WO2024099388A1 - 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质 - Google Patents

视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质 Download PDF

Info

Publication number
WO2024099388A1
WO2024099388A1 PCT/CN2023/130712 CN2023130712W WO2024099388A1 WO 2024099388 A1 WO2024099388 A1 WO 2024099388A1 CN 2023130712 W CN2023130712 W CN 2023130712W WO 2024099388 A1 WO2024099388 A1 WO 2024099388A1
Authority
WO
WIPO (PCT)
Prior art keywords
video image
electrical signal
image frame
brightness
mapping curve
Prior art date
Application number
PCT/CN2023/130712
Other languages
English (en)
French (fr)
Inventor
耿晨晖
李勇鹏
Original Assignee
北京奇艺世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京奇艺世纪科技有限公司 filed Critical 北京奇艺世纪科技有限公司
Publication of WO2024099388A1 publication Critical patent/WO2024099388A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/643Hue control means, e.g. flesh tone control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase

Definitions

  • the present disclosure generally relates to the field of image display technology, and more specifically to a video data processing method, a video display method and apparatus, an electronic device, and a readable storage medium.
  • Video-related software and hardware technologies have developed rapidly in the past decade.
  • video production and playback technology has been significantly updated, and video has begun to move from standard dynamic range (SDR) video to high dynamic range (HDR) video.
  • SDR standard dynamic range
  • HDR high dynamic range
  • display material technology has also made significant progress, with LCD (Liquid Crystal Display) and OLED (Organic Light Emitting Display) occupying all kinds of terminal products.
  • Static tone mapping means that the shape of the mapping curve is fixed for a certain video sequence, while dynamic tone mapping dynamically generates a mapping curve based on the video scene and the display performance of the terminal device. Therefore, in general, the effect of dynamic tone mapping is significantly better than static tone mapping.
  • the mainstream international dynamic tone mapping standards include ST2094-20, ST2094-40, T/UWA 005.1-2022, etc.
  • the mapping curves corresponding to these standards still have problems in large-scale applications. In some scenes, such as when the overall brightness difference is large and the dark details are rich, the dynamic tone mapping curve will not be as good as the static tone mapping curve. For a rich picture, after being processed by these tone mapping curves, the dark details will be smoothed out to a certain extent, resulting in the loss of picture information and poor visual effects.
  • the present disclosure provides a video data processing method, applicable to a decoding end, comprising:
  • the tone mapping curve is corrected to obtain a corrected tone mapping curve, and the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is an RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is an RGB electrical signal adapted to the display characteristics of the terminal device.
  • generating a tone mapping curve of the current video image frame according to the brightness characteristics and the display characteristics includes:
  • the piecewise function composed of the linear mapping straight line and the S-shaped mapping curve is determined as the tone mapping curve of the current video image frame.
  • the modifying the tone mapping curve according to the information loss value includes:
  • the slope of the linear mapping line of the dark area of the current video image frame is corrected.
  • the display feature includes: the maximum screen brightness of the terminal device, and the slope of the linear mapping line of the dark area of the current video image frame is corrected according to the information loss value, including:
  • the maximum screen brightness is equal to a default value of the maximum screen brightness, compensating the slope of the linear mapping line with the information loss value, and updating the compensated slope to the slope of the linear mapping line of the dark area of the current video image frame;
  • the information loss value is adjusted according to the maximum screen brightness, the adjusted information loss value is used to compensate the slope of the linear mapping line, and the compensated slope is updated to the slope of the linear mapping line in the dark area of the current video image frame.
  • updating the boundary value between the bright area and the dark area of the current video image frame according to the corrected slope includes:
  • the horizontal coordinate of the point is updated to the boundary value between the bright area and the dark area of the current video image frame.
  • adjusting the information loss value according to the maximum screen brightness includes:
  • the information loss value is adjusted by a preset adjustment function, wherein the preset adjustment function takes the information loss quantization value and the maximum screen brightness as independent variables, and the adjusted information loss value is a linear function or a nonlinear function of the dependent variable.
  • the present disclosure provides a video data processing method, applicable to an encoding end, comprising:
  • the information loss value is an estimated value of the tone loss of the video image frame when it is displayed on the terminal device
  • the video stream is sent to a decoding end so that the decoding end can and an estimated value of the amount of tone loss, correcting the tone mapping curve of the current video image frame, wherein the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is an RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is an RGB electrical signal adapted to the display characteristics of the terminal device.
  • determining the amount of information loss for each frame of video image includes:
  • the tone mapping curve the YUV electrical signal and the RGB electrical signal are corrected
  • the information entropy loss value of brightness is calculated
  • the information loss value of each frame of video image is determined.
  • generating a tone mapping curve according to the default values of the brightness characteristic and the display characteristic includes:
  • the piecewise function composed of the linear mapping straight line and the S-shaped mapping curve is determined as the tone mapping curve of the current video image frame.
  • the correcting the YUV electrical signal and the RGB electrical signal according to the tone mapping curve includes:
  • the brightness component Y of the YUV electrical signal is mapped into a brightness component Y';
  • the red component R of the RGB electrical signal is mapped to the red component R'; the green component G of the RGB electrical signal is mapped to the green component G'; and the blue component B of the RGB electrical signal is mapped to the blue component B'.
  • the brightness is calculated according to the YUV electrical signal before and after correction.
  • the information entropy loss value of the degree includes:
  • the absolute value of the difference between the information entropy of HistY and the information entropy of HistYtm is recorded as the information entropy loss value of brightness.
  • the calculating the information entropy loss value of chromaticity according to the RGB electrical signals before and after correction comprises:
  • the sum of the information entropy loss value of the red component R, the information entropy loss value of the green component G, and the information entropy loss value of the blue component B is recorded as the information entropy loss value of chromaticity.
  • determining the information loss value of each frame of video image according to the information entropy loss value includes:
  • the information entropy loss value of the brightness and the information entropy loss value of the chrominance of the frame of video image are summed, and the summation result is multiplied by a preset loss coefficient, and the product result is determined as the information loss value of the frame of video image.
  • the present disclosure provides a video display method, applicable to a decoding end, comprising:
  • the corrected RGB electrical signal is converted into an RGB optical signal for display on the terminal device.
  • the present disclosure provides a video data processing device, which is arranged at a decoding end and includes:
  • a decoding module is configured to receive a video stream sent by an encoding end, and decode a video image frame from the video stream, as well as a brightness feature and an information loss value of each video image frame, wherein the information loss value is an estimated value of a tone loss amount of the video image frame when the terminal device displays the video image frame;
  • An acquisition module configured to acquire display characteristics of a terminal device
  • a generating module configured to generate a tone mapping curve of the current video image frame according to the brightness characteristics and the display characteristics
  • a correction module is configured to correct the tone mapping curve according to the information loss value to obtain a corrected tone mapping curve, wherein the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is an RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is an RGB electrical signal adapted to the display characteristics of the terminal device.
  • the present disclosure provides a video data processing device, which is arranged at an encoding end and includes:
  • a calculation module configured to calculate the brightness feature of each frame of the video to be sent
  • a reading and writing module configured to write the brightness feature and the information loss value into the metadata of each frame of the video image
  • an encoding module configured to encode the metadata and each frame of the video image to form a video stream
  • the sending module is configured to send the video stream to the decoding end, so that the decoding end corrects the tone mapping curve of the current video image frame according to the brightness characteristics and the estimated value of the tone loss, and the corrected tone mapping curve is used to characterize the original RGB electrical signal and the corrected
  • the original RGB electrical signal is an RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is an RGB electrical signal adapted to the display characteristics of the terminal device.
  • the present disclosure provides a video display system, comprising:
  • the video data processing device of the present disclosure is arranged at the encoding end, and
  • the video data processing device described in the present disclosure is arranged at a decoding end.
  • the present disclosure provides an electronic device, comprising:
  • the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to perform the method described in the present disclosure.
  • the present disclosure provides a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute the method described in the present disclosure.
  • the present disclosure provides a computer program product, which includes a computer program, and the computer program implements the method described in the present disclosure when executed by a processor.
  • the tone mapping curve dynamically generated by the decoding end is corrected by the information loss value calculated by the encoding end. Since the information loss value takes into account the amount of tone loss of the video image frame to be displayed when it is displayed on the terminal device, the video image mapped by the tone mapping curve corrected by the information loss value can reduce the problem of poor visual effects caused by the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device, which causes the video image frame to suffer from picture information loss when displayed on the terminal device.
  • the video display method of the present disclosure corrects the tone of the original RGB electrical signal through the corrected tone mapping curve, and the tone mapping curve takes into account the amount of tone loss of the video image frame to be displayed when it is displayed on the terminal device when it is generated. Therefore, after the corrected RGB electrical signal is converted into an optical signal through a preset electro-optical conversion function, the converted optical signal can be adapted to the display characteristics of the terminal device, thereby reducing the loss of picture information when the video image frame is displayed on the terminal device due to the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device, resulting in poor visual effects. question.
  • FIG1 is a flow chart of a method for processing video data according to an exemplary embodiment of the present disclosure
  • FIG2 is a schematic diagram of an S-shaped mapping curve according to an exemplary embodiment of the present disclosure
  • FIG3 is a schematic diagram of an S-shaped mapping curve according to another exemplary embodiment of the present disclosure.
  • FIG4 is a schematic diagram of a mapping curve according to an exemplary embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a bitstream format of a video stream sent by an encoding end according to an exemplary embodiment of the present disclosure
  • FIG6 is a flowchart of a video data processing method according to another exemplary embodiment of the present disclosure.
  • FIG7 is a flowchart of a video display method according to an exemplary embodiment of the present disclosure.
  • FIG8 is a schematic block diagram of a video data processing apparatus according to an exemplary embodiment of the present disclosure.
  • FIG9 is a schematic block diagram of a video data processing apparatus according to another exemplary embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram of a video display system according to an exemplary embodiment of the present disclosure.
  • the dynamic tone mapping curve When the dynamic tone mapping curve is used directly for video image mapping, in some scenes, such as the picture with large overall brightness difference and rich dark details, the dark details will be smoothed to a certain extent after being processed by these tone mapping curves, resulting in loss of picture information and poor visual effects.
  • the “minimum screen brightness” mentioned in each embodiment of the present disclosure refers to the minimum screen brightness when playing SDR video when the terminal device does not implement the technical solution provided by the present disclosure
  • the “maximum screen brightness” refers to the maximum screen brightness that can be achieved when playing SDR video when the terminal device does not implement the technical solution provided by the present disclosure
  • the “screen resolution” refers to the screen resolution that comes with the terminal device when it leaves the factory.
  • the “preset” mentioned in the embodiments of the present disclosure refers to the REC.709 standard accepted by current mainstream televisions and monitors.
