WO2024100788A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2024100788A1
WO2024100788A1 PCT/JP2022/041677 JP2022041677W WO2024100788A1 WO 2024100788 A1 WO2024100788 A1 WO 2024100788A1 JP 2022041677 W JP2022041677 W JP 2022041677W WO 2024100788 A1 WO2024100788 A1 WO 2024100788A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
active element
lower semiconductor
active
Prior art date
Application number
PCT/JP2022/041677
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 荒井
亘 小林
学 満原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/041677 priority Critical patent/WO2024100788A1/en
Publication of WO2024100788A1 publication Critical patent/WO2024100788A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Definitions

  • the present invention relates to a semiconductor device in which multiple optically active elements are integrated.
  • EML electroabsorption-modulator integrated distributed feedback laser
  • a DFB laser that generates light as a carrier wave and an EA modulator that modulates the carrier wave are monolithically integrated on a single semiconductor substrate (Patent Document 1, Patent Document 2).
  • a conductive polarity (mainly an n-polarity InP substrate) is used for the semiconductor substrate. Therefore, the electrical polarity of the substrate in the integrated element portion is inevitably shorted due to the structure. For this reason, when the DFB laser and EA modulator are in operation, the substrate is grounded, a positive voltage is applied to the DFB laser portion, and a negative voltage is applied to the EA modulator.
  • the EA modulator is driven by applying a single-phase modulation signal. For example, one of the electrodes of the EA modulator is connected to GND for single-phase drive.
  • differential driving has the effect of improving the S/N ratio of the optical waveform by suppressing common mode noise, and halving the modulation amplitude voltage applied to each signal line (Non-Patent Document 1).
  • the substrate side is shorted, so the DFB laser is driven in a single phase and the EA modulator cannot be driven differentially.
  • the present invention was made to solve the above problems, and aims to drive two monolithically integrated optical active elements in different ways.
  • the semiconductor device comprises a substrate made of semi-insulating InP, a first optically active element formed on the substrate, a second optically active element formed on the substrate, and an optical waveguide disposed between the first optically active element and the second optically active element and functioning as an electrical separator between the first optically active element and the second optically active element, and optically connecting the first optically active element and the second optically active element;
  • the first optically active element comprises a first lower semiconductor layer made of n-type InP formed on the substrate, a first active layer formed on the first lower semiconductor layer and having a ridge-shaped waveguide structure, an upper semiconductor layer made of p-type InP formed on the first active layer, a first p electrode formed on the upper semiconductor layer, and a first n electrode formed on the first lower semiconductor layer in an area where the first active layer is not formed;
  • the second optically active element comprises a second active layer formed on the first lower semiconductor layer and having a ridge-shaped waveguide structure.
  • the optical waveguide comprises a second lower semiconductor layer made of semi-insulating or undoped InP formed in a groove formed in the first lower semiconductor layer in the optical waveguide region, a third active layer formed on the second lower semiconductor layer and having a ridge-shaped waveguide structure, and an upper semiconductor layer formed on the third active layer.
  • the first lower semiconductor layer in the region where the second active layer is not formed is formed thinner than the first lower semiconductor layer in the region where the second active layer is formed, and comprises a buried layer formed on the first lower semiconductor layer to bury the first active layer.
  • the first n electrode is formed in the location where the buried layer has been removed, and the first lower semiconductor layer in which the first n electrode is formed has a thickness of 200 to 1000 nm.
  • the region in which the first n-electrode of the first lower semiconductor layer made of n-type InP below the first active layer is formed has a thickness of 200 to 1000 nm, so that two monolithically integrated optical active elements can be driven in different ways without causing degradation of the optical output characteristics or optical modulation characteristics.
  • FIG. 1A is a cross-sectional view showing a configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing a partial configuration of a semiconductor device according to an
  • FIG. 3A is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3B is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3C is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3D is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3E is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3F is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3D is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3E is a cross-
  • FIG. 3G is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3H is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3I is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3J is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3K is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3L is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 3M is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • This semiconductor device comprises a substrate 101 made of semi-insulating InP, a first optically active element 102 formed on the substrate 101, and a second optically active element 103 formed on the substrate 101. Between the first optically active element 102 and the second optically active element 103, there is provided an optical waveguide 104 which functions as an electrical separator between the first optically active element 102 and the second optically active element 103, and which optically connects the first optically active element 102 and the second optically active element 103.
  • the substrate 101 can be made of InP that has been doped with Fe to give it high resistance.
  • the substrate 101 can have the (001) plane of InP as its main surface.
  • FIG. 1A shows a cross section parallel to the guiding direction of light as a carrier wave.
  • FIGS. 11B, 1C, and 1D show cross sections perpendicular to the guiding direction.
  • the first optically active element 102 includes a first lower semiconductor layer 121 made of n-type InP (e.g., doped at 1E18 cm -3 ) formed on a substrate 101, a first active layer 122 formed on the first lower semiconductor layer 121 to have a ridge-shaped waveguide structure, and an upper semiconductor layer 105 made of p-type InP formed on the first active layer 122.
  • the first active layer 122 can be made of, for example, InGaAsP or InGaAlAs.
  • the first active layer 122 can have a thickness of about 250 nm.
  • the first optically active element 102 also includes a first p-electrode 124 formed on the upper semiconductor layer 105 and a first n-electrode 125 formed on the first lower semiconductor layer 121 in an area where the first active layer 122 is not formed.
  • the first p-electrode 124 is formed on the upper semiconductor layer 105 via a contact layer 123.
  • the contact layer 123 can be made of, for example, InGaAs doped with a high concentration of p-type impurities.
  • the first optically active element 102 is a so-called vertical current injection type semiconductor laser that injects current into the first active layer 122 in a direction perpendicular to the plane of the substrate 101.
  • the first optically active element 102 can be a distributed feedback (DFB) laser that includes a diffraction grating on the upper surface, lower surface, or side surface of the first active layer 122.
  • the length of the first optically active element 102 in the waveguiding direction is the resonator length.
  • the second optically active element 103 includes a second active layer 132 formed on the first lower semiconductor layer 121 and having a ridge-shaped waveguide structure, and an upper semiconductor layer 105 formed on the second active layer 132.
  • the second active layer 132 can be made of, for example, InGaAsP or InGaAlAs.
  • the second active layer 132 can have a thickness of about 280 nm.
  • the second optically active element 103 also includes a second p-electrode 134 formed on the upper semiconductor layer 105, and a second n-electrode 135 formed on the first lower semiconductor layer 121 in an area where the second active layer 132 is not formed.
  • the second p-electrode 134 is formed on the upper semiconductor layer 105 via the contact layer 123.
  • the second optically active element 103 is an electroabsorption type optical modulator (EA modulator).
  • the first active layer 122 and the second active layer 132 can be a multiple quantum well structure (MQW structure).
  • the first active layer 122 and the second active layer 132 represent the part including the MQW structure and the optical confinement layers (SCH) above and below it, and also function as the core of the waveguide structure.
  • the optical waveguide 104 comprises a second lower semiconductor layer 141 made of semi-insulating or undoped InP, a third active layer 142 formed on the second lower semiconductor layer 141 and having a ridge-shaped waveguide structure, and an upper semiconductor layer 105 formed on the third active layer 142.
  • the second lower semiconductor layer 141 is formed in a groove formed in the first lower semiconductor layer 121 in the region of the optical waveguide 104 between the first optical active element 102 and the second optical active element 103.
  • the upper semiconductor layer 105 is formed in common to the first optical active element 102, the second optical active element 103, and the optical waveguide 104.
  • the third active layer 142 functions as the core of the optical waveguide 104.
  • the second lower semiconductor layer 141 and the upper semiconductor layer 105 function as cladding.
  • the third active layer 142 can be composed of, for example, InGaAsP with a composition ratio of 1.1 ⁇ m band gap wavelength.
