WO2024098584A1 - 移动空调器及其控制方法和控制装置、计算机存储介质 - Google Patents

移动空调器及其控制方法和控制装置、计算机存储介质 Download PDF

Info

Publication number
WO2024098584A1
WO2024098584A1 PCT/CN2023/077181 CN2023077181W WO2024098584A1 WO 2024098584 A1 WO2024098584 A1 WO 2024098584A1 CN 2023077181 W CN2023077181 W CN 2023077181W WO 2024098584 A1 WO2024098584 A1 WO 2024098584A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
ambient temperature
mobile air
outdoor
indoor
Prior art date
Application number
PCT/CN2023/077181
Other languages
English (en)
French (fr)
Inventor
余祥云
付兆强
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024098584A1 publication Critical patent/WO2024098584A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants

Definitions

  • the present disclosure relates to the technical field of mobile air conditioners, and in particular to a control method of a mobile air conditioner, a mobile air conditioner, a computer-readable storage medium, and a control device of a mobile air conditioner.
  • the air inlet and outlet forms of the external air duct of the variable frequency mobile air conditioner have a great influence on the performance and reliability of the whole machine.
  • the air duct accessories of the external air duct of the variable frequency mobile air conditioner are installed and used by the customers themselves, which results in the variable frequency mobile air conditioner not having a uniform air inlet and outlet form. Therefore, during operation, in order to avoid damage to the variable frequency mobile air conditioner, the mobile air conditioner is usually controlled to operate at the minimum limit, which may easily cause the performance of the whole machine to not be maximized, affecting the user experience.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first purpose of the present disclosure is to propose a control method for a mobile air conditioner, determine the duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determine the working limit parameters of the mobile air conditioner according to the duct type, so as to ensure that the mobile air conditioner can achieve better performance and high reliability under different duct types, thereby improving user experience.
  • a second objective of the present disclosure is to provide a mobile air conditioner.
  • a third object of the present disclosure is to provide a computer-readable storage medium.
  • a fourth objective of the present disclosure is to provide a control device for a mobile air conditioner.
  • the first aspect of the present disclosure proposes a control method for a mobile air conditioner, comprising: obtaining indoor ambient temperature and outdoor ambient temperature; determining an indoor ambient temperature change value, an outdoor ambient temperature change value and an indoor and outdoor temperature difference according to the indoor ambient temperature and the outdoor ambient temperature; determining an air duct type of the mobile air conditioner according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determining a working limit parameter of the mobile air conditioner according to the air duct type; and controlling the mobile air conditioner according to the working limit parameter.
  • the indoor environment temperature and the outdoor environment temperature are obtained.
  • the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference are determined according to the indoor ambient temperature and the outdoor ambient temperature, and then the duct type of the mobile air conditioner is determined according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and the working limit parameters of the mobile air conditioner are determined according to the duct type, and finally the mobile air conditioner is controlled according to the working limit parameters.
  • the method determines the duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determines the working limit parameters of the mobile air conditioner according to the duct type, thereby ensuring that the mobile air conditioner can achieve good performance and high reliability under different duct types, thereby improving user experience.
  • control method of the mobile air conditioner according to the above embodiment of the present disclosure may also have the following additional technical features:
  • the duct type of a mobile air conditioner is determined based on an indoor ambient temperature change value, an outdoor ambient temperature change value, and an indoor and outdoor temperature difference, including: when the indoor ambient temperature change value reaches a first preset temperature threshold, if the outdoor ambient temperature change value is less than a second preset temperature threshold, and the indoor and outdoor temperature difference is greater than a third preset temperature threshold, then determining that the duct type is a double duct.
  • the duct type of a mobile air conditioner is determined based on an indoor ambient temperature change value, an outdoor ambient temperature change value, and an indoor and outdoor temperature difference, including: when the indoor ambient temperature change value reaches a first preset temperature threshold, if the outdoor ambient temperature change value is greater than or equal to a second preset temperature threshold, or the indoor and outdoor temperature difference is less than or equal to a third preset temperature threshold, then determining that the duct type is a single duct.
  • the outdoor ambient temperature is obtained by collecting the air inlet temperature of the external air duct of the mobile air conditioner.
  • the external air duct inlet of the mobile air conditioner when the duct type is a single duct, the external air duct inlet of the mobile air conditioner is connected to the indoor side; when the duct type is a double duct, the external air duct inlet of the mobile air conditioner is connected to the outdoor side.
  • the working limit parameter includes at least one of a rotation speed limit value of the outdoor fan, a compressor frequency limit value, and a whole machine current limit value of the mobile air conditioner.
  • the speed limit value, compressor frequency limit value and whole machine current limit value of a single-duct mobile air conditioner are respectively smaller than the speed limit value, compressor frequency limit value and whole machine current limit value of a dual-duct mobile air conditioner.
  • the second aspect embodiment of the present disclosure proposes a mobile air conditioner, including a memory, a processor, and a control program for the mobile air conditioner stored in the memory and executable on the processor.
  • the processor executes the control program for the mobile air conditioner, the above-mentioned control method for the mobile air conditioner is implemented.
  • the control program of the mobile air conditioner is executed by the processor to implement the control method of the mobile air conditioner.
  • the working limit parameters of the mobile air conditioner are determined by automatically identifying the air duct type of the mobile air conditioner, thereby ensuring that the mobile air conditioner can achieve good performance and high reliability under different air duct types, thereby improving the performance of the mobile air conditioner. Improve user experience.
  • a third aspect of the present disclosure provides a computer-readable storage medium on which a control program for a mobile air conditioner is stored.
  • the control program for the mobile air conditioner is executed by a processor, the control method for the mobile air conditioner is implemented.
  • the control program of the mobile air conditioner is executed by the processor to implement the above-mentioned control method of the mobile air conditioner.