  • FIG. 1 is a flow chart of a video data processing method according to an exemplary embodiment of the present disclosure. The method is applicable to an encoding end. Referring to FIG. 1 , the method includes:
  • Step S11 for the video to be sent, calculating the brightness feature of each frame of the video image
  • Step S12 determining the information loss value of each frame of the video image, wherein the information loss value is an estimated value of the tone loss of the video image frame when it is displayed on the terminal device;
  • Step S13 writing the brightness feature and information loss value into the metadata of each frame of video image
  • Step S14 encoding the metadata and each frame of the video image to form a video stream
  • Step S15 Send the video stream to the decoding end, so that the decoding end corrects the tone mapping curve of the current video image frame according to the brightness characteristics and the estimated value of the tone loss, and the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is the RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is the RGB electrical signal adapted to the display characteristics of the terminal device.
  • the technical solution provided in this embodiment is applicable to the encoding end, which is a terminal device with an image acquisition device, including but not limited to: mobile phones, tablet computers, laptops, calculators and phone watches, etc.
  • Applicable scenarios include but are not limited to:
  • the SDR video at the encoding end is mapped to the CRT display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the LCD display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the OLED display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the minLED display at the decoding end for display.
  • the playback technology of SDR/HDR videos is inseparable from the tone mapping curve.
  • the technical solution provided in this embodiment can adaptively correct the tone mapping curve to avoid the loss of detail information during the mapping process, thereby ensuring the playback effect of SDR/HDR videos.
  • the brightness characteristics include at least brightness intensity StrengthL, average brightness AvergLuma, and boundary value RegionD between bright area and dark area
  • the display characteristics include at least maximum screen brightness MaxDisplay, minimum screen brightness MinDisplay, and screen resolution RES.
  • the step S11 of "calculating the brightness feature of each frame of the video to be sent" at least includes:
  • Step 1) Calculate the brightness intensity of each frame of video image, including:
  • maxY is the maximum brightness value in the histogram distribution HistY (that is, the maximum coordinate value on the horizontal axis)
  • minY is the minimum brightness value in the histogram distribution HistY (that is, the minimum coordinate value on the horizontal axis).
  • step 2) calculating the average brightness of each frame of the video image comprises:
  • the electrical signal of the video image is converted into an optical signal
  • Luma[i] EOTF709(i/255); i/255 represents the pixel value of the normalized electrical signal, and Luma[i] represents the pixel value after conversion to the optical signal;
  • the function EOTF709() represents the electro-optical conversion function specified in the REC.709 standard, which is:
  • step 3) calculates the boundary value between the bright area and the dark area of each frame of the video image, including:
  • the average value of the average darkness and the middle gray value is calculated, and the average value is determined as the demarcation value RegionD, which is:
  • the step S12 of “determining the information loss value of each frame of the video image, wherein the information loss value is an estimated value of the tone loss of the video image frame when the terminal device displays the video image frame” includes:
  • Step 1) converting the YUV electrical signal of each frame of video image into an RGB electrical signal, including:
  • the YUV electrical signals are converted into original RGB signals:
  • the YUV electrical signals are converted into original RGB signals:
  • Step 2) Obtain the default value of the display feature of the terminal device.
  • the default value of the display feature can be the default value of the maximum screen brightness MaxDisplay:
  • the default value is preset to 500nit; for SDR video, the default value is preset to 300nit.
  • Step 3) generating a tone mapping curve according to the default values of the brightness feature and the display feature, including:
  • the piecewise function composed of the linear mapping straight line and the S-shaped mapping curve is determined as the tone mapping curve of the current video image frame.
  • the function expression of determining the S-shaped mapping curve of the brightness area of the current frame video image according to the display characteristics and the normalized brightness characteristics of the current frame video image includes:
  • the parameter values of the curve are calculated, including:
  • MaxDisplay indicates the default value of the maximum screen brightness
  • AvergLuma’ represents the normalized average brightness
  • MinDisplay represents the default value of the minimum screen brightness
  • RegionD’ represents the boundary value between the bright area and the dark area after normalization
  • EOTF709() represents the electro-optical conversion function specified in the REC.709 standard.
  • MaxDisplay indicates the default value of the maximum screen brightness
  • AvergLuma’ represents the normalized average brightness
  • MinDisplay represents the default value of the minimum screen brightness
  • RegionD’ represents the boundary value between the bright area and the dark area after normalization
  • EOTF709() represents the electro-optical conversion function specified in the REC.709 standard.
  • determining a function expression of a linear mapping line of a dark region of the current video image frame according to a default value of the display feature and a normalized brightness feature of the current video image frame comprises:
  • the product is raised to a preset power, for example, the power C0, and the result is determined as the limit value SlopeLimit of the slope of the linear mapping line, wherein the preset power C0 is related to the default value of the minimum screen brightness, which is:
  • the value of C0 is related to the default value of the minimum screen brightness MinDisplay:
  • the ratio of the ordinate to the normalized cutoff value, F(RegionD')/(RegionD'), is determined as the reference slope.
  • the limit value of the slope is compared with the reference slope, and the minimum value of the two is determined as the slope Slope of the dark portion linear mapping line, which is:
  • TM(L) Slope*L,L ⁇ RegionD′.
  • the piecewise function composed of the linear mapping straight line and the S-shaped mapping curve is determined as the tone mapping curve TM(L) of the current frame video image, which is:
  • step 4) correcting the YUV electrical signal and the RGB electrical signal according to the tone mapping curve comprises:
  • the brightness component Y of the YUV electrical signal is mapped to the brightness component Y' (find the ordinate corresponding to the point whose abscissa is equal to the normalized brightness component Y/255 in FIG4 , and the ordinate*255 is the brightness component Y' after mapping);
  • the red component R of the RGB electrical signal is mapped to the red component R'; the green component G of the RGB electrical signal is mapped to the green component G'; the blue component B of the RGB electrical signal is mapped to the blue component B' (find the ordinate corresponding to the point whose abscissa is equal to the normalized green component G/255 in Figure 4, and the ordinate * 255 is the mapped green component G'.
  • the methods for obtaining the other red components R' and blue components B' are the same as the methods for obtaining the green component G', which will not be repeated here).
  • step 5 calculates the information entropy loss value of brightness according to the YUV electrical signals before and after correction, including:
  • the absolute value of the difference between the information entropy of HistY and the information entropy of HistYtm is recorded as the information entropy loss value of brightness.
  • step 6) calculating the information entropy loss value of chromaticity according to the RGB electrical signals before and after correction comprises:
  • the sum of the information entropy loss value of the red component R, the information entropy loss value of the green component G, and the information entropy loss value of the blue component B is recorded as the information entropy loss value of chromaticity.
  • step 7) determines the information loss value of each frame of video image according to the information entropy loss value, including:
  • the information entropy loss value of the brightness and the information entropy loss value of the chromaticity of the frame of video image are summed, and the summed result is multiplied by a preset loss coefficient (the preset loss coefficient is set according to empirical values or experimental data, for example, set to 0.1), and the product result is determined as the information loss value of the frame of video image.
  • deltaInfo represents the value of information loss
  • X Y ⁇ R ⁇ G ⁇ B ⁇ Ytm ⁇ Rtm ⁇ Gtm ⁇ Btm;En(HistX) represents information entropy, abs() represents absolute value, Res represents the total number of pixels of the current frame video image, and N represents the The maximum pixel value of the previous frame video image.
  • L represents the normalized pixel value.
  • step S13 of “writing the brightness feature and the information loss value into the metadata of each frame of the video image” is:
  • step S14 "the metadata and each frame of the video image are encoded to form a video stream.”
  • the first codeword SPS saves the global parameters of the video image after encoding
  • the second codeword PPS saves the parameters related to the overall image, and PPS is usually saved in the file header of the video file together with SPS
  • the third codeword IDR is used to save the decoding parameter set
  • the fourth codeword SLICE is used to save frame coding information
  • the fifth codeword SEI is used to save the supplementary information of the video bitstream, that is, the metadata mentioned in this embodiment
  • the subsequent codewords are repetitions of SLICE and SEI, which will not be repeated.
  • the encoder After the encoder calculates the brightness feature, it is written into the fifth codeword SEI shown in Figure 5, and then encoded into a video stream together with the data in other codewords.
  • the technical solution provided by this embodiment since the video image at the encoding end is a lossless video image that has not been compressed and transmitted, by calculating the estimated value of the tone loss amount of each frame of the video image at the encoding end, it can ensure that it is maximally aligned with the actual state of each frame of the video image, reduce calculation errors, and provide accurate data support for the correction of the tone mapping curve at the decoding end.
  • the calculation step of the estimated value of the tone loss amount is transferred to the encoding end, the calculation pressure at the decoding end is also reduced, so that the decoding end can construct a dynamic tone mapping curve more quickly and display high-quality video images with lossless tone more quickly.
  • FIG6 is a flowchart of a video data processing method according to another exemplary embodiment of the present disclosure, which method is applicable to a decoding end. Referring to FIG6 , the method includes:
  • Step S21 receiving a video stream sent by the encoding end, and decoding a video image frame, as well as a brightness feature and an information loss value of each frame of the video image from the video stream, wherein the information loss value is an estimated value of a hue loss amount of the video image frame when the terminal device displays the video image frame;
  • Step S22 obtaining display characteristics of the terminal device
  • Step S23 generating a tone mapping curve of the current video image frame according to the brightness characteristics and display characteristics
  • Step S24 According to the information loss value, the tone mapping curve is corrected to obtain a corrected tone mapping curve, wherein the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is an RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is an RGB electrical signal adapted to the display characteristics of the terminal device.
  • the decoding end includes: a computer end (including a server), and/or a mobile terminal (including but not limited to: a smart phone, a tablet computer, a VR helmet, VR glasses, etc.), and the applicable scenarios include but are not limited to:
  • the SDR video at the encoding end is mapped to the CRT display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the LCD display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the OLED display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the minLED display at the decoding end for display.
  • the playback technology of SDR/HDR videos is inseparable from the tone mapping curve.
  • the technical solution provided in this embodiment can adaptively correct the tone mapping curve to avoid the loss of detail information during the mapping process, thereby ensuring the playback effect of SDR/HDR videos.
  • the brightness characteristics include at least brightness intensity StrengthL, average brightness AvergLuma, and boundary value RegionD between bright area and dark area
  • the display characteristics include at least maximum screen brightness MaxDisplay, minimum screen brightness MinDisplay, and screen resolution RES.
  • step S23 “generating a tone mapping curve of the current video image frame according to the brightness feature and the display feature” includes:
  • the display characteristics and the normalized brightness characteristics of the current video image frame determine A function expression of an S-shaped mapping curve of a brightness region of a current video image frame, and a function expression of a linear mapping line of a dark region of the current video image frame;
  • the piecewise function composed of the linear mapping straight line and the S-shaped mapping curve is determined as the tone mapping curve of the current video image frame.
  • tone mapping curve generation method at the decoding end is the same as the tone mapping curve generation method at the encoding end.
