WO2024100773A1 - Vehicular interruption control device - Google Patents

Vehicular interruption control device Download PDF

Info

Publication number
WO2024100773A1
WO2024100773A1 PCT/JP2022/041588 JP2022041588W WO2024100773A1 WO 2024100773 A1 WO2024100773 A1 WO 2024100773A1 JP 2022041588 W JP2022041588 W JP 2022041588W WO 2024100773 A1 WO2024100773 A1 WO 2024100773A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
conductive path
state
control signal
semiconductor circuit
Prior art date
Application number
PCT/JP2022/041588
Other languages
French (fr)
Japanese (ja)
Inventor
嵩大 倉冨
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to PCT/JP2022/041588 priority Critical patent/WO2024100773A1/en
Publication of WO2024100773A1 publication Critical patent/WO2024100773A1/en

Links

Images

Definitions

  • This disclosure relates to a vehicle shutoff control device.
  • a mechanism is used to cut off the conductive path between the battery and the load (inverter, DCDC converter, charger, etc.) in the event of an abnormality, such as when the vehicle is subjected to an impact or the load is short-circuited.
  • a configuration in which the conductive path is cut off using a physical cut-off mechanism such as a contactor or fuse is exemplified.
  • the dielectric strength and insulation resistance at the time of shutoff are used as indicators for reliably shutting off the conductive path.
  • the dielectric strength is determined by the maximum rated voltage between the drain and source. If the shutoff mechanism of Patent Document 1 is used in a high-voltage path to achieve insulation performance that can handle abnormal conditions in the vehicle, it will result in high costs and an increase in size. Therefore, a configuration is needed to quickly and reliably shut off the conductive path.
  • This disclosure was made based on the above-mentioned circumstances, and aims to provide technology that can quickly cut off the conductive path and improve the insulation performance when the path is cut off.
  • the vehicle cut-off control device disclosed herein includes: A vehicle cutoff control device for use in a vehicle power supply system having a conductive path, A cut-off portion that cuts off the conductive path; A control unit that controls an operation of the interrupter; having The interrupter is a semiconductor circuit breaker that switches from a release state in which the interruption state of the conductive path is released to the interruption state based on a first control signal output from the control unit; a pyrotechnic circuit breaker that breaks the conductive path by being ruptured by an explosion of explosives based on a second control signal output from the control unit, the semiconductor circuit breaker and the pyrotechnic circuit breaker are connected in series in the conductive path; The control unit outputs the first control signal and the second control signal when a predetermined abnormal state is detected.
  • the technology disclosed herein can quickly cut off the conductive path and improve the insulation performance when the path is cut off.
  • FIG. 1 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to a first embodiment.
  • FIG. 2 is a flowchart illustrating the flow of cutoff control performed by the control unit of the vehicle cutoff control device.
  • FIG. 3 is an explanatory diagram illustrating an example of a change over time in the current value of the conductive path and a change over time in the voltage across the semiconductor circuit breaker based on the interruption control by the control unit.
  • FIG. 4 is a flowchart illustrating a flow of cutoff control performed by the control unit of the vehicle cutoff control device of the second embodiment.
  • FIG. 5 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to the third embodiment.
  • FIG. 6 is an explanatory diagram illustrating the change over time of the current value of the conductive path, the change over time of the voltage across a semiconductor circuit breaker, and the change over time of the voltage across a pyrotechnic circuit breaker based on the interruption control by the control unit of the third embodiment.
  • FIG. 7 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to another embodiment.
  • FIG. 8 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to another embodiment.
  • a vehicle cutoff control device for use in a vehicle power supply system having a conductive path, A cut-off portion that cuts off the conductive path;
  • a control unit that controls an operation of the interrupter; having The interrupter is a semiconductor circuit breaker that switches from a release state in which the interruption state of the conductive path is released to the interruption state based on a first control signal output from the control unit; a pyrotechnic circuit breaker that breaks the conductive path by being ruptured by an explosion of explosives based on a second control signal output from the control unit, the semiconductor circuit breaker and the pyrotechnic circuit breaker are connected in series in the conductive path;
  • the control unit outputs the first control signal and the second control signal when a predetermined abnormal state is detected.
  • the control unit outputs a first control signal in an abnormal state, thereby placing the semiconductor circuit breaker in a cutoff state and cutting off the conductive path. This allows the semiconductor circuit breaker to quickly cut off the conductive path. Furthermore, the control unit outputs a second control signal in an abnormal state, thereby causing the pyrotechnic circuit breaker to rupture and cut off the conductive path. This allows the pyrotechnic circuit breaker to improve the insulation performance of the cutoff section when the conductive path is cut off. Therefore, the vehicle cutoff control device can quickly cut off the conductive path with the semiconductor circuit breaker, and can improve the insulation performance of the cutoff section when cut off by cutting off the pyrotechnic circuit breaker.
  • the vehicle cutoff control device described in [1] has the following features: After the semiconductor circuit breaker switches from the release state to the cutoff state, the pyrotechnic circuit breaker cuts off the conductive path without the voltage applied to the semiconductor circuit breaker exceeding the absolute maximum rating.
  • the vehicle cutoff control device described above in [2] can prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker after the semiconductor circuit breaker cuts off the conductive path.
  • the vehicle cutoff control device described in [1] or [2] has the following features: When the abnormal state is detected, the control unit simultaneously outputs the first control signal and the second control signal.
  • control unit In the vehicle cutoff control device described above in [3], the control unit outputs the first control signal and the second control signal simultaneously, which simplifies output control of each signal.
  • the vehicle cutoff control device described in [1] or [2] has the following features: When the abnormal state is detected, the control unit outputs the first control signal and then outputs the second control signal.
  • the semiconductor circuit breaker ensures rapid cutoff of the conductive path, while the insulating performance of the cutoff section can be improved by the insulating performance of the pyrotechnic circuit breaker after the conductive path is cut off by the pyrotechnic circuit breaker.
  • the vehicle cutoff control device described in [4] has the following features: It has a current detection unit that detects the current in the conductive path, and the control unit outputs the first control signal when the current detection unit detects an overcurrent state in the conductive path, and outputs the second control signal when the current detection unit continues to detect an overcurrent state in the conductive path within the specified elapsed time after the semiconductor circuit breaker switches from the released state to the cutoff state.
  • the semiconductor circuit breaker can be switched to the cutoff state to quickly cut off the conductive path. Furthermore, if the overcurrent state of the conductive path is not resolved within a specified time, the conductive path can be cut off by a pyrotechnic circuit breaker in addition to the semiconductor circuit breaker.
  • the vehicle cutoff control device described in [5] has the following features: The semiconductor circuit breaker switches from the cutoff state to the released state based on a third control signal output from the control unit, and the control unit outputs the third control signal to switch the semiconductor circuit breaker from the cutoff state to the released state when the current detection unit no longer detects an overcurrent state in the conductive path within the specified elapsed time after the semiconductor circuit breaker switches from the released state to the cutoff state.
  • the vehicle cutoff control device described in any one of [1] to [6] has the following features: A fuse that melts when an overcurrent flows, and the fuse is provided in parallel with the semiconductor circuit breaker in the conductive path.
  • the fuse In the vehicle cutoff control device described above in [7], after the semiconductor circuit breaker is in the cutoff state, the fuse allows current to flow while minimizing the current change. This makes it possible to keep surge voltages low and protect the semiconductor circuit breaker from surge voltages.
  • the vehicle cutoff control device described in any one of [1] to [7] has the following features:
  • the conductive path is supplied with power from a power supply unit, the absolute maximum rating of the semiconductor circuit breaker is greater than the output voltage of the power supply unit, the dielectric strength voltage of the cutoff unit is greater than the absolute maximum rating of the semiconductor circuit breaker, and the dielectric strength voltage of the pyrotechnic circuit breaker is greater than the dielectric strength voltage of the cutoff unit.
  • the insulating performance of the pyrotechnic circuit breaker complements the insulating performance of the semiconductor circuit breaker, ensuring the insulating performance of the entire circuit breaker.
  • First Embodiment [Configuration of vehicle power supply system] 1 is a power supply system mounted on a vehicle, and includes a power supply unit 10, a load 20, a conductive path 30, and a vehicle cutoff control device 40.
  • the vehicle power supply system 100 is configured to be able to supply power from the power supply unit 10 to the load 20 via the conductive path 30, which is a path along which power is transmitted between the power supply unit 10 and the load 20.
  • the power supply unit 10 is, for example, a DC power supply that generates a DC voltage.
  • a power supply means such as a lead battery, a lithium ion battery, or a generator such as an alternator is used as the power supply unit 10.
  • the power supply unit 10 is provided with a high potential terminal and a low potential terminal, the low potential terminal is electrically connected to a conductive path 30, and the high potential terminal is electrically connected to a conductive path (not shown) through which a current flows to the load 20.
  • the power supply unit 10 is configured to apply a predetermined output voltage to the conductive path (not shown) connected to the high potential terminal.
  • the term "voltage" refers to a voltage referenced to ground unless otherwise specified.
  • connection objects preferably means a configuration in which the connection objects are connected in a mutually conductive state (a state in which current can flow) so that the potentials of both connection objects are equal.
  • electrically connected may also mean a configuration in which the connection objects are connected in a state in which they can be conductive with an electrical component interposed between them.
  • the load 20 is, for example, an electrical device mounted on a vehicle.
  • the load 20 is, for example, a motor, a compressor, a PTC thermistor, etc.
  • the conductive path 30 is provided between the power supply unit 10 and the load 20.
  • the conductive path 30 is a path through which power is supplied from the power supply unit 10.
  • the conductive path 30 is a path through which current flows from the load 20 to the power supply unit 10 when power is supplied from the power supply unit 10 to the load 20.
  • One end of the conductive path 30 is electrically connected to the low-potential terminal of the power supply unit 10.
  • the other end of the conductive path 30 is electrically connected to the load 20.
  • the vehicle cutoff control device 40 has a cutoff unit 50, a control unit 41, a first drive circuit 42, a second drive circuit 43, and a current detection unit 45.
  • the interrupter 50 is provided in the conductive path 30.
  • the interrupter 50 functions to interrupt the conductive path 30.
  • the interrupter 50 operates under the control of the control unit 41, which will be described later.
  • the interrupter 50 includes a semiconductor circuit breaker 51 and a pyrotechnic circuit breaker 52.
  • the semiconductor circuit breaker 51 and the pyrotechnic circuit breaker 52 are connected in series in the conductive path 30.
  • the semiconductor circuit breaker 51 is provided in the conductive path 30.
  • the semiconductor circuit breaker 51 is configured as a semiconductor switch that performs on/off operation.
  • the semiconductor circuit breaker 51 is, for example, an n-channel MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • the gate of the semiconductor circuit breaker 51 is electrically connected to the first drive circuit 42, which will be described later.
  • the source of the semiconductor circuit breaker 51 is electrically connected to the pyrotechnic circuit breaker 52, which will be described later.
  • the drain of the semiconductor circuit breaker 51 is electrically connected to the load 20, which will be described later.
  • the semiconductor circuit breaker 51 switches from a released state (on state), in which the cut-off state of the conductive path 30 is released, to a cut-off state (off state), in which the conductive path 30 is cut, based on a control signal (first control signal) output from the control unit 41, which will be described later.
  • a first voltage signal from the first drive circuit 42 which will be described later
  • the semiconductor circuit breaker 51 switches from the cut-off state to the released state based on a control signal (third control signal) output from the control unit 41, which will be described later.
  • a third control signal control signal
  • the semiconductor circuit breaker 51 switches from the cut-off state to the released state.
  • the pyrotechnic circuit breaker 52 is provided on the lower potential side (the power supply unit 10 side) of the semiconductor circuit breaker 51 in the conductive path 30.
  • the vehicle cutoff control device 40 of the present disclosure can also be applied to a configuration in which the pyrotechnic circuit breaker 52 is provided on the higher potential side (the load 20 side) of the semiconductor circuit breaker 51 in the conductive path 30.
  • the pyrotechnic circuit breaker 52 is a circuit breaker that physically cuts off the conductive path 30 based on a control signal.
  • the pyrotechnic circuit breaker 52 is a pyrotechnic fuse (PYROFUSE (registered trademark)) that cuts off the conductive path 30 by rupturing it with an explosive explosion based on a control signal (second control signal) output from the control unit 41 described later. Specifically, the pyrotechnic circuit breaker 52 causes an explosion when a second voltage signal is input from the second drive circuit 43 described later based on the second control signal output from the control unit 41, and the explosion moves the displacement portion to physically cut off the path.
  • One end of the pyrotechnic circuit breaker 52 is electrically connected to the power supply unit 10. The other end of the pyrotechnic circuit breaker 52 is electrically connected to the source of the semiconductor circuit breaker 51.
  • the response time of the semiconductor circuit breaker 51 is shorter than the response time of the pyrotechnic circuit breaker 52.
  • the response time of the semiconductor circuit breaker 51 is the time from when a signal based on the first control signal (first voltage signal) is acquired until the circuit breaker starts (until the circuit breaker becomes in a cut-off state).
  • the response time of the pyrotechnic circuit breaker 52 is the time from when a signal based on the second control signal (second voltage signal) is acquired until the circuit breaker starts.
  • the absolute maximum rating of the semiconductor circuit breaker 51 is greater than the output voltage of the power supply unit 10.
  • the dielectric strength voltage of the interrupter unit 50 is greater than the absolute maximum rating of the semiconductor circuit breaker 51.
  • the dielectric strength voltage of the pyrotechnic circuit breaker 52 is greater than the dielectric strength voltage of the interrupter unit 50.
  • the dielectric strength voltage of the interrupter unit 50 is the upper limit of the voltage at which the entire interrupter unit 50 (semiconductor circuit breaker 51 in the interrupted state and pyrotechnic circuit breaker 52 in the interrupted state) can maintain insulation so that no current flows through the conductive path 30 without causing dielectric breakdown.
  • the dielectric strength voltage of the pyrotechnic circuit breaker 52 is the upper limit of the voltage that can be maintained so that the pyrotechnic circuit breaker 52 does not re-connect after the interruption operation.
  • the control unit 41 controls the operation of supplying power from the power supply unit 10 to the load 20.
  • the control unit 41 is an information processing device having information processing functions, calculation functions, control functions, etc.
  • the control unit 41 is mainly composed of a microcomputer, for example, and has a calculation unit such as a CPU (Central Processing Unit), memory such as a ROM (Read Only Memory) or RAM (Random Access Memory), an A/D converter, etc.
  • the control unit 41 controls the operation of the cut-off unit 50.
  • the control unit 41 controls the on/off operation of the semiconductor circuit breaker 51.
  • the control unit 41 outputs a first control signal to switch the semiconductor circuit breaker 51 from the released state to the cut-off state.
  • the control unit 41 outputs a third control signal different from the first control signal to switch the semiconductor circuit breaker 51 from the cut-off state to the released state.
  • the first control signal is a low-level signal (e.g., 0 V)
  • the third control signal is a high-level signal (a signal with a higher voltage than the low-level signal).
  • the control unit 41 controls the interruption operation of the pyrotechnic circuit breaker 52.
  • the control unit 41 outputs a second control signal to cause the pyrotechnic circuit breaker 52 to interrupt the conductive path 30. While the control unit 41 outputs a fourth control signal different from the second control signal, the control unit 41 does not cause the pyrotechnic circuit breaker 52 to interrupt the conductive path 30.
  • the second control signal may be the same as or different from one of the voltage level of the first control signal and the voltage level of the third control signal.
  • the second control signal is, for example, a signal (high level signal) that has the same voltage level as the third control signal.
  • the fourth control signal may be the same as or different from one of the voltage level of the first control signal and the voltage level of the third control signal.
  • the fourth control signal is, for example, a signal (low level signal) that has the same voltage level as the first control signal.
  • the first drive circuit 42 is electrically connected to the output terminal of the control unit 41 and the gate of the semiconductor circuit breaker 51.
  • the first drive circuit 42 is, for example, a gate driver circuit, and can adopt various circuit configurations using resistors, diodes, bipolar transistors, etc.
  • the first drive circuit 42 receives a control signal from the control unit 41.
  • the first drive circuit 42 is a circuit that can switch between outputting a first voltage signal (e.g., a low-level signal) for turning the semiconductor circuit breaker 51 to an off state and outputting a third voltage signal (e.g., a high-level signal) for turning the semiconductor circuit breaker 51 to an on state.
  • a first voltage signal e.g., a low-level signal
  • a third voltage signal e.g., a high-level signal
  • the third control signal (e.g., a high-level signal) is a voltage signal whose magnitude exceeds the gate threshold voltage of the semiconductor circuit breaker 51.
  • the second drive circuit 43 is electrically connected to the output terminal of the control unit 41 and the pyrotechnic circuit breaker 52.
  • the second drive circuit 43 can employ various circuit configurations using resistors, diodes, bipolar transistors, etc.
  • a control signal is input to the second drive circuit 43 from the control unit 41.
  • the second drive circuit 43 is a circuit that can switch from outputting a fourth voltage signal (e.g., a low-level signal) for putting the pyrotechnic circuit breaker 52 in a state where it does not perform an interruption operation to outputting a second voltage signal (e.g., a high-level signal) for putting the pyrotechnic circuit breaker 52 in an interruption operation.
  • a fourth voltage signal e.g., a low-level signal
  • a second voltage signal e.g., a high-level signal
  • the second drive circuit 43 When the control unit 41 outputs the fourth control signal while the pyrotechnic circuit breaker 52 is not performing an interruption operation, the second drive circuit 43 outputs the fourth voltage signal, and the state in which the pyrotechnic circuit breaker 52 does not perform an interruption operation is maintained.
