WO2024094024A1 - 一种聚合物及其制备方法和应用 - Google Patents

一种聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024094024A1
WO2024094024A1 PCT/CN2023/128753 CN2023128753W WO2024094024A1 WO 2024094024 A1 WO2024094024 A1 WO 2024094024A1 CN 2023128753 W CN2023128753 W CN 2023128753W WO 2024094024 A1 WO2024094024 A1 WO 2024094024A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
monomer
integer
bromo
formula
Prior art date
Application number
PCT/CN2023/128753
Other languages
English (en)
French (fr)
Inventor
龙川
余颖龙
王延飞
邵晨熠
王晶晶
贺业亨
赵秦峰
李庆勋
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024094024A1 publication Critical patent/WO2024094024A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells

Definitions

  • the present application relates to a polymer, and in particular to a polymer and a preparation method and application thereof, belonging to the technical field of fuel cells.
  • electrochemical energy storage and conversion technologies such as fuel cells, water electrolysis, and energy storage technologies are considered to be one of the most promising solutions to reduce dependence on fossil energy and provide clean energy.
  • proton exchange membrane fuel cells, water electrolysis, and energy storage battery technologies based on proton exchange membrane (PEM) have become research hotspots in countries around the world.
  • Proton exchange membrane plays the role of transferring protons and isolating cathode and anode reactants in the device.
  • Proton conductivity is one of the key properties of PEM, which reflects the rate of proton transfer participating in cathode and anode reactions.
  • Protons in the membrane rely on water molecules to conduct through a transport mechanism, so PEM needs to be in a better hydration state to better conduct protons.
  • An ideal PEM needs to have high proton conductivity, mechanical stability, moisture retention and excellent processing performance.
  • the present application provides a polymer having relatively excellent cation conductivity, mechanical strength and processing controllability, and thus is beneficial to improving the performance of cation exchange membranes.
  • the present application also provides a method for preparing the above polymer, by selecting a suitable main chain unit and modified groups, so as to obtain a polymer having improved performance of cation exchange membrane.
  • the present application also provides a cation exchange membrane, comprising the above polymer, the cation exchange membrane not only has excellent performance in ion conductivity and mechanical strength, but also has strong processing controllability.
  • the present application also provides a fuel cell, comprising the above-mentioned cation exchange membrane, and thus having excellent performance in power generation efficiency.
  • the present application also provides a water electrolysis device, comprising the above-mentioned cation exchange membrane, thereby significantly improving the electrolysis efficiency.
  • the present application provides a polymer having a structure shown in Formula 1,
  • M comes from a ketone monomer
  • Ar comes from an aromatic ring conjugated monomer
  • X + is a monovalent cation
  • R 1 to R 5 are each independently selected from hydrogen, fluorine and methyl.
  • R 6 -R 17 are each independently selected from hydrogen, substituted or unsubstituted C1-C18 alkyl, substituted or unsubstituted C2-C18 alkenyl, substituted or unsubstituted C2-C18 alkynyl, R 18 is selected from C1-C18 alkyl, C2-C18 alkenyl, C2-C18 alkynyl, and R 19 -R 20 are each independently selected from hydrogen, fluorine, and methyl.
  • the polymer precursor has a structure of Formula 1a
  • the hydrophilic unit has a structure of Formula 1b
  • R0 is selected from hydrogen or tert-butyloxycarbonyl;
  • m1 is an integer of 0-6, and
  • m2 is an integer of 1-8.
  • the hydrophilic unit is preferably one of 3-bromopropyl methyl ether, 1-bromo-2-(2-methoxyethoxy)ethane, diethylene glycol-2-bromoethyl methyl ether, and 1-bromo-5-methoxypentane.
  • the present application provides a method for preparing the polymer described in any one of the above, comprising the following steps:
  • a raw material containing a polymer precursor, a hydrophilic unit and a sulfonate is The system reacts to obtain the polymer;
  • the polymer precursor has a structure of Formula 1a
  • the hydrophilic unit has a structure of Formula 1b
  • R0 is selected from hydrogen or tert-butyloxycarbonyl;
  • m1 is an integer of 0-6, and
  • m2 is an integer of 1-8.
  • the catalyst is preferably at least one of trifluoroacetic acid, trifluoromethanesulfonic acid and methanesulfonic acid.