  • the device also includes an etching stop layer 106 formed over the entire surface of the substrate 101.
  • the first optically active element 102, the optical waveguide 104, and the second optically active element 103 are formed on the etching stop layer 106.
  • the etching stop layer 106 is made of a different material than the first lower semiconductor layer 121 and the second lower semiconductor layer 141.
  • the first lower semiconductor layer 121 in the region where the second active layer 132 is not formed is formed thinner than the first lower semiconductor layer 121 in the region where the second active layer 132 is formed.
  • a buried layer 107 is provided that is formed on the first lower semiconductor layer 121 and buries the first active layer 122.
  • the buried layer 107 is composed of a p-type buried layer 107a and an n-type buried layer 107b.
  • the buried layer 107 is not limited to this and can be composed of highly resistive semi-insulating InP.
  • the first n-electrode 125 is formed in the area where the buried layer 107 has been removed, and the first lower semiconductor layer 121 in which the first n-electrode 125 is formed (in the area in which the first active layer 122 is not formed) has a thickness of 200 to 1000 nm. Furthermore, the first n-electrode 125 is formed 2 to 20 ⁇ m away from the first active layer 122.
  • the resistivity ⁇ of n-type InP is 2.7E10 ⁇ 3 ( ⁇ cm) when the doping amount is 1E18 (cm ⁇ 3 ).
  • the thickness of the first lower semiconductor layer 121 in the region where the first n-electrode 125 is formed is t ( ⁇ m)
  • the length of the first optical active element 102 in the waveguiding direction is L ( ⁇ m).
  • the distance between the first n-electrode 125 and the first active layer 122 is d ( ⁇ m).
  • Figure 2 shows the calculation results of the resistance value R when the length L in the waveguide direction is 300 ⁇ m and the thickness t is 0.2, 0.5, and 0.8 ⁇ m.
  • the thickness t of the first lower semiconductor layer 121 made of n-type InP is 0.2 ⁇ m (200 nm)
  • the distance d is 20 ⁇ m or less (2 ⁇ m ⁇ d)
  • a resistance value of 10 ⁇ or less that allows the first optical active element 102 to operate normally can be achieved.
  • the first lower semiconductor layer 121 there is a limit to the thickness of the first lower semiconductor layer 121. If the first lower semiconductor layer 121 is made too thick, the following problems will occur. As is well known, in the semiconductor device according to the embodiment, when forming the buried layer 107, the first active layer 122 is patterned into a ridge shape (high mesa shape), and the buried layer 107 is grown by crystal regrowth on the first lower semiconductor layer 121 on both sides of this.
  • the thickness of the first lower semiconductor layer 121 increases, a problem of abnormal growth occurs in which the thickness of the semiconductor layer growing at the regrowth interface increases abnormally.
  • the resistance value of the first lower semiconductor layer 121 between the first n-electrode 125 and the first active layer 122 is about 1 ⁇ , according to the calculation results shown in FIG. 2.
  • This value is sufficiently smaller than the comparison of the resistance of the LD on the SI substrate and the LD on the n substrate described in Non-Patent Document 1. In this way, according to the embodiment, it can be considered that the influence on the optical output characteristics of the first optical active element 102 can be suppressed.
  • a 10 nm thick etching stop layer 106 is formed on the substrate 101 by crystal growth of undoped InGaAsP.
  • an 800 nm thick InP layer 201 is formed by crystal growth of n-type InP (doping amount 1E18).
  • an active layer 202 is formed (crystal growth) with a thickness of 250 nm from InGaAsP.
  • the crystal growth of each semiconductor layer can be performed, for example, by the well-known metalorganic vapor phase epitaxy method. The crystal growth of each semiconductor layer shown below is similar.
  • active layer 202 in the region that will become the second optically active element 103 is removed to form active layer 202a as shown in FIG. 3B, and active layer 202b of, for example, InGaAsP with a thickness of 280 nm is formed (crystal growth) in the removed area, and active layer 202a and active layer 202b are butt-jointed in the waveguiding direction (butt-joint process).
  • active layer 202a and active layer 202b may have a multiple quantum well structure (MQW structure).
  • MQW structure multiple quantum well structure
  • the thickness is set as described above, including the optical confinement layers (SCH) above and below the MQW structure.
  • predetermined regions of active layer 202a, active layer 202b, and InP layer 201 are removed by etching using a mask pattern (not shown) formed by known photolithography technology to form first lower semiconductor layer 121 and first active layer 122 of first optical active element 102, and first lower semiconductor layer 121 and second optical active element 103, as shown in FIG. 3C.
  • the region of the first optical active element 102 and the second optical active element 103 is the region where the optical waveguide 104 is formed.
  • selective wet etching using the etching stop layer 106 can be used.
  • the etching stop layer 106 made of InGaAsP is not etched, and the layer made of InP can be selectively etched away.
  • the second lower semiconductor layer 141 and the third active layer 142 of the optical waveguide 104 are formed by crystal growth.
  • the second lower semiconductor layer 141 can be formed to a thickness of about 700 nm
  • the third active layer 142 can be formed to a thickness of about 400 nm.
  • a waveguide for the first optically active element 102 is formed by etching using a mask pattern (not shown) formed by known photolithography technology.
  • the mask pattern is shaped to cover the entire area of the second optically active element 103 and the optical waveguide 104, and the area of the second optically active element 103 and the optical waveguide 104 is not patterned.
  • the first lower semiconductor layer 121 is thinned on both sides of the ridge-shaped waveguide structure of the first active layer 122.
  • the region where the first lower semiconductor layer 121 is thinned is the region where the first n-electrode 125 is formed, and as mentioned above, the thickness is thinned to a limit of 200 nm.
  • the first optical active element 102 has an optical waveguide structure with the first active layer 122 as the core.
  • a semiconductor layer doped with a high concentration of conductive impurities n-type impurities
  • the first lower semiconductor layer 121 becomes a semiconductor layer doped with a high concentration of impurities. Therefore, if only the first active layer 122 is ridge-shaped, a semiconductor layer doped with a high concentration of impurities exists not only directly below the ridge-shaped first active layer 122 but also near both side surfaces.
  • the semiconductor layer doped with a high concentration of impurities in the regions other than directly below the first active layer 122 can be separated from the first active layer 122, making it possible to suppress the waveguide loss.
  • InP is crystal-regrown on the first lower semiconductor layer 121 remaining on both sides of the ridge-shaped waveguide structure, thereby burying the ridge-shaped waveguide structure with burying layer 107.
  • a selective growth mask (not shown) made of silicon oxide or the like is first formed on the first active layer 122.
  • p-type InP is regrown to form p-type burying layer 107a.
  • n-type InP is grown to form n-type burying layer 107b, thereby forming burying layer 107 made up of p-type burying layer 107a and n-type burying layer 107b.
  • the upper semiconductor layer 105 is formed by crystal growth of p-type InP, and then the contact layer 203 is formed by crystal growth of InGaAsP or InGaAs.
  • the contact layer 203 in the region of the optical waveguide 104 is removed by etching using a mask pattern (not shown) formed by known photolithography technology, thereby forming contact layers 123 on the first optical active element 102 and on the second optical active element 103, as shown in FIG. 3I.
  • the contact layer 123 on the first optical active element 102 and the contact layer 123 on the second optical active element 103 are formed to be electrically isolated from each other in a planar direction parallel to the surface of the upper semiconductor layer 105.
  • a first p-electrode 124 is formed on the contact layer 123 above the first optically active element 102, and a second p-electrode 134 is formed on the contact layer 123 above the second optically active element 103.
  • the second optically active element 103 and the optical waveguide 104 are patterned into a high mesa structure. Note that, similar to the region of the first optically active element 102 described above, in the second optically active element 103, the first lower semiconductor layer 121 on both sides of the high mesa waveguide structure is thinned.