  • the only difference is that the encoding end uses the default value of the display characteristics of the terminal device, while the decoding end uses the actual value of the display characteristics of the terminal device. The other steps are the same and will not be repeated here.
  • step S24 “modifying the tone mapping curve according to the information loss value” includes:
  • Step 1) correcting the slope of the linear mapping line of the dark area of the current video image frame according to the information loss value, including:
  • the maximum screen brightness is equal to a default value of the maximum screen brightness, compensating the slope of the linear mapping line with the information loss value, and updating the compensated slope to the slope of the linear mapping line of the dark area of the current video image frame;
  • the information loss value is adjusted according to the maximum screen brightness (the information loss value is adjusted by a preset adjustment function, the preset adjustment function takes the information loss quantization value and the maximum screen brightness as independent variables, and the adjusted information loss value is a linear function or a nonlinear function of the dependent variable), and the slope of the linear mapping line is compensated by the adjusted information loss amount, and the compensated slope is updated to the slope of the linear mapping line of the dark area of the current video image frame.
  • the decoding end defaults to the currently received video stream as an HDR video stream, and the default value of the maximum screen brightness is 500; if the VUI parameter value of the first codeword SPS in the video stream received by the decoding end is equal to 1 or is empty, the decoding end defaults to the currently received video stream as an SDR video stream, and the default value of the maximum screen brightness is 300.
  • SlopeN Slope+deltaInfoN, where SlopeN is the slope of the linear mapping line of the dark area after the update, and Slope is the linear mapping line of the dark area before the update. Slope, deltaInfoN is the information loss value, deltaInfo ⁇ 1;
  • SlopeN Slope+deltaInfoN’, where SlopeN is the slope of the linear mapping line of the dark area after update, Slope is the slope of the linear mapping line of the dark area before update, and deltaInfoN’ is the value of information loss after adjustment;
  • step 2) updates the boundary value between the bright area and the dark area of the current video image frame according to the corrected slope, including:
  • F() is a function expression of the S-type mapping curve in the tone mapping curve generated in step S23;
  • the horizontal coordinate RegionDnew of the point is updated to the boundary value between the bright area and the dark area of the current video image frame
  • the function expression of the linear mapping line is updated, that is:
  • the technical solution provided in this embodiment corrects the tone mapping curve dynamically generated by the decoding end through the information loss value calculated by the encoding end. Since the information loss value takes into account the tone loss of the video image frame to be displayed when it is displayed on the terminal device, the video image mapped by the tone mapping curve corrected by the information loss value can reduce the problem of poor visual effect caused by the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device, resulting in picture information loss when the video image frame is displayed on the terminal device.
  • FIG. 7 is a flow chart of a video display method according to an exemplary embodiment. The method is applicable to a decoding end. Referring to FIG. 7 , the method includes:
  • Step S31 extracting the YUV electrical signal of each frame of video image from the video stream sent by the encoding end, and converting the YUV electrical signal into an original RGB electrical signal;
  • Step S32 converting the original RGB electrical signal into a modified RGB electrical signal according to a tone mapping curve, wherein the mapping curve is generated according to the above-mentioned video data processing method;
  • Step S33 According to a preset electro-optical conversion function, the corrected RGB electrical signal is converted into an RGB optical signal for display on a terminal device.
  • the decoding end includes: a computer end (including a server), and/or a mobile terminal (including but not limited to: a smart phone, a tablet computer, a VR helmet, VR glasses, etc.), and the applicable scenarios include but are not limited to:
  • the SDR video at the encoding end is mapped to the CRT display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the LCD display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the OLED display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the minLED display at the decoding end for display.
  • the playback technology of SDR/HDR videos is inseparable from the tone mapping curve.
  • the technical solution provided in this embodiment can adaptively correct the tone mapping curve to avoid the loss of detail information during the mapping process, thereby ensuring the playback effect of SDR/HDR videos.
  • the technical solution provided in this embodiment corrects the tone of the original RGB electrical signal through the corrected tone mapping curve, and the tone mapping curve takes into account the amount of tone loss of the video image frame to be displayed when it is displayed on the terminal device during generation. Therefore, after the corrected RGB electrical signal is converted into an optical signal through a preset electro-optical conversion function, the converted optical signal can be adapted to the display characteristics of the terminal device, thereby reducing the problem of picture information loss when the video image frame is displayed on the terminal device due to the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device, resulting in poor visual effects.
  • FIG. 8 is a diagram showing a video data processing apparatus 100 according to an exemplary embodiment of the present disclosure. As shown in FIG8 , the device 100 is arranged at the encoding end, and the device 100 includes:
  • the calculation module 101 is configured to calculate the brightness feature of each frame of the video to be sent;
  • the reading and writing module 102 is configured to write the brightness feature and the information loss value into the metadata of each frame of the video image;
  • the encoding module 103 is configured to encode the metadata and each frame of the video image to form a video stream;
  • the sending module 104 is configured to send the video stream to the decoding end, so that the decoding end corrects the tone mapping curve of the current video image frame according to the brightness characteristics and the estimated value of the tone loss, and the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is the RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is the RGB electrical signal adapted to the display characteristics of the terminal device.
  • the technical solution provided in this embodiment is applicable to the encoding end, which is a terminal device with an image acquisition device, including but not limited to: mobile phones, tablet computers, laptops, calculators and phone watches, etc.
  • Applicable scenarios include but are not limited to:
  • the SDR video at the encoding end is mapped to the CRT display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the LCD display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the OLED display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the minLED display at the decoding end for display.
  • the playback technology of SDR/HDR videos is inseparable from the tone mapping curve.
  • the technical solution provided in this embodiment can adaptively correct the tone mapping curve to avoid the loss of detail information during the mapping process, thereby ensuring the playback effect of SDR/HDR videos.
  • the technical solution provided in this embodiment is that due to the video image at the encoding end For lossless video images that have not been compressed and transmitted, by calculating the estimated value of the tone loss of each frame of video images at the encoding end, it can be ensured to be as close to the actual state of each frame of video images as possible, reduce calculation errors, and provide accurate data support for the correction of the tone mapping curve at the decoding end. At the same time, since the calculation steps of the estimated value of the tone loss amount are transferred to the encoding end, the calculation pressure at the decoding end is also reduced, allowing the decoding end to build a dynamic tone mapping curve more quickly and display high-quality video images with lossless tone more quickly.
  • FIG. 9 is a schematic block diagram of a video data processing device 200 according to an exemplary embodiment of the present disclosure. As shown in FIG. 9 , the device 200 is arranged at a decoding end, and the device 200 includes:
  • the decoding module 201 is configured to receive a video stream sent by the encoding end, and decode the video image frame, as well as the brightness characteristics and information loss value of each frame of the video image from the video stream, wherein the information loss value is an estimated value of the hue loss amount of the video image frame when it is displayed on the terminal device;
  • An acquisition module 202 is configured to acquire display characteristics of a terminal device
  • a generating module 203 is configured to generate a tone mapping curve of the current video image frame according to the brightness characteristics and the display characteristics;
  • the correction module 204 is configured to correct the tone mapping curve according to the information loss value to obtain a corrected tone mapping curve, wherein the corrected tone mapping curve is used to characterize the mapping relationship between the original RGB electrical signal and the corrected RGB electrical signal;
  • the original RGB electrical signal is an RGB electrical signal obtained by converting the YUV electrical signal of the video image frame to be displayed, and the corrected RGB electrical signal is an RGB electrical signal adapted to the display characteristics of the terminal device.
  • the decoding end includes: a computer end (including a server), and/or a mobile terminal (including but not limited to: a smart phone, a tablet computer, a VR helmet, VR glasses, etc.), and the applicable scenarios include but are not limited to:
  • the SDR video at the encoding end is mapped to the CRT display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the LCD display at the decoding end for display;
  • the SDR/HDR video at the encoding end is mapped to the OLED display at the decoding end. display;
  • the SDR/HDR video at the encoding end is mapped to the minLED display at the decoding end for display.
  • the playback technology of SDR/HDR videos is inseparable from the tone mapping curve.
  • the technical solution provided in this embodiment can adaptively correct the tone mapping curve to avoid the loss of detail information during the mapping process, thereby ensuring the playback effect of SDR/HDR videos.
  • the technical solution provided in this embodiment performs tone correction on the original RGB electrical signal through the corrected tone mapping curve, and the tone mapping curve takes into account the amount of tone loss of the video image frame to be displayed when it is displayed on the terminal device when it is generated. Therefore, after the corrected RGB electrical signal is converted into an optical signal through a preset electro-optical conversion function, the converted optical signal can be adapted to the display characteristics of the terminal device, thereby reducing the problem of picture information loss when the video image frame is displayed on the terminal device due to the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device, resulting in poor visual effects.
  • FIG. 10 is a schematic block diagram of an end-to-end video display system 300 according to an exemplary embodiment of the present disclosure. As shown in FIG. 10 , the system 300 includes:
  • the video data processing device of the present disclosure is arranged at the encoding end 301, and,
  • the video data processing device described in the present disclosure is arranged at the decoding end 302 .
  • the technical solution provided by this embodiment since the video image at the encoding end is a lossless video image that has not been compressed and transmitted, by calculating the estimated value of the tone loss amount of each frame of the video image at the encoding end, it can ensure that it is maximally aligned with the actual state of each frame of the video image, reduce calculation errors, and provide accurate data support for the correction of the tone mapping curve at the decoding end.
  • the calculation step of the estimated value of the tone loss amount is transferred to the encoding end, the calculation pressure at the decoding end is also reduced, so that the decoding end can construct a dynamic tone mapping curve more quickly and display high-quality video images with lossless tone more quickly.
  • the decoding end uses the corrected tone mapping curve to correct the tone of the original RGB electrical signal.
  • the tone mapping curve is generated, the tone loss of the video image frame to be displayed is taken into account when the terminal device displays it. Therefore, after the corrected RGB electrical signal is converted into an optical signal through a preset electro-optical conversion function, the converted optical signal can be adapted to the display characteristics of the terminal device, reducing the difference between the upper limit brightness of the video image frame and the terminal device.
  • the peak brightness mismatch causes the video image frame to lose picture information when displayed on the terminal device, resulting in poor visual effects.
  • an electronic device includes:
  • the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to perform the method described in the present disclosure.
  • electronic devices include but are not limited to: smart terminals (for example, mobile phones, tablet computers, smart watches, etc.) and computer devices.
  • the processor includes but is not limited to: CPU, single chip microcomputer, PLC controller, FPGA controller, etc.
  • the memory may include a computer system readable medium in the form of a volatile memory, such as a random access memory (RAM) and/or a cache memory; it may also include other removable/non-removable, volatile/non-volatile computer system storage media.
  • the memory may include at least one program product having a set (e.g., at least one) of program modules, which are configured to perform the functions of the various embodiments of the present disclosure.
