WO2024098909A1 - 一种用于碱性电解水制氢的气液扩散件及其应用 - Google Patents

一种用于碱性电解水制氢的气液扩散件及其应用 Download PDF

Info

Publication number
WO2024098909A1
WO2024098909A1 PCT/CN2023/116260 CN2023116260W WO2024098909A1 WO 2024098909 A1 WO2024098909 A1 WO 2024098909A1 CN 2023116260 W CN2023116260 W CN 2023116260W WO 2024098909 A1 WO2024098909 A1 WO 2024098909A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plate
liquid
liquid diffuser
electrode
Prior art date
Application number
PCT/CN2023/116260
Other languages
English (en)
French (fr)
Inventor
汪文彪
高小平
戴晋同
Original Assignee
嘉庚创新实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉庚创新实验室 filed Critical 嘉庚创新实验室
Publication of WO2024098909A1 publication Critical patent/WO2024098909A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to the technical field of electrochemical hydrogen production, and in particular to a gas-liquid diffusion element used for producing hydrogen by alkaline water electrolysis.
  • Alkaline water electrolysis hydrogen production technology is widely used in my country. The technology has been mature for decades and has a high degree of commercialization. It is one of the most promising water electrolysis hydrogen production technologies.
  • the core component of alkaline water electrolysis hydrogen production technology is the alkaline electrolyzer.
  • the alkaline electrolyzer uses a diaphragm to divide the electrolytic cell into two chambers, and uses metals or alloys as electrodes distributed in the two chambers.
  • the electrolyte is a potassium hydroxide solution with a concentration of 20-30wt%, the temperature of the working fluid is 70-100°C, and the pressure is 100-3000kPa.
  • the main reaction is the decomposition of water.
  • bipolar electrolyzers are widely used in the alkaline water electrolysis industry.
  • This electrolyzer consists of multiple unit chambers that are regularly stacked into the body of the electrolyzer.
  • Each electrolysis chamber is mainly composed of a pole frame, a bipolar main plate (i.e., a bipolar plate), a diaphragm, a cathode/anode, and a sealing gasket.
  • the bipolar plate is a cathode on one side and an anode on the other side, which is welded to the pole frame to form a whole.
  • Each chamber is divided into a cathode chamber and an anode chamber.
  • the diaphragm is located between the cathode and the anode. Its main function is to prevent hydrogen and oxygen from mixing.
  • CN205803608U discloses an alkaline water electrolyzer with a high current density, comprising a plurality of electrolysis chambers, each of which comprises a cathode frame, an anode frame and a sealing gasket therebetween, a diaphragm is arranged between an anode for oxygen evolution and a cathode for hydrogen evolution, a bipolar plate welded to the cathode frame is arranged on the outside of the cathode, and a bipolar plate welded to the anode frame is also arranged on the outside of the anode, and a conductive current collector with a three-dimensional mesh structure is arranged between the cathode/anode and the bipolar plate.
  • electrolysis chambers each of which comprises a cathode frame, an anode frame and a sealing gasket therebetween
  • a diaphragm is arranged between an anode for oxygen evolution and a cathode for hydrogen evolution
  • FIG. 1 shows this nipple plate and its cross-sectional schematic diagram, which is formed by alternately punching out convex and concave parts on a circular plate used as a bipolar plate.
  • the distance between two adjacent convex parts is usually about 4 to 5 cm, and the height of the convex part (or the depth of the concave part) is usually about 0.4 to 0.5 cm.
  • This structure is relatively simple and low in cost.
  • the stamping die cost of the stamping convex plate is high, and the height consistency of the convex part after processing is poor, which will cause the convex point size to form a higher pressure at the position of the super-high point, and even break the diaphragm of the electrode assembly.
  • the convex plate structure has many internal convex points, which leads to chaotic flow field of gas-liquid mixture fluid inside the electrolytic cell, increases the internal resistance of the fluid, and causes retention and reflux phenomena at local locations (especially at locations where fluid flow is blocked by convex points).
  • Gas is not easy to discharge, which can easily cause local overtemperature, diaphragm damage, hydrogen and oxygen crosstalk in the small chamber, and gas covering the electrode surface to shield the electrode from contact with the alkaline electrolyte, thereby increasing the electrode surface that cannot produce electrochemical reactions.
  • the purpose of the present invention is to solve at least some of the defects in the electrolytic cell for producing hydrogen by alkaline water electrolysis in the prior art, such as high cost of the stamping die for the nipple plate, poor height consistency after stamping, excessive pressure on the electrode assembly, difficulty in aligning the convex points, excessive contact resistance, flow field retention and reflux problems of the internal fluid, uneven internal temperature, etc.
  • an improved electrolytic cell for producing hydrogen by alkaline water electrolysis is provided.