  • the control unit 41 When the control unit 41 outputs the second control signal, the second drive circuit 43 outputs the second voltage signal, and the pyrotechnic circuit breaker 52 performs an interruption operation.
  • the current detection unit 45 detects the current value of the conductive path 30.
  • the current value detected by the current detection unit 45 is a value (specifically, an analog voltage value) that can identify the current value of the conductive path 30.
  • the current detection unit 45 is configured, for example, as a current detection circuit. Specifically, the current detection unit 45 is provided in the conductive path 30 between the power supply unit 10 and the pyrotechnic circuit breaker 52. The current value detected by the current detection unit 45 is output to the control unit 41.
  • the flowchart shown in Fig. 2 shows control executed by the control unit 41 when a predetermined start condition is satisfied.
  • the predetermined start condition may be satisfied when a start condition for starting the vehicle equipped with the vehicle power supply system 100 is satisfied (for example, when a start switch such as an ignition switch is switched from an off state to an on state), when power has started to be supplied to the vehicle cutoff control device 40 (specifically, the control unit 41), or when some other condition is satisfied.
  • a start signal indicating that the start switch has been switched to the on state is provided to the control unit 41 from, for example, an external device (for example, an external ECU (Electronic Control Unit)).
  • an external device for example, an external ECU (Electronic Control Unit)
  • the control unit 41 outputs a first control signal (e.g., a low-level signal), the first drive circuit 42 outputs a first voltage signal, and the semiconductor circuit breaker 51 is maintained in an off state.
  • the control unit 41 outputs a fourth control signal (e.g., a low-level signal), the second drive circuit 43 outputs a fourth voltage signal, and the pyrotechnic circuit breaker 52 is maintained in a state in which it is not performing a cut-off operation.
  • step S11 the control unit 41 outputs a third control signal (e.g., a high-level signal).
  • a third control signal e.g., a high-level signal
  • the control unit 41 outputs a third control signal (e.g., a high-level signal).
  • This causes the third control signal to be input to the first drive circuit 42, which in turn outputs a third voltage signal (e.g., a high-level signal) to the semiconductor circuit breaker 51.
  • the semiconductor circuit breaker 51 is then switched from a cut-off state to a release state by the third voltage signal input based on the third control signal. This allows power to be supplied from the power supply unit 10 to the load 20.
  • the control unit 41 determines whether the conductive path 30 is in an overcurrent state.
  • An overcurrent state is when the current value of the conductive path 30 is increasing.
  • An increasing state of the current value of the conductive path 30 is, for example, when the current value of the conductive path 30 exceeds a predetermined threshold value, or when the rate of increase in the current value of the conductive path 30 exceeds a predetermined threshold value.
  • the overcurrent state of the conductive path 30 is an example of a predetermined abnormal state.
  • the control unit 41 repeats the process of step S12 until it determines that the conductive path 30 is in an overcurrent state. If the control unit 41 determines that the conductive path 30 is in an overcurrent state (Yes in step S12), it determines in step S13 whether the overcurrent state has continued for a certain period of time from the time when the overcurrent state was detected. If the control unit 41 determines that the overcurrent state has not continued for a certain period of time (the overcurrent state has been resolved within the certain period of time from the time when the overcurrent state was detected), it proceeds to No in step S13 and performs the process of step S12 again.
  • control unit 41 determines in step S13 that the overcurrent state has continued for a certain period of time (the overcurrent state has not been detected within the certain period of time from the time the overcurrent state was detected), it proceeds to Yes and determines that an abnormal state has been detected (step S14).
  • step S15 the control unit 41 outputs a first control signal (e.g., a low-level signal) and a second control signal (e.g., a high-level signal). Specifically, the control unit 41 outputs the first control signal and the second control signal at the same time. After the processing of step S15, the control unit 41 ends the control of FIG. 2.
  • a first control signal e.g., a low-level signal
  • a second control signal e.g., a high-level signal
  • the first control signal is input to the first drive circuit 42, and the first drive circuit 42 outputs a first voltage signal (e.g., a low-level signal) to the semiconductor circuit breaker 51.
  • the semiconductor circuit breaker 51 is then switched from a released state to a cut-off state by the first voltage signal input based on the first control signal. This allows the semiconductor circuit breaker 51 to quickly cut off the conductive path 30.
  • the second control signal is also input to the second drive circuit 43, and a second voltage signal (e.g., a high-level signal) is output from the second drive circuit 43 to the pyrotechnic circuit breaker 52.
  • the pyrotechnic circuit breaker 52 then performs a cutoff operation (cuts off the conductive path 30 by rupturing it) based on the second voltage signal input based on the second control signal. This allows the pyrotechnic circuit breaker 52 to improve the insulation performance of the cutoff section 50 when the conductive path 30 is cut off.
  • Figure 3 shows the change over time in the current value of the conductive path 30 and the change over time in the voltage across the semiconductor circuit breaker 51 (source-drain voltage) after the control unit 41 outputs the first control signal and the second control signal in step S15.
  • the control unit 41 outputs the first control signal and the second control signal.
  • the response time of the semiconductor circuit breaker 51 (the time from when the first voltage signal is acquired until the start of blocking) has elapsed, and the semiconductor circuit breaker 51 has switched from the released state to the blocked state.
  • the current value of the conductive path 30 decreases, and the voltage across the semiconductor circuit breaker 51 increases due to a surge voltage due to the inductance of the conductive path 30, etc., during high-speed blocking.
  • the response time of the pyrotechnic circuit breaker 52 (the time from when the second voltage signal is acquired until the start of the circuit breaker) elapses, and the pyrotechnic circuit breaker 52 starts its circuit breaker operation (breaks the conductive path 30).
  • the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage applied to the semiconductor circuit breaker 51 (voltage across both ends) exceeding the absolute maximum rating.
  • the absolute maximum rating is a voltage value at which normal insulation performance is no longer maintained if the voltage applied between the source and drain exceeds that rating. As shown in FIG. 3, even if the voltage across the semiconductor circuit breaker 51 increases after time t2 has elapsed, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage across the semiconductor circuit breaker 51 exceeding the absolute maximum rating, so it is possible to prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker 51.
  • the control unit 41 outputs a first control signal in an abnormal state, thereby putting the semiconductor circuit breaker 51 into a cutoff state and cutting off the conductive path 30. This allows the semiconductor circuit breaker 51 to quickly cut off the conductive path 30. Furthermore, the control unit 41 outputs a second control signal in an abnormal state, thereby causing the pyrotechnic circuit breaker 52 to rupture and cut off the conductive path 30. This allows the pyrotechnic circuit breaker 52 to improve the insulation performance of the cutoff unit 50 when the conductive path 30 is cut off.
  • the vehicle cutoff control device 40 can quickly cut off the conductive path 30 with the semiconductor circuit breaker 51, and can improve the insulation performance of the cutoff unit 50 when cut off by the pyrotechnic circuit breaker 52. Compared to a configuration in which a high-voltage semiconductor circuit breaker is used or multiple semiconductor circuit breakers are connected in series to improve the insulation performance, the insulation performance of the cutoff unit 50 can be improved while keeping costs down.
  • the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage applied to the semiconductor circuit breaker 51 exceeding the absolute maximum rating. This makes it possible to prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker 51 after the semiconductor circuit breaker 51 cuts off the conductive path 30.
  • control unit 41 In the vehicle cutoff control device 40, the control unit 41 outputs a first control signal and a second control signal at the same time when an abnormal state is detected. This allows the control unit 41 to output the first control signal and the second control signal simultaneously, making it possible to simplify output control of each signal.
  • the absolute maximum rating of the semiconductor circuit breaker 51 is greater than the output voltage of the power supply unit 10
  • the dielectric strength voltage of the shutoff unit 50 is greater than the absolute maximum rating of the semiconductor circuit breaker 51
  • the dielectric strength voltage of the pyrotechnic circuit breaker 52 is greater than the dielectric strength voltage of the shutoff unit 50.
  • the vehicle shutoff control device 40 can supplement the dielectric strength of the semiconductor circuit breaker 51 with the dielectric strength of the pyrotechnic circuit breaker 52, thereby ensuring the dielectric strength of the shutoff unit 50 as a whole.
  • the vehicle power supply system of the second embodiment differs from the first embodiment in the operation of the vehicle cutoff control device, but is otherwise common to both embodiments. Note that the same components as those of the first embodiment are given the same reference numerals and detailed descriptions thereof will be omitted.
  • FIG. 4 shows the control executed by the control unit 41 in the vehicle cutoff control device 40 in the second embodiment when a predetermined start condition is met.
  • the predetermined start condition is the same as the condition described in the first embodiment.
  • Steps S11 to S14 in FIG. 4 are similar to steps S11 to S14 in the first embodiment, and detailed description will be omitted.
  • the control unit 41 After determining that an abnormal state has been detected in step S14, the control unit 41 outputs a first control signal (e.g., a low-level signal) in step S21.
  • a first control signal e.g., a low-level signal
  • the first control signal is input to the first drive circuit 42, and the first drive circuit 42 outputs a first voltage signal (e.g., a low-level signal) to the semiconductor circuit breaker 51.
  • the semiconductor circuit breaker 51 is then switched from a released state to a cut-off state by the first voltage signal input based on the first control signal. This allows the semiconductor circuit breaker 51 to quickly cut off the conductive path 30.
  • the control unit 41 determines whether the overcurrent state of the conductive path 30 has been resolved within a predetermined elapsed time from the time when the overcurrent state of the conductive path 30 was detected in step S12. In other words, the control unit 41 determines whether the overcurrent state of the conductive path 30 is no longer detected within a predetermined elapsed time. For example, the overcurrent state of the conductive path 30 is no longer detected when the current value of the conductive path 30 falls below a predetermined threshold, when the rate at which the current value of the conductive path 30 decreases exceeds a predetermined threshold, etc.
  • control unit 41 determines in step S22 that the overcurrent state of the conductive path 30 has been resolved within the predetermined elapsed time, it proceeds to Yes and performs the processing of step S11 again. In this way, after the semiconductor circuit breaker 51 has been switched from the released state to the cut-off state (after the processing of step S21), if the overcurrent state of the conductive path 30 is no longer detected by the current detection unit 45 within the predetermined elapsed time, the control unit 41 outputs the third control signal to switch the semiconductor circuit breaker 51 from the cut-off state to the released state (step S11).
  • step S23 the control unit 41 outputs a second control signal (e.g., a high-level signal). In this way, when an abnormal state is detected, the control unit 41 outputs the first control signal and then outputs the second control signal. If the overcurrent state of the conductive path 30 continues to be detected by the current detection unit 45 within a predetermined elapsed time after the semiconductor circuit breaker 51 switches from the released state to the interrupted state, the control unit 41 outputs the second control signal. After the process of step S23, the control unit 41 ends the control of FIG. 4.
  • a second control signal e.g., a high-level signal
  • the second control signal is input to the second drive circuit 43, and the second drive circuit 43 outputs a second voltage signal (e.g., a high-level signal) to the pyrotechnic circuit breaker 52.
  • the pyrotechnic circuit breaker 52 then performs a cutoff operation (cuts off the conductive path 30 by rupturing it) based on the second voltage signal input based on the second control signal. This allows the pyrotechnic circuit breaker 52 to improve the insulation performance of the cutoff section 50 when the conductive path 30 is cut off.
  • the control unit 41 outputs a first control signal and then a second control signal when an abnormal state is detected. This allows the semiconductor circuit breaker 51 to reliably cut off the conductive path 30 quickly, while the insulating performance of the cutoff unit 50 can be improved by the insulating performance of the pyrotechnic circuit breaker 52 after the conductive path 30 is cut off by the pyrotechnic circuit breaker 52.
  • the semiconductor circuit breaker 51 switches from the cutoff state to the release state based on the third control signal output from the control unit 41.
  • the vehicle cutoff control device 40 has a current detection unit 45 that detects the current in the conductive path 30.
  • the control unit 41 outputs a first control signal when the current detection unit 45 detects an overcurrent state in the conductive path 30.
  • the control unit 41 outputs a third control signal to switch the semiconductor circuit breaker 51 from the cutoff state to the release state when the overcurrent state of the conductive path 30 is no longer detected by the current detection unit 45 within a predetermined elapsed time after the semiconductor circuit breaker 51 switches from the release state to the cutoff state.
  • the control unit 41 outputs a second control signal when the overcurrent state of the conductive path 30 continues to be detected by the current detection unit 45 within a predetermined elapsed time after the semiconductor circuit breaker 51 switches from the release state to the cutoff state.
  • the semiconductor circuit breaker 51 can be set to the cutoff state to quickly cut off the conductive path 30. If the overcurrent state of the conductive path 30 is then resolved within a predetermined time, the conductive path 30 can be energized without being interrupted by the semiconductor circuit breaker 51 and the pyrotechnic circuit breaker 52. On the other hand, if the overcurrent state of the conductive path 30 is not resolved within a predetermined time, the conductive path 30 can be interrupted by the pyrotechnic circuit breaker 52 in addition to the semiconductor circuit breaker 51.
  • the vehicle power supply system 200 of the third embodiment is different from the first embodiment in that a fuse 253 is provided in the conductive path 30, but is otherwise common to both embodiments. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the vehicle power supply system 200 includes a power supply unit 10, a load 20, a conductive path 30, and a vehicle cutoff control device 240.
  • the vehicle cutoff control device 240 includes a cutoff unit 50, a fuse 253, a control unit 41, a first drive circuit 42, a second drive circuit 43, and a current detection unit 45.
  • the fuse 253 is provided in parallel with the semiconductor circuit breaker 51 in the conductive path 30. One end of the fuse 253 is electrically connected to the source of the semiconductor circuit breaker 51. The other end of the fuse 253 is electrically connected to the drain of the semiconductor circuit breaker 51.
  • the fuse 253 is a thermal fuse that melts when an overcurrent flows.
  • the operation of the vehicle shutoff control device 240 is the same as the operation of the vehicle shutoff control device 40 in the first embodiment (flow in Figure 2).
  • Figure 6 shows the change over time in the current value of the conductive path 30, the change over time in the voltage across the semiconductor circuit breaker 51 (source-drain voltage), and the change over time in the voltage across the pyrotechnic circuit breaker 52 after the control unit 41 outputs the first control signal and the second control signal in step S15.
  • the control unit 41 outputs the first control signal and the second control signal.
  • the response time of the semiconductor circuit breaker 51 (the time from obtaining the first control signal to the start of circuit breaking) has elapsed, and the semiconductor circuit breaker 51 has switched from the released state to the circuit breaker state.
  • the current value of the conductive path 30 decreases, and the voltage across the semiconductor circuit breaker 51 increases due to surge voltages caused by the inductance of the conductive path 30, etc.
  • the fuse allows current to flow while reducing the current change. This makes it possible to keep the surge voltage small and protect the semiconductor circuit breaker from the surge voltage.
  • the response time of the pyrotechnic circuit breaker 52 (the time from when the second voltage signal is acquired until the start of the circuit breaker) elapses, and the pyrotechnic circuit breaker 52 starts its circuit breaker operation (breaks the conductive path 30).
  • the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage applied to the semiconductor circuit breaker 51 (voltage across both ends) exceeding the absolute maximum rating. Even if the voltage across the semiconductor circuit breaker 51 increases after time t13 has elapsed, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 before the voltage across the semiconductor circuit breaker 51 exceeds the absolute maximum rating, so it is possible to prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker 51.
  • a configuration in which the conductive path 30 is connected to the low potential terminal of the power supply unit 10 is exemplified, but a configuration in which the conductive path 30 is connected to the high potential terminal of the power supply unit 10 may also be used, as in the vehicle power supply system 300 shown in FIG. 7.
  • the source of the semiconductor circuit breaker 351 is electrically connected to the load 20.
  • the drain of the semiconductor circuit breaker 351 is electrically connected to the pyrotechnic circuit breaker 52.
  • a configuration in which the conductive path 30 is connected to the low potential terminal of the power supply unit 10 is exemplified, but a configuration in which the conductive path 30 is connected to the high potential terminal of the power supply unit 10 may also be used, as in the vehicle power supply system 400 shown in FIG. 8.
  • the source of the semiconductor circuit breaker 451 is electrically connected to the load 20.
  • the drain of the semiconductor circuit breaker 451 is electrically connected to the pyrotechnic circuit breaker 52.
  • an overcurrent state in the conductive path 30 has been shown as an example of a predetermined abnormal state (a state determined in step S12), but other abnormal states may also be used.
  • the predetermined abnormal state may be a state in which an abnormal state of the vehicle (such as a vehicle collision) has been detected.
  • a signal indicating that the vehicle is in an abnormal state is given to the control unit 41 from an external device (for example, an external ECU (Electronic Control Unit)).
  • an external device for example, an external ECU (Electronic Control Unit)
  • the control unit 41 receives such a signal, it may determine that a predetermined abnormal state has occurred.
  • control of the vehicle cutoff control device 240 was the same as the control of the vehicle cutoff control device 40 in the first embodiment (flow in FIG. 2), but it may be the same as the control of the vehicle cutoff control device 40 in the second embodiment (flow in FIG. 4).
  • the semiconductor circuit breaker 51 is an n-channel MOSFET, but it may be another semiconductor switch, such as an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • a charger may be provided in the conductive path 30 instead of the load 20.
  • the current detection unit 45 is provided between the power supply unit 10 and the pyrotechnic circuit breaker 52 in the conductive path 30, but it may be provided between the pyrotechnic circuit breaker 52 and the semiconductor circuit breaker 51, or between the semiconductor circuit breaker 51 and the load 20.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