  • the fourth aspect embodiment of the present disclosure proposes a control device for a mobile air conditioner, comprising: an acquisition module, used to acquire the indoor ambient temperature and the outdoor ambient temperature; a first determination module, used to determine the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference according to the indoor ambient temperature and the outdoor ambient temperature; a second determination module, used to determine the duct type of the mobile air conditioner according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determine the working limit parameters of the mobile air conditioner according to the duct type; and a control module, used to control the mobile air conditioner according to the working limit parameters.
  • the indoor ambient temperature and the outdoor ambient temperature are obtained through the acquisition module, the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference are determined through the first determination module according to the indoor ambient temperature and the outdoor ambient temperature, the air duct type of the mobile air conditioner is determined according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference through the second determination module, and the working limit parameters of the mobile air conditioner are determined according to the air duct type, and the control module controls the mobile air conditioner according to the working limit parameters.
  • the device determines the air duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determines the working limit parameters of the mobile air conditioner according to the air duct type, thereby ensuring that the mobile air conditioner can achieve better performance and high reliability under different air duct types, thereby improving user experience.
  • FIG1 is a flow chart of a control method of a mobile air conditioner according to an embodiment of the present disclosure
  • FIG2 is a flow chart of a method for controlling a mobile air conditioner according to a specific embodiment of the present disclosure
  • FIG3 is a block diagram of a mobile air conditioner according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a control device of a mobile air conditioner according to an embodiment of the present disclosure.
  • FIG. 1 is a flow chart of a control method of a mobile air conditioner according to an embodiment of the present disclosure.
  • control method of the mobile air conditioner according to the embodiment of the present disclosure may include the following steps:
  • the initial indoor ambient temperature T10 and the initial outdoor ambient temperature T40 are respectively obtained through the corresponding temperature sensors.
  • the mobile air conditioner is controlled to run for a preset time t1
  • the current indoor ambient temperature T11 and the current outdoor ambient temperature T41 are obtained again through the temperature sensor.
  • the indoor ambient temperature change value ⁇ T1
  • , the outdoor ambient temperature change value ⁇ T4
  • , and the current indoor and outdoor temperature difference ⁇ T
  • are calculated, and then the type of air duct installed in the current mobile air conditioner is determined to be double air duct or single air duct according to the indoor ambient temperature change value ⁇ T1, the outdoor ambient temperature change value ⁇ T4 and the current indoor and outdoor temperature difference ⁇ T, and then the working limit parameters are determined according to the type of air duct installed in the mobile air conditioner, and the mobile air conditioner is controlled to operate under the working limit parameters.
  • the method determines whether the mobile air conditioner is installed with double ducts or single ducts by detecting the changes in the indoor ambient temperature and outdoor ambient temperature during the operation of the mobile air conditioner. After determining the type of duct installed on the mobile air conditioner, the method controls the mobile air conditioner to operate according to corresponding working limit parameters, thereby making targeted control optimization according to the duct type of the mobile air conditioner, ensuring that the overall performance of the mobile air conditioner is maximized and improving the user experience.
  • the calculation formulas for the indoor ambient temperature change value ⁇ T1, the outdoor ambient temperature change value ⁇ T4 and the current indoor and outdoor temperature difference ⁇ T in the above embodiments all adopt the absolute value calculation method.
  • the calculation can also be performed according to the working mode of the air conditioner.
  • the indoor ambient temperature is the ambient temperature of the current mobile air conditioner, which can be obtained by a temperature sensor installed on the outer shell of the mobile air conditioner.
  • the outdoor ambient temperature is the ambient temperature of the air sucked in by the external air duct of the mobile air conditioner.
  • the outdoor ambient temperature is obtained by collecting the temperature of the air inlet of the external air duct of the mobile air conditioner. That is, the outdoor ambient temperature can be obtained by a temperature sensor arranged at the air inlet of the external air duct of the mobile air conditioner.
  • the external air duct inlet of the mobile air conditioner when the duct type is a single duct, the external air duct inlet of the mobile air conditioner is connected to the indoor side; when the duct type is a double duct, the external air duct inlet of the mobile air conditioner is connected to the outdoor side.
  • the duct type is divided into a single duct and a double duct according to the number of exhaust ducts used by the mobile air conditioner.
  • the inner duct of the mobile air conditioner sucks air from the room through the evaporator and blows it to the room through the inner duct.
  • the outer duct of the mobile air conditioner sucks air from the room through the condenser and blows it to the outside through an exhaust duct. That is to say, when the mobile air conditioner uses a single duct, the duct is connected to the outer duct outlet of the mobile air conditioner, and the outer duct inlet of the mobile air conditioner is directly connected to the room.
  • the outdoor ambient temperature obtained by the temperature sensor installed at the outer duct inlet is actually the air temperature of the indoor environment. Therefore, for the mobile air conditioner using a single duct, the collected outdoor ambient temperature changes with the change of the indoor ambient temperature, and the temperature difference between the indoor ambient temperature and the outdoor ambient temperature collected at the same time is small or even zero.
  • the inner air duct of the mobile air conditioner draws air from the room through the evaporator and blows it to the room through the inner air duct.
  • the outer air duct of the mobile air conditioner draws air from the outside through one exhaust duct and blows it to the outside through another exhaust duct after passing through the condenser. That is to say, when the mobile air conditioner adopts double air ducts, one end of the two air ducts is respectively connected to the air inlet and the air outlet of the outer air duct of the mobile air conditioner, and the other end extends to the outside.
  • the outdoor ambient temperature obtained by the temperature sensor set at the air inlet of the outer air duct of the mobile air conditioner is the actual air temperature of the outdoor environment. Therefore, the outdoor ambient temperature obtained by the mobile air conditioner has nothing to do with the indoor ambient temperature.
  • the following is a detailed description of the process of determining whether the air duct type used by the mobile air conditioner is a double air duct or a single air duct based on the indoor ambient temperature change value ⁇ T1, the outdoor ambient temperature change value ⁇ T4 and the indoor and outdoor temperature difference ⁇ T.
