WO2024095393A1 - Optical communication system, optical communication device, device switching method, and program - Google Patents

Optical communication system, optical communication device, device switching method, and program Download PDF

Info

Publication number
WO2024095393A1
WO2024095393A1 PCT/JP2022/040987 JP2022040987W WO2024095393A1 WO 2024095393 A1 WO2024095393 A1 WO 2024095393A1 JP 2022040987 W JP2022040987 W JP 2022040987W WO 2024095393 A1 WO2024095393 A1 WO 2024095393A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
communication
olt
switching
pon
Prior art date
Application number
PCT/JP2022/040987
Other languages
French (fr)
Japanese (ja)
Inventor
文都 木村
聡志 嶌津
真良 関口
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/040987 priority Critical patent/WO2024095393A1/en
Publication of WO2024095393A1 publication Critical patent/WO2024095393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks

Definitions

  • the present invention relates to an optical communication system, an optical communication device, a device switching method, and a program.
  • the present invention has been made in consideration of the above-mentioned technical background, and aims to provide an optical communication system, an optical communication device, a device switching method, and a program that can suppress communication interruptions that occur when switching communication devices.
  • One aspect of the present invention is an optical communication system having a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device in place of the second communication device after a device switching process, in which the second communication device has a second communication unit that communicates with the first communication device and a second control unit that transmits information indicating the execution timing of the switching process to the third communication device and stops communication by the second communication unit in accordance with the execution timing, and the third communication device has a third communication unit that communicates with the first communication device and a third control unit that obtains information indicating the execution timing from the second communication device and starts communication by the third communication unit in accordance with the execution timing.
  • Another aspect of the present invention is an optical communication device that includes a communication unit that communicates with a first communication device, and a control unit that determines the execution timing of a switching process for switching the communication device that communicates with the first communication device from its own device to a second communication device, stops communication by the communication unit at a stop timing based on the execution timing, and transmits information indicating the execution timing to the second communication device that starts communication with the first communication device at a start timing based on the execution timing.
  • Another aspect of the present invention is a device switching method in an optical communication system having a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device instead of the second communication device after a device switching process, the device switching method including a transmission step in which the second communication device transmits information indicating an execution timing of the switching process to the third communication device, an acquisition step in which the third communication device acquires information indicating the execution timing from the second communication device, a second control step in which the second communication device stops communication with the first communication device in accordance with the execution timing, and a third control step in which the third communication device starts communication with the first communication device in accordance with the execution timing.
  • Another aspect of the present invention is a program for causing a computer to function as the optical communication device described above.
  • the present invention makes it possible to reduce communication interruptions that occur when switching communication devices.
  • FIG. 1 is an overall configuration diagram of a conventional optical communication system 1a.
  • 1 is an overall configuration diagram of an optical communication system 1 according to a first embodiment of the present invention.
  • FIG. 1 is a diagram showing a state before switching from an existing OLT 10-1 to a successor OLT 10-2.
  • FIG. 13 is a diagram showing the state of wiring after pre-wiring for switching the OLT.
  • FIG. 13 is a diagram showing the state of wiring after OLT switching has been performed.
  • 4 is a flowchart showing an operation of the optical communication system 1 in the first embodiment of the present invention.
  • FIG. 4 is a sequence diagram showing an OLT switching process in the first embodiment of the present invention.
  • FIG. 11 is a sequence diagram showing an OLT switching process in the second embodiment of the present invention.
  • optical communication system optical communication device, device switching method, and program of the embodiment will be described below with reference to the drawings.
  • wiring work is carried out in advance to switch from an existing OLT (hereinafter referred to as the "existing OLT”) to a successor OLT (hereinafter referred to as the “successor OLT”).
  • existing OLT an existing OLT
  • successor OLT a successor OLT
  • switching port a redundant network port
  • switching port a post-switching network port
  • information is shared between the existing OLT and the successor OLT.
  • the control panels provided in each of the existing OLT and the successor OLT are communicatively connected to each other.
  • information about the existing OLT hereinafter referred to as "OLT information" is transmitted from the existing OLT to the successor OLT, and the timing of switching is determined based on the OLT information.
  • OLT information information about the existing OLT
  • the timing of switching is determined based on the OLT information.
  • the optical communications system, optical communications device, device switching method, and program of the embodiment have technology that suppresses communication interruptions that occur when switching communications devices through advance wiring and information sharing between the existing OLT and successor OLT.
  • optical communication system 1a which is an example of a conventional optical communication system, for comparison.
  • FIG. 1 is an overall configuration diagram of a conventional optical communication system 1a.
  • the conventional optical communication system 1a includes an existing OLT 10a-1, a successor OLT 10a-2, an optical selector 20a-1, an optical selector 20a-2, an ONU 30, and a higher-level device 40.
  • the existing OLT 10a-1 is configured to include a control panel 11a-1 and multiple PON (Passive Optical Network) interface packages.
  • the multiple PON interface packages include at least one PON interface package (hereinafter referred to as "PON-PKG 12-1") used for normal communication with the ONU 30, and at least one PON interface package (hereinafter referred to as "redundancy PKG 12r-1”) provided for redundancy purposes. Note that in FIG. 1, to simplify the illustration, only one PON-PKG 12-1 and one redundancy PKG 12r-1 are shown.
  • the optical selector 20a-1 includes a coupler module 21-1 and an optical switch 22-1.
  • the coupler module 21-1 communicatively connects the ONU 30, the PON-PKG 12-1, and the optical switch 22-1 to each other.
  • the optical switch 22-1 communicatively connects the coupler module 21-1 and the redundant PKG 12r-1 to each other.
  • the PON-PKG 12-1 communicatively connects the coupler module 21-1 and the higher-level device 40 to each other.
  • the redundant PKG 12r-1 communicatively connects to the optical switch 22-1.
  • the higher-level device 40 communicatively connects to the PON-PKG 12-1.
  • the ONU 30 and the higher-level device 40 Before switching from the existing OLT 10a-1 to the successor OLT 10a-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-1 of the existing OLT 10a-1 and the coupler module 21-1 of the optical selector 20a-1.
  • the successor OLT 10a-2 is configured to include a control panel 11a-2 and multiple PON interface packages.
  • the multiple PON interface packages include at least one PON interface package (hereinafter referred to as "PON-PKG 12-2") used for normal communication with the ONU 30, and at least one PON interface package (hereinafter referred to as "redundancy PKG 12r-2”) provided for redundancy. Note that in FIG. 1, to simplify the illustration, only one PON-PKG 12-2 and one redundancy PKG 12r-2 are shown.
  • the optical selector 20a-2 includes a coupler module 21-2 and an optical switch 22-2.
  • the coupler module 21-2 communicatively connects the PON-PKG 12-2 and the optical switch 22-2 to each other.
  • the optical switch 22-2 communicatively connects the coupler module 21-2 and the redundant PKG 12r-2 to each other.
  • the PON-PKG 12-2 is communicatively connected to the coupler module 21-2.
  • the redundant PKG 12r-2 is communicatively connected to the optical switch 22-2.
  • the coupler module 21-2 and the ONU 30 are not connected to each other for communication. Also, before switching from the existing OLT 10a-1 to the successor OLT 10a-2, the PON-PKG 12-2 and the higher-level device 40 are not connected to each other for communication.
  • the physical wiring is manually rewired. Specifically, the wiring connected from the ONU 30 to the coupler module 21-1 of the optical selector 20a-1 is rewired so that it is connected from the ONU 30 to the coupler module 21-2 of the optical selector 20a-2. In addition, the wiring connected from the upper device 40 to the PON-PKG 12-1 of the existing OLT 10a-1 is rewired so that it is connected from the upper device 40 to the PON-PKG 12-2 of the successor OLT 10a-2.
  • the ONU 30 and the higher-level device 40 After switching from the existing OLT 10a-1 to the successor OLT 10a-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-2 of the successor OLT 10a-2 and the coupler module 21-2 of the optical selector 20a-2.
  • FIG. 2 is a diagram showing the overall configuration of an optical communication system 1 according to a first embodiment of the present invention.
  • the optical communication system 1 includes an existing OLT 10-1, a successor OLT 10-2, an optical selector 20a-1, an optical selector 20, an ONU 30, and a higher-level device 40.
  • the existing OLT 10-1 is configured to include a control panel 11-1 and multiple PON interface packages.
  • the multiple PON interface packages include at least one PON interface package (PON-PKG 12-1) used for normal communication with the ONU 30, and at least one PON interface package (redundancy PKG 12r-1) provided for redundancy. Note that in FIG. 2, to simplify the illustration, only one PON-PKG 12-1 and one redundancy PKG 12r-1 are shown.
  • the optical selector 20 includes a coupler module 21 and an optical switch 22.
  • the coupler module 21 communicatively connects the ONU 30, the PON-PKG 12-1, and the optical switch 22 to each other.
  • the optical switch 22 communicatively connects the coupler module 21 and the redundant PKG 12r-1 to each other.
  • the PON-PKG 12-1 communicatively connects the coupler module 21 and the higher-level device 40 to each other.
  • the redundant PKG 12r-1 communicatively connects to the optical switch 22.
  • the higher-level device 40 communicatively connects to the PON-PKG 12-1.
  • the ONU 30 and the higher-level device 40 Before switching from the existing OLT 10-1 to the successor OLT 10-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-1 of the existing OLT 10-1 and the coupler module 21 of the optical selector 20.
  • the successor OLT 10-2 is configured to include a control panel 11-2 and multiple PON interface packages.
  • the multiple PON interface packages include at least one PON interface package (PON-PKG 12-2) used for normal communication with the ONU 30, and at least one PON interface package (redundancy PKG 12r-2) provided for redundancy. Note that in FIG. 2, to simplify the illustration, only one PON-PKG 12-2 and one redundancy PKG 12r-2 are shown.
  • the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected in advance of the switching.
  • the coupler module 21 of the optical selector 20 and the PON-PKG 12-2 of the successor OLT 10-2 are connected in advance before the switching.
  • the PON-PKG 12-2 of the successor OLT 10-2 and the higher-level device 40 are connected in advance before the switching.
  • the coupler module 21 of the optical selector 20 is connected to the PON-PKG 12-2 of the successor OLT 10-2 using a redundant port of the coupler module 21. Details of the connection to the redundant port will be explained later.
  • OLT information regarding the existing OLT 10-1 is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2.
  • the OLT function is handed over from the existing OLT 10-1 to the successor OLT 10-2.
  • the OLT information referred to here includes, for example, the MAC (Media Access Control) address of each ONU, ONU alarm information, VLAN (Virtual Local Area Network) setting information, port information, and ONU setting information.
  • MAC Media Access Control
  • VLAN Virtual Local Area Network
  • the control panel 11-1 of the existing OLT 10-1 and the control panel 11-2 of the successor OLT 10-2 exchange information, including OLT information, in real time, and automatically switch from the existing OLT 10-1 to the successor OLT 10-2 by controlling the operation of the coupler module 21 of the optical selector 20 at the appropriate timing.
  • the ONU 30 and the higher-level device 40 After switching from the existing OLT 10-1 to the successor OLT 10-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-2 of the successor OLT 10-2 and the coupler module 21 of the optical selector 20.
  • the appropriate timing is determined, for example, based on whether or not a situation in which priority frames are being sent and received is occurring.
  • a situation in which priority frames are being sent and received here is, for example, a situation in which important communications such as emergency calls are occurring.
  • the control panel 11-1 of the existing OLT 10-1 automatically identifies the appropriate switching timing by monitoring in real time whether or not priority frames are being sent and received.
  • the control panel 11-1 of the existing OLT 10-1 transmits the identified switching timing to the control panel 11-2 of the successor OLT 10-2.
  • the existing OLT 10-1 and the successor OLT 10-2 automatically execute the process for switching the OLTs in a timely manner based on the transmitted information.
  • the control panel 11-1 of the existing OLT 10-1 and the control panel 11-2 of the OLT 10-2 execute the switching by aligning the timing of starting and stopping light emission based on the transmitted information.
  • the failed PON-PKG 12-1 may be preferentially switched to the PON-PKG 12-2 of the successor OLT 10-2. In this case, it is possible to provide redundancy to the communications by the optical communications system 1.
  • the OLT information transmitted from control panel 11-1 to control panel 11-2 may include authentication information required at the time of switching.
  • the successor OLT 10-2 can hold the authentication information in advance, which makes it possible to shorten the communication interruption time that occurs due to the authentication process at the time of switching.
  • redundancy can be provided between the OLTs by prior wiring. This makes it possible to respond to a failure in the PON-PKG 12-1 and switch the OLT in parallel.
  • Figs. 3 to 5 show an excerpt of the configuration of the optical communication system 1, including a part of the configuration of the existing OLT 10-1, a part of the configuration of the successor OLT 10-2, an optical selector 20, and an ONU 30.
  • Figure 3 is a diagram showing the state before switching from the existing OLT 10-1 to the successor OLT 10-2. That is, Figure 3 shows the state of the wiring before preliminary wiring for the OLT switching is performed.
  • Figure 4 is a diagram showing the state of the wiring after preliminary wiring for the OLT switching is performed.
  • Figure 5 is a diagram showing the state of the wiring after the OLT switching is performed.
  • the port connected to the ONU 30 of the coupler module 21 is connected to a port connected to the PON-PKG 12-1 of the existing OLT 10-1 and a redundant port connected to the redundant PKG 12r-1 of the existing OLT 10-1 via the optical switch 22.
  • the wiring that connects the redundant port of the coupler module 21 to the optical switch 22 in advance for OLT switching is disconnected from the wiring on the optical switch 22 side, and is replaced with the PON-PKG 12-2 of the successor OLT 10-2.
  • the optical communication system 1 in this embodiment can avoid communication interruptions caused by changing the wiring when switching the OLT by using redundant ports to perform wiring in advance.
  • the device switching method described above is not limited to application to PON communication systems, but can also be applied to optical access communications such as media converters.
  • FIG. 6 is a flowchart showing the operation of the optical communication system 1 in the first embodiment of the present invention.
  • step S001 when switching from the existing OLT 10-1 to the successor OLT 10-2 in the optical communication system 1, wiring is performed in advance (step S001). Specifically, the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected in advance of the switching. In addition, the coupler module 21 of the optical selector 20 and the PON-PKG 12-2 of the successor OLT 10-2 are connected in advance of the switching. In addition, the PON-PKG 12-2 of the successor OLT 10-2 and the higher-level device 40 are connected in advance of the switching.
  • OLT information regarding the existing OLT 10-1 is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2 (step S002).
  • control panel 11-1 of the existing OLT 10-1 checks the status of the PON-PKG 12-1 (step S003).
  • control board 11-1 and control board 11-2 switch the failed PON-PKG 12-1 to PON-PKG 12-2 of successor OLT 10-2 as a priority (step S005). Then, the process proceeds to step S009.
  • step S004 If no failure is detected in the PON-PKG 12-1 (step S004: No), the control panel 11-1 checks the traffic on a PON-PKG 12-1 basis (step S006).
  • step S007 If the traffic check detects that a priority frame is being transmitted (step S007: Yes), the control boards 11-1 and 11-2 wait until the transmission of the priority frame is complete (step S008). Then, the process returns to step S002.
  • control boards 11-1 and 11-2 execute OLT switching (step S009).
  • the control boards 11-1 and 11-2 perform processing associated with the completion of the OLT switching (step S011).
  • the processing associated with the completion of the OLT switching here refers to, for example, the processing shown in FIG. 5 above, in which the wiring on the PON-PKG 12-1 side is removed from the wiring that connects the port of the coupler module 21 connected to the PON-PKG 12-1 and the PON-PKG 12-1, and replaced with the port of the optical switch 22 connected to the redundant PKG 12r-1.
  • step S010 If there is a PON-PKG 12-1 that has not yet completed switching to the successor OLT 10-2 (step S010: No), the process returns to step S003, and the above process is repeated until switching to the successor OLT 10-2 is completed for all PON-PKGs 12-1 of the existing OLT 10-1. This completes the operation of the optical communication system 1 shown in the flowchart of FIG. 6.
