータ磁石から脱落することがある。そのため、回転子2が樹脂28を有する場合、第2の永久磁石22が樹脂28によって支持され、第2の永久磁石22が軸方向に脱落することを防ぐことができる。その結果、回転子2の信頼性を高めることができる。
 樹脂28がゲート部24の凹部に充填されている場合、第2の永久磁石22が樹脂28によってしっかりと支持され、第2の永久磁石22が軸方向に脱落することを効果的に防ぐことができる。その結果、回転子2の信頼性をより高めることができる。
 樹脂28が不飽和ポリエステル樹脂である場合、磁石の使用量の増加を抑えることができる。
 樹脂28がリブ28Aを有する場合、回転子2の信頼性を高めることができる。さらに、樹脂28がリブ28Aを有する場合、回転子2(具体的には、リブ28A)の製造工程を簡素化することができる。リブ28Aの周方向の幅を調整することにより、回転子2の振動固有値及びイナーシャを適切に調整することができる。これにより、回転子2の回転中における振動及び騒音を適切に調整することができる。
実施の形態2,
 図26は、実施の形態2に係る電動機1の構造を概略的に示す部分断面図である。
 電動機1は、実施の形態1に係る回転子2と、回転子2の外側に配置された固定子3とを有する。
 電動機1は、回転子2と、固定子3と、回路基板4と、回転子2の回転位置を検出する磁気センサ5と、ブラケット6と、ベアリング7a及び7bと、回転子2の回転位置検出用マグネットとしてのセンサマグネット8とを有する。電動機1は、例えば、同期電動機である。
 回転子2は、固定子3の内側に回転可能に配置されている。回転子2と固定子3との間には、エアギャップが形成されている。回転子2は、軸線Axを中心として回転する。
 実施の形態2に係る電動機1は、実施の形態1に係る回転子2を有するので、実施の形態1で説明した回転子2の利点を有する。
実施の形態3.
 図27は、実施の形態3に係るファン9を概略的に示す図である。
 ファン9は、羽根91と、電動機1とを有する。ファン9は、送風機とも称する。羽根91は、例えば、ガラス繊維を含むポリプロピレン(polypropylene:PP)で形成されている。羽根91は、例えば、シロッコファン、プロペラファン、クロスフローファン、又はターボファンである。
 電動機1は、実施の形態2に係る電動機1である。羽根91は、電動機1のシャフトに固定されている。電動機1は、羽根91を駆動させる。具体的には、電動機1は、羽根91を回転させる。電動機1が駆動すると、羽根91が回転し、気流が生成される。これにより、ファン9は送風することができる。
 実施の形態3に係るファン9は、実施の形態2に係る電動機1を有するので、実施の形態2で説明した利点と同じ利点を得ることができる。さらに、ファン9の性能を長期にわたって維持することができる。
実施の形態4.
 実施の形態4に係る空気調和機10(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
 図28は、実施の形態4に係る空気調和機10の構成を概略的に示す図である。
 実施の形態4に係る空気調和機10は、送風機(第1の送風機とも称する)としての室内機11と、室内機11に接続される送風機(第2の送風機とも称する)としての室外機13とを有する。
 本実施の形態では、空気調和機10は、室内機11と、冷媒配管12と、室外機13とを有する。例えば、室外機13は、冷媒配管12を通して室内機11に接続される。
 室内機11は、電動機11aと、電動機11aによって駆動されることにより、送風する送風部11bと、電動機11a及び送風部11bを覆うハウジング11cとを有する。電動機11aは、例えば、実施の形態2に係る電動機1である。送風部11bは、例えば、電動機11aによって駆動される羽根11dを有する。例えば、羽根11dは、電動機11aのシャフトに固定されており、気流を生成する。