  • the duct type of the mobile air conditioner is determined based on the indoor ambient temperature change value ⁇ T1, the outdoor ambient temperature change value ⁇ T4 and the indoor and outdoor temperature difference ⁇ T, including: when the indoor ambient temperature change value ⁇ T1 reaches the first preset temperature threshold T1, if the outdoor ambient temperature change value ⁇ T4 is less than the second preset temperature threshold T2, and the indoor and outdoor temperature difference ⁇ T is greater than the third preset temperature threshold T3, then the duct type is determined to be a double duct.
  • the duct type of the mobile air conditioner is determined based on the indoor ambient temperature change value ⁇ T1, the outdoor ambient temperature change value ⁇ T4 and the indoor and outdoor temperature difference ⁇ T, including: when the indoor ambient temperature change value ⁇ T1 reaches the first preset temperature threshold T1, if the outdoor ambient temperature change value ⁇ T4 is greater than or equal to the second preset temperature threshold T2, or the indoor and outdoor temperature difference ⁇ T is less than or equal to the third preset temperature threshold T3, then the duct type is determined to be a single duct.
  • the current indoor ambient temperature T11 is acquired in real time, and the current indoor ambient temperature change value ⁇ T1 is determined, and the acquired indoor ambient temperature change value ⁇ T1 is compared with the first preset temperature threshold value T1. If the indoor ambient temperature change value ⁇ T1 is less than the first preset temperature threshold value T1, the mobile air conditioner is continued to be controlled. The current outdoor ambient temperature T41 is not obtained. Repeat the above steps until the indoor ambient temperature change value ⁇ T1 is greater than or equal to the first preset temperature threshold T1, obtain the current outdoor ambient temperature T41, and further calculate the outdoor ambient temperature change value ⁇ T4 and the current indoor and outdoor temperature difference ⁇ T.
  • the outdoor ambient temperature change value ⁇ T4 compares the obtained outdoor ambient temperature change value ⁇ T4 with the second preset temperature threshold T2. If the outdoor ambient temperature change value ⁇ T4 does not reach the second preset temperature threshold T2, it is considered that the current outdoor ambient temperature changes slightly, and further judge the size relationship between the current indoor and outdoor temperature difference ⁇ T and the third preset temperature threshold T3; if the outdoor ambient temperature change value ⁇ T4 reaches the second preset temperature threshold T2, it is considered that the current outdoor ambient temperature changes significantly, and the outdoor ambient temperature changes with the change of the indoor ambient temperature, and the single duct exhaust adopted by the mobile air conditioner is determined.
  • the outdoor ambient temperature change value ⁇ T4 does not reach the second preset temperature threshold value T2
  • the current indoor and outdoor temperature difference ⁇ T does not exceed the third preset temperature threshold value T3, it is considered that the temperature difference between the current outdoor ambient temperature T41 and the current indoor ambient temperature T11 obtained by the mobile air conditioner is small, and it is determined that the mobile air conditioner adopts single duct exhaust.
  • the first preset temperature threshold T1, the second preset temperature threshold T2 and the third preset temperature threshold T3 can be set according to actual conditions.
  • the first preset temperature threshold T1 can be set to 5°C, 7°C, etc.
  • the second preset temperature threshold T2 is used to determine whether the outdoor ambient temperature changes with the change of the indoor ambient temperature. Therefore, the value of the second preset temperature threshold T2 can be set according to the first preset temperature threshold T1.
  • the second preset temperature threshold T2 can be equal to the first preset temperature threshold T1, or less than the first preset temperature threshold T1.
  • the third preset temperature threshold T3 is used to determine the temperature difference between the indoor ambient temperature and the outdoor ambient temperature at the same time. Since the temperature difference between the indoor ambient temperature and the outdoor ambient temperature at the same time is small in the single duct exhaust mode, the value of the third preset temperature threshold T3 can be less than the first temperature threshold T1.
  • the working limit parameter includes at least one of a rotation speed limit value of the outdoor fan, a compressor frequency limit value, and a whole machine current limit value of the mobile air conditioner.
  • the speed limit value, compressor frequency limit value and whole machine current limit value of a single-duct mobile air conditioner are respectively smaller than the speed limit value, compressor frequency limit value and whole machine current limit value of a dual-duct mobile air conditioner.
  • the speed limit value of the outdoor fan, the compressor frequency limit value, and the whole machine current limit value are set in a targeted manner according to the type of duct used by the mobile air conditioner. Specifically, when it is determined that the mobile air conditioner adopts a single duct, a smaller speed limit value, compressor frequency limit value, and whole machine current limit value of the mobile air conditioner are selected, so as to control the mobile air conditioner to work with smaller working limit parameters. When it is determined that the mobile air conditioner adopts double ducts, a larger speed limit value, compressor frequency limit value, and whole machine current limit value of the mobile air conditioner are selected, so as to control the mobile air conditioner to work with larger working limit parameters, so as to achieve targeted mobile air conditioning. Control optimization to ensure maximum performance of the entire machine and user experience.
  • the corresponding relationship table between the working limit parameter and the air duct type can be pre-stored in the data storage unit of the mobile air conditioner.
  • the type of air duct actually used is determined according to the indoor and outdoor temperatures, and then the pre-stored working limit parameter-air duct type relationship table is retrieved to determine the corresponding working limit parameter, and the mobile air conditioner is controlled to operate with the working limit parameter, so that the mobile air conditioner has better performance and high reliability under different air duct type installation conditions, thereby improving the user experience.
  • the speed limit value S2 is less than S1
  • the compressor frequency limit value F2 is less than F1
  • the whole machine current limit value I2 is less than I1.
  • the control method of the mobile air conditioner may include the following steps:
  • step S108 determining whether the outdoor environment temperature change value ⁇ T4 is less than the second preset temperature threshold value T2. If so, executing step S109; if not, executing step S110.
  • step S110 determining whether the indoor and outdoor temperature difference ⁇ T is greater than a third preset temperature threshold T. If so, executing step S110; if not, executing step S109.