  • FIG. 7 is a sequence diagram showing the OLT switching process according to the first embodiment of the present invention.
  • OLT information is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2 (ACT 101).
  • the control panel 11-2 When the control panel 11-2 has completed acquiring the OLT information, it returns a transmission completion notification indicating completion to the control panel 11-1 (ACT 102).
  • control panel 11-1 When the control panel 11-1 receives the transmission completion notification sent from the control panel 11-2, it sends a signal to check the status of the PON-PKG 12-1 to be switched over (ACT 103). As mentioned above, checking the status of the PON-PKG 12-1 means, for example, checking whether the PON-PKG 12-1 is malfunctioning. When the PON-PKG 12-1 receives the status check signal from the control panel 11-1, it responds by sending back a signal indicating its own status to the control panel 11-1 (ACT 104).
  • the control panel 11-1 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that the PON-PKG 12-1 is not faulty, it sends a signal to the PON-PKG 12-1 to confirm the presence or absence of a priority frame (ACT 105).
  • the presence or absence of a priority frame refers to the state of whether the PON-PKG 12-1 is transmitting a priority frame.
  • the PON-PKG 12-1 receives a signal from the control panel 11-1 to confirm the presence or absence of a priority frame, it responds by returning a signal indicating the state of whether or not a priority frame is being transmitted to the control panel 11-1 (ACT 106).
  • control panel 11-1 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that a priority frame is not being transmitted, it sends a signal to the PON-PKG 12-1 instructing it to stop emitting light (ACT 107). When the PON-PKG 12-1 receives a signal from the control panel 11-1 instructing it to stop emitting light, it stops emitting light. When the PON-PKG 12-1 stops emitting light, it sends a notification to the control panel 11-1 indicating that emitting light has been stopped (ACT 108).
  • control panel 11-1 When the control panel 11-1 receives a notification from the switching target PON-PKG 12-1 indicating that the light emission has been stopped, it transmits a signal indicating an instruction to start the light emission of PON-PKG 12-2 of the successor OLT 10-2 to PON-PKG 12-2 via the control panel 11-2 (ACT109).
  • the PON-PKG 12-2 receives a signal indicating an instruction to start the light emission from the control panel 11-1, it starts the light emission.
  • the PON-PKG 12-2 When the PON-PKG 12-2 starts the light emission, it sends a notification to the control panel 11-1 via the control panel 11-2 indicating that the start of the light emission has been completed (ACT110).
  • ONU 30 transmits an upstream signal to PON-PKG 12-2 of successor OLT 10-2 (ACT 111).
  • PON-PKG 12-2 Upon receiving the upstream signal transmitted from ONU 30, PON-PKG 12-2 transmits the upstream signal to the upper device 40 (ACT 112).
  • the upper device 40 When the upper device 40 receives an upstream signal from PON-PKG 12-2 of the successor OLT 20-2, it changes the path of the downstream signal so that the downstream signal is transmitted to the PON-PKG 12-2 (ACT 113). In this way, the upper device 40 identifies the PON-PKG 12-2 that emitted light based on the reception of the upstream signal (i.e., detects the path) and automatically determines the destination of the downstream signal. When the upper device 40 changes the path of the downstream signal, it transmits the downstream signal to PON-PKG 12-2 of the successor OLT 10-2 via the changed path (ACT 114).
  • the PON-PKG 12-2 of the successor OLT 10-2 When the PON-PKG 12-2 of the successor OLT 10-2 receives a downstream signal from the higher-level device 40, it sends a notification to the control board 11-2 indicating that the downstream signal has been received (ACT 115).
  • the control board 11-2 When the control board 11-2 receives a notification from the PON-PKG 12-2 indicating that the downstream signal has been received, it sends a notification to the control board 11-1 of the existing OLT 10-1 indicating that the OLT switching has been completed (ACT 116).
  • control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the switching has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 117).
  • the control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the switching has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 117).
  • the control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the switching has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 117).
  • the above process is completed for all PON-PKGs 12-1, the OLT switching process in the optical communication system 1 in the first embodiment shown in the sequence diagram of FIG. 7 is completed.
  • wiring work is performed in advance when switching from the existing OLT 10-1 to the successor OLT 10-2. Specifically, wiring work is performed in advance so that the redundant port is used as the switching port.
  • information is appropriately shared between the existing OLT 10-1 and the successor OLT 10-2.
  • the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected to each other for communication, and OLT information is transmitted from the existing OLT 10-1 to the successor OLT 10-2.
  • the control board 11-1 of the existing OLT 10-1 determines the timing of switching based on the OLT information. At this time, the optimal timing is determined taking into consideration the presence or absence of priority frames in the communication in the existing OLT 10-1.
  • the optical communication system 1 in the first embodiment can suppress communication interruptions caused by switching OLTs by using advance wiring and information sharing between the existing OLT 10-1 and the successor OLT 10-2.
  • communication interruptions due to OLT switching can be suppressed by prior wiring, etc.
  • communication is interrupted only during the period from when the PON-PKG 12-1 of the existing OLT 10-1 stops emitting light until when the PON-PKG 12-2 of the successor OLT 10-2 starts emitting light, and frame loss may occur.
  • the optical communication system of the second embodiment described below can prevent frame loss due to communication interruption as described above.
  • the overall configuration diagram of the optical communication system of the second embodiment is similar to the overall configuration diagram of the optical communication system 1 of the first embodiment shown in Figure 2 above, so a description thereof will be omitted.
  • the OLT switching process by the optical communication system of the second embodiment will be described using the reference numerals respectively assigned to each component of the optical communication system 1 of the first embodiment.
  • FIG. 8 is a sequence diagram showing the OLT switching process according to the second embodiment of the present invention.
  • OLT information is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2 (ACT 201).
  • the control panel 11-2 When the control panel 11-2 has completed acquiring the OLT information, it returns a transmission completion notification indicating completion to the control panel 11-1 (ACT 202).
  • control panel 11-1 When the control panel 11-1 receives the transmission completion notification sent from the control panel 11-2, it sends a signal to check the status of the PON-PKG 12-1 to be switched over (ACT 203). As mentioned above, checking the status of the PON-PKG 12-1 means, for example, checking whether the PON-PKG 12-1 is malfunctioning. When the PON-PKG 12-1 receives the status check signal from the control panel 11-1, it responds by returning a signal indicating its own status to the control panel 11-1 (ACT 204).
  • the control panel 11-1 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that the PON-PKG 12-1 is not faulty, it sends a signal to the PON-PKG 12-1 to confirm the presence or absence of a priority frame (ACT 205).
  • the presence or absence of a priority frame refers to the state of whether the PON-PKG 12-1 is transmitting a priority frame.
  • the PON-PKG 12-1 receives a signal from the control panel 11-1 to confirm the presence or absence of a priority frame, it responds by returning a signal indicating the state of whether or not a priority frame is being transmitted to the control panel 11-1 (ACT 206).
  • control panel 11-1 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that a priority frame is not being transmitted, it sends a notification to the PON-PKG 12-1 instructing it to start switching the OLT (ACT 207).
  • the PON-PKG 12-1 When the PON-PKG 12-1 receives a notification from the control panel 11-1 indicating an instruction to start switching the OLT, it sends a notification to the higher-level device 40 indicating an instruction to change the communication path to the one after switching (ACT 208).
  • the higher-level device 40 When the higher-level device 40 receives a notification indicating an instruction to change the communication path from the PON-PKG 12-1 of the existing OLT 10-1 to the post-switched communication path, it changes the path of the downstream signal to the notified communication path (ACT 209). After changing the path of the downstream signal, the higher-level device 40 transmits the downstream signal via the changed path to the PON-PKG 12-2 of the successor OLT 10-2 (ACT 210).
  • the PON-PKG 12-2 of the successor OLT 10-2 When the PON-PKG 12-2 of the successor OLT 10-2 receives a downstream signal from the upper device 40, it starts buffering (holding) the received downstream signal (ACT 211). In this way, in the optical communication system 1 of the second embodiment, the path of the downstream signal from the upper device 40 is switched before the OLT is switched, and the downstream signal is buffered. This makes it possible to prevent frame loss due to communication interruption caused by the OLT switching.
  • the PON-PKG 12-2 When the PON-PKG 12-2 starts buffering the downstream signal, it transmits a notification indicating that the downstream signal has been received to the control panel 11-1 of the existing OLT 10-1 via the control panel 11-2 (ACT 212 and ACT 213).
  • control panel 11-1 of the existing OLT 10-1 When the control panel 11-1 of the existing OLT 10-1 receives a notification indicating that it has received a downstream signal sent from the PON-PKG 12-2 of the successor OLT 10-2, it sends a signal instructing it to stop emitting light to the PON-PKG 12-1, which has been confirmed to be in a state where it is not transmitting a priority frame in the processing of ACT205 to ACT206 described above (ACT214).
  • the PON-PKG 12-1 receives a signal instructing it to stop emitting light from the control panel 11-1, it stops emitting light.
  • the PON-PKG 12-1 stops emitting light, it sends a notification to the control panel 11-1 indicating that halting of light emission has been completed (ACT215).
  • control panel 11-1 When the control panel 11-1 receives a notification from the switching target PON-PKG 12-1 indicating that the light emission has been stopped, it transmits a signal indicating an instruction to start the light emission of PON-PKG 12-2 of the successor OLT 10-2 to PON-PKG 12-2 via the control panel 11-2 (ACT216 and ACT217).
  • the PON-PKG 12-2 receives a signal indicating an instruction to start the light emission from the control panel 11-1, it starts the light emission.
  • the PON-PKG 12-2 When the PON-PKG 12-2 starts the light emission, it sends a notification to the control panel 11-1 via the control panel 11-2 indicating that the start of the light emission has been completed (ACT218 and ACT219).
  • control panel 11-2 of the successor OLT 11-2 receives a notification from the PON-PKG 12-2 indicating that the start of light emission has been completed, it transmits a signal to the PON-PKG 12-2 indicating an instruction to cancel the execution of buffering (ACT 220).
  • the PON-PKG 12-2 receives a signal indicating an instruction to cancel the execution of buffering from the control panel 11-2, it ends the execution of buffering.
  • the PON-PKG 12-2 transmits the buffered signals (frames) together to the ONU 30 (ACT 221).
  • control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the start of light emission has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 222).
  • the control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the start of light emission has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 222).
  • the control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the start of light emission has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 222).
  • the above process is completed for all PON-PKGs 12-1, the OLT switching process in the optical communication system 1 in the second embodiment shown in the sequence diagram of FIG. 8 is completed.
  • wiring work is performed in advance when switching from the existing OLT 10-1 to the successor OLT 10-2. Specifically, wiring work is performed in advance so that the redundant port is used as the switching port.
  • information sharing between the existing OLT 10-1 and the successor OLT 10-2 is appropriately performed.
  • the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected to each other for communication, and OLT information is transmitted from the existing OLT 10-1 to the successor OLT 10-2.
  • the control board 11-1 of the existing OLT 10-1 determines the timing of switching based on the OLT information. At this time, the optimal timing is determined taking into consideration the presence or absence of priority frames in the communication in the existing OLT 10-1.
  • the optical communication system 1 in the second embodiment can suppress communication interruptions caused by switching OLTs by using advance wiring and information sharing between the existing OLT 10-1 and the successor OLT 10-2.
  • the path of the downstream signal from the higher-level device 40 is switched and the downstream signal is buffered before switching the OLT, for example, as in the processing of ACT209 to ACT211 in the sequence diagram shown in FIG. 8. This makes it possible to prevent frame loss due to communication interruption caused by switching the OLT.
  • the optical communication system 1 in the second embodiment has the advantage of being able to prevent frame loss due to communication interruption associated with OLT switching.
  • frame loss due to communication interruption can occur only between the time when the PON-PKG 12-1 of the existing OLT 10-1 stops emitting light and the time when the PON-PKG 12-2 of the successor OLT 10-2 starts emitting light.
  • the optical communication system 1 in the first embodiment described above has the advantage of being able to simplify the system configuration, since there is no need to provide a configuration for buffering downstream signals as in the optical communication system 1 in the second embodiment.
  • the optical communication system has a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device in place of the second communication device after device switching processing.
  • the first communication device is the ONU 30 in the embodiment
  • the second communication device is the existing OLT 10-1 in the embodiment
  • the third communication device is the successor OLT 10-2 in the embodiment.
  • the second communication device includes a second communication unit that communicates with the first communication device, and a second control unit that transmits information indicating the execution timing of the switching process to the third communication device and stops communication by the second communication unit according to the execution timing.
  • the second communication unit is the PON-PKG 12-1 of the existing OLT 10-1 in the embodiment
  • the information indicating the execution timing of the switching process is the OLT information in the embodiment
  • the second control unit is the control panel 11-1 in the embodiment.
  • the third communication device includes a third communication unit that communicates with the first communication device, and a third control unit that acquires information indicating execution timing from the second communication device and starts communication by the third communication unit according to the execution timing.
  • the third communication unit is PON-PKG 12-2 of successor OLT 10-2 in the embodiment
  • the third control unit is control panel 11-2 in the embodiment.
  • the optical communication system may further include a switching unit.
  • the switching unit is the optical selector 20 in the embodiment.
  • the switching unit connects to the first communication device, and switches the communication path in accordance with the switching process.
  • the switching unit and the second communication device are connected at least until the switching process is completed, and the switching unit and the third communication device are connected at least until the switching process starts.
  • a redundant port may be used as the port of the switching unit connected to the third communication device.
  • the second control unit may check whether or not a priority frame is being transmitted by the second communication unit, and determine the execution timing to be a time when a priority frame is not being transmitted.
  • the second control unit may detect whether or not there is a failure in the second communication unit, and if there is a failure in the second communication unit, determine the execution timing to give priority to the switching process.
  • the optical communication device includes a communication unit and a control unit.
  • the optical communication device is an existing OLT 10-1 in the embodiment
  • the communication unit is a PON-PKG 12-1 in the embodiment
  • the control unit is a control panel 11-1 in the embodiment.
  • the communication unit communicates with a first communication device.
  • the first communication device is an ONU 30 in the embodiment.
  • the control unit determines the execution timing of a switching process for switching the communication device that communicates with the first communication device from its own device to the second communication device, stops communication by the communication unit at a stop timing based on the execution timing, and transmits information indicating the execution timing to the second communication device that starts communication with the first communication device at a start timing based on the execution timing.
  • the second communication device is the successor OLT 10-2 in the embodiment
  • the information indicating the execution timing is OLT information in the embodiment.
  • a part of the configuration of the optical communication system 1 in the above-mentioned embodiment may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed to realize the function.
  • computer system here includes hardware such as an OS and peripheral devices.
  • computer-readable recording medium refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into a computer system.
  • the term "computer-readable recording medium” may include a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line, and a medium that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in such a case.
  • the above-mentioned program may be a program for realizing a part of the above-mentioned function, or may be a program that can realize the above-mentioned function in combination with a program already recorded in the computer system, or may be a program that is realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • a programmable logic device such as an FPGA (Field Programmable Gate Array).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