  • the technical solution provided by this embodiment since the video image at the encoding end is a lossless video image that has not been compressed and transmitted, by calculating the estimated value of the tone loss amount of each frame of the video image at the encoding end, it can ensure that it is maximally aligned with the actual state of each frame of the video image, reduce calculation errors, and provide accurate data support for the correction of the tone mapping curve at the decoding end.
  • the calculation step of the estimated value of the tone loss amount is transferred to the encoding end, the calculation pressure at the decoding end is also reduced, so that the decoding end can construct a dynamic tone mapping curve more quickly and display high-quality video images with lossless tone more quickly.
  • the decoding end uses the corrected tone mapping curve to correct the tone of the original RGB electrical signal, and the tone mapping curve takes into account the tone loss of the video image frame to be displayed when it is displayed on the terminal device. Therefore, after the corrected RGB electrical signal is converted into an optical signal through a preset electro-optical conversion function, the converted optical signal can be adapted to the display characteristics of the terminal device, reducing the video image frame when the terminal device displays the picture information due to the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device. loss, resulting in poor visual effects.
  • a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to enable the computer to execute the method described in the present disclosure.
  • a computer program product includes a computer program, and when the computer program is executed by a processor, the method described in the present disclosure is implemented.
  • the computer-readable storage medium disclosed in this embodiment includes, but is not limited to: electrical, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any combination of the above. More specific examples (non-exhaustive list) of computer-readable storage media include: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium containing or storing a program that can be used by or in conjunction with an instruction execution system, device or device.
  • the technical solution provided by this embodiment since the video image at the encoding end is a lossless video image that has not been compressed and transmitted, by calculating the estimated value of the tone loss amount of each frame of the video image at the encoding end, it can ensure that it is maximally in line with the actual state of each frame of the video image, reduce calculation errors, and provide accurate data support for the correction of the tone mapping curve at the decoding end.
  • the calculation step of the estimated value of the tone loss amount is transferred to the encoding end, the calculation pressure at the decoding end is also reduced, so that the decoding end can construct a dynamic tone mapping curve more quickly and display high-quality video images with lossless tone more quickly.
  • the decoding end corrects the tone of the original RGB electrical signal through the corrected tone mapping curve, and the tone mapping curve takes into account the amount of tone loss when the video image frame to be displayed is displayed on the terminal device during its generation
  • the corrected RGB electrical signal is converted into an optical signal through a preset electro-optical conversion function.
  • the converted optical signal can be adapted to the display characteristics of the terminal device, reducing the problem of picture information loss when the video image frame is displayed on the terminal device due to the mismatch between the upper limit brightness of the video image frame and the peak brightness of the terminal device, resulting in poor visual effects.
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a specific logical function or process, and the scope of the preferred embodiments of the present disclosure includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order depending on the functions involved, which should be understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • each functional unit in each embodiment of the present disclosure may be integrated into a processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above-mentioned integrated module may be implemented in the form of hardware or in the form of a software functional module. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

公开了视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质。该视频数据处理方法,适用于解码端,其包括:接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;获取终端设备的显示特征;根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;以及根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。采用本公开的技术方案,通过编码端计算的信息损失量值,修正解码端动态生成的色调映射曲线,由于信息损失量值考虑了待显示的视频图像帧在终端设备显示时的色调损失量,故通过该信息损失量值修正后的色调映射曲线映射后的视频图像,可以减少因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。

Description

视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质
相关申请的引用
本公开要求于2022年11月10日向中华人民共和国国家知识产权局提交的申请号为202211404651.8、发明名称为“视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质”的发明专利申请的全部权益,并通过引用的方式将其全部内容并入本公开。
领域
本公开大体上涉及图像显示技术领域,更具体地涉及视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质。
背景
近十年来视频相关的软硬件技术发展迅猛。一方面,视频制作播放技术有了重大更新,视频开始从标准动态范围(SDR,Standard Dynamic Range)视频全面向高动态范围(HDR,High Dynamic Range)视频迈进。另一方面,显示材料技术也有了重大进展,LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light Emitting Display,有机发光二极管显示器)全面占领各类终端产品。
但是,硬件的发展还是稍逊于软件技术的发展,目前主流的LCD、OLED显示设备的峰值亮度只能达到500nit,与HDR标准的上限亮度10000nit还有较大差距。为了能在现有硬件上呈现完美的HDR效果,相关技术发展出图像色调映射技术,该技术可以解决高动态与低动态之间的适配问题。
色调映射技术有两类:静态色调映射与动态色调映射。静态色调映射是指对某一视频序列来说映射曲线的形态是固定的,而动态色调映射则会根据视频场景以及终端设备的显示性能动态生成映射曲线。因此,一般来说动态色调映射的效果会显著优于静态色调映射。目前,国际主流的动态色调映射标准有ST2094-20、ST2094-40、T/UWA 005.1-2022等。但是这些标准对应的映射曲线在大规模应用中仍然存在问题。在某些场景下,如整体明暗差别较大,并且暗部细节较为丰 富的画面,经过这些色调映射曲线的处理,暗部细节在一定程度上会被抹平,从而导致画面信息的损失,视觉效果欠佳。
概述
