WO2024099094A1 - 波束测量方法、装置、终端、网络侧设备及存储介质 - Google Patents

波束测量方法、装置、终端、网络侧设备及存储介质 Download PDF

Info

Publication number
WO2024099094A1
WO2024099094A1 PCT/CN2023/126761 CN2023126761W WO2024099094A1 WO 2024099094 A1 WO2024099094 A1 WO 2024099094A1 CN 2023126761 W CN2023126761 W CN 2023126761W WO 2024099094 A1 WO2024099094 A1 WO 2024099094A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam scanning
configuration information
scanning resource
resources
period
Prior art date
Application number
PCT/CN2023/126761
Other languages
English (en)
French (fr)
Inventor
施源
吴昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024099094A1 publication Critical patent/WO2024099094A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a beam measurement method, device, terminal, network-side equipment and storage medium.
  • beamforming transmission is considered one of the basic means to overcome high path loss.
  • beam determination is required between the network-side device and the terminal, which requires beam measurement.
  • the terminal After the terminal performs beam measurement, it can select the optimal beam and feed it back to the network-side device as a reference for the network-side device to determine the beam used to send the channel or signal.
  • the performance of beam measurement directly affects the communication quality between the network-side device and the terminal.
  • Embodiments of the present application provide a beam measurement method, apparatus, terminal, network-side equipment, and storage medium to improve beam measurement performance.
  • a beam measurement method comprising:
  • the terminal receives first configuration information sent by a network side device, where a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending period, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information;
  • the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, and the beam feedback report is associated with beam quality information and/or beam information determined based on the beam measurement;
  • the terminal performs beam measurement and beam prediction based on at least part of the first beam scanning resources, and the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement.
  • a beam measurement device comprising:
  • a receiving module configured to receive first configuration information sent by a network side device, wherein a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending period, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information;
  • An operation module configured to perform beam measurement based on at least part of the first beam scanning resources, wherein the beam feedback report is associated with beam quality information and/or beam information determined based on the beam measurement;
  • the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement.
  • a beam measurement method including:
  • the network side device determines first configuration information, wherein a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending cycle, wherein the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information, and the beam feedback report is associated with beam quality information and/or beam information determined based on beam measurement, or the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement;
  • the network side device sends the first configuration information to the terminal.
  • a beam measurement device comprising:
  • a determination module used to determine first configuration information, wherein a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending cycle, the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information, the beam feedback report is associated with beam quality information and/or beam information determined based on beam measurement, or the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement;
  • a sending module is used to send the first configuration information to the terminal.
  • a terminal which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the beam measurement method described in the first aspect are implemented.
  • a network side device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the beam measurement method described in the third aspect are implemented.
  • a communication system including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the beam measurement method as described in the first aspect, and the network side device can be used to execute the steps of the beam measurement method as described in the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the beam measurement method as described in the first aspect are implemented, or the steps of the beam measurement method as described in the third aspect are implemented.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the beam measurement method as described in the first aspect, or to implement the steps of the beam measurement method as described in the third aspect.
  • the terminal receives the first configuration information sent by the network side device, and can learn the first beam scanning resource associated with the beam feedback report corresponding to the first configuration information in each sending period, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information.
  • Beam measurement is performed on at least part of the beam scanning resources in the scanning resources, and accordingly, the beam feedback report can be associated with the beam quality information and/or beam information determined based on the beam measurement, or, beam measurement and beam prediction are performed based on at least part of the beam scanning resources in the first beam scanning resources, and accordingly, the beam feedback report can be associated with the beam quality information and/or beam information determined by beam prediction after beam measurement, so that the beam scanning resources associated with the beam feedback report and the beam quality information and/or beam information associated with the beam feedback report are more flexible, which facilitates the terminal to perform beam measurement based on the associated beam scanning resources, and helps to improve the beam measurement performance.
  • FIG1 is a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of a neural network in the related art
  • FIG3 is a schematic diagram of a neuron in the related art
  • FIG4 is a schematic diagram of a possible method of beam prediction in the related art
  • FIG5 is a schematic diagram of another possible method of beam prediction in the related art.
  • FIG6 is a schematic diagram of another possible method of beam prediction in the related art.
  • FIG7 is a flowchart of an implementation of a beam measurement method in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a beam measurement device corresponding to FIG7 in an embodiment of the present application.
  • FIG9 is a flowchart of another beam measurement method in an embodiment of the present application.
  • FIG10 is a schematic structural diagram of a beam measurement device corresponding to FIG9 in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a communication device in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a terminal in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a network-side device in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SCFDMA Single Carrier Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and the wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, and the
  • the network side device 12 may include an access network device or a core network device.
  • the access network equipment may also be referred to as wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
  • the access network equipment may include base stations, WLAN access points or WiFi nodes, etc.
  • the base station may be referred to as node B, evolved node B (eNB), access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home B node, home evolved B node, transmitting and receiving point (Transmitting Receiving Point, TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (CNC), network storage function (Network Repository Function, NRF), network open function (Network Exposure Function, NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), Application Function (Application Function, AF), etc.
  • MME
  • AI technology is widely used in various fields such as communications, medical treatment, and education.
  • AI networks such as neural networks, decision trees, support vector machines, Bayesian classifiers, etc.
  • the embodiment of the present application takes the AI network as a neural network as an example for illustration, but does not limit the specific type of AI network.
  • a schematic diagram of a neural network is shown in Figure 2, including an input layer, a hidden layer, and an output layer.
  • a 1 , a 2 , ..., a k , ..., a K are inputs
  • w is weight (multiplicative coefficient)
  • b is bias (additive coefficient)
  • ⁇ (.) is activation function.
  • Common activation functions include Sigmoid, tanh, ReLU (Rectified Linear Unit), etc.
  • the parameters of the neural network are optimized through an optimization algorithm.
  • An optimization algorithm is a type of algorithm that can minimize or maximize an objective function (or loss function).
  • the objective function is often a mathematical combination of model parameters and data. For example, given data X and its corresponding label Y, a neural network model f(.) can be constructed. After obtaining the neural network model, the predicted output f(x) can be obtained based on the input x, and the difference f(x)-Y between the predicted value and the true value can be calculated. This is the loss function. The purpose is to find suitable W and b to minimize the value of the above loss function. The smaller the loss value, the closer the prediction result of the neural network model is to the actual situation.
  • the common optimization algorithms are basically based on the error back propagation (BP) algorithm.
  • BP error back propagation
  • the basic idea of the BP algorithm is that the learning process consists of two processes: the forward propagation of the signal and the back propagation of the error.
  • the input sample is transmitted from the input layer, processed by each hidden layer layer by layer, and then transmitted to the output layer. If the actual output of the output layer does not match the expected output, it will enter the error back propagation stage.
  • Error back propagation is to propagate the output error layer by layer through the hidden layer to the input layer in some form, and distribute the error to all units in each layer, so as to obtain the error signal of each layer unit, and this error signal is used as the basis for correcting the weights of each unit.
  • This process of adjusting the weights of each layer of the signal forward propagation and error back propagation is repeated.
  • the process of continuous adjustment of weights is the learning and training process of the network. This process continues until the error of the network output is reduced to an acceptable level, or until the pre-set number of learning times is reached.
  • Analog beamforming is full-bandwidth transmission, and each polarization direction array element on the panel of each high-frequency antenna array can only send analog beams in a time-division multiplexing manner.
  • the shaping weight of the analog beam is achieved by adjusting the parameters of the RF front-end phase shifter and other devices.
  • polling is usually used to train the simulated beamforming vector, that is, the array elements of each polarization direction of each antenna panel send training signals (i.e. candidate beamforming vectors) in turn at the agreed time in a time-division multiplexing manner.
  • the terminal feeds back a beam report for the network side equipment to use the training signal to implement simulated beam transmission when transmitting services next time.
  • the content of the beam report usually includes the optimal number of transmit beam identifiers and the measured receive power of each transmit beam.
  • the network side device When performing beam measurement, the network side device will configure a reference signal (RS) resource set (RS resource set), which includes at least one reference signal resource (RS resource), such as a synchronization signal block (SSB) resource (SSB resource) or a channel state information reference signal (CSI-RS) resource (CSI-RS resource).
  • the terminal measures the reference signal receiving power (RSRP) (L1-RSRP) and the signal to interference plus noise ratio (SINR) (L1-SINR) of layer 1 of each reference signal resource, and reports at least one optimal measurement result to the network side device, including the synchronization signal block resource indicator (SSBRI) or the channel state information reference signal resource indicator (CRI), and L1-RSRP/L1-SINR.
  • the report content reflects at least one optimal beam and its quality, so that the network side device can determine the beam used to send the channel or signal to the terminal.
  • the quantization step is 1dB
  • the quantization range is -140dBm to -44dBm.
  • the strongest RSRP is quantized using a 7-bit quantization method
  • the remaining RSRPs are quantized using a 4-bit differential quantization method with a quantization step of 2dB.
  • the number of feedback reports is determined by the parameters configured by the network side device to the terminal.
  • the number of RS and RSRP that should be included in the terminal's feedback report is configured through the Radio Resource Control (RRC) configuration parameters.
  • RRC Radio Resource Control
  • the value of the number configuration is 1, 2, 3, 4, and the default value is 1.
  • the number is limited based on the terminal's capabilities, and the terminal will first report the maximum number it can support.
  • the RSRP of some beam pairs is used as the input of the AI model, and the output of the AI model is the RSRP results of all beam pairs.
  • the beam pair consists of a transmit beam and a receive beam.
  • the number of inputs to the AI model is equal to the number of selected beam pairs.
  • the number of outputs of the model is equal to the number of all beam pairs.
  • association information is added to the input side of the AI model.
  • the association information is the relevant information corresponding to the input beam pair, such as angle-related information, beam identification (ID) information, etc.
  • ID beam identification
  • the number of inputs to the AI model is still equal to the number of selected partial beam pairs, and the number of outputs of the AI model is still equal to the number of all beam pairs. Adding association information helps to enhance beam prediction performance.
  • FIG6 Another possible way to use the AI model for beam prediction is shown in FIG6 , which mainly affects the output of the AI model by changing the expected information through the AI model, such as changing the expected receiving angle information, or changing the expected sending angle information, or changing the expected prediction time related information, and then cyclically using the AI model for prediction.
  • the input type of the AI model may include at least one of the following:
  • End A sends beam information
  • End B receives beam information
  • the beam information expected by the B end is the beam information expected by the B end
  • the B-side receiving beam information expected by the B-side
  • Beam quality information includes but is not limited to at least one of the following types: L1-SINR, L1-RSRP, reference signal receiving quality (Reference Signal Receiving Quality, RSRQ) of layer 1 (L1-RSRQ), L3-SINR, L3-RSRP, L3-RSRQ, etc.
  • the beam information includes but is not limited to at least one of the following: beam ID information, beam angle information, beam gain information, beam width information, expected information, etc.
  • the beam ID information is related information used for beam identification, including but not limited to at least one of the following: transmit beam ID, receive beam ID, beam ID, reference signal set ID corresponding to the beam, reference signal resource ID corresponding to the beam, uniquely identified random ID, additional AI network processed coded value, beam angle information, resource index information, CRI, SSBRI, etc.;
  • the beam angle information is the angle information corresponding to the beam, including but not limited to at least one of the following: angle related information, transmission angle related information, and reception angle related information;
  • Angle-related information is related information used to characterize angles or identities, such as angles, radians, index encoding values, ID values, encoding values after additional AI network processing, etc.
  • the corresponding association relationships are: report configuration is associated with resource configuration, resource configuration is associated with beam resource set configuration, and beam resource set configuration is associated with beam resource configuration.
  • CSI report configuration (CSI-ReportConfig) is associated with CSI resource configuration (CSI-ResourceConfig)
  • CSI resource configuration (CSI-ResourceConfig) is associated with resource set (Resource Set) and time domain behavior.
  • a CSI-RS resource set is used, the corresponding one is a non-zero power (NZP) CSI-RS resource set (NZP-CSI-RS-ResourceSet), in which the NZP-CSI-RS-Resoure is associated, and the time domain behavior is used to indicate the time domain periodicity attribute associated with the CSI-RS resource set;
  • NZP non-zero power
  • the corresponding one is the CSI-SSB resource set (CSI-SSB-ResourceSet), in which the SSB index (index) is associated, and the time domain behavior is invalid at this time.
  • CSI-ReportConfig (beam report configuration) contains up to three CSI-ResoureConfig (beam resource configuration), the specific relationship is as follows:
  • Aperiodic CSI-ReportConifg can be associated with periodic and semi-persistent CSI-ResourceConfig, and up to 3 beam resource configurations can be configured;
  • CM Channel Measurement
  • the first beam resource configuration is used for channel measurement
  • the second beam resource configuration is used for interference measurement (Interference Measurement, IM), including interference measurement of zero-power (Zero-Power, ZP) resources;
  • IM Interference Measurement
  • ZP Zero-power
  • the first beam resource configuration is used for channel measurement
  • the second beam resource configuration is used for interference measurement, including interference measurement of ZP resources
  • the third beam resource configuration is used for interference measurement, including interference measurement of NZP resources.
  • Semi-persistent CSI-ReportConifg can be associated with periodic and semi-persistent CSI-ResourceConfig, and can be configured with up to 2 beam resource configurations;
  • 1 CSI-ResourceConfig when configured, it is used for channel measurement, including L1-RSRP measurement;
  • the first beam resource configuration is used for channel measurement
  • the second beam resource configuration is used for interference measurement, including interference measurement of ZP resources.
  • Periodic CSI-ReportConifg can be associated with periodic and semi-persistent CSI-ResourceConfig, and can be configured with up to 2 beam resource configurations;
  • 1 CSI-ResourceConfig when configured, it is used for channel measurement, including L1-RSRP measurement;
  • the first beam resource configuration is used for channel measurement
  • the second beam resource configuration is used for interference measurement, including interference measurement of ZP resources
  • CSI-ResourceConfig For periodic and semi-persistent CSI-ResourceConfig, only one resource set is supported. However, if groupBasedbeamReporting is supported in the beam report, two resource sets can be configured.
  • non-periodic CSI-ResourceConfig there is no limit of 1 resource set, and a maximum of 16 resource sets can be configured.
  • a CSI-RS resource set supports up to 64 NZP CSI-RS resources. When it is none, or channel state information reference signal resource indication-resource indication-channel quality indication (CQI) (cri-RI-CQI), or channel state information reference signal resource indication-reference signal received power (cri-RSRP), or synchronization signal block-index-reference signal received power (ssb-Index-RSRP), all CSI-RS resource sets support a total of up to 128 resources.
  • CQI channel state information reference signal resource indication-resource indication-channel quality indication
  • cri-RSRP channel state information reference signal resource indication-reference signal received power
  • ssb-Index-RSRP synchronization signal block-index-reference signal received power
  • the terminal will assume that all CSI-RS resources in the CSI-RS resource set use the same transmit beam information when sending. If it is configured to be off, the terminal will not assume that these CSI-RS resources use the same transmit beam information when sending.
  • the repetition parameter in the CSI-RS resource set can control the beam information attributes of all resources associated with the resource set.
  • the method may include the following steps:
  • the terminal receives first configuration information sent by a network side device, and a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending period, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information.
  • association in the embodiments of the present application can mean “inclusion” or "the existence of an association relationship”.
  • A is associated with B, which can mean that A includes B, or that there is an association relationship between A and B, and B can be known through A.
  • a network-side device may configure first configuration information, and the first configuration information may be associated with a beam feedback report.
  • the beam feedback report corresponding to the first configuration information may be associated with a first beam scanning resource in each sending cycle, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information.
  • the first beam scanning resource associated with the beam feedback report corresponding to the first configuration information in each sending cycle is all the beam scanning resources corresponding to the first configuration information. For example, there are 64 beam scanning resources in total, and the beam feedback report corresponding to the first configuration information is associated with 64 beam scanning resources in each sending cycle.
  • the first beam scanning resource associated with the beam feedback report corresponding to the first configuration information in each sending cycle is part of the beam scanning resources corresponding to the first configuration information.
  • the beam feedback report corresponding to the first configuration information may be associated with 8 of the beam scanning resources in each sending cycle.
  • Beam scanning resources may also be referred to as beam resources, such as CSI-RS resources, SSB resources, etc.
  • the beam scanning resources may correspond to the beam information, such as an ID of the beam scanning resource is the same as an ID of the beam information.
  • the network side device may send the first configuration information to the terminal.
  • the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, and the beam feedback report is associated with the beam quality information and/or beam information determined based on the beam measurement, or the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, and the beam feedback report is associated with the beam quality information and/or beam information determined based on beam prediction after the beam measurement.
  • the terminal After receiving the first configuration information, the terminal can obtain the first beam scanning resource associated with the beam feedback report corresponding to the first configuration information in each sending period.
  • the terminal can perform beam measurement based on the first beam scanning resource, or based on part of the beam scanning resources in the first beam scanning resource.
  • the terminal may perform beam measurement and/or beam prediction based on part of the beam scanning resources or all of the beam scanning resources.
  • the terminal may perform beam measurement and/or beam prediction based on partial beam scanning resources or all beam scanning resources in the partial beam scanning resources.
  • the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, and the beam feedback report may be associated with beam quality information and/or beam information determined based on the beam measurement;
  • the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, and then performs beam prediction.
  • the beam feedback report may be associated with beam quality information and/or beam information determined based on beam prediction after beam measurement.
  • the terminal can perform beam measurement based on at least part of the first beam scanning resources; when the first beam scanning resources include all of the beam scanning resources corresponding to the first configuration information, the terminal can perform beam measurement based on part of the first beam scanning resources, and the beam feedback report is associated with beam quality information and/or beam information determined based on the beam measurement.