  • a first n-electrode 125 is formed to electrically connect to the first lower semiconductor layer 121 of the first optical active element 102, and a second n-electrode 135 is formed to electrically connect to the first lower semiconductor layer 121 of the second optical active element 103.
  • the contact layer 123, the upper semiconductor layer 105, and the buried layer 107 in the region where the first n-electrode 125 is to be formed are patterned and removed by known lithography and etching techniques to expose the upper surface of the first lower semiconductor layer 121. Thereafter, the first n-electrode 125 is formed on the exposed upper surface of the first lower semiconductor layer 121.
  • the region in which the first n-electrode of the first lower semiconductor layer made of n-type InP below the first active layer is formed has a thickness of 200 to 1000 nm, so that two monolithically integrated optical active elements can be driven in different ways without causing degradation of the optical output characteristics or optical modulation characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This semiconductor device comprises: a substrate (101) composed of a semi-insulating InP; a first photoactive element (102) formed on the substrate (101); and a second photoactive element (103) formed on the substrate (101). An optical waveguide (104) is provided between the first photoactive element (102) and the second photoactive element (103), the optical waveguide (104) functioning as an electrical separation part between the first photoactive element (102) and the second photoactive element (103) and also optically connecting the first photoactive element (102) and the second photoactive element (103). The thickness of a first lower semi-conducting layer (121) of the first photoactive element (102) is 200-1000 nm.

Description

半導体装置Semiconductor Device
 本発明は、複数の光能動素子が集積された半導体装置に関する。 The present invention relates to a semiconductor device in which multiple optically active elements are integrated.
 光通信では、変調機能を有する光源が用いられている。例えば、伝送距離が100km以下の比較的短距離の光通信では、電界吸収型の光変調器とDFBレーザとが集積されたEML(Electroabsorption-modulater Intergrated Distributed Feedback Laser)が用いられている。 In optical communications, light sources with modulation capabilities are used. For example, in relatively short-distance optical communications with transmission distances of 100 km or less, an electroabsorption-modulator integrated distributed feedback laser (EML), which integrates an electroabsorption optical modulator and a DFB laser, is used.
 従来のEMLは、搬送波としての光を生成するDFBレーザと、搬送波を変調するためのEA変調器とが、単一の半導体基板にモノリシックに集積されている(特許文献1、特許文献2)。この構成において、半導体基板は、導電性極性(主にn極性InP基板)が用いられている。従って、集積している各素子の部分の基板の電気極性については、構造上必然的にショートしている。このため、DFBレーザおよびEA変調器の動作時は、基板をGNDとし、DFBレーザ部には正極性電圧を印加し、EA変調器は負極性電圧を印加している。この構成では、EA変調器には単相の変調信号を印加して駆動することになる。例えば、EA変調器の電極の片方をGNDに接続して単相駆動を行う。 In conventional EML, a DFB laser that generates light as a carrier wave and an EA modulator that modulates the carrier wave are monolithically integrated on a single semiconductor substrate (Patent Document 1, Patent Document 2). In this configuration, a conductive polarity (mainly an n-polarity InP substrate) is used for the semiconductor substrate. Therefore, the electrical polarity of the substrate in the integrated element portion is inevitably shorted due to the structure. For this reason, when the DFB laser and EA modulator are in operation, the substrate is grounded, a positive voltage is applied to the DFB laser portion, and a negative voltage is applied to the EA modulator. In this configuration, the EA modulator is driven by applying a single-phase modulation signal. For example, one of the electrodes of the EA modulator is connected to GND for single-phase drive.
特許第5823920号公報Patent No. 5823920 特許第6717733号公報Patent No. 6717733
 ところで、EA変調器の特性を最大限引き出すためには、差動駆動を行うほうが望ましい。差動駆動にはコモンモードノイズの抑制による光波形のS/N改善、各信号線に印加する変調振幅電圧の半減という効果があるためである(非特許文献1)。しかしながら、従来の構造では、基板側がショートしているために、DFBレーザは単相駆動し、EA変調器は差動駆動することができない。このように、従来の技術では、モノリシックに集積する2つの光能動素子を各々異なる方法で駆動することができないという問題があった。 Incidentally, to maximize the characteristics of an EA modulator, it is preferable to use differential driving. This is because differential driving has the effect of improving the S/N ratio of the optical waveform by suppressing common mode noise, and halving the modulation amplitude voltage applied to each signal line (Non-Patent Document 1). However, in the conventional structure, the substrate side is shorted, so the DFB laser is driven in a single phase and the EA modulator cannot be driven differentially. Thus, with conventional technology, there was a problem in that it was not possible to drive two monolithically integrated optical active elements in different ways.
 本発明は、以上のような問題点を解消するためになされたものであり、モノリシックに集積する2つの光能動素子を各々異なる方法で駆動することを目的とする。 The present invention was made to solve the above problems, and aims to drive two monolithically integrated optical active elements in different ways.
 本発明に係る半導体装置は、半絶縁性のInPから構成された基板と、基板の上に形成された第1光能動素子と、基板の上に形成された第2光能動素子と、第1光能動素子と第2光能動素子との間に配置され、第1光能動素子と第2光能動素子との電気分離部として機能するとともに、第1光能動素子と第2光能動素子とを光学的に接続する光導波路とを備え、第1光能動素子は、基板の上に形成されたn型のInPからなる第1下部半導体層、第1下部半導体層の上に形成されてリッジ状の導波路構造とされた第1活性層、第1活性層の上に形成されたp型のInPからなる上部半導体層、上部半導体層の上に形成された第1p電極、第1活性層が形成されていない領域の第1下部半導体層の上に形成された第1n電極を備え、第2光能動素子は、第1下部半導体層の上に形成されリッジ状の導波路構造とされた第2活性層、第2活性層の上に形成された上部半導体層、上部半導体層の上に形成された第2p電極、第2活性層が形成されていない領域の第1下部半導体層の上に形成された第2n電極を備え、光導波路は、光導波路の領域における第1下部半導体層に形成された溝に形成された半絶縁性またはアンドープのInPからなる第2下部半導体層、第2下部半導体層の上に形成されリッジ状の導波路構造とされ第3活性層、第3活性層の上に形成された上部半導体層を備え、第2活性層が形成されていない領域の第1下部半導体層は、第2活性層が形成されている領域の第1下部半導体層より薄く形成され、第1下部半導体層の上に形成されて第1活性層を埋め込む埋め込み層を備え、第1n電極は、埋め込み層が除去された箇所に形成され、第1n電極が形成されている第1下部半導体層は、厚さが200~1000nmとされている。 The semiconductor device according to the present invention comprises a substrate made of semi-insulating InP, a first optically active element formed on the substrate, a second optically active element formed on the substrate, and an optical waveguide disposed between the first optically active element and the second optically active element and functioning as an electrical separator between the first optically active element and the second optically active element, and optically connecting the first optically active element and the second optically active element; the first optically active element comprises a first lower semiconductor layer made of n-type InP formed on the substrate, a first active layer formed on the first lower semiconductor layer and having a ridge-shaped waveguide structure, an upper semiconductor layer made of p-type InP formed on the first active layer, a first p electrode formed on the upper semiconductor layer, and a first n electrode formed on the first lower semiconductor layer in an area where the first active layer is not formed; and the second optically active element comprises a second active layer formed on the first lower semiconductor layer and having a ridge-shaped waveguide structure. layer, an upper semiconductor layer formed on the second active layer, a second p electrode formed on the upper semiconductor layer, and a second n electrode formed on the first lower semiconductor layer in the region where the second active layer is not formed. The optical waveguide comprises a second lower semiconductor layer made of semi-insulating or undoped InP formed in a groove formed in the first lower semiconductor layer in the optical waveguide region, a third active layer formed on the second lower semiconductor layer and having a ridge-shaped waveguide structure, and an upper semiconductor layer formed on the third active layer. The first lower semiconductor layer in the region where the second active layer is not formed is formed thinner than the first lower semiconductor layer in the region where the second active layer is formed, and comprises a buried layer formed on the first lower semiconductor layer to bury the first active layer. The first n electrode is formed in the location where the buried layer has been removed, and the first lower semiconductor layer in which the first n electrode is formed has a thickness of 200 to 1000 nm.