第一方面,本公开提供了视频数据处理方法,适用于解码端,其包括:
接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
获取终端设备的显示特征;
根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;以及
根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
在某些实施方案中,所述根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线,包括:
根据所述显示特征和当前视频图像帧归一化后的亮度特征,确定当前视频图像帧的亮度区域的S型映射曲线的函数表达式,以及当前视频图像帧的暗部区域的线性映射直线的函数表达式;以及
将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前视频图像帧的色调映射曲线。
在某些实施方案中,所述根据所述信息损失量值,对所述色调映射曲线进行修正,包括:
根据所述信息损失量值,对当前视频图像帧的暗部区域的线性映射直线的斜率进行修正;以及
根据修正后的斜率,更新当前视频图像帧的亮部区域和暗部区域 两者之间的分界值。
在某些实施方案中,所述显示特征包括:终端设备的最大屏幕亮度,所述根据所述信息损失量值,对当前视频图像帧的暗部区域的线性映射直线的斜率进行修正,包括:
若所述最大屏幕亮度等于最大屏幕亮度的默认值,用所述信息损失量值补偿所述线性映射直线的斜率,将补偿后的斜率更新为当前视频图像帧的暗部区域的线性映射直线的斜率;以及
若所述最大屏幕亮度不等于最大屏幕亮度的默认值,根据所述最大屏幕亮度对所述信息损失量值进行调整,用调整后的信息损失量补偿所述线性映射直线的斜率,将补偿后的斜率更新为当前视频图像帧的暗部区域的线性映射直线的斜率。
在某些实施方案中,所述根据修正后的斜率,更新当前视频图像帧的亮部区域和暗部区域两者之间的分界值,包括:
在所述S型映射曲线上找到一个点,使该点与原点连线的斜率等于修正后的斜率;以及
将该点的横坐标更新为当前视频图像帧的亮部区域和暗部区域两者之间的分界值。
在某些实施方案中,所述根据所述最大屏幕亮度对所述信息损失量值进行调整,包括:
通过预设调整函数,对所述信息损失量值进行调整,所述预设调整函数是以所述信息损失量化值和最大屏幕亮度为自变量,调整后的信息损失量值为因变量的线性函数或非线性函数。
第二方面,本公开提供了视频数据处理方法,适用于编码端,其包括:
对待发送的视频,计算每帧视频图像的亮度特征;
确定每帧视频图像的信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
将所述亮度特征和信息损失量值写入每帧视频图像的元数据中;
对所述元数据及每帧视频图像进行编码,形成视频流;以及
将所述视频流发送给解码端,以使所述解码端根据所述亮度特征 及色调损失量预估值,修正当前视频图像帧的色调映射曲线,修正后的色调映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
在某些实施方案中,所述确定每帧视频图像的信息损失量值,包括:
将每帧视频图像的YUV电信号转换为RGB电信号;
获取终端设备的显示特征的默认值;
根据所述亮度特征及显示特征的默认值,生成色调映射曲线;
根据所述色调映射曲线,对所述YUV电信号及RGB电信号进行修正;
根据修正前后的YUV电信号,计算亮度的信息熵损失值;
根据修正前后的RGB电信号,计算色度的信息熵损失值;以及
根据所述信息熵损失值,确定每帧视频图像的信息损失量值。
在某些实施方案中,所述根据所述亮度特征及显示特征的默认值,生成色调映射曲线,包括:
根据所述显示特征的默认值和当前视频图像帧归一化后的亮度特征,确定当前视频图像帧的亮度区域的S型映射曲线的函数表达式,以及当前视频图像帧的暗部区域的线性映射直线的函数表达式;以及
将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前视频图像帧的色调映射曲线。
在某些实施方案中,所述根据所述色调映射曲线,对所述YUV电信号及RGB电信号进行修正,包括:
根据所述色调映射曲线,将所述YUV电信号的亮度分量Y,映射为亮度分量Y’;以及
根据所述色调映射曲线,将所述RGB电信号的红色分量R,映射为红色分量R’;将所述RGB电信号的绿色分量G,映射为绿色分量G’;将所述RGB电信号的蓝色分量B,映射为蓝色分量B’。
在某些实施方案中,所述根据修正前后的YUV电信号,计算亮 度的信息熵损失值,包括:
分别计算亮度分量Y的直方图分布HistY的信息熵,以及亮度分量Y’的直方图分布HistYtm的信息熵;以及
将HistY的信息熵与HistYtm的信息熵两者的差值的绝对值,记为亮度的信息熵损失值。
在某些实施方案中,所述根据修正前后的RGB电信号,计算色度的信息熵损失值,包括:
分别计算红色分量R的直方图分布HistR的信息熵,以及红色分量R’的直方图分布HistRtm的信息熵,并将HistR的信息熵与HistRtm的信息熵两者的差值的绝对值记为红色分量R的信息熵损失值;
分别计算绿色分量G的直方图分布HistG的信息熵,以及绿色分量G’的直方图分布HistGtm的信息熵,并将HistG的信息熵与HistGtm的信息熵两者的差值的绝对值记为绿色分量G的信息熵损失值;
分别计算蓝色分量B的直方图分布HistB的信息熵,以及蓝色分量B’的直方图分布HistBtm的信息熵,并将HistB的信息熵与HistBtm的信息熵两者的差值的绝对值记为蓝色分量B的信息熵损失值;以及
将红色分量R的信息熵损失值、绿色分量G的信息熵损失值、蓝色分量B的信息熵损失值三者之和,记为色度的信息熵损失值。
在某些实施方案中,所述根据所述信息熵损失值,确定每帧视频图像的信息损失量值,包括:
对每帧视频图像,将该帧视频图像的亮度的信息熵损失值和色度的信息熵损失值求和,并将求和结果与预设损失系数相乘,将乘积结果确定为该帧视频图像的信息损失量值。
第三方面,本公开提供了视频显示方法,适用于解码端,其包括:
从编码端发送的视频流中提取出每帧视频图像的YUV电信号,并将所述YUV电信号转换为原始RGB电信号;
根据色调映射曲线,将所述原始RGB电信号转换为修正后的RGB电信号,所述映射曲线根据上述的视频数据处理方法生成;以及
根据预设的电光转换函数,将修正后的RGB电信号转换为RGB光信号在终端设备上进行显示。
第四方面,本公开提供了视频数据处理装置,设置于解码端,其包括:
解码模块,配置为接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
获取模块,配置为获取终端设备的显示特征;
生成模块,配置为根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;以及
修正模块,配置为根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
第五方面,本公开提供了视频数据处理装置,设置于编码端,其包括:
计算模块,配置为对待发送的视频,计算每帧视频图像的亮度特征;
还配置为确定每帧视频图像的信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
读写模块,配置为将所述亮度特征和信息损失量值写入每帧视频图像的元数据中;
编码模块,配置为对所述元数据及每帧视频图像进行编码,形成视频流;以及
发送模块,配置为将所述视频流发送给解码端,以使所述解码端根据所述亮度特征及色调损失量预估值,修正当前视频图像帧的色调映射曲线,修正后的色调映射曲线用于表征原始RGB电信号与修正 后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
第六方面,本公开提供了视频显示***,其包括:
设置在编码端的本公开所述的视频数据处理装置,以及
设置在解码端的本公开所述的视频数据处理装置。
第七方面,本公开提供了电子设备,其包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开所述的方法。
第八方面,本公开提供了存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行本公开所述的方法。
第九方面,本公开提供了计算机程序产品,其包括计算机程序,所述计算机程序在被处理器执行时实现本公开所述的方法。
在某些实施方案中,通过编码端计算的信息损失量值,修正解码端动态生成的色调映射曲线,由于信息损失量值考虑了待显示的视频图像帧在终端设备显示时的色调损失量,故通过该信息损失量值修正后的色调映射曲线映射后的视频图像,可以减少因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。
在某些实施方案中,本公开的视频显示方法,由于是通过修正后的色调映射曲线对原始RGB电信号进行色调修正,而该色调映射曲线在生成时兼顾了待显示的视频图像帧在终端设备显示时的色调损失量,所以再通过预设的电光转换函数将修正后的RGB电信号转换为光信号后,转换后的光信号可以适配于终端设备的显示特征,减少了因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的 问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据本公开一示例性实施例示出的视频数据处理方法的流程图;
图2是根据本公开一示例性实施例示出的S型映射曲线的示意图;
图3是根据本公开另一示例性实施例示出的S型映射曲线的示意图;
图4是根据本公开一示例性实施例示出的映射曲线的示意图;
图5是根据本公开一示例性实施例示出的编码端发送的视频流的码流格式示意图;
图6是根据本公开另一示例性实施例示出的视频数据处理方法的流程图;
图7是根据本公开一示例性实施例示出的视频显示方法的流程图;
图8是根据本公开一示例性实施例示出的视频数据处理装置的示意框图;
图9是根据本公开另一示例性实施例示出的视频数据处理装置的示意框图;以及
图10是根据本公开一示例性实施例示出的视频显示***的示意框图。
详述
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示 相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
直接使用动态色调映射曲线进行视频图像映射时,在某些场景下,如整体明暗差别较大,并且暗部细节较为丰富的画面,经过这些色调映射曲线的处理,暗部细节在一定程度上会被抹平,从而导致画面信息的损失,视觉效果欠佳。
本公开提供了以下几个示例性实施例,需要说明的是:
1、本公开各实施例所提及的“最小屏幕亮度”是指终端设备未实施本公开提供的技术方案时,播放SDR视频时最小屏幕亮度;“最大屏幕亮度”是指终端设备未实施本公开提供的技术方案时,播放SDR视频时所能达到的最大屏幕亮度;“屏幕分辨率”是指终端设备出厂自带的屏幕分辨率。
2、本公开各实施例所提及的“预设的”是指被目前主流电视、显示器所接受的REC.709标准。
图1是根据本公开一示例性实施例示出的视频数据处理方法的流程图,该方法适用于编码端,参见图1,该方法包括:
步骤S11、对待发送的视频,计算每帧视频图像的亮度特征;
步骤S12、确定每帧视频图像的信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
步骤S13、将所述亮度特征和信息损失量值写入每帧视频图像的元数据中;
步骤S14、对所述元数据及每帧视频图像进行编码,形成视频流;以及
步骤S15、将所述视频流发送给解码端,以使所述解码端根据所述亮度特征及色调损失量预估值,修正当前视频图像帧的色调映射曲线,修正后的色调映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
需要说明的是,本实施例提供的技术方案,适用于编码端,所述编码端为带有图像采集设备的终端设备,包括但不限于:手机、平板电脑、笔记本电脑、计算器及电话手表等,适用的场景包括但不限于:
1、编码端的SDR视频映射到解码端的CRT显示器进行显示;
2、编码端的SDR/HDR视频映射到解码端的LCD显示器进行显示;
3、编码端的SDR/HDR视频映射到解码端的OLED显示器进行显示;以及
4、编码端的SDR/HDR视频映射到解码端的minLED显示器进行显示。
可以理解的是,目前,SDR/HDR视频的播放技术离不开色调映射曲线,本实施例提供的技术方案,可自适应修正色调映射曲线,避免映射过程中细节信息的损失,从而保证SDR/HDR视频的播放效果。
在某些实施方案中,所述亮度特征至少包括亮度强度StrengthL、平均亮度AvergLuma、亮部区域和暗部区域的分界值RegionD,所述显示特征至少包括:最大屏幕亮度MaxDisplay、最小屏幕亮度MinDisplay及屏幕分辨率RES。
在某些实施方案中,步骤S11中“对待发送的视频,计算每帧视频图像的亮度特征”,至少包括:
步骤1)计算每帧视频图像的亮度强度,包括:
计算每帧视频图像的亮度分量Y的直方图分布HistY,并确定所述直方图分布HistY的中灰值MildGray,包括:
1)将直方图分布HistY的中灰值取为固定值,例如,取MildGray=118;
2)将所述直方图分布HistY中亮度最大值和亮度最小值两者乘积的平方根确定为所述直方图分布HistY的中灰值。在某些实施方案中,取
其中,maxY为直方图分布HistY中亮度最大值(即横轴上的坐标最大值),minY为直方图分布HistY中亮度最小值(即横轴上的坐标最小值)。
计算所述直方图分布HistY中,亮度值i大于所述中灰值MildGray的像素点的期望,记为所述亮度强度StrengthL,其为:
StrengthL=∑i>MildGrayHistY[i]*i/∑i>MildGrayHistY[i]。