An optical communication system including a first communication device, a second communication device which communicates with the first communication device, and a third communication device which, after a device switching process, communicates with the first communication device instead of the second communication device, wherein the second communication device comprises a second communication unit which communicates with the first communication device, and a second control unit which transmits information indicating execution timing of the switching process to the third communication device and stops communication using the second communication unit in accordance with the execution timing, and the third communication device comprises a third communication unit which communicates with the first communication device, and a third control unit which, from the second communication device, acquires information indicating the execution timing and starts communication using the third communication unit in accordance with the execution timing.

Description

光通信システム、光通信装置、装置切り替え方法及びプログラムOptical communication system, optical communication device, device switching method and program
 本発明は、光通信システム、光通信装置、装置切り替え方法及びプログラムに関する。 The present invention relates to an optical communication system, an optical communication device, a device switching method, and a program.
 高速で大容量な通信を実現するため、あるいは長期間の運用による老朽化に伴って、通信設備の更改が必要とされることがある。このとき、例えば、既存のOLT(Optical Line Terminal)から後継のOLTへの更改(切り替え)を行うためには、OLTとONU(Optical Network Unit)との間の物理的な配線を切り替える必要がある。 In order to achieve high-speed, high-capacity communications, or due to deterioration after long-term operation, it may be necessary to upgrade communications equipment. In such cases, for example, to upgrade (switch) from an existing OLT (Optical Line Terminal) to a successor OLT, it is necessary to switch the physical wiring between the OLT and the ONU (Optical Network Unit).
特開2009-065575号公報JP 2009-065575 A 特開2009-111852号公報JP 2009-111852 A 特開2014-121038号公報JP 2014-121038 A
 従来、このような通信装置の更改においては、現場での人手による物理的な配線の切り替え作業が必要であった。そして、この切り替え作業に伴って通信断が発生するという課題があった。  Previously, when upgrading such communication equipment, it was necessary to physically switch the wiring on-site by hand. This switching work posed an issue of communication interruptions.
 本発明は、上記のような技術的背景に鑑みてなされたものであり、通信装置の切り替えに伴う通信断を抑制することができる光通信システム、光通信装置、装置切り替え方法及びプログラムを提供することを目的とする。 The present invention has been made in consideration of the above-mentioned technical background, and aims to provide an optical communication system, an optical communication device, a device switching method, and a program that can suppress communication interruptions that occur when switching communication devices.
 本発明の一態様は、第1の通信装置と、前記第1の通信装置と通信を行う第2の通信装置と、装置の切り替え処理の後に前記第2の通信装置に代わって前記第1の通信装置と通信を行う第3の通信装置と、を有する光通信システムであって、前記第2の通信装置は、前記第1の通信装置との通信を行う第2の通信部と、前記切り替え処理の実行タイミングを示す情報を前記第3の通信装置へ送信し、前記実行タイミングに従って前記第2の通信部による通信を停止させる第2の制御部と、を備え、前記第3の通信装置は、前記第1の通信装置との通信を行う第3の通信部と、前記実行タイミングを示す情報を前記第2の通信装置から取得し、前記実行タイミングに従って前記第3の通信部による通信を開始させる第3の制御部と、を備える光通信システムである。 One aspect of the present invention is an optical communication system having a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device in place of the second communication device after a device switching process, in which the second communication device has a second communication unit that communicates with the first communication device and a second control unit that transmits information indicating the execution timing of the switching process to the third communication device and stops communication by the second communication unit in accordance with the execution timing, and the third communication device has a third communication unit that communicates with the first communication device and a third control unit that obtains information indicating the execution timing from the second communication device and starts communication by the third communication unit in accordance with the execution timing.
 また、本発明の一態様は、第1の通信装置との通信を行う通信部と、前記第1の通信装置との通信を行う通信装置を自装置から第2の通信装置に切り替える切り替え処理の実行タイミングを決定し、前記実行タイミングに基づく停止タイミングで前記通信部による通信を停止させるとともに、前記実行タイミングに基づく開始タイミングで前記第1の通信装置との通信を開始する前記第2の通信装置へ前記実行タイミングを示す情報を送信する制御部と、を備える光通信装置である。 Another aspect of the present invention is an optical communication device that includes a communication unit that communicates with a first communication device, and a control unit that determines the execution timing of a switching process for switching the communication device that communicates with the first communication device from its own device to a second communication device, stops communication by the communication unit at a stop timing based on the execution timing, and transmits information indicating the execution timing to the second communication device that starts communication with the first communication device at a start timing based on the execution timing.
 また、本発明の一態様は、第1の通信装置と、前記第1の通信装置と通信を行う第2の通信装置と、装置の切り替え処理の後に前記第2の通信装置に代わって前記第1の通信装置と通信を行う第3の通信装置と、を有する光通信システムによる装置切り替え方法であって、前記第2の通信装置が、前記切り替え処理の実行タイミングを示す情報を前記第3の通信装置へ送信する送信ステップと、前記第3の通信装置が、前記実行タイミングを示す情報を前記第2の通信装置から取得する取得ステップと、前記第2の通信装置が、前記実行タイミングに従って前記第1の通信装置との通信を停止させる第2の制御ステップと、前記第3の通信装置が、前記実行タイミングに従って前記第1の通信装置との通信を開始させる第3の制御ステップと、を有する装置切り替え方法である。 Another aspect of the present invention is a device switching method in an optical communication system having a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device instead of the second communication device after a device switching process, the device switching method including a transmission step in which the second communication device transmits information indicating an execution timing of the switching process to the third communication device, an acquisition step in which the third communication device acquires information indicating the execution timing from the second communication device, a second control step in which the second communication device stops communication with the first communication device in accordance with the execution timing, and a third control step in which the third communication device starts communication with the first communication device in accordance with the execution timing.
 また、本発明の一態様は、上記の光通信装置としてコンピュータを機能させるためのプログラムである。 Another aspect of the present invention is a program for causing a computer to function as the optical communication device described above.
 本発明により、通信装置の切り替えに伴う通信断を抑制することが可能になる。 The present invention makes it possible to reduce communication interruptions that occur when switching communication devices.
従来の光通信システム1aの全体構成図である。FIG. 1 is an overall configuration diagram of a conventional optical communication system 1a. 本発明の第1の実施形態における光通信システム1の全体構成図である。1 is an overall configuration diagram of an optical communication system 1 according to a first embodiment of the present invention. 既存OLT10-1から後継OLT10-2への切り替え前における状態を示す図である。FIG. 1 is a diagram showing a state before switching from an existing OLT 10-1 to a successor OLT 10-2. OLTの切り替えのための事前の配線が行われた後の配線の状態を示す図である。FIG. 13 is a diagram showing the state of wiring after pre-wiring for switching the OLT. OLTの切り替えが行われた後の配線の状態を示す図である。FIG. 13 is a diagram showing the state of wiring after OLT switching has been performed. 本発明の第1の実施形態における光通信システム1の動作を示すフローチャートである。4 is a flowchart showing an operation of the optical communication system 1 in the first embodiment of the present invention. 本発明の第1の実施形態におけるOLTの切り替え処理を示すシーケンス図である。FIG. 4 is a sequence diagram showing an OLT switching process in the first embodiment of the present invention. 本発明の第2の実施形態におけるOLTの切り替え処理を示すシーケンス図である。FIG. 11 is a sequence diagram showing an OLT switching process in the second embodiment of the present invention.
 以下、実施形態の光通信システム、光通信装置、装置切り替え方法及びプログラムについて、図面を参照しながら説明する。 The optical communication system, optical communication device, device switching method, and program of the embodiment will be described below with reference to the drawings.
 以下に説明する実施形態では、既存のOLT(以下、「既存OLT」という。)から後継のOLT(以下、「後継OLT」という。)への切り替えのため、事前に配線作業が行われる。具体的には、冗長化されたネットワークポート(以下、「冗長ポート」という。)を切り替え後のネットワークポート(以下、「切り替えポート」という。)として使用させるように、予め配線作業が行われる。 In the embodiment described below, wiring work is carried out in advance to switch from an existing OLT (hereinafter referred to as the "existing OLT") to a successor OLT (hereinafter referred to as the "successor OLT"). Specifically, wiring work is carried out in advance so that a redundant network port (hereinafter referred to as the "redundant port") can be used as a post-switching network port (hereinafter referred to as the "switching port").
 また、以下に説明する実施形態では、既存OLTと後継OLTとの間における情報連携が行われる。具体的には、既存OLT及び後継OLTのそれぞれに備えられた制御盤が互いに通信接続される。そして、既存OLTから後継OLTへ、既存OLTに関する情報(以下、「OLT情報」という。)が伝送され、OLT情報に基づいて、切り替えを実施するタイミングが決定される。切り替えの実行時には、既存OLTでの通信における優先フレームの有無が監視され、有線フレームの有無も考慮して最適なタイミングが決定される。 In addition, in the embodiment described below, information is shared between the existing OLT and the successor OLT. Specifically, the control panels provided in each of the existing OLT and the successor OLT are communicatively connected to each other. Then, information about the existing OLT (hereinafter referred to as "OLT information") is transmitted from the existing OLT to the successor OLT, and the timing of switching is determined based on the OLT information. When switching is performed, the presence or absence of priority frames in communication with the existing OLT is monitored, and the optimal timing is determined taking into account the presence or absence of wired frames.
 このように、実施形態の光通信システム、光通信装置、装置切り替え方法及びプログラムは、事前の配線と、既存OLTと後継OLTとの間の情報連携とによって、通信装置の切り替えに伴う通信断を抑制する技術を有している。 In this way, the optical communications system, optical communications device, device switching method, and program of the embodiment have technology that suppresses communication interruptions that occur when switching communications devices through advance wiring and information sharing between the existing OLT and successor OLT.
 以下、実施形態の光通信システムの構成についての説明を分かり易くするため、まず比較対象として、従来の光通信システムの一例である光通信システム1aの構成について説明する。 To facilitate understanding of the description of the configuration of the optical communication system of the embodiment, the following description will first describe the configuration of optical communication system 1a, which is an example of a conventional optical communication system, for comparison.
 図1は、従来の光通信システム1aの全体構成図である。図1に示されるように、従来の光通信システム1aは、既存OLT10a-1と、後継OLT10a-2と、光セレクタ20a-1と、光セレクタ20a-2と、ONU30と、上位装置40とを含んで構成される。 FIG. 1 is an overall configuration diagram of a conventional optical communication system 1a. As shown in FIG. 1, the conventional optical communication system 1a includes an existing OLT 10a-1, a successor OLT 10a-2, an optical selector 20a-1, an optical selector 20a-2, an ONU 30, and a higher-level device 40.
 図1に示されるように、既存OLT10a-1は、制御盤11a-1と、複数のPON(Passive Optical Network)インターフェース・パッケージとを含んで構成される。複数のPONインターフェース・パッケージには、ONU30との通常時の通信に用いられる少なくとも1つのPONインターフェース・パッケージ(以下、「PON-PKG12-1」という。)と、冗長用に設けられた少なくとも1つのPONインターフェース・パッケージ(以下、「冗長用PKG12r-1」という。)とが含まれる。なお、図1では、図を簡易にするため、PON-PKG12-1と冗長用PKG12r-1とが1つずつのみ示されている。 As shown in FIG. 1, the existing OLT 10a-1 is configured to include a control panel 11a-1 and multiple PON (Passive Optical Network) interface packages. The multiple PON interface packages include at least one PON interface package (hereinafter referred to as "PON-PKG 12-1") used for normal communication with the ONU 30, and at least one PON interface package (hereinafter referred to as "redundancy PKG 12r-1") provided for redundancy purposes. Note that in FIG. 1, to simplify the illustration, only one PON-PKG 12-1 and one redundancy PKG 12r-1 are shown.
 図1に示されるように、光セレクタ20a-1は、カプラモジュール21-1と、光スイッチ22-1とを含んで構成される。 As shown in FIG. 1, the optical selector 20a-1 includes a coupler module 21-1 and an optical switch 22-1.
 カプラモジュール21-1は、ONU30と、PON-PKG12-1と、光スイッチ22-1とを、それぞれ互いに通信接続する。光スイッチ22-1は、カプラモジュール21-1と、冗長用PKG12r-1とを、それぞれ互いに通信接続する。PON-PKG12-1は、カプラモジュール21-1と、上位装置40とを、それぞれ互いに通信接続する。冗長用PKG12r-1は、光スイッチ22-1と互いに通信接続する。上位装置40は、PON-PKG12-1と互いに通信接続する。 The coupler module 21-1 communicatively connects the ONU 30, the PON-PKG 12-1, and the optical switch 22-1 to each other. The optical switch 22-1 communicatively connects the coupler module 21-1 and the redundant PKG 12r-1 to each other. The PON-PKG 12-1 communicatively connects the coupler module 21-1 and the higher-level device 40 to each other. The redundant PKG 12r-1 communicatively connects to the optical switch 22-1. The higher-level device 40 communicatively connects to the PON-PKG 12-1.
 既存OLT10a-1から後継OLT10a-2への切り替えが行われる前においては、ONU30と上位装置40とは、既存OLT10a-1のPON-PKG12-1と、光セレクタ20a-1のカプラモジュール21-1とを介して互いにデータの伝送を行う。 Before switching from the existing OLT 10a-1 to the successor OLT 10a-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-1 of the existing OLT 10a-1 and the coupler module 21-1 of the optical selector 20a-1.
 図1に示されるように、後継OLT10a-2は、制御盤11a-2と、複数のPONインターフェース・パッケージとを含んで構成される。複数のPONインターフェース・パッケージには、ONU30との通常時の通信に用いられる少なくとも1つのPONインターフェース・パッケージ(以下、「PON-PKG12-2」という。)と、冗長用に設けられた少なくとも1つのPONインターフェース・パッケージ(以下、「冗長用PKG12r-2」という。)とが含まれる。なお、図1では、図を簡易にするため、PON-PKG12-2と冗長用PKG12r-2とが1つずつのみ示されている。 As shown in FIG. 1, the successor OLT 10a-2 is configured to include a control panel 11a-2 and multiple PON interface packages. The multiple PON interface packages include at least one PON interface package (hereinafter referred to as "PON-PKG 12-2") used for normal communication with the ONU 30, and at least one PON interface package (hereinafter referred to as "redundancy PKG 12r-2") provided for redundancy. Note that in FIG. 1, to simplify the illustration, only one PON-PKG 12-2 and one redundancy PKG 12r-2 are shown.
 図1に示されるように、光セレクタ20a-2は、カプラモジュール21-2と、光スイッチ22-2とを含んで構成される。 As shown in FIG. 1, the optical selector 20a-2 includes a coupler module 21-2 and an optical switch 22-2.
 カプラモジュール21-2は、PON-PKG12-2と、光スイッチ22-2とを、それぞれ互いに通信接続する。光スイッチ22-2は、カプラモジュール21-2と、冗長用PKG12r-2とを、それぞれ互いに通信接続する。PON-PKG12-2は、カプラモジュール21-2と互いに通信接続する。冗長用PKG12r-2は、光スイッチ22-2と互いに通信接続する。 The coupler module 21-2 communicatively connects the PON-PKG 12-2 and the optical switch 22-2 to each other. The optical switch 22-2 communicatively connects the coupler module 21-2 and the redundant PKG 12r-2 to each other. The PON-PKG 12-2 is communicatively connected to the coupler module 21-2. The redundant PKG 12r-2 is communicatively connected to the optical switch 22-2.
 既存OLT10a-1から後継OLT10a-2への切り替えが行われる前においては、カプラモジュール21-2とONU30とは互いに通信接続されていない。また、既存OLT10a-1から後継OLT10a-2への切り替えが行われる前においては、PON-PKG12-2と上位装置40とは互いに通信接続されていない。 Before switching from the existing OLT 10a-1 to the successor OLT 10a-2, the coupler module 21-2 and the ONU 30 are not connected to each other for communication. Also, before switching from the existing OLT 10a-1 to the successor OLT 10a-2, the PON-PKG 12-2 and the higher-level device 40 are not connected to each other for communication.
 図1に示される従来の光通信システム1aでは、既存OLT10a-1から後継OLT10a-2への切り替えが行われる際に、人手によって物理的な配線の付け替え作業が行われる。具体的には、ONU30から光セレクタ20a-1のカプラモジュール21-1へ接続されている配線は、ONU30から光セレクタ20a-2のカプラモジュール21-2へ接続されるように付け替えが行われる。また、上位装置40から既存OLT10a-1のPON-PKG12-1へ接続されている配線は、上位装置40から後継OLT10a-2のPON-PKG12-2へ接続されるように付け替えが行われる。 In the conventional optical communication system 1a shown in FIG. 1, when switching from the existing OLT 10a-1 to the successor OLT 10a-2, the physical wiring is manually rewired. Specifically, the wiring connected from the ONU 30 to the coupler module 21-1 of the optical selector 20a-1 is rewired so that it is connected from the ONU 30 to the coupler module 21-2 of the optical selector 20a-2. In addition, the wiring connected from the upper device 40 to the PON-PKG 12-1 of the existing OLT 10a-1 is rewired so that it is connected from the upper device 40 to the PON-PKG 12-2 of the successor OLT 10a-2.
 既存OLT10a-1から後継OLT10a-2への切り替えが行われた後においては、ONU30と上位装置40とは、後継OLT10a-2のPON-PKG12-2と、光セレクタ20a-2のカプラモジュール21-2とを介して互いにデータの伝送を行う。 After switching from the existing OLT 10a-1 to the successor OLT 10a-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-2 of the successor OLT 10a-2 and the coupler module 21-2 of the optical selector 20a-2.