 以上説明したように、本発明によれば、第1活性層の下層のn型のInPからなる第1下部半導体層の第1n電極が形成されている領域は、厚さを200~1000nmとしたので、モノリシックに集積する2つの光能動素子を、光出力特性や光変調特性の劣化を招くことなく各々異なる方法で駆動することができる。 As described above, according to the present invention, the region in which the first n-electrode of the first lower semiconductor layer made of n-type InP below the first active layer is formed has a thickness of 200 to 1000 nm, so that two monolithically integrated optical active elements can be driven in different ways without causing degradation of the optical output characteristics or optical modulation characteristics.
図1Aは、本発明の実施の形態に係る半導体装置の構成を示す断面図である。FIG. 1A is a cross-sectional view showing a configuration of a semiconductor device according to an embodiment of the present invention. 図1Bは、本発明の実施の形態に係る半導体装置の一部構成を示す断面図である。FIG. 1B is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention. 図1Cは、本発明の実施の形態に係る半導体装置の一部構成を示す断面図である。FIG. 1C is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention. 図1Dは、本発明の実施の形態に係る半導体装置の一部構成を示す断面図である。FIG. 1D is a cross-sectional view showing a partial configuration of a semiconductor device according to an embodiment of the present invention. 図2は、導波方向の長さLを300μm、厚さtを0.2,0.5,0.8μmとした場合の第1n電極125と第1活性層122との間の第1下部半導体層121の抵抗値Rの計算結果を示す特性図である。FIG. 2 is a characteristic diagram showing the calculation results of the resistance value R of the first lower semiconductor layer 121 between the first n-electrode 125 and the first active layer 122 when the length L in the waveguide direction is 300 μm and the thickness t is 0.2, 0.5, and 0.8 μm. 図3Aは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3A is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Bは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3B is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Cは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3C is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Dは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3D is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Eは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3E is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Fは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3F is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Gは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3G is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Hは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3H is a cross-sectional view showing a state of the semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Iは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3I is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Jは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3J is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Kは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3K is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Lは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3L is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図3Mは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3M is a cross-sectional view showing a state of a semiconductor device in the middle of a process for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
 以下、本発明の実施の形態に係る半導体装置について図1A、図1B、図1C、図1Dを参照して説明する。この半導体装置は、半絶縁性のInPから構成された基板101と、基板101の上に形成された第1光能動素子102と、基板101の上に形成された第2光能動素子103とを備える。第1光能動素子102と第2光能動素子103との間には、第1光能動素子102と第2光能動素子103との電気分離部として機能するとともに、第1光能動素子102と第2光能動素子103とを光学的に接続する光導波路104を備える。 Below, a semiconductor device according to an embodiment of the present invention will be described with reference to Figures 1A, 1B, 1C, and 1D. This semiconductor device comprises a substrate 101 made of semi-insulating InP, a first optically active element 102 formed on the substrate 101, and a second optically active element 103 formed on the substrate 101. Between the first optically active element 102 and the second optically active element 103, there is provided an optical waveguide 104 which functions as an electrical separator between the first optically active element 102 and the second optically active element 103, and which optically connects the first optically active element 102 and the second optically active element 103.
 基板101は、例えば、Feをドープすることで高抵抗とされたInPから構成することができる。また、基板101は、InPの(001)面を主表面とすることができる。なお、図1Aは、搬送波としての光の導波方向に平行な断面を示している。また、図11B、図1C、図1Dは、導波方向に垂直な断面を示している。 The substrate 101 can be made of InP that has been doped with Fe to give it high resistance. The substrate 101 can have the (001) plane of InP as its main surface. Note that FIG. 1A shows a cross section parallel to the guiding direction of light as a carrier wave. Also, FIGS. 11B, 1C, and 1D show cross sections perpendicular to the guiding direction.
 第1光能動素子102は、基板101の上に形成されたn型のInP(例えばドープ量1E18cm-3)からなる第1下部半導体層121、第1下部半導体層121の上に形成されてリッジ状の導波路構造とされた第1活性層122、第1活性層122の上に形成されたp型のInPからなる上部半導体層105を備える。第1活性層122は、例えば、InGaAsPやInGaAlAsから構成することができる。また、第1活性層122は、厚さ250nm程度とすることができる。 The first optically active element 102 includes a first lower semiconductor layer 121 made of n-type InP (e.g., doped at 1E18 cm -3 ) formed on a substrate 101, a first active layer 122 formed on the first lower semiconductor layer 121 to have a ridge-shaped waveguide structure, and an upper semiconductor layer 105 made of p-type InP formed on the first active layer 122. The first active layer 122 can be made of, for example, InGaAsP or InGaAlAs. The first active layer 122 can have a thickness of about 250 nm.
 また、第1光能動素子102は、上部半導体層105の上に形成された第1p電極124、第1活性層122が形成されていない領域の第1下部半導体層121の上に形成された第1n電極125を備える。この例では、上部半導体層105の上にコンタクト層123を介して第1p電極124が形成されている。コンタクト層123は、例えば、p型不純物が高濃度に導入されたInGaAsから構成することができる。第1光能動素子102は、第1活性層122に対して基板101の平面に垂直な方向に電流注入を行う、いわゆる縦方向電流注入型の半導体レーザである。例えば、第1光能動素子102は、第1活性層122の上面、下面、または側面に回折格子を備える分布帰還型(Distributed Feedback:DFB)レーザとすることができる。この場合、第1光能動素子102の導波方向の長さが共振器長となる。 The first optically active element 102 also includes a first p-electrode 124 formed on the upper semiconductor layer 105 and a first n-electrode 125 formed on the first lower semiconductor layer 121 in an area where the first active layer 122 is not formed. In this example, the first p-electrode 124 is formed on the upper semiconductor layer 105 via a contact layer 123. The contact layer 123 can be made of, for example, InGaAs doped with a high concentration of p-type impurities. The first optically active element 102 is a so-called vertical current injection type semiconductor laser that injects current into the first active layer 122 in a direction perpendicular to the plane of the substrate 101. For example, the first optically active element 102 can be a distributed feedback (DFB) laser that includes a diffraction grating on the upper surface, lower surface, or side surface of the first active layer 122. In this case, the length of the first optically active element 102 in the waveguiding direction is the resonator length.
 第2光能動素子103は、第1下部半導体層121の上に形成されリッジ状の導波路構造とされた第2活性層132、第2活性層132の上に形成された上部半導体層105を備える。第2活性層132は、例えば、InGaAsPやInGaAlAsから構成することができる。また、第2活性層132は、厚さ280nm程度とすることができる。 The second optically active element 103 includes a second active layer 132 formed on the first lower semiconductor layer 121 and having a ridge-shaped waveguide structure, and an upper semiconductor layer 105 formed on the second active layer 132. The second active layer 132 can be made of, for example, InGaAsP or InGaAlAs. The second active layer 132 can have a thickness of about 280 nm.
 また、第2光能動素子103は、上部半導体層105の上に形成された第2p電極134、第2活性層132が形成されていない領域の第1下部半導体層121の上に形成された第2n電極135を備える。この例では、上部半導体層105の上にコンタクト層123を介して第2p電極134が形成されている。第2光能動素子103は、電界吸収型の光変調器(EA変調器)である。 The second optically active element 103 also includes a second p-electrode 134 formed on the upper semiconductor layer 105, and a second n-electrode 135 formed on the first lower semiconductor layer 121 in an area where the second active layer 132 is not formed. In this example, the second p-electrode 134 is formed on the upper semiconductor layer 105 via the contact layer 123. The second optically active element 103 is an electroabsorption type optical modulator (EA modulator).