  • the terminal receives the first configuration information sent by the network side device, and can learn the first beam scanning resource associated with the beam feedback report corresponding to the first configuration information in each sending period, the first beam scanning resource including at least part of the beam scanning resources corresponding to the first configuration information, and performs beam measurement based on at least part of the first beam scanning resources.
  • the beam feedback report can be associated with beam quality information and/or beam information determined based on the beam measurement, or, beam measurement and beam prediction are performed based on at least part of the first beam scanning resources.
  • the beam feedback report can be associated with the beam quality information and/or beam information determined by beam prediction after beam measurement, so that the beam scanning resources associated with the beam feedback report and the beam quality information and/or beam information associated with the beam feedback report are more flexible, which facilitates the terminal to perform beam measurement based on the associated beam scanning resources, and helps to improve the beam measurement performance.
  • the first configuration information is associated with M beam scanning resource sets
  • M beam scanning resource sets are associated with N beam scanning resources, or each beam scanning resource set in the M beam scanning resource sets is associated with N beam scanning resources, where M and N are positive integers, and N is the number of beam scanning resources configured by the network side device;
  • the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource subset in each beam scanning resource set in each sending period;
  • Each beam scanning resource subset is associated with at least part of the N beam scanning resources.
  • the first configuration information may be associated with M beam scanning resource sets, where M is a positive integer. For example, if M is 1, the first configuration information is associated with one beam scanning resource set.
  • the M beam scanning resource sets associated with the first configuration information can be associated with N beam scanning resources, where N is a positive integer, indicating the number of beam scanning resources configured by the network side device. If N is 64, it means that the M beam scanning resource sets associated with the first configuration information can be associated with 64 beam scanning resources.
  • each of the M beam scanning resource sets associated with the first configuration information is associated with N beam scanning resources.
  • N beam scanning resources are associated with the same first period; and/or, N beam scanning resources are associated with different time slot offsets; wherein the first period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information.
  • the M beam scanning resource sets can be associated with one or more beam scanning resource subsets, and each beam scanning resource subset can be associated with at least part of the N beam scanning resources.
  • the beam feedback report corresponding to the first configuration information can be associated with a beam scanning resource subset in each beam scanning resource set in each transmission period. For any transmission period, the beam scanning resource subset associated with the beam feedback report corresponding to the first configuration information in the transmission period corresponds to the first beam scanning resource associated in the transmission period.
  • the first configuration information is associated with a beam scanning resource set, which is associated with 64 beam scanning resources, which is associated with 8 beam scanning resource subsets, each beam scanning resource subset is associated with 8 beam scanning resources, and the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource subset in each sending period.
  • the first configuration information is associated with two beam scanning resource sets, each beam scanning resource set is associated with 64 beam scanning resources, each beam scanning resource set is associated with 8 beam scanning resource subsets, each beam scanning resource subset is associated with 8 beam scanning resources, and the beam feedback report corresponding to the first configuration information is associated with two beam scanning resource subsets in each sending cycle.
  • the two beam scanning resource subsets associated with the sending cycle are respectively from two beam scanning resource sets.
  • the above-mentioned association relationships can be clarified based on the first configuration information, which helps the terminal to accurately perform beam measurement.
  • the first configuration information is further associated with the first window, and each first window includes multiple sending cycles of the beam feedback report corresponding to the first configuration information, wherein:
  • the total number of beam scanning resource subsets is equal to the total number I of transmission periods of the beam feedback report corresponding to the first configuration information within the first window.
  • the first configuration information may be associated with a first window, and a first window may include multiple transmission cycles of beam feedback reports corresponding to the first configuration information.
  • the first window may be determined by at least one of protocol agreement, network side device configuration, and terminal reporting.
  • the first configuration information is associated with M beam scanning resource sets, the M beam scanning resource sets are associated with at least one beam scanning resource subset, and the total number of beam scanning resource subsets may be equal to the beam feedback report corresponding to the first configuration information.
  • the total number of transmission cycles in the first window can be represented by I, where I is a positive integer. For example, if the total number of transmission cycles in the first window is 8, the total number of beam scanning resource subsets is also 8, and M beam scanning resource sets are associated with 8 beam scanning resource subsets. This makes it possible to associate different transmission cycles in the first window with different beam scanning resource subsets, which can further help expand the beam measurement range.
  • a first window may include multiple transmission cycles of the beam feedback report corresponding to the first configuration information.
  • a first window may include eight transmission cycles, which can be represented in order as: transmission cycles A1, B1, C1, D1, E1, F1, G1, H1.
  • the beam feedback reports corresponding to the i-th transmission period in different first windows can be associated with the same subset of beam scanning resources. For example, based on the above example, there are eight transmission periods of another first window, which are expressed in order as: transmission periods A2, B2, C2, D2, E2, F2, G2, H2. Among them, A1 and A2 are the first transmission period of different first windows, B1 and B2 are the second transmission period of different first windows, ..., H1 and H2 are the eighth transmission period of different first windows.
  • the beam feedback reports corresponding to A1 and A2 are associated with the same subset of beam scanning resources, the beam feedback reports corresponding to B1 and B2 are associated with the same subset of beam scanning resources, ..., the beam feedback reports corresponding to H1 and H2 are associated with the same subset of beam scanning resources.
  • the beam feedback report corresponding to the i-th sending period in different first windows is associated with the same beam scanning resource subset, so that only corresponding configuration needs to be performed in one first window, and there is no need to configure each first window, which can improve configuration efficiency.
  • beam feedback reports corresponding to different sending periods within the same first window are associated with different beam scanning resource subsets.
  • the eight sending cycles within a first window are represented in sequence as: sending cycles A1, B1, C1, D1, E1, F1, G1, H1, among which A1 is associated with the beam scanning resource subset S0, B1 is associated with the beam scanning resource subset S1, ..., H1 is associated with the beam scanning resource subset S7.
  • the beam feedback reports corresponding to different sending periods within the same first window are associated with different beam scanning resource subsets, so that in different sending periods of a first window, beam measurement can be performed based on different beam scanning resources to obtain beam quality information of different beams, expand the beam measurement range, and improve the beam measurement performance. In addition, as the beam measurement range becomes wider, the accuracy of beam prediction will also be higher.
  • the periods of beam scanning resources associated with the same beam scanning resource subset are the same; and/or the periods of beam scanning resources associated with different beam scanning resource subsets are different.
  • the periods of beam scanning resources associated with one beam scanning resource subset are all 20 ms, and the periods of beam scanning resources associated with another beam scanning resource subset are all 40 ms.
  • the beam scanning resource subset associated with each sending period of the beam feedback report corresponding to the first configuration information within a first window is determined by at least one of the following methods:
  • the signaling indicates the first mode
  • the beam feedback report corresponding to the first configuration information can be associated with a beam scanning resource subset in each sending cycle within a first window.
  • the specific association can be determined through a variety of methods, such as a pre-configured first method, a signaling indication first method, a preset rule first method, etc. These methods can be used alone or in combination.
  • pre-configuring the first method may include: pre-associating a beam scanning resource subset for each sending period of a beam feedback report corresponding to the first configuration information within a first window.
  • the first configuration information is associated with M beam scanning resource sets, and the M beam scanning resource sets are associated with N beam scanning resources, or each beam scanning resource set in the M beam scanning resource sets is associated with N beam scanning resources, and each beam scanning resource subset is associated with at least part of the beam scanning resources in the N beam scanning resources.
  • the beam feedback report corresponding to the first configuration information can be associated with a beam scanning resource subset in each beam scanning resource set for each sending period in a first window.
  • the beam scanning resource subsets associated with different sending periods can be the same or different.
  • the beam scanning resource subsets associated with some sending periods in a first window are the same, and the beam scanning resource subsets associated with some sending periods are different.
  • the beam scanning resource subsets associated with sending periods A1 and C1 are the same, both are S0, and the beam scanning resource subsets associated with sending periods B1 and D1 are the same, both are S1, but the beam scanning resource subsets associated with sending periods A1 and C1 are different from the beam scanning resource subsets associated with sending periods B1 and D1.
  • the signaling indication first manner may include: configuring or indicating a beam scanning resource subset for a first sending period within a first window for a beam feedback report corresponding to the first configuration information, the first sending period being any sending period within the first window;
  • a beam scanning resource subset is associated according to a protocol agreement or a preset first rule.
  • a beam scanning resource subset may be configured or indicated for a first transmission cycle in a first window for a beam feedback report corresponding to the first configuration information, and the first transmission cycle may be any transmission cycle in the first window, such as the first transmission cycle, or a transmission cycle in the middle, or the last transmission cycle. Then, for each transmission cycle other than the first transmission cycle in the first window, the beam scanning resource subset is associated according to the protocol agreement or the preset first rule.
  • the preset first rule may be associated with the first association order, that is, the beam scanning resource subset is associated with each other sending period in the first window according to the set first association order.
  • the number of sending cycles in a first window is 8, and the signaling indicates that the second beam scanning resource subset is associated in the first sending cycle.
  • the subsequent association order is to associate the third beam scanning resource subset in the second sending cycle,..., to associate the eighth beam scanning resource subset in the seventh sending cycle, and to associate the first beam scanning resource subset in the eighth sending cycle.
  • the first method of presetting the rule may include: The beam feedback report is associated with a beam scanning resource subset in each transmission cycle within a first window.
  • the second rule may be associated with the first association order. For example, the number of transmission cycles in a first window is 8, the first beam scanning resource subset is associated in the first transmission cycle, the second beam scanning resource subset is associated in the second transmission cycle, ..., the eighth beam scanning resource subset is associated in the eighth transmission cycle.
  • the eighth beam scanning resource subset is associated in the first transmission cycle
  • the seventh beam scanning resource subset is associated in the second transmission cycle
  • the first beam scanning resource subset is associated in the eighth transmission cycle.
  • the first association order based on the first rule and/or the second rule may include a beam scanning resource subset identification order, or a beam scanning resource subset index order, or a beam scanning resource subset configuration order, or a beam scanning resource subset time order, or a beam scanning resource subset time slot offset order.
  • the first association order based on the first rule and the second rule may be the same or different.
  • the interval between two adjacent prediction moments corresponding to the beam prediction is equal to the second period multiplied by the first value; wherein the second period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information.
  • beam prediction can be further performed based on the measured beam quality information to predict the beam quality information of all beam pairs at a certain moment or certain moments in the future.
  • the second period is equal to the period of the beam feedback report corresponding to the first configuration information, or equal to the period of the beam scanning resource associated with the first configuration information.
  • the first value is a value greater than or equal to 0 and less than or equal to 1;
  • the first value is determined by at least one of the following methods: protocol agreement, network side device configuration, and terminal reporting;
  • the beam feedback report corresponding to the first configuration information is associated with the first value to facilitate the network side device to learn the first value;
  • the first value is determined based on the number of different time slot offsets associated with beam scanning resources having the same period, for example, the first value is equal to 1/the number of different time slot offsets.
  • all 16 beam scanning resources are configured with the same period of 80ms, but every four beam scanning resources are configured with 1 time slot offset, such as the time slot offset corresponding to the 1st to 4th beam scanning resources is 0ms, the time slot offset corresponding to the 5th to 8th beam scanning resources is 20ms, the time slot offset corresponding to the 9th to 12th beam scanning resources is 40ms, and the time slot offset corresponding to the 13th to 16th beam scanning resources is 60ms.
  • the beam quality information of multiple moments in the future is predicted.
  • the time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • M is equal to 1
  • M is a second value greater than 1, and the second value may be a predetermined value, such as 2.
  • the first configuration information is associated with a beam scanning resource set
  • the beam scanning resource set is associated with N beam scanning resources
  • the beam scanning resource set is associated with at least one beam scanning resource subset
  • each beam scanning resource subset is associated with at least part of the N beam scanning resources
  • the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource subset in each sending period
  • the first configuration information is associated with two beam scanning resource sets, and the two beam scanning resource sets are associated with N beam scanning resources, or each beam scanning resource set in the two beam scanning resource sets is associated with N beam scanning resources, and the two beam scanning resource sets are associated with at least one beam scanning resource subset, and each beam scanning resource subset is associated with at least part of the N beam scanning resources.
  • the beam feedback report corresponding to the first configuration information is associated with two beam scanning resource subsets in each sending period, and the two beam scanning resource subsets are respectively one beam scanning resource subset in the two beam scanning resource sets.
  • the first configuration information is associated with P*Q beam scanning resource sets, or is associated with activated P*Q beam scanning resource sets, where P and Q are positive integers, the P*Q beam scanning resource sets include P groups of beam scanning resource sets, each group of beam scanning resource sets includes Q beam scanning resource sets, and each beam scanning resource set is associated with at least part of the beam scanning resources corresponding to the first configuration information; the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each group of beam scanning resource sets in each sending period.
  • each of the P*Q beam scanning resource sets can be associated with at least part of the beam scanning resources.
  • the total beam scanning resources corresponding to the first configuration information are pre-divided into multiple beam scanning resource sets, and the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each group of beam scanning resource sets in each transmission cycle.
  • the beam scanning resource set associated with the beam feedback report corresponding to the first configuration information in the transmission cycle corresponds to the first beam scanning resource associated with the transmission cycle.
  • P*Q beam scanning resource sets are associated with the same period; or, the Q beam scanning resource sets in each group of beam scanning resource sets are associated with the same period. That is, the beam scanning resources associated with the P*Q beam scanning resource sets are all associated with the same period.
  • the P*Q beam scanning resource sets are P groups of beam scanning resource sets, each group has Q beam scanning resource sets, and the beam scanning resources associated with the Q beam scanning resource sets in each group are all associated with the same period, such as 20ms.
  • the second beam scanning resources associated with the P*Q beam scanning resource sets have at least one of the following common characteristics:
  • the second beam scanning resource is a beam scanning resource with the same preset order
  • the preset order includes a configuration order, or a time domain order, or an identification order, or an index order in the beam scanning resource set.
  • P is 1, and the beam scanning resources associated with the first beam scanning resource set among P*Q beam scanning resource sets include resource1-8, and the beam scanning resources associated with the second beam scanning resource set include resource9-16, wherein resource1 and resource9 are the first beam scanning resources associated with the first beam scanning resource set and the second beam scanning resource set, respectively, and are considered to be beam scanning resources with the same preset order and have at least one of the same characteristics above.
  • resource2 and resource10 are considered to be beam scanning resources with the same preset order and have at least one of the same characteristics above
  • ..., resource8 and resource16 are considered to be beam scanning resources with the same preset order and have at least one of the same characteristics above.
  • the preset order may include a configuration order in the beam scanning resource set, or a time domain order, or an identification order, or an index order.
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in P*Q beam scanning resource sets are different; or, the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in each group of beam scanning resource sets are different.
  • P*Q beam scanning resource sets are a group of 8 beam scanning resource sets
  • the beam scanning resources associated with beam scanning resource set R0 include resource1-8
  • the beam scanning resources associated with beam scanning resource set R1 include resource9-16,...
  • the beam scanning resources associated with beam scanning resource set R7 include resource57-64.
  • the terminal can measure the beams corresponding to the beam scanning resources resource1-64 associated with the beam scanning resource set, thereby increasing the beam measurement range, improving the beam measurement performance, and thereby helping to improve the beam prediction accuracy.
  • the beam scanning resource may correspond to the beam information.
  • the beam quality information corresponding to the beam quality information measured at multiple historical moments are the same, for example, the beam quality information corresponding to the beam information beam1-8 is measured at moment 1, the beam quality information corresponding to the beam information beam1-8 is measured at moment 2, and the beam quality information corresponding to beam1-8 is measured at moment 3. Then, beam prediction based on such beam quality information will make it difficult to accurately predict the beam quality information and/or beam information corresponding to all beams at a certain moment or certain moments in the future, resulting in reduced prediction performance.
  • beam feedback reports sent in different sending periods within the same first window are associated with different beam scanning resource sets, and the beam scanning resources associated with different beam scanning resource sets are at least one different or all different. This allows the beams corresponding to the beam quality information measured at multiple moments to be different, thereby expanding the beam measurement range, thereby helping to improve the beam prediction performance and the beam prediction accuracy.
  • the identifiers or indexes of the beam scanning resources are different, which makes it convenient to distinguish the beam scanning resources and to correspond the beam scanning resources to the beam information.
  • the time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • P is equal to 1
  • M is a third value greater than 1, and the third value may be a predetermined value, such as 2.
  • the first configuration information is associated with Q beam scanning resource sets, or is associated with Q activated beam scanning resource sets, and the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each sending period.
  • the first configuration information is associated with two groups of Q beam scanning resource sets, or is associated with two activated groups of Q beam scanning resource sets, and the beam feedback report corresponding to the first configuration information is associated with two beam scanning resource sets in each sending cycle, and the two beam scanning resource sets are respectively one beam scanning resource set in the two groups of beam scanning resource sets.
  • the beam scanning resource set associated with each sending period of the beam feedback report corresponding to the first configuration information within the first window associated with the first configuration information may be determined in at least one of the following ways:
  • the signaling indicates the second mode
  • the beam feedback report corresponding to the first configuration information can be associated with a beam scanning resource set in each sending cycle within a first window.
  • the specific association can be determined by a variety of methods, such as a pre-configured second method, a signaling indication second method, a preset rule second method, etc. These methods can be used alone or in combination.
  • pre-configuring the second method may include: pre-associating a beam scanning resource set for each sending period of the beam feedback report corresponding to the first configuration information within a first window.
  • the beam feedback report corresponding to the first configuration information can be associated with a beam scanning resource set for each transmission period within a first window.
  • the beam scanning resource sets associated with different transmission periods may be the same or different.
  • the beam scanning resource sets associated with some transmission periods within a first window are the same, and the beam scanning resource sets associated with some transmission periods are different.
  • the beam scanning resource sets associated with transmission periods A1 and C1 are the same, both are R1
  • the beam scanning resource sets associated with transmission periods B1 and D1 are the same, both are R2, but the beam scanning resource sets associated with transmission periods A1 and C1 are different from the beam scanning resource sets associated with transmission periods B1 and D1.