 このように、従来の光通信システム1aでは、既存OLT10a-1から後継OLT10a-2への切り替えが行われる際に、人手によって物理的な配線の付け替え作業が行われる。そのため、従来の光通信システム1aでは、付け替え作業が行われている間には通信断が発生し、フレームロスが発生しやすい。 In this way, in the conventional optical communication system 1a, when switching from the existing OLT 10a-1 to the successor OLT 10a-2, the physical wiring is manually replaced. Therefore, in the conventional optical communication system 1a, communication interruptions occur while the replacement work is being carried out, and frame loss is likely to occur.
<第1の実施形態>
 以下、本発明の第1の実施形態について、図面を参照しながら説明する。
First Embodiment
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[光通信システムの構成]
 図2は、本発明の第1の実施形態における光通信システム1の全体構成図である。図2に示されるように、光通信システム1は、既存OLT10-1と、後継OLT10-2と、光セレクタ20a-1と、光セレクタ20と、ONU30と、上位装置40とを含んで構成される。
[Configuration of optical communication system]
2 is a diagram showing the overall configuration of an optical communication system 1 according to a first embodiment of the present invention. As shown in FIG. 2, the optical communication system 1 includes an existing OLT 10-1, a successor OLT 10-2, an optical selector 20a-1, an optical selector 20, an ONU 30, and a higher-level device 40.
 図2に示されるように、既存OLT10-1は、制御盤11-1と、複数のPONインターフェース・パッケージとを含んで構成される。複数のPONインターフェース・パッケージには、ONU30との通常時の通信に用いられる少なくとも1つのPONインターフェース・パッケージ(PON-PKG12-1)と、冗長用に設けられた少なくとも1つのPONインターフェース・パッケージ(冗長用PKG12r-1)とが含まれる。なお、図2では、図を簡易にするため、PON-PKG12-1と冗長用PKG12r-1とが1つずつのみ示されている。 As shown in FIG. 2, the existing OLT 10-1 is configured to include a control panel 11-1 and multiple PON interface packages. The multiple PON interface packages include at least one PON interface package (PON-PKG 12-1) used for normal communication with the ONU 30, and at least one PON interface package (redundancy PKG 12r-1) provided for redundancy. Note that in FIG. 2, to simplify the illustration, only one PON-PKG 12-1 and one redundancy PKG 12r-1 are shown.
 図2に示されるように、光セレクタ20は、カプラモジュール21と、光スイッチ22とを含んで構成される。 As shown in FIG. 2, the optical selector 20 includes a coupler module 21 and an optical switch 22.
 カプラモジュール21は、ONU30と、PON-PKG12-1と、光スイッチ22とを、それぞれ互いに通信接続する。光スイッチ22は、カプラモジュール21と、冗長用PKG12r-1とを、それぞれ互いに通信接続する。PON-PKG12-1は、カプラモジュール21と、上位装置40とを、それぞれ互いに通信接続する。冗長用PKG12r-1は、光スイッチ22と互いに通信接続する。上位装置40は、PON-PKG12-1と互いに通信接続する。 The coupler module 21 communicatively connects the ONU 30, the PON-PKG 12-1, and the optical switch 22 to each other. The optical switch 22 communicatively connects the coupler module 21 and the redundant PKG 12r-1 to each other. The PON-PKG 12-1 communicatively connects the coupler module 21 and the higher-level device 40 to each other. The redundant PKG 12r-1 communicatively connects to the optical switch 22. The higher-level device 40 communicatively connects to the PON-PKG 12-1.
 既存OLT10-1から後継OLT10-2への切り替えが行われる前においては、ONU30と上位装置40とは、既存OLT10-1のPON-PKG12-1と、光セレクタ20のカプラモジュール21とを介して互いにデータの伝送を行う。 Before switching from the existing OLT 10-1 to the successor OLT 10-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-1 of the existing OLT 10-1 and the coupler module 21 of the optical selector 20.
 図2に示されるように、後継OLT10-2は、制御盤11-2と、複数のPONインターフェース・パッケージとを含んで構成される。複数のPONインターフェース・パッケージには、ONU30との通常時の通信に用いられる少なくとも1つのPONインターフェース・パッケージ(PON-PKG12-2)と、冗長用に設けられた少なくとも1つのPONインターフェース・パッケージ(冗長用PKG12r-2)とが含まれる。なお、図2では、図を簡易にするため、PON-PKG12-2と冗長用PKG12r-2とが1つずつのみ示されている。 As shown in FIG. 2, the successor OLT 10-2 is configured to include a control panel 11-2 and multiple PON interface packages. The multiple PON interface packages include at least one PON interface package (PON-PKG 12-2) used for normal communication with the ONU 30, and at least one PON interface package (redundancy PKG 12r-2) provided for redundancy. Note that in FIG. 2, to simplify the illustration, only one PON-PKG 12-2 and one redundancy PKG 12r-2 are shown.
 本実施形態における光通信システム1において、既存OLT10-1から後継OLT10-2への切り替えが行われる際には、事前に配線が行われる。具体的には、既存OLT10-1の制御盤11-1と、後継OLT10-2の制御盤11-2とが、切り替えの事前に接続される。また、光セレクタ20のカプラモジュール21と、後継OLT10-2のPON-PKG12-2とが、切り替えの前に事前に接続される。また、後継OLT10-2のPON-PKG12-2と、上位装置40とが、切り替えの前に事前に接続される。 In the optical communication system 1 of this embodiment, when switching from the existing OLT 10-1 to the successor OLT 10-2, wiring is performed in advance. Specifically, the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected in advance of the switching. In addition, the coupler module 21 of the optical selector 20 and the PON-PKG 12-2 of the successor OLT 10-2 are connected in advance before the switching. In addition, the PON-PKG 12-2 of the successor OLT 10-2 and the higher-level device 40 are connected in advance before the switching.
 光セレクタ20のカプラモジュール21と、後継OLT10-2のPON-PKG12-2との接続には、カプラモジュール21の冗長用のポートが用いられる。なお、冗長用のポートへの接続の詳細については、後に詳しく説明する。 The coupler module 21 of the optical selector 20 is connected to the PON-PKG 12-2 of the successor OLT 10-2 using a redundant port of the coupler module 21. Details of the connection to the redundant port will be explained later.
 さらに、本実施形態における光通信システム1において、既存OLT10-1から後継OLT10-2への切り替えが行われる際には、既存OLT10-1の制御盤11-1から後継OLT10-2の制御盤11-2へ、既存OLT10-1に関するOLT情報が伝送される。これにより、OLTとしての機能が、既存OLT10-1から後継OLT10-2へ引き継がれる。 Furthermore, in the optical communication system 1 of this embodiment, when switching from the existing OLT 10-1 to the successor OLT 10-2, OLT information regarding the existing OLT 10-1 is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2. As a result, the OLT function is handed over from the existing OLT 10-1 to the successor OLT 10-2.
 ここでいうOLT情報には、例えば、各ONUのMAC(Media Access Control)アドレス、ONUの警報情報、VLAN(Virtual Local Area Network)設定情報、ポート情報、及びONUの設定情報等が含まれる。 The OLT information referred to here includes, for example, the MAC (Media Access Control) address of each ONU, ONU alarm information, VLAN (Virtual Local Area Network) setting information, port information, and ONU setting information.
 既存OLT10-1の制御盤11-1と後継OLT10-2の制御盤11-2とは、リアルタイムにOLT情報を含む情報のやり取りを行い、適切なタイミングで光セレクタ20のカプラモジュール21等の動作を制御することにより、自動的に既存OLT10-1から後継OLT10-2への切り替えを実行させる。 The control panel 11-1 of the existing OLT 10-1 and the control panel 11-2 of the successor OLT 10-2 exchange information, including OLT information, in real time, and automatically switch from the existing OLT 10-1 to the successor OLT 10-2 by controlling the operation of the coupler module 21 of the optical selector 20 at the appropriate timing.
 既存OLT10-1から後継OLT10-2への切り替えが行われた後においては、ONU30と上位装置40とは、後継OLT10-2のPON-PKG12-2と、光セレクタ20のカプラモジュール21とを介して互いにデータの伝送を行う。 After switching from the existing OLT 10-1 to the successor OLT 10-2, the ONU 30 and the higher-level device 40 transmit data to each other via the PON-PKG 12-2 of the successor OLT 10-2 and the coupler module 21 of the optical selector 20.
 このように、第1の実施形態における光通信システム1では、既存OLT10-1から後継OLT10-2への切り替えが行われる際に、事前に、配線とOLT情報の伝達とが行われ、適切なタイミングで自動的に切り替えが行われるため、通信断を抑制することができる。 In this way, in the optical communication system 1 of the first embodiment, when switching from the existing OLT 10-1 to the successor OLT 10-2, wiring and transmission of OLT information are performed in advance, and the switching is performed automatically at the appropriate time, thereby preventing communication interruptions.
 適切なタイミングは、例えば、優先フレームの送受信が行われている状況であるか否かに基づいて決定される。ここでいう優先フレームの送受信が行われている状況とは、例えば緊急呼等の重要な通信が行われている状況である。既存OLT10-1の制御盤11-1は、優先フレームの送受信の有無をリアルタイムに監視することで、適切な切り替えタイミングを自動的に特定する。既存OLT10-1の制御盤11-1は、特定された切り替えタイミングを後継OLT10-2の制御盤11-2へ伝達する。 The appropriate timing is determined, for example, based on whether or not a situation in which priority frames are being sent and received is occurring. A situation in which priority frames are being sent and received here is, for example, a situation in which important communications such as emergency calls are occurring. The control panel 11-1 of the existing OLT 10-1 automatically identifies the appropriate switching timing by monitoring in real time whether or not priority frames are being sent and received. The control panel 11-1 of the existing OLT 10-1 transmits the identified switching timing to the control panel 11-2 of the successor OLT 10-2.
 既存OLT10-1と後継OLT10-2とは、上記の伝達された情報に基づいて、タイミングを合わせて自動的にOLTの切り替えのための処理を実行する。具体的には、例えば、既存OLT10-1の制御盤11-1とOLT10-2の制御盤11-2とが、上記の伝達された情報に基づいて、発光の開始のタイミング及び発光の停止タイミングを合わせて実行することで切り替えを行う。 The existing OLT 10-1 and the successor OLT 10-2 automatically execute the process for switching the OLTs in a timely manner based on the transmitted information. Specifically, for example, the control panel 11-1 of the existing OLT 10-1 and the control panel 11-2 of the OLT 10-2 execute the switching by aligning the timing of starting and stopping light emission based on the transmitted information.
 なお、上記のOLTの切り替えのための事前の配線時に、既存OLT10-1のPON-PKG12-1の故障が検知された場合に、故障したPON-PKG12-1を優先的に後継OLT10-2のPON-PKG12-2へ切り替えるような構成にしてもよい。この場合、光通信システム1による通信に冗長性を持たせることが可能になる。 Note that if a failure is detected in the PON-PKG 12-1 of the existing OLT 10-1 during the preliminary wiring for the above OLT switching, the failed PON-PKG 12-1 may be preferentially switched to the PON-PKG 12-2 of the successor OLT 10-2. In this case, it is possible to provide redundancy to the communications by the optical communications system 1.
 なお、制御盤11-1から制御盤11-2へ伝達されるOLT情報に、切り替え時に必要となる認証情報が含まれていてもよい。この場合、後継OLT10-2が事前に認証情報を保有することができるため、切り替え時の認証処理に伴って生じる通信断の時間を短縮させることが可能になる。 The OLT information transmitted from control panel 11-1 to control panel 11-2 may include authentication information required at the time of switching. In this case, the successor OLT 10-2 can hold the authentication information in advance, which makes it possible to shorten the communication interruption time that occurs due to the authentication process at the time of switching.
 上記のような構成を備えることで、第1の実施形態における光通信システム1では、OLTの切り替え時に人手によるケーブル挿抜作業が発生しない。これにより、物理的な配線の付け替えに伴って生じる長時間の通信断と、それに伴うフレームロスの発生を回避することができる。また、第1の実施形態における光通信システム1では、事前の配線が行われた後は、自動的にOLTの切り替えが実行される。これにより、昼夜問わず切り替えを行うことが可能になり、かつ、複数拠点において同時に切り替えを行うことも可能になる。 By being provided with the above-mentioned configuration, in the optical communication system 1 of the first embodiment, manual cable insertion and removal is not required when switching the OLT. This makes it possible to avoid long communication interruptions and the associated frame loss that can occur when physically changing the wiring. Furthermore, in the optical communication system 1 of the first embodiment, after the wiring is performed in advance, OLT switching is automatically performed. This makes it possible to perform switching at any time of the day or night, and also makes it possible to perform switching at multiple locations simultaneously.
 また、上記のような構成を備えることで、第1の実施形態における光通信システム1では、事前の配線によってOLT間で冗長性を持たせることができる。これにより、PON-PKG12-1の故障対応とOLTの切り替えとを平行して行うことが可能になる。 Furthermore, by providing the above-mentioned configuration, in the optical communication system 1 in the first embodiment, redundancy can be provided between the OLTs by prior wiring. This makes it possible to respond to a failure in the PON-PKG 12-1 and switch the OLT in parallel.
 以下、第1の実施形態における光通信システム1によるOLTの切り替えの構成の一例について、図3~図5を参照しながら更に詳しく説明する。図3~図5には、光通信システム1の構成のうち、既存OLT10-1の構成の一部と、後継OLT10-2の構成の一部と、光セレクタ20と、ONU30とが抜粋して示されている。 Below, an example of the configuration of OLT switching by the optical communication system 1 in the first embodiment will be described in more detail with reference to Figs. 3 to 5. Figs. 3 to 5 show an excerpt of the configuration of the optical communication system 1, including a part of the configuration of the existing OLT 10-1, a part of the configuration of the successor OLT 10-2, an optical selector 20, and an ONU 30.
 図3は、既存OLT10-1から後継OLT10-2への切り替え前における状態を示す図である。すなわち、図3は、OLTの切り替えのための事前の配線が行われる前の配線の状態を表す。図4は、OLTの切り替えのための事前の配線が行われた後の配線の状態を示す図である。図5は、OLTの切り替えが行われた後の配線の状態を示す図である。 Figure 3 is a diagram showing the state before switching from the existing OLT 10-1 to the successor OLT 10-2. That is, Figure 3 shows the state of the wiring before preliminary wiring for the OLT switching is performed. Figure 4 is a diagram showing the state of the wiring after preliminary wiring for the OLT switching is performed. Figure 5 is a diagram showing the state of the wiring after the OLT switching is performed.
 図3に示されるように、OLTの切り替えのための事前の配線が行われる前の時点では、カプラモジュール21のONU30に接続するポートは、既存OLT10-1のPON-PKG12-1に接続するポートと、光スイッチ22を介して既存OLT10-1の冗長用PKG12r-1に接続する冗長用のポートとに接続されている。 As shown in Figure 3, before the preliminary wiring for OLT switching is performed, the port connected to the ONU 30 of the coupler module 21 is connected to a port connected to the PON-PKG 12-1 of the existing OLT 10-1 and a redundant port connected to the redundant PKG 12r-1 of the existing OLT 10-1 via the optical switch 22.
 次に、図4に示されるように、OLTの切り替えのための事前の配線によって、カプラモジュール21の冗長用のポートと光スイッチ22とが接続された配線のうち、光スイッチ22側の配線が抜去され、後継OLT10-2のPON-PKG12-2に付け替えがなされる。 Next, as shown in FIG. 4, the wiring that connects the redundant port of the coupler module 21 to the optical switch 22 in advance for OLT switching is disconnected from the wiring on the optical switch 22 side, and is replaced with the PON-PKG 12-2 of the successor OLT 10-2.
 次に、図5に示されるように、前述の適切なタイミングでOLTの切り替えが行われると、カプラモジュール21のPON-PKG12-1に接続するポートと当該PON-PKG12-1とが接続された配線のうち、PON-PKG12-1側の配線が抜去され、冗長用PKG12r-1に接続される光スイッチ22のポートに付け替えがなされる。 Next, as shown in FIG. 5, when the OLT is switched at the appropriate timing described above, the wiring connecting the port of the coupler module 21 connected to the PON-PKG12-1 and the PON-PKG12-1 is disconnected from the PON-PKG12-1 side and reconnected to the port of the optical switch 22 connected to the redundant PKG12r-1.
 このように、本実施形態における光通信システム1は、冗長用のポートを利用して事前の配線を行うことによって、OLTの切り替え時の配線の付け替えによって生じる通信断を回避することができる。 In this way, the optical communication system 1 in this embodiment can avoid communication interruptions caused by changing the wiring when switching the OLT by using redundant ports to perform wiring in advance.
 なお、以上説明した装置の切り替え方法は、PONの通信システムに適用することに限られるものではなく、例えばメディアコンバータ等の光アクセス通信にも適用可能である。 The device switching method described above is not limited to application to PON communication systems, but can also be applied to optical access communications such as media converters.
[光通信システムの動作]
 以下、第1の実施形態における光通信システム1の動作の一例について説明する。図6は、本発明の第1の実施形態における光通信システム1の動作を示すフローチャートである。
[Operation of optical communication system]
An example of the operation of the optical communication system 1 in the first embodiment will be described below. Fig. 6 is a flowchart showing the operation of the optical communication system 1 in the first embodiment of the present invention.
 まず、光通信システム1において、既存OLT10-1から後継OLT10-2への切り替えが行われる際には、事前に配線が行われる(ステップS001)。具体的には、既存OLT10-1の制御盤11-1と、後継OLT10-2の制御盤11-2とが、切り替えの事前に接続される。また、光セレクタ20のカプラモジュール21と、後継OLT10-2のPON-PKG12-2とが、切り替えの前に事前に接続される。また、後継OLT10-2のPON-PKG12-2と、上位装置40とが、切り替えの前に事前に接続される。 First, when switching from the existing OLT 10-1 to the successor OLT 10-2 in the optical communication system 1, wiring is performed in advance (step S001). Specifically, the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected in advance of the switching. In addition, the coupler module 21 of the optical selector 20 and the PON-PKG 12-2 of the successor OLT 10-2 are connected in advance of the switching. In addition, the PON-PKG 12-2 of the successor OLT 10-2 and the higher-level device 40 are connected in advance of the switching.
 次に、光通信システム1において、既存OLT10-1から後継OLT10-2への切り替えが行われる際には、既存OLT10-1の制御盤11-1から後継OLT10-2の制御盤11-2へ、既存OLT10-1に関するOLT情報が伝送される(ステップS002)。 Next, when switching from the existing OLT 10-1 to the successor OLT 10-2 in the optical communication system 1, OLT information regarding the existing OLT 10-1 is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2 (step S002).
 次に、OLTの切り替えのための事前の配線時に、既存OLT10-1の制御盤11-1は、PON-PKG12-1の状態を確認する(ステップS003)。 Next, when pre-wiring for OLT switching, the control panel 11-1 of the existing OLT 10-1 checks the status of the PON-PKG 12-1 (step S003).