 また、第1活性層122、第2活性層132は、多重量子井戸構造(MQW構造)とすることができる。第1活性層122、第2活性層132は、MQW構造と、この上下の光閉じ込め層(SCH)とを含めた部分を示し、導波路構造のコアとしても機能する。 The first active layer 122 and the second active layer 132 can be a multiple quantum well structure (MQW structure). The first active layer 122 and the second active layer 132 represent the part including the MQW structure and the optical confinement layers (SCH) above and below it, and also function as the core of the waveguide structure.
 光導波路104は、半絶縁性またはアンドープのInPからなる第2下部半導体層141、第2下部半導体層141の上に形成されリッジ状の導波路構造とされ第3活性層142、第3活性層142の上に形成された上部半導体層105を備える。第2下部半導体層141は、第1光能動素子102と第2光能動素子103との間の、光導波路104の領域の第1下部半導体層121に形成された溝に形成されている。なお、第1光能動素子102、第2光能動素子103、光導波路104において、上部半導体層105が共通に形成されている。 The optical waveguide 104 comprises a second lower semiconductor layer 141 made of semi-insulating or undoped InP, a third active layer 142 formed on the second lower semiconductor layer 141 and having a ridge-shaped waveguide structure, and an upper semiconductor layer 105 formed on the third active layer 142. The second lower semiconductor layer 141 is formed in a groove formed in the first lower semiconductor layer 121 in the region of the optical waveguide 104 between the first optical active element 102 and the second optical active element 103. The upper semiconductor layer 105 is formed in common to the first optical active element 102, the second optical active element 103, and the optical waveguide 104.
 第3活性層142は、光導波路104のコアとして機能する。光導波路104において、第2下部半導体層141および上部半導体層105は、クラッドとして機能する。第3活性層142は、例えば、バンドギャップ波長1.1μmの組成比としたInGaAsPから構成することができる。 The third active layer 142 functions as the core of the optical waveguide 104. In the optical waveguide 104, the second lower semiconductor layer 141 and the upper semiconductor layer 105 function as cladding. The third active layer 142 can be composed of, for example, InGaAsP with a composition ratio of 1.1 μm band gap wavelength.
 また、この例では、基板101の上の全域に形成されたエッチングストップ層106を備える。第1光能動素子102、光導波路104、第2光能動素子103は、エッチングストップ層106の上に形成されている。エッチングストップ層106は、よく知られているように、第1下部半導体層121、第2下部半導体層141とは、異なる材料から構成する。 In this example, the device also includes an etching stop layer 106 formed over the entire surface of the substrate 101. The first optically active element 102, the optical waveguide 104, and the second optically active element 103 are formed on the etching stop layer 106. As is well known, the etching stop layer 106 is made of a different material than the first lower semiconductor layer 121 and the second lower semiconductor layer 141.
 また、第2活性層132が形成されていない領域の第1下部半導体層121は、第2活性層132が形成されている領域の第1下部半導体層121より薄く形成されている。また、第1下部半導体層121の上に形成されて第1活性層122を埋め込む埋め込み層107を備える。この例では、埋め込み層107を、p型埋め込み層107aとn型埋め込み層107bとから構成している。なお、これに限らず、埋め込み層107は、高抵抗な半絶縁性のInPから構成することができる。 The first lower semiconductor layer 121 in the region where the second active layer 132 is not formed is formed thinner than the first lower semiconductor layer 121 in the region where the second active layer 132 is formed. Also, a buried layer 107 is provided that is formed on the first lower semiconductor layer 121 and buries the first active layer 122. In this example, the buried layer 107 is composed of a p-type buried layer 107a and an n-type buried layer 107b. However, the buried layer 107 is not limited to this and can be composed of highly resistive semi-insulating InP.
 また、第1n電極125は、埋め込み層107が除去された箇所に形成され、第1n電極125が形成されている(第1活性層122が形成されていない領域の)第1下部半導体層121は、厚さが200~1000nmとされている。さらに、第1n電極125は、第1活性層122から2~20μm離れて形成されている。 The first n-electrode 125 is formed in the area where the buried layer 107 has been removed, and the first lower semiconductor layer 121 in which the first n-electrode 125 is formed (in the area in which the first active layer 122 is not formed) has a thickness of 200 to 1000 nm. Furthermore, the first n-electrode 125 is formed 2 to 20 μm away from the first active layer 122.
 次に、第1下部半導体層121の厚さについて説明する。n型のInPの抵抗率ρは、ドープ量1E18(cm-3)の場合、2.7E10-3(Ωcm)である。図1A、図1Bに示すように、第1n電極125が形成されている領域の第1下部半導体層121の厚さをt(μm)、第1光能動素子102の導波方向の長さをL(μm)とする。また、第1n電極125と第1活性層122との距離をd(μm)とする。第1n電極125と第1活性層122との間の第1下部半導体層121の抵抗値R(Ω)は、抵抗率をρ(Ωcm)として、「R=ρ×d/(L×t)」で表すことができる。 Next, the thickness of the first lower semiconductor layer 121 will be described. The resistivity ρ of n-type InP is 2.7E10 −3 (Ωcm) when the doping amount is 1E18 (cm −3 ). As shown in FIG. 1A and FIG. 1B, the thickness of the first lower semiconductor layer 121 in the region where the first n-electrode 125 is formed is t (μm), and the length of the first optical active element 102 in the waveguiding direction is L (μm). In addition, the distance between the first n-electrode 125 and the first active layer 122 is d (μm). The resistance value R (Ω) of the first lower semiconductor layer 121 between the first n-electrode 125 and the first active layer 122 can be expressed as "R=ρ×d/(L×t)" with the resistivity being ρ (Ωcm).
 図2に、導波方向の長さLを300μm、厚さtを0.2,0.5,0.8μmとした場合の抵抗値Rの計算結果を示す。図2に示すように、第1光能動素子102の導波方向の一般的な長さ300μmにおいても、n型InPからなる第1下部半導体層121の厚さtが0.2μm(200nm)においては、距離dが20μm以下(ただし2μm≦d)であれば、第1光能動素子102が正常に動作可能な抵抗値10Ω以下を実現することができる。図2に示すように、抵抗の低減という観点からは、第1下部半導体層121は、厚さ200nmを超えて厚いほど抵抗の低減が可能である。 Figure 2 shows the calculation results of the resistance value R when the length L in the waveguide direction is 300 μm and the thickness t is 0.2, 0.5, and 0.8 μm. As shown in Figure 2, even with the typical length of 300 μm in the waveguide direction of the first optical active element 102, when the thickness t of the first lower semiconductor layer 121 made of n-type InP is 0.2 μm (200 nm), if the distance d is 20 μm or less (2 μm≦d), a resistance value of 10 Ω or less that allows the first optical active element 102 to operate normally can be achieved. As shown in Figure 2, from the perspective of reducing resistance, the thicker the first lower semiconductor layer 121 is, exceeding 200 nm, the more the resistance can be reduced.
 しかしながら、第1下部半導体層121の厚さには限界がある。第1下部半導体層121を厚くしすぎると、次に示すような問題が生じる。実施の形態に係る半導体装置においては、よく知られているように、埋め込み層107の形成においては、第1活性層122をパターニングしてリッジ形状(ハイメサ形状)に形成し、この両脇の第1下部半導体層121の上に、結晶再成長により埋め込み層107を成長させている。 However, there is a limit to the thickness of the first lower semiconductor layer 121. If the first lower semiconductor layer 121 is made too thick, the following problems will occur. As is well known, in the semiconductor device according to the embodiment, when forming the buried layer 107, the first active layer 122 is patterned into a ridge shape (high mesa shape), and the buried layer 107 is grown by crystal regrowth on the first lower semiconductor layer 121 on both sides of this.