  • the control method of the mobile air conditioner of the embodiment of the present disclosure first, the indoor ambient temperature and the outdoor ambient temperature are obtained, and the indoor ambient temperature change value and the outdoor ambient temperature change value are determined according to the indoor ambient temperature and the outdoor ambient temperature.
  • the method determines the duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determines the working limit parameters of the mobile air conditioner according to the duct type, and finally controls the mobile air conditioner according to the working limit parameters.
  • the method determines the duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determines the working limit parameters of the mobile air conditioner according to the duct type, thereby ensuring that the mobile air conditioner can achieve good performance and high reliability under different duct types, thereby improving user experience.
  • the present disclosure also proposes a mobile air conditioner.
  • the mobile air conditioner 100 of the embodiment of the present disclosure includes a memory 110, a processor 120, and a control program of the mobile air conditioner stored in the memory 110 and executable on the processor 120.
  • the processor 120 executes the control program of the mobile air conditioner, the above-mentioned control method of the mobile air conditioner is implemented.
  • the mobile air conditioner of the embodiment of the present disclosure based on the above-mentioned control method of the mobile air conditioner, it is ensured that the mobile air conditioner can achieve good performance and high reliability under different air duct types, thereby improving user experience.
  • the present disclosure also proposes a computer-readable storage medium.
  • the computer-readable storage medium of the embodiment of the present disclosure stores a control program of the mobile air conditioner, and the control program of the mobile air conditioner implements the above-mentioned control method of the mobile air conditioner when executed by a processor.
  • the mobile air conditioner based on the control method of the mobile air conditioner, it is ensured that the mobile air conditioner can achieve good performance and high reliability under different air duct types, thereby improving user experience.
  • the present disclosure also proposes a control device for a mobile air conditioner.
  • the control device of the mobile air conditioner may include: an acquisition module 10 , a first determination module 20 , a second determination module 30 and a control module 40 .
  • the acquisition module 10 is used to acquire the indoor ambient temperature and the outdoor ambient temperature.
  • the first determination module 20 is used to determine the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference according to the indoor ambient temperature and the outdoor ambient temperature.
  • the second determination module 30 is used to determine the air duct type of the mobile air conditioner according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determine the working limit parameters of the mobile air conditioner according to the air duct type.
  • the control module 40 is used to control the mobile air conditioner according to the working limit parameters.
  • the second determination module 30 determines the duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and is specifically used for: when the indoor ambient temperature change value reaches a first preset temperature threshold, if the outdoor ambient temperature change value is less than the second preset temperature threshold, and the indoor and outdoor temperature difference is greater than the third preset temperature threshold, then the duct type is determined to be a double duct.
  • the second determination module 30 determines the air duct type of the mobile air conditioner according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and is specifically used to: when the indoor ambient temperature change value reaches a first preset temperature threshold, if the outdoor ambient temperature change value is greater than or equal to a second preset temperature threshold, or the indoor and outdoor temperature difference is greater than or equal to the outdoor ambient temperature change value, the air duct type of the mobile air conditioner is determined according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference. If the temperature difference is less than or equal to the third preset temperature threshold, it is determined that the duct type is a single duct.
  • the acquisition module 10 acquires the outdoor ambient temperature by collecting the air inlet temperature of the external air duct of the mobile air conditioner.
  • the external air duct inlet of the mobile air conditioner when the duct type is a single duct, the external air duct inlet of the mobile air conditioner is connected to the indoor side; when the duct type is a double duct, the external air duct inlet of the mobile air conditioner is connected to the outdoor side.
  • the working limit parameter includes at least one of a rotation speed limit value of the outdoor fan, a compressor frequency limit value, and a whole machine current limit value of the mobile air conditioner.
  • the speed limit value, compressor frequency limit value and whole machine current limit value of a single-duct mobile air conditioner are respectively smaller than the speed limit value, compressor frequency limit value and whole machine current limit value of a dual-duct mobile air conditioner.
  • the indoor ambient temperature and the outdoor ambient temperature are obtained through the acquisition module, the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference are determined through the first determination module according to the indoor ambient temperature and the outdoor ambient temperature, the air duct type of the mobile air conditioner is determined according to the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference through the second determination module, and the working limit parameters of the mobile air conditioner are determined according to the air duct type, and the control module controls the mobile air conditioner according to the working limit parameters.
  • the device determines the air duct type of the mobile air conditioner based on the indoor ambient temperature change value, the outdoor ambient temperature change value and the indoor and outdoor temperature difference, and determines the working limit parameters of the mobile air conditioner according to the air duct type, thereby ensuring that the mobile air conditioner can achieve better performance and high reliability under different air duct types, thereby improving user experience.
  • computer-readable media include the following: an electrical connection portion with one or more wirings (electronic device), a portable computer disk box (magnetic device), a random access memory (RAM), a read-only memory (ROM), an erasable and programmable read-only memory (EPROM or flash memory), an optical fiber device, and a portable compact disk read-only memory (CDROM).