 室外機13は、電動機13aと、送風部13bと、圧縮機14と、熱交換器(図示しない)と、送風部13b、圧縮機14、及び熱交換器を覆うハウジング13cとを有する。電動機13aは、例えば、実施の形態2に係る電動機1である。送風部13bは、電動機13aによって駆動されることにより、送風する。送風部13bは、例えば、電動機13aによって駆動される羽根13dを有する。例えば、羽根13dは、電動機13aのシャフトに固定されており、気流を生成する。
 圧縮機14は、電動機14aと、電動機14aによって駆動される圧縮機構14b(例えば、冷媒回路)と、電動機14a及び圧縮機構14bを覆うハウジング14cとを有する。電動機14aは、例えば、実施の形態2に係る電動機1である。
 空気調和機10において、室内機11及び室外機13の少なくとも1つは、実施の形態2で説明した電動機1を有する。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々は、実施の形態2で説明した電動機1を有する。具体的には、送風部の駆動源として、電動機11a又は電動機13aの少なくとも一方に、実施の形態2で説明した電動機1が適用される。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々に、実施の形態2で説明した電動機1が適用される。圧縮機14の電動機14aに、実施の形態2で説明した電動機1を適用してもよい。
 空気調和機10は、例えば、室内機11から冷たい空気を送風する冷房運転、温かい空気を送風する暖房運転などの空調を行うことができる。室内機11において、電動機11aは、送風部11bを駆動するための駆動源である。送風部11bは、調整された空気を送風することができる。
 室内機11において、電動機11aは、例えば、ねじによって室内機11のハウジング11cに固定されている。室外機13において、電動機13aは、例えば、ねじによって室外機13のハウジング13cに固定されている。
 実施の形態4に係る空気調和機10では、電動機11a又は電動機13aの少なくとも一方に、実施の形態2で説明した電動機1が適用されるので、実施の形態2で説明した利点と同じ利点を得ることができる。その結果、空気調和機10の性能を長期にわたって維持することができる。
 さらに、実施の形態4に係る空気調和機10では、電動機11a又は電動機13aの少なくとも一方に、実施の形態2で説明した電動機1が適用されるので、コストの低い空気調和機10を提供することができる。
 実施の形態2に係る電動機1とその電動機1によって駆動される羽根(例えば、羽根11d又は13d)とを有する送風機は、送風する装置として単独で用いることができる。この送風機は、空気調和機10以外の機器にも適用可能である。
 さらに、圧縮機14の駆動源として、実施の形態2に係る電動機1が用いられる場合、実施の形態2で説明した利点と同じ利点を得ることができる。その結果、圧縮機14の性能を長期にわたって維持することができる。
 実施の形態2で説明した電動機1は、工作機、電気自動車、ドローン、ロボットなどの、駆動源を有するあらゆる電気機器に搭載できる。
 以上に説明した各実施の形態及び各変形例における特徴は、互いに組み合わせることができる。
 1,11a,13a,14a 電動機、 2 回転子、 3 固定子、 9 ファン、 10 空気調和機、 11 室内機、 12 冷媒配管、 13 室外機、 20 ロータ磁石、 21 第1の永久磁石、 22 第2の永久磁石、 23 シャフト、 24 ゲート部、 25 連結部、 26 本体部、 27A 内側部分、 27B 外側部分、 28 樹脂、 28A リブ、 91 羽根。