 このような、結晶再成長においては、第1下部半導体層121の厚さが増大すると、再成長界面で成長している半導体層の厚さが異常に増加する異常成長の問題が生じる。この問題を抑制するためには、再成長する第1下部半導体層121の厚さを1000nm以下に制限することが必要である。従って、第1下部半導体層121は、厚さが200~1000nmとされていることが重要となる。 In this type of crystal regrowth, if the thickness of the first lower semiconductor layer 121 increases, a problem of abnormal growth occurs in which the thickness of the semiconductor layer growing at the regrowth interface increases abnormally. To suppress this problem, it is necessary to limit the thickness of the regrown first lower semiconductor layer 121 to 1000 nm or less. Therefore, it is important that the thickness of the first lower semiconductor layer 121 is set to 200 to 1000 nm.
 例えば、第1光能動素子102の導波方向の長さ(共振器長)を300μmとし、厚さtを500nmとし、距離をd(μm)とし、第1下部半導体層121のドープ量が1E18(cm-3)とすると、図2に示す計算結果より、第1n電極125と第1活性層122との間の第1下部半導体層121の抵抗値は約1Ωとなる。この値は、非特許文献1に記載のSI基板上のLDとn基板上のLDの抵抗の比較に比べて十分小さい値である。このように、実施の形態によれば、第1光能動素子102の光出力特性に与える影響を抑制可能と考えることができる。 For example, if the length (resonator length) of the first optical active element 102 in the waveguiding direction is 300 μm, the thickness t is 500 nm, the distance d (μm), and the doping amount of the first lower semiconductor layer 121 is 1E 18 (cm −3 ), the resistance value of the first lower semiconductor layer 121 between the first n-electrode 125 and the first active layer 122 is about 1Ω, according to the calculation results shown in FIG. 2. This value is sufficiently smaller than the comparison of the resistance of the LD on the SI substrate and the LD on the n substrate described in Non-Patent Document 1. In this way, according to the embodiment, it can be considered that the influence on the optical output characteristics of the first optical active element 102 can be suppressed.
 次に、本発明の実施の形態に係る半導体装置の製造方法について、図3A~図3Mを参照して説明する。 Next, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to Figures 3A to 3M.
 まず、図3Aに示すように、基板101の上に、アンドープInGaAsPを結晶成長することで、厚さ10nmのエッチングストップ層106を形成する。引き続き、n型のInP(ドープ量1E18)を結晶成長して厚さ800nmのInP層201を形成する。引き続き、InGaAsPによる厚さ250nmの活性層202を形成(結晶成長)する。各半導体層の結晶成長は、例えば、よく知られた有機金属気相成長法により実施することができる。以下に示す各半導体層の結晶成長も同様である。 First, as shown in FIG. 3A, a 10 nm thick etching stop layer 106 is formed on the substrate 101 by crystal growth of undoped InGaAsP. Next, an 800 nm thick InP layer 201 is formed by crystal growth of n-type InP (doping amount 1E18). Next, an active layer 202 is formed (crystal growth) with a thickness of 250 nm from InGaAsP. The crystal growth of each semiconductor layer can be performed, for example, by the well-known metalorganic vapor phase epitaxy method. The crystal growth of each semiconductor layer shown below is similar.
 次に、第2光能動素子103とする領域の活性層202を除去することで、図3Bに示すように、活性層202aとし、除去した箇所に、例えばInGaAsPによる厚さ280nmの活性層202bを形成(結晶成長)し、導波方向に、活性層202aと活性層202bとをバットジョイントさせる(バットジョイントプロセス)。なお、活性層202a、活性層202bは、多重量子井戸構造(MQW構造)とすることができる。この場合、MQW構造の上下の光閉じ込め層(SCH)も含めて上述した厚さとする。 Next, the active layer 202 in the region that will become the second optically active element 103 is removed to form active layer 202a as shown in FIG. 3B, and active layer 202b of, for example, InGaAsP with a thickness of 280 nm is formed (crystal growth) in the removed area, and active layer 202a and active layer 202b are butt-jointed in the waveguiding direction (butt-joint process). Note that active layer 202a and active layer 202b may have a multiple quantum well structure (MQW structure). In this case, the thickness is set as described above, including the optical confinement layers (SCH) above and below the MQW structure.
 次に、活性層202a、活性層202b、およびInP層201の所定領域を、公知のフォトリソグラフィー技術により形成したマスクパターン(不図示)を用いたエッチング処理により除去することで、図3Cに示すように、第1光能動素子102の第1下部半導体層121、第1活性層122を形成し、第2光能動素子103の第1下部半導体層121、第2光能動素子103を形成する。 Next, predetermined regions of active layer 202a, active layer 202b, and InP layer 201 are removed by etching using a mask pattern (not shown) formed by known photolithography technology to form first lower semiconductor layer 121 and first active layer 122 of first optical active element 102, and first lower semiconductor layer 121 and second optical active element 103, as shown in FIG. 3C.
 第1光能動素子102と第2光能動素子103との領域が、光導波路104を形成する領域となる。InP層201のエッチング処理では、エッチングストップ層106を用いた選択的なウエットエッチングを用いることができる。例えば、HClとH3PO4とをエッチング液とすることで、InGaAsPからなるエッチングストップ層106はエッチングされず、InPからなる層を選択的にエッチング除去できる。 The region of the first optical active element 102 and the second optical active element 103 is the region where the optical waveguide 104 is formed. In the etching process of the InP layer 201, selective wet etching using the etching stop layer 106 can be used. For example, by using HCl and H3PO4 as an etching solution, the etching stop layer 106 made of InGaAsP is not etched, and the layer made of InP can be selectively etched away.
 次に、図3Dに示すように、光導波路104の第2下部半導体層141と第3活性層142とを、結晶成長により形成する。第2下部半導体層141は、厚さ700nm程度に形成し、第3活性層142は、厚さ400nm程度に形成することができる。 Next, as shown in FIG. 3D, the second lower semiconductor layer 141 and the third active layer 142 of the optical waveguide 104 are formed by crystal growth. The second lower semiconductor layer 141 can be formed to a thickness of about 700 nm, and the third active layer 142 can be formed to a thickness of about 400 nm.
 次に、公知のフォトリソグラフィー技術により形成したマスクパターン(不図示)を用いたエッチング処理により、図3Eに示すように、第1光能動素子102の導波路形成を行う。上記マスクパターンは、第2光能動素子103、光導波路104の領域は全域を覆う形状とし、第2光能動素子103、光導波路104の領域はパターニングを行わない。 Next, as shown in FIG. 3E, a waveguide for the first optically active element 102 is formed by etching using a mask pattern (not shown) formed by known photolithography technology. The mask pattern is shaped to cover the entire area of the second optically active element 103 and the optical waveguide 104, and the area of the second optically active element 103 and the optical waveguide 104 is not patterned.
 なお、この第1光能動素子102の加工において、第1活性層122のリッジ状の導波路構造の両側方の第1下部半導体層121を薄くする。第1下部半導体層121を薄くする領域は、第1n電極125が形成される領域であり、前述したように厚さ200nmを限界として薄くする。 In the processing of the first optically active element 102, the first lower semiconductor layer 121 is thinned on both sides of the ridge-shaped waveguide structure of the first active layer 122. The region where the first lower semiconductor layer 121 is thinned is the region where the first n-electrode 125 is formed, and as mentioned above, the thickness is thinned to a limit of 200 nm.