 PON-PKG12-1の故障が検知された場合(ステップS004・Yes)、制御盤11-1及び制御盤11-2は、故障したPON-PKG12-1を優先的に後継OLT10-2のPON-PKG12-2へ切り替える(ステップS005)。そして、ステップS009の処理に進む。 If a failure in PON-PKG 12-1 is detected (step S004, Yes), control board 11-1 and control board 11-2 switch the failed PON-PKG 12-1 to PON-PKG 12-2 of successor OLT 10-2 as a priority (step S005). Then, the process proceeds to step S009.
 PON-PKG12-1の故障が検知されなかった場合(ステップS004・No)、制御盤11-1は、PON-PKG12-1単位でトラフィックの確認を行う(ステップS006)。 If no failure is detected in the PON-PKG 12-1 (step S004: No), the control panel 11-1 checks the traffic on a PON-PKG 12-1 basis (step S006).
 トラフィックの確認により、優先フレームの伝送が行われている状況であることが検知された場合(ステップS007・Yes)、制御盤11-1及び制御盤11-2は、優先フレームの伝送完了まで待機する(ステップS008)。そして、ステップS002の処理に戻る。 If the traffic check detects that a priority frame is being transmitted (step S007: Yes), the control boards 11-1 and 11-2 wait until the transmission of the priority frame is complete (step S008). Then, the process returns to step S002.
 トラフィックの確認により、優先フレームの伝送が行われている状況であることが検知されなかった場合(ステップS007・No)、制御盤11-1及び制御盤11-2は、OLTの切り替えを実行する(ステップS009)。 If the traffic check does not detect that a priority frame is being transmitted (step S007: No), control boards 11-1 and 11-2 execute OLT switching (step S009).
 既存OLT10-1の全てのPON-PKG12-1について後継OLT10-2への切り替えが完了した場合(ステップS010・Yes)、制御盤11-1及び制御盤11-2は、OLTの切り替え完了に伴う処理を行う(ステップS011)。ここでいうOLTの切り替え完了に伴う処理とは、例えば前述の図5に示される、カプラモジュール21のPON-PKG12-1に接続するポートと当該PON-PKG12-1とが接続された配線のうち、PON-PKG12-1側の配線を抜去させ、冗長用PKG12r-1に接続される光スイッチ22のポートに付け替えさせる処理である。 When the switching to the successor OLT 10-2 is completed for all PON-PKGs 12-1 of the existing OLT 10-1 (Yes in step S010), the control boards 11-1 and 11-2 perform processing associated with the completion of the OLT switching (step S011). The processing associated with the completion of the OLT switching here refers to, for example, the processing shown in FIG. 5 above, in which the wiring on the PON-PKG 12-1 side is removed from the wiring that connects the port of the coupler module 21 connected to the PON-PKG 12-1 and the PON-PKG 12-1, and replaced with the port of the optical switch 22 connected to the redundant PKG 12r-1.
 後継OLT10-2への切り替えが完了していないPON-PKG12-1が存在する場合(ステップS010・No)、ステップS003の処理に戻り、既存OLT10-1の全てのPON-PKG12-1について後継OLT10-2への切り替えが完了するまで上記の処理を繰り返す。以上で、図6のフローチャートが示す光通信システム1の動作が終了する。 If there is a PON-PKG 12-1 that has not yet completed switching to the successor OLT 10-2 (step S010: No), the process returns to step S003, and the above process is repeated until switching to the successor OLT 10-2 is completed for all PON-PKGs 12-1 of the existing OLT 10-1. This completes the operation of the optical communication system 1 shown in the flowchart of FIG. 6.
[切り替え処理のシーケンス]
 以下、第1の実施形態における光通信システム1によるOLTの切り替え処理のシーケンスの一例について説明する。図7は、本発明の第1の実施形態におけるOLTの切り替え処理を示すシーケンス図である。
[Switching process sequence]
Hereinafter, an example of a sequence of the OLT switching process in the optical communication system 1 according to the first embodiment will be described. Fig. 7 is a sequence diagram showing the OLT switching process according to the first embodiment of the present invention.
 第1の実施形態における光通信システム1において既存OLT10-1から後継OLT10-2への切り替えが行われる場合、図7に示されるように、まず、既存OLT10-1の制御盤11-1から後継OLT10-2の制御盤11-2へOLT情報が伝送される(ACT101)。制御盤11-2は、OLT情報の取得が完了すると、完了したことを示す伝達完了通知を制御盤11-1へ返送する(ACT102)。 When switching from the existing OLT 10-1 to the successor OLT 10-2 in the optical communication system 1 in the first embodiment, as shown in FIG. 7, first, OLT information is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2 (ACT 101). When the control panel 11-2 has completed acquiring the OLT information, it returns a transmission completion notification indicating completion to the control panel 11-1 (ACT 102).
 制御盤11-1は、制御盤11-2から送信された伝達完了通知を受信すると、切り替え対象のPON-PKG12-1へ状態確認のための信号を送信する(ACT103)。ここでいうPON-PKG12-1の状態確認とは、前述の通り、例えばPON-PKG12-1が故障していないかどうかを確認することである。PON-PKG12-1は、制御盤11-1から状態確認の信号を受信すると、制御盤11-1へ自己の状態を示す信号を返送することにより応答を行う(ACT104)。 When the control panel 11-1 receives the transmission completion notification sent from the control panel 11-2, it sends a signal to check the status of the PON-PKG 12-1 to be switched over (ACT 103). As mentioned above, checking the status of the PON-PKG 12-1 means, for example, checking whether the PON-PKG 12-1 is malfunctioning. When the PON-PKG 12-1 receives the status check signal from the control panel 11-1, it responds by sending back a signal indicating its own status to the control panel 11-1 (ACT 104).
 制御盤11-1は、切り替え対象のPON-PKG12-1から故障していない状態であることを示す信号を受信すると、当該PON-PKG12-1へ優先フレームの有無を確認するための信号を送信する(ACT105)。ここでいう優先フレームの有無とは、前述の通り、PON-PKG12-1が優先フレームを伝送中であるか否かの状態である。PON-PKG12-1は、制御盤11-1から優先フレームの有無の確認のための信号を受信すると、制御盤11-1へ優先フレームを伝送中であるか否かの状態を示す信号を返送することにより応答を行う(ACT106)。 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that the PON-PKG 12-1 is not faulty, it sends a signal to the PON-PKG 12-1 to confirm the presence or absence of a priority frame (ACT 105). As mentioned above, the presence or absence of a priority frame refers to the state of whether the PON-PKG 12-1 is transmitting a priority frame. When the PON-PKG 12-1 receives a signal from the control panel 11-1 to confirm the presence or absence of a priority frame, it responds by returning a signal indicating the state of whether or not a priority frame is being transmitted to the control panel 11-1 (ACT 106).
 制御盤11-1は、切り替え対象のPON-PKG12-1から優先フレームを伝送中ではない状態であることを示す信号を受信すると、当該PON-PKG12-1へ発光を停止させる指示を示す信号を送信する(ACT107)。PON-PKG12-1は、制御盤11-1から発光を停止させる指示を示す信号を受信すると、発光を停止する。PON-PKG12-1は、発光を停止すると、制御盤11-1へ発光の停止が完了したことを示す通知を送信する(ACT108)。 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that a priority frame is not being transmitted, it sends a signal to the PON-PKG 12-1 instructing it to stop emitting light (ACT 107). When the PON-PKG 12-1 receives a signal from the control panel 11-1 instructing it to stop emitting light, it stops emitting light. When the PON-PKG 12-1 stops emitting light, it sends a notification to the control panel 11-1 indicating that emitting light has been stopped (ACT 108).
 制御盤11-1は、切り替え対象のPON-PKG12-1から発光の停止が完了したことを示す通知を受信すると、後継OLT10-2のPON-PKG12-2の発光を開始させる指示を示す信号を、制御盤11-2を介してPON-PKG12-2へ伝送する(ACT109)。PON-PKG12-2は、制御盤11-1から発光を開始させる指示を示す信号を受信すると、発光を開始する。PON-PKG12-2は、発光を開始すると、制御盤11-2を介して制御盤11-1へ発光の開始が完了したことを示す通知を送信する(ACT110)。 When the control panel 11-1 receives a notification from the switching target PON-PKG 12-1 indicating that the light emission has been stopped, it transmits a signal indicating an instruction to start the light emission of PON-PKG 12-2 of the successor OLT 10-2 to PON-PKG 12-2 via the control panel 11-2 (ACT109). When the PON-PKG 12-2 receives a signal indicating an instruction to start the light emission from the control panel 11-1, it starts the light emission. When the PON-PKG 12-2 starts the light emission, it sends a notification to the control panel 11-1 via the control panel 11-2 indicating that the start of the light emission has been completed (ACT110).
 次に、ONU30は、後継OLT10-2のPON-PKG12-2へ上り信号を送信する(ACT111)。PON-PKG12-2は、ONU30から送信された上り信号を受信すると、当該上り信号を上位装置40へ送信する(ACT112)。 Next, ONU 30 transmits an upstream signal to PON-PKG 12-2 of successor OLT 10-2 (ACT 111). Upon receiving the upstream signal transmitted from ONU 30, PON-PKG 12-2 transmits the upstream signal to the upper device 40 (ACT 112).
 上位装置40は、後継OLT20-2のPON-PKG12-2から上り信号を受信すると、当該PON-PKG12-2へ下り信号が伝送される経路となるように、下り信号の経路を変更する(ACT113)。このように、上位装置40は、上り信号の受信に基づいて、発光のあったPON-PKG12-2を特定し(すなわち、経路を検知し)、下り信号の送信先を自動的に判定する。上位装置40は、下り信号の経路を変更すると、変更された経路で下り信号を後継OLT10-2のPON-PKG12-2へ送信する(ACT114)。 When the upper device 40 receives an upstream signal from PON-PKG 12-2 of the successor OLT 20-2, it changes the path of the downstream signal so that the downstream signal is transmitted to the PON-PKG 12-2 (ACT 113). In this way, the upper device 40 identifies the PON-PKG 12-2 that emitted light based on the reception of the upstream signal (i.e., detects the path) and automatically determines the destination of the downstream signal. When the upper device 40 changes the path of the downstream signal, it transmits the downstream signal to PON-PKG 12-2 of the successor OLT 10-2 via the changed path (ACT 114).
 後継OLT10-2のPON-PKG12-2は、上位装置40から下り信号を受信すると、当該下り信号を受信したことを示す通知を制御盤11-2へ送信する(ACT115)。制御盤11-2は、PON-PKG12-2から下り信号を受信したことを示す通知を受信すると、既存OLT10-1の制御盤11-1へOLTの切り替えが完了したことを示す通知を送信する(ACT116)。 When the PON-PKG 12-2 of the successor OLT 10-2 receives a downstream signal from the higher-level device 40, it sends a notification to the control board 11-2 indicating that the downstream signal has been received (ACT 115). When the control board 11-2 receives a notification from the PON-PKG 12-2 indicating that the downstream signal has been received, it sends a notification to the control board 11-1 of the existing OLT 10-1 indicating that the OLT switching has been completed (ACT 116).
 既存OLT10-1の制御盤11-1は、後継OLT10-2の制御盤11-2から切り替えが完了したことを示す通知を受信すると、残りの他のPON-PKG12-1に対しても上記と同様の処理を実行する(ACT117)。全てのPON-PKG12-1について上記の処理が完了した場合、図7のシーケンス図が示す第1の実施形態における光通信システム1におけるOLTの切り替え処理が終了する。 When the control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the switching has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 117). When the above process is completed for all PON-PKGs 12-1, the OLT switching process in the optical communication system 1 in the first embodiment shown in the sequence diagram of FIG. 7 is completed.
 以上説明したように、本発明の第1の実施形態における光通信システム1では、既存OLT10-1から後継OLT10-2への切り替えの際に、事前に配線作業が行われる。具体的には、冗長ポートを切り替えポートとして使用させるように、予め配線作業が行われる。そして、第1の実施形態における光通信システム1では、既存OLT10-1と後継OLT10-2との間における情報連携が適宜行われる。具体的には、既存OLT10-1の制御盤11-1と後継OLT10-2の制御盤11-2とが互いに通信接続され、既存OLT10-1から後継OLT10-2へOLT情報が伝送される。既存OLT10-1の制御盤11-1は、OLT情報に基づいて切り替えを実施するタイミングを決定する。このとき、既存OLT10-1での通信における優先フレームの有無も考慮して最適なタイミングが決定される。 As described above, in the optical communication system 1 according to the first embodiment of the present invention, wiring work is performed in advance when switching from the existing OLT 10-1 to the successor OLT 10-2. Specifically, wiring work is performed in advance so that the redundant port is used as the switching port. In the optical communication system 1 according to the first embodiment, information is appropriately shared between the existing OLT 10-1 and the successor OLT 10-2. Specifically, the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected to each other for communication, and OLT information is transmitted from the existing OLT 10-1 to the successor OLT 10-2. The control board 11-1 of the existing OLT 10-1 determines the timing of switching based on the OLT information. At this time, the optimal timing is determined taking into consideration the presence or absence of priority frames in the communication in the existing OLT 10-1.
 このような構成を備えることで、第1の実施形態における光通信システム1は、事前の配線と、既存OLT10-1と後継OLT10-2との間の情報連携によって、OLTの切り替えに伴う通信断を抑制することができる。 By having such a configuration, the optical communication system 1 in the first embodiment can suppress communication interruptions caused by switching OLTs by using advance wiring and information sharing between the existing OLT 10-1 and the successor OLT 10-2.
<第2の実施形態>
 以下、本発明の第1の実施形態について、図面を参照しながら説明する。
Second Embodiment
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 前述の第1の実施形態における光通信システム1では、事前の配線等によってOLTの切り替えに伴う通信断を抑制することができる。しかしながら、例えば前述の図7のACT107~ACT110の処理に示されるように、第1の実施形態における光通信システム1では、既存OLT10-1のPON-PKG12-1の発光停止から後継OLT10-2のPON-PKG12-2の発光開始までの間だけは通信断の状態となり、フレームロスが発生しうる。 In the optical communication system 1 in the first embodiment described above, communication interruptions due to OLT switching can be suppressed by prior wiring, etc. However, as shown in the processing of ACT107 to ACT110 in FIG. 7 described above, in the optical communication system 1 in the first embodiment, communication is interrupted only during the period from when the PON-PKG 12-1 of the existing OLT 10-1 stops emitting light until when the PON-PKG 12-2 of the successor OLT 10-2 starts emitting light, and frame loss may occur.
 これに対し、以下に説明する第2の実施形態における光通信システムは、上記のような通信断によるフレームロスの発生を防ぐことができる。なお、第2の実施形態における光通信システムの全体構成図は、前述の図2に示される第1の実施形態における光通信システム1の全体構成図と同様であるため、説明を省略する。以下、第1の実施形態における光通信システム1の各構成部にそれぞれ付された符号を用いて、第2の実施形態における光通信システムによるOLTの切り替え処理について説明する。 In contrast, the optical communication system of the second embodiment described below can prevent frame loss due to communication interruption as described above. Note that the overall configuration diagram of the optical communication system of the second embodiment is similar to the overall configuration diagram of the optical communication system 1 of the first embodiment shown in Figure 2 above, so a description thereof will be omitted. Below, the OLT switching process by the optical communication system of the second embodiment will be described using the reference numerals respectively assigned to each component of the optical communication system 1 of the first embodiment.
[切り替え処理のシーケンス]
 以下、第2の実施形態における光通信システム1によるOLTの切り替え処理のシーケンスの一例について説明する。図8は、本発明の第2の実施形態におけるOLTの切り替え処理を示すシーケンス図である。
[Switching process sequence]
An example of a sequence of the OLT switching process in the optical communication system 1 according to the second embodiment will be described below. Fig. 8 is a sequence diagram showing the OLT switching process according to the second embodiment of the present invention.
 第2の実施形態における光通信システム1において既存OLT10-1から後継OLT10-2への切り替えが行われる場合、図8に示されるように、まず、既存OLT10-1の制御盤11-1から後継OLT10-2の制御盤11-2へOLT情報が伝送される(ACT201)。制御盤11-2は、OLT情報の取得が完了すると、完了したことを示す伝達完了通知を制御盤11-1へ返送する(ACT202)。 When switching from the existing OLT 10-1 to the successor OLT 10-2 in the optical communication system 1 in the second embodiment, as shown in FIG. 8, first, OLT information is transmitted from the control panel 11-1 of the existing OLT 10-1 to the control panel 11-2 of the successor OLT 10-2 (ACT 201). When the control panel 11-2 has completed acquiring the OLT information, it returns a transmission completion notification indicating completion to the control panel 11-1 (ACT 202).
 制御盤11-1は、制御盤11-2から送信された伝達完了通知を受信すると、切り替え対象のPON-PKG12-1へ状態確認のための信号を送信する(ACT203)。ここでいうPON-PKG12-1の状態確認とは、前述の通り、例えばPON-PKG12-1が故障していないかどうかを確認することである。PON-PKG12-1は、制御盤11-1から状態確認の信号を受信すると、制御盤11-1へ自己の状態を示す信号を返送することにより応答を行う(ACT204)。 When the control panel 11-1 receives the transmission completion notification sent from the control panel 11-2, it sends a signal to check the status of the PON-PKG 12-1 to be switched over (ACT 203). As mentioned above, checking the status of the PON-PKG 12-1 means, for example, checking whether the PON-PKG 12-1 is malfunctioning. When the PON-PKG 12-1 receives the status check signal from the control panel 11-1, it responds by returning a signal indicating its own status to the control panel 11-1 (ACT 204).
 制御盤11-1は、切り替え対象のPON-PKG12-1から故障していない状態であることを示す信号を受信すると、当該PON-PKG12-1へ優先フレームの有無を確認するための信号を送信する(ACT205)。ここでいう優先フレームの有無とは、前述の通り、PON-PKG12-1が優先フレームを伝送中であるか否かの状態である。PON-PKG12-1は、制御盤11-1から優先フレームの有無の確認のための信号を受信すると、制御盤11-1へ優先フレームを伝送中であるか否かの状態を示す信号を返送することにより応答を行う(ACT206)。 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that the PON-PKG 12-1 is not faulty, it sends a signal to the PON-PKG 12-1 to confirm the presence or absence of a priority frame (ACT 205). As mentioned above, the presence or absence of a priority frame refers to the state of whether the PON-PKG 12-1 is transmitting a priority frame. When the PON-PKG 12-1 receives a signal from the control panel 11-1 to confirm the presence or absence of a priority frame, it responds by returning a signal indicating the state of whether or not a priority frame is being transmitted to the control panel 11-1 (ACT 206).
 制御盤11-1は、切り替え対象のPON-PKG12-1から優先フレームを伝送中ではない状態であることを示す信号を受信すると、当該PON-PKG12-1へOLTの切り替えを開始させる指示を示す通知を送信する(ACT207)。PON-PKG12-1は、制御盤11-1からOLTの切り替えを開始させる指示を示す通知を受信すると、上位装置40へ、切り替え後の通信経路に変更させるための指示を示す通知を送信する(ACT208)。 When the control panel 11-1 receives a signal from the switching target PON-PKG 12-1 indicating that a priority frame is not being transmitted, it sends a notification to the PON-PKG 12-1 instructing it to start switching the OLT (ACT 207). When the PON-PKG 12-1 receives a notification from the control panel 11-1 indicating an instruction to start switching the OLT, it sends a notification to the higher-level device 40 indicating an instruction to change the communication path to the one after switching (ACT 208).