  • a first aspect of the present invention provides a gas-liquid diffusion member for producing hydrogen by alkaline water electrolysis, which is arranged between an electrode plate and a diaphragm to form a gas-liquid diffusion layer, wherein the electrode plate includes an anode plate, a cathode plate and/or a bipolar plate, wherein the gas-liquid diffusion member is made of a woven mesh or a plate mesh, and is formed into a plurality of flow channels alternating on both sides of the gas-liquid diffusion member, and a cross-section of the gas-liquid diffusion member in a direction perpendicular to the plurality of flow channels is a wave shape formed by the plurality of flow channels.
  • a second aspect of the present invention provides an electrode with a diffusion layer, comprising an electrode and the gas-liquid diffuser of the present invention, wherein the electrode is welded on the gas-liquid diffuser.
  • the third aspect of the present invention provides a polar plate with a diffusion layer, comprising a polar plate and the gas-liquid diffuser of the present invention, wherein the polar plate comprises an anode plate, a cathode plate and/or a bipolar plate, and the polar plate is welded on the gas-liquid diffuser.
  • a fourth aspect of the present invention provides an electrolytic cell for producing hydrogen by alkaline electrolysis of water, comprising: The gas-liquid diffuser of the present invention is between the electrode plate and the diaphragm.
  • the present invention uses a gas-liquid diffuser to convert the contact between it and the electrode or the diaphragm into surface contact, which not only effectively reduces the contact resistance and improves the electrolysis efficiency, but also reduces the stress concentration at the contact position and avoids the damage to the diaphragm;
  • the gas-liquid diffuser has a wavy flow channel structure formed by alternating on both sides of the gas-liquid diffuser, which allows the fluid to flow on both sides of the gas-liquid diffuser, provides more flow paths, a larger flow channel cross-section and a larger flow rate, reduces the flow resistance of the fluid, avoids the formation of stagnation or backflow in the internal flow field, and is beneficial to the discharge of gas, so that the electrolytic cell is not prone to overheating and causing damage to the diaphragm, reduces the risk of hydrogen and oxygen cross-talk, and is beneficial to increasing the contact area between the electrode surface and the alkaline electrolyte.
  • FIG1 is a schematic diagram of the structure of a convex plate bipolar plate and its cross section in the prior art, the upper figure is a schematic diagram of the convex plate, and the lower figure is a schematic diagram of the cross section of the convex plate;
  • Figure 2 is a schematic diagram of the structure of the gas-liquid diffuser with a flow channel and its cross-section of the present invention.
  • the upper figure is a schematic diagram of the gas-liquid diffuser
  • the middle figure is a schematic diagram of the cross-section of the gas-liquid diffuser
  • the lower figure is an enlarged schematic diagram of the cross-section of part A.
  • the conventional bipolar plate is in the form of a convex plate, as shown in FIG1 , which is formed by alternately punching out convexities and concave portions on a circular plate.
  • an electrode assembly is sandwiched between two convex plates used as bipolar plates, and the convex points of the two convex plates need to be aligned so that the concave and convex parts of the convex plates act as diffusion layers.
  • the present invention designs a new electrolytic cell for alkaline water electrolysis, which uses a basic flat plate structure and a gas-liquid diffuser with a flow channel, and combines the two to replace the traditional nipple plate, thereby forming a An electrolyzer with a completely new gas-liquid diffusion layer structure.
  • a gas-liquid diffuser for producing hydrogen by alkaline water electrolysis which is arranged between the electrode plate and the diaphragm to form a gas-liquid diffusion layer, and the electrode plate includes an anode plate, a cathode plate and/or a bipolar plate.
  • the gas-liquid diffuser is made of a woven mesh or a plate mesh, and is formed into a plurality of flow channels alternately spaced on both sides of the gas-liquid diffuser, and the cross section of the gas-liquid diffuser in a direction perpendicular to the plurality of flow channels is a wave shape formed by the plurality of flow channels.
  • the gas diffuser is made of a woven mesh or a plate mesh, and its elasticity is utilized to not only reduce the stress concentration at the contact position through the surface contact generated by deformation, thereby avoiding the damage to the diaphragm, but also improve the conductivity of the gas diffuser through the surface contact generated by deformation.
  • the present invention by providing a plurality of flow channels alternately spaced on both sides of the gas diffuser, more flow channels are provided than the structure in which the flow channels are formed only on one side of the gas diffuser, thereby increasing the cross-sectional area of the flow channels, thereby avoiding the formation of stagnation or reflux in the internal flow field, and effectively improving the quality of gas-liquid transmission.