  • the sulfonate is preferably one of 3-bromo-1-sodium propanesulfonate, 4-bromo-1-sodium butanesulfonate, 5-bromo-1-sodium pentanesulfonate, 6-bromo-1-sodium hexanesulfonate, 7-bromo-1-sodium heptanesulfonate, 8-bromo-1-sodium octanesulfonate and 9-bromo-1-sodium nonanesulfonate.
  • the present application also provides a cation exchange membrane, the composition of which includes any of the polymers described above.
  • the present application also provides a fuel cell, comprising the cation exchange membrane as described above.
  • the present application also provides a water electrolysis device, comprising the cation exchange membrane as described above.
  • the presence of the sulfonic acid group in the side chain of the polymer of the present application not only promotes the hygroscopicity and moisture retention of the polymer to a certain extent, but also bonds to the side chain in the form of a salt, so the content of the sulfonic acid group in the polymer is controllable, and then the hygroscopicity and moisture retention of the polymer can be controlled, which effectively meets the application requirements;
  • the main chain includes a carbazole group and does not contain vulnerable groups including ether groups, carbonyl groups and sulfone groups, so the stability of the polymer is high, and therefore has excellent chemical stability and mechanical strength. Therefore, the polymer of the present application has excellent performance in ionic conductivity and mechanical strength, and can especially make precise adjustments according to application requirements, and finally achieve controllable ionic conductivity.
  • FIG1 is a 1 H-NMR spectrum of the polymer main chain of Example 19;
  • FIG2 is a comparison diagram of current density-voltage curves of the proton exchange membranes of Example 1-2 and Comparative Example 1-2 assembled into water electrolysis cells.
  • the present application provides a polymer having a structure shown in Formula 1,
  • M comes from a ketone monomer
  • Ar comes from an aromatic ring conjugated monomer
  • X + is a monovalent cation
  • n is an integer of 1-6
  • m1 is an integer of 0-6, and m2 is an integer of 1-8.
  • the polymer of the present application includes at least three blocks as shown in Formula 1, and the molar proportions of the three blocks in the polymer are respectively shown as x 1 , y 1 and z 1 .
  • the present application does not limit the molecular weight of the polymer, and the specific molecular weight of the polymer can be adjusted by controlling the amount of monomer added according to actual needs.
  • the present application also does not limit the arrangement structure of the three blocks in the polymer, and the three blocks can be bonded in any arrangement.
  • the polymer can also include a block copolymer in which the blocks represented by x1 , y1 , and z1 are bonded in sequence.
  • the composition of the cation exchange membrane include the above
  • the polymer can significantly improve the performance of the cation exchange membrane in terms of ion conductivity, chemical stability and mechanical strength. Based on this phenomenon, the inventor analyzed and believed that it may be: on the one hand, the sulfonic acid group on the side chain helps to improve the hygroscopicity and moisture retention of the polymer.
  • the polymer Since the conduction of cations needs to rely on water molecules in the environment, when the polymer establishes a good high-humidity conduction environment, it is more conducive to the long-term and efficient conduction of cations; on the other hand, the main chain of the polymer including the carbazole group does not contain any reactive groups that are easily attacked (such as ether groups, carbonyl groups and sulfone groups, etc.). Therefore, the polymer can show excellent chemical stability and mechanical stability in a long-term application environment, reducing or avoiding the phenomenon of decomposition due to poor chemical stability of the polymer or rupture due to poor mechanical stability, and thus having an ultra-long service life in terms of cation conduction. In addition, when the polymer has excellent moisture retention properties, it can also avoid the increase in brittleness of the polymer due to water loss, and thus also improve the mechanical properties of the polymer to a certain extent.
  • the hydrophilic side chains of the polymer help to further improve the moisture retention of the cation exchange membrane and induce self-assembly in the ion exchange membrane to construct interconnected proton transfer channels, reduce dead ends, and form an efficient ion cluster structure, thereby further improving the ion conductivity of the cationic membrane in a low-humidity environment.
  • the combination of the flexible side chains including the sulfonic acid group side chains and the above-mentioned hydrophilic side chains and the rigid main chain containing the carbazole group will also promote the microphase separation phenomenon in the polymer that is beneficial to improving the cation conduction effect.
  • the polymer of the present application also has the advantage of controllable related properties.
  • the unit providing the sulfonic acid group can be avoided from participating in the polymerization reaction by controlling parameters such as raw material selection and step sequence. It is only necessary to select the corresponding monomers to polymerize each other into polymer units, and then control the ratio of polymer units and units providing sulfonic acid groups so that the sulfonic acid groups enter the polymer as side chains.