 上位装置40は、既存OLT10-1のPON-PKG12-1から切り替え後の通信経路に変更させるための指示を示す通知を受信すると、通知された通信経路となるように、下り信号の経路を変更する(ACT209)。上位装置40は、下り信号の経路を変更すると、変更された経路で下り信号を後継OLT10-2のPON-PKG12-2へ送信する(ACT210)。 When the higher-level device 40 receives a notification indicating an instruction to change the communication path from the PON-PKG 12-1 of the existing OLT 10-1 to the post-switched communication path, it changes the path of the downstream signal to the notified communication path (ACT 209). After changing the path of the downstream signal, the higher-level device 40 transmits the downstream signal via the changed path to the PON-PKG 12-2 of the successor OLT 10-2 (ACT 210).
 後継OLT10-2のPON-PKG12-2は、上位装置40から下り信号受信すると、受信した下り信号のバッファリング(保持)の実行を開始する(ACT211)。このように、第2の実施形態における光通信システム1では、OLTの切り替えの事前に上位装置40からの下り信号の経路が切り替えられ、下り信号をバッファリングする。これにより、OLTの切り替えに伴う通信断によるフレームロスの発生を防ぐことができる。PON-PKG12-2は、下り信号のバッファリングの実行を開始すると、制御盤11-2を介して既存OLT10-1の制御盤11-1へ下り信号を受信したことを示す通知を送信する(ACT212及びACT213)。 When the PON-PKG 12-2 of the successor OLT 10-2 receives a downstream signal from the upper device 40, it starts buffering (holding) the received downstream signal (ACT 211). In this way, in the optical communication system 1 of the second embodiment, the path of the downstream signal from the upper device 40 is switched before the OLT is switched, and the downstream signal is buffered. This makes it possible to prevent frame loss due to communication interruption caused by the OLT switching. When the PON-PKG 12-2 starts buffering the downstream signal, it transmits a notification indicating that the downstream signal has been received to the control panel 11-1 of the existing OLT 10-1 via the control panel 11-2 (ACT 212 and ACT 213).
 既存OLT10-1の制御盤11-1は、後継OLT10-2のPON-PKG12-2から送信された下り信号を受信したことを示す通知を受信すると、上記のACT205~ACT206の処理において優先フレームを伝送中ではない状態であることが確認されたPON-PKG12-1へ、発光を停止させる指示を示す信号を送信する(ACT214)。PON-PKG12-1は、制御盤11-1から発光を停止させる指示を示す信号を受信すると、発光を停止する。PON-PKG12-1は、発光を停止すると、制御盤11-1へ発光の停止が完了したことを示す通知を送信する(ACT215)。 When the control panel 11-1 of the existing OLT 10-1 receives a notification indicating that it has received a downstream signal sent from the PON-PKG 12-2 of the successor OLT 10-2, it sends a signal instructing it to stop emitting light to the PON-PKG 12-1, which has been confirmed to be in a state where it is not transmitting a priority frame in the processing of ACT205 to ACT206 described above (ACT214). When the PON-PKG 12-1 receives a signal instructing it to stop emitting light from the control panel 11-1, it stops emitting light. When the PON-PKG 12-1 stops emitting light, it sends a notification to the control panel 11-1 indicating that halting of light emission has been completed (ACT215).
 制御盤11-1は、切り替え対象のPON-PKG12-1から発光の停止が完了したことを示す通知を受信すると、後継OLT10-2のPON-PKG12-2の発光を開始させる指示を示す信号を、制御盤11-2を介してPON-PKG12-2へ伝送する(ACT216及びACT217)。PON-PKG12-2は、制御盤11-1から発光を開始させる指示を示す信号を受信すると、発光を開始する。PON-PKG12-2は、発光を開始すると、制御盤11-2を介して制御盤11-1へ発光の開始が完了したことを示す通知を送信する(ACT218及びACT219)。 When the control panel 11-1 receives a notification from the switching target PON-PKG 12-1 indicating that the light emission has been stopped, it transmits a signal indicating an instruction to start the light emission of PON-PKG 12-2 of the successor OLT 10-2 to PON-PKG 12-2 via the control panel 11-2 (ACT216 and ACT217). When the PON-PKG 12-2 receives a signal indicating an instruction to start the light emission from the control panel 11-1, it starts the light emission. When the PON-PKG 12-2 starts the light emission, it sends a notification to the control panel 11-1 via the control panel 11-2 indicating that the start of the light emission has been completed (ACT218 and ACT219).
 次に、後継OLT11-2の制御盤11-2は、PON-PKG12-2から発光の開始が完了したことを示す通知を受信すると、当該PON-PKG12-2へバッファリングの実行を解除させる指示を示す信号を送信する(ACT220)。PON-PKG12-2は、制御盤11-2からバッファリングの実行を解除させる指示を示す信号を受信すると、バッファリングの実行を終了する。次に、PON-PKG12-2は、バッファリングされた信号(フレーム)をまとめてONU30へ伝送する(ACT221)。 Next, when the control panel 11-2 of the successor OLT 11-2 receives a notification from the PON-PKG 12-2 indicating that the start of light emission has been completed, it transmits a signal to the PON-PKG 12-2 indicating an instruction to cancel the execution of buffering (ACT 220). When the PON-PKG 12-2 receives a signal indicating an instruction to cancel the execution of buffering from the control panel 11-2, it ends the execution of buffering. Next, the PON-PKG 12-2 transmits the buffered signals (frames) together to the ONU 30 (ACT 221).
 既存OLT10-1の制御盤11-1は、後継OLT10-2の制御盤11-2から発光の開始が完了したことを示す通知を受信すると、残りの他のPON-PKG12-1に対しても上記と同様の処理を実行する(ACT222)。全てのPON-PKG12-1について上記の処理が完了した場合、図8のシーケンス図が示す第2の実施形態における光通信システム1におけるOLTの切り替え処理が終了する。 When the control board 11-1 of the existing OLT 10-1 receives a notification from the control board 11-2 of the successor OLT 10-2 indicating that the start of light emission has been completed, it executes the same process as above for the remaining PON-PKGs 12-1 (ACT 222). When the above process is completed for all PON-PKGs 12-1, the OLT switching process in the optical communication system 1 in the second embodiment shown in the sequence diagram of FIG. 8 is completed.
 以上説明したように、本発明の第2の実施形態における光通信システム1では、既存OLT10-1から後継OLT10-2への切り替えの際に、事前に配線作業が行われる。具体的には、冗長ポートを切り替えポートとして使用させるように、予め配線作業が行われる。そして、第2の実施形態における光通信システム1では、既存OLT10-1と後継OLT10-2との間における情報連携が適宜行われる。具体的には、既存OLT10-1の制御盤11-1と後継OLT10-2の制御盤11-2とが互いに通信接続され、既存OLT10-1から後継OLT10-2へOLT情報が伝送される。既存OLT10-1の制御盤11-1は、OLT情報に基づいて切り替えを実施するタイミングを決定する。このとき、既存OLT10-1での通信における優先フレームの有無も考慮して最適なタイミングが決定される。 As described above, in the optical communication system 1 in the second embodiment of the present invention, wiring work is performed in advance when switching from the existing OLT 10-1 to the successor OLT 10-2. Specifically, wiring work is performed in advance so that the redundant port is used as the switching port. In the optical communication system 1 in the second embodiment, information sharing between the existing OLT 10-1 and the successor OLT 10-2 is appropriately performed. Specifically, the control board 11-1 of the existing OLT 10-1 and the control board 11-2 of the successor OLT 10-2 are connected to each other for communication, and OLT information is transmitted from the existing OLT 10-1 to the successor OLT 10-2. The control board 11-1 of the existing OLT 10-1 determines the timing of switching based on the OLT information. At this time, the optimal timing is determined taking into consideration the presence or absence of priority frames in the communication in the existing OLT 10-1.
 このような構成を備えることで、第2の実施形態における光通信システム1は、事前の配線と、既存OLT10-1と後継OLT10-2との間の情報連携によって、OLTの切り替えに伴う通信断を抑制することができる。 By having such a configuration, the optical communication system 1 in the second embodiment can suppress communication interruptions caused by switching OLTs by using advance wiring and information sharing between the existing OLT 10-1 and the successor OLT 10-2.
 また、以上説明したように、本発明の第2の実施形態における光通信システム1では、例えば図8に示されるシーケンス図のACT209~ACT211の処理のように、OLTの切り替えの事前に上位装置40からの下り信号の経路が切り替えられ、下り信号をバッファリングする。これにより、OLTの切り替えに伴う通信断によるフレームロスの発生を防ぐことができる。 As described above, in the optical communication system 1 according to the second embodiment of the present invention, the path of the downstream signal from the higher-level device 40 is switched and the downstream signal is buffered before switching the OLT, for example, as in the processing of ACT209 to ACT211 in the sequence diagram shown in FIG. 8. This makes it possible to prevent frame loss due to communication interruption caused by switching the OLT.
 このように、第2の実施形態における光通信システム1には、OLTの切り替えに伴う通信断によるフレームロスの発生を防ぐことができるというメリットがある。一方、前述の第1の実施形態における光通信システム1では、既存OLT10-1のPON-PKG12-1の発光停止から後継OLT10-2のPON-PKG12-2の発光開始までの間だけは通信断によるフレームロスが発生しうる状態になる。しかしながら、前述の第1の実施形態における光通信システム1では、第2の実施形態における光通信システム1のような下り信号のバッファリングをするための構成を設ける必要がないことから、システム構成をより簡易にすることができるというメリットがある。 In this way, the optical communication system 1 in the second embodiment has the advantage of being able to prevent frame loss due to communication interruption associated with OLT switching. On the other hand, in the optical communication system 1 in the first embodiment described above, frame loss due to communication interruption can occur only between the time when the PON-PKG 12-1 of the existing OLT 10-1 stops emitting light and the time when the PON-PKG 12-2 of the successor OLT 10-2 starts emitting light. However, the optical communication system 1 in the first embodiment described above has the advantage of being able to simplify the system configuration, since there is no need to provide a configuration for buffering downstream signals as in the optical communication system 1 in the second embodiment.
 上述した実施形態によれば、光通信システムは、第1の通信装置と、第1の通信装置と通信を行う第2の通信装置と、装置の切り替え処理の後に第2の通信装置に代わって第1の通信装置と通信を行う第3の通信装置とを有する。例えば、第1の通信装置は、実施形態におけるONU30であり、第2の通信装置は、実施形態における既存OLT10-1であり、第3の通信装置は、実施形態における後継OLT10-2である。 According to the above-described embodiment, the optical communication system has a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device in place of the second communication device after device switching processing. For example, the first communication device is the ONU 30 in the embodiment, the second communication device is the existing OLT 10-1 in the embodiment, and the third communication device is the successor OLT 10-2 in the embodiment.
 上記の第2の通信装置は、第1の通信装置との通信を行う第2の通信部と、切り替え処理の実行タイミングを示す情報を第3の通信装置へ送信し、実行タイミングに従って第2の通信部による通信を停止させる第2の制御部とを備える。例えば、第2の通信部は、実施形態における既存OLT10-1のPON-PKG12-1であり、切り替え処理の実行タイミングを示す情報は、実施形態におけるOLT情報であり、第2の制御部は、実施形態における制御盤11-1である。 The second communication device includes a second communication unit that communicates with the first communication device, and a second control unit that transmits information indicating the execution timing of the switching process to the third communication device and stops communication by the second communication unit according to the execution timing. For example, the second communication unit is the PON-PKG 12-1 of the existing OLT 10-1 in the embodiment, the information indicating the execution timing of the switching process is the OLT information in the embodiment, and the second control unit is the control panel 11-1 in the embodiment.
 上記の第3の通信装置は、第1の通信装置との通信を行う第3の通信部と、実行タイミングを示す情報を第2の通信装置から取得し、実行タイミングに従って第3の通信部による通信を開始させる第3の制御部とを備える。例えば、第3の通信部は、実施形態における後継OLT10-2のPON-PKG12-2であり、第3の制御部は、実施形態における制御盤11-2である。 The third communication device includes a third communication unit that communicates with the first communication device, and a third control unit that acquires information indicating execution timing from the second communication device and starts communication by the third communication unit according to the execution timing. For example, the third communication unit is PON-PKG 12-2 of successor OLT 10-2 in the embodiment, and the third control unit is control panel 11-2 in the embodiment.
 なお、上記の光通信システムは、切り替え部をさらに有していてもよい。例えば、切り替え部は、実施形態における光セレクタ20である。この場合、切り替え部は、第1の通信装置と接続し、切り替え処理に伴って通信経路を切り替える。また、この場合、少なくとも切り替え処理が完了するまでは、切り替え部と第2の通信装置とが接続され、少なくとも切り替え処理が開始するまでに、切り替え部と第3の通信装置とが接続される。 The optical communication system may further include a switching unit. For example, the switching unit is the optical selector 20 in the embodiment. In this case, the switching unit connects to the first communication device, and switches the communication path in accordance with the switching process. In this case, the switching unit and the second communication device are connected at least until the switching process is completed, and the switching unit and the third communication device are connected at least until the switching process starts.
 なお、上記の光通信システムにおいて、第3の通信装置に接続される切り替え部のポートとして、冗長用のポートが用いられてもよい。 In addition, in the above optical communication system, a redundant port may be used as the port of the switching unit connected to the third communication device.
 なお、上記の光通信システムにおいて、第2の制御部は、第2の通信部によって優先フレームの伝送が行われているか否かを確認し、優先フレームの伝送が行われていないタイミングとなるように実行タイミングを決定するようにしてもよい。 In the above optical communication system, the second control unit may check whether or not a priority frame is being transmitted by the second communication unit, and determine the execution timing to be a time when a priority frame is not being transmitted.
 なお、上記の光通信システムにおいて、第2の制御部は、第2の通信部の故障の有無を検知し、第2の通信部に故障がある場合、切り替え処理を優先的に実行させるように実行タイミングを決定するようにしてもよい。 In addition, in the above optical communication system, the second control unit may detect whether or not there is a failure in the second communication unit, and if there is a failure in the second communication unit, determine the execution timing to give priority to the switching process.
 また、上述した実施形態によれば、光通信装置は、通信部と、制御部とを備える。例えば、光通信装置は、実施形態における既存OLT10-1であり、通信部は、実施形態におけるPON-PKG12-1であり、制御部は、実施形態における制御盤11-1である。上記の通信部は、第1の通信装置との通信を行う。例えば、第1の通信装置は、実施形態におけるONU30である。 Furthermore, according to the above-described embodiment, the optical communication device includes a communication unit and a control unit. For example, the optical communication device is an existing OLT 10-1 in the embodiment, the communication unit is a PON-PKG 12-1 in the embodiment, and the control unit is a control panel 11-1 in the embodiment. The communication unit communicates with a first communication device. For example, the first communication device is an ONU 30 in the embodiment.
 上記の制御部は、第1の通信装置との通信を行う通信装置を自装置から第2の通信装置に切り替える切り替え処理の実行タイミングを決定し、実行タイミングに基づく停止タイミングで通信部による通信を停止させるとともに、実行タイミングに基づく開始タイミングで第1の通信装置との通信を開始する第2の通信装置へ実行タイミングを示す情報を送信する。例えば、第2の通信装置は、実施形態における後継OLT10-2であり、実行タイミングを示す情報は、実施形態におけるOLT情報である。 The control unit determines the execution timing of a switching process for switching the communication device that communicates with the first communication device from its own device to the second communication device, stops communication by the communication unit at a stop timing based on the execution timing, and transmits information indicating the execution timing to the second communication device that starts communication with the first communication device at a start timing based on the execution timing. For example, the second communication device is the successor OLT 10-2 in the embodiment, and the information indicating the execution timing is OLT information in the embodiment.
 上述した実施形態における光通信システム1の構成の一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 A part of the configuration of the optical communication system 1 in the above-mentioned embodiment may be realized by a computer. In this case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed to realize the function. Note that the term "computer system" here includes hardware such as an OS and peripheral devices. Furthermore, the term "computer-readable recording medium" refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into a computer system. Furthermore, the term "computer-readable recording medium" may include a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line, and a medium that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in such a case. Furthermore, the above-mentioned program may be a program for realizing a part of the above-mentioned function, or may be a program that can realize the above-mentioned function in combination with a program already recorded in the computer system, or may be a program that is realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。  Although an embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs that do not deviate from the gist of the present invention.
1,1a…光通信システム、11-1,11-2,11a-1,11a-2…制御盤、12-1,12-2…PON-PKG、20,20a-1,20a-2…光セレクタ、21,21-1,21-2…カプラモジュール、22,22-1,22-2…光スイッチ、40…上位装置 1, 1a...Optical communication system, 11-1, 11-2, 11a-1, 11a-2...Control panel, 12-1, 12-2...PON-PKG, 20, 20a-1, 20a-2...Optical selector, 21, 21-1, 21-2...Coupler module, 22, 22-1, 22-2...Optical switch, 40...Higher-level device