  • the computer-readable medium may even be a paper or other suitable medium on which the program is printed, since the program may be obtained electronically, for example, by optically scanning the paper or other medium, followed by editing, interpreting or processing in other suitable ways as necessary, and then It is stored in computer memory.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in the present disclosure can be understood according to specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开公开了一种移动空调器及其控制方法和控制装置、计算机存储介质,其中,所述控制方法包括:获取室内环境温度和室外环境温度(S1);根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差(S2);根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数(S3);根据工作限制参数对移动空调器进行控制(S4)。

Description

移动空调器及其控制方法和控制装置、计算机存储介质
相关申请的交叉引用
本公开要求于2022年11月11日提交的申请号为202211412751.5,名称为“移动空调器及其控制方法和控制装置、计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及移动空调器技术领域,尤其涉及一种移动空调器的控制方法、一种移动空调器、一种计算机可读存储介质和一种移动空调器的控制装置。
背景技术
变频移动空调器外风道的进出风形式对整机性能和可靠性有很大影响,但是变频移动空调器的外风道的风管附件由客户自行安装使用,从而导致变频移动空调器并不具有统一的进出风形式,因此,在运行过程中,为避免变频移动空调器损坏,通常控制移动空调器按最低限值运行,容易整机性能无法发挥到最大,影响用户体验。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种移动空调器的控制方法,基于室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
本公开的第二个目的在于提出一种移动空调器。
本公开的第三个目的在于提出一种计算机可读存储介质。
本公开的第四个目的在于提出一种移动空调器的控制装置。
为达到上述目的,本公开第一方面实施例提出了一种移动空调器的控制方法,包括:获取室内环境温度和室外环境温度;根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差;根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数;根据工作限制参数对移动空调器进行控制。
根据本公开实施例的移动空调器的控制方法,首先,获取室内环境温度和室外环境温度, 并根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差,然后根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,最后根据工作限制参数对移动空调器进行控制。该方法基于室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
另外,根据本公开上述实施例的移动空调器的控制方法,还可以具有如下的附加技术特征:
根据本公开的一个实施例,根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,包括:在室内环境温度变化值达到第一预设温度阈值时,如果室外环境温度变化值小于第二预设温度阈值、且室内外温差大于第三预设温度阈值,则确定风管类型为双风管。
根据本公开的一个实施例,根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,包括:在室内环境温度变化值达到第一预设温度阈值时,如果室外环境温度变化值大于等于第二预设温度阈值、或者室内外温差小于等于第三预设温度阈值,则确定风管类型为单风管。
根据本公开的一个实施例,通过采集移动空调器的外风道进风口温度以获取室外环境温度。
根据本公开的一个实施例,在风管类型为单风管时,移动空调器的外风道进风口连通至室内侧;在风管类型为双风管时,移动空调器的外风道进风口连通至室外侧。
根据本公开的一个实施例,工作限制参数包括室外风机的转速限制值、压缩机频率限制值和移动空调器的整机电流限制值中的至少一种。
根据本公开的一个实施例,单风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值分别对应小于双风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值。
为达到上述目的,本公开第二方面实施例提出了一种移动空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的移动空调器的控制程序,处理器执行移动空调器的控制程序时,实现上述的移动空调器的控制方法。
根据本公开实施例的移动空调器,通过处理器执行移动空调器的控制程序,实现上述的移动空调器的控制方法,通过自动识别移动空调器的风管类型,确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提 高了用户体验。
为达到上述目的,本公开第三方面实施例提出了一种计算机可读存储介质,其上存储有移动空调器的控制程序,该移动空调器的控制程序被处理器执行时实现上述的移动空调器的控制方法。
根据本公开实施例的计算机可读存储介质,通过处理器执行移动空调器的控制程序,实现上述的移动空调器的控制方法,通过自动识别移动空调器的风管类型,确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
为达到上述目的,本公开第四方面实施例提出了一种移动空调器的控制装置,包括:获取模块,用于获取室内环境温度和室外环境温度;第一确定模块,用于根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差;第二确定模块,用于根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数;控制模块,用于根据工作限制参数对移动空调器进行控制。
根据本公开实施例的移动空调器的控制装置,通过获取模块获取室内环境温度和室外环境温度,通过第一确定模块根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差,通过第二确定模块根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,控制模块根据工作限制参数对移动空调器进行控制。由此,该装置基于室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1为根据本公开实施例的移动空调器的控制方法的流程图;
图2为根据本公开一个具体实施例的移动空调器的控制方法的流程图;
图3为根据本公开实施例的移动空调器的方框图;
图4为根据本公开实施例的移动空调器的控制装置的方框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例提出的移动空调器的控制方法、移动空调器、计算机可读存储介质和移动空调器的控制装置。
图1为根据本公开实施例的移动空调器的控制方法的流程图。