  • the signaling indication second manner may include: configuring or indicating a beam scanning resource set for a first sending period within the first window for a beam feedback report corresponding to the first configuration information, where the first sending period is any sending period within the first window;
  • the protocol agreement or the preset third rule is followed. Then associate the beam scanning resource set.
  • a beam scanning resource set can be configured or indicated for the first sending period within a first window for the beam feedback report corresponding to the first configuration information.
  • the first sending period can be any sending period within the first sending period, such as the first sending period, or a middle sending period, or the last sending period. Then, for each sending period except the first sending period in the first window, the beam scanning resource set is associated according to the protocol agreement or a preset third rule.
  • the preset third rule may be associated with the second association order, that is, the beam scanning resource set is associated with each other sending period in the first window according to the set second association order.
  • the number of sending cycles in a first window is 8
  • the total number of beam scanning resource sets is 8
  • the number of beam scanning resources associated with a beam scanning resource set is 8, and the signaling indicates that the beam scanning resource set R2 is associated in the first sending cycle.
  • the subsequent association order is to associate with the beam scanning resource set R3 in the second sending cycle,..., to associate with the beam scanning resource set R8 in the seventh sending cycle, and to associate with the beam scanning resource set R1 in the eighth sending cycle.
  • the second method of preset rules may include: associating a beam scanning resource set for each sending period within the first window for a beam feedback report corresponding to the first configuration information according to a preset fourth rule.
  • the fourth rule may be associated with the second association order.
  • the number of transmission cycles in a first window is 8, the beam scanning resource set R1 is associated in the first transmission cycle, the beam scanning resource set R2 is associated in the second transmission cycle, ..., and the beam scanning resource set R8 is associated in the eighth transmission cycle.
  • the beam scanning resource set R8 is associated in the first transmission cycle
  • the beam scanning resource set R7 is associated in the second transmission cycle
  • the beam scanning resource set R1 is associated in the eighth transmission cycle.
  • the second association order based on the third rule and/or the fourth rule may be a beam scanning resource set identification order, or a beam scanning resource set index order, or a beam scanning resource set configuration order, or a beam scanning resource set time order, or a beam scanning resource set time slot offset order.
  • the second association orders based on the third rule and the fourth rule may be the same or different.
  • the embodiment of the present application can enable the terminal to obtain more information through the first configuration information, so as to more effectively perform beam measurement and/or beam prediction.
  • the first configuration information is associated with M beam scanning resource sets, and the M beam scanning resource sets or each beam scanning resource set in the M beam scanning resource sets is associated with N beam scanning resources.
  • the network side device In each first window, (UE assumes) the network side device only sends or only receives at least part of the N beam scanning resources, and the first configuration information includes at least one of the following: beam report configuration information, beam scanning resource configuration information.
  • the network side device only sends or only receives at least part of the N beam scanning resources can be understood in two ways. One is that the network side device directly performs this behavior, that is, the network side device only sends or only receives at least part of the N beam scanning resources.
  • the behavior of the network side device is not limited, and the UE will assume that the network side device performs this behavior, that is, the UE assumes that the network side device only sends or only receives N beam scanning. At least part of the resources are beam scanned resources.
  • the first window is used for parameters in the beam prediction function, which is related to the beam prediction input measurement period and can be determined by at least one of protocol agreement, network side equipment configuration, UE reporting, etc.
  • the first configuration information is associated with the first window and/or a period offset (offset), and the period offset (offset) is used to indicate a period offset between the first window and a sending period.
  • the AI model to predict the beam quality information and/or beam information at a future moment or certain moments in the future requires measurement results at 8 historical moments, so the number of sending cycles in the first window is equal to 8.
  • the N beam scanning resources correspond to at least one beam scanning resource subset, and one beam scanning resource subset is associated with at least part of the beam scanning resources among the N beam scanning resources.
  • each beam scanning resource subset is associated with a transmission period within a first window.
  • the total number of beam scanning resource subsets is equal to the total number of sending cycles in the first window.
  • the periods of the beam scanning resources in the beam scanning resource subset are the same.
  • the periods of beam scanning resources between different beam scanning resource subsets are different.
  • the association determination method of the beam scanning resource subset includes at least one of pre-configuration, signaling indication, and preset rule agreement.
  • the pre-configured association means directly pre-associating a beam scanning resource subset with each transmission period in each first window;
  • the signaling indication association means that a beam scanning resource subset is additionally indicated for the first transmission period or a certain transmission period in the first window, and optionally, the remaining beam scanning resource subsets are associated with other transmission periods according to a preset rule;
  • the order of the beam scanning resource subsets is associated with the order of the transmission cycles. There are a total of 8 transmission cycles in a first window.
  • the beam feedback report corresponding to the first configuration information indicated by the signaling is associated with the second beam scanning resource subset in the first transmission cycle.
  • the subsequent association order is associated with the third beam scanning resource subset in the second transmission cycle, ..., associated with the eighth beam scanning resource subset in the seventh transmission cycle, until the first beam scanning resource subset is associated in the eighth transmission cycle;
  • the preset rule association means that the beam feedback report corresponding to the first configuration information is associated with a beam resource scanning subset in each sending period within the first window according to the preset rule.
  • the order corresponding to the preset rules can be the order of beam resource scanning subset IDs, the order of beam scanning resource subset indexes, the order of beam scanning resource subset configurations, the order of beam scanning resource subset time, the order of time slot offsets of the same beam scanning resource subsets, etc.
  • the first configuration information and/or the beam scanning resource set associated with the first configuration information has an associated time domain characteristic of periodic or semi-continuous:
  • N beam scanning resources are associated with the same period and/or N beam scanning resources are associated with different time slots.
  • the interval between two adjacent prediction moments in the beam prediction is equal to the period multiplied by the first value beta.
  • the beta value is greater than or equal to 0 and less than or equal to 1;
  • the beta value is determined by at least one of protocol agreement, network side device configuration, and UE reporting;
  • all 16 beam scanning resources are configured with the same period of 80ms, but every four beam scanning resources are configured with 1 time slot offset.
  • the time slot offsets corresponding to the 1st to 4th beam scanning resources are 0ms
  • the time slot offsets corresponding to the 5th to 8th beam scanning resources are 20ms
  • the time slot offsets corresponding to the 9th to 12th beam scanning resources are 40ms
  • the time slot offsets corresponding to the 13th to 16th beam scanning resources are 60ms.
  • the time interval between adjacent prediction moments should be 20ms instead of 80ms.
  • the first configuration information is associated with P*Q beam scanning resource sets, or is associated with activated P*Q beam scanning resource sets, and the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each group of beam scanning resource sets in each sending cycle.
  • the network side device In each sending cycle, (UE assumes) the network side device only sends or only receives the beam scanning resources associated with the beam scanning resource set associated with the current sending cycle, and the first configuration information includes at least one of the following: beam report configuration information, beam scanning resource configuration information.
  • P*Q beam scanning resource sets are associated with the same period, or P beam scanning resource sets in each group of beam scanning resource sets are associated with the same period.
  • the beam scanning resources with the same preset order associated with the P*Q beam scanning resource sets or the Q beam scanning resource sets within each group have the same one of the following characteristics: period, time slot offset position, frequency domain position, bandwidth size, etc.
  • the preset order includes a configuration order, a time domain order, an ID order, an index order, etc. within a beam scanning resource set.
  • the beam scanning resource IDs or indexes associated with the P*Q beam scanning resource sets or the Q beam scanning resource sets in each group are all different;
  • the first configuration information and/or the beam scanning resource set associated with the first configuration information has an associated time domain characteristic of periodic or semi-continuous:
  • P is the number of groups.
  • the manner of associating a beam scanning resource set with a sending period includes at least one of pre-configuration, signaling indication, and preset rule agreement.
  • the pre-configuration association means that the beam feedback report corresponding to the first configuration information is directly pre-associated with a beam scanning resource set in each sending cycle in the first window;
  • the signaling indication association means that the beam feedback report corresponding to the first configuration information additionally indicates a beam scanning resource set in the first transmission cycle or a certain transmission cycle in the first window, and optionally, the remaining beam scanning resource sets are associated with other transmission cycles according to a preset rule;
  • the preset rule association means that the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource set according to a preset rule in each sending cycle within the first window.
  • the order corresponding to the preset rules may be the beam resource scanning set ID order, the beam scanning resource set index order, the beam scanning resource set configuration order, the beam scanning resource set time order, the beam scanning resource set time slot offset order, etc.
  • the beam scanning resources associated with a beam feedback report cannot be changed unless the resources are reconfigured, which means that the beam scanning resources are the same in multiple cycles or multiple measurement moments. In other words, during time domain prediction, more RSRP information on the measurement cycle will be collected to predict future beam information. If the beams of the beam scanning resources measured at multiple historical moments are the same, the prediction performance will be reduced.
  • the beam scanning resources in each sending cycle or measurement cycle can be different, which can increase the range of beam measurement and help improve the accuracy of beam prediction.
  • the beam measurement method provided in the embodiment of the present application may be executed by a beam measurement device.
  • the beam measurement device performing the beam measurement method is taken as an example to illustrate the beam measurement device provided in the embodiment of the present application.
  • the beam measurement device 800 may include the following modules:
  • the receiving module 810 is configured to receive first configuration information sent by a network side device, wherein a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending period, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information;
  • An operation module 820 is configured to perform beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, wherein the beam feedback report is associated with beam quality information and/or beam information determined based on the beam measurement;
  • the terminal performs beam measurement and beam prediction based on at least part of the first beam scanning resources, and the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement.
  • the beam feedback report corresponding to the first configuration information is associated with the first beam scanning resource in each sending period, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information.
  • Beam measurement is performed based on at least part of the beam scanning resources in the first beam scanning resources.
  • the beam feedback report can be associated with beam quality information and/or beam information determined based on the beam measurement, or, beam measurement and beam prediction are performed based on at least part of the first beam scanning resources.
  • the beam feedback report can be associated with beam quality information and/or beam information determined by beam prediction after beam measurement, so that the beam scanning resources associated with the beam feedback report and the beam quality information and/or beam information associated with the beam feedback report are more flexible and convenient for basic Performing beam measurements on associated beam scanning resources helps improve beam measurement performance.
  • the first configuration information is associated with M beam scanning resource sets
  • M beam scanning resource sets are associated with N beam scanning resources, or each beam scanning resource set in the M beam scanning resource sets is associated with N beam scanning resources, where N is the number of beam scanning resources configured by the network side device;
  • the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource subset in each beam scanning resource set in each sending period;
  • Each beam scanning resource subset is associated with at least part of the N beam scanning resources.
  • the first configuration information is further associated with the first window, and each first window includes multiple sending cycles of the beam feedback report corresponding to the first configuration information, wherein:
  • the total number of beam scanning resource subsets is equal to the total number I of transmission periods of the beam feedback report corresponding to the first configuration information within the first window;
  • beam feedback reports corresponding to different sending periods within the same first window are associated with different beam scanning resource subsets
  • the periods of the beam scanning resources associated with the same beam scanning resource subset are the same;
  • the periods of beam scanning resources associated with different beam scanning resource subsets are different.
  • the beam scanning resource subset associated with each sending period of the beam feedback report corresponding to the first configuration information within a first window is determined by at least one of the following methods:
  • the signaling indicates the first mode
  • the pre-configuration first mode includes: pre-associating a beam scanning resource subset for each transmission period of a beam feedback report corresponding to the first configuration information within a first window;
  • the signaling indication first manner includes:
  • the first method of preset rules includes: associating a beam scanning resource subset for each sending period within a first window for a beam feedback report corresponding to the first configuration information according to a preset second rule.
  • the first rule and/or the second rule is related to the first association order
  • the first association order includes the beam scanning resource subset identification order, or the beam scanning resource subset index order, or the beam scanning resource subset configuration order, or the beam scanning resource subset time order, or the beam scanning resource subset time order.
  • N beam scanning resources are associated with the same first period
  • the N beam scanning resources are associated with different time slot offsets
  • the first period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information.
  • the interval between two adjacent prediction moments corresponding to the beam prediction is equal to the second period multiplied by the first value
  • the second period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information;
  • the first value is a value greater than or equal to 0 and less than or equal to 1;
  • the first value is determined by at least one of the following methods: protocol agreement, network side device configuration, and terminal reporting;
  • the beam feedback report corresponding to the first configuration information is associated with a first value
  • the first value is determined according to the number of different time slot offsets associated with beam scanning resources having the same period.
  • time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • M is equal to 1
  • M is equal to 1
  • M is a second value greater than 1.
  • the first configuration information is associated with P*Q beam scanning resource sets, or is associated with activated P*Q beam scanning resource sets
  • the P*Q beam scanning resource sets include P groups of beam scanning resource sets, each group of beam scanning resource sets includes Q beam scanning resource sets, and each beam scanning resource set is associated with at least part of the beam scanning resources corresponding to the first configuration information
  • the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each group of beam scanning resource sets in each sending period.
  • P*Q beam scanning resource sets are associated with the same period
  • the Q beam scanning resource sets in each group of beam scanning resource sets are associated with the same period.
  • the second beam scanning resources associated with the P*Q beam scanning resource sets have at least one of the following common features:
  • the second beam scanning resource is a beam scanning resource with the same preset order
  • the preset order includes a configuration order, or a time domain order, or an identification order, or an index order in the beam scanning resource set.
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in the P*Q beam scanning resource sets are all different;
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in each group of beam scanning resource sets are different.
  • time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • P is equal to 1
  • P is a third value greater than 1.
  • the beam scanning resource set associated with each sending period of the beam feedback report corresponding to the first configuration information within the first window associated with the first configuration information is determined by at least one of the following methods:
  • the signaling indicates the second mode
  • the pre-configuration second method includes: pre-associating a beam scanning resource set for each sending period of the beam feedback report corresponding to the first configuration information within the first window;
  • the signaling indication second manner includes:
  • the second method of preset rules includes: associating a beam scanning resource set for each sending period within the first window for the beam feedback report corresponding to the first configuration information according to the preset fourth rule.
  • the third rule and/or the fourth rule is related to a second association order
  • the second association order includes a beam scanning resource set identification order, or a beam scanning resource set index order, or a beam scanning resource set configuration order, or a beam scanning resource set time order, or a beam scanning resource set time slot offset order.
  • the beam measurement device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the beam measurement device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a beam measurement method, as shown in FIG9 , the method may include the following steps:
  • the network-side device determines first configuration information, a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending period, the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information, the beam feedback report is associated with beam quality information and/or beam information determined based on beam measurement, or the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement;
  • S920 The network side device sends the first configuration information to the terminal.
  • the network side device determines the first configuration information and sends it to the terminal, and the beam feedback report corresponding to the first configuration information is associated with the first beam scanning resource in each sending cycle, and the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information, so that the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources, and the beam feedback report can be associated with the beam quality information and/or beam information determined based on the beam measurement, or, the terminal performs beam measurement and beam prediction based on at least part of the beam scanning resources in the first beam scanning resources, and the beam feedback report can be associated with the beam quality information and/or beam information determined by beam prediction after beam measurement, so that the beam scanning resources associated with the beam feedback report and the beam quality information and/or beam information associated with the beam feedback report are more flexible, which facilitates the terminal to perform beam measurement based on the associated beam scanning resources, and helps to improve the beam measurement performance.
  • the first configuration information is associated with M beam scanning resource sets
  • M beam scanning resource sets are associated with N beam scanning resources, or each beam scanning resource set in the M beam scanning resource sets is associated with N beam scanning resources, where N is the number of beam scanning resources configured by the network side device;
  • the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource subset in each beam scanning resource set in each sending period;
  • Each beam scanning resource subset is associated with at least part of the N beam scanning resources.
  • the first configuration information is further associated with the first window, and each first window includes multiple sending cycles of the beam feedback report corresponding to the first configuration information, wherein:
  • the total number of beam scanning resource subsets is equal to the total number I of transmission periods of the beam feedback report corresponding to the first configuration information within the first window;
  • beam feedback reports corresponding to different sending periods within the same first window are associated with different beam scanning resource subsets
  • the periods of the beam scanning resources associated with the same beam scanning resource subset are the same;
  • the periods of beam scanning resources associated with different beam scanning resource subsets are different.
  • the beam scanning resource subset associated with each sending period of the beam feedback report corresponding to the first configuration information within a first window is determined by at least one of the following methods:
  • the signaling indicates the first mode
  • the pre-configuration first mode includes: pre-associating a beam scanning resource subset for each transmission period of a beam feedback report corresponding to the first configuration information within a first window;
  • the signaling indication first manner includes:
  • the first method of preset rules includes: associating a beam scanning resource subset for each sending period within a first window for a beam feedback report corresponding to the first configuration information according to a preset second rule.
  • the first rule and/or the second rule is related to a first association order
  • the first association order includes a beam scanning resource subset identification order, or a beam scanning resource subset index order, or a beam scanning resource subset configuration order, or a beam scanning resource subset time order, or a beam scanning resource subset time slot offset order.
  • N beam scanning resources are associated with the same first period
  • the N beam scanning resources are associated with different time slot offsets
  • the first period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information.
  • the interval between two adjacent prediction moments corresponding to the beam prediction is equal to the second period multiplied by the first value
  • the second period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information;
  • the first value is a value greater than or equal to 0 and less than or equal to 1;
  • the first value is determined by at least one of the following methods: protocol agreement, network side device configuration, and terminal reporting;
  • the beam feedback report corresponding to the first configuration information is associated with a first value
  • the first value is determined according to the number of different time slot offsets associated with beam scanning resources having the same period.
  • time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • M is equal to 1
  • M is equal to 1
  • M is a second value greater than 1.