在某些实施方案中,步骤2)计算每帧视频图像的平均亮度,包括:
根据预设的电光转换函数,将视频图像的电信号转换为光信号;
Luma[i]=EOTF709(i/255);i/255表示归一化后的电信号的像素值,Luma[i]表示转换为光信号后的像素值;函数EOTF709()表示REC.709标准规定的电光转换函数,其为:
L代表输入变量,L=i/255。
遍历所述光信号的所有亮度值,计算各亮度值Luma[i]与其对应在所述直方图分布HistY中的像素数量HistY[i]的乘积之和;
将所述乘积之和与终端设备的屏幕分辨率RES的比值,确定为所述平均亮度AvergLuma,其为:
AvergLuma=∑HistY[i]*Luma[i]/RES。
在某些实施方案中,步骤3)计算每帧视频图像的亮部区域和暗部区域两者之间的分界值,包括:
计算所述直方图分布HistY中,亮度值i介于零和中灰值之间[0~MildGray]的像素点的期望,记为平均暗度MeanDark;
MeanDar=∑i∈[0,MildGray]HistY[i]*i/∑i∈[0,MildGray]HistY[i]
计算平均暗度与中灰值的平均值,并将所述平均值确定为所述分界值RegionD,其为:
在某些实施方案中,步骤S12中“确定每帧视频图像的信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值”,包括:
步骤1)将每帧视频图像的YUV电信号转换为RGB电信号,包括:
根据如下的YUV电信号转换为RGB电信号的转换公式(1),将YUV电信号转换成原始RGB信号:
根据如下的YUV电信号转换为RGB电信号的转换公式(2),将YUV电信号转换成原始RGB信号:
步骤2)获取终端设备的显示特征的默认值,此处显示特征的默认值可以取最大屏幕亮度MaxDisplay的默认值:
对于HDR视频,该默认值预设为500nit;对于SDR视频,该默认值预设为300nit。
步骤3)根据所述亮度特征及显示特征的默认值,生成色调映射曲线,包括:
根据所述显示特征的默认值和当前视频图像帧归一化后的亮度特征,确定当前视频图像帧的亮度区域的S型映射曲线的函数表达式,以及当前视频图像帧的暗部区域的线性映射直线的函数表达式;
将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前视频图像帧的色调映射曲线。
在某些实施方案中,所述根据所述显示特征和当前帧视频图像归一化后的亮度特征,确定当前帧视频图像的亮度区域的S型映射曲线的函数表达式,包括:
从预设的多条标准S型映射曲线中任选一条曲线;
根据预先生成的参数计算公式,计算该曲线的参数值,包括:
(1)参见图2(图2中横轴的1代表像素值255,横轴中的0.2代表像素值为0.2*255,以此类推;纵轴的1代表像素值255,纵轴中的0.1代表0.1*255,以此类推),若选取的标准S型映射曲线的函数表达式为:
F(L)=((mp*L)/((mp-1)*L+1))3.2:deltaM(3),L表示原始RGB电信号归一化后的像素值,L=i/255,F(L)表示修正后的RGB电 信号归一化后的像素值;根据如下公式(4)求解参数mp的上限值:
MaxDisplay表示最大屏幕亮度的默认值;
根据如下公式(5)求解参数mp的值:
strengthL’表示归一化后的亮度强度,mpMax表示mp的上限值;
根据如下公式(6)更新参数mp的值:
AvergLuma’表示归一化后的平均亮度;
根据如下公式(7)求解参数deltaM:
MinDisplay表示最小屏幕亮度的默认值,RegionD’表示归一化后的亮部区域和暗部区域的分界值,EOTF709()表示REC.709标准规定的电光转换函数。
参见图3(图3中横轴的1代表像素值255,横轴中的0.2代表像素值为0.2*255,以此类推;纵轴的1代表像素值255,纵轴中的0.1代表0.1*255,以此类推),若选取的标准S型映射曲线的函数表达式为:
F(L)=(3+deltaP)*L2*(1-L)2+p*L3*(1-L)+L4(8),L表示原始RGB电信号归一化后的像素值,L=i/255,F(L)表示修正后的RGB电信号归一化后的像素值;根据如下公式(9)求解参数p的上限值:
MaxDisplay表示最大屏幕亮度的默认值;
根据如下公式(10)求解参数p的值:
strengthL’表示归一化后的亮度强度,pMax表示p的上限值;
根据如下公式(11)更新参数p的值:
AvergLuma’表示归一化后的平均亮度;
根据如下公式(12)求解参数deltaP:
MinDisplay表示最小屏幕亮度的默认值,RegionD’表示归一化后的亮部区域和暗部区域的分界值,EOTF709()表示REC.709标准规定的电光转换函数。
在某些实施方案中,根据所述显示特征的默认值和当前视频图像帧归一化后的亮度特征,确定当前视频图像帧的暗部区域的线性映射直线的函数表达式,包括:
计算所述最大屏幕亮度MaxDisplay的默认值的倒数,与,预设固定常数(例如100)的乘积;
求所述乘积的预设次幂,例如,C0次幂,并将所得结果确定为所述线性映射直线的斜率的极限值SlopeLimit,所述预设次幂C0与所述最小屏幕亮度的默认值相关,其为:
其中,C0的值与最小屏幕亮度MinDisplay的默认值相关:
确定所述亮部S型映射曲线上,归一化后的分界值所对应的纵坐标,其为:
将RegionD’代入上述公式(3)或公式(8)所得的数值F(RegionD’)。
将所述纵坐标与归一化后的分界值的比值F(RegionD’)/(RegionD’)确定为参考斜率。
比较所述斜率的极限值与参考斜率的大小,将两者的最小值确定为所述暗部线性映射直线的斜率Slope,其为:
根据所述斜率,以及归一化后的所述分界值,确定当前帧视频图像的暗部区域的线性映射直线的函数表达式,其为:
TM(L)=Slope*L,L≤RegionD′。
参见图4(图4中横轴的1代表像素值255,横轴中的0.2代表像素值为0.2*255,以此类推;纵轴的1代表像素值255,纵轴中的0.1代表0.1*255,以此类推。图4中所示例的色调映射曲线在横坐标为0.2时出现拐点,在横坐标小于等于0.2时所对应的直线为暗部区域的线性映射直线,在横坐标大于0.2时所对应的曲线为亮部区域的S型映射曲线),将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前帧视频图像的色调映射曲线TM(L),其为:
L表示原始RGB电信号归一化后的像素值,L=i/255。
在某些实施方案中,步骤4)根据所述色调映射曲线,对所述YUV电信号及RGB电信号进行修正,包括:
根据所述色调映射曲线,将所述YUV电信号的亮度分量Y,映射为亮度分量Y’(查找图4中横坐标等于归一化的亮度分量Y/255的点所对应的纵坐标,该纵坐标*255,就为映射后的亮度分量Y’);
根据所述色调映射曲线,将所述RGB电信号的红色分量R,映射为红色分量R’;将所述RGB电信号的绿色分量G,映射为绿色分量G’;将所述RGB电信号的蓝色分量B,映射为蓝色分量B’(查找图4中横坐标等于归一化的绿色分量G/255的点所对应的纵坐标,该纵坐标*255,就为映射后的绿色分量G’,其他红色分量R’、蓝色分量B’获取方法同绿色分量G’的获取方法,此处不再赘述)。
在某些实施方案中,步骤5)根据修正前后的YUV电信号,计算亮度的信息熵损失值,包括:
分别计算亮度分量Y的直方图分布HistY的信息熵,以及亮度分 量Y’的直方图分布HistYtm的信息熵;以及
将HistY的信息熵与HistYtm的信息熵两者的差值的绝对值,记为亮度的信息熵损失值。
在某些实施方案中,步骤6)根据修正前后的RGB电信号,计算色度的信息熵损失值,包括:
分别计算红色分量R的直方图分布HistR的信息熵,以及红色分量R’的直方图分布HistRtm的信息熵,并将HistR的信息熵与HistRtm的信息熵两者的差值的绝对值记为红色分量R的信息熵损失值;
分别计算绿色分量G的直方图分布HistG的信息熵,以及绿色分量G’的直方图分布HistGtm的信息熵,并将HistG的信息熵与HistGtm的信息熵两者的差值的绝对值记为绿色分量G的信息熵损失值;
分别计算蓝色分量B的直方图分布HistB的信息熵,以及蓝色分量B’的直方图分布HistBtm的信息熵,并将HistB的信息熵与HistBtm的信息熵两者的差值的绝对值记为蓝色分量B的信息熵损失值;以及
将红色分量R的信息熵损失值、绿色分量G的信息熵损失值、蓝色分量B的信息熵损失值三者之和,记为色度的信息熵损失值。
在某些实施方案中,步骤7)根据所述信息熵损失值,确定每帧视频图像的信息损失量值,包括:
对每帧视频图像,将该帧视频图像的亮度的信息熵损失值和色度的信息熵损失值求和,并将求和结果与预设损失系数(所述预设损失系数根据经验值或者实验数据设置,例如设置为0.1)相乘,将乘积结果确定为该帧视频图像的信息损失量值。
上述步骤5)~7)可以用数学表达式表示为:
其中,deltaInfo表示信息损失量值;
X=Y、R、G、B、Ytm、Rtm、Gtm、Btm;En(HistX)表示信息熵,abs()表示求绝对值,Res表示当前帧视频图像像素点总数,N表示当 前帧视频图像的像素最大值,对于HDR视频,N=1023;对于SDR视频,N=255。L表示归一化后的像素值,对于SDR视频,L=i/255;对于HDR视频,L=i/1023,i表示像素值。
在某些实施方案中,步骤S13中“将所述亮度特征和信息损失量值写入每帧视频图像的元数据中”,其为:
将亮度特征和信息损失量值转换为int16型整数,然后写入元数据中。
在某些实施方案中,步骤S14中“对所述元数据及每帧视频图像进行编码,形成视频流”。
参见图5,图5给出了编码端发送的视频流的一个示例,在该段视频码流中,第一个码元SPS保存了视频图像编码后的全局参数;第二个码元PPS保存了整体图像相关的参数,PPS通常与SPS一起,保存在视频文件的文件头中;第三个码元IDR用于保存解码参数集合;第四个码元SLICE用于保存帧编码信息;第五个码元SEI用于保存视频码流的补充信息,即本实施例提及的元数据;......后续码元就是SLICE和SEI的重复了,不再赘述。
编码端计算出亮度特征后,写入到图5所示的第五个码元SEI中,然后后与其他码元中的数据一起编码为视频流。
可以理解的是,本实施例提供的技术方案,由于编码端的视频图像是未经压缩未被传输的无损视频图像,通过在编码端计算每帧视频图像的色调损失量预估值,可以保证最大化贴合每帧视频图像的真实状态,减少计算误差,为解码端修正色调映射曲线提供精准的数据支撑。同时,由于色调损失量预估值的计算步骤转移到了编码端,也减轻了解码端的计算压力,使得解码端能够更快地构建出动态色调映射曲线,更快地显示出色调无损的高质量视频图像画面。
图6是根据本公开另一示例性实施例示出的视频数据处理方法的流程图,该方法适用于解码端,参见图6,该方法包括:
步骤S21、接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
步骤S22、获取终端设备的显示特征;
步骤S23、根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;以及
步骤S24、根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
需要说明的是,本实施例提供的技术方案,适用于解码端中。所述解码端包括:电脑端(包括服务器),和/或,移动终端(包括但不限于:智能手机、平板电脑、VR头盔、VR眼镜等),适用的场景包括但不限于:
1、编码端的SDR视频映射到解码端的CRT显示器进行显示;
2、编码端的SDR/HDR视频映射到解码端的LCD显示器进行显示;
3、编码端的SDR/HDR视频映射到解码端的OLED显示器进行显示;以及
4、编码端的SDR/HDR视频映射到解码端的minLED显示器进行显示。
可以理解的是,目前,SDR/HDR视频的播放技术离不开色调映射曲线,本实施例提供的技术方案,可自适应修正色调映射曲线,避免映射过程中细节信息的损失,从而保证SDR/HDR视频的播放效果。
在某些实施方案中,所述亮度特征至少包括亮度强度StrengthL、平均亮度AvergLuma、亮部区域和暗部区域的分界值RegionD,所述显示特征至少包括:最大屏幕亮度MaxDisplay、最小屏幕亮度MinDisplay及屏幕分辨率RES。
在某些实施方案中,步骤S23中“所述根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线”,包括:
根据所述显示特征和当前视频图像帧归一化后的亮度特征,确定 当前视频图像帧的亮度区域的S型映射曲线的函数表达式,以及当前视频图像帧的暗部区域的线性映射直线的函数表达式;以及
将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前视频图像帧的色调映射曲线。
需要说明的是,解码端色调映射曲线生成方法和编码端色调映射曲线生成方法相同,唯一不同的地方在于:编码端用的是终端设备的显示特征的默认值,而解码端用的是终端设备的显示特征的实际值,其他步骤皆相同,在此不再赘述。
在某些实施方案中,步骤S24中“所述根据所述信息损失量值,对所述色调映射曲线进行修正”,包括:
步骤1)根据所述信息损失量值,对当前视频图像帧的暗部区域的线性映射直线的斜率进行修正,包括:
若所述最大屏幕亮度等于最大屏幕亮度的默认值,用所述信息损失量值补偿所述线性映射直线的斜率,将补偿后的斜率更新为当前视频图像帧的暗部区域的线性映射直线的斜率;
若所述最大屏幕亮度不等于最大屏幕亮度的默认值,根据所述最大屏幕亮度对所述信息损失量值进行调整(通过预设调整函数,对所述信息损失量值进行调整,所述预设调整函数是以所述信息损失量化值和最大屏幕亮度为自变量,调整后的信息损失量值为因变量的线性函数或非线性函数),用调整后的信息损失量补偿所述线性映射直线的斜率,将补偿后的斜率更新为当前视频图像帧的暗部区域的线性映射直线的斜率。