参照图1所示,本公开实施例的移动空调器的控制方法,可包括以下步骤:
S1,获取室内环境温度和室外环境温度;
S2,根据室内环境温度和室外环境温度确定室内环境温度变化值△T1、室外环境温度变化值△T4和室内外温差△T;
S3,根据室内环境温度变化值△T1、室外环境温度变化值△T4和室内外温差△T确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数;
S4,根据工作限制参数对移动空调器进行控制。
具体地,在移动空调器上电启动,压缩机开始运行时,通过相应的温度传感器分别获取初始室内环境温度T10和初始室外环境温度T40,在控制移动空调器运行预设时间t1后,再次通过温度传感器获取当前室内环境温度T11和当前室外环境温度T41。计算得到室内环境温度变化值△T1=|T11-T10|,室外环境温度变化值△T4=|T41-T40|,以及当前室内外温差△T=|T41-T11|,然后根据室内环境温度变化值△T1、室外环境温度变化值△T4和当前室内外温差△T确定当前移动空调器安装的风管类型是双风管还是单风管,然后根据移动空调器安装的风管类型确定工作限制参数,并控制移动空调器在该工作限制参数下运行。由此,该方法通过检测移动空调器在运行中的室内环境温度和室外环境温度变化情况,判断出移动空调器安装的是双风管还是单风管,在判断移动空调器安装的风管类型后,控制移动空调器按照相应的工作限制参数进行工作,从而根据移动空调器的风管类型针对性做出控制优化,保证移动空调器整体性能最大化的发挥,提升用户体验。
需要说明的是,上述实施例中的室内环境温度变化值△T1、室外环境温度变化值△T4和当前室内外温差△T的计算公式均采用绝对值的计算方式,除上述计算方式,还可以根据空调器的工作模式进行计算,例如,当确定空调器以制冷模式运行时,则室内环境温度变化值△T1=T10-T11,室外环境温度变化值△T4=T40-T41,以及当前室内外温差△T=T41-T11;当空调器以制热模式运行时,则室内环境温度变化值△T1=T11-T10,室外环境温度变化值△T4=T41-T40,以及当前室内外温差△T=T11-T41。
另外需要说明的是,上述室内环境温度为当前移动空调器所处的环境温度,可以通过设置在移动空调器外壳的温度传感器获取。室外环境温度为移动空调器外风道吸入的空气环 境温度,在本公开的一个实施例中,通过采集移动空调器的外风道进风口温度以获取室外环境温度。也就是说,可以通过设置在移动空调器的外风道进风口处的温度传感器对室外环境温度进行获取。
根据本公开的一个实施例,在风管类型为单风管时,移动空调器的外风道进风口连通至室内侧;在风管类型为双风管时,移动空调器的外风道进风口连通至室外侧。
具体地,根据移动空调器采用的排风管的数量将风管类型分为单风管和双风管,当移动空调器采用单风管排风时,移动空调器的内风道从室内吸风经蒸发器后,由内风道吹到室内,移动空调器的外风道从室内吸风经冷凝器后,由外风道通过一根排风管吹到室外。也就是说,在移动空调器采用单风管时,风管连接移动空调器的外风道出风口,移动空调器的外风道进风口直接连接室内,则通过安装在外风道进风口处的温度传感器获取的室外环境温度实际为室内环境的空气温度。因此,对于采用单风管的移动空调器,采集的室外环境温度随着室内环境温度的改变而改变,在同一时刻所采集的室内环境温度和室外环境温度之间的温差较小甚至为零。
当移动空调器采用双风管排风时,移动空调器的内风道从室内吸风经蒸发器后,由内风道吹到室内,移动空调器的外风道通过一根排风管从室外吸风经冷凝器后,外风道通过另一根排风管吹到室外。也就是说,在移动空调器采用双风管时,两根风管的一端分别连接移动空调器的外风道的进风口和出风口,另一端延伸至室外,该移动空调器的外风道进风口处设置的温度传感器获取的室外环境温度为实际的室外环境的空气温度。因此,该移动空调器所获取的室外环境温度与室内环境温度无关。
下面对根据室内环境温度变化值△T1、室外环境温度变化值△T4和室内外温差△T确定移动空调器所采用的风管类型为双风管还是单风管的判断过程进行详细说明。
根据本公开的一个实施例,根据室内环境温度变化值△T1、室外环境温度变化值△T4和室内外温差△T确定移动空调器的风管类型,包括:在室内环境温度变化值△T1达到第一预设温度阈值T1时,如果室外环境温度变化值△T4小于第二预设温度阈值T2、且室内外温差△T大于第三预设温度阈值T3,则确定风管类型为双风管。
根据本公开的一个实施例,根据室内环境温度变化值△T1、室外环境温度变化值△T4和室内外温差△T确定移动空调器的风管类型,包括:在室内环境温度变化值△T1达到第一预设温度阈值T1时,如果室外环境温度变化值△T4大于等于第二预设温度阈值T2、或者室内外温差△T小于等于第三预设温度阈值T3,则确定风管类型为单风管。
具体地,在移动空调器运行过程中,对当前室内环境温度T11进行实时获取,并确定当前室内环境温度变化值△T1,将获取的室内环境温度变化值△T1与第一预设温度阈值T1相比较,如果室内环境温度变化值△T1小于第一预设温度阈值T1,则继续控制移动空调器运 行,不对当前室外环境温度T41进行获取。重复上述步骤,直至室内环境温度变化值△T1大于等于第一预设温度阈值T1,对当前室外环境温度T41进行获取,并进一步计算得到室外环境温度变化值△T4和当前室内外温差△T。然后将获取的室外环境温度变化值△T4与第二预设温度阈值T2相比较,如果室外环境温度变化值△T4未达到第二预设温度阈值T2,则认为当前室外环境温度变化较小,进一步判断当前室内外温差△T和第三预设温度阈值T3的大小关系;如果室外环境温度变化值△T4达到了第二预设温度阈值T2,则认为当前室外环境温度变化较大,室外环境温度随室内环境温度的变化而变化,确定移动空调器采用的单风管排风。
在上述室外环境温度变化值△T4未达到第二预设温度阈值T2时,如果当前室内外温差△T超过了第三预设温度阈值T3,则认为移动空调器当前的室外环境温度T41和当前室内环境温度T11之间的温差较大,因此确定该移动空调器采用的双风管排风。如果当前室内外温差△T未超过第三预设温度阈值T3,则认为移动空调器获取的当前室外环境温度T41和当前室内环境温度T11之间的温差较小,确定该移动空调器采用的单风管排风。
需要说明的是,第一预设温度阈值T1、第二预设温度阈值T2和第三预设温度阈值T3可根据实际情况进行设定。例如,为保证有明显的温差效果,第一预设温度阈值T1可以设置为5℃、7℃等。上述第二预设温度阈值T2用于判断室外环境温度是否随室内环境温度的变化而产生相应的温度变化,因此,第二预设温度阈值T2的取值可根据第一预设温度阈值T1进行设定,比如,第二预设温度阈值T2可等于第一预设温度阈值T1,或者小于第一预设温度阈值T1预设温度。另外,第三预设温度阈值T3用于判断同一时刻下室内环境温度和室外环境温度之间的温差大小,由于单风管排风模式下,同一时刻的室内环境温度和室外环境温度之间的温差较小,因此第三预设温度阈值T3的取值可以小于第一温度阈值T1。
根据本公开的一个实施例,工作限制参数包括室外风机的转速限制值、压缩机频率限制值和移动空调器的整机电流限制值中的至少一种。
根据本公开的一个实施例,单风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值分别对应小于双风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值。
也就是说,在判断机器安装的风管附件类型后,根据移动空调器采用的风管类型对室外风机的转速限制值、压缩机频率限制值和整机电流限制值进行针对性设定。具体地,当确定移动空调器采用单风管时,选用较小的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值,从而控制移动空调器以较小的工作限制参数进行工作。当确定移动空调器采用双风管时,选用较大的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值,从而控制移动空调器以较大的工作限制参数进行工作,以实现移动空调器针对性的 控制优化,保证整机性能的最大化,保证用户体验。