Claims (11)

  1.  ロータ磁石と、
     前記ロータ磁石の内側に配置されたシャフトと
     を備え、
     前記ロータ磁石は、
     極異方性配向を持つように磁化された第1の永久磁石と、
     前記第1の永久磁石の外周面に設けられており、極異方性配向を持つように磁化されており、前記第1の永久磁石よりも強い保磁力を有するn個(nは偶数)の第2の永久磁石と
     を有し、
     前記第2の永久磁石は、前記第2の永久磁石の成形工程において形成されたゲート跡であるゲート部を有し、
     前記ゲート部は、前記第1の永久磁石よりも径方向外側に位置している、
     回転子。
  2.  軸方向と直交する断面において、前記ロータ磁石の外周面に位置する前記第2の永久磁石の辺の長さをWoとし、径方向内側に面する前記第2の永久磁石の辺の長さをWiとしたとき、Wi>Woを満たす、請求項1に記載の回転子。
  3.  前記第2の永久磁石は、前記ロータ磁石の外周面を形成する本体部と、前記本体部と前記ゲート部とを連結する連結部とを有し、
     前記連結部は、前記本体部及び前記ゲート部と一体的に形成されており、且つ、前記ゲート部よりも径方向外側に位置しており、
     軸方向における前記連結部の最大長さをHrとし、前記軸方向における前記ゲート部の最大長さをHgとしたとき、Hg>Hrを満たす、請求項1又は2に記載の回転子。
  4.  前記第2の永久磁石は、軸方向において前記ゲート部と重なっている内側部分と、前記内側部分よりも径方向外側に位置する外側部分とを有し、
     前記軸方向と直交する断面において、周方向における前記内側部分の最大長さをWrとし、前記ロータ磁石の外周面に位置する前記外側部分の辺の長さをWhとしたとき、Wr>Whを満たす、
     請求項1から3のいずれか1項に記載の回転子。
  5.  前記ゲート部は、軸方向における前記ロータ磁石の端部に位置している請求項1から4のいずれか1項に記載の回転子。
  6.  前記ゲート部の表面は、軸方向における前記ロータ磁石の表面よりも、前記軸方向における内側に位置している請求項1から4のいずれか1項に記載の回転子。
  7.  軸方向における前記ロータ磁石の端部に設けられており、前記軸方向における前記第1の永久磁石の端部及び前記軸方向における前記第2の永久磁石の端部を覆う樹脂をさらに備える請求項1から6のいずれか1項に記載の回転子。
  8.  前記樹脂は、前記シャフトと前記ロータ磁石とを連結するリブを有する請求項7に記載の回転子。
  9.  請求項1から8のいずれか1項に記載の回転子と、
     前記回転子の外側に配置された固定子と
     を備える電動機。
  10.  羽根と、
     前記羽根を回転させる請求項9に記載の電動機と
     を備えるファン。
  11.  室内機と、
     前記室内機に接続される室外機と
     を備え、
     前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、請求項9に記載の電動機を有する
     空気調和機。
PCT/JP2022/042017 2022-11-11 2022-11-11 回転子、電動機、ファン、及び空気調和機 WO2024100869A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042017 WO2024100869A1 (ja) 2022-11-11 2022-11-11 回転子、電動機、ファン、及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042017 WO2024100869A1 (ja) 2022-11-11 2022-11-11 回転子、電動機、ファン、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2024100869A1 true WO2024100869A1 (ja) 2024-05-16

Family

ID=91032172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042017 WO2024100869A1 (ja) 2022-11-11 2022-11-11 回転子、電動機、ファン、及び空気調和機

Country Status (1)

Country Link
WO (1) WO2024100869A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261420A1 (ja) * 2019-06-26 2020-12-30 三菱電機株式会社 回転子、電動機、送風機、空気調和機、及び回転子の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261420A1 (ja) * 2019-06-26 2020-12-30 三菱電機株式会社 回転子、電動機、送風機、空気調和機、及び回転子の製造方法

Similar Documents

Publication Publication Date Title
JPWO2019049203A1 (ja) コンシクエントポール型ロータ、電動機、圧縮機、送風機、及び空気調和機
US11888368B2 (en) Rotor, electric motor, air blower, air conditioner, and method for fabricating rotor
JP7072726B2 (ja) 回転子、電動機、送風機、空気調和機、及び回転子の製造方法
WO2024100869A1 (ja) 回転子、電動機、ファン、及び空気調和機
WO2020090007A1 (ja) コンシクエントポール型回転子、電動機、送風機、及び冷凍空調装置、並びにコンシクエントポール型回転子の製造方法
WO2021171476A1 (ja) 電動機、ファン、及び空気調和機
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
JP7098047B2 (ja) モータ、ファン、および空気調和機
US20230163648A1 (en) Rotor, motor, blower, air conditioner, and manufacturing method of rotor
JP7058740B2 (ja) モータ、ファン、空気調和装置、及びモータの製造方法
WO2022215149A1 (ja) 回転子、電動機、送風機及び空気調和装置
WO2024121879A1 (ja) 電動機及び空気調和機
JP7450783B2 (ja) コンシクエントポール型ロータ、電動機、ファン、及び空気調和機
JP7239738B2 (ja) ロータ、電動機、ファン、及び空気調和機
US20240030756A1 (en) Electric motor, fan, and air conditioner
US20230378829A1 (en) Rotor, motor, blower, air conditioner, and manufacturing method of rotor
WO2023148949A1 (ja) 電動機及び空気調和機
WO2020026403A1 (ja) ロータ、モータ、ファン、空気調和装置、及びロータの製造方法
WO2024089836A1 (ja) 電動機、ファン、及び空気調和機
WO2023073757A1 (ja) ロータ、電動機、送風機および空気調和装置
WO2020026406A1 (ja) ロータ、モータ、ファン、空気調和装置、及びロータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965193

Country of ref document: EP

Kind code of ref document: A1