  • the polymerization reaction is a chain initiation reaction
  • the sulfonic acid group is introduced into the polymer as a side chain, which can avoid the difficulty in controlling the polymerization reaction process and resulting in the inability to obtain a polymer whose sulfonic acid group unit meets the expected doping amount.
  • the special composition structure of the polymer of the present application can accurately control the doping ratio of the sulfonic acid groups therein, and finally ensure that the polymer has the target doping ratio of the sulfonic acid groups.
  • This controllability can not only achieve the consistency of the same batch of products and improve the production efficiency, but also facilitate the construction of the differentiation of the polymer in the doping of the sulfonic acid groups, thereby achieving product diversity and meeting the requirements of different environments for ion conductivity and mechanical properties. Different needs in terms of energy etc.
  • the present application does not limit the specific type of the monovalent cation X + in Formula 1, for example, it may be H + , Na + , K + , Ag + , Li + , etc.
  • the monovalent cation X + is H + .
  • the present application does not limit the specific form of the ketone monomer, and any monomer that can provide a carbonyl group can be used as the ketone monomer of the present application.
  • any monomer that can provide a carbonyl group can be used as the ketone monomer of the present application.
  • it can be derived from at least one compound shown in the following C1-C12 structural formula.
  • R 1 to R 5 are each independently selected from hydrogen, fluorine, and methyl.
  • the present application does not limit the specific form of the aromatic ring conjugated monomer, and any monomer that can provide an aromatic ring can be used as the aromatic ring conjugated monomer of the present application.
  • any monomer that can provide an aromatic ring can be used as the aromatic ring conjugated monomer of the present application.
  • it can be derived from at least one compound shown in the following structural formulas A1-A7.
  • R 6 -R 17 are each independently selected from hydrogen, substituted or unsubstituted C1-C18 alkyl, substituted or unsubstituted C2-C18 alkenyl, substituted or unsubstituted C2-C18 alkynyl, R 18 is selected from C1-C18 alkyl, C2-C18 alkenyl, C2-C18 alkynyl, and R 19 -R 20 are each independently selected from hydrogen, fluorine, and methyl.
  • the polymer of the present application can be prepared by a method comprising the following process:
  • the polymer precursor has a structure of Formula 1a
  • the hydrophilic unit has a structure of Formula 1b
  • R0 is selected from hydrogen or tert-butyloxycarbonyl;
  • m1 is an integer of 0-6, and
  • m2 is an integer of 1-8.
  • hydrophilic unit is as shown in Formula 1b-1.
  • the hydrophilic unit of the present application can be selected from one of 3-bromopropyl methyl ether, 1-bromo-2-(2-methoxyethoxy)ethane, diethylene glycol-2-bromoethyl methyl ether, and 1-bromo-5-methoxypentane.
  • the polymer precursor, hydrophilic unit and sulfonate can be first dissolved in a solvent to obtain a raw material system, and then an acid binding agent is added to react, and then the reaction solution is post-treated including precipitation treatment, washing treatment and drying treatment to obtain a polymer.
  • the mass ratio of the sulfonate and the hydrophilic unit to the polymer precursor can be controlled so that the ratio of the sulfonic acid group and the hydrophilic group in the polymer can be controlled, thereby obtaining a polymer that meets the target requirements.
  • the cation in the sulfonate corresponds to the X + in the polymer.
  • sodium sulfonate is selected;
  • potassium sulfonate is selected.
  • a polymer with X + being H + needs to be prepared, there is no restriction on the metal cation in the selected sulfonate, but an acid exchange treatment is required after the preparation so that the metal cation therein is exchanged for H + .
  • the second aspect of the present application provides a method for preparing the polymer of the first aspect, comprising the following steps: step:
  • the polymer precursor has a structure of Formula 1a
  • the hydrophilic unit has a structure of Formula 1b
  • R0 is selected from hydrogen or tert-butyloxycarbonyl;
  • m1 is an integer of 0-6, and
  • m2 is an integer of 1-8.
  • the raw material system is a solution system in which a polymer precursor, a hydrophilic unit and a sulfonate are dissolved.
  • the present application does not limit the solvent selection of the raw material system, for example, it includes at least one of N-methylpyrrolidone, dimethyl sulfoxide or dimethylacetamide.
  • An acid binding agent is added to the raw material system for reaction.
  • the hydrophilic unit and the sulfonate react with the carbazole unit in the polymer precursor to finally obtain a polymer shown in Formula 1. It is understood that after the reaction is completed, the reaction solution needs to be subjected to post-treatment such as precipitation treatment, washing treatment and drying treatment.