需要说明的是,可预先将工作限制参数-风管类型的对应关系表预存储在移动空调器的数据存储单元内。在移动空调器的实际运行过程中,根据室内外温度对实际采用的风管类型进行确定,然后对预先存储的工作限制参数-风管类型关系表进行调取,确定相应的工作限制参数,并以该工作限制参数控制移动空调器运行,从而使得移动空调器在不同风管类型安装情况下,都有比较好的性能效果和高可靠性,提高用户体验。
作为本公开的一个具体实施例,转速限制值S2小于S1,压缩机频率限制值F2小于F1,整机电流限制值I2小于I1,如图2所示,该移动空调器的控制方法可包括以下步骤:
S101,移动空调器上电,压缩机启动。
S102,获取初始室内环境温度T10、初始室外环境温度T40。
S103,获取当前室内环境温度T11。
S104,计算室内环境温度变化值△T1=|T11-T10|。
S105,判断室内环境温度变化值△T1是否达到第一预设温度阈值T1。若是,执行步骤S106;若否,执行步骤S103。
S106,获取当前室外环境温度T41。
S107,计算室外环境温度变化值△T4=|T41-T40|,当前室内外温差△T=|T41-T11|。
S108,判断是否室外环境温度变化值△T4小于第二预设温度阈值T2。若是,执行步骤S109;若否,执行步骤S110。
S109,确定风管类型为单风管。执行步骤S114。
S110,判断是否室内外温差△T大于第三预设温度阈值T。若是,执行步骤S110;若否,执行步骤S109。
S111,确定风管类型为双风管。
S112,确定移动空调器的转速限制值为S1、压缩机频率限制值为F1和整机电流限制值为I1。
S113,根据转速限制值S1、压缩机频率限制值F1和整机电流限制值I1对移动空调器进行控制。
S114,确定移动空调器的转速限制值为S2、压缩机频率限制值为F2和整机电流限制值为I2。
S115,根据转速限制值S2、压缩机频率限制值F2和整机电流限制值I2对移动空调器进行控制。
综上,根据本公开实施例的移动空调器的控制方法,首先,获取室内环境温度和室外环境温度,并根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变 化值和室内外温差,然后根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,最后根据工作限制参数对移动空调器进行控制。该方法基于室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
对应上述实施例,本公开还提出了一种移动空调器。
如图3所示,本公开实施例的移动空调器100,包括存储器110、处理器120及存储在存储器110上并可在处理器120上运行的移动空调器的控制程序,处理器120执行移动空调器的控制程序时,实现上述的移动空调器的控制方法。
根据本公开实施例的移动空调器,基于上述的移动空调器的控制方法,保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
对应上述实施例,本公开还提出了一种计算机可读存储介质。
本公开实施例的计算机可读存储介质,其上存储有移动空调器的控制程序,该移动空调器的控制程序被处理器执行时实现上述的移动空调器的控制方法。
根据本公开实施例的计算机可读存储介质,基于上述的移动空调器的控制方法,保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
对应上述实施例,本公开还提出了一种移动空调器的控制装置。
如图4所示,本公开实施例的移动空调器的控制装置可包括:获取模块10、第一确定模块20、第二确定模块30和控制模块40。
其中,获取模块10用于获取室内环境温度和室外环境温度。第一确定模块20用于根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差。第二确定模块30用于根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数。控制模块40用于根据工作限制参数对移动空调器进行控制。
根据本公开的一个实施例,第二确定模块30根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,具体用于:在室内环境温度变化值达到第一预设温度阈值时,如果室外环境温度变化值小于第二预设温度阈值、且室内外温差大于第三预设温度阈值,则确定风管类型为双风管。
根据本公开的一个实施例,第二确定模块30根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,具体用于:在室内环境温度变化值达到第一预设温度阈值时,如果室外环境温度变化值大于等于第二预设温度阈值、或者室内外 温差小于等于第三预设温度阈值,则确定风管类型为单风管。
根据本公开的一个实施例,获取模块10通过采集移动空调器的外风道进风口温度以获取室外环境温度。
根据本公开的一个实施例,在风管类型为单风管时,移动空调器的外风道进风口连通至室内侧;在风管类型为双风管时,移动空调器的外风道进风口连通至室外侧。
根据本公开的一个实施例,工作限制参数包括室外风机的转速限制值、压缩机频率限制值和移动空调器的整机电流限制值中的至少一种。
根据本公开的一个实施例,单风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值分别对应小于双风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值。
需要说明的是,本公开实施例的移动空调器的控制装置中未披露的细节,请参照本公开上述实施例的移动空调器的控制方法中所披露的细节,具体这里不再赘述。
根据本公开实施例的移动空调器的控制装置,通过获取模块获取室内环境温度和室外环境温度,通过第一确定模块根据室内环境温度和室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差,通过第二确定模块根据室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,控制模块根据工作限制参数对移动空调器进行控制。由此,该装置基于室内环境温度变化值、室外环境温度变化值和室内外温差确定移动空调器的风管类型,并根据风管类型确定移动空调器的工作限制参数,从而保证移动空调器在不同风管类型下都能实现较好的性能效果和高可靠性,提高了用户体验。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将 其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 移动空调器的控制方法,包括:
    获取室内环境温度和室外环境温度;
    根据所述室内环境温度和所述室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差;
    根据所述室内环境温度变化值、室外环境温度变化值和室内外温差确定所述移动空调器的风管类型,并根据所述风管类型确定所述移动空调器的工作限制参数;
    根据所述工作限制参数对所述移动空调器进行控制。
  2. 根据权利要求1所述的方法,其中,根据所述室内环境温度变化值、室外环境温度变化值和室内外温差确定所述移动空调器的风管类型,包括:
    在所述室内环境温度变化值达到第一预设温度阈值时,如果所述室外环境温度变化值小于第二预设温度阈值、且所述室内外温差大于第三预设温度阈值,则确定所述风管类型为双风管。
  3. 根据权利要求1或2所述的方法,其中,根据所述室内环境温度变化值、室外环境温度变化值和室内外温差确定所述移动空调器的风管类型,包括:
    在所述室内环境温度变化值达到第一预设温度阈值时,如果所述室外环境温度变化值大于等于第二预设温度阈值、或者所述室内外温差小于等于第三预设温度阈值,则确定所述风管类型为单风管。
  4. 根据权利要求1-3中任一项所述的方法,其中,通过采集所述移动空调器的外风道进风口温度以获取所述室外环境温度。
  5. 根据权利要求4所述的方法,其中,