  • the first configuration information is associated with P*Q beam scanning resource sets, or
  • the P*Q beam scanning resource sets activated by the first configuration information are associated, the P*Q beam scanning resource sets include P groups of beam scanning resource sets, each group of beam scanning resource sets includes Q beam scanning resource sets, and each beam scanning resource set is associated with at least part of the beam scanning resources corresponding to the first configuration information;
  • the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each group of beam scanning resource sets in each sending period.
  • P*Q beam scanning resource sets are associated with the same period
  • the Q beam scanning resource sets in each group of beam scanning resource sets are associated with the same period.
  • the second beam scanning resources associated with the P*Q beam scanning resource sets have at least one of the following common features:
  • the second beam scanning resource is a beam scanning resource with the same preset order
  • the preset order includes a configuration order, or a time domain order, or an identification order, or an index order in the beam scanning resource set.
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in the P*Q beam scanning resource sets are all different;
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in each group of beam scanning resource sets are different.
  • time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • P is equal to 1
  • P is a third value greater than 1.
  • the beam scanning resource set associated with each sending period of the beam feedback report corresponding to the first configuration information within the first window associated with the first configuration information is determined by at least one of the following methods:
  • Pre-configuration second mode signaling indication second mode; preset rule second mode;
  • the pre-configuration second method includes: pre-associating a beam scanning resource set for each sending period of the beam feedback report corresponding to the first configuration information within the first window;
  • the signaling indication second manner includes:
  • the second method of preset rules includes: associating a beam scanning resource set for each sending period within the first window for the beam feedback report corresponding to the first configuration information according to the preset fourth rule.
  • the third rule and/or the fourth rule is related to the second association order.
  • the second association order includes a beam scanning resource set identification order, or a beam scanning resource set index order, or a beam scanning resource set configuration order, or a beam scanning resource set time order, or a beam scanning resource set time slot offset order.
  • the beam measurement method provided in the embodiment of the present application may be executed by a beam measurement device.
  • the beam measurement device performing the beam measurement method is taken as an example to illustrate the beam measurement device provided in the embodiment of the present application.
  • the beam measurement device 1000 may include the following modules:
  • a determination module 1010 is used to determine first configuration information, wherein a beam feedback report corresponding to the first configuration information is associated with a first beam scanning resource in each sending period, the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information, the beam feedback report is associated with beam quality information and/or beam information determined based on beam measurement, or the beam feedback report is associated with beam quality information and/or beam information determined based on beam prediction after beam measurement;
  • the sending module 1020 is configured to send the first configuration information to the terminal.
  • the device provided in the embodiment of the present application is applied to determine the first configuration information and send it to the terminal.
  • the beam feedback report corresponding to the first configuration information is associated with the first beam scanning resource in each sending period.
  • the first beam scanning resource includes at least part of the beam scanning resources corresponding to the first configuration information.
  • the terminal performs beam measurement based on at least part of the beam scanning resources in the first beam scanning resources.
  • the beam feedback report can be associated with beam quality information and/or beam information determined based on the beam measurement.
  • the terminal performs beam measurement and beam prediction based on at least part of the beam scanning resources in the first beam scanning resources.
  • the beam feedback report can be associated with the beam quality information and/or beam information determined by beam prediction after beam measurement, so that the beam scanning resources associated with the beam feedback report and the beam quality information and/or beam information associated with the beam feedback report are more flexible, which facilitates the terminal to perform beam measurement based on the associated beam scanning resources, and helps to improve the beam measurement performance.
  • the first configuration information is associated with M beam scanning resource sets
  • M beam scanning resource sets are associated with N beam scanning resources, or each beam scanning resource set in the M beam scanning resource sets is associated with N beam scanning resources, where N is the number of beam scanning resources configured by the network side device;
  • the beam feedback report corresponding to the first configuration information is associated with a beam scanning resource subset in each beam scanning resource set in each sending period;
  • Each beam scanning resource subset is associated with at least part of the N beam scanning resources.
  • the first configuration information is further associated with the first window, and each first window includes multiple sending cycles of the beam feedback report corresponding to the first configuration information, wherein:
  • the total number of beam scanning resource subsets is equal to the total number I of transmission periods of the beam feedback report corresponding to the first configuration information within the first window;
  • beam feedback reports corresponding to different sending periods within the same first window are associated with different beam scanning resource subsets
  • the periods of the beam scanning resources associated with the same beam scanning resource subset are the same;
  • the periods of beam scanning resources associated with different beam scanning resource subsets are different.
  • the beam scanning resource subset associated with each sending period of the beam feedback report corresponding to the first configuration information within a first window is determined by at least one of the following methods:
  • Pre-configuration first mode signaling indication first mode; preset rule first mode;
  • the pre-configuration first mode includes: pre-associating a beam scanning resource subset for each transmission period of a beam feedback report corresponding to the first configuration information within a first window;
  • the signaling indication first manner includes:
  • the first method of preset rules includes: associating a beam scanning resource subset for each sending period within a first window for a beam feedback report corresponding to the first configuration information according to a preset second rule.
  • the first rule and/or the second rule is related to a first association order
  • the first association order includes a beam scanning resource subset identification order, or a beam scanning resource subset index order, or a beam scanning resource subset configuration order, or a beam scanning resource subset time order, or a beam scanning resource subset time slot offset order.
  • N beam scanning resources are associated with the same first period
  • the N beam scanning resources are associated with different time slot offsets
  • the first period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information.
  • the interval between two adjacent prediction moments corresponding to the beam prediction is equal to the second period multiplied by the first value
  • the second period is equal to the period of the beam feedback report corresponding to the first configuration information, or is equal to the period of the beam scanning resource associated with the first configuration information;
  • the first value is a value greater than or equal to 0 and less than or equal to 1;
  • the first value is determined by at least one of the following methods: protocol agreement, network side device configuration, and terminal reporting;
  • the beam feedback report corresponding to the first configuration information is associated with a first value
  • the first value is determined according to the number of different time slot offsets associated with beam scanning resources having the same period.
  • time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • M is equal to 1
  • M is equal to 1
  • M is a second value greater than 1.
  • the first configuration information is associated with P*Q beam scanning resource sets, or is associated with activated P*Q beam scanning resource sets
  • the P*Q beam scanning resource sets include P groups of beam scanning resource sets, each group of beam scanning resource sets includes Q beam scanning resource sets, and each beam scanning resource set is associated with at least part of the beam scanning resources corresponding to the first configuration information
  • the beam feedback report corresponding to the first configuration information is associated with one beam scanning resource set in each group of beam scanning resource sets in each sending period.
  • P*Q beam scanning resource sets are associated with the same period
  • the Q beam scanning resource sets in each group of beam scanning resource sets are associated with the same period.
  • the second beam scanning resources associated with the P*Q beam scanning resource sets have at least one of the following common features:
  • the second beam scanning resource is a beam scanning resource with the same preset order
  • the preset order includes a configuration order, or a time domain order, or an identification order, or an index order in the beam scanning resource set.
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in the P*Q beam scanning resource sets are all different;
  • the identifiers or indexes of the beam scanning resources associated with different beam scanning resource sets in each group of beam scanning resource sets are different.
  • time domain characteristic associated with the first configuration information and/or the beam scanning resource set associated with the first configuration information is periodic or semi-persistent:
  • P is equal to 1
  • P is a third value greater than 1.
  • the beam scanning resource set associated with each sending period of the beam feedback report corresponding to the first configuration information within the first window associated with the first configuration information is determined by at least one of the following methods:
  • Pre-configuration second mode signaling indication second mode; preset rule second mode;
  • the pre-configuration second method includes: pre-associating a beam scanning resource set for each sending period of the beam feedback report corresponding to the first configuration information within the first window;
  • the signaling indication second manner includes:
  • the first sending period is any sending period in the first window
  • the second method of preset rules includes: associating a beam scanning resource set for each sending period within the first window for the beam feedback report corresponding to the first configuration information according to the preset fourth rule.