 第1光能動素子102は、第1活性層122をコアとする光導波路構造とされているが、導波方向断面において、第1活性層122の近くに、導電型不純物(n型不純物)が高濃度にドープされた半導体層が存在すると、よく知られているように導波損失が発生する。この場合、第1下部半導体層121が、不純物が高濃度にドープされた半導体層となる。このため、第1活性層122のみをリッジ状とすると、リッジ状の第1活性層122の直下に加え、両側面の近傍にも、不純物が高濃度にドープされた半導体層が存在することになる。これに対し、第1活性層122のリッジ状の導波路構造の両側方の第1下部半導体層121を薄くすることで、第1活性層122の直下以外の領域の不純物が高濃度にドープされた半導体層を、第1活性層122から離すことができ、導波損失を抑制できるようになる。 The first optical active element 102 has an optical waveguide structure with the first active layer 122 as the core. However, if a semiconductor layer doped with a high concentration of conductive impurities (n-type impurities) exists near the first active layer 122 in the cross section in the waveguide direction, a waveguide loss occurs, as is well known. In this case, the first lower semiconductor layer 121 becomes a semiconductor layer doped with a high concentration of impurities. Therefore, if only the first active layer 122 is ridge-shaped, a semiconductor layer doped with a high concentration of impurities exists not only directly below the ridge-shaped first active layer 122 but also near both side surfaces. In contrast, by thinning the first lower semiconductor layer 121 on both sides of the ridge-shaped waveguide structure of the first active layer 122, the semiconductor layer doped with a high concentration of impurities in the regions other than directly below the first active layer 122 can be separated from the first active layer 122, making it possible to suppress the waveguide loss.
 次に、図3Fに示すように、リッジ状の導波路構造の両側方に残した第1下部半導体層121の上に、InPを結晶再成長することで、リッジ状の導波路構造を埋め込み層107で埋め込む。例えば、まず、第1活性層122の上に酸化シリコンなどから構成した選択制成長マスク(不図示)を形成する。次いで、p型のInPを再成長することで、p型埋め込み層107aを形成する。引き続き、n型のInPを成長することで、n型埋め込み層107bを形成し、p型埋め込み層107aとn型埋め込み層107bとから構成した埋め込み層107を形成する。 Next, as shown in FIG. 3F, InP is crystal-regrown on the first lower semiconductor layer 121 remaining on both sides of the ridge-shaped waveguide structure, thereby burying the ridge-shaped waveguide structure with burying layer 107. For example, a selective growth mask (not shown) made of silicon oxide or the like is first formed on the first active layer 122. Next, p-type InP is regrown to form p-type burying layer 107a. Subsequently, n-type InP is grown to form n-type burying layer 107b, thereby forming burying layer 107 made up of p-type burying layer 107a and n-type burying layer 107b.
 次に、図3G、図3Hに示すように、p型のInPを結晶成長することで上部半導体層105を形成し、さらに、InGaAsPまたはInGaAsを結晶成長することで、コンタクト層203を形成する。 Next, as shown in Figures 3G and 3H, the upper semiconductor layer 105 is formed by crystal growth of p-type InP, and then the contact layer 203 is formed by crystal growth of InGaAsP or InGaAs.
 次に、光導波路104の領域のコンタクト層203を、公知のフォトリソグラフィー技術により形成したマスクパターン(不図示)を用いたエッチング処理により除去することで、図3Iに示すように、第1光能動素子102の上および第2光能動素子103の上の各々にコンタクト層123を形成する。第1光能動素子102の上のコンタクト層123と、第2光能動素子103の上のコンタクト層123とは、上部半導体層105の表面に平行な面方向において、互いに電気的に分離した状態に形成する。 Next, the contact layer 203 in the region of the optical waveguide 104 is removed by etching using a mask pattern (not shown) formed by known photolithography technology, thereby forming contact layers 123 on the first optical active element 102 and on the second optical active element 103, as shown in FIG. 3I. The contact layer 123 on the first optical active element 102 and the contact layer 123 on the second optical active element 103 are formed to be electrically isolated from each other in a planar direction parallel to the surface of the upper semiconductor layer 105.
 次に、図3J、図3Kに示すように、第1光能動素子102の上のコンタクト層123の上に第1p電極124を形成し、第2光能動素子103の上のコンタクト層123の上に第2p電極134を形成する。また、図3Lに示すように、第2光能動素子103と光導波路104を、ハイメサ構造にパターニングする。なお、前述した第1光能動素子102の領域と同様に、第2光能動素子103においては、ハイメサの導波路構造の両側方の第1下部半導体層121を薄くする。 Next, as shown in Figures 3J and 3K, a first p-electrode 124 is formed on the contact layer 123 above the first optically active element 102, and a second p-electrode 134 is formed on the contact layer 123 above the second optically active element 103. Also, as shown in Figure 3L, the second optically active element 103 and the optical waveguide 104 are patterned into a high mesa structure. Note that, similar to the region of the first optically active element 102 described above, in the second optically active element 103, the first lower semiconductor layer 121 on both sides of the high mesa waveguide structure is thinned.
 次に、図3Mに示すように、第1光能動素子102の第1下部半導体層121に電気的に接続する第1n電極125を形成し、第2光能動素子103の第1下部半導体層121に電気的に接続する第2n電極135を形成する。第1n電極125の形成においては、第1n電極125を形成する領域のコンタクト層123、上部半導体層105、埋め込み層107を、公知のリソグラフィー技術およびエッチング技術によりパターニングして除去し、第1下部半導体層121の上面を露出させる。この後、露出した第1下部半導体層121の上面に第1n電極125を形成する。 Next, as shown in FIG. 3M, a first n-electrode 125 is formed to electrically connect to the first lower semiconductor layer 121 of the first optical active element 102, and a second n-electrode 135 is formed to electrically connect to the first lower semiconductor layer 121 of the second optical active element 103. In forming the first n-electrode 125, the contact layer 123, the upper semiconductor layer 105, and the buried layer 107 in the region where the first n-electrode 125 is to be formed are patterned and removed by known lithography and etching techniques to expose the upper surface of the first lower semiconductor layer 121. Thereafter, the first n-electrode 125 is formed on the exposed upper surface of the first lower semiconductor layer 121.
 以上に説明したように、本発明によれば、第1活性層の下層のn型のInPからなる第1下部半導体層の第1n電極が形成されている領域は、厚さを200~1000nmとしたので、モノリシックに集積する2つの光能動素子を、光出力特性や光変調特性の劣化を招くことなく各々異なる方法で駆動することができるようになる。 As described above, according to the present invention, the region in which the first n-electrode of the first lower semiconductor layer made of n-type InP below the first active layer is formed has a thickness of 200 to 1000 nm, so that two monolithically integrated optical active elements can be driven in different ways without causing degradation of the optical output characteristics or optical modulation characteristics.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 The present invention is not limited to the embodiments described above, and it is clear that many modifications and combinations can be implemented by those with ordinary skill in the art within the technical concept of the present invention.
 101…基板、102…第1光能動素子、103…第2光能動素子、104…光導波路、105…上部半導体層、106…エッチングストップ層、107…埋め込み層、107a…p型埋め込み層、107b…n型埋め込み層、121…第1下部半導体層、122…第1活性層、123…コンタクト層、124…第1p電極、125…第1n電極、132…第2活性層、134…第2p電極、135…第2n電極、141…第2下部半導体層、142…第3活性層。 101...substrate, 102...first optical active element, 103...second optical active element, 104...optical waveguide, 105...upper semiconductor layer, 106...etching stop layer, 107...buried layer, 107a...p-type buried layer, 107b...n-type buried layer, 121...first lower semiconductor layer, 122...first active layer, 123...contact layer, 124...first p-electrode, 125...first n-electrode, 132...second active layer, 134...second p-electrode, 135...second n-electrode, 141...second lower semiconductor layer, 142...third active layer.