The present invention provides a technology capable of quickly interrupting a conductive path and improving insulation performance at the time of interruption. An interruption unit (50) of a vehicular interruption control device (40) comprises: a semiconductor circuit breaker (51) that switches from a released state, in which an interrupted state of a conductive path (30) is released, to an interrupted state, on the basis of a first control signal output from a control unit (41); and a pyrotechnic circuit breaker (52) that interrupts the conductive path (30) through rupture caused by a blast of explosives, on the basis of a second control signal output from the control unit (41). The semiconductor circuit breaker (51) and the pyrotechnic circuit breaker (52) are connected in series on the conductive path (30). The control unit (41) outputs the first control signal and the second control signal when a predetermined abnormal state has been detected.

Description

車両用遮断制御装置Vehicle shutoff control device
 本開示は、車両用遮断制御装置に関する。 This disclosure relates to a vehicle shutoff control device.
 電動車に用いられる通電制御システムにおいて、車両に衝撃が加わった場合や負荷が短絡した場合などの異常時に、バッテリと負荷(インバータ、DCDCコンバータ、チャージャーなど)の間の導電路を遮断するための機構が用いられている。例えば、コンタクタやヒューズ等の物理的な遮断機構を用いて導電路を遮断する構成が挙げられる。 In the current control systems used in electric vehicles, a mechanism is used to cut off the conductive path between the battery and the load (inverter, DCDC converter, charger, etc.) in the event of an abnormality, such as when the vehicle is subjected to an impact or the load is short-circuited. For example, a configuration in which the conductive path is cut off using a physical cut-off mechanism such as a contactor or fuse is exemplified.
 近年、バッテリの高出力化や急速充電への対応を背景として、バッテリの低インピーダンス化が進んでおり、更なる低インピーダンス化が進むことが考えられる。低インピーダンスによる短絡電流の増大と、短絡電流の増加率の増大は、周辺回路を含めて大きな短絡耐量を必要とし、従来の物理的な遮断機構を用いる構成では高コスト化を招いてしまう。 In recent years, the impedance of batteries has been decreasing due to the need for higher battery output and rapid charging, and it is expected that the impedance will continue to decrease even further. The increase in short-circuit current due to low impedance and the increase rate of short-circuit current require a large short-circuit resistance, including peripheral circuits, and configurations using conventional physical cut-off mechanisms would result in high costs.
 短絡電流を高速に遮断する遮断デバイスを用いて、電気的な絶縁によってバッテリと負荷との間の導電路を遮断することが考えられている。例えば、特許文献1に開示される過電流保護装置では、MOSFETとして構成されるトランジスタが保護回路によりオフすることによって、過電流が電源ラインに流れることを防止する。 It is being considered to use a disconnecting device that quickly interrupts short-circuit current to electrically isolate the conductive path between the battery and the load. For example, in the overcurrent protection device disclosed in Patent Document 1, a transistor configured as a MOSFET is turned off by a protection circuit, thereby preventing overcurrent from flowing through the power line.
特開2012-85382号公報JP 2012-85382 A
 過電流や衝突などの車両の異常状態が発生した場合にヒューズを遮断する構成では、導電路を確実に遮断するための指標として、遮断時の絶縁耐圧や絶縁抵抗が挙げられる。特許文献1に開示されるようにMOSFETを遮断機構として用いる場合、絶縁耐圧は、ドレイン-ソース間の最大定格電圧によって決まる。特許文献1の遮断機構を高圧経路に用いて、車両の異常状態に対応し得る絶縁性能を満たそうとすると、高コスト化、大型化してしまう。そこで、導電路の迅速で確実な遮断を実現するための構成が求められている。 In a configuration in which a fuse is shut off when an abnormal condition of the vehicle occurs, such as an overcurrent or a collision, the dielectric strength and insulation resistance at the time of shutoff are used as indicators for reliably shutting off the conductive path. When a MOSFET is used as the shutoff mechanism as disclosed in Patent Document 1, the dielectric strength is determined by the maximum rated voltage between the drain and source. If the shutoff mechanism of Patent Document 1 is used in a high-voltage path to achieve insulation performance that can handle abnormal conditions in the vehicle, it will result in high costs and an increase in size. Therefore, a configuration is needed to quickly and reliably shut off the conductive path.
 本開示は、上述した事情に基づいてなされたものであり、迅速に導電路を遮断するとともに、遮断時の絶縁性能を向上できる技術の提供を目的とするものである。 This disclosure was made based on the above-mentioned circumstances, and aims to provide technology that can quickly cut off the conductive path and improve the insulation performance when the path is cut off.
 本開示の車両用遮断制御装置は、
 導電路を備える車両用電源システムに用いられる車両用遮断制御装置であって、
 前記導電路を遮断する遮断部と、
 前記遮断部の動作を制御する制御部と、
を有し、
 前記遮断部は、
 前記制御部から出力される第1制御信号に基づき、前記導電路の遮断状態が解除される解除状態から、前記遮断状態に切り替わる半導体遮断器と、
 前記制御部から出力される第2制御信号に基づき、火薬の爆発によって断裂することで前記導電路を遮断する火工遮断器と、を具備し、
 前記半導体遮断器および前記火工遮断器は、前記導電路において直列に接続されており、
 前記制御部は、予め定められた異常状態が検知された場合に、前記第1制御信号および前記第2制御信号を出力する。
The vehicle cut-off control device disclosed herein includes:
A vehicle cutoff control device for use in a vehicle power supply system having a conductive path,
A cut-off portion that cuts off the conductive path;
A control unit that controls an operation of the interrupter;
having
The interrupter is
a semiconductor circuit breaker that switches from a release state in which the interruption state of the conductive path is released to the interruption state based on a first control signal output from the control unit;
a pyrotechnic circuit breaker that breaks the conductive path by being ruptured by an explosion of explosives based on a second control signal output from the control unit,
the semiconductor circuit breaker and the pyrotechnic circuit breaker are connected in series in the conductive path;
The control unit outputs the first control signal and the second control signal when a predetermined abnormal state is detected.
 本開示に係る技術は、迅速に導電路を遮断するとともに、遮断時の絶縁性能を向上できる。 The technology disclosed herein can quickly cut off the conductive path and improve the insulation performance when the path is cut off.
図1は、第1実施形態の車両用遮断制御装置を含む車両用電源システムを概略的に例示するブロック図である。FIG. 1 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to a first embodiment. 図2は、車両用遮断制御装置の制御部で行われる遮断制御の流れを例示するフローチャートである。FIG. 2 is a flowchart illustrating the flow of cutoff control performed by the control unit of the vehicle cutoff control device. 図3は、制御部による遮断制御に基づく、導電路の電流値の時間変化と、半導体遮断器の両端電圧の時間変化を例示する説明図である。FIG. 3 is an explanatory diagram illustrating an example of a change over time in the current value of the conductive path and a change over time in the voltage across the semiconductor circuit breaker based on the interruption control by the control unit. 図4は、第2実施形態の車両用遮断制御装置の制御部で行われる遮断制御の流れを例示するフローチャートである。FIG. 4 is a flowchart illustrating a flow of cutoff control performed by the control unit of the vehicle cutoff control device of the second embodiment. 図5は、第3実施形態の車両用遮断制御装置を含む車両用電源システムを概略的に例示するブロック図である。FIG. 5 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to the third embodiment. 図6は、第3実施形態の制御部による遮断制御に基づく、導電路の電流値の時間変化と、半導体遮断器の両端電圧の時間変化と、火工遮断器の両端電圧の時間変化を例示する説明図である。FIG. 6 is an explanatory diagram illustrating the change over time of the current value of the conductive path, the change over time of the voltage across a semiconductor circuit breaker, and the change over time of the voltage across a pyrotechnic circuit breaker based on the interruption control by the control unit of the third embodiment. 図7は、他の実施形態の車両用遮断制御装置を含む車両用電源システムを概略的に例示するブロック図である。FIG. 7 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to another embodiment. 図8は、他の実施形態の車両用遮断制御装置を含む車両用電源システムを概略的に例示するブロック図である。FIG. 8 is a block diagram that illustrates a schematic example of a vehicle power supply system including a vehicle cutoff control device according to another embodiment.
〔1〕導電路を備える車両用電源システムに用いられる車両用遮断制御装置であって、
 前記導電路を遮断する遮断部と、
 前記遮断部の動作を制御する制御部と、
を有し、
 前記遮断部は、
 前記制御部から出力される第1制御信号に基づき、前記導電路の遮断状態が解除される解除状態から、前記遮断状態に切り替わる半導体遮断器と、
 前記制御部から出力される第2制御信号に基づき、火薬の爆発によって断裂することで前記導電路を遮断する火工遮断器と、を具備し、
 前記半導体遮断器および前記火工遮断器は、前記導電路において直列に接続されており、
 前記制御部は、予め定められた異常状態が検知された場合に、前記第1制御信号および前記第2制御信号を出力する
 車両用遮断制御装置。
[1] A vehicle cutoff control device for use in a vehicle power supply system having a conductive path,
A cut-off portion that cuts off the conductive path;
A control unit that controls an operation of the interrupter;
having
The interrupter is
a semiconductor circuit breaker that switches from a release state in which the interruption state of the conductive path is released to the interruption state based on a first control signal output from the control unit;
a pyrotechnic circuit breaker that breaks the conductive path by being ruptured by an explosion of explosives based on a second control signal output from the control unit,
the semiconductor circuit breaker and the pyrotechnic circuit breaker are connected in series in the conductive path;
The control unit outputs the first control signal and the second control signal when a predetermined abnormal state is detected.
 上記の〔1〕の車両用遮断制御装置では、制御部が、異常状態時に、第1制御信号を出力することで、半導体遮断器を遮断状態として、導電路を遮断することができる。これにより、半導体遮断器によって、導電路を迅速に遮断できる。また、制御部は、異常状態時に、第2制御信号を出力することで、火工遮断器に断裂させて導電路を遮断することができる。これにより、火工遮断器によって、導電路の遮断時における遮断部の絶縁性能を向上できる。したがって、車両用遮断制御装置は、半導体遮断器によって導電路を迅速に遮断でき、火工遮断器の遮断によって遮断時の遮断部の絶縁性能を向上できる。 In the vehicle cutoff control device of [1] above, the control unit outputs a first control signal in an abnormal state, thereby placing the semiconductor circuit breaker in a cutoff state and cutting off the conductive path. This allows the semiconductor circuit breaker to quickly cut off the conductive path. Furthermore, the control unit outputs a second control signal in an abnormal state, thereby causing the pyrotechnic circuit breaker to rupture and cut off the conductive path. This allows the pyrotechnic circuit breaker to improve the insulation performance of the cutoff section when the conductive path is cut off. Therefore, the vehicle cutoff control device can quickly cut off the conductive path with the semiconductor circuit breaker, and can improve the insulation performance of the cutoff section when cut off by cutting off the pyrotechnic circuit breaker.
 〔2〕〔1〕に記載の車両用遮断制御装置において、以下の特徴を有する。車両用遮断制御装置は、前記半導体遮断器が前記解除状態から前記遮断状態に切り替わった後、前記半導体遮断器に印加される電圧が絶対最大定格を超えることなく、前記火工遮断器が前記導電路を遮断する。 [2] The vehicle cutoff control device described in [1] has the following features: After the semiconductor circuit breaker switches from the release state to the cutoff state, the pyrotechnic circuit breaker cuts off the conductive path without the voltage applied to the semiconductor circuit breaker exceeding the absolute maximum rating.
 上記の〔2〕の車両用遮断制御装置では、半導体遮断器による導電路の遮断後、半導体遮断器に絶対最大定格を超える電圧が印加されることを抑制することができる。 The vehicle cutoff control device described above in [2] can prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker after the semiconductor circuit breaker cuts off the conductive path.
 〔3〕〔1〕又は〔2〕に記載の車両用遮断制御装置において、以下の特徴を有する。前記制御部は、前記異常状態が検知された場合に、前記第1制御信号および前記第2制御信号を同時に出力する。  [3] The vehicle cutoff control device described in [1] or [2] has the following features: When the abnormal state is detected, the control unit simultaneously outputs the first control signal and the second control signal.
 上記の〔3〕の車両用遮断制御装置では、制御部によって第1制御信号および第2制御信号を同時に出力することで、各信号の出力制御を簡易にできる。 In the vehicle cutoff control device described above in [3], the control unit outputs the first control signal and the second control signal simultaneously, which simplifies output control of each signal.
 〔4〕〔1〕又は〔2〕に記載の車両用遮断制御装置において、以下の特徴を有する。前記制御部は、前記異常状態が検知された場合に、前記第1制御信号を出力した後に、前記第2制御信号を出力する。  [4] The vehicle cutoff control device described in [1] or [2] has the following features: When the abnormal state is detected, the control unit outputs the first control signal and then outputs the second control signal.
 上記の〔4〕の車両用遮断制御装置では、半導体遮断器によって導電路の迅速な遮断を確実に行いつつ、火工遮断器による導電路の遮断後に遮断部の絶縁性能を火工遮断器の絶縁性能により高めることができる。 In the vehicle cutoff control device described above in [4], the semiconductor circuit breaker ensures rapid cutoff of the conductive path, while the insulating performance of the cutoff section can be improved by the insulating performance of the pyrotechnic circuit breaker after the conductive path is cut off by the pyrotechnic circuit breaker.
 〔5〕〔4〕に記載の車両用遮断制御装置において、以下の特徴を有する。前記導電路の電流を検出する電流検出部を有し、前記制御部は、前記電流検出部によって前記導電路の過電流状態が検出された場合に、前記第1制御信号を出力し、前記半導体遮断器が前記解除状態から前記遮断状態に切り替わった後、前記所定の経過時間内で前記電流検出部によって前記導電路の過電流状態が検出され続けた場合に、前記第2制御信号を出力する。  [5] The vehicle cutoff control device described in [4] has the following features: It has a current detection unit that detects the current in the conductive path, and the control unit outputs the first control signal when the current detection unit detects an overcurrent state in the conductive path, and outputs the second control signal when the current detection unit continues to detect an overcurrent state in the conductive path within the specified elapsed time after the semiconductor circuit breaker switches from the released state to the cutoff state.
 上記の〔5〕の車両用遮断制御装置では、導電路が過電流状態になった場合に、半導体遮断器を遮断状態にして導電路を迅速に遮断することができる。その上で、所定の経過時間内で導電路の過電流状態が解消されなかった場合には、半導体遮断器に加え火工遮断器によっても導電路を遮断することができる。 In the vehicle cutoff control device described above in [5], if the conductive path is in an overcurrent state, the semiconductor circuit breaker can be switched to the cutoff state to quickly cut off the conductive path. Furthermore, if the overcurrent state of the conductive path is not resolved within a specified time, the conductive path can be cut off by a pyrotechnic circuit breaker in addition to the semiconductor circuit breaker.
 〔6〕〔5〕に記載の車両用遮断制御装置において、以下の特徴を有する。前記半導体遮断器は、前記制御部から出力される第3制御信号に基づき、前記遮断状態から前記解除状態に切り替わり、前記制御部は、前記半導体遮断器が前記解除状態から前記遮断状態に切り替わった後、前記所定の経過時間内に前記電流検出部によって前記導電路の過電流状態が検出されなくなった場合に、前記第3制御信号を出力して前記半導体遮断器を前記遮断状態から前記解除状態に切り替える。  [6] The vehicle cutoff control device described in [5] has the following features: The semiconductor circuit breaker switches from the cutoff state to the released state based on a third control signal output from the control unit, and the control unit outputs the third control signal to switch the semiconductor circuit breaker from the cutoff state to the released state when the current detection unit no longer detects an overcurrent state in the conductive path within the specified elapsed time after the semiconductor circuit breaker switches from the released state to the cutoff state.
 上記の〔6〕の車両用遮断制御装置では、所定の経過時間内に導電路の過電流状態が解消された場合には、半導体遮断器および火工遮断器によって導電路を遮断することなく、通電させることができる。 In the vehicle cutoff control device described above in [6], if the overcurrent condition in the conductive path is resolved within a specified period of time, electricity can be allowed to flow through the conductive path without being cut off by the semiconductor circuit breaker and pyrotechnic circuit breaker.
 〔7〕〔1〕から〔6〕のいずれか一つに記載の車両用遮断制御装置において、以下の特徴を有する。過電流が流れる場合に溶断するヒューズを有し、前記ヒューズは、前記導電路において前記半導体遮断器に並列して設けられている。 [7] The vehicle cutoff control device described in any one of [1] to [6] has the following features: A fuse that melts when an overcurrent flows, and the fuse is provided in parallel with the semiconductor circuit breaker in the conductive path.
 上記の〔7〕の車両用遮断制御装置では、半導体遮断器が遮断状態となった後、ヒューズによって電流変化を小さくしつつ電流を流すことができる。そのため、サージ電圧を小さく抑えることができ、サージ電圧から半導体遮断器を保護できる。 In the vehicle cutoff control device described above in [7], after the semiconductor circuit breaker is in the cutoff state, the fuse allows current to flow while minimizing the current change. This makes it possible to keep surge voltages low and protect the semiconductor circuit breaker from surge voltages.
 〔8〕〔1〕から〔7〕のいずれか一つに記載の車両用遮断制御装置において、以下の特徴を有する。前記導電路は、電源部から電力が供給され、前記半導体遮断器の絶対最大定格は、前記電源部の出力電圧よりも大きく、前記遮断部の絶縁耐電圧は、前記半導体遮断器の絶対最大定格よりも大きく、前記火工遮断器の耐電圧は、前記遮断部の絶縁耐電圧よりも大きい。 [8] The vehicle cutoff control device described in any one of [1] to [7] has the following features: The conductive path is supplied with power from a power supply unit, the absolute maximum rating of the semiconductor circuit breaker is greater than the output voltage of the power supply unit, the dielectric strength voltage of the cutoff unit is greater than the absolute maximum rating of the semiconductor circuit breaker, and the dielectric strength voltage of the pyrotechnic circuit breaker is greater than the dielectric strength voltage of the cutoff unit.
 上記の〔8〕の車両用遮断制御装置では、火工遮断器の絶縁性能によって、半導体遮断器の絶縁性能を補い、遮断部全体としての絶縁性能を確保することができる。 In the vehicle circuit breaker control device described above in [8], the insulating performance of the pyrotechnic circuit breaker complements the insulating performance of the semiconductor circuit breaker, ensuring the insulating performance of the entire circuit breaker.
 <第1実施形態>
〔車両用電源システムの構成〕
 図1に示す車両用電源システム100は、車両に搭載される電源システムであり、電源部10と、負荷20と、導電路30と、車両用遮断制御装置40と、を備えている。車両用電源システム100は、電源部10と負荷20との間において電力が伝送される経路である導電路30を介して、電源部10から負荷20に電力を供給し得る構成をなす。
First Embodiment
[Configuration of vehicle power supply system]