  • the third rule and/or the fourth rule is related to the second association order, and the second association order includes a beam scanning resource set identification order, or a beam scanning resource set index order, or a beam scanning resource set configuration order, or a beam scanning resource set time order, or a beam scanning resource set time slot offset order.
  • the beam measurement device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 9 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a communication device 1100, including a processor 1101 and a memory 1102, and the memory 1102 stores a program or instruction that can be run on the processor 1101.
  • the communication device 1100 is a terminal
  • the program or instruction is executed by the processor 1101 to implement the various steps of the method embodiment shown in FIG7 above, and can achieve the same technical effect.
  • the communication device 1100 is a network side device
  • the program or instruction is executed by the processor 1101 to implement the various steps of the method embodiment shown in FIG9 above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG12 is a schematic diagram of the structure of a terminal for implementing an embodiment of the present application.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209 and at least some of the components of the processor 1210.
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1210 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG12 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1204 may include a graphics processing unit (GPU) 12041 and a microphone 12042, and the graphics processor 12041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1206 may include a display panel 12061, and the display panel 12061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1207 includes a touch panel 12071 and at least one of other input devices 12072.
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the radio frequency unit 1201 after receiving the downlink data from the network side device, the radio frequency unit 1201 can transmit it to the processor. In addition, the radio frequency unit 1201 can send uplink data to the network side device.
  • the radio frequency unit 1201 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1209 can be used to store software programs or instructions and various data.
  • the memory 1209 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1209 may include a volatile memory or a non-volatile memory, or the memory 1209 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1209 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1210.
  • FIG13 is a schematic diagram of the structure of a network side device for implementing an embodiment of the present application.
  • the network side device 1300 includes: an antenna 1301, a radio frequency device 1302, a baseband device 1303, a processor 1304, and a memory 1305.
  • the antenna 1301 is connected to the radio frequency device 1302.
  • the radio frequency device 1302 receives information through the antenna 1301 and sends the received information to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information to be sent and sends it to the radio frequency device 1302.
  • the radio frequency device 1302 processes the received information and sends it out through the antenna 1301.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 1303, which includes a baseband processor.
  • the baseband device 1303 may include, for example, at least one baseband board, on which multiple chips are arranged, one of which is, for example, a baseband processor, which is connected to the memory 1305 through a bus interface to call the program in the memory 1305 and execute the operations of the network side device shown in the above method embodiment.
  • the network side device may also include a network interface 1306, which is, for example, a common public radio interface (CPRI).
  • a network interface 1306, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1300 of the embodiment of the present application further includes: instructions or programs stored in the memory 1305 and executable on the processor 1304, and the processor 1304 calls the instructions or programs in the memory 1305 to execute FIG. 10
  • the methods executed by the modules shown achieve the same technical effects, and therefore will not be described here in detail to avoid repetition.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the method embodiment shown in FIG. 7 above, or the various processes of the method embodiment shown in FIG. 9 above, can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes of the method embodiment shown in FIG. 7 above, or to implement the various processes of the method embodiment shown in FIG. 9 above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the method embodiment shown in Figure 7 as described above, and the network side device can be used to execute the steps of the method embodiment shown in Figure 9 as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束测量方法、装置、终端、网络侧设备及存储介质,属于通信技术领域,本申请实施例的一种波束测量方法包括:终端接收网络侧设备发送的第一配置信息,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息;或者,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。

Description

波束测量方法、装置、终端、网络侧设备及存储介质
相关申请的交叉引用
本申请要求在2022年11月10日提交中国专利局、申请号为202211405815.9、名称为“波束测量方法、装置、终端、网络侧设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种波束测量方法、装置、终端、网络侧设备及存储介质。
背景技术
在高频段电磁波(毫米波)段的通信***中,波束赋形传输被认为是克服高路径损耗的基本手段之一。对于波束赋形的传输,需要网络侧设备和终端之间进行波束确定,这也就需要执行波束测量。终端进行波束测量后,可以选择出最优波束,反馈给网络侧设备,以作为网络侧设备确定用于发送信道或信号的波束的参考。波束测量性能的好坏直接影响着网络侧设备与终端的通信质量。
那么,如何提高波束测量性能,是目前本领域技术人员急需解决的技术问题。
发明内容
本申请实施例提供一种波束测量方法、装置、终端、网络侧设备及存储介质,以提高波束测量性能。
第一方面,提供了一种波束测量方法,包括:
终端接收网络侧设备发送的第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
所述终端基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息;
或者,所述终端基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
第二方面,提供了一种波束测量装置,包括:
接收模块,用于接收网络侧设备发送的第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
操作模块,用于基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息;
或者,用于基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
第三方面,提供了一种波束测量方法,包括:
网络侧设备确定第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息;
所述网络侧设备将所述第一配置信息发送给终端。
第四方面,提供了一种波束测量装置,包括:
确定模块,用于确定第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息;
发送模块,用于将所述第一配置信息发送给终端。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的波束测量方法的步骤。
第六方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的波束测量方法的步骤。
第七方面,提供了一种通信***,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的波束测量方法的步骤,所述网络侧设备可用于执行如第三方面所述的波束测量方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的波束测量方法的步骤,或者实现如第三方面所述的波束测量方法的步骤。
第九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的波束测量方法的步骤,或者实现如第三方面所述的波束测量方法的步骤。
在本申请实施例中,终端接收到网络侧设备发送的第一配置信息,可以获知第一配置信息对应的波束反馈报告在每个发送周期关联的第一波束扫描资源,该第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,基于第一波束 扫描资源中的至少部分波束扫描资源进行波束测量,相应的,波束反馈报告可以关联基于波束测量确定的波束质量信息和/或波束信息,或者,基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,相应的,波束反馈报告可以关联波束测量后进行波束预测确定的波束质量信息和/或波束信息,使得波束反馈报告关联的波束扫描资源以及波束反馈报告关联的波束质量信息和/或波束信息更为灵活,方便终端基于关联的波束扫描资源进行波束测量,有助于提高波束测量性能。
附图说明
图1为本申请实施例可应用的一种无线通信***的框图;
图2为相关技术中一种神经网络的示意图;
图3为相关技术中一种神经元的示意图;
图4为相关技术中波束预测的一种可能方式的示意图;
图5为相关技术中波束预测的另一种可能方式的示意图;
图6为相关技术中波束预测的另一种可能方式的示意图;
图7为本申请实施例中一种波束测量方法的实施流程图;
图8为本申请实施例中与图7对应的波束测量装置的结构示意图;
图9为本申请实施例中另一种波束测量方法的实施流程图;
图10为本申请实施例中与图9对应的波束测量装置的结构示意图;
图11为本申请实施例中一种通信设备的结构示意图;
图12为本申请实施例中一种终端的结构示意图;
图13为本申请实施例中一种网络侧设备的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址 (Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。
其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,本申请实施例并不限定终端11的具体类型。
网络侧设备12可以包括接入网设备或核心网设备。
其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network  Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为方便理解,先对本申请实施例涉及到的相关技术和概念进行介绍。
1)关于AI
AI技术在通信、医疗、教育等各个领域均有广泛应用。AI网络有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。本申请实施例以AI网络为神经网络为例进行说明,但是并不限定AI网络的具体类型。
一种神经网络的示意图如图2所示,包括输入层、隐层和输出层。其中,神经网络由神经元组成,神经元的示意图如图3所示:
z=a1w1+…+akwk+…+aKwK+b;
其中,a1、a2、…、ak、…、aK为输入,w为权值(weight)(乘性系数),b为偏置(bias)(加性系数),σ(.)为激活函数(activation function)。常见的激活函数包括Sigmoid、tanh、ReLU(Rectified Linear Unit,线性整流函数,修正线性单元)等。
神经网络的参数通过优化算法进行优化。优化算法是一种能够最小化或者最大化目标函数(或称为损失函数)的一类算法。目标函数往往是模型参数和数据的数学组合。例如,给定数据X和其对应的标签Y,可以构建一个神经网络模型f(.),进而在得到神经网络模型后,可以根据输入x得到预测输出f(x),并且可以计算出预测值和真实值之间的差距f(x)-Y,这个就是损失函数。目的是找到合适的W、b使上述的损失函数的值达到最小,损失值越小,则说明神经网络模型的预测结果越接近于真实情况。
目前常见的优化算法,基本都是基于误差反向传播(error Back Propagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
常见的优化算法有梯度下降(Gradient Descent)、随机梯度下降(Stochastic Gradient Descent,SGD)、小批量梯度下降(mini-batch gradient descent)、动量法(Momentum)、Nesterov(发明者的名字,具体为带动量的随机梯度下降)、自适应梯度下降(ADAptive GRADient descent,Adagrad)、自适应学习率调整(Adadelta)、均方根误差降速(root mean square prop,RMSprop)、自适应动量估计(Adaptive Moment Estimation,Adam)等。
这些优化算法在误差反向传播时,都是根据损失函数得到的误差/损失,对当前神经元求导数/偏导,加上学习速率、之前的梯度/导数/偏导等影响,得到梯度,将梯度传给上一层。
2)关于波束测量和波束报告(beam measurement and beam reporting)
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧设备在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
在做波束测量时,网络侧设备会配置参考信号(Reference Signal,RS)资源集合(RS resource set),其中包括至少一个参考信号资源(RS resource),例如同步信号块(Synchronization Signal Block,SSB)资源(SSB resource)或信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)资源(CSI-RS resource)。终端测量每个参考信号资源的层1的参考信号接收功率(Reference Signal Receiving Power,RSRP)(L1-RSRP)、层1的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)(L1-SINR),并将最优的至少一个测量结果上报给网络侧设备,上报内容包括同步信号块资源指示(Synchronization Signal Block Resource Indicatior,SSBRI)或信道状态信息参考信号资源指示(Channel State Information-Reference Signal Resource Indicatior,CRI)、及L1-RSRP/L1-SINR。该报告内容反映了至少一个最优的波束及其质量,供网络侧设备确定用来向终端发送信道或信号的波束。
当终端反馈报告中仅包含一个L1-RSRP时,使用7bit的量化方法,量化步进为1dB,量化范围是-140dBm到-44dBm。当终端反馈报告中包含多个L1-RSRP,或使能了基于分组的波束报告(group-based beam report)时,使用7bit的量化方法对最强的RSRP进行量化,对其余RSRP使用4bit的差分量化方法进行量化,量化步进为2dB。
反馈报告数量是通过网络侧设备配置给终端的参数进行确定的,通过无线资源控制(Radio Resource Control,RRC)配置参数,配置终端的反馈报告中应该包含的RS以及RSRP的数量,数量配置的取值是1、2、3、4,默认值为1。此外,该数量是基于终端能力进行限制的,终端会先上报能支持的最大数量。
3)关于利用AI模型进行波束预测
利用AI模型进行波束预测的一种可能方式如图4所示。使用部分波束对的RSRP作为AI模型的输入,AI模型的输出则是所有波束对的RSRP结果。其中波束对是由发送波束和接收波束组成的。该AI模型的输入数量等于挑选出的部分波束对的数量,AI模 型的输出数量等于所有波束对的数量。
利用AI模型进行波束预测的另一种可能方式如图5所示,在AI模型的输入侧增加了关联信息,关联信息是输入的波束对对应的相关信息,如角度相关信息、波束标识(ID)信息等。该AI模型的输入数量还是等于挑选出的部分波束对的数量,该AI模型的输出数量还是等于所有波束对的数量。增加关联信息有助于增强波束预测性能。
利用AI模型进行波束预测的另一种可能方式如图6所示,该方式主要是通过AI模型改变期望信息,来影响AI模型的输出,如可以改变期望的接收角度信息,或者可以改变期望的发送角度信息,或者可以改变期望的预测时间相关信息,然后循环利用AI模型进行预测。其中,AI模型的输入类型可以包括以下至少之一:
波束质量相关信息;
波束信息;
A端发送波束信息;
B端接收波束信息;
B端期望的波束信息;
B端期望的B端接收波束信息;
B端期望的A端发送波束信息;
与波束质量相关的时间相关信息;
期望的预测时间相关信息。
4)关于波束质量信息和波束信息
波束质量信息包括但不限于以下至少之一类型:L1-SINR、L1-RSRP、层1的参考信号接收质量(Reference Signal Receiving Quality,RSRQ)(L1-RSRQ)、L3-SINR、L3-RSRP、L3-RSRQ等。
波束信息包含但不限于以下至少之一:波束ID信息、波束角度信息、波束增益信息、波束宽度信息、期望信息等。
其中,波束ID信息是用于波束的身份识别的相关信息,包含但不限于以下至少之一:发送波束ID、接收波束ID、波束ID、波束对应的参考信号集合ID、波束对应的参考信号资源ID、唯一标识的随机ID、额外AI网络处理后的编码值、波束角度信息、资源索引信息、CRI、SSBRI等;
波束角度信息是表征波束对应的角度信息,包含但不限于以下至少之一:角度相关信息、发送角度相关信息、接收角度相关信息;
角度相关信息是用于表征角度或身份的相关信息,例如,角度、弧度、索引编码值、ID值、额外AI网络处理后的编码值等。
5)波束报告配置与波束资源配置
相应的关联关系为:报告配置关联资源配置,资源配置关联波束资源集合配置,波束资源集合配置关联波束资源配置。
可以对应到如下关系:CSI报告配置(CSI-ReportConfig)关联CSI资源配置(CSI-ResourceConfig),CSI资源配置(CSI-ResourceConfig)关联资源集合(Resource Set)以及时域行为。
若使用CSI-RS资源集合,对应的是非零功率(non-zero power,NZP)CSI-RS资源集合(NZP-CSI-RS-ResourceSet),在该资源集合中关联NZP-CSI-RS-Resoure,时域行为用于指示CSI-RS资源集合关联的时域周期属性;
若使用SSB资源集合,对应的是CSI-SSB资源集合(CSI-SSB-ResourceSet),在该资源集合中关联SSB索引(index),此时时域行为无效。
另外,一个CSI-ReportConfig(波束报告配置)包含最多三个CSI-ResoureConfig(波束资源配置),具体关系如下:
非周期CSI-ReportConifg可以关联周期、半持续的CSI-ResourceConfig,最多可配置3个波束资源配置;
其中,配置1个CSI-ResourceConfig时,用于信道测量(Channel Measurement,CM),包括L1-RSRP测量;
配置2个CSI-ResourceConfig时,第一个波束资源配置用于信道测量,第二个波束资源配置用于干扰测量(Interference Measurement,IM),包括零功率(Zero-Power,ZP)资源的干扰测量;
配置3个CSI-ResourceConfig时,第一个波束资源配置用于信道测量,第二个波束资源配置用于干扰测量,包括ZP资源的干扰测量,第三个波束资源配置用于干扰测量,包括NZP资源的干扰测量。
半持续CSI-ReportConifg可以关联周期、半持续的CSI-ResourceConfig,最多可配置2个波束资源配置;
其中,配置1个CSI-ResourceConfig时,用于信道测量,包括L1-RSRP测量;
配置2个CSI-ResourceConfig时,第一个波束资源配置用于信道测量,第二个波束资源配置用于干扰测量,包括ZP资源的干扰测量。
周期CSI-ReportConifg可以关联周期、半持续的CSI-ResourceConfig,最多可配置2个波束资源配置;
其中,配置1个CSI-ResourceConfig时,用于信道测量,包括L1-RSRP测量;
配置2个CSI-ResourceConfig时,第一个波束资源配置用于信道测量,第二个波束资源配置用于干扰测量,包括ZP资源的干扰测量;
且CSI-ReportConfig中关联的1个或多个CSI-ResourceConfig的时域行为一致。