  • the gas-liquid diffuser can be used in various electrolytic cells. It can be used in a monopolar electrolytic cell by arranging the gas-liquid diffuser on one surface of a plate having a basic flat plate structure to form an anode plate or a cathode plate; it can also be used in a bipolar electrolytic cell by arranging the gas-liquid diffuser on both surfaces of a plate having a basic flat plate structure to form a bipolar plate.
  • the gas-liquid diffuser is made of a woven mesh or plate mesh, which is required to be made of a metal and/or alloy that is stable under alkaline conditions, preferably made of a material selected from nickel, stainless steel, nickel-plated carbon steel or titanium.
  • the metal woven mesh is made by weaving or other similar techniques using metal wires of a certain diameter (e.g., 0.5 mm nickel wire).
  • the metal plate mesh is a metal sheet with mesh holes, which are punched on a special machine, or drawn after the metal sheet is punched.
  • the metal woven mesh or metal plate mesh is formed into a plurality of flow channels that alternate on both sides of the gas-liquid diffuser, and these flow channels are alternately formed on both sides of the metal woven mesh or plate mesh, and adjacent flow channels are located on different sides, with basically the same shape but opposite directions, so that the cross-section of the gas-liquid diffuser in the direction perpendicular to the plurality of flow channels is a wave shape formed by the plurality of flow channels.
  • These flow channels on the gas-liquid diffusion member can provide more flow paths and a larger flow rate for the gas-liquid mixture fluid of hydrogen or oxygen in the electrolytic cell, reduce the flow resistance of the fluid, avoid stagnation or backflow in the internal flow field, and facilitate the discharge of gas. Therefore, the electrolytic cell is not prone to overheating and causing diaphragm damage, reducing the risk of hydrogen and oxygen cross-talk, and is conducive to increasing the contact area between the electrode surface and the alkaline electrolyte.
  • a metal woven mesh or a plate mesh may be passed through
  • the shape of the isosceles trapezoid is formed by bending, so that multiple isosceles trapezoidal flow channels are formed on both sides of the gas-liquid diffuser.
  • the diffusion layer formed by the gas-liquid diffuser needs to meet the volume requirements of the gas-liquid mixture fluid in the electrolysis chamber, and the flow channel width can be adjusted according to the needs of hydrogen production and fluid flow rate.
  • the upper and lower bases of the isosceles trapezoid are selected to be 0.2 to 3.6 cm and the height is 0.2 to 0.8 cm.
  • the upper and lower bases are 0.2 to 3.2 cm and the height is 0.2 to 0.8 cm, and a better flow field effect can be obtained.
  • an electrode may be further provided between the gas-liquid diffuser and the diaphragm.
  • the electrode may be made of a nickel mesh, a thermally sprayed nickel wire mesh or other suitable electrode materials.
  • the gas-liquid diffuser will be provided between the electrode and the electrode of the basic flat plate structure. If necessary, the gas-liquid diffuser may be welded to the electrode and/or the electrode, which facilitates the assembly of the electrolytic cell.
  • the present invention uses a gas-liquid diffuser to replace the convex points on the nipple plate, so that the contact between the gas-liquid diffuser and the electrode or the diaphragm becomes a surface contact, which not only avoids the complicated alignment of the convex points during installation, but also avoids the point contact between the nipple plate and the electrode.
  • the contact area can be increased by dozens or even hundreds of times, which not only effectively reduces the contact resistance, improves the conductivity and electrolysis efficiency, but also reduces the stress concentration at the contact position to avoid crushing the diaphragm.
  • the gas-liquid diffuser needs to meet the mechanical property and elasticity requirements under the installation pressure.
  • the elastic modulus of the gas-liquid diffuser in the direction perpendicular to its plane is 50-20000 N/ cm2 , preferably 100-10000 N/ cm2 . If the elastic modulus is too small, the gas-liquid diffuser is very easy to deform under the installation pressure of the electrolytic cell, and cannot press the electrode or the diaphragm, which may cause poor contact between the gas-liquid diffuser and the electrode or the diaphragm; if the elastic modulus is too large, the gas-liquid diffuser is difficult to deform, which may cause excessive pressure at the contact position, thereby damaging the diaphragm.
  • an electrode with a diffusion layer comprising an electrode and the gas-liquid diffuser of the present invention, wherein the electrode is welded on the gas-liquid diffuser.
  • a polar plate with a diffusion layer comprising a polar plate and a gas-liquid diffuser of the present invention, wherein the polar plate comprises an anode plate, a cathode plate and/or a bipolar plate, and the polar plate is welded on the gas-liquid diffuser.
  • an electrolytic cell for producing hydrogen by alkaline electrolysis of water comprising the gas-liquid diffuser of the present invention disposed between an electrode plate and a diaphragm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明提供了一种用于碱性电解水制氢的气液扩散件,设置于极板与隔膜之间形成气液扩散层,由编织网或板网制成,并被成型为具有在气液扩散件两侧交替相间的多个流道,在与流道垂直的方向上,气液扩散件的横截面为由多个流道形成的波浪形状。通过使用气液扩散件,有效地减少了接触电阻、提高了电解效率、降低了接触位置的应力集中、避免了压坏隔膜、减小了流体的流动阻力,避免了在内部流场形成滞流或回流、降低了氢气和氧气互窜的风险、并有利于提高电极表面与碱性电解液之间的接触面积。