  • the precipitation treatment refers to reacting the reaction solution with a precipitant to precipitate the polymer.
  • the precipitant is, for example, at least one of water, ethyl acetate, ethanol, methanol, isopropanol, and n-propanol; the precipitation system is then filtered, and the filtered polymer is washed with deionized water and then dried to obtain the polymer.
  • the present application does not impose too many restrictions on the relevant preparation parameters in the preparation method, as long as the polymer can be synthesized.
  • the acid binding agent is selected from at least one of anhydrous potassium carbonate, sodium hydroxide, potassium hydroxide or sodium hydride; the reaction time is 24 to 72 hours; the reaction temperature is 60 to 90°C; the mass ratio between the polymer precursor, the hydrophilic unit and the sulfonate can be adjusted according to the differentiated requirements of related properties such as ion conductivity and mechanical strength; taking X + as Na + as an example, the sulfonate is selected from, for example, 3-bromo-1-propanesulfonate, 4-bromo-1-butanesulfonate, 5-bromo-1-pentanesulfonate, 6-bromo-1-hexanesulfonate, 7-bromo-1-heptanesulfonate, 8-bromo-1-octanesulfonate and 9-bromo-1-nonanesulfonate.
  • the polymer precursor represented by formula 1a is prepared by the following process: Method to prepare:
  • a mixed liquid system containing a ketone monomer, an aromatic ring conjugated monomer and a carbazole monomer is reacted to obtain the polymer precursor;
  • the catalyst is selected from at least one of trifluoroacetic acid, trifluoromethanesulfonic acid and methanesulfonic acid.
  • the catalyst is a mixture of multiple compounds, the present application does not limit the mass ratio between the compounds.
  • the catalyst is a mixture of trifluoroacetic acid and trifluoromethanesulfonic acid, and the mass ratio of the two is 1:1.
  • ketone monomers and aromatic ring conjugated monomers are as described above and will not be repeated here; the carbazole monomer is specifically selected from the compound shown in Formula 1a-1 or Formula 1a-2.
  • the solvent in the mixed liquid system can be selected from at least one of dichloromethane, chloroform and tetrahydrofuran; the reaction temperature is -15 to 30°C.
  • the reaction system needs to be purified to obtain a polymer precursor.
  • the purification process includes the steps of precipitation, dissolution, and reprecipitation. Specifically, the reaction solution is reacted with a precipitant to precipitate a precipitate in the system; then the precipitate is dissolved with a dissolving agent to obtain a product solution; then a precipitant is added to the product solution to cause reprecipitation, and the precipitate is washed, filtered, and dried to finally obtain a purified polymer precursor.
  • the precipitant is, for example, selected from at least one of methanol, ethanol, ethyl acetate, water, isopropanol, and n-propanol;
  • the dissolving agent is, for example, selected from at least one of N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, or dimethylacetamide.
  • the third aspect of the present application provides a cation exchange membrane, the composition of which includes the polymer of the first aspect.
  • composition of the cation exchange membrane of the present application includes the aforementioned polymer, and thus has excellent performance in terms of ion conductivity and mechanical strength.
  • the specific type of cations conducted by the cation exchange membrane of the present application is related to X + in the polymer.
  • the cation exchange membrane is used in the chlor-alkali industry or electrodialysis field. To achieve the exchange of Na+ or K+;
  • the cation exchange membrane is actually a proton exchange membrane, which can be used in the fields of fuel cells and water electrolysis to achieve the conduction of H + .
  • the present application does not limit the preparation method of the cation exchange membrane.
  • the cation exchange membrane can be prepared by dissolving the polymer, performing a casting process, and then performing a drying process.
  • the present application does not limit the specific timing of the acid exchange treatment.
  • the polymer may be subjected to an acid exchange treatment and then subjected to a film forming treatment such as a casting treatment, or the polymer may be subjected to a film forming treatment first and then subjected to an acid exchange treatment on the polymer membrane.
  • the acid exchange treatment of the present application refers to soaking the object to be exchanged with an acid solution, wherein the acid solution is selected from sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid, and further, the concentration of the acid solution is 1 to 5 mol/L; the soaking treatment time depends on the concentration of the acid solution and the content of the sulfonate, and is generally 12 to 72 hours.
  • the acid solution is selected from sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid, and further, the concentration of the acid solution is 1 to 5 mol/L; the soaking treatment time depends on the concentration of the acid solution and the content of the sulfonate, and is generally 12 to 72 hours.