对于周期和半持续的CSI-ResourceConfig中仅支持1个资源集合(Resource set),但若波束报告中支持groupBasedbeamReporting,可配置2个资源集合;
对于非周期的CSI-ResourceConfig,不限制为1个资源集合,最多可以配置16个。
一个CSI-RS资源集合中最多支持64个NZP CSI-RS资源,当报告质量(reportQuantity) 为无(none)、或者为信道状态信息参考信号资源指示-资源指示-信道质量指示(Channel Quality Indicatior,CQI)(cri-RI-CQI)、或者为信道状态信息参考信号资源指示-参考信号接收功率(cri-RSRP)、或者为同步信号块-索引-参考信号接收功率(ssb-Index-RSRP)时,所有CSI-RS资源集合一共支持最多128个资源。
再有,CSI-RS资源集合关联的重复(repetition)信息,若被配置成开启(on),则终端会假设CSI-RS资源集合中的所有CSI-RS资源在发送时使用了相同的发送波束信息。若被配置成关闭(off),则终端不会假设这些CSI-RS资源在发送时使用相同的发送波束信息。也就是说,在CSI-RS资源集合中的repetition参数可以控制该资源集合关联的所有资源的波束信息属性。
上面对本申请实施例涉及到的相关技术和概念进行了介绍,下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的波束测量方法进行详细地说明。
参见图7所示,为本申请实施例所提供的一种波束测量方法的实施流程图,该方法可以包括以下步骤:
S710:终端接收网络侧设备发送的第一配置信息,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源。
首先需要说明的是,本申请实施例中的“关联”可以表示“包含”,还可以表示“存在关联关系”,比如,A关联B,可以表示A包含B,还可以表示A与B存在关联关系,通过A可以获知B。
在本申请实施例中,网络侧设备可以进行第一配置信息的配置,该第一配置信息可以关联波束反馈报告,第一配置信息对应的波束反馈报告在每个发送周期可以关联第一波束扫描资源,该第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源。可选的,第一配置信息对应的波束反馈报告在每个发送周期关联的第一波束扫描资源为第一配置信息对应的全部波束扫描资源。比如,波束扫描资源共有64个,第一配置信息对应的波束反馈报告在每个发送周期关联64个波束扫描资源。可选的,第一配置信息对应的波束反馈报告在每个发送周期关联的第一波束扫描资源为第一配置信息对应的部分波束扫描资源。比如,波束扫描资源共有64个,第一配置信息对应的波束反馈报告在每个发送周期可以关联其中8个波束扫描资源。
波束扫描资源,也可称为波束资源,如CSI-RS资源、SSB资源等。波束扫描资源可以与波束信息相对应,如波束扫描资源的ID与波束信息的ID相同。
网络侧设备可以将第一配置信息发送给终端。
S720:终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
终端接收到第一配置信息后,即可获知第一配置信息对应的波束反馈报告在每个发送周期关联的第一波束扫描资源,终端可以基于第一波束扫描资源进行波束测量,或者基于第一波束扫描资源中的部分波束扫描资源进行波束测量。
可选的,在第一波束扫描资源包括第一配置信息对应的全部波束扫描资源的情况下,终端可以基于该全部波束扫描资源中的部分波束扫描资源或者全部波束扫描资源进行波束测量和/或波束预测。
可选的,在第一波束扫描资源包括第一配置信息对应的部分波束扫描资源的情况下,终端可以基于该部分波束扫描资源中的部分波束扫描资源或者全部波束扫描资源进行波束测量和/或波束预测。
可选的,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告可以关联基于波束测量确定的波束质量信息和/或波束信息;
可选的,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,然后进行波束预测,波束反馈报告可以关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
可选的,终端在第一波束扫描资源包括第一配置信息对应的波束扫描资源中的部分波束扫描资源的情况下,可以基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,在第一波束扫描资源包括第一配置信息对应的波束扫描资源中的全部波束扫描资源的情况下,可以基于第一波束扫描资源中的部分波束扫描资源进行波束测量,波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息。
应用本申请实施例所提供的方法,终端接收到网络侧设备发送的第一配置信息,可以获知第一配置信息对应的波束反馈报告在每个发送周期关联的第一波束扫描资源,该第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,相应的,波束反馈报告可以关联基于波束测量确定的波束质量信息和/或波束信息,或者,基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,相应的,波束反馈报告可以关联波束测量后进行波束预测确定的波束质量信息和/或波束信息,使得波束反馈报告关联的波束扫描资源以及波束反馈报告关联的波束质量信息和/或波束信息更为灵活,方便终端基于关联的波束扫描资源进行波束测量,有助于提高波束测量性能。
在本申请的一个实施例中,第一配置信息关联M个波束扫描资源集合;
M个波束扫描资源集合关联N个波束扫描资源,或者,M个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源,M和N为正整数,N为网络侧设备配置的波束扫描资源的个数;
第一配置信息对应的波束反馈报告在每个发送周期关联每个波束扫描资源集合内的一个波束扫描资源子集;
每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源。
在本申请实施例中,第一配置信息可以关联M个波束扫描资源集合,M为正整数,如M为1,即第一配置信息关联一个波束扫描资源集合。
第一配置信息关联的M个波束扫描资源集合可以关联N个波束扫描资源,N为正整数,表示网络侧设备配置的波束扫描资源的个数。如N为64,即表示第一配置信息关联的M个波束扫描资源集合可以关联64个波束扫描资源。
或者,第一配置信息关联的M个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源。
可选的,N个波束扫描资源关联相同的第一周期;和/或,N个波束扫描资源关联不同的时隙偏移;其中,第一周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期。
M个波束扫描资源集合可以关联一个或多个波束扫描资源子集,每个波束扫描资源子集可以关联N个波束扫描资源中的至少部分波束扫描资源。第一配置信息对应的波束反馈报告在每个发送周期可以关联每个波束扫描资源集合内的一个波束扫描资源子集。对于任意一个发送周期而言,第一配置信息对应的波束反馈报告在该发送周期关联的波束扫描资源子集与在该发送周期关联的第一波束扫描资源相对应。
举例而言,第一配置信息关联一个波束扫描资源集合,该波束扫描资源集合关联64个波束扫描资源,该波束扫描资源集合关联8个波束扫描资源子集,每个波束扫描资源子集关联8个波束扫描资源,第一配置信息对应的波束反馈报告在每个发送周期关联一个波束扫描资源子集。
或者,第一配置信息关联两个波束扫描资源集合,每个波束扫描资源集合关联64个波束扫描资源,每个波束扫描资源集合关联8个波束扫描资源子集,每个波束扫描资源子集关联8个波束扫描资源,第一配置信息对应的波束反馈报告在每个发送周期关联两个波束扫描资源子集。对于任意一个发送周期而言,在该发送周期关联的两个波束扫描资源子集分别来自两个波束扫描资源集合。
终端接收到第一配置信息后,基于第一配置信息可以明确上述各关联关系,有助于终端准确进行波束测量。
在本申请的一个实施例中,第一配置信息还与第一窗口关联,每个第一窗口包括第一配置信息对应的波束反馈报告的多个发送周期,其中:
波束扫描资源子集的总数量等于第一配置信息对应的波束反馈报告在第一窗口内发送周期的总数量I。
在本申请实施例中,第一配置信息可以关联第一窗口,一个第一窗口可以包括第一配置信息对应的波束反馈报告的多个发送周期。第一窗口可以是通过协议约定、网络侧设备配置、终端上报至少之一方式确定的。
第一配置信息关联M个波束扫描资源集合,M个波束扫描资源集合关联至少一个波束扫描资源子集,波束扫描资源子集的总数量可以等于第一配置信息对应的波束反馈报 告在第一窗口内发送周期的总数量,可以用I来表示,I为正整数。如,第一窗口内的发送周期的总数量为8,则波束扫描资源子集的总数量也为8,M个波束扫描资源集合关联8个波束扫描资源子集。这样就使得能够存在第一窗口内的不同发送周期关联不同波束扫描资源子集的可能性,进一步地,可以有助于扩大波束测量范围。
在本申请的一个实施例中,不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描资源子集,i=1,2,……,I,I为第一窗口内发送周期的总数量。
在本申请实施例中,在一个第一窗口内可以包括第一配置信息对应的波束反馈报告的多个发送周期。比如,一个第一窗口内可以有八个发送周期,按顺序可表示为:发送周期A1、B1、C1、D1、E1、F1、G1、H1。
在不同第一窗口内的第i个发送周期对应的波束反馈报告可以关联相同的波束扫描资源子集。比如,在上例基础上,有另一个第一窗口的八个发送周期,按顺序表示为:发送周期A2、B2、C2、D2、E2、F2、G2、H2。其中,A1和A2为不同第一窗口的第一个发送周期,B1和B2为不同第一窗口的第二个发送周期,……,H1和H2为不同第一窗口的第八个发送周期。A1和A2对应的波束反馈报告关联同一个波束扫描资源子集,B1和B2对应的波束反馈报告关联同一个波束扫描资源子集,……,H1和H2对应的波束反馈报告关联同一个波束扫描资源子集。
不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描资源子集,这样只需要在一个第一窗口进行相应配置即可,不需要对每个第一窗口都进行配置,可以提高配置效率。
在本申请的一个实施例中,同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集。
举例而言,一个第一窗口内的八个发送周期,按顺序表示为:发送周期A1、B1、C1、D1、E1、F1、G1、H1,其中,在A1关联波束扫描资源子集S0,在B1关联波束扫描资源子集S1,……,在H1关联波束扫描资源子集S7。
同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集,使得在一个第一窗口的不同发送周期,可以基于不同波束扫描资源进行波束测量,得到不同波束的波束质量信息,扩大波束测量范围,提高波束测量性能,另外,因波束测量范围变广,使得波束预测的准确性也会更高。
在本申请的一个实施例中,同一波束扫描资源子集关联的波束扫描资源的周期相同;和/或,不同波束扫描资源子集关联的波束扫描资源的周期不同。举例而言,一波束扫描资源子集关联的波束扫描资源的周期均为20ms,另一波束扫描资源子集关联的波束扫描资源的周期均为40ms。
在本申请的一个实施例中,第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联的波束扫描资源子集是通过以下至少之一方式确定的:
预先配置第一方式;
信令指示第一方式;
预设规则第一方式。
在本申请实施例中,第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期可以关联波束扫描资源子集,具体如何关联可以通过多种方式确定,如预先配置第一方式、信令指示第一方式、预设规则第一方式等,这几种方式可以单独使用,还可以结合起来使用。
可选的,预先配置第一方式可以包括:为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期预先关联波束扫描资源子集。
第一配置信息关联M个波束扫描资源集合,M个波束扫描资源集合关联N个波束扫描资源,或者,M个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源,每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源。可以为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期与每个波束扫描资源集合内的一个波束扫描资源子集进行关联。其中,不同发送周期关联的波束扫描资源子集可以均相同或均不同。或者,在一个第一窗口内的部分发送周期关联的波束扫描资源子集相同,在部分发送周期关联的波束扫描资源子集不同。如在发送周期A1、C1关联的波束扫描资源子集相同,均为S0,在发送周期B1、D1关联的波束扫描资源子集相同,均为S1,但发送周期A1、C1关联的波束扫描资源子集与发送周期B1、D1关联的波束扫描资源子集不同。
可选的,信令指示第一方式可以包括:为第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,第一发送周期为第一窗口内任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集。
即可以为第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,该第一发送周期可以为第一窗口内任意一个发送周期,如第一个发送周期,或者中间的一个发送周期,或者最后一个发送周期。然后为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集。
预设第一规则可以与第一关联顺序相关,即按照设定的第一关联顺序为该第一窗口内的其他每个发送周期关联波束扫描资源子集。
举例而言,一个第一窗口内发送周期的个数为8,信令指示在第一个发送周期关联第二个波束扫描资源子集,根据该关联关系,后续关联顺序是在第二个发送周期关联第三个波束扫描资源子集,……,在第七个发送周期关联第八个波束扫描资源子集,在第八个发送周期关联第一个波束扫描资源子集。
可选的,预设规则第一方式可以包括:按照预设第二规则为第一配置信息对应的波 束反馈报告在一个第一窗口内的每个发送周期关联波束扫描资源子集。
第二规则可以与第一关联顺序相关。例如,一个第一窗口内发送周期的个数为8,在第一个发送周期关联第一个波束扫描资源子集,在第二个发送周期关联第二个波束扫描资源子集,……,在第八个发送周期关联第八个波束扫描资源子集。或者,在第一个发送周期关联第八个波束扫描资源子集,在第二个发送周期关联第七个波束扫描资源子集,……,在第八个发送周期关联第一个波束扫描资源子集。
可选的,第一规则和/或第二规则所基于的第一关联顺序可以包括波束扫描资源子集标识顺序、或者为波束扫描资源子集索引顺序、或者为波束扫描资源子集配置顺序,或者为波束扫描资源子集时间顺序、或者为波束扫描资源子集时隙偏移顺序。第一规则和第二规则所基于的第一关联顺序可以相同或不同。
在本申请的一个实施例中,波束预测对应的相邻两个预测时刻的间隔等于第二周期乘以第一值;其中,第二周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期。
在本申请实施例中,基于波束扫描资源进行波束测量后,进一步可以基于测量得到的波束质量信息进行波束预测,预测未来某时刻或某些时刻所有波束对的波束质量信息,预测时刻可以有一个或多个,波束预测对应的相邻两个预测时刻的间隔可以等于第二周期乘以第一值。第二周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期。
可选的,第一值为大于或等于0、且小于或等于1的值;
可选的,第一值是通过以下至少之一方式确定的:协议约定、网络侧设备配置、终端上报;
可选的,第一配置信息对应的波束反馈报告关联第一值,以方便网络侧设备获知第一值;
可选的,第一值是根据拥有相同周期的波束扫描资源关联的不同时隙偏移的数量确定的,比如,第一值等于1/不同时隙偏移的数量。
举例而言,16个波束扫描资源都被配置成同一个周期80ms,但每四个波束扫描资源被配置成1个时隙偏移,如第1-4个波束扫描资源对应的时隙偏移是0ms,第5-8个波束扫描资源对应的时隙偏移是20ms,第9-12个波束扫描资源对应的时隙偏移是40ms,第13-16个波束扫描资源对应的时隙偏移是60ms。利用AI模型进行波束预测,预测未来多个时刻的波束质量信息,相邻两个预测时刻的时间间隔应该是80*(1/4)=20ms,而不是80ms。
在本申请的一个实施例中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特征是周期或半持续的情况下:
M等于1;
或者,如果基于分组的波束反馈报告(groupBasedBeamReport)没有使能,则M等 于1;
或者,如果基于分组的波束反馈报告(groupBasedBeamReport)使能,则M为大于1的第二值,第二值可以是一个约定值,如2。
M=1时,第一配置信息关联一个波束扫描资源集合,该波束扫描资源集合关联N个波束扫描资源,该波束扫描资源集合关联至少一个波束扫描资源子集,每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源,第一配置信息对应的波束反馈报告在每个发送周期关联一个波束扫描资源子集;
M=2时,第一配置信息关联两个波束扫描资源集合,该两个波束扫描资源集合关联N个波束扫描资源,或者该两个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源,该两个波束扫描资源集合关联至少一个波束扫描资源子集,每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源,第一配置信息对应的波束反馈报告在每个发送周期关联两个波束扫描资源子集,这两个波束扫描资源子集分别为该两个波束扫描资源集合中的一个波束扫描资源子集。
在本申请的一个实施例中,第一配置信息关联P*Q个波束扫描资源集合,或者关联激活的P*Q个波束扫描资源集合,P和Q为正整数,P*Q个波束扫描资源集合包括P组波束扫描资源集合,每组波束扫描资源集合包括Q个波束扫描资源集合,每个波束扫描资源集合关联第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。
在本申请实施例中,P*Q个波束扫描资源集合中每个波束扫描资源集合可以关联至少部分波束扫描资源。将第一配置信息对应的总的波束扫描资源预先分为多个波束扫描资源集合,第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。对于任意一个发送周期而言,第一配置信息对应的波束反馈报告在该发送周期关联的波束扫描资源集合与在该发送周期关联的第一波束扫描资源相对应。
可选的,P*Q个波束扫描资源集合关联相同的周期;或者,每组波束扫描资源集合内的Q个波束扫描资源集合关联相同的周期。即P*Q个波束扫描资源集合关联的波束扫描资源均关联相同的周期。当P*Q个波束扫描资源集合为P组波束扫描资源集合,每组有Q个波束扫描资源集合,每组内的Q个波束扫描资源集合关联的波束扫描资源均关联相同的周期,如20ms。
可选的,P*Q个波束扫描资源集合关联的第二波束扫描资源之间具有以下至少之一的相同特征:
周期、时隙偏移位置、频域位置、带宽大小;
其中,第二波束扫描资源为具有相同预设顺序的波束扫描资源,预设顺序包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
举例而言,P为1,P*Q个波束扫描资源集合中第一个波束扫描资源集合关联的波束扫描资源包括resource1-8,第二个波束扫描资源集合关联的波束扫描资源包括resource9-16,其中,resource1和resource9分别为第一个波束扫描资源集合和第二个波束扫描资源集合关联的第一个波束扫描资源,认为是具有相同预设顺序的波束扫描资源,具有以上至少之一的相同特征,同样,resource2和resource10认为是具有相同预设顺序的波束扫描资源,具有以上至少之一的相同特征,……,resource8和resource16认为是具有相同预设顺序的波束扫描资源,具有以上至少之一的相同特征。
该预设顺序可以包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
在本申请的一个实施例中,P*Q个波束扫描资源集合中不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同;或者,每组波束扫描资源集合内不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同。
举例而言,P*Q个波束扫描资源集合为一组8个波束扫描资源集合,波束扫描资源集合R0关联的波束扫描资源包括resource1-8,波束扫描资源集合R1关联的波束扫描资源包括resource9-16,……,波束扫描资源集合R7关联的波束扫描资源包括resource57-64。
假设第一配置信息对应的波束反馈报告在发送周期A1关联波束扫描资源集合R0,在发送周期B1关联波束扫描资源集合R1,……,在发送周期H1关联波束扫描资源集合R7,因为波束扫描资源集合R0、R1、……、R7关联的波束扫描资源的标识或索引均不同,所以在一个第一窗口内,终端可以实现对波束扫描资源集合关联的波束扫描资源resource1-64对应的波束进行测量,增大波束测量范围,提高波束测量性能,进而有助于提高波束预测准确性。
可以理解的是,本申请实施例中波束扫描资源可以对应波束信息,在进行波束预测时,如果测量得到的多个历史时刻上的波束质量信息对应的波束都一样,比如,在时刻1测量得到的是波束信息beam1-8对应的波束质量信息,在时刻2测量得到的也是波束信息beam1-8对应的波束质量信息,在时刻3测量得到的同样是beam1-8对应的波束质量信息,那么基于这样的波束质量信息进行波束预测,将很难准确预测得到未来某时刻或某些时刻全部波束对应的波束质量信息和/或波束信息,使得预测性能下降。而本申请实施例中,在同一个第一窗口内的不同发送周期发送的波束反馈报告关联不同的波束扫描资源集合,不同的波束扫描资源集合关联的波束扫描资源至少有一个不同或均不同,这样可以使得多个时刻测量得到的波束质量信息对应的波束不同,扩大了波束测量范围,进而有助于提高波束预测性能,有助于提高波束预测准确性。
另外,波束扫描资源的标识或索引均不同,也方便对波束扫描资源进行区分,同时方便将波束扫描资源与波束信息相对应。
在本申请的一个实施例中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特征是周期或半持续的情况下:
P等于1;
或者,如果基于分组的波束反馈报告(groupBasedBeamReport)没有使能,则P等于1;
或者,如果基于分组的波束反馈报告(groupBasedBeamReport)使能,则M为大于1的第三值,第三值可以是一个约定值,如2。
P=1时,第一配置信息关联Q个波束扫描资源集合,或者关联激活的Q个波束扫描资源集合,第一配置信息对应的波束反馈报告在每个发送周期关联一个波束扫描资源集合。
P=2时,第一配置信息关联两组Q个波束扫描资源集合,或者关联激活的两组Q个波束扫描资源集合,第一配置信息对应的波束反馈报告在每个发送周期关联两个波束扫描资源集合,这两个波束扫描资源集合分别为该两组波束扫描资源集合中的一个波束扫描资源集合。
在本申请的一个实施例中,第一配置信息对应的波束反馈报告在第一配置信息关联的第一窗口内的每个发送周期关联的波束扫描资源集合可以是通过以下至少之一方式确定的:
预先配置第二方式;
信令指示第二方式;
预设规则第二方式。
在本申请实施例中,第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期可以关联一个波束扫描资源集合,具体如何关联可以通过多种方式确定,如预先配置第二方式、信令指示第二方式、预设规则第二方式等,这几种方式可以单独使用,还可以结合起来使用。
可选的,预先配置第二方式可以包括:为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期均预先关联波束扫描资源集合。
可以为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期与波束扫描资源集合进行关联。其中,不同发送周期关联的波束扫描资源集合可以均相同或均不同。或者,在一个第一窗口内的部分发送周期关联的波束扫描资源集合相同,在部分发送周期关联的波束扫描资源集合不同。如在发送周期A1、C1关联的波束扫描资源集合相同,均为R1,在发送周期B1、D1关联的波束扫描资源集合相同,均为R2,但在发送周期A1、C1关联的波束扫描资源集合与在发送周期B1、D1关联的波束扫描资源集合不同。
可选的,信令指示第二方式可以包括:为第一配置信息对应的波束反馈报告在第一窗口内的第一发送周期配置或指示波束扫描资源集合,第一发送周期为第一窗口内任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第三规 则关联波束扫描资源集合。
可以为第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源集合,该第一发送周期可以为第一发送周期内任意一个发送周期,如第一个发送周期,或者中间的某一个发送周期,或者最后一个发送周期,然后为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第三规则关联波束扫描资源集合。
预设第三规则可以与第二关联顺序相关,即按照设定的第二关联顺序为该第一窗口内的其他每个发送周期关联波束扫描资源集合。
举例而言,一个第一窗口内发送周期的个数为8,波束扫描资源集合的总个数为8,一个波束扫描资源集合关联的波束扫描资源的个数为8,信令指示在第一个发送周期关联波束扫描资源集合R2,根据该关联关系,后续关联顺序是在第二个发送周期关联波束扫描资源集合R3,……,在第七个发送周期关联波束扫描资源集合R8,在第八个发送周期关联波束扫描资源集合R1。
可选的,预设规则第二方式可以包括:按照预设第四规则为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期关联波束扫描资源集合。
第四规则可以与第二关联顺序相关。例如,一个第一窗口内发送周期的个数为8,在第一个发送周期关联波束扫描资源集合R1,在第二个发送周期关联波束扫描资源集合R2,……,在第八个发送周期关联波束扫描资源集合R8。或者,在第一个发送周期关联波束扫描资源集合R8,在第二个发送周期关联波束扫描资源集合R7,……,在第八个发送周期关联波束扫描资源集合R1。
可选的,第三规则和/或第四规则所基于的第二关联顺序可以为波束扫描资源集合标识顺序、或者为波束扫描资源集合索引顺序、或者为波束扫描资源集合配置顺序,或者为波束扫描资源集合时间顺序、或者为波束扫描资源集合时隙偏移顺序。第三规则和第四规则所基于的第二关联顺序可以相同或不同。
本申请实施例通过第一配置信息可以使得终端得到更多信息,以更有效地进行波束测量和/或波束预测。
为便于理解,再以具体示例方式对本申请实施例所提供的技术方案进行说明。
示例一:第一配置信息关联M个波束扫描资源集合,M个波束扫描资源集合或M个波束扫描资源集合中的每个波束扫描资源集合关联N个波束扫描资源,在每个第一窗口上,(UE假设)网络侧设备仅发送或仅接收N个波束扫描资源中的至少部分波束扫描资源,第一配置信息包含以下至少之一:波束报告配置信息、波束扫描资源配置信息。其中,(UE假设)网络侧设备仅发送或仅接收N个波束扫描资源中的至少部分波束扫描资源可以有两种理解,一种是网络侧设备直接执行该行为,即网络侧设备仅发送或仅接收N个波束扫描资源中的至少部分波束扫描资源,另一种是网络侧设备的行为不限定,UE会假设网络侧设备执行该行为,即UE假设网络侧设备仅发送或仅接收N个波束扫描 资源中的至少部分波束扫描资源。