Description

一种用于碱性电解水制氢的气液扩散件及其应用 技术领域
本发明涉及电化学制氢技术领域,具体来说涉及一种用于碱性电解水制氢的气液扩散件。
背景技术
发展氢能可从根本上缓解我国大量进口油气资源带来的能源安全问题,其可作为储能介质的特殊属性可促进大规模可再生能源的快速发展,是我国实现“双碳目标”的重要手段。
碱性电解水制氢技术在我国广泛应用,技术成熟有几十年的历史,商业化程度高,是最具前景的电解水制氢技术之一。碱性电解水制氢技术的核心部件是碱性电解槽。碱性电解槽采用隔膜将电解池分为两个室,利用金属或合金作为电极分布在两个室内,电解液是浓度为20~30wt%的氢氧化钾溶液,工作液的温度为70~100℃,压力100~3000kPa,主要的反应是水的分解。目前,碱性电解水工业中普遍采用双极式电解槽,这种电解槽由多个单元小室有规律叠压成电解槽的槽体,每个电解小室主要由极框、双极性主极板(即双极板)、隔膜、阴/阳极以及密封垫片组成。双极板一面是阴极,另一面是是阳极,焊接到极框内,构成一个整体。每个小室分为阴极小室和阳极小室,隔膜位于阴极和阳极之间,主要作用是防止氢气和氧气混合。
CN205803608U公开了一种高电流密度的碱性水电解槽,包含若干电解小室,每个电解小室包含阴极框、阳极框和它们之间的密封垫片,隔膜设置在析氧用的阳极和析氢用的阴极之间,在阴极的外侧设置焊接到阴极框上的双极板,而在阳极的外侧同样设置焊接到阳极框上的双极板,在阴/阳极与双极板之间设置有呈三维网孔结构的导电集流网。该文献通过引用并入本文。
目前,碱性水电解槽大部分采用乳凸板加热喷涂镍丝网的结构,即双极板采用冲压***状凹凸起的圆板,双极板的凹凸部分充当扩散层,而电极采用镍丝网或热喷涂镍丝网。图1展示了这种乳凸板及其截面示意图,其通过在用作双极板的圆形板上交替冲压出凸部和凹部而形成,两相邻的凸部(或凹部)之间的距离通常为约4~5cm,凸部的高度(或凹部的深度)通常为约0.4~0.5cm。这种结构相对简单,成本较低。
然而,碱性水电解槽安装时需要将两块用作双极板(即阴极侧的双极板和阴极侧的双极板)的乳凸板的凸点对齐,这不仅工艺难度高,而且导致乳凸板无法压紧电极组件(即阴极、阳极和夹置其中的隔膜)。由于乳凸板与电极仅在凸点位置处进行点接触,这导致电极和乳凸板之间的接触电阻大,造成电解槽的电压损失大、电解效率(即产氢效率)低。此外,冲压成型乳凸板的冲压模具成本高,并且加工后的凸点部分高度一致性差,这会导致凸点尺寸超高位置会形成较高的压力,甚至会压破电极组件的隔膜。另一方面,乳凸板结构内部凸点多,导致电解槽内部气液混合物流体的流场混乱,增加了流体的内部阻力,在局部位置会产生滞留和回流现象(特别是在流体流动被凸点阻挡的位置),气体不容易排出,容易造成局部温度过高、隔膜破损、小室内氢气与氧气互窜、气体覆盖在电极表面屏蔽电极与碱性电解液接触而增加无法产生电化学反应的电极表面。
因此,对碱性电解水制氢装置,特别是电解小室的结构存在改进的需求。
发明内容
本发明的目的是为了解决现有技术中碱性电解水制氢的电解槽中的至少一部分缺陷,例如乳凸板的冲压模具成本高、冲压成型后高度一致性差、对电极组件压力过大、凸点对位困难、接触电阻过大、内部流体的流场滞留和回流问题、内部温度不均匀等,通过设置扩散层,提供了一种改进的碱性电解水制的电解槽。
本发明第一方面提供了一种用于碱性电解水制氢的气液扩散件,设置于极板与隔膜之间形成气液扩散层,所述极板包括阳极板、阴极板和/或双极板,其中,所述气液扩散件由编织网或板网制成,并被成型为具有所述气液扩散件两侧交替相间的多个流道,在与所述多个流道垂直的方向上所述气液扩散件的横截面为由所述多个流道形成的波浪形状。