如图5所示,若解码端接收到的视频流中的第一个码元SPS的VUI参数值等于16或18,解码端就默认当前接收到的视频流为HDR视频流,最大屏幕亮度的默认值为500;若解码端接收到的视频流中的第一个码元SPS的VUI参数值等于1或为空,解码端就默认当前接收到的视频流为SDR视频流,最大屏幕亮度的默认值为300。
若HDR视频下,MaxDisplay=500;SDR视频下,MaxDisplay=300,SlopeN=Slope+deltaInfoN,其中,SlopeN为更新后的暗部区域的线性映射直线的斜率,Slope为更新前的暗部区域的线性映射直线的 斜率,deltaInfoN为信息损失量值,deltaInfo<1;
若HDR视频下,MaxDisplay≠500;SDR视频下,MaxDisplay≠300,SlopeN=Slope+deltaInfoN’,其中,SlopeN为更新后的暗部区域的线性映射直线的斜率,Slope为更新前的暗部区域的线性映射直线的斜率,deltaInfoN’为调整后的信息损失量值;
或者,
F’()预设调整函数为预设调整函数,HDR视频下,Y=500;SDR视频下,Y=300。
在某些实施方案中,步骤2)根据修正后的斜率,更新当前视频图像帧的亮部区域和暗部区域两者之间的分界值,包括:
在所述S型映射曲线上找到一个点,使该点与原点连线的斜率等于修正后的斜率,即满足:F()为步骤S23中生成的色调映射曲线中的S型映射曲线的函数表达式;
将该点的横坐标RegionDnew更新为当前视频图像帧的亮部区域和暗部区域两者之间的分界值;
根据修正后的斜率SlopeN,以及更新后的亮部区域和暗部区域两者之间的分界值RegionDnew,更新所述线性映射直线的函数表达式,即:
TM(L)=SlopeN*L,L≤RegionDnew,L表示原始RGB电信号归一化后的像素值,L=i/255。
可以理解的是,本实施例提供的技术方案,通过编码端计算的信息损失量值,修正解码端动态生成的色调映射曲线,由于信息损失量值考虑了待显示的视频图像帧在终端设备显示时的色调损失量,故通过该信息损失量值修正后的色调映射曲线映射后的视频图像,可以减少因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。
图7是根据一示例性实施例示出的视频显示方法的流程图,该方法适用于解码端,参见图7,该方法包括:
步骤S31、从编码端发送的视频流中提取出每帧视频图像的YUV电信号,并将所述YUV电信号转换为原始RGB电信号;
步骤S32、根据色调映射曲线,将所述原始RGB电信号转换为修正后的RGB电信号,所述映射曲线根据上述的视频数据处理方法生成;以及
步骤S33、根据预设的电光转换函数,将修正后的RGB电信号转换为RGB光信号在终端设备上进行显示。
需要说明的是,本实施例提供的技术方案,适用于解码端中。所述解码端包括:电脑端(包括服务器),和/或,移动终端(包括但不限于:智能手机、平板电脑、VR头盔、VR眼镜等),适用的场景包括但不限于:
1、编码端的SDR视频映射到解码端的CRT显示器进行显示;
2、编码端的SDR/HDR视频映射到解码端的LCD显示器进行显示;
3、编码端的SDR/HDR视频映射到解码端的OLED显示器进行显示;以及
4、编码端的SDR/HDR视频映射到解码端的minLED显示器进行显示。
可以理解的是,目前,SDR/HDR视频的播放技术离不开色调映射曲线,本实施例提供的技术方案,可自适应修正色调映射曲线,避免映射过程中细节信息的损失,从而保证SDR/HDR视频的播放效果。
可以理解的是,本实施例提供的技术方案,由于是通过修正后的色调映射曲线对原始RGB电信号进行色调修正,而该色调映射曲线在生成时兼顾了待显示的视频图像帧在终端设备显示时的色调损失量,所以再通过预设的电光转换函数将修正后的RGB电信号转换为光信号后,转换后的光信号可以适配于终端设备的显示特征,减少了因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。
图8是根据本公开一示例性实施例示出的视频数据处理装置100 的示意框图,如图8所示,该装置100设置于编码端,该装置100包括:
计算模块101,配置为对待发送的视频,计算每帧视频图像的亮度特征;
还配置为确定每帧视频图像的信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
读写模块102,配置为将所述亮度特征和信息损失量值写入每帧视频图像的元数据中;
编码模块103,配置为对所述元数据及每帧视频图像进行编码,形成视频流;以及
发送模块104,用配置为将所述视频流发送给解码端,以使所述解码端根据所述亮度特征及色调损失量预估值,修正当前视频图像帧的色调映射曲线,修正后的色调映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
需要说明的是,本实施例提供的技术方案,适用于编码端,所述编码端为带有图像采集设备的终端设备,包括但不限于:手机、平板电脑、笔记本电脑、计算器及电话手表等,适用的场景包括但不限于:
1、编码端的SDR视频映射到解码端的CRT显示器进行显示;
2、编码端的SDR/HDR视频映射到解码端的LCD显示器进行显示;
3、编码端的SDR/HDR视频映射到解码端的OLED显示器进行显示;以及
4、编码端的SDR/HDR视频映射到解码端的minLED显示器进行显示。
可以理解的是,目前,SDR/HDR视频的播放技术离不开色调映射曲线,本实施例提供的技术方案,可自适应修正色调映射曲线,避免映射过程中细节信息的损失,从而保证SDR/HDR视频的播放效果。
可以理解的是,本实施例提供的技术方案,由于编码端的视频图 像是未经压缩未被传输的无损视频图像,通过在编码端计算每帧视频图像的色调损失量预估值,可以保证最大化贴合每帧视频图像的真实状态,减少计算误差,为解码端修正色调映射曲线提供精准的数据支撑。同时,由于色调损失量预估值的计算步骤转移到了编码端,也减轻了解码端的计算压力,使得解码端能够更快地构建出动态色调映射曲线,更快地显示出色调无损的高质量视频图像画面。
图9是根据本公开一示例性实施例示出的视频数据处理装置200的示意框图,如图9所示,该装置200设置于解码端,该装置200包括:
解码模块201,配置为接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
获取模块202,配置为获取终端设备的显示特征;
生成模块203,配置为根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;
修正模块204,配置为根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
需要说明的是,本实施例提供的技术方案,适用于解码端中。所述解码端包括:电脑端(包括服务器),和/或,移动终端(包括但不限于:智能手机、平板电脑、VR头盔、VR眼镜等),适用的场景包括但不限于:
1、编码端的SDR视频映射到解码端的CRT显示器进行显示;
2、编码端的SDR/HDR视频映射到解码端的LCD显示器进行显示;
3、编码端的SDR/HDR视频映射到解码端的OLED显示器进行 显示;以及
4、编码端的SDR/HDR视频映射到解码端的minLED显示器进行显示。
可以理解的是,目前,SDR/HDR视频的播放技术离不开色调映射曲线,本实施例提供的技术方案,可自适应修正色调映射曲线,避免映射过程中细节信息的损失,从而保证SDR/HDR视频的播放效果。
可以理解的是,本实施例提供的技术方案,由于是通过修正后的色调映射曲线对原始RGB电信号进行色调修正,而该色调映射曲线在生成时兼顾了待显示的视频图像帧在终端设备显示时的色调损失量,所以再通过预设的电光转换函数将修正后的RGB电信号转换为光信号后,转换后的光信号可以适配于终端设备的显示特征,减少了因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。
图10是根据本公开一示例性实施例示出的端到端视频显示***300的示意框图,如图10所示,该***300包括:
设置在编码端301的本公开所述的视频数据处理装置,以及,
设置在解码端302的本公开所述的视频数据处理装置。
可以理解的是,本实施例提供的技术方案,由于编码端的视频图像是未经压缩未被传输的无损视频图像,通过在编码端计算每帧视频图像的色调损失量预估值,可以保证最大化贴合每帧视频图像的真实状态,减少计算误差,为解码端修正色调映射曲线提供精准的数据支撑。同时,由于色调损失量预估值的计算步骤转移到了编码端,也减轻了解码端的计算压力,使得解码端能够更快地构建出动态色调映射曲线,更快地显示出色调无损的高质量视频图像画面。
解码端由于是通过修正后的色调映射曲线对原始RGB电信号进行色调修正,而该色调映射曲线在生成时兼顾了待显示的视频图像帧在终端设备显示时的色调损失量,所以再通过预设的电光转换函数将修正后的RGB电信号转换为光信号后,转换后的光信号可以适配于终端设备的显示特征,减少了因视频图像帧的上限亮度与终端设备的 峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。
根据一示例性实施例示出的一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开所述的方法。
需要说明的是,电子设备包括但不限于:智能终端(例如,手机、平板电脑、智能手表等)和计算机设备。
所述处理器包括但不限于:CPU、单片机、PLC控制器、FPGA控制器等。
所述存储器可以包括易失性存储器形式的计算机***可读介质,例如随机存取存储器(RAM)和/或高速缓存存储器;还可以包括其它可移动/不可移动的、易失性/非易失性计算机***存储介质。存储器可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本公开各实施例的功能。
可以理解的是,本实施例提供的技术方案,由于编码端的视频图像是未经压缩未被传输的无损视频图像,通过在编码端计算每帧视频图像的色调损失量预估值,可以保证最大化贴合每帧视频图像的真实状态,减少计算误差,为解码端修正色调映射曲线提供精准的数据支撑。同时,由于色调损失量预估值的计算步骤转移到了编码端,也减轻了解码端的计算压力,使得解码端能够更快地构建出动态色调映射曲线,更快地显示出色调无损的高质量视频图像画面。
解码端由于是通过修正后的色调映射曲线对原始RGB电信号进行色调修正,而该色调映射曲线在生成时兼顾了待显示的视频图像帧在终端设备显示时的色调损失量,所以再通过预设的电光转换函数将修正后的RGB电信号转换为光信号后,转换后的光信号可以适配于终端设备的显示特征,减少了因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息 损失,导致视觉效果欠佳的问题。
根据本公开一示例性实施例示出的存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行本公开所述的方法。
根据本公开一示例性实施例示出的计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现本公开所述的方法。
本实施例公开的计算机可读存储介质包括但不限于:电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
可以理解的是,本实施例提供的技术方案,由于编码端的视频图像是未经压缩未被传输的无损视频图像,通过在编码端计算每帧视频图像的色调损失量预估值,可以保证最大化贴合每帧视频图像的真实状态,减少计算误差,为解码端修正色调映射曲线提供精准的数据支撑。同时,由于色调损失量预估值的计算步骤转移到了编码端,也减轻了解码端的计算压力,使得解码端能够更快地构建出动态色调映射曲线,更快地显示出色调无损的高质量视频图像画面。
解码端由于是通过修正后的色调映射曲线对原始RGB电信号进行色调修正,而该色调映射曲线在生成时兼顾了待显示的视频图像帧在终端设备显示时的色调损失量,所以再通过预设的电光转换函数将修正后的RGB电信号转换为光信号后,转换后的光信号可以适配于终端设备的显示特征,减少了因视频图像帧的上限亮度与终端设备的峰值亮度不匹配,造成的视频图像帧在终端设备显示时存在画面信息损失,导致视觉效果欠佳的问题。
可以理解的是,上述各实施例中相同或相似部分可以相互参考, 在某些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是指至少两个。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
在某些实施方案中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“某些实施例”、“示例”、“具体示例”、或“某些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 视频数据处理方法,适用于解码端,其包括:
    接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
    获取终端设备的显示特征;
    根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;以及
    根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
  2. 如权利要求1所述的方法,其中所述根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线,包括:
    根据所述显示特征和当前视频图像帧归一化后的亮度特征,确定当前视频图像帧的亮度区域的S型映射曲线的函数表达式,以及当前视频图像帧的暗部区域的线性映射直线的函数表达式;以及