1 is a power supply system mounted on a vehicle, and includes a power supply unit 10, a load 20, a conductive path 30, and a vehicle cutoff control device 40. The vehicle power supply system 100 is configured to be able to supply power from the power supply unit 10 to the load 20 via the conductive path 30, which is a path along which power is transmitted between the power supply unit 10 and the load 20.
 電源部10は、例えば、直流電圧を生じる直流電源である。電源部10として、例えば、鉛バッテリ、リチウムイオン電池、オルタネータ等の発電機等の電源手段が用いられる。電源部10には高電位側の端子と低電位側の端子が設けられ、低電位側の端子は導電路30に電気的に接続され、高電位側の端子は負荷20に電流が流れ込む導電路(図示略)に電気的に接続されている。電源部10は、高電位側の端子に接続される導電路(図示略)に所定の出力電圧を印加する構成をなしている。なお、本明細書において、電圧とは、特に限定がない限り、グラウンドを基準とする電圧である。 The power supply unit 10 is, for example, a DC power supply that generates a DC voltage. For example, a power supply means such as a lead battery, a lithium ion battery, or a generator such as an alternator is used as the power supply unit 10. The power supply unit 10 is provided with a high potential terminal and a low potential terminal, the low potential terminal is electrically connected to a conductive path 30, and the high potential terminal is electrically connected to a conductive path (not shown) through which a current flows to the load 20. The power supply unit 10 is configured to apply a predetermined output voltage to the conductive path (not shown) connected to the high potential terminal. In this specification, the term "voltage" refers to a voltage referenced to ground unless otherwise specified.
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。 In the present disclosure, "electrically connected" preferably means a configuration in which the connection objects are connected in a mutually conductive state (a state in which current can flow) so that the potentials of both connection objects are equal. However, this is not limited to this configuration. For example, "electrically connected" may also mean a configuration in which the connection objects are connected in a state in which they can be conductive with an electrical component interposed between them.
 負荷20は、例えば、車載用の電気機器である。負荷20は、例えば、モータ、コンプレッサー、PTCサーミスタ等である。 The load 20 is, for example, an electrical device mounted on a vehicle. The load 20 is, for example, a motor, a compressor, a PTC thermistor, etc.
 導電路30は、電源部10と負荷20との間に設けられている。導電路30は、電源部10から電力が供給される経路である。導電路30は、電源部10から負荷20に電力を供給する際に、負荷20から電源部10に向かって電流が流れる経路である。導電路30の一端は、電源部10の低電位側の端子に電気的に接続されている。導電路30の他端は、負荷20に電気的に接続されている。 The conductive path 30 is provided between the power supply unit 10 and the load 20. The conductive path 30 is a path through which power is supplied from the power supply unit 10. The conductive path 30 is a path through which current flows from the load 20 to the power supply unit 10 when power is supplied from the power supply unit 10 to the load 20. One end of the conductive path 30 is electrically connected to the low-potential terminal of the power supply unit 10. The other end of the conductive path 30 is electrically connected to the load 20.
 車両用遮断制御装置40は、遮断部50と、制御部41と、第1駆動回路42と、第2駆動回路43と、電流検出部45と、を有している。 The vehicle cutoff control device 40 has a cutoff unit 50, a control unit 41, a first drive circuit 42, a second drive circuit 43, and a current detection unit 45.
 遮断部50は、導電路30に設けられている。遮断部50は、導電路30を遮断するように機能する。遮断部50は、後述する制御部41の制御によって動作する。遮断部50は、半導体遮断器51と、火工遮断器52と、を具備している。半導体遮断器51および火工遮断器52は、導電路30において直列に接続されている。 The interrupter 50 is provided in the conductive path 30. The interrupter 50 functions to interrupt the conductive path 30. The interrupter 50 operates under the control of the control unit 41, which will be described later. The interrupter 50 includes a semiconductor circuit breaker 51 and a pyrotechnic circuit breaker 52. The semiconductor circuit breaker 51 and the pyrotechnic circuit breaker 52 are connected in series in the conductive path 30.
 半導体遮断器51は、導電路30に設けられている。半導体遮断器51は、オンオフ動作する半導体スイッチとして構成されている。半導体遮断器51は、例えばnチャネル型のMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)である。半導体遮断器51のゲートは、後述する第1駆動回路42に電気的に接続されている。半導体遮断器51のソースは、後述する火工遮断器52に電気的に接続されている。半導体遮断器51のドレインは、後述する負荷20に電気的に接続されている。 The semiconductor circuit breaker 51 is provided in the conductive path 30. The semiconductor circuit breaker 51 is configured as a semiconductor switch that performs on/off operation. The semiconductor circuit breaker 51 is, for example, an n-channel MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). The gate of the semiconductor circuit breaker 51 is electrically connected to the first drive circuit 42, which will be described later. The source of the semiconductor circuit breaker 51 is electrically connected to the pyrotechnic circuit breaker 52, which will be described later. The drain of the semiconductor circuit breaker 51 is electrically connected to the load 20, which will be described later.
 半導体遮断器51は、後述する制御部41から出力される制御信号(第1制御信号)に基づき、導電路30の遮断状態が解除される解除状態(オン状態)から、導電路30を遮断する遮断状態(オフ状態)に切り替わる。具体的には、制御部41の第1制御信号に基づき、後述する第1駆動回路42からの第1電圧信号がゲートに入力された場合に、解除状態から遮断状態に切り替わる。半導体遮断器51は、後述する制御部41から出力される制御信号(第3制御信号)に基づき、遮断状態から解除状態に切り替わる。具体的には、制御部41の第3制御信号に基づき、第1駆動回路42からの第3電圧信号がゲートに入力された場合に、遮断状態から解除状態に切り替わる。 The semiconductor circuit breaker 51 switches from a released state (on state), in which the cut-off state of the conductive path 30 is released, to a cut-off state (off state), in which the conductive path 30 is cut, based on a control signal (first control signal) output from the control unit 41, which will be described later. Specifically, when a first voltage signal from the first drive circuit 42, which will be described later, is input to the gate, based on the first control signal from the control unit 41, the semiconductor circuit breaker 51 switches from the cut-off state to the released state based on a control signal (third control signal) output from the control unit 41, which will be described later. Specifically, when a third voltage signal from the first drive circuit 42 is input to the gate, based on the third control signal from the control unit 41, the semiconductor circuit breaker 51 switches from the cut-off state to the released state.
 火工遮断器52は、導電路30において、半導体遮断器51よりも低電位側(電源部10側)に設けられている。なお、本開示の車両用遮断制御装置40は、火工遮断器52が導電路30において半導体遮断器51よりも高電位側(負荷20側)に設けられる構成にも適用できる。火工遮断器52は、制御信号に基づき導電路30を物理的に切断する遮断器である。火工遮断器52は、後述する制御部41から出力される制御信号(第2制御信号)に基づき、火薬の爆発によって断裂することで導電路30を遮断するパイロヒューズ(PYROFUSE(登録商標))である。具体的には、火工遮断器52は、制御部41から出力される第2制御信号に基づき、後述する第2駆動回路43からの第2電圧信号が入力された場合に、爆発を生じさせ、この爆発によって変位部を移動させることで経路を物理的に切断する。火工遮断器52の一端は、電源部10に電気的に接続されている。火工遮断器52の他端は、半導体遮断器51のソースに電気的に接続されている。 The pyrotechnic circuit breaker 52 is provided on the lower potential side (the power supply unit 10 side) of the semiconductor circuit breaker 51 in the conductive path 30. The vehicle cutoff control device 40 of the present disclosure can also be applied to a configuration in which the pyrotechnic circuit breaker 52 is provided on the higher potential side (the load 20 side) of the semiconductor circuit breaker 51 in the conductive path 30. The pyrotechnic circuit breaker 52 is a circuit breaker that physically cuts off the conductive path 30 based on a control signal. The pyrotechnic circuit breaker 52 is a pyrotechnic fuse (PYROFUSE (registered trademark)) that cuts off the conductive path 30 by rupturing it with an explosive explosion based on a control signal (second control signal) output from the control unit 41 described later. Specifically, the pyrotechnic circuit breaker 52 causes an explosion when a second voltage signal is input from the second drive circuit 43 described later based on the second control signal output from the control unit 41, and the explosion moves the displacement portion to physically cut off the path. One end of the pyrotechnic circuit breaker 52 is electrically connected to the power supply unit 10. The other end of the pyrotechnic circuit breaker 52 is electrically connected to the source of the semiconductor circuit breaker 51.
 半導体遮断器51の応答時間は、火工遮断器52の応答時間よりも短い。半導体遮断器51の応答時間とは、第1制御信号に基づく信号(第1電圧信号)を取得してから遮断が開始するまで(遮断状態となるまで)の時間である。火工遮断器52の応答時間とは、第2制御信号に基づく信号(第2電圧信号)を取得してから遮断が開始するまでの時間である。 The response time of the semiconductor circuit breaker 51 is shorter than the response time of the pyrotechnic circuit breaker 52. The response time of the semiconductor circuit breaker 51 is the time from when a signal based on the first control signal (first voltage signal) is acquired until the circuit breaker starts (until the circuit breaker becomes in a cut-off state). The response time of the pyrotechnic circuit breaker 52 is the time from when a signal based on the second control signal (second voltage signal) is acquired until the circuit breaker starts.
 半導体遮断器51の絶対最大定格は、電源部10の出力電圧よりも大きい。遮断部50の絶縁耐電圧は、半導体遮断器51の絶対最大定格よりも大きい。火工遮断器52の耐電圧は、遮断部50の絶縁耐電圧よりも大きい。遮断部50の絶縁耐電圧とは、遮断部50全体(遮断状態の半導体遮断器51および遮断状態の火工遮断器52)として絶縁破壊を生じることなく導電路30に電流が流れないように絶縁を維持できる電圧の上限値である。火工遮断器52の耐電圧とは、火工遮断器52の遮断動作後に、再導通しないように維持できる電圧の上限値である。 The absolute maximum rating of the semiconductor circuit breaker 51 is greater than the output voltage of the power supply unit 10. The dielectric strength voltage of the interrupter unit 50 is greater than the absolute maximum rating of the semiconductor circuit breaker 51. The dielectric strength voltage of the pyrotechnic circuit breaker 52 is greater than the dielectric strength voltage of the interrupter unit 50. The dielectric strength voltage of the interrupter unit 50 is the upper limit of the voltage at which the entire interrupter unit 50 (semiconductor circuit breaker 51 in the interrupted state and pyrotechnic circuit breaker 52 in the interrupted state) can maintain insulation so that no current flows through the conductive path 30 without causing dielectric breakdown. The dielectric strength voltage of the pyrotechnic circuit breaker 52 is the upper limit of the voltage that can be maintained so that the pyrotechnic circuit breaker 52 does not re-connect after the interruption operation.
 制御部41は、電源部10から負荷20に電力を供給する動作を制御する。制御部41は、情報処理機能、演算機能、制御機能などを有する情報処理装置である。制御部41は、例えばマイクロコンピュータを主体として構成されており、CPU(Central Processing Unit)などの演算装置、ROM(Read Only Memory)又はRAM(Random Access Memory)などのメモリ、A/D変換器等を有している。制御部41は、遮断部50の動作を制御する。 The control unit 41 controls the operation of supplying power from the power supply unit 10 to the load 20. The control unit 41 is an information processing device having information processing functions, calculation functions, control functions, etc. The control unit 41 is mainly composed of a microcomputer, for example, and has a calculation unit such as a CPU (Central Processing Unit), memory such as a ROM (Read Only Memory) or RAM (Random Access Memory), an A/D converter, etc. The control unit 41 controls the operation of the cut-off unit 50.
 制御部41は、半導体遮断器51のオンオフ動作を制御する。制御部41は、第1制御信号を出力して半導体遮断器51を解除状態から遮断状態に切り替えさせる。制御部41は、第1制御信号とは異なる第3制御信号を出力して、半導体遮断器51を遮断状態から解除状態に切り替えさせる。例えば、第1制御信号がローレベル信号(例えば、0V)であり、第3制御信号がハイレベル信号(ローレベル信号よりも電圧が大きい信号)である。 The control unit 41 controls the on/off operation of the semiconductor circuit breaker 51. The control unit 41 outputs a first control signal to switch the semiconductor circuit breaker 51 from the released state to the cut-off state. The control unit 41 outputs a third control signal different from the first control signal to switch the semiconductor circuit breaker 51 from the cut-off state to the released state. For example, the first control signal is a low-level signal (e.g., 0 V), and the third control signal is a high-level signal (a signal with a higher voltage than the low-level signal).
 制御部41は、火工遮断器52の遮断動作を制御する。制御部41は、第2制御信号を出力して火工遮断器52によって導電路30を遮断させる。制御部41は、第2制御信号とは異なる第4制御信号を出力している間、火工遮断器52による導電路30の遮断を行わせない。第2制御信号は、第1制御信号の電圧レベルおよび第3制御信号の電圧レベルの一方と同じであってもよく、異なっていてもよい。第2制御信号は、例えば、第3制御信号と同じ電圧レベルの信号(ハイレベル信号)である。第4制御信号は、第1制御信号の電圧レベルおよび第3制御信号の電圧レベルの一方と同じであってもよく、異なっていてもよい。第4制御信号は、例えば第1制御信号と同じ電圧レベルの信号(ローレベル信号)である。 The control unit 41 controls the interruption operation of the pyrotechnic circuit breaker 52. The control unit 41 outputs a second control signal to cause the pyrotechnic circuit breaker 52 to interrupt the conductive path 30. While the control unit 41 outputs a fourth control signal different from the second control signal, the control unit 41 does not cause the pyrotechnic circuit breaker 52 to interrupt the conductive path 30. The second control signal may be the same as or different from one of the voltage level of the first control signal and the voltage level of the third control signal. The second control signal is, for example, a signal (high level signal) that has the same voltage level as the third control signal. The fourth control signal may be the same as or different from one of the voltage level of the first control signal and the voltage level of the third control signal. The fourth control signal is, for example, a signal (low level signal) that has the same voltage level as the first control signal.
 第1駆動回路42は、制御部41の出力端子と、半導体遮断器51のゲートとに電気的に接続されている。第1駆動回路42は、例えばゲートドライバ回路であり、抵抗、ダイオード、バイポーラトランジスタ等を用いた様々な回路構成を採用できる。第1駆動回路42は、制御部41からの制御信号が入力される。第1駆動回路42は、半導体遮断器51をオフ状態にするための第1電圧信号(例えば、ローレベル信号)の出力と、半導体遮断器51をオン状態にするための第3電圧信号(例えば、ハイレベル信号)の出力と、を切り替え得る回路である。制御部41が第1制御信号を出力している場合に、第1駆動回路42が第1電圧信号を出力し、半導体遮断器51がオフ状態で維持される。制御部41の出力が第3制御信号から第1制御信号に切り替わった時に、第1駆動回路42から第1電圧信号が出力され、半導体遮断器51がオン状態からオフ状態に切り替わる。制御部41が第3制御信号を出力している場合に、第1駆動回路42が第3電圧信号を出力し、半導体遮断器51がオン状態で維持される。第3制御信号(例えば、ハイレベル信号)は、半導体遮断器51のゲート閾値電圧を上回る大きさの電圧信号である。 The first drive circuit 42 is electrically connected to the output terminal of the control unit 41 and the gate of the semiconductor circuit breaker 51. The first drive circuit 42 is, for example, a gate driver circuit, and can adopt various circuit configurations using resistors, diodes, bipolar transistors, etc. The first drive circuit 42 receives a control signal from the control unit 41. The first drive circuit 42 is a circuit that can switch between outputting a first voltage signal (e.g., a low-level signal) for turning the semiconductor circuit breaker 51 to an off state and outputting a third voltage signal (e.g., a high-level signal) for turning the semiconductor circuit breaker 51 to an on state. When the control unit 41 outputs the first control signal, the first drive circuit 42 outputs the first voltage signal, and the semiconductor circuit breaker 51 is maintained in an off state. When the output of the control unit 41 switches from the third control signal to the first control signal, the first drive circuit 42 outputs the first voltage signal, and the semiconductor circuit breaker 51 switches from an on state to an off state. When the control unit 41 outputs the third control signal, the first drive circuit 42 outputs a third voltage signal, and the semiconductor circuit breaker 51 is maintained in the on state. The third control signal (e.g., a high-level signal) is a voltage signal whose magnitude exceeds the gate threshold voltage of the semiconductor circuit breaker 51.
 第2駆動回路43は、制御部41の出力端子と、火工遮断器52とに電気的に接続されている。第2駆動回路43は、抵抗、ダイオード、バイポーラトランジスタ等を用いた様々な回路構成を採用できる。第2駆動回路43は、制御部41からの制御信号が入力される。第2駆動回路43は、火工遮断器52に遮断動作させない状態にするための第4電圧信号(例えば、ローレベル信号)の出力から、火工遮断器52に遮断動作させるための第2電圧信号(例えば、ハイレベル信号)の出力に切り替え得る回路である。火工遮断器52が遮断動作を行っていない状態において、制御部41が第4制御信号を出力している場合に、第2駆動回路43が第4電圧信号を出力し、火工遮断器52が遮断動作しない状態が維持される。制御部41が第2制御信号を出力する場合に、第2駆動回路43が第2電圧信号を出力し、火工遮断器52が遮断動作を行う。 The second drive circuit 43 is electrically connected to the output terminal of the control unit 41 and the pyrotechnic circuit breaker 52. The second drive circuit 43 can employ various circuit configurations using resistors, diodes, bipolar transistors, etc. A control signal is input to the second drive circuit 43 from the control unit 41. The second drive circuit 43 is a circuit that can switch from outputting a fourth voltage signal (e.g., a low-level signal) for putting the pyrotechnic circuit breaker 52 in a state where it does not perform an interruption operation to outputting a second voltage signal (e.g., a high-level signal) for putting the pyrotechnic circuit breaker 52 in an interruption operation. When the control unit 41 outputs the fourth control signal while the pyrotechnic circuit breaker 52 is not performing an interruption operation, the second drive circuit 43 outputs the fourth voltage signal, and the state in which the pyrotechnic circuit breaker 52 does not perform an interruption operation is maintained. When the control unit 41 outputs the second control signal, the second drive circuit 43 outputs the second voltage signal, and the pyrotechnic circuit breaker 52 performs an interruption operation.