本发明第二方面提供了一种具有扩散层的电极,包括电极和本发明的气液扩散件,所述电极焊接在所述气液扩散件之上。
本发明第三方面提供了一种具有扩散层的极板,包括极板和本发明的气液扩散件,所述极板包括阳极板、阴极板和/或双极板,并且所述极板焊接在所述气液扩散件之上。
本发明第四方面提供了一种用于碱性电解水制氢的电解槽,包括设置于 极板与隔膜之间的本发明的气液扩散件。
本发明具有以下有益效果:本发明使用气液扩散件,使其与电极或隔膜之间的接触变成面接触,不但有效地减少了接触电阻,提高电解效率,而且可以降低接触位置的应力集中,避免了压坏隔膜;气液扩散件两侧面上交替相间而形成波浪状的流道结构,可以使流体在气液扩散件两侧均可流动,提供更多的流通路径、更大的流道截面和更大的流量,减小了流体的流动阻力,避免了在内部流场形成滞流或回流,有利于气体的排出,因而电解槽不容易出现温度过高而引起隔膜破损,降低了氢气和氧气互窜的风险,并有利于提高电极表面与碱性电解液之间的接触面积。
附图说明
图1为现有技术中乳凸板双极板及其截面的结构示意图,上图为乳凸板的示意图,下图为乳凸板截面的示意图;
图2为本发明的具有流道的气液扩散件及其截面的结构示意图,上图为气液扩散件的示意图,中图为气液扩散件的截面示意图,下图为A部分的截面放大示意图。
具体实施方式
下面通过附图和实施例对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
此外,下面所描述的本发明不同实施方式中涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
目前传统的双极板采用乳凸板的形式,如图1所示,在圆形板上交替冲压出凸部和凹部而形成,安装成碱性电解水的电解槽时,在两块用作双极板的乳板板之间夹置电极组件,并需要将两块乳凸板的凸点对齐,从而使乳凸板的凹凸部分充当扩散层。
本发明设计了一种新的碱性电解水的电解槽,使用基本平板结构的极板和具有流道的气液扩散件,使二者结合起合来替代传统的乳凸板,从而形成 具有全新的气液扩散层结构的电解槽。
基于此,在本发明的一种实施方式中,提供了一种用于碱性电解水制氢的气液扩散件,设置于极板与隔膜之间形成气液扩散层,所述极板包括阳极板、阴极板和/或双极板。其中,所述气液扩散件由编织网或板网制成,并被成型为具有所述气液扩散件两侧交替相间的多个流道,在与所述多个流道垂直的方向上所述气液扩散件的横截面为由所述多个流道形成的波浪形状。在本发明中,通过编织网或板网制成气体扩散件,利用其弹性,不但可以通过变形产生的面接触降低接触位置的应力集中,避免了压坏隔膜,而且同样可以通过变形产生的面接触提高气体扩散件的导电性能。在本发明中,通过在气体扩散件两侧交替相间的多个流道,比仅在气体扩散件单侧形成流道的结构提供更多的流道,提高了流道截面积,不但避免了在内部流场形成滞流或回流,而且有效地提升了气液传输的质量。
在本发明中,气液扩散件可以用于各种电解槽中,既可以使用在单极式电解槽中,通过将气液扩散件设置在基本平板结构的极板的一个表面上,从而构成阳极板或阴极板;也可以使用在双极式电解槽中,通过在基本平板结构的极板的两个表面上均设置气液扩散件,从而构成双极板。