  • the fourth aspect of the present application provides a fuel cell, which includes the above-mentioned cation exchange membrane.
  • the cation exchange membrane is an electrolyte membrane used to conduct hydrogen ions in the fuel cell.
  • the structure of the fuel cell of the present application is not significantly different from the structure of the fuel cell at this stage, and the only difference is that the electrolyte membrane in the fuel cell of the present application adopts the above-mentioned cation exchange membrane.
  • the electrical performance of the fuel cell including the cycle performance can be significantly improved.
  • the fifth aspect of the present application also provides a water electrolysis device, which includes the above-mentioned cation exchange membrane.
  • the cation exchange membrane is a proton exchange membrane for conducting hydrogen ions in the water electrolysis device.
  • the structure of the water electrolysis device of the present application is not significantly different from the structure of the water electrolysis device at this stage. The only difference is that the proton exchange membrane in the water electrolysis device of the present application adopts the above-mentioned cation exchange membrane.
  • the water electrolysis device of the present application includes the above-mentioned cation exchange membrane, the electrolysis efficiency of the water electrolysis device can be significantly improved and the hydrogen yield can be increased.
  • the preparation method of the polymer and the proton exchange membrane of this embodiment is basically the same as that of Example 1, except that the raw materials and the raw material ratio in step 1) are different, specifically: dissolving the carbazole monomer, the terphenyl monomer and the trifluoroacetophenone monomer in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratio of the carbazole monomer, the biphenyl monomer, the trifluoroacetophenone monomer and the catalyst is 3:1:4:60.
  • the remaining experimental steps are the same as those in Example 1.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that the raw materials and the raw material ratio in step 1) are different, specifically: dissolving the carbazole monomer, the terphenyl monomer and the trifluoroacetophenone monomer in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 15wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratio of the carbazole monomer, the biphenyl monomer, the trifluoroacetophenone monomer and the catalyst is 3:1:4:40.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that The raw materials and raw material ratios in step 1) are different, specifically: carbazole monomer, fluorene and trifluoroacetone monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratio of carbazole monomer, fluorene, trifluoroacetone monomer and catalyst is 3:1:4:80.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that the raw materials and the raw material ratio in step 1) are different, specifically: carbazole monomer, 1,2-diphenylethane and 2,3-hexanedione monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 15wt.%.
  • the catalyst trifluoroacetic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratio of carbazole monomer, 1,2-diphenylethane, 2,3-hexanedione to the catalyst is 4:1:5:70.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that the raw materials and the raw material ratios in step 1) are different, specifically: carbazole monomer, methylcarbazole and diacetyl monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoroacetic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratio of carbazole monomer, methylcarbazole and diacetyl monomer to the catalyst is 4:1:5:70.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that the raw materials and the raw material ratios in step 1) are different, specifically: carbazole monomer, ethyl carbazole and trifluoroacetophenone monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoroacetic acid and trifluoromethanesulfonic acid are slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratios of carbazole monomer, ethyl carbazole and trifluoroacetophenone monomer, trifluoroacetic acid and trifluoromethanesulfonic acid catalyst are 5:1:6:60:60 respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in embodiment 1, except that the raw materials and the raw material ratios in step 1) are different, specifically: carbazole monomer, propylcarbazole and tris(III) are added to the mixture.
  • carbazole monomer, propylcarbazole and tris(III) are added to the mixture.
  • the methyl fluoropyruvate monomer was dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system was 10 wt.%.
  • the catalyst trifluoroacetic acid and trifluoromethanesulfonic acid were slowly added dropwise to the mixed liquid system under stirring at 0° C.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that the raw materials and the raw material ratios in step 1) are different, specifically: carbazole monomer, m-terphenyl and trifluoroacetone monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 15wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratios of carbazole monomer, m-terphenyl, trifluoroacetone monomer and catalyst are 4:1:5:75, respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Embodiment 1, except that some steps 1) and some steps 2) are different from those in Embodiment 1, specifically:
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Embodiment 1, except that some steps 1) and some steps 2) are different from those in Embodiment 1, specifically:
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 11, except that the raw materials and the raw material ratios in step 1) are different, specifically: dissolving carbazole monomer, terphenyl and 3,4-hexanedione monomer in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 15wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratios of carbazole monomer, terphenyl, 3,4-hexanedione monomer and catalyst are 3:1:4:70, respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 11, except that the raw materials and the raw material ratios in step 1) are different, specifically: dissolving carbazole monomer, terphenyl and 3,4-hexanedione monomer in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratios of carbazole monomer, terphenyl, 3,4-hexanedione monomer and catalyst are 3:1:4:80, respectively.