可选的,第一窗口用于波束预测功能中的参数,与波束预测输入测量周期有关,可以通过协议约定、网络侧设备配置、UE上报等至少之一方式确定。
可选的,第一配置信息关联第一窗口和/或周期偏移(offset),周期偏移(offset)用于指示第一窗口与发送周期之间的周期偏移。
例如,利用AI模型预测未来某时刻或未来某些时刻的波束质量信息和/或波束信息,需要8个历史时刻上的测量结果,则第一窗口内的发送周期的个数等于8。
可选的,N个波束扫描资源对应至少一个波束扫描资源子集,一个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源。
可选的,每个波束扫描资源子集关联一个第一窗口内的一个发送周期。
可选的,波束扫描资源子集的总数量等于第一窗口内发送周期的总数量。
可选的,波束扫描资源子集内的波束扫描资源的周期相同。
可选的,不同波束扫描资源子集之间的波束扫描资源的周期不同。
可选的,波束扫描资源子集的关联确定方式包括预先配置、信令指示、预设规则约定中至少之一。
其中,预先配置关联是指直接给每个第一窗口内每个发送周期都预先关联一个波束扫描资源子集;
信令指示关联是指给第一窗口内第一个发送周期或某一个发送周期额外指示一个波束扫描资源子集,可选的,其余波束扫描资源子集根据预设规则与其他发送周期关联;
例如,根据指示的关联位置,按照波束扫描资源子集的顺序与发送周期的顺序关联,一个第一窗口内一共有8个发送周期,信令指示第一配置信息对应的波束反馈报告在第一个发送周期关联第二个波束扫描资源子集,根据该关联位置,后续关联顺序是在第二个发送周期关联第三个波束扫描资源子集,……,在第七个发送周期关联第八个波束扫描资源子集,一直到在第八个发送周期关联第一个波束扫描资源子集;
预设规则关联是指给第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期根据预设规则关联一个波束资源扫描子集。
可选的,预设规则对应的顺序可以是波束资源扫描子集ID顺序、波束扫描资源子集索引顺序、波束扫描资源子集配置的顺序、波束扫描资源子集时间顺序、波束扫描资源子集相同的时隙偏移顺序等。
可选的,当第一配置信息和/或第一配置信息关联的波束扫描资源集合,关联的时域特性是周期或半持续时:
M=1;
或者,groupBasedBeamReport没有使能时,M=1;
或者,groupBasedBeamReport使能时,M为大于1的约定数值,如M=2。
可选的,N个波束扫描资源关联相同的周期和/或N个波束扫描资源关联不同的时隙 偏移时,波束预测中相邻两个预测时刻的间隔等于该周期乘以第一值beta。
可选的,beta值大于或等于0、且小于或等于1;
可选的,beta值通过协议约定、网络侧设备配置、UE上报中至少之一方式确定;
可选的,第一配置信息对应的波束反馈报告中关联beta值;
可选的,beta值可以通过拥有相同周期的波束扫描资源中关联的不同时隙偏移的数量确定,比如,beta=1/不同时隙偏移的数量。
例如,16个波束扫描资源都被配置成同一个周期80ms,但每四个波束扫描资源被配置成1个时隙偏移,第1-4个波束扫描资源对应的时隙偏移是0ms,第5-8个波束扫描资源对应的时隙偏移是20ms,第9-12个波束扫描资源对应的时隙偏移是40ms,第13-16个波束扫描资源对应的时隙偏移是60ms。利用AI模型进行波束预测,相邻预测时刻的时间间隔应该是20ms而不是80ms。
示例二:第一配置信息关联P*Q个波束扫描资源集合,或关联被激活的P*Q个波束扫描资源集合,第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。在每个发送周期上,(UE假设)网络侧设备仅发送或仅接收当前发送周期关联的波束扫描资源集合所关联的波束扫描资源,第一配置信息包含以下至少之一:波束报告配置信息、波束扫描资源配置信息。
可选的,P*Q个波束扫描资源集合关联相同的周期,或每组波束扫描资源集合内的P个波束扫描资源集合关联相同的周期。
可选的,P*Q个波束扫描资源集合或每组内的Q个波束扫描资源集合关联的拥有相同预设顺序的波束扫描资源之间拥有相同的以下特征之一:周期、时隙偏移位置、频域位置、带宽大小等。
可选的,预设顺序包括在波束扫描资源集合内的配置顺序、时域顺序、ID顺序、索引顺序等。
可选的,P*Q个波束扫描资源集合或每组内的Q个波束扫描资源集合关联的波束扫描资源ID或索引均不同;
可选的,当第一配置信息和/或第一配置信息关联的波束扫描资源集合,关联的时域特性是周期或半持续时:
P=1;
或者,groupBasedBeamReport没有使能时,P=1;
或者,groupBasedBeamReport使能时,P为>1的约定数值,如P=2;
即P为组数量。
可选的,波束扫描资源集合关联发送周期的方式包括预先配置、信令指示、预设规则约定中至少之一。
其中,预先配置关联是指直接给第一配置信息对应的波束反馈报告在第一窗口内每个发送周期都预先关联一个波束扫描资源集合;
信令指示关联是指给第一配置信息对应的波束反馈报告在第一窗口内第一个发送周期或某一个发送周期额外指示一个波束扫描资源集合,可选的,其余波束扫描资源集合根据预设规则与其他发送周期关联;
预设规则关联是指给第一配置信息对应的波束反馈报告在第一窗口内每个发送周期根据预设规则关联一个波束扫描资源集合。
可选的,预设规则对应的顺序可以是波束资源扫描集合ID顺序、波束扫描资源集合索引顺序、波束扫描资源集合配置的顺序、波束扫描资源集合时间顺序、波束扫描资源集合时隙偏移顺序等。
使用历史周期或者历史测量资源进行波束预测时,一般情况下会使用多次历史周期或多个历史测量值,通过多次历史值预测未来的波束。目前相关技术中的波束资源配置,除非进行资源重新配置,某个波束反馈报告关联的波束扫描资源是无法更改的,也就意味着波束扫描资源在多个周期或多个测量时刻上,都是相同的。换句话说,时间域预测时,会收集较多的测量周期上的RSRP信息,来预测未来波束信息,多个历史时刻上测量的波束扫描资源的波束如果都一致,会导致预测性能下降。通过本申请实施例所提供的技术方案,可以在每个发送周期或测量周期上的波束扫描资源可以不同,可以提升波束测量的范围,且有助于提升波束预测的准确性。
本申请实施例提供的波束测量方法,执行主体可以为波束测量装置。本申请实施例中以波束测量装置执行波束测量方法为例,说明本申请实施例提供的波束测量装置。
参见图8所示,波束测量装置800可以包括以下模块:
接收模块810,用于接收网络侧设备发送的第一配置信息,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
操作模块820,用于基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息;
或者,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
应用本申请实施例所提供的装置,接收到网络侧设备发送的第一配置信息,可以获知第一配置信息对应的波束反馈报告在每个发送周期关联的第一波束扫描资源,该第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,相应的,波束反馈报告可以关联基于波束测量确定的波束质量信息和/或波束信息,或者,基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,相应的,波束反馈报告可以关联波束测量后进行波束预测确定的波束质量信息和/或波束信息,使得波束反馈报告关联的波束扫描资源以及波束反馈报告关联的波束质量信息和/或波束信息更为灵活,方便基 于关联的波束扫描资源进行波束测量,有助于提高波束测量性能。
在本申请的一种具体实施方式中,第一配置信息关联M个波束扫描资源集合;
M个波束扫描资源集合关联N个波束扫描资源,或者,M个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源,N为网络侧设备配置的波束扫描资源的个数;
第一配置信息对应的波束反馈报告在每个发送周期关联每个波束扫描资源集合内的一个波束扫描资源子集;
每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源。
在本申请的一种具体实施方式中,第一配置信息还与第一窗口关联,每个第一窗口包括第一配置信息对应的波束反馈报告的多个发送周期,其中:
波束扫描资源子集的总数量等于第一配置信息对应的波束反馈报告在第一窗口内发送周期的总数量I;
和/或,不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描资源子集,i=1,2,……,I;
和/或,同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集;
和/或,同一波束扫描资源子集关联的波束扫描资源的周期相同;
和/或,不同波束扫描资源子集关联的波束扫描资源的周期不同。
在本申请的一种具体实施方式中,第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联的波束扫描资源子集是通过以下至少之一方式确定的:
预先配置第一方式;
信令指示第一方式;
预设规则第一方式;
其中,预先配置第一方式包括:为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期预先关联波束扫描资源子集;
和/或,信令指示第一方式包括:
为第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,第一发送周期为第一窗口内的任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集;
和/或,预设规则第一方式包括:按照预设第二规则为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联波束扫描资源子集。
在本申请的一种具体实施方式中,第一规则和/或第二规则与第一关联顺序相关,第一关联顺序包括波束扫描资源子集标识顺序、或者波束扫描资源子集索引顺序、或者波束扫描资源子集配置顺序、或者波束扫描资源子集时间顺序、或者波束扫描资源子集时 隙偏移顺序。
在本申请的一种具体实施方式中,N个波束扫描资源关联相同的第一周期;
和/或,N个波束扫描资源关联不同的时隙偏移;
其中,第一周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期。
在本申请的一种具体实施方式中,波束预测对应的相邻两个预测时刻的间隔等于第二周期乘以第一值;
其中,第二周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期;
其中,第一值为大于或等于0、且小于或等于1的值;
和/或,第一值是通过以下至少之一方式确定的:协议约定、网络侧设备配置、终端上报;
和/或,第一配置信息对应的波束反馈报告关联第一值;
和/或,第一值是根据拥有相同周期的波束扫描资源关联的不同时隙偏移的数量确定的。
在本申请的一种具体实施方式中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
M等于1;
或者,如果基于分组的波束反馈报告没有使能,则M等于1;
或者,如果基于分组的波束反馈报告使能,则M为大于1的第二值。
在本申请的一种具体实施方式中,第一配置信息关联P*Q个波束扫描资源集合,或者关联激活的P*Q个波束扫描资源集合,P*Q个波束扫描资源集合包括P组波束扫描资源集合,每组波束扫描资源集合包括Q个波束扫描资源集合,每个波束扫描资源集合关联第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合关联相同的周期;
或者,每组波束扫描资源集合内的Q个波束扫描资源集合关联相同的周期。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合关联的第二波束扫描资源之间具有以下至少之一的相同特征:
周期、时隙偏移位置、频域位置、带宽大小;
其中,第二波束扫描资源为具有相同预设顺序的波束扫描资源,预设顺序包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合中不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同;
或者,每组波束扫描资源集合内不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同。
在本申请的一种具体实施方式中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
P等于1;
或者,如果基于分组的波束反馈报告没有使能,则P等于1;
或者,如果基于分组的波束反馈报告使能,则P为大于1的第三值。
在本申请的一种具体实施方式中,第一配置信息对应的波束反馈报告在第一配置信息关联的第一窗口内的每个发送周期关联的波束扫描资源集合是通过以下至少之一方式确定的:
预先配置第二方式;
信令指示第二方式;
预设规则第二方式;
其中,预先配置第二方式包括:为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期预先关联波束扫描资源集合;
和/或,信令指示第二方式包括:
为第一配置信息对应的波束反馈报告在第一窗口内的第一发送周期配置或指示波束扫描资源集合,第一发送周期为第一窗口内的任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第三规则关联波束扫描资源集合;
和/或,预设规则第二方式包括:按照预设第四规则为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期关联波束扫描资源集合。
在本申请的一种具体实施方式中,第三规则和/或第四规则与第二关联顺序相关,第二关联顺序包括波束扫描资源集合标识顺序、或者波束扫描资源集合索引顺序、或者波束扫描资源集合配置顺序、或者波束扫描资源集合时间顺序、或者波束扫描资源集合时隙偏移顺序。
本申请实施例中的波束测量装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的波束测量装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
相应于上面的方法实施例,本申请实施例还提供了一种波束测量方法,参见图9所示,该方法可以包括以下步骤:
S910:网络侧设备确定第一配置信息,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息;
S920:网络侧设备将第一配置信息发送给终端。
应用本申请实施例所提供的方法,网络侧设备确定第一配置信息并发送给终端,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,该第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,这样终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告可以关联基于波束测量确定的波束质量信息和/或波束信息,或者,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,波束反馈报告可以关联波束测量后进行波束预测确定的波束质量信息和/或波束信息,使得波束反馈报告关联的波束扫描资源以及波束反馈报告关联的波束质量信息和/或波束信息更为灵活,方便终端基于关联的波束扫描资源进行波束测量,有助于提高波束测量性能。
在本申请的一种具体实施方式中,第一配置信息关联M个波束扫描资源集合;
M个波束扫描资源集合关联N个波束扫描资源,或者,M个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源,N为网络侧设备配置的波束扫描资源的个数;
第一配置信息对应的波束反馈报告在每个发送周期关联每个波束扫描资源集合内的一个波束扫描资源子集;
每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源。
在本申请的一种具体实施方式中,第一配置信息还与第一窗口关联,每个第一窗口包括第一配置信息对应的波束反馈报告的多个发送周期,其中:
波束扫描资源子集的总数量等于第一配置信息对应的波束反馈报告在第一窗口内发送周期的总数量I;
和/或,不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描资源子集,i=1,2,……,I;
和/或,同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集;
和/或,同一波束扫描资源子集关联的波束扫描资源的周期相同;
和/或,不同波束扫描资源子集关联的波束扫描资源的周期不同。
在本申请的一种具体实施方式中,第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联的波束扫描资源子集是通过以下至少之一方式确定的:
预先配置第一方式;
信令指示第一方式;
预设规则第一方式;
其中,预先配置第一方式包括:为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期预先关联波束扫描资源子集;
和/或,信令指示第一方式包括:
为第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,第一发送周期为第一窗口内的任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集;
和/或,预设规则第一方式包括:按照预设第二规则为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联波束扫描资源子集。
在本申请的一种具体实施方式中,第一规则和/或第二规则与第一关联顺序相关,第一关联顺序包括波束扫描资源子集标识顺序、或者波束扫描资源子集索引顺序、或者波束扫描资源子集配置顺序、或者波束扫描资源子集时间顺序、或者波束扫描资源子集时隙偏移顺序。
在本申请的一种具体实施方式中,N个波束扫描资源关联相同的第一周期;
和/或,N个波束扫描资源关联不同的时隙偏移;
其中,第一周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期。
在本申请的一种具体实施方式中,波束预测对应的相邻两个预测时刻的间隔等于第二周期乘以第一值;
其中,第二周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期;
其中,第一值为大于或等于0、且小于或等于1的值;
和/或,第一值是通过以下至少之一方式确定的:协议约定、网络侧设备配置、终端上报;
和/或,第一配置信息对应的波束反馈报告关联第一值;
和/或,第一值是根据拥有相同周期的波束扫描资源关联的不同时隙偏移的数量确定的。
在本申请的一种具体实施方式中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
M等于1;
或者,如果基于分组的波束反馈报告没有使能,则M等于1;
或者,如果基于分组的波束反馈报告使能,则M为大于1的第二值。
在本申请的一种具体实施方式中,第一配置信息关联P*Q个波束扫描资源集合,或 者关联激活的P*Q个波束扫描资源集合,P*Q个波束扫描资源集合包括P组波束扫描资源集合,每组波束扫描资源集合包括Q个波束扫描资源集合,每个波束扫描资源集合关联第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合关联相同的周期;
或者,每组波束扫描资源集合内的Q个波束扫描资源集合关联相同的周期。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合关联的第二波束扫描资源之间具有以下至少之一的相同特征:
周期、时隙偏移位置、频域位置、带宽大小;
其中,第二波束扫描资源为具有相同预设顺序的波束扫描资源,预设顺序包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合中不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同;
或者,每组波束扫描资源集合内不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同。
在本申请的一种具体实施方式中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
P等于1;
或者,如果基于分组的波束反馈报告没有使能,则P等于1;
或者,如果基于分组的波束反馈报告使能,则P为大于1的第三值。
在本申请的一种具体实施方式中,第一配置信息对应的波束反馈报告在第一配置信息关联的第一窗口内的每个发送周期关联的波束扫描资源集合是通过以下至少之一方式确定的:
预先配置第二方式;信令指示第二方式;预设规则第二方式;
其中,预先配置第二方式包括:为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期预先关联波束扫描资源集合;
和/或,信令指示第二方式包括:
为第一配置信息对应的波束反馈报告在第一窗口内的第一发送周期配置或指示波束扫描资源集合,第一发送周期为第一窗口内的任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第三规则关联波束扫描资源集合;
和/或,预设规则第二方式包括:按照预设第四规则为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期关联波束扫描资源集合。
在本申请的一种具体实施方式中,第三规则和/或第四规则与第二关联顺序相关,第 二关联顺序包括波束扫描资源集合标识顺序、或者波束扫描资源集合索引顺序、或者波束扫描资源集合配置顺序、或者波束扫描资源集合时间顺序、或者波束扫描资源集合时隙偏移顺序。
本申请实施例提供的波束测量方法的具体实现过程可以参见图7所示方法实施例的具体实现过程,并达到相同的技术效果,避免重复,这里不再赘述。
本申请实施例提供的波束测量方法,执行主体可以为波束测量装置。本申请实施例中以波束测量装置执行波束测量方法为例,说明本申请实施例提供的波束测量装置。
参见图10所示,波束测量装置1000可以包括以下模块:
确定模块1010,用于确定第一配置信息,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息;
发送模块1020,用于将第一配置信息发送给终端。
应用本申请实施例所提供的装置,确定第一配置信息并发送给终端,第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,该第一波束扫描资源包括第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,这样终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量,波束反馈报告可以关联基于波束测量确定的波束质量信息和/或波束信息,或者,终端基于第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,波束反馈报告可以关联波束测量后进行波束预测确定的波束质量信息和/或波束信息,使得波束反馈报告关联的波束扫描资源以及波束反馈报告关联的波束质量信息和/或波束信息更为灵活,方便终端基于关联的波束扫描资源进行波束测量,有助于提高波束测量性能。
在本申请的一种具体实施方式中,第一配置信息关联M个波束扫描资源集合;
M个波束扫描资源集合关联N个波束扫描资源,或者,M个波束扫描资源集合中每个波束扫描资源集合关联N个波束扫描资源,N为网络侧设备配置的波束扫描资源的个数;
第一配置信息对应的波束反馈报告在每个发送周期关联每个波束扫描资源集合内的一个波束扫描资源子集;
每个波束扫描资源子集关联N个波束扫描资源中的至少部分波束扫描资源。
在本申请的一种具体实施方式中,第一配置信息还与第一窗口关联,每个第一窗口包括第一配置信息对应的波束反馈报告的多个发送周期,其中:
波束扫描资源子集的总数量等于第一配置信息对应的波束反馈报告在第一窗口内发送周期的总数量I;
和/或,不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描 资源子集,i=1,2,……,I;
和/或,同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集;
和/或,同一波束扫描资源子集关联的波束扫描资源的周期相同;
和/或,不同波束扫描资源子集关联的波束扫描资源的周期不同。
在本申请的一种具体实施方式中,第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联的波束扫描资源子集是通过以下至少之一方式确定的:
预先配置第一方式;信令指示第一方式;预设规则第一方式;
其中,预先配置第一方式包括:为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期预先关联波束扫描资源子集;
和/或,信令指示第一方式包括:
为第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,第一发送周期为第一窗口内的任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集;
和/或,预设规则第一方式包括:按照预设第二规则为第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联波束扫描资源子集。
在本申请的一种具体实施方式中,第一规则和/或第二规则与第一关联顺序相关,第一关联顺序包括波束扫描资源子集标识顺序、或者波束扫描资源子集索引顺序、或者波束扫描资源子集配置顺序、或者波束扫描资源子集时间顺序、或者波束扫描资源子集时隙偏移顺序。
在本申请的一种具体实施方式中,N个波束扫描资源关联相同的第一周期;
和/或,N个波束扫描资源关联不同的时隙偏移;
其中,第一周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期。
在本申请的一种具体实施方式中,波束预测对应的相邻两个预测时刻的间隔等于第二周期乘以第一值;
其中,第二周期等于第一配置信息对应的波束反馈报告的周期,或者等于第一配置信息关联的波束扫描资源的周期;
其中,第一值为大于或等于0、且小于或等于1的值;
和/或,第一值是通过以下至少之一方式确定的:协议约定、网络侧设备配置、终端上报;
和/或,第一配置信息对应的波束反馈报告关联第一值;
和/或,第一值是根据拥有相同周期的波束扫描资源关联的不同时隙偏移的数量确定的。
在本申请的一种具体实施方式中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
M等于1;
或者,如果基于分组的波束反馈报告没有使能,则M等于1;
或者,如果基于分组的波束反馈报告使能,则M为大于1的第二值。
在本申请的一种具体实施方式中,第一配置信息关联P*Q个波束扫描资源集合,或者关联激活的P*Q个波束扫描资源集合,P*Q个波束扫描资源集合包括P组波束扫描资源集合,每组波束扫描资源集合包括Q个波束扫描资源集合,每个波束扫描资源集合关联第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合关联相同的周期;
或者,每组波束扫描资源集合内的Q个波束扫描资源集合关联相同的周期。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合关联的第二波束扫描资源之间具有以下至少之一的相同特征:
周期、时隙偏移位置、频域位置、带宽大小;
其中,第二波束扫描资源为具有相同预设顺序的波束扫描资源,预设顺序包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
在本申请的一种具体实施方式中,P*Q个波束扫描资源集合中不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同;
或者,每组波束扫描资源集合内不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同。
在本申请的一种具体实施方式中,在第一配置信息和/或第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
P等于1;
或者,如果基于分组的波束反馈报告没有使能,则P等于1;
或者,如果基于分组的波束反馈报告使能,则P为大于1的第三值。
在本申请的一种具体实施方式中,第一配置信息对应的波束反馈报告在第一配置信息关联的第一窗口内的每个发送周期关联的波束扫描资源集合是通过以下至少之一方式确定的:
预先配置第二方式;信令指示第二方式;预设规则第二方式;
其中,预先配置第二方式包括:为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期预先关联波束扫描资源集合;
和/或,信令指示第二方式包括:
为第一配置信息对应的波束反馈报告在第一窗口内的第一发送周期配置或指示波束 扫描资源集合,第一发送周期为第一窗口内的任意一个发送周期;
为第一窗口内除第一发送周期外的其他每个发送周期按照协议约定或者预设第三规则关联波束扫描资源集合;
和/或,预设规则第二方式包括:按照预设第四规则为第一配置信息对应的波束反馈报告在第一窗口内的每个发送周期关联波束扫描资源集合。
在本申请的一种具体实施方式中,第三规则和/或第四规则与第二关联顺序相关,第二关联顺序包括波束扫描资源集合标识顺序、或者波束扫描资源集合索引顺序、或者波束扫描资源集合配置顺序、或者波束扫描资源集合时间顺序、或者波束扫描资源集合时隙偏移顺序。
本申请实施例提供的波束测量装置能够实现图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101和存储器1102,存储器1102上存储有可在所述处理器1101上运行的程序或指令,例如,该通信设备1100为终端时,该程序或指令被处理器1101执行时实现上述图7所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1100为网络侧设备时,该程序或指令被处理器1101执行时实现上述图9所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,图12为实现本申请实施例的一种终端的结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209以及处理器1210等中的至少部分部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1210逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理单元(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072中的至少一种。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201接收来自网络侧设备的下行数据后,可以传输给处 理器1210进行处理;另外,射频单元1201可以向网络侧设备发送上行数据。通常,射频单元1201包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括易失性存储器或非易失性存储器,或者,存储器1209可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1209包括但不限于这些和任意其它适合类型的存储器。
处理器1210可包括一个或多个处理单元;可选的,处理器1210集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
具体地,图13为实现本申请实施例的一种网络侧设备的结构示意图。如图13所示,该网络侧设备1300包括:天线1301、射频装置1302、基带装置1303、处理器1304和存储器1305。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收信息,将接收的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对要发送的信息进行处理,并发送给射频装置1302,射频装置1302对收到的信息进行处理后经过天线1301发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1303中实现,该基带装置1303包括基带处理器。
基带装置1303例如可以包括至少一个基带板,该基带板上设置有多个芯片,其中一个芯片例如为基带处理器,通过总线接口与存储器1305连接,以调用存储器1305中的程序,执行以上方法实施例中所示的网络侧设备的操作。
该网络侧设备还可以包括网络接口1306,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1300还包括:存储在存储器1305上并可在处理器1304上运行的指令或程序,处理器1304调用存储器1305中的指令或程序执行图10 所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图7所示方法实施例的各个过程,或者实现上述图9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述图7所示方法实施例的各个过程,或者实现上述图9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:终端及网络侧设备,所述终端可用于执行如上所述的图7所示方法实施例的步骤,所述网络侧设备可用于执行如上所述的图9所示方法实施例的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种波束测量方法,其中,包括:
    终端接收网络侧设备发送的第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
    所述终端基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息;
    或者,所述终端基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
  2. 根据权利要求1所述的方法,其中,所述第一配置信息关联M个波束扫描资源集合;
    所述M个波束扫描资源集合关联N个波束扫描资源,或者,所述M个波束扫描资源集合中每个波束扫描资源集合关联所述N个波束扫描资源,N为所述网络侧设备配置的波束扫描资源的个数;
    所述第一配置信息对应的波束反馈报告在每个发送周期关联每个波束扫描资源集合内的一个波束扫描资源子集;
    每个波束扫描资源子集关联所述N个波束扫描资源中的至少部分波束扫描资源。
  3. 根据权利要求2所述的方法,其中,所述第一配置信息还与第一窗口关联,每个第一窗口包括所述第一配置信息对应的波束反馈报告的多个发送周期,其中:
    波束扫描资源子集的总数量等于所述第一配置信息对应的波束反馈报告在所述第一窗口内发送周期的总数量I;
    和/或,不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描资源子集,i=1,2,……,I;
    和/或,同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集;
    和/或,同一波束扫描资源子集关联的波束扫描资源的周期相同;
    和/或,不同波束扫描资源子集关联的波束扫描资源的周期不同。
  4. 根据权利要求3所述的方法,其中,所述第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联的波束扫描资源子集是通过以下至少之一方式确定的:
    预先配置第一方式;
    信令指示第一方式;
    预设规则第一方式;
    其中,所述预先配置第一方式包括:为所述第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期预先关联波束扫描资源子集;
    和/或,所述信令指示第一方式包括:
    为所述第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,所述第一发送周期为所述第一窗口内的任意一个发送周期;
    为所述第一窗口内除所述第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集;
    和/或,所述预设规则第一方式包括:按照预设第二规则为所述第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联波束扫描资源子集。
  5. 根据权利要求4所述的方法,其中,所述第一规则和/或所述第二规则与第一关联顺序相关,所述第一关联顺序包括波束扫描资源子集标识顺序、或者波束扫描资源子集索引顺序、或者波束扫描资源子集配置顺序、或者波束扫描资源子集时间顺序、或者波束扫描资源子集时隙偏移顺序。
  6. 根据权利要求2所述的方法,其中,所述N个波束扫描资源关联相同的第一周期;
    和/或,所述N个波束扫描资源关联不同的时隙偏移;
    其中,所述第一周期等于所述第一配置信息对应的波束反馈报告的周期,或者等于所述第一配置信息关联的波束扫描资源的周期。
  7. 根据权利要求1所述的方法,其中,波束预测对应的相邻两个预测时刻的间隔等于第二周期乘以第一值;
    其中,所述第二周期等于所述第一配置信息对应的波束反馈报告的周期,或者等于所述第一配置信息关联的波束扫描资源的周期;
    其中,所述第一值为大于或等于0、且小于或等于1的值;
    和/或,所述第一值是通过以下至少之一方式确定的:协议约定、所述网络侧设备配置、所述终端上报;
    和/或,所述第一配置信息对应的波束反馈报告关联所述第一值;
    和/或,所述第一值是根据拥有相同周期的波束扫描资源关联的不同时隙偏移的数量确定的。
  8. 根据权利要求2至6之中任一项所述的方法,其中,在所述第一配置信息和/或所述第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
    M等于1;
    或者,如果基于分组的波束反馈报告没有使能,则M等于1;
    或者,如果基于分组的波束反馈报告使能,则M为大于1的第二值。
  9. 根据权利要求1所述的方法,其中,所述第一配置信息关联P*Q个波束扫描资源集合,或者关联激活的P*Q个波束扫描资源集合,所述P*Q个波束扫描资源集合包括P组波束扫描资源集合,每组波束扫描资源集合包括Q个波束扫描资源集合,每个波束扫描资源集合关联所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
    所述第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合 中的一个波束扫描资源集合。
  10. 根据权利要求9所述的方法,其中,所述P*Q个波束扫描资源集合关联相同的周期;
    或者,每组波束扫描资源集合内的Q个波束扫描资源集合关联相同的周期。
  11. 根据权利要求9所述的方法,其中,所述P*Q个波束扫描资源集合关联的第二波束扫描资源之间具有以下至少之一的相同特征:
    周期、时隙偏移位置、频域位置、带宽大小;
    其中,所述第二波束扫描资源为具有相同预设顺序的波束扫描资源,所述预设顺序包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
  12. 根据权利要求9所述的方法,其中,所述P*Q个波束扫描资源集合中不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同;
    或者,每组波束扫描资源集合内不同波束扫描资源集合关联的波束扫描资源的标识或索引均不同。
  13. 根据权利要求9所述的方法,其中,在所述第一配置信息和/或所述第一配置信息关联的波束扫描资源集合关联的时域特性是周期或半持续的情况下:
    P等于1;
    或者,如果基于分组的波束反馈报告没有使能,则P等于1;
    或者,如果基于分组的波束反馈报告使能,则P为大于1的第三值。
  14. 根据权利要求9至13之中任一项所述的方法,其中,所述第一配置信息对应的波束反馈报告在所述第一配置信息关联的第一窗口内的每个发送周期关联的波束扫描资源集合是通过以下至少之一方式确定的:
    预先配置第二方式;
    信令指示第二方式;
    预设规则第二方式;
    其中,所述预先配置第二方式包括:为所述第一配置信息对应的波束反馈报告在所述第一窗口内的每个发送周期预先关联波束扫描资源集合;
    和/或,所述信令指示第二方式包括:
    为所述第一配置信息对应的波束反馈报告在所述第一窗口内的第一发送周期配置或指示波束扫描资源集合,所述第一发送周期为所述第一窗口内的任意一个发送周期;
    为所述第一窗口内除所述第一发送周期外的其他每个发送周期按照协议约定或者预设第三规则关联波束扫描资源集合;
    和/或,所述预设规则第二方式包括:按照预设第四规则为所述第一配置信息对应的波束反馈报告在所述第一窗口内的每个发送周期关联波束扫描资源集合。
  15. 根据权利要求14所述的方法,其中,所述第三规则和/或所述第四规则与第二关联顺序相关,所述第二关联顺序包括波束扫描资源集合标识顺序、或者波束扫描资源 集合索引顺序、或者波束扫描资源集合配置顺序、或者波束扫描资源集合时间顺序、或者波束扫描资源集合时隙偏移顺序。
  16. 一种波束测量装置,其中,包括:
    接收模块,用于接收网络侧设备发送的第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
    操作模块,用于基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息;
    或者,用于基于所述第一波束扫描资源中的至少部分波束扫描资源进行波束测量以及波束预测,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息。
  17. 一种波束测量方法,其中,包括:
    网络侧设备确定第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息;
    所述网络侧设备将所述第一配置信息发送给终端。
  18. 根据权利要求17所述的方法,其中,所述第一配置信息关联M个波束扫描资源集合;
    所述M个波束扫描资源集合关联N个波束扫描资源,或者,所述M个波束扫描资源集合中每个波束扫描资源集合关联所述N个波束扫描资源,N为所述网络侧设备配置的波束扫描资源的个数;
    所述第一配置信息对应的波束反馈报告在每个发送周期关联每个波束扫描资源集合内的一个波束扫描资源子集;
    每个波束扫描资源子集关联所述N个波束扫描资源中的至少部分波束扫描资源。
  19. 根据权利要求18所述的方法,其中,所述第一配置信息还与第一窗口关联,每个第一窗口包括所述第一配置信息对应的波束反馈报告的多个发送周期,其中:
    波束扫描资源子集的总数量等于所述第一配置信息对应的波束反馈报告在所述第一窗口内发送周期的总数量I;
    和/或,不同第一窗口内的第i个发送周期对应的波束反馈报告关联相同的波束扫描资源子集,i=1,2,……,I;
    和/或,同一个第一窗口内的不同发送周期对应的波束反馈报告关联不同的波束扫描资源子集;
    和/或,同一波束扫描资源子集关联的波束扫描资源的周期相同;
    和/或,不同波束扫描资源子集关联的波束扫描资源的周期不同。
  20. 根据权利要求19所述的方法,其中,所述第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联的波束扫描资源子集是通过以下至少之一方式确定的:
    预先配置第一方式;
    信令指示第一方式;
    预设规则第一方式;
    其中,所述预先配置第一方式包括:为所述第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期预先关联波束扫描资源子集;
    和/或,所述信令指示第一方式包括:
    为所述第一配置信息对应的波束反馈报告在一个第一窗口内的第一发送周期配置或指示波束扫描资源子集,所述第一发送周期为所述第一窗口内的任意一个发送周期;
    为所述第一窗口内除所述第一发送周期外的其他每个发送周期按照协议约定或者预设第一规则关联波束扫描资源子集;
    和/或,所述预设规则第一方式包括:按照预设第二规则为所述第一配置信息对应的波束反馈报告在一个第一窗口内的每个发送周期关联波束扫描资源子集。
  21. 根据权利要求17所述的方法,其中,波束预测对应的相邻两个预测时刻的间隔等于第二周期乘以第一值;
    其中,所述第二周期等于所述第一配置信息对应的波束反馈报告的周期,或者等于所述第一配置信息关联的波束扫描资源的周期;
    其中,所述第一值为大于或等于0、且小于或等于1的值;
    和/或,所述第一值是通过以下至少之一方式确定的:协议约定、所述网络侧设备配置、所述终端上报;
    和/或,所述第一配置信息对应的波束反馈报告关联所述第一值;
    和/或,所述第一值是根据拥有相同周期的波束扫描资源关联的不同时隙偏移的数量确定的。
  22. 根据权利要求17所述的方法,其中,所述第一配置信息关联P*Q个波束扫描资源集合,或者关联激活的P*Q个波束扫描资源集合,所述P*Q个波束扫描资源集合包括P组波束扫描资源集合,每组波束扫描资源集合包括Q个波束扫描资源集合,每个波束扫描资源集合关联所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源;
    所述第一配置信息对应的波束反馈报告在每个发送周期关联每组波束扫描资源集合中的一个波束扫描资源集合。
  23. 根据权利要求22所述的方法,其中,所述P*Q个波束扫描资源集合关联相同的周期;
    或者,每组波束扫描资源集合内的Q个波束扫描资源集合关联相同的周期。
  24. 根据权利要求22所述的方法,其中,所述P*Q个波束扫描资源集合关联的第二波束扫描资源之间具有以下至少之一的相同特征:
    周期、时隙偏移位置、频域位置、带宽大小;
    其中,所述第二波束扫描资源为具有相同预设顺序的波束扫描资源,所述预设顺序包括波束扫描资源集合中的配置顺序、或者时域顺序、或者标识顺序、或者索引顺序。
  25. 根据权利要求22至24之中任一项所述的方法,其中,所述第一配置信息对应的波束反馈报告在所述第一配置信息关联的第一窗口内的每个发送周期关联的波束扫描资源集合是通过以下至少之一方式确定的:
    预先配置第二方式;
    信令指示第二方式;
    预设规则第二方式;
    其中,所述预先配置第二方式包括:为所述第一配置信息对应的波束反馈报告在所述第一窗口内的每个发送周期预先关联波束扫描资源集合;
    和/或,所述信令指示第二方式包括:
    为所述第一配置信息对应的波束反馈报告在所述第一窗口内的第一发送周期配置或指示波束扫描资源集合,所述第一发送周期为所述第一窗口内的任意一个发送周期;
    为所述第一窗口内除所述第一发送周期外的其他每个发送周期按照协议约定或者预设第三规则关联波束扫描资源集合;
    和/或,所述预设规则第二方式包括:按照预设第四规则为所述第一配置信息对应的波束反馈报告在所述第一窗口内的每个发送周期关联波束扫描资源集合。
  26. 一种波束测量装置,其中,包括:
    确定模块,用于确定第一配置信息,所述第一配置信息对应的波束反馈报告在每个发送周期关联第一波束扫描资源,所述第一波束扫描资源包括所述第一配置信息对应的波束扫描资源中的至少部分波束扫描资源,所述波束反馈报告关联基于波束测量确定的波束质量信息和/或波束信息,或者,所述波束反馈报告关联基于波束测量后进行波束预测确定的波束质量信息和/或波束信息;
    发送模块,用于将所述第一配置信息发送给终端。
  27. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15之中任一项所述的波束测量方法的步骤。
  28. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至25之中任一项所述的波束测量方法的步骤。
  29. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15之中任一项所述的波束测量方法的步骤,或者实现如权利要求17至25之中任一项所述的波束测量方法的步骤。
PCT/CN2023/126761 2022-11-10 2023-10-26 波束测量方法、装置、终端、网络侧设备及存储介质 WO2024099094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211405815.9A CN118055420A (zh) 2022-11-10 2022-11-10 波束测量方法、装置、终端、网络侧设备及存储介质
CN202211405815.9 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024099094A1 true WO2024099094A1 (zh) 2024-05-16

Family

ID=91031891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126761 WO2024099094A1 (zh) 2022-11-10 2023-10-26 波束测量方法、装置、终端、网络侧设备及存储介质

Country Status (2)

Country Link
CN (1) CN118055420A (zh)
WO (1) WO2024099094A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082064A1 (zh) * 2016-11-04 2018-05-11 广东欧珀移动通信有限公司 波束测量的方法、终端和网络设备
US20180219664A1 (en) * 2017-02-01 2018-08-02 Samsung Electronics Co., Ltd. Method and apparatus for csi report in next generation wireless system
CN112312455A (zh) * 2019-07-31 2021-02-02 成都华为技术有限公司 波束测量方法及装置
CN112740578A (zh) * 2018-09-28 2021-04-30 苹果公司 基于l1-rsrp的波束报告的测量周期和精度的***和方法
CN113994598A (zh) * 2019-04-17 2022-01-28 诺基亚技术有限公司 无线网络的波束预测

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082064A1 (zh) * 2016-11-04 2018-05-11 广东欧珀移动通信有限公司 波束测量的方法、终端和网络设备
US20180219664A1 (en) * 2017-02-01 2018-08-02 Samsung Electronics Co., Ltd. Method and apparatus for csi report in next generation wireless system
CN112740578A (zh) * 2018-09-28 2021-04-30 苹果公司 基于l1-rsrp的波束报告的测量周期和精度的***和方法
CN113994598A (zh) * 2019-04-17 2022-01-28 诺基亚技术有限公司 无线网络的波束预测
CN112312455A (zh) * 2019-07-31 2021-02-02 成都华为技术有限公司 波束测量方法及装置

Also Published As

Publication number Publication date
CN118055420A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
EP4236436A1 (en) Beam reporting method, beam information determination method and related device
WO2024099094A1 (zh) 波束测量方法、装置、终端、网络侧设备及存储介质
WO2024099091A1 (zh) 波束预测方法、装置、终端、网络侧设备及存储介质
CN115913486A (zh) 信息上报方法、装置、终端及可读存储介质
CN116488747A (zh) 信息交互方法、装置及通信设备
CN116017493A (zh) 模型请求方法、模型请求处理方法及相关设备
WO2024125391A2 (zh) Ai模型监测方法、ai模型性能的测量方法、装置及设备
WO2024067434A1 (zh) Rs配置方法、装置、终端及网络侧设备
WO2024093713A1 (zh) 资源配置方法、装置、通信设备及可读存储介质
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2024078405A1 (zh) 传输方法、装置、通信设备及可读存储介质
WO2024104070A1 (zh) 波束报告的发送方法、接收方法、装置及通信设备
WO2024125525A1 (zh) Ai算力上报方法、终端及网络侧设备
WO2024140422A1 (zh) Ai单元的性能监测方法、终端及网络侧设备
WO2024067280A1 (zh) 更新ai模型参数的方法、装置及通信设备
WO2024067665A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2023134761A1 (zh) 波束信息交互方法、装置、设备及存储介质
WO2024032694A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2024046202A1 (zh) 发送方法、用户设备、网络侧设备及可读存储介质
WO2024120447A1 (zh) 模型监督触发方法、装置、ue、网络侧设备、可读存储介质及通信***
WO2024041421A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024037380A1 (zh) 信道信息处理方法、装置、通信设备及存储介质
WO2024041420A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2023186091A1 (zh) 样本确定方法、装置及设备
WO2024032606A1 (zh) 信息传输方法、装置、设备、***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887785

Country of ref document: EP

Kind code of ref document: A1