气液扩散件由编织网或板网制成,该编织网或板网要求在碱性条件下稳定的金属和/或合金制成,优选由选自镍、不锈钢、镀镍碳钢或钛的材料制成。金属编织网是采用一定直径的金属丝(例如0.5mm的镍丝)通过编织或其他类似的手法制成。金属板网是一种具有网孔的金属薄板,网孔是在专用机器上冲压而成,或是将金属薄板冲缝后拉制而成。在本发明中,金属编织网或金属板网被成型为具有所述气液扩散件两侧交替相间的多个流道,这些流道交替形成在金属编织网或板网的两侧,相邻的流道位于不同的侧面上,形状基本相同,但方向相反,从而使得在与所述多个流道垂直的方向上气液扩散件的横截面为由所述多个流道形成的波浪形状。气液扩散件上的这些流道在电解槽中可以为氢气或氧气的气液混合物流体提供更多的流通路径和更大的流量,减小流体的流动阻力,避免在内部流场形成滞流或回流,有利于气体的排出,因而使得电解槽不容易出现温度过高而引起隔膜破损,降低氢气和氧气互窜的风险,并且有利于提高电极表面与碱性电解液之间的接触面积。
在本发明的一种实施方式中,如图2所示,可以将金属编织网或板网通 过折弯的方式成型为交替的等腰梯形状,从而在气液扩散件的两面均形成多个等腰梯形的流道。通过梯形结构,可以进一步提高气体扩散件与隔膜之间面接触的面积,进一步提高气体扩散件的导电性能并避免压坏隔膜。由气液扩散件形成的扩散层的需要满足电解小室中气液混合物流体的容积需求,并且流道宽度可以根据氢气产量及流体流速的需要进行调节。例如,在本发明的优选实施方式中,选择等腰梯形的上下底边为0.2~3.6cm,高为0.2~0.8cm,优选上下底边为0.2~3.2cm,高为0.2~0.8cm,可以获得较好的流场效果。
在本发明的一种实施方式中,可以在气液扩散件与所述隔膜之间还设置有电极。电极可以采用镍网、热喷涂镍丝网或其他适宜的电极材料制成。在这种情形下,气液扩散件将被设置在基本平板结构的极板和电极之间。如果需要,可以将气液扩散件焊接到极板和/或所述电极上,这样有利于电解槽的组装。
本发明使用气液扩散件替代了乳凸板上的凸点,使得气液扩散件与电极或隔膜之间的接触变成面接触,既避免了安装时复杂的凸点对齐,又避免了乳凸板与电极之间的点接触。通过这种面接触,可以使得接触面积增加了数十倍甚至数百倍,不但有效地减少了接触电阻,提高了导电性和电解效率,而且可以降低接触位置的应力集中,避免压坏隔膜。
在本发明的一种实施方式中,气液扩散件需满足在安装压力下的力学性能和弹性要求,例如,气液扩散件在与其平面垂直的方向上的弹性模量在50~20000N/cm2,优选为100~10000N/cm2,弹性模量过小的话,在电解槽的安装压力下,气液扩散件极易变形,无法压紧电极或隔膜,可能会导致气液扩散件与电极或隔膜之间的接触不良;而弹性模量过大的话,气液扩散件又难于变形,可能会造成接触位置的压力过大,从而压坏隔膜。
根据本发明的另一种实施方式,提供了一种具有扩散层的电极,包括电极和本发明的气液扩散件,所述电极焊接在所述气液扩散件之上。
根据本发明的还一种实施方式,提供了一种具有扩散层的极板,包括极板和本发明的气液扩散件,所述极板包括阳极板、阴极板和/或双极板,并且所述极板焊接在所述气液扩散件之上。
根据本发明的再一种实施方式,提供了一种用于碱性电解水制氢的电解槽,包括设置于极板与隔膜之间的本发明的气液扩散件。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上结合了优选的实施方式对本发明进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本发明进行多种替换和改进,这些均落入本发明的保护范围内。