Claims (3)

  1.  半絶縁性のInPから構成された基板と、
     前記基板の上に形成された第1光能動素子と、前記基板の上に形成された第2光能動素子と、前記第1光能動素子と前記第2光能動素子との間に配置され、前記第1光能動素子と前記第2光能動素子との電気分離部として機能するとともに、前記第1光能動素子と前記第2光能動素子とを光学的に接続する光導波路とを備え、
     前記第1光能動素子は、前記基板の上に形成されたn型のInPからなる第1下部半導体層、前記第1下部半導体層の上に形成されてリッジ状の導波路構造とされた第1活性層、前記第1活性層の上に形成されたp型のInPからなる上部半導体層、前記上部半導体層の上に形成された第1p電極、前記第1活性層が形成されていない領域の前記第1下部半導体層の上に形成された第1n電極を備え、
     前記第2光能動素子は、前記第1下部半導体層の上に形成されリッジ状の導波路構造とされた第2活性層、前記第2活性層の上に形成された前記上部半導体層、前記上部半導体層の上に形成された第2p電極、前記第2活性層が形成されていない領域の前記第1下部半導体層の上に形成された第2n電極を備え、
     前記光導波路は、前記光導波路の領域における前記第1下部半導体層に形成された溝に形成された半絶縁性またはアンドープのInPからなる第2下部半導体層、前記第2下部半導体層の上に形成されリッジ状の導波路構造とされ第3活性層、前記第3活性層の上に形成された前記上部半導体層を備え、
     前記第2活性層が形成されていない領域の前記第1下部半導体層は、前記第2活性層が形成されている領域の前記第1下部半導体層より薄く形成され、
     前記第1下部半導体層の上に形成されて前記第1活性層を埋め込む埋め込み層を備え、
     前記第1n電極は、前記埋め込み層が除去された箇所に形成され、
     前記第1n電極が形成されている前記第1下部半導体層は、厚さが200~1000nmとされている
     ことを特徴とする半導体装置。
    A substrate made of semi-insulating InP;
    a first optically active element formed on the substrate; a second optically active element formed on the substrate; and an optical waveguide disposed between the first optically active element and the second optically active element, the optical waveguide functioning as an electrical separator between the first optically active element and the second optically active element and optically connecting the first optically active element and the second optically active element;
    The first optical active element includes a first lower semiconductor layer made of n-type InP formed on the substrate, a first active layer formed on the first lower semiconductor layer to have a ridge-shaped waveguide structure, an upper semiconductor layer made of p-type InP formed on the first active layer, a first p-electrode formed on the upper semiconductor layer, and a first n-electrode formed on the first lower semiconductor layer in a region where the first active layer is not formed,
    the second optically active element includes a second active layer formed on the first lower semiconductor layer and having a ridge-shaped waveguide structure, the upper semiconductor layer formed on the second active layer, a second p-electrode formed on the upper semiconductor layer, and a second n-electrode formed on the first lower semiconductor layer in an area where the second active layer is not formed;
    the optical waveguide comprises a second lower semiconductor layer made of semi-insulating or undoped InP formed in a groove formed in the first lower semiconductor layer in a region of the optical waveguide, a third active layer formed on the second lower semiconductor layer and having a ridge-shaped waveguide structure, and the upper semiconductor layer formed on the third active layer;
    the first lower semiconductor layer in a region where the second active layer is not formed is formed thinner than the first lower semiconductor layer in a region where the second active layer is formed,
    a buried layer formed on the first lower semiconductor layer to bury the first active layer;
    the first n-electrode is formed in a portion where the buried layer has been removed,
    the first lower semiconductor layer on which the first n-electrode is formed has a thickness of 200 to 1000 nm.
  2.  請求項1記載の半導体装置において、
     前記第1n電極は、前記第1活性層から2~20μm離れて形成されていることを特徴とする半導体装置。
    2. The semiconductor device according to claim 1,
    The first n-electrode is formed at a distance of 2 to 20 μm from the first active layer.
  3.  請求項1または2記載の半導体装置において、
     前記基板の上の全域に形成されたエッチングストップ層を備え、
     前記第1光能動素子、前記光導波路、前記第2光能動素子は、前記エッチングストップ層の上に形成されていることを特徴とする半導体装置。
    3. The semiconductor device according to claim 1,
    an etch stop layer formed over the entire surface of the substrate;
    2. A semiconductor device comprising: a first optical active element, an optical waveguide, and a second optical active element, the first optical active element being formed on the etching stop layer.
PCT/JP2022/041677 2022-11-09 2022-11-09 Semiconductor device WO2024100788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041677 WO2024100788A1 (en) 2022-11-09 2022-11-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041677 WO2024100788A1 (en) 2022-11-09 2022-11-09 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2024100788A1 true WO2024100788A1 (en) 2024-05-16

Family

ID=91032505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041677 WO2024100788A1 (en) 2022-11-09 2022-11-09 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2024100788A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157691A (en) * 2008-12-02 2010-07-15 Opnext Japan Inc Optical semiconductor device
JP2011009456A (en) * 2009-06-25 2011-01-13 Opnext Japan Inc Semiconductor device and method of manufacturing the same
JP2015072980A (en) * 2013-10-02 2015-04-16 富士通株式会社 Optical semiconductor element, optical semiconductor element array, optical transmission module and optical transmission system
JP2017003729A (en) * 2015-06-09 2017-01-05 日本オクラロ株式会社 Optical signal generation apparatus
US20190326729A1 (en) * 2016-11-17 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for fabricating an elctro-absorption modulated laser and electro-absorption modulated laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157691A (en) * 2008-12-02 2010-07-15 Opnext Japan Inc Optical semiconductor device
JP2011009456A (en) * 2009-06-25 2011-01-13 Opnext Japan Inc Semiconductor device and method of manufacturing the same
JP2015072980A (en) * 2013-10-02 2015-04-16 富士通株式会社 Optical semiconductor element, optical semiconductor element array, optical transmission module and optical transmission system
JP2017003729A (en) * 2015-06-09 2017-01-05 日本オクラロ株式会社 Optical signal generation apparatus
US20190326729A1 (en) * 2016-11-17 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for fabricating an elctro-absorption modulated laser and electro-absorption modulated laser

Similar Documents

Publication Publication Date Title
US6455338B1 (en) Method of manufacturing an integrated semiconductor laser-modulator device
US20070133648A1 (en) Optical device coupling light propagating in optical waveguide with diffraction grating
US8384980B2 (en) Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device
JP2019054107A (en) Semiconductor optical element
JP4947778B2 (en) Optical semiconductor device and manufacturing method thereof
JP4909159B2 (en) Semiconductor waveguide device, manufacturing method thereof, and semiconductor laser
JP4690515B2 (en) Optical modulator, semiconductor optical device, and manufacturing method thereof
JP3752369B2 (en) Manufacturing method of composite optical device
US6931041B2 (en) Integrated semiconductor laser device and method of manufacture thereof
WO2024100788A1 (en) Semiconductor device
US6602432B2 (en) Electroabsorption modulator, and fabricating method of the same
JP2005116644A (en) Semiconductor opto-electronic waveguide
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP4014861B2 (en) Compound semiconductor device and manufacturing method thereof
JP4105618B2 (en) Semiconductor optical modulation waveguide
US20210184421A1 (en) Semiconductor Optical Element
JPH06112595A (en) Fabrication of semiconductor optical functional element
WO2023188426A1 (en) Semiconductor device
WO2023248329A1 (en) Semiconductor device
JP2011077329A (en) Semiconductor optical integrated element and method of manufacturing the same
JP5109931B2 (en) Semiconductor optical integrated device and method for manufacturing semiconductor optical integrated device
JP4161672B2 (en) Optical integrated device manufacturing method
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
EP1372229B1 (en) Integrated semiconductor laser and waveguide device
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965113

Country of ref document: EP

Kind code of ref document: A1