Claims (8)

  1.  第1の通信装置と、前記第1の通信装置と通信を行う第2の通信装置と、装置の切り替え処理の後に前記第2の通信装置に代わって前記第1の通信装置と通信を行う第3の通信装置と、を有する光通信システムであって、
     前記第2の通信装置は、
     前記第1の通信装置との通信を行う第2の通信部と、
     前記切り替え処理の実行タイミングを示す情報を前記第3の通信装置へ送信し、前記実行タイミングに従って前記第2の通信部による通信を停止させる第2の制御部と、
     を備え、
     前記第3の通信装置は、
     前記第1の通信装置との通信を行う第3の通信部と、
     前記実行タイミングを示す情報を前記第2の通信装置から取得し、前記実行タイミングに従って前記第3の通信部による通信を開始させる第3の制御部と、
     を備える光通信システム。
    An optical communication system having a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device instead of the second communication device after a device switching process,
    The second communication device is
    a second communication unit that communicates with the first communication device;
    a second control unit that transmits information indicating an execution timing of the switching process to the third communication device and stops communication by the second communication unit in accordance with the execution timing;
    Equipped with
    The third communication device is
    a third communication unit that communicates with the first communication device;
    a third control unit that acquires information indicating the execution timing from the second communication device and starts communication by the third communication unit in accordance with the execution timing;
    An optical communication system comprising:
  2.  前記第1の通信装置と接続し、前記切り替え処理に伴って通信経路を切り替える切り替え部
     をさらに有し、
     少なくとも前記切り替え処理が完了するまでは、前記切り替え部と前記第2の通信装置とが接続され、
     少なくとも前記切り替え処理が開始するまでに、前記切り替え部と前記第3の通信装置とが接続される
     請求項1に記載の光通信システム。
    a switching unit that is connected to the first communication device and switches a communication path in accordance with the switching process,
    The switching unit and the second communication device are connected at least until the switching process is completed,
    The optical communication system according to claim 1 , wherein the switching unit and the third communication device are connected at least until the switching process starts.
  3.  前記第3の通信装置に接続される前記切り替え部のポートとして、冗長用のポートが用いられる
     請求項2に記載の光通信システム。
    The optical communication system according to claim 2 , wherein a redundant port is used as the port of the switching unit connected to the third communication device.
  4.  前記第2の制御部は、前記第2の通信部によって優先フレームの伝送が行われているか否かを確認し、前記優先フレームの伝送が行われていないタイミングとなるように前記実行タイミングを決定する
     請求項1から3のうちいずれか一項に記載の光通信システム。
    The optical communication system according to any one of claims 1 to 3, wherein the second control unit checks whether or not a priority frame is being transmitted by the second communication unit, and determines the execution timing so as to be a timing when the priority frame is not being transmitted.
  5.  前記第2の制御部は、前記第2の通信部の故障の有無を検知し、前記第2の通信部に故障がある場合、前記切り替え処理を優先的に実行させるように前記実行タイミングを決定する
     請求項1から3のうちいずれか一項に記載の光通信システム。
    4. The optical communication system according to claim 1, wherein the second control unit detects whether or not the second communication unit has a malfunction, and when the second communication unit has a malfunction, determines the execution timing so as to execute the switching process with priority.
  6.  第1の通信装置との通信を行う通信部と、
     前記第1の通信装置との通信を行う通信装置を自装置から第2の通信装置に切り替える切り替え処理の実行タイミングを決定し、前記実行タイミングに基づく停止タイミングで前記通信部による通信を停止させるとともに、前記実行タイミングに基づく開始タイミングで前記第1の通信装置との通信を開始する前記第2の通信装置へ前記実行タイミングを示す情報を送信する制御部と、
     を備える光通信装置。
    A communication unit that communicates with a first communication device;
    a control unit that determines an execution timing of a switching process for switching a communication device that communicates with the first communication device from the communication device itself to a second communication device, stops communication by the communication unit at a stop timing based on the execution timing, and transmits information indicating the execution timing to the second communication device that starts communication with the first communication device at a start timing based on the execution timing;
    An optical communication device comprising:
  7.  第1の通信装置と、前記第1の通信装置と通信を行う第2の通信装置と、装置の切り替え処理の後に前記第2の通信装置に代わって前記第1の通信装置と通信を行う第3の通信装置と、を有する光通信システムによる装置切り替え方法であって、
     前記第2の通信装置が、前記切り替え処理の実行タイミングを示す情報を前記第3の通信装置へ送信する送信ステップと、
     前記第3の通信装置が、前記実行タイミングを示す情報を前記第2の通信装置から取得する取得ステップと、
     前記第2の通信装置が、前記実行タイミングに従って前記第1の通信装置との通信を停止させる第2の制御ステップと、
     前記第3の通信装置が、前記実行タイミングに従って前記第1の通信装置との通信を開始させる第3の制御ステップと、
     を有する装置切り替え方法。
    1. A device switching method for an optical communication system having a first communication device, a second communication device that communicates with the first communication device, and a third communication device that communicates with the first communication device instead of the second communication device after a device switching process, comprising:
    a transmission step of the second communication device transmitting information indicating an execution timing of the switching process to the third communication device;
    an acquisition step of the third communication device acquiring information indicating the execution timing from the second communication device;
    a second control step of causing the second communication device to stop communication with the first communication device in accordance with the execution timing;
    a third control step of causing the third communication device to start communication with the first communication device according to the execution timing;
    The device switching method includes the steps of:
  8.  請求項6に記載の光通信装置としてコンピュータを機能させるためのプログラム。 A program for causing a computer to function as the optical communication device described in claim 6.
PCT/JP2022/040987 2022-11-02 2022-11-02 Optical communication system, optical communication device, device switching method, and program WO2024095393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040987 WO2024095393A1 (en) 2022-11-02 2022-11-02 Optical communication system, optical communication device, device switching method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040987 WO2024095393A1 (en) 2022-11-02 2022-11-02 Optical communication system, optical communication device, device switching method, and program