Claims (11)

  1. 一种用于碱性电解水制氢的气液扩散件,其特征在于,所述气液扩散件设置于极板与隔膜之间形成气液扩散层,所述极板包括阳极板、阴极板和/或双极板,其中,所述气液扩散件由编织网或板网制成,所述编织网或板网通过折弯的方式被成型为具有在所述气液扩散件两侧交替相间的多个流道,在与所述多个流道垂直的方向上所述气液扩散件的横截面为由所述多个流道的横截面形成的波浪形状。
  2. 如权利要求1所述的气液扩散件,其特征在于,所述编织网或板网由在碱性条件下稳定的金属和/或合金制成。
  3. 如权利要求2所述的气液扩散件,其特征在于,所述编织网或板网由选自镍、不锈钢、镀镍碳钢或钛的材料制成。
  4. 如权利要求1所述的气液扩散件,其特征在于,所述流道为等腰梯形。
  5. 如权利要求4所述的气液扩散件,其特征在于,所述等腰梯形的上下底边为0.2~3.6cm,高为0.2~0.8cm。
  6. 如权利要求1至5任一项所述的气液扩散件,其特征在于,在所述气液扩散件与所述隔膜之间还设置有电极。
  7. 如权利要求1至5任一项所述的气液扩散件,其特征在于,所述气液扩散件焊接到所述极板和/或电极上,所述电极由镍网制成。
  8. 如权利要求1至5任一项所述的气液扩散件,其特征在于,所述气液扩散件在与其平面垂直的方向上的弹性在50~20000N/cm2
  9. 一种具有扩散层的电极,其特征在于,包括电极和如权利要求1至8任一项所述的气液扩散件,所述电极焊接在所述气液扩散件之上。
  10. 一种具有扩散层的极板,其特征在于,包括极板和如权利要求1至8任一项所述的气液扩散件,所述极板包括阳极板、阴极板和/或双极板,并且所述极板焊接在所述气液扩散件之上。
  11. 一种用于碱性电解水制氢的电解槽,其特征在于,包括设置于极板与隔膜之间的如权利要求1至8任一项所述的气液扩散件。
PCT/CN2023/116260 2022-11-11 2023-08-31 一种用于碱性电解水制氢的气液扩散件及其应用 WO2024098909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211412049.9A CN115652352B (zh) 2022-11-11 2022-11-11 一种用于碱性电解水制氢的气液扩散件及其应用
CN202211412049.9 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024098909A1 true WO2024098909A1 (zh) 2024-05-16

Family

ID=85020796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116260 WO2024098909A1 (zh) 2022-11-11 2023-08-31 一种用于碱性电解水制氢的气液扩散件及其应用

Country Status (2)

Country Link
CN (1) CN115652352B (zh)
WO (1) WO2024098909A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652352B (zh) * 2022-11-11 2023-07-04 嘉庚创新实验室 一种用于碱性电解水制氢的气液扩散件及其应用
CN117448858B (zh) * 2023-10-18 2024-04-19 三一氢能有限公司 流场结构及电解槽
CN117468024B (zh) * 2023-10-31 2024-06-14 温州高企氢能科技有限公司 一种用于碱性电解水制氢的阵列式流场结构及电解槽

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
CN1449066A (zh) * 2002-04-03 2003-10-15 中国科学院大连化学物理研究所 一种用于质子交换膜燃料电池的流场分配板
US20070111081A1 (en) * 2005-08-04 2007-05-17 Michael Martin Bipolar plate or electrode plate for fuel cells or electrolyzer stacks, as well as a method for producing a bipolar plate or electrode plate for fuel cells or electrolyzer stacks
US20140162175A1 (en) * 2011-04-20 2014-06-12 Toyota Shatai Kabushiki Kaisha Fuel cell and manufacturing method of expanded metal
US20200102663A1 (en) * 2018-10-01 2020-04-02 Giner, Inc. High-temperature alkaline water electrolysis using a composite electrolyte support membrane
US20200173040A1 (en) * 2018-11-30 2020-06-04 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
CN111621806A (zh) * 2020-04-28 2020-09-04 北京科技大学 异型集电器、pem电解水制氢装置及电解水制氢的方法
CN212783525U (zh) * 2020-09-29 2021-03-23 未势能源科技有限公司 气体扩散组件、膜电极组件、燃料电池单元和燃料电池堆
CN114540851A (zh) * 2022-02-17 2022-05-27 武汉理工大学 一种新型阳极扩散层及质子交换膜水电解池
CN115012001A (zh) * 2022-06-06 2022-09-06 武汉大学 一种用于水电解气液传输的气体扩散层及其制备方法
CN115652352A (zh) * 2022-11-11 2023-01-31 嘉庚创新实验室 一种用于碱性电解水制氢的气液扩散件及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205803608U (zh) * 2016-02-26 2016-12-14 派新(上海)能源技术有限公司 一种高电流密度的碱性水电解槽