 電流検出部45は、導電路30の電流値を検出する。電流検出部45が検出する電流値は、導電路30の電流値を特定できる値(具体的にはアナログ電圧値)である。電流検出部45は、例えば電流検出回路として構成されている。具体的には、電流検出部45は、導電路30において、電源部10と火工遮断器52との間に設けられている。電流検出部45で検出された電流値は、制御部41に出力される。 The current detection unit 45 detects the current value of the conductive path 30. The current value detected by the current detection unit 45 is a value (specifically, an analog voltage value) that can identify the current value of the conductive path 30. The current detection unit 45 is configured, for example, as a current detection circuit. Specifically, the current detection unit 45 is provided in the conductive path 30 between the power supply unit 10 and the pyrotechnic circuit breaker 52. The current value detected by the current detection unit 45 is output to the control unit 41.
〔車両用遮断制御装置の動作〕
 次に、図2、3等を参照しつつ、車両用遮断制御装置40の動作の一例について説明する。図2に示すフローチャートは、所定の開始条件成立時に、制御部41によって実行される制御である。所定の開始条件成立時は、車両用電源システム100が搭載された車両を始動させる始動条件が成立したこと(例えば、イグニッションスイッチなどの始動スイッチがオフ状態からオン状態に切り替わったこと)であってもよく、車両用遮断制御装置40(具体的には、制御部41)に電力が供給され始めたことであってもよく、その他の条件であってもよい。始動スイッチがオン状態に切り替わったことを示す始動信号は、例えば外部装置(例えば、外部のECU(Electronic Control Unit))から制御部41に与えられるようになっている。
[Operation of the vehicle shutoff control device]
Next, an example of the operation of the vehicle cutoff control device 40 will be described with reference to Figs. 2 and 3. The flowchart shown in Fig. 2 shows control executed by the control unit 41 when a predetermined start condition is satisfied. The predetermined start condition may be satisfied when a start condition for starting the vehicle equipped with the vehicle power supply system 100 is satisfied (for example, when a start switch such as an ignition switch is switched from an off state to an on state), when power has started to be supplied to the vehicle cutoff control device 40 (specifically, the control unit 41), or when some other condition is satisfied. A start signal indicating that the start switch has been switched to the on state is provided to the control unit 41 from, for example, an external device (for example, an external ECU (Electronic Control Unit)).
 例えば、図2に示す制御を開始する前には、制御部41が第1制御信号(例えば、ローレベル信号)を出力しており、第1駆動回路42が第1電圧信号を出力しており、半導体遮断器51がオフ状態で維持されている。また、制御部41が第4制御信号(例えば、ローレベル信号)を出力しており、第2駆動回路43が第4電圧信号を出力しており、火工遮断器52が遮断動作していない状態で維持されている。 For example, before the control shown in FIG. 2 is started, the control unit 41 outputs a first control signal (e.g., a low-level signal), the first drive circuit 42 outputs a first voltage signal, and the semiconductor circuit breaker 51 is maintained in an off state. In addition, the control unit 41 outputs a fourth control signal (e.g., a low-level signal), the second drive circuit 43 outputs a fourth voltage signal, and the pyrotechnic circuit breaker 52 is maintained in a state in which it is not performing a cut-off operation.
 制御部41は、まず、ステップS11において、第3制御信号(例えば、ハイレベル信号)を出力する。これにより、第3制御信号が第1駆動回路42に入力され、第1駆動回路42から半導体遮断器51に第3電圧信号(例えば、ハイレベル信号)が出力される。そして、半導体遮断器51は、第3制御信号に基づき入力される第3電圧信号によって、遮断状態から解除状態に切り替わる。これにより、電源部10から負荷20に電力が供給し得る状態となる。 First, in step S11, the control unit 41 outputs a third control signal (e.g., a high-level signal). This causes the third control signal to be input to the first drive circuit 42, which in turn outputs a third voltage signal (e.g., a high-level signal) to the semiconductor circuit breaker 51. The semiconductor circuit breaker 51 is then switched from a cut-off state to a release state by the third voltage signal input based on the third control signal. This allows power to be supplied from the power supply unit 10 to the load 20.
 続くステップS12において、制御部41は、導電路30が過電流状態か否か判断する。過電流状態とは、導電路30の電流値が増大状態となることである。導電路30の電流値の増大状態とは、例えば、導電路30の電流値が予め定められた閾値を超えた状態、導電路30の電流値の増加速度が予め定められた閾値を超えた状態などである。導電路30の過電流状態は、予め定められた異常状態の一例である。 In the next step S12, the control unit 41 determines whether the conductive path 30 is in an overcurrent state. An overcurrent state is when the current value of the conductive path 30 is increasing. An increasing state of the current value of the conductive path 30 is, for example, when the current value of the conductive path 30 exceeds a predetermined threshold value, or when the rate of increase in the current value of the conductive path 30 exceeds a predetermined threshold value. The overcurrent state of the conductive path 30 is an example of a predetermined abnormal state.
 制御部41は、導電路30が過電流状態であると判断するまで、ステップS12の処理を繰り返し行う。制御部41は、導電路30が過電流状態であると判断すると(ステップS12でYes)、ステップS13で、過電流状態が検出した時点から一定時間継続したか否か判断する。制御部41は、過電流状態が一定時間継続していない(過電流状態の検出時点からの一定時間内に過電流状態が解消された)と判断する場合、ステップS13でNoに進み、再びステップS12の処理を行う。 The control unit 41 repeats the process of step S12 until it determines that the conductive path 30 is in an overcurrent state. If the control unit 41 determines that the conductive path 30 is in an overcurrent state (Yes in step S12), it determines in step S13 whether the overcurrent state has continued for a certain period of time from the time when the overcurrent state was detected. If the control unit 41 determines that the overcurrent state has not continued for a certain period of time (the overcurrent state has been resolved within the certain period of time from the time when the overcurrent state was detected), it proceeds to No in step S13 and performs the process of step S12 again.
 一方で、制御部41は、ステップS13で、過電流状態が一定時間継続した(過電流状態の検出時点からの一定時間内に過電流状態が検出されていない)と判断する場合、Yesに進み、異常状態を検知したと判断する(ステップS14)。 On the other hand, if the control unit 41 determines in step S13 that the overcurrent state has continued for a certain period of time (the overcurrent state has not been detected within the certain period of time from the time the overcurrent state was detected), it proceeds to Yes and determines that an abnormal state has been detected (step S14).
 続くステップS15で、制御部41は、第1制御信号(例えば、ローレベル信号)を出力するとともに、第2制御信号(例えば、ハイレベル信号)を出力する。具体的には、第1制御信号を出力すると同時に、第2制御信号を出力する。ステップS15の処理の後、制御部41は、図2の制御を終了する。 In the next step S15, the control unit 41 outputs a first control signal (e.g., a low-level signal) and a second control signal (e.g., a high-level signal). Specifically, the control unit 41 outputs the first control signal and the second control signal at the same time. After the processing of step S15, the control unit 41 ends the control of FIG. 2.
 第1制御信号が第1駆動回路42に入力され、第1駆動回路42から半導体遮断器51に第1電圧信号(例えば、ローレベル信号)が出力される。そして、半導体遮断器51は、第1制御信号に基づき入力される第1電圧信号によって、解除状態から遮断状態に切り替わる。これにより、半導体遮断器51によって、導電路30を迅速に遮断できる。 The first control signal is input to the first drive circuit 42, and the first drive circuit 42 outputs a first voltage signal (e.g., a low-level signal) to the semiconductor circuit breaker 51. The semiconductor circuit breaker 51 is then switched from a released state to a cut-off state by the first voltage signal input based on the first control signal. This allows the semiconductor circuit breaker 51 to quickly cut off the conductive path 30.
 また、第2制御信号が第2駆動回路43に入力され、第2駆動回路43から火工遮断器52に第2電圧信号(例えば、ハイレベル信号)が出力される。そして、火工遮断器52は、第2制御信号に基づき入力される第2電圧信号によって、遮断動作を行う(断裂させて導電路30を遮断する)。これにより、火工遮断器52によって、導電路30の遮断時における遮断部50の絶縁性能を向上できる。 The second control signal is also input to the second drive circuit 43, and a second voltage signal (e.g., a high-level signal) is output from the second drive circuit 43 to the pyrotechnic circuit breaker 52. The pyrotechnic circuit breaker 52 then performs a cutoff operation (cuts off the conductive path 30 by rupturing it) based on the second voltage signal input based on the second control signal. This allows the pyrotechnic circuit breaker 52 to improve the insulation performance of the cutoff section 50 when the conductive path 30 is cut off.
 図3は、ステップS15で制御部41が第1制御信号および第2制御信号を出力した後の、導電路30の電流値の時間変化と、半導体遮断器51の両端電圧(ソース-ドレイン間電圧)の時間変化を示している。図3に示すように、時間t1で、制御部41が第1制御信号および第2制御信号を出力している。時間t2で、半導体遮断器51の応答時間(第1電圧信号を取得してから遮断が開始するまでの時間)が経過し、半導体遮断器51が解除状態から遮断状態に切り替わっている。その後、導電路30の電流値が小さくなり、高速遮断時における導電路30等のインダクタンスによるサージ電圧等によって半導体遮断器51の両端電圧が大きくなる。 Figure 3 shows the change over time in the current value of the conductive path 30 and the change over time in the voltage across the semiconductor circuit breaker 51 (source-drain voltage) after the control unit 41 outputs the first control signal and the second control signal in step S15. As shown in Figure 3, at time t1, the control unit 41 outputs the first control signal and the second control signal. At time t2, the response time of the semiconductor circuit breaker 51 (the time from when the first voltage signal is acquired until the start of blocking) has elapsed, and the semiconductor circuit breaker 51 has switched from the released state to the blocked state. Thereafter, the current value of the conductive path 30 decreases, and the voltage across the semiconductor circuit breaker 51 increases due to a surge voltage due to the inductance of the conductive path 30, etc., during high-speed blocking.
 時間t3で、火工遮断器52の応答時間(第2電圧信号を取得してから遮断が開始するまでの時間)が経過し、火工遮断器52が遮断動作を開始させる(断裂して導電路30を遮断する)。 At time t3, the response time of the pyrotechnic circuit breaker 52 (the time from when the second voltage signal is acquired until the start of the circuit breaker) elapses, and the pyrotechnic circuit breaker 52 starts its circuit breaker operation (breaks the conductive path 30).
 ここで、車両用遮断制御装置40において、半導体遮断器51が解除状態から遮断状態に切り替わった後、半導体遮断器51に印加される電圧(両端電圧)が絶対最大定格を超えることなく、火工遮断器52が導電路30を遮断する構成となっている。絶対最大定格とは、ソース-ドレイン間に印加される電圧がその定格を超えた場合に、正常に絶縁性能が保たれなくなる電圧値である。図3に示すように、時間t2の経過後、半導体遮断器51の両端電圧が増加しても、半導体遮断器51の両端電圧が絶対最大定格を超えことなく火工遮断器52が導電路30を遮断するため、半導体遮断器51に絶対最大定格を超える電圧が印加されることを抑制することができる。 Here, in the vehicle cutoff control device 40, after the semiconductor circuit breaker 51 switches from the released state to the cutoff state, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage applied to the semiconductor circuit breaker 51 (voltage across both ends) exceeding the absolute maximum rating. The absolute maximum rating is a voltage value at which normal insulation performance is no longer maintained if the voltage applied between the source and drain exceeds that rating. As shown in FIG. 3, even if the voltage across the semiconductor circuit breaker 51 increases after time t2 has elapsed, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage across the semiconductor circuit breaker 51 exceeding the absolute maximum rating, so it is possible to prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker 51.
〔第1実施形態の効果〕
 次の説明は、第1実施形態の効果の一例に関する。
 車両用遮断制御装置40において、制御部41は、異常状態時に、第1制御信号を出力することで、半導体遮断器51を遮断状態として、導電路30を遮断することができる。これにより、半導体遮断器51によって、導電路30を迅速に遮断できる。また、制御部41は、異常状態時に、第2制御信号を出力することで、火工遮断器52に断裂させて導電路30を遮断することができる。これにより、火工遮断器52によって、導電路30の遮断時における遮断部50の絶縁性能を向上できる。したがって、車両用遮断制御装置40は、半導体遮断器51によって導電路30を迅速に遮断でき、火工遮断器52の遮断によって遮断時の遮断部50の絶縁性能を向上できる。絶縁性能を向上するために、高耐圧の半導体遮断器を用いたり、半導体遮断器を複数直列に接続するような構成に比べて、コストを抑えながら遮断部50の絶縁性能を向上できる。
[Effects of the First Embodiment]
The following description relates to an example of the effect of the first embodiment.
In the vehicle cutoff control device 40, the control unit 41 outputs a first control signal in an abnormal state, thereby putting the semiconductor circuit breaker 51 into a cutoff state and cutting off the conductive path 30. This allows the semiconductor circuit breaker 51 to quickly cut off the conductive path 30. Furthermore, the control unit 41 outputs a second control signal in an abnormal state, thereby causing the pyrotechnic circuit breaker 52 to rupture and cut off the conductive path 30. This allows the pyrotechnic circuit breaker 52 to improve the insulation performance of the cutoff unit 50 when the conductive path 30 is cut off. Therefore, the vehicle cutoff control device 40 can quickly cut off the conductive path 30 with the semiconductor circuit breaker 51, and can improve the insulation performance of the cutoff unit 50 when cut off by the pyrotechnic circuit breaker 52. Compared to a configuration in which a high-voltage semiconductor circuit breaker is used or multiple semiconductor circuit breakers are connected in series to improve the insulation performance, the insulation performance of the cutoff unit 50 can be improved while keeping costs down.
 車両用遮断制御装置40において、半導体遮断器51が解除状態から遮断状態に切り替わった後、半導体遮断器51に印加される電圧が絶対最大定格を超えることなく、火工遮断器52が導電路30を遮断する。これにより、半導体遮断器51による導電路30の遮断後、半導体遮断器51に絶対最大定格を超える電圧が印加されることを抑制することができる。 In the vehicle cutoff control device 40, after the semiconductor circuit breaker 51 switches from the released state to the cutoff state, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage applied to the semiconductor circuit breaker 51 exceeding the absolute maximum rating. This makes it possible to prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker 51 after the semiconductor circuit breaker 51 cuts off the conductive path 30.
 車両用遮断制御装置40において、制御部41は、異常状態が検知された場合に、第1制御信号を出力すると同時に、第2制御信号を出力する。これにより、制御部41によって第1制御信号と第2制御信号を同時に出力することで、各信号の出力制御を簡易にできる。 In the vehicle cutoff control device 40, the control unit 41 outputs a first control signal and a second control signal at the same time when an abnormal state is detected. This allows the control unit 41 to output the first control signal and the second control signal simultaneously, making it possible to simplify output control of each signal.
 車両用遮断制御装置40において、半導体遮断器51の絶対最大定格は、電源部10の出力電圧よりも大きく、遮断部50の絶縁耐電圧は、半導体遮断器51の絶対最大定格よりも大きく、火工遮断器52の耐電圧は、遮断部50の絶縁耐電圧よりも大きい。これにより、車両用遮断制御装置40は、火工遮断器52の絶縁性能によって、半導体遮断器51の絶縁性能を補い、遮断部50全体としての絶縁性能を確保することができる。 In the vehicle shutoff control device 40, the absolute maximum rating of the semiconductor circuit breaker 51 is greater than the output voltage of the power supply unit 10, the dielectric strength voltage of the shutoff unit 50 is greater than the absolute maximum rating of the semiconductor circuit breaker 51, and the dielectric strength voltage of the pyrotechnic circuit breaker 52 is greater than the dielectric strength voltage of the shutoff unit 50. As a result, the vehicle shutoff control device 40 can supplement the dielectric strength of the semiconductor circuit breaker 51 with the dielectric strength of the pyrotechnic circuit breaker 52, thereby ensuring the dielectric strength of the shutoff unit 50 as a whole.
 <第2実施形態>
 第2実施形態の車両用電源システムは、車両用遮断制御装置の動作の点で第1実施形態と異なり、その他の点では共通する。なお、第1実施形態と同一の構成については同一の符号を付し、詳しい説明を省略する。
Second Embodiment
The vehicle power supply system of the second embodiment differs from the first embodiment in the operation of the vehicle cutoff control device, but is otherwise common to both embodiments. Note that the same components as those of the first embodiment are given the same reference numerals and detailed descriptions thereof will be omitted.
 次に、図4等を参照しつつ、第2実施形態における車両用遮断制御装置40の動作の一例について説明する。図4に示すフローチャートは、第2実施形態における車両用遮断制御装置40において、所定の開始条件成立時に、制御部41によって実行される制御である。所定の開始条件は、第1実施形態で説明した条件と同様の条件である。 Next, an example of the operation of the vehicle cutoff control device 40 in the second embodiment will be described with reference to FIG. 4 etc. The flowchart shown in FIG. 4 shows the control executed by the control unit 41 in the vehicle cutoff control device 40 in the second embodiment when a predetermined start condition is met. The predetermined start condition is the same as the condition described in the first embodiment.
 図4のステップS11~S14は、第1実施形態のステップS11~S14と同様であり、詳しい説明を省略する。制御部41は、ステップS14で異常状態を検知したと判断した後、ステップS21で、第1制御信号(例えば、ローレベル信号)を出力する。 Steps S11 to S14 in FIG. 4 are similar to steps S11 to S14 in the first embodiment, and detailed description will be omitted. After determining that an abnormal state has been detected in step S14, the control unit 41 outputs a first control signal (e.g., a low-level signal) in step S21.
 第1制御信号が第1駆動回路42に入力され、第1駆動回路42から半導体遮断器51に第1電圧信号(例えば、ローレベル信号)が出力される。そして、半導体遮断器51は、第1制御信号に基づき入力される第1電圧信号によって、解除状態から遮断状態に切り替わる。これにより、半導体遮断器51によって、導電路30を迅速に遮断できる。 The first control signal is input to the first drive circuit 42, and the first drive circuit 42 outputs a first voltage signal (e.g., a low-level signal) to the semiconductor circuit breaker 51. The semiconductor circuit breaker 51 is then switched from a released state to a cut-off state by the first voltage signal input based on the first control signal. This allows the semiconductor circuit breaker 51 to quickly cut off the conductive path 30.
 続くステップS22で、制御部41は、ステップS12で導電路30の過電流状態を検出した時点から所定の経過時間内に過電流状態が解消されたか否か判断する。すなわち、制御部41は、所定の経過時間内に、導電路30の過電流状態が検出されなくなったか否か判断する。例えば、導電路30の過電流状態が検出されなくなる場合とは、導電路30の電流値が予め定められた閾値を下回った場合、導電路30の電流値の低下速度が予め定められた閾値を超えた場合などである。 In the following step S22, the control unit 41 determines whether the overcurrent state of the conductive path 30 has been resolved within a predetermined elapsed time from the time when the overcurrent state of the conductive path 30 was detected in step S12. In other words, the control unit 41 determines whether the overcurrent state of the conductive path 30 is no longer detected within a predetermined elapsed time. For example, the overcurrent state of the conductive path 30 is no longer detected when the current value of the conductive path 30 falls below a predetermined threshold, when the rate at which the current value of the conductive path 30 decreases exceeds a predetermined threshold, etc.