    将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前视频图像帧的色调映射曲线。
  3. 如权利要求1或2所述的方法,其中所述根据所述信息损失量值,对所述色调映射曲线进行修正,包括:
    根据所述信息损失量值,对当前视频图像帧的暗部区域的线性映射直线的斜率进行修正;以及
    根据修正后的斜率,更新当前视频图像帧的亮部区域和暗部区域两者之间的分界值。
  4. 如权利要求3所述的方法,其中所述显示特征包括:终端设备的最大屏幕亮度,所述根据所述信息损失量值,对当前视频图像帧的暗部区域的线性映射直线的斜率进行修正,包括:
    若所述最大屏幕亮度等于最大屏幕亮度的默认值,用所述信息损失量值补偿所述线性映射直线的斜率,将补偿后的斜率更新为当前视频图像帧的暗部区域的线性映射直线的斜率;以及
    若所述最大屏幕亮度不等于最大屏幕亮度的默认值,根据所述最大屏幕亮度对所述信息损失量值进行调整,用调整后的信息损失量补偿所述线性映射直线的斜率,将补偿后的斜率更新为当前视频图像帧的暗部区域的线性映射直线的斜率。
  5. 如权利要求3或4所述的方法,其中所述根据修正后的斜率,更新当前视频图像帧的亮部区域和暗部区域两者之间的分界值,包括:
    在所述S型映射曲线上找到一个点,使该点与原点连线的斜率等于修正后的斜率;以及
    将该点的横坐标更新为当前视频图像帧的亮部区域和暗部区域两者之间的分界值。
  6. 如权利要求4或5所述的方法,其中所述根据所述最大屏幕亮度对所述信息损失量值进行调整,包括:
    通过预设调整函数,对所述信息损失量值进行调整,所述预设调整函数是以所述信息损失量化值和最大屏幕亮度为自变量,调整后的信息损失量值为因变量的线性函数或非线性函数。
  7. 视频数据处理方法,适用于编码端,其包括:
    对待发送的视频,计算每帧视频图像的亮度特征;
    确定每帧视频图像的信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
    将所述亮度特征和信息损失量值写入每帧视频图像的元数据中;
    对所述元数据及每帧视频图像进行编码,形成视频流;以及
    将所述视频流发送给解码端,以使所述解码端根据所述亮度特征及色调损失量预估值,修正当前视频图像帧的色调映射曲线,修正后的色调映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
  8. 如权利要求7所述的方法,其中所述确定每帧视频图像的信息损失量值,包括:
    将每帧视频图像的YUV电信号转换为RGB电信号;
    获取终端设备的显示特征的默认值;
    根据所述亮度特征及显示特征的默认值,生成色调映射曲线;
    根据所述色调映射曲线,对所述YUV电信号及RGB电信号进行修正;
    根据修正前后的YUV电信号,计算亮度的信息熵损失值;
    根据修正前后的RGB电信号,计算色度的信息熵损失值;以及
    根据所述信息熵损失值,确定每帧视频图像的信息损失量值。
  9. 如权利要求8所述的方法,其中所述根据所述亮度特征及显示特征的默认值,生成色调映射曲线,包括:
    根据所述显示特征的默认值和当前视频图像帧归一化后的亮度特征,确定当前视频图像帧的亮度区域的S型映射曲线的函数表达式,以及当前视频图像帧的暗部区域的线性映射直线的函数表达式;以及
    将所述线性映射直线及S型映射曲线组成的分段函数,确定为当前视频图像帧的色调映射曲线。
  10. 如权利要求8或9所述的方法,其中所述根据所述色调映射曲线,对所述YUV电信号及RGB电信号进行修正,包括:
    根据所述色调映射曲线,将所述YUV电信号的亮度分量Y,映射为亮度分量Y’;以及
    根据所述色调映射曲线,将所述RGB电信号的红色分量R,映射为红色分量R’;将所述RGB电信号的绿色分量G,映射为绿色分量G’;将所述RGB电信号的蓝色分量B,映射为蓝色分量B’。
  11. 如权利要求8至10中任一权利要求所述的方法,其中所述根据修正前后的YUV电信号,计算亮度的信息熵损失值,包括:
    分别计算亮度分量Y的直方图分布HistY的信息熵,以及亮度分量Y’的直方图分布HistYtm的信息熵;以及
    将HistY的信息熵与HistYtm的信息熵两者的差值的绝对值,记为亮度的信息熵损失值。
  12. 如权利要求8至11中任一权利要求所述的方法,其中所述根据修正前后的RGB电信号,计算色度的信息熵损失值,包括:
    分别计算红色分量R的直方图分布HistR的信息熵,以及红色分量R’的直方图分布HistRtm的信息熵,并将HistR的信息熵与HistRtm的信息熵两者的差值的绝对值记为红色分量R的信息熵损失值;
    分别计算绿色分量G的直方图分布HistG的信息熵,以及绿色分量G’的直方图分布HistGtm的信息熵,并将HistG的信息熵与HistGtm的信息熵两者的差值的绝对值记为绿色分量G的信息熵损失值;
    分别计算蓝色分量B的直方图分布HistB的信息熵,以及蓝色分量B’的直方图分布HistBtm的信息熵,并将HistB的信息熵与HistBtm的信息熵两者的差值的绝对值记为蓝色分量B的信息熵损失值;以及
    将红色分量R的信息熵损失值、绿色分量G的信息熵损失值、蓝色分量B的信息熵损失值三者之和,记为色度的信息熵损失值。
  13. 如权利要求8至12中任一权利要求所述的方法,其中所述根据所述信息熵损失值,确定每帧视频图像的信息损失量值,包括:
    对每帧视频图像,将该帧视频图像的亮度的信息熵损失值和色度的信息熵损失值求和,并将求和结果与预设损失系数相乘,将乘积结 果确定为该帧视频图像的信息损失量值。
  14. 视频显示方法,适用于解码端,其包括:
    从编码端发送的视频流中提取出每帧视频图像的YUV电信号,并将所述YUV电信号转换为原始RGB电信号;
    根据色调映射曲线,将所述原始RGB电信号转换为修正后的RGB电信号,所述映射曲线根据权利要求1~13任一项所述的视频数据处理方法生成;以及
    根据预设的电光转换函数,将修正后的RGB电信号转换为RGB光信号在终端设备上进行显示。
  15. 视频数据处理装置,设置于解码端,其包括:
    解码模块,配置为接收编码端发送的视频流,并从所述视频流中解码出视频图像帧,以及每帧视频图像的亮度特征和信息损失量值,所述信息损失量值为视频图像帧在终端设备显示时的色调损失量预估值;
    获取模块,配置为获取终端设备的显示特征;
    生成模块,配置为根据所述亮度特征及显示特征,生成当前视频图像帧的色调映射曲线;以及
    修正模块,配置为根据所述信息损失量值,对所述色调映射曲线进行修正,得到修正后的色调映射曲线,所述修正后的色映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
  16. 视频数据处理装置,设置于编码端,其包括:
    计算模块,配置为对待发送的视频,计算每帧视频图像的亮度特征;
    还配置为确定每帧视频图像的信息损失量值,所述信息损失量值 为视频图像帧在终端设备显示时的色调损失量预估值;
    读写模块,配置为将所述亮度特征和信息损失量值写入每帧视频图像的元数据中;
    编码模块,配置为对所述元数据及每帧视频图像进行编码,形成视频流;以及
    发送模块,配置为将所述视频流发送给解码端,以使所述解码端根据所述亮度特征及色调损失量预估值,修正当前视频图像帧的色调映射曲线,修正后的色调映射曲线用于表征原始RGB电信号与修正后的RGB电信号之间的映射关系;所述原始RGB电信号为待显示的视频图像帧的YUV电信号转换得到的RGB电信号,所述修正后的RGB电信号为适配于终端设备的显示特征的RGB电信号。
  17. 端到端视频显示***,其包括:
    设置在编码端的权利要求15所述的视频数据处理装置,以及
    设置在解码端的权利要求16所述的视频数据处理装置。
  18. 电子设备,其包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至14中任一权利要求所述的方法。
  19. 存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行权利要求1至14中任一权利要求所述的方法。
  20. 计算机程序产品,其包括计算机程序,所述计算机程序在被处理器执行时实现权利要求1至14中任一权利要求所述的方法。
PCT/CN2023/130712 2022-11-10 2023-11-09 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质 WO2024099388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211404651.8 2022-11-10
CN202211404651.8A CN115567694A (zh) 2022-11-10 2022-11-10 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024099388A1 true WO2024099388A1 (zh) 2024-05-16

Family

ID=84770468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130712 WO2024099388A1 (zh) 2022-11-10 2023-11-09 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN115567694A (zh)
WO (1) WO2024099388A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567694A (zh) * 2022-11-10 2023-01-03 北京奇艺世纪科技有限公司 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170064334A1 (en) * 2015-08-28 2017-03-02 Arris Enterprises Llc Color Volume Transforms in Coding of High Dynamic Range and Wide Color Gamut Sequences
KR20170033471A (ko) * 2015-09-16 2017-03-27 광운대학교 산학협력단 Hdr과 sdr 출력 영상을 복호화하기 위한 톤매핑 관련 부가 정보의 전송 방법 및 장치
CN112449169A (zh) * 2021-01-28 2021-03-05 北京达佳互联信息技术有限公司 色调映射的方法和装置
CN113099201A (zh) * 2021-03-30 2021-07-09 北京奇艺世纪科技有限公司 视频信号处理方法、装置及电子设备
CN115567694A (zh) * 2022-11-10 2023-01-03 北京奇艺世纪科技有限公司 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170064334A1 (en) * 2015-08-28 2017-03-02 Arris Enterprises Llc Color Volume Transforms in Coding of High Dynamic Range and Wide Color Gamut Sequences
KR20170033471A (ko) * 2015-09-16 2017-03-27 광운대학교 산학협력단 Hdr과 sdr 출력 영상을 복호화하기 위한 톤매핑 관련 부가 정보의 전송 방법 및 장치
CN112449169A (zh) * 2021-01-28 2021-03-05 北京达佳互联信息技术有限公司 色调映射的方法和装置
CN113099201A (zh) * 2021-03-30 2021-07-09 北京奇艺世纪科技有限公司 视频信号处理方法、装置及电子设备
CN115567694A (zh) * 2022-11-10 2023-01-03 北京奇艺世纪科技有限公司 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN115567694A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
RU2728845C1 (ru) Устройство и способ улучшения обмена данными изображения на основе нелинейности восприятия яркости между разными возможностями отображения
JP2018525883A (ja) カラー・ピクチャを符号化および復号する方法およびデバイス
JP2014519221A (ja) 映像符号化信号を発生する方法及び装置
WO2024099388A1 (zh) 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质
WO2024099389A1 (zh) 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质
WO2024099390A1 (zh) 视频数据处理方法、视频显示方法及装置、电子设备及可读存储介质
WO2024104245A1 (zh) 色调映射方法、装置及相关设备
CN111434113A (zh) 用于高动态范围重建的饱和控制
CN116368513A (zh) 基于创作意图元数据和环境光的hdr色调映射
CN108027978A (zh) 用于hdr编码/解码的颜色分量采样的同位置亮度采样的确定