    在所述风管类型为单风管时,所述移动空调器的外风道进风口连通至室内侧;
    在所述风管类型为双风管时,所述移动空调器的外风道进风口连通至室外侧。
  6. 根据权利要求5所述的方法,其中,所述工作限制参数包括室外风机的转速限制值、压缩机频率限制值和所述移动空调器的整机电流限制值中的至少一种。
  7. 根据权利要求6所述的方法,其中,所述单风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值分别对应小于所述双风管的移动空调器的转速限制值、压缩机频率限制值和整机电流限制值。
  8. 移动空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的移动空调器的控制程序,所述处理器执行所述移动空调器的控制程序时,实现根据权利要求1-7中任一项所述的移动空调器的控制方法。
  9. 计算机可读存储介质,其上存储有移动空调器的控制程序,该移动空调器的控制程序被处理器执行时实现根据权利要求1-7中任一项所述的移动空调器的控制方法。
  10. 移动空调器的控制装置,包括:
    获取模块,用于获取室内环境温度和室外环境温度;
    第一确定模块,用于根据所述室内环境温度和所述室外环境温度确定室内环境温度变化值、室外环境温度变化值和室内外温差;
    第二确定模块,用于根据所述室内环境温度变化值、室外环境温度变化值和室内外温差确定所述移动空调器的风管类型,并根据所述风管类型确定所述移动空调器的工作限制参数;
    控制模块,用于根据所述工作限制参数对所述移动空调器进行控制。
PCT/CN2023/077181 2022-11-11 2023-02-20 移动空调器及其控制方法和控制装置、计算机存储介质 WO2024098584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211412751.5 2022-11-11
CN202211412751.5A CN118066656A (zh) 2022-11-11 2022-11-11 移动空调器及其控制方法和控制装置、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2024098584A1 true WO2024098584A1 (zh) 2024-05-16

Family

ID=91031824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077181 WO2024098584A1 (zh) 2022-11-11 2023-02-20 移动空调器及其控制方法和控制装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN118066656A (zh)
WO (1) WO2024098584A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011492A (ko) * 1999-07-28 2001-02-15 황한규 에어컨의 운전제어방법
JP2016205763A (ja) * 2015-04-28 2016-12-08 株式会社富士通ゼネラル 空気調和機
CN110195893A (zh) * 2019-05-22 2019-09-03 烟台睿加节能科技有限公司 一种健康型空调风管***
CN209801703U (zh) * 2019-03-27 2019-12-17 张红梅 能够让全屋建筑呼吸的智能空气循环新风***
CN111426021A (zh) * 2020-02-27 2020-07-17 青岛海尔空调电子有限公司 风管式空调器及其运行控制方法、装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011492A (ko) * 1999-07-28 2001-02-15 황한규 에어컨의 운전제어방법
JP2016205763A (ja) * 2015-04-28 2016-12-08 株式会社富士通ゼネラル 空気調和機
CN209801703U (zh) * 2019-03-27 2019-12-17 张红梅 能够让全屋建筑呼吸的智能空气循环新风***
CN110195893A (zh) * 2019-05-22 2019-09-03 烟台睿加节能科技有限公司 一种健康型空调风管***
CN111426021A (zh) * 2020-02-27 2020-07-17 青岛海尔空调电子有限公司 风管式空调器及其运行控制方法、装置

Also Published As

Publication number Publication date
CN118066656A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US8538587B2 (en) HVAC system with automated blower capacity dehumidification, a HVAC controller therefor and a method of operation thereof
JP2018538501A (ja) 空気調和機の制御方法及び空気調和機
EP2500666B1 (en) Air-conditioning apparatus
CN111023452B (zh) 一种多联机自清洁控制方法、装置及多联机
JP6701373B2 (ja) 空気調和装置
CN110736248B (zh) 空调出风温度的控制方法和装置
WO2024119723A1 (zh) 空调设备及其故障检测方法
WO2018188520A1 (zh) 在线检测空调制冷能效比和制冷量的方法
CN111089406A (zh) 风机盘管出风控制方法、装置及控制器和空调机组
WO2024098584A1 (zh) 移动空调器及其控制方法和控制装置、计算机存储介质
CN110940031A (zh) 一种空调控制方法及厨房空调***、存储介质
US10691423B2 (en) Testing systems and methods for performing HVAC zone airflow adjustments
CN111981646B (zh) 空调器的清洁方法、空调器和可读存储介质
CN112161372B (zh) 有效降噪的空调控制方法、装置及空调机组
JP6685418B2 (ja) 空調システム、空調制御装置、空調方法及びプログラム
US11573022B2 (en) Sound-based HVAC system, method and device for diagnostics analysis
CN110848880B (zh) 空调器及其自清洁控制方法和控制装置
CN109945398B (zh) 空调器及其控制方法和控制装置
JP3569702B2 (ja) 風量一定制御dcファンモータ
US11719457B2 (en) HVAC system and method for determining a temperature offset between a discharged air temperature and an indoor temperature
JP2016031634A (ja) 空調システム、送風量予測装置、送風量予測方法およびプログラム
JP6990201B2 (ja) 建物の空調方法及び建物の空調装置
CN117364450A (zh) 一种干衣机的控制方法、装置、干衣机及存储介质
JP2020029970A (ja) 空調システム
US20240102676A1 (en) Sound-based motor diagnostics for a condensing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887294

Country of ref document: EP

Kind code of ref document: A1