 制御部41は、ステップS22で、所定の経過時間内に導電路30の過電流状態が解消されたと判断する場合、Yesに進み、再びステップS11の処理を行う。このように、制御部41は、半導体遮断器51が解除状態から遮断状態に切り替わった後(ステップS21の処理の後)、所定の経過時間内に電流検出部45によって導電路30の過電流状態が検出されなくなった場合に、第3制御信号を出力して半導体遮断器51を遮断状態から解除状態に切り替える(ステップS11)。 If the control unit 41 determines in step S22 that the overcurrent state of the conductive path 30 has been resolved within the predetermined elapsed time, it proceeds to Yes and performs the processing of step S11 again. In this way, after the semiconductor circuit breaker 51 has been switched from the released state to the cut-off state (after the processing of step S21), if the overcurrent state of the conductive path 30 is no longer detected by the current detection unit 45 within the predetermined elapsed time, the control unit 41 outputs the third control signal to switch the semiconductor circuit breaker 51 from the cut-off state to the released state (step S11).
 一方で、制御部41は、ステップS22で、所定の経過時間内に導電路30の過電流状態が解消されていないと判断する場合、Noに進み、ステップS23の処理を行う。制御部41は、ステップS23で、第2制御信号(例えば、ハイレベル信号)を出力する。このように、制御部41は、異常状態が検知された場合に、第1制御信号を出力した後に、第2制御信号を出力する。半導体遮断器51が解除状態から遮断状態に切り替わった後、所定の経過時間内で電流検出部45によって導電路30の過電流状態が検出され続けた場合に、第2制御信号を出力する。ステップS23の処理の後、制御部41は、図4の制御を終了する。 On the other hand, if the control unit 41 determines in step S22 that the overcurrent state of the conductive path 30 has not been resolved within the predetermined elapsed time, it proceeds to No and performs the process of step S23. In step S23, the control unit 41 outputs a second control signal (e.g., a high-level signal). In this way, when an abnormal state is detected, the control unit 41 outputs the first control signal and then outputs the second control signal. If the overcurrent state of the conductive path 30 continues to be detected by the current detection unit 45 within a predetermined elapsed time after the semiconductor circuit breaker 51 switches from the released state to the interrupted state, the control unit 41 outputs the second control signal. After the process of step S23, the control unit 41 ends the control of FIG. 4.
 第2制御信号が第2駆動回路43に入力され、第2駆動回路43から火工遮断器52に第2電圧信号(例えば、ハイレベル信号)が出力される。そして、火工遮断器52は、第2制御信号に基づき入力される第2電圧信号によって、遮断動作を行う(断裂させて導電路30を遮断する)。これにより、火工遮断器52によって、導電路30の遮断時における遮断部50の絶縁性能を向上できる。 The second control signal is input to the second drive circuit 43, and the second drive circuit 43 outputs a second voltage signal (e.g., a high-level signal) to the pyrotechnic circuit breaker 52. The pyrotechnic circuit breaker 52 then performs a cutoff operation (cuts off the conductive path 30 by rupturing it) based on the second voltage signal input based on the second control signal. This allows the pyrotechnic circuit breaker 52 to improve the insulation performance of the cutoff section 50 when the conductive path 30 is cut off.
〔第2実施形態の効果〕
 次の説明は、第2実施形態の効果の一例に関する。
 車両用遮断制御装置40において、制御部41は、異常状態が検知された場合に、第1制御信号を出力した後に、第2制御信号を出力する。これにより、半導体遮断器51によって導電路30の迅速な遮断を確実に行いつつ、火工遮断器52による導電路30の遮断後に遮断部50の絶縁性能を火工遮断器52の絶縁性能により高めることができる。
[Effects of the second embodiment]
The following description relates to an example of the effect of the second embodiment.
In the vehicle cutoff control device 40, the control unit 41 outputs a first control signal and then a second control signal when an abnormal state is detected. This allows the semiconductor circuit breaker 51 to reliably cut off the conductive path 30 quickly, while the insulating performance of the cutoff unit 50 can be improved by the insulating performance of the pyrotechnic circuit breaker 52 after the conductive path 30 is cut off by the pyrotechnic circuit breaker 52.
 車両用遮断制御装置40において、半導体遮断器51は、制御部41から出力される第3制御信号に基づき、遮断状態から解除状態に切り替わる。車両用遮断制御装置40は、導電路30の電流を検出する電流検出部45を有する。制御部41は、電流検出部45によって導電路30の過電流状態が検出された場合に、第1制御信号を出力する。制御部41は、半導体遮断器51が解除状態から遮断状態に切り替わった後、所定の経過時間内に電流検出部45によって導電路30の過電流状態が検出されなくなった場合に、第3制御信号を出力して半導体遮断器51を遮断状態から解除状態に切り替える。制御部41は、半導体遮断器51が解除状態から遮断状態に切り替わった後、所定の経過時間内で電流検出部45によって導電路30の過電流状態が検出され続けた場合に、第2制御信号を出力する。これにより、導電路30が過電流状態になった場合に、半導体遮断器51を遮断状態にして導電路30を迅速に遮断することができる。その上で、所定の経過時間内に導電路30の過電流状態が解消された場合には、半導体遮断器51および火工遮断器52によって導電路30を遮断することなく、通電させることができる。一方で、所定の経過時間内で導電路30の過電流状態が解消されなかった場合には、半導体遮断器51に加え火工遮断器52によっても導電路30を遮断することができる。 In the vehicle cutoff control device 40, the semiconductor circuit breaker 51 switches from the cutoff state to the release state based on the third control signal output from the control unit 41. The vehicle cutoff control device 40 has a current detection unit 45 that detects the current in the conductive path 30. The control unit 41 outputs a first control signal when the current detection unit 45 detects an overcurrent state in the conductive path 30. The control unit 41 outputs a third control signal to switch the semiconductor circuit breaker 51 from the cutoff state to the release state when the overcurrent state of the conductive path 30 is no longer detected by the current detection unit 45 within a predetermined elapsed time after the semiconductor circuit breaker 51 switches from the release state to the cutoff state. The control unit 41 outputs a second control signal when the overcurrent state of the conductive path 30 continues to be detected by the current detection unit 45 within a predetermined elapsed time after the semiconductor circuit breaker 51 switches from the release state to the cutoff state. Thereby, when the conductive path 30 is in an overcurrent state, the semiconductor circuit breaker 51 can be set to the cutoff state to quickly cut off the conductive path 30. If the overcurrent state of the conductive path 30 is then resolved within a predetermined time, the conductive path 30 can be energized without being interrupted by the semiconductor circuit breaker 51 and the pyrotechnic circuit breaker 52. On the other hand, if the overcurrent state of the conductive path 30 is not resolved within a predetermined time, the conductive path 30 can be interrupted by the pyrotechnic circuit breaker 52 in addition to the semiconductor circuit breaker 51.
 <第3実施形態>
 第3実施形態の車両用電源システム200は、導電路30にヒューズ253を設ける点で第1実施形態と異なり、その他の点では共通する。なお、第1実施形態と同一の構成については同一の符号を付し、詳しい説明を省略する。
Third Embodiment
The vehicle power supply system 200 of the third embodiment is different from the first embodiment in that a fuse 253 is provided in the conductive path 30, but is otherwise common to both embodiments. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図5に示すように、車両用電源システム200は、電源部10と、負荷20と、導電路30と、車両用遮断制御装置240と、を備えている。車両用遮断制御装置240は、遮断部50と、ヒューズ253と、制御部41と、第1駆動回路42と、第2駆動回路43と、電流検出部45と、を有している。 As shown in FIG. 5, the vehicle power supply system 200 includes a power supply unit 10, a load 20, a conductive path 30, and a vehicle cutoff control device 240. The vehicle cutoff control device 240 includes a cutoff unit 50, a fuse 253, a control unit 41, a first drive circuit 42, a second drive circuit 43, and a current detection unit 45.
 ヒューズ253は、導電路30において半導体遮断器51に並列して設けられている。ヒューズ253の一端は、半導体遮断器51のソースに電気的に接続されている。ヒューズ253の他端は、半導体遮断器51のドレインに電気的に接続されている。ヒューズ253は、過電流が流れる場合に溶断するサーマルヒューズである。 The fuse 253 is provided in parallel with the semiconductor circuit breaker 51 in the conductive path 30. One end of the fuse 253 is electrically connected to the source of the semiconductor circuit breaker 51. The other end of the fuse 253 is electrically connected to the drain of the semiconductor circuit breaker 51. The fuse 253 is a thermal fuse that melts when an overcurrent flows.
 車両用遮断制御装置240の動作は、第1実施形態の車両用遮断制御装置40の動作(図2のフロー)と同じである。 The operation of the vehicle shutoff control device 240 is the same as the operation of the vehicle shutoff control device 40 in the first embodiment (flow in Figure 2).
 図6は、ステップS15で制御部41が第1制御信号および第2制御信号を出力した後の、導電路30の電流値の時間変化と、半導体遮断器51の両端電圧(ソース-ドレイン間電圧)の時間変化と、火工遮断器52の両端電圧の時間変化と、を示している。図6に示すように、時間t11で、制御部41が第1制御信号および第2制御信号を出力している。時間t12で、半導体遮断器51の応答時間(第1制御信号を取得してから遮断が開始するまでの時間)が経過し、半導体遮断器51が解除状態から遮断状態に切り替わっている。 Figure 6 shows the change over time in the current value of the conductive path 30, the change over time in the voltage across the semiconductor circuit breaker 51 (source-drain voltage), and the change over time in the voltage across the pyrotechnic circuit breaker 52 after the control unit 41 outputs the first control signal and the second control signal in step S15. As shown in Figure 6, at time t11, the control unit 41 outputs the first control signal and the second control signal. At time t12, the response time of the semiconductor circuit breaker 51 (the time from obtaining the first control signal to the start of circuit breaking) has elapsed, and the semiconductor circuit breaker 51 has switched from the released state to the circuit breaker state.
 半導体遮断器51が遮断状態となった時点の時間t12から、ヒューズ253に電流が流れ始める。時間t12から時間t13までの間が、ヒューズ253の応答時間(電流が流れ始めて溶断が完了するまでの時間)である。 Current begins to flow through fuse 253 from time t12, when semiconductor circuit breaker 51 is switched to an interrupted state. The period from time t12 to time t13 is the response time of fuse 253 (the time from when current begins to flow until melting is complete).
 時間t13から、導電路30の電流値が小さくなり、導電路30等のインダクタンスによるサージ電圧等によって半導体遮断器51の両端電圧が大きくなる。しかしながら、半導体遮断器が遮断状態となった後、ヒューズによって電流変化を小さくしつつ電流を流すことができる。そのため、サージ電圧を小さく抑えることができ、サージ電圧から半導体遮断器を保護できる。 From time t13, the current value of the conductive path 30 decreases, and the voltage across the semiconductor circuit breaker 51 increases due to surge voltages caused by the inductance of the conductive path 30, etc. However, after the semiconductor circuit breaker goes into an interrupted state, the fuse allows current to flow while reducing the current change. This makes it possible to keep the surge voltage small and protect the semiconductor circuit breaker from the surge voltage.
 時間t14で、火工遮断器52の応答時間(第2電圧信号を取得してから遮断が開始するまでの時間)が経過し、火工遮断器52が遮断動作を開始させる(断裂して導電路30を遮断する)。 At time t14, the response time of the pyrotechnic circuit breaker 52 (the time from when the second voltage signal is acquired until the start of the circuit breaker) elapses, and the pyrotechnic circuit breaker 52 starts its circuit breaker operation (breaks the conductive path 30).
 ここで、車両用遮断制御装置40において、半導体遮断器51が解除状態から遮断状態に切り替わった後、半導体遮断器51に印加される電圧(両端電圧)が絶対最大定格を超えることなく、火工遮断器52が導電路30を遮断する構成となっている。時間t13の経過後、半導体遮断器51の両端電圧が増加しても、半導体遮断器51の両端電圧が絶対最大定格を超える前に火工遮断器52が導電路30を遮断するため、半導体遮断器51に絶対最大定格を超える電圧が印加されることを抑制することができる。 Here, in the vehicle cutoff control device 40, after the semiconductor circuit breaker 51 switches from the released state to the cutoff state, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 without the voltage applied to the semiconductor circuit breaker 51 (voltage across both ends) exceeding the absolute maximum rating. Even if the voltage across the semiconductor circuit breaker 51 increases after time t13 has elapsed, the pyrotechnic circuit breaker 52 cuts off the conductive path 30 before the voltage across the semiconductor circuit breaker 51 exceeds the absolute maximum rating, so it is possible to prevent a voltage exceeding the absolute maximum rating from being applied to the semiconductor circuit breaker 51.
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described above and in the drawings. For example, the features of the above or later described embodiments can be combined in any combination within a range that does not contradict. In addition, any feature of the above or later described embodiments can be omitted unless it is clearly stated as essential. Furthermore, the above-mentioned embodiment may be modified as follows.
 上記第1実施形態において、導電路30が電源部10の低電位側の端子に接続される構成を例示したが、図7に示す車両用電源システム300のように、導電路30が電源部10の高電位側の端子に接続される構成であってもよい。図7の構成では、半導体遮断器351のソースが負荷20に電気的に接続されている。半導体遮断器351のドレインは、火工遮断器52に電気的に接続されている。 In the above first embodiment, a configuration in which the conductive path 30 is connected to the low potential terminal of the power supply unit 10 is exemplified, but a configuration in which the conductive path 30 is connected to the high potential terminal of the power supply unit 10 may also be used, as in the vehicle power supply system 300 shown in FIG. 7. In the configuration of FIG. 7, the source of the semiconductor circuit breaker 351 is electrically connected to the load 20. The drain of the semiconductor circuit breaker 351 is electrically connected to the pyrotechnic circuit breaker 52.
 上記第3実施形態において、導電路30が電源部10の低電位側の端子に接続される構成を例示したが、図8に示す車両用電源システム400のように、導電路30が電源部10の高電位側の端子に接続される構成であってもよい。図8の構成では、半導体遮断器451のソースが負荷20に電気的に接続されている。半導体遮断器451のドレインは、火工遮断器52に電気的に接続されている。 In the above third embodiment, a configuration in which the conductive path 30 is connected to the low potential terminal of the power supply unit 10 is exemplified, but a configuration in which the conductive path 30 is connected to the high potential terminal of the power supply unit 10 may also be used, as in the vehicle power supply system 400 shown in FIG. 8. In the configuration of FIG. 8, the source of the semiconductor circuit breaker 451 is electrically connected to the load 20. The drain of the semiconductor circuit breaker 451 is electrically connected to the pyrotechnic circuit breaker 52.
 上記第1~第3実施形態において、予め定められた異常状態(ステップS12で判断する状態)の一例として、導電路30が過電流状態となることを示したが、その他の異常状態であってもよい。例えば、予め定められた異常状態として、車両の異常状態(車両の衝突など)を検知した状態であってもよい。例えば、車両が異常状態(車両の衝突など)であることを示す信号が外部装置(例えば、外部のECU(Electronic Control Unit))から制御部41に与えられるようになっている。制御部41は、このような信号を受けた場合に、予め定められた異常状態であると判断してもよい。 In the above first to third embodiments, an overcurrent state in the conductive path 30 has been shown as an example of a predetermined abnormal state (a state determined in step S12), but other abnormal states may also be used. For example, the predetermined abnormal state may be a state in which an abnormal state of the vehicle (such as a vehicle collision) has been detected. For example, a signal indicating that the vehicle is in an abnormal state (such as a vehicle collision) is given to the control unit 41 from an external device (for example, an external ECU (Electronic Control Unit)). When the control unit 41 receives such a signal, it may determine that a predetermined abnormal state has occurred.
 上記第3実施形態において、車両用遮断制御装置240の制御は、第1実施形態の車両用遮断制御装置40の制御(図2のフロー)と同じであったが、第2実施形態の車両用遮断制御装置40の制御(図4のフロー)と同じであってもよい。 In the above third embodiment, the control of the vehicle cutoff control device 240 was the same as the control of the vehicle cutoff control device 40 in the first embodiment (flow in FIG. 2), but it may be the same as the control of the vehicle cutoff control device 40 in the second embodiment (flow in FIG. 4).
 上記第1~第3実施形態において、半導体遮断器51が、nチャネル型のMOSFETである構成を例示したが、IGBT(Insulated Gate Bipolar Transistor)等、その他の半導体スイッチであってもよい。 In the above first to third embodiments, the semiconductor circuit breaker 51 is an n-channel MOSFET, but it may be another semiconductor switch, such as an IGBT (Insulated Gate Bipolar Transistor).
 上記第1~第3実施形態において、負荷20の代わりに充電器を導電路30に設ける構成としてもよい。 In the first to third embodiments described above, a charger may be provided in the conductive path 30 instead of the load 20.
 上記第1~第3実施形態において、電流検出部45が、導電路30において電源部10と火工遮断器52との間に設けられていたが、火工遮断器52と半導体遮断器51の間や、半導体遮断器51と負荷20の間に設けてもよい。 In the first to third embodiments, the current detection unit 45 is provided between the power supply unit 10 and the pyrotechnic circuit breaker 52 in the conductive path 30, but it may be provided between the pyrotechnic circuit breaker 52 and the semiconductor circuit breaker 51, or between the semiconductor circuit breaker 51 and the load 20.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is not limited to the embodiments disclosed herein, but is intended to include all modifications within the scope of the claims or within the scope equivalent to the claims.
10…電源部
20…負荷
30…導電路
40…車両用遮断制御装置
41…制御部
42…第1駆動回路
43…第2駆動回路
45…電流検出部
50…遮断部
51…半導体遮断器
52…火工遮断器
100…車両用電源システム
200…車両用電源システム
240…車両用遮断制御装置
253…ヒューズ
300…車両用電源システム
351…半導体遮断器
400…車両用電源システム
451…半導体遮断器
10...power supply unit 20...load 30...conductive path 40...vehicle cutoff control device 41...control unit 42...first drive circuit 43...second drive circuit 45...current detection unit 50...cutoff unit 51...semiconductor circuit breaker 52...pyrotechnic circuit breaker 100...vehicle power supply system 200...vehicle power supply system 240...vehicle cutoff control device 253...fuse 300...vehicle power supply system 351...semiconductor circuit breaker 400...vehicle power supply system 451...semiconductor circuit breaker