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
CN1449066A (zh) * 2002-04-03 2003-10-15 中国科学院大连化学物理研究所 一种用于质子交换膜燃料电池的流场分配板
US20070111081A1 (en) * 2005-08-04 2007-05-17 Michael Martin Bipolar plate or electrode plate for fuel cells or electrolyzer stacks, as well as a method for producing a bipolar plate or electrode plate for fuel cells or electrolyzer stacks
US20140162175A1 (en) * 2011-04-20 2014-06-12 Toyota Shatai Kabushiki Kaisha Fuel cell and manufacturing method of expanded metal
US20200102663A1 (en) * 2018-10-01 2020-04-02 Giner, Inc. High-temperature alkaline water electrolysis using a composite electrolyte support membrane
US20200173040A1 (en) * 2018-11-30 2020-06-04 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
CN111621806A (zh) * 2020-04-28 2020-09-04 北京科技大学 异型集电器、pem电解水制氢装置及电解水制氢的方法
CN212783525U (zh) * 2020-09-29 2021-03-23 未势能源科技有限公司 气体扩散组件、膜电极组件、燃料电池单元和燃料电池堆
CN114540851A (zh) * 2022-02-17 2022-05-27 武汉理工大学 一种新型阳极扩散层及质子交换膜水电解池
CN115012001A (zh) * 2022-06-06 2022-09-06 武汉大学 一种用于水电解气液传输的气体扩散层及其制备方法
CN115652352A (zh) * 2022-11-11 2023-01-31 嘉庚创新实验室 一种用于碱性电解水制氢的气液扩散件及其应用

Also Published As

Publication number Publication date
CN115652352B (zh) 2023-07-04
CN115652352A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024098909A1 (zh) 一种用于碱性电解水制氢的气液扩散件及其应用
CN110391436B (zh) 一种质子交换膜燃料电池金属双极板
JP5240282B2 (ja) 燃料電池セル
CN106575776B (zh) 与电化学电池一起使用的流场
CN112838232B (zh) 一种全通孔金属纤维烧结体燃料电池双极板及燃料电池堆
CN104157895B (zh) 聚合物电解质膜燃料电池轻型电堆及其制造方法
CN216891249U (zh) 质子交换膜水电解槽及***
CN110061260A (zh) 一种质子交换燃料电池
CN112615020B (zh) 一种波浪形燃料电池单电池及电堆
WO2023036067A1 (zh) 一种气体扩散层及其制备方法
JP6526703B2 (ja) 燃料電池又は電解槽セルスタックのための接触方法及び装置
CN114318386A (zh) 质子交换膜水电解槽、***及方法
JP3242171U (ja) バイポーラ水電解水素製造装置
CN209709094U (zh) 一种质子交换燃料电池
CN102666930B (zh) 电解设备
CN117026261A (zh) 一种用于电解水制氢的弹性网双极板机构
CN116288445A (zh) 一种碱性水电解槽用多孔传输层
CN215517654U (zh) 电极流场板和电解水槽
CN114725422A (zh) 一种燃料电池双极板结构
JP2014517153A (ja) 高温水電解装置のための、容易に製造される相互接続モジュール
CN218969380U (zh) 用于碱性电解水制氢的流道形双极板及电解槽
CN217579091U (zh) 一种pem水电解制氢的散热端板
CN220246285U (zh) 一种电解水制氢用的单池夹具
CN113249746B (zh) 电解槽流场板结构
CN220317972U (zh) 一种碱性水电解槽用多孔传输层

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887604

Country of ref document: EP

Kind code of ref document: A1