Publications (1)

Publication Number Publication Date
WO2024095393A1 true WO2024095393A1 (en) 2024-05-10

Family

ID=90929926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040987 WO2024095393A1 (en) 2022-11-02 2022-11-02 Optical communication system, optical communication device, device switching method, and program

Country Status (1)

Country Link
WO (1) WO2024095393A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171041A (en) * 2008-01-11 2009-07-30 Sumitomo Electric Ind Ltd Pon system and station side apparatus
JP2009246588A (en) * 2008-03-31 2009-10-22 Hitachi Communication Technologies Ltd Network system and communications equipment
JP2015142277A (en) * 2014-01-29 2015-08-03 富士通テレコムネットワークス株式会社 Communication system, communication device and line changeover method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171041A (en) * 2008-01-11 2009-07-30 Sumitomo Electric Ind Ltd Pon system and station side apparatus
JP2009246588A (en) * 2008-03-31 2009-10-22 Hitachi Communication Technologies Ltd Network system and communications equipment
JP2015142277A (en) * 2014-01-29 2015-08-03 富士通テレコムネットワークス株式会社 Communication system, communication device and line changeover method

Similar Documents

Publication Publication Date Title
US8824899B2 (en) Terminal device, method of controlling the same, computer-readable storage medium storing program therfor
US9179204B2 (en) Optical network system
JP4696759B2 (en) Optical termination system
CN102299846B (en) Method for transmitting BFD (Bidirectional Forwarding Detection) message and equipment
US20070268818A1 (en) Station side transmission unit, operation control method for station side transmission unit, and optical network using station side transmission unit
US8509616B2 (en) Devices, systems and methods for run-time reassignment of a PHY to MAC devices interconnect
US10778561B2 (en) Diagnostic port for inter-switch and node link testing in electrical, optical and remote loopback modes
TW201531108A (en) Electro-optical signal transmission
WO2024095393A1 (en) Optical communication system, optical communication device, device switching method, and program
US20080037426A1 (en) Network system of recovering routing information
US6999460B1 (en) Arbitrated loop port switching
US8457488B2 (en) Technology for providing telecommunication services to multiple optical communication lines
US20090225651A1 (en) Communication management system, communication management method, and communication management device
JP5692860B2 (en) Transmission device and interface device
CN101515835A (en) Method and device for backing up across-board optical port
JP2011259064A (en) Optical communication network system, slave station communication device and master station communication device
JP6287404B2 (en) Station side equipment
CN115086579B (en) Video matrix redundancy backup method and device, terminal equipment and storage medium
JP2837038B2 (en) Line handling part of packet switching equipment
WO2017098747A1 (en) Premises-side apparatus, pon system, and premises-side apparatus control method
US7590717B1 (en) Single IP address for redundant shelf processors
KR100705592B1 (en) Access node and method for sending/receiving packet thereof
KR950001517B1 (en) Dualized packet bus control circuit in the packet call control processor
KR100318850B1 (en) Message transmission device in mobile switching center
JP4458431B2 (en) Optical subscriber unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964413

Country of ref document: EP

Kind code of ref document: A1