Claims (8)

  1.  導電路を備える車両用電源システムに用いられる車両用遮断制御装置であって、
     前記導電路を遮断する遮断部と、
     前記遮断部の動作を制御する制御部と、
    を有し、
     前記遮断部は、
     前記制御部から出力される第1制御信号に基づき、前記導電路の遮断状態が解除される解除状態から、前記遮断状態に切り替わる半導体遮断器と、
     前記制御部から出力される第2制御信号に基づき、火薬の爆発によって断裂することで前記導電路を遮断する火工遮断器と、を具備し、
     前記半導体遮断器および前記火工遮断器は、前記導電路において直列に接続されており、
     前記制御部は、予め定められた異常状態が検知された場合に、前記第1制御信号および前記第2制御信号を出力する
     車両用遮断制御装置。
    A vehicle cutoff control device for use in a vehicle power supply system having a conductive path,
    A cut-off portion that cuts off the conductive path;
    A control unit that controls an operation of the interrupter;
    having
    The interrupter is
    a semiconductor circuit breaker that switches from a release state in which the interruption state of the conductive path is released to the interruption state based on a first control signal output from the control unit;
    a pyrotechnic circuit breaker that breaks the conductive path by being exploded with explosives based on a second control signal output from the control unit,
    the semiconductor circuit breaker and the pyrotechnic circuit breaker are connected in series in the conductive path;
    The control unit outputs the first control signal and the second control signal when a predetermined abnormal state is detected.
  2.  前記半導体遮断器が前記解除状態から前記遮断状態に切り替わった後、前記半導体遮断器に印加される電圧が絶対最大定格を超えることなく、前記火工遮断器が前記導電路を遮断する
     請求項1に記載の車両用遮断制御装置。
    2. The vehicle cutoff control device according to claim 1, wherein after the semiconductor circuit breaker switches from the release state to the cutoff state, the pyrotechnic circuit breaker cuts off the conductive path without a voltage applied to the semiconductor circuit breaker exceeding an absolute maximum rating.
  3.  前記制御部は、前記異常状態が検知された場合に、前記第1制御信号および前記第2制御信号を同時に出力する
     請求項1又は請求項2に記載の車両用遮断制御装置。
    The vehicle cut-off control device according to claim 1 or 2, wherein the control unit is configured to simultaneously output the first control signal and the second control signal when the abnormal state is detected.
  4.  前記制御部は、前記異常状態が検知された場合に、前記第1制御信号を出力した後に、前記第2制御信号を出力する
     請求項1又は請求項2に記載の車両用遮断制御装置。
    The vehicle cut-off control device according to claim 1 or 2, wherein the control unit is configured to output the first control signal and then output the second control signal when the abnormal state is detected.
  5.  前記導電路の電流を検出する電流検出部を有し、
     前記制御部は、
     前記電流検出部によって前記導電路の過電流状態が検出された場合に、前記第1制御信号を出力し、
     前記半導体遮断器が前記解除状態から前記遮断状態に切り替わった後、所定の経過時間内で前記電流検出部によって前記導電路の過電流状態が検出され続けた場合に、前記第2制御信号を出力する
     請求項4に記載の車両用遮断制御装置。
    a current detection unit that detects a current in the conductive path;
    The control unit is
    When an overcurrent state of the conductive path is detected by the current detection unit, the first control signal is output;
    5. The vehicle cutoff control device according to claim 4, wherein the second control signal is output when the current detection unit continues to detect an overcurrent state in the conductive path within a predetermined elapsed time after the semiconductor circuit breaker switches from the released state to the cutoff state.
  6.  前記半導体遮断器は、前記制御部から出力される第3制御信号に基づき、前記遮断状態から前記解除状態に切り替わり、
     前記制御部は、前記半導体遮断器が前記解除状態から前記遮断状態に切り替わった後、前記所定の経過時間内に前記電流検出部によって前記導電路の過電流状態が検出されなくなった場合に、前記第3制御信号を出力して前記半導体遮断器を前記遮断状態から前記解除状態に切り替える
     請求項5に記載の車両用遮断制御装置。
    The semiconductor circuit breaker switches from the interrupted state to the released state based on a third control signal output from the control unit,
    6. The vehicle cutoff control device according to claim 5, wherein the control unit outputs the third control signal to switch the semiconductor circuit breaker from the cutoff state to the release state when an overcurrent state in the conductive path is no longer detected by the current detection unit within the predetermined elapsed time after the semiconductor circuit breaker switches from the release state to the cutoff state.
  7.  過電流が流れる場合に溶断するヒューズを有し、
     前記ヒューズは、前記導電路において前記半導体遮断器に並列して設けられている、
     請求項1又は請求項2に記載の車両用遮断制御装置。
    A fuse is provided which melts when an overcurrent flows.
    The fuse is provided in parallel with the semiconductor circuit breaker in the conductive path.
    The vehicle shutoff control device according to claim 1 or 2.
  8.  前記導電路は、電源部から電力が供給され、
     前記半導体遮断器の絶対最大定格は、前記電源部の出力電圧よりも大きく、
     前記遮断部の絶縁耐電圧は、前記半導体遮断器の絶対最大定格よりも大きく、
     前記火工遮断器の耐電圧は、前記遮断部の絶縁耐電圧よりも大きい、
     請求項1又は請求項2に記載の車両用遮断制御装置。
    The conductive path is supplied with power from a power supply unit,
    The semiconductor circuit breaker has an absolute maximum rating greater than the output voltage of the power supply unit,
    The withstand voltage of the interrupter is greater than the absolute maximum rating of the semiconductor circuit breaker,
    The withstand voltage of the pyrotechnic circuit breaker is greater than the withstand voltage of the interrupter.
    The vehicle shutoff control device according to claim 1 or 2.
PCT/JP2022/041588 2022-11-08 2022-11-08 Vehicular interruption control device WO2024100773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041588 WO2024100773A1 (en) 2022-11-08 2022-11-08 Vehicular interruption control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041588 WO2024100773A1 (en) 2022-11-08 2022-11-08 Vehicular interruption control device

Publications (1)

Publication Number Publication Date
WO2024100773A1 true WO2024100773A1 (en) 2024-05-16

Family

ID=91032429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041588 WO2024100773A1 (en) 2022-11-08 2022-11-08 Vehicular interruption control device

Country Status (1)

Country Link
WO (1) WO2024100773A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030035A1 (en) * 2015-08-20 2017-02-23 株式会社オートネットワーク技術研究所 Electric wire protection device
WO2021010007A1 (en) * 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 Power cutoff device
JP2022013791A (en) * 2020-07-01 2022-01-18 パナソニックIpマネジメント株式会社 Vehicle power shut-off system for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030035A1 (en) * 2015-08-20 2017-02-23 株式会社オートネットワーク技術研究所 Electric wire protection device
WO2021010007A1 (en) * 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 Power cutoff device
JP2022013791A (en) * 2020-07-01 2022-01-18 パナソニックIpマネジメント株式会社 Vehicle power shut-off system for vehicle

Similar Documents

Publication Publication Date Title
US6239515B1 (en) Circuit for the protection of electrical devices
JP6304784B2 (en) Battery module shutoff structure
US11440412B2 (en) Disconnection device for a high-voltage electrical system of a motor vehicle, high-voltage electrical system, and motor vehicle
CN104137211B (en) There is the high voltage direct current hybrid circuit breaker of buffer circuit
CN108604809B (en) Relay device and power supply device
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
US20080137253A1 (en) Circuit Interruption Device
US20180062384A1 (en) Current interruption arrangement, battery system, controller and method for interrupting a current flow between a battery and a load of the battery
US20170187179A1 (en) Junction box
CN112805897A (en) Fast battery disconnect system for high current circuits
JP4635989B2 (en) Current interrupt device
US7808757B2 (en) Power switching apparatus with overload protection
US20050135034A1 (en) Resettable circuit breaker
JP2004248093A (en) Load drive circuit
JP2014177208A (en) Vehicular power source shut-off device
WO2024100773A1 (en) Vehicular interruption control device
JP2000504551A (en) Wiring of voltage controller in automotive electronic system
WO2024100775A1 (en) Vehicle protection device
WO2024100793A1 (en) Vehicle shut-off control device
WO2018079276A1 (en) Power supply device
JPH08205411A (en) Reverse connection protective circuit for battery
EP4123860A1 (en) Fuse and protection circuit based upon bidirectional switch
WO2022244687A1 (en) Blocking control device and blocking control system
CN113039693A (en) Separating device for an electrochemical energy storage system
WO2023152786A1 (en) On-vehicle shutoff control device