  • the preparation method of the polymer and the proton exchange membrane of this embodiment is basically the same as that of Embodiment 11, except that the raw materials and the raw material ratios in step 1) are different, specifically: carbazole monomer, 1,2-diphenylethane and 1,1,1-trifluoro-2-butanone monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratios of carbazole monomer, 1,2-diphenylethane, 1,1,1-trifluoro-2-butanone monomer and catalyst are 3:1:5:50, respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Embodiment 1, except that some steps 1) and some steps 2) are different from those in Embodiment 1, specifically:
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 15, except that the raw materials and the raw material ratio in step 1) are different, specifically: dissolving carbazole monomer, dimethylfluorene and methyl trifluoropyruvate monomer in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 15wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratio of carbazole monomer, dimethylfluorene, methyl trifluoropyruvate monomer to the catalyst is 2:1:3:50, respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 15, except that the raw materials and the raw material ratios in step 1) are different, specifically: dissolving the carbazole monomer, phenanthrene and trifluoroacetophenone monomer in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is 10wt.%.
  • the catalyst trifluoroacetic acid and trifluoromethanesulfonic acid are slowly added dropwise to the mixed liquid system under stirring at 0°C, and the molar ratios of the carbazole monomer, phenanthrene, trifluoroacetophenone monomer, trifluoroacetic acid and trifluoromethanesulfonic acid are 5:1:6:12:80, respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in embodiment 15, except that the raw materials and the raw material ratio in step 1) are different, specifically: carbazole monomer, 1,1'-biphenyl-2,2'-diol and 3,4-hexanedione monomer are dissolved in dichloromethane to obtain a mixed liquid system, and the solid content of the mixed liquid system is The amount is 10 wt.%.
  • the catalyst trifluoromethanesulfonic acid is slowly added dropwise to the mixed liquid system under stirring at 0°C.
  • the molar ratios of carbazole monomer, 1,1'-biphenyl-2,2'-diol, 3,4-hexanedione monomer and catalyst are 2:1:3:30 respectively.
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Embodiment 1, except that some steps 1) and some steps 2) are different from those in Embodiment 1, specifically:
  • the preparation method of the polymer and the proton exchange membrane in this embodiment is basically the same as that in Example 1, except that some steps 2) are different from those in Example 1, specifically:
  • the purified polycarbazole-biphenyl-butanedione copolymer was dissolved in dimethyl sulfoxide. After it was completely dissolved, anhydrous potassium carbonate and 3-bromo-1-sodium propanesulfonate monomer were added. The molar ratio of the copolymer, anhydrous potassium carbonate and 3-bromo-1-sodium propanesulfonate monomer was 5:2:4, respectively. The rest was the same as step 2) of Example 1.
  • the preparation method of the proton exchange membrane of this comparative example is basically the same as that of Example 1, except that the raw materials in step 2) are different. Specifically, the copolymer prepared in step 1) of Example 1 is dissolved in dimethyl After the copolymer is completely dissolved, anhydrous potassium carbonate, sodium 3-bromo-1-propanesulfonate monomer and bromooctane monomer are added, and the molar ratio of the copolymer, anhydrous potassium carbonate, sodium 3-bromo-1-propanesulfonate monomer and bromooctane monomer is 5:2:4:1 respectively, and the remaining steps are the same as in Example 1.
  • the preparation method of the polymer and the proton exchange membrane of this comparative example is basically the same as that of Example 19, except that some steps 1) and some steps 2) are different from those of Example 1, specifically:
  • the AC impedance method was used on an electrochemical workstation with a double electrode test, the test frequency was 1Hz to 1MHz, and the test was conducted at 80°C and 100% relative humidity.
  • Testing method Use universal material testing machine for testing.
  • the proton exchange membrane including the polymer of the present application has excellent ion conductivity, water absorption and tensile strength.
  • Example 1 the maximum power density of Example 1 and Example 2 is higher than that of the comparative example, indicating that the proton exchange membrane of the present application has a stronger mass transfer capacity and excellent ion conductivity.
  • the proton exchange membranes of Examples 1-2 and Comparative Examples 1-2 are assembled into an electrolytic water tank for electrolytic water performance testing.
  • the test method is as follows: the membrane is prepared as a membrane electrode, and the membrane electrode is assembled into a single electrolytic water tank. Different currents are applied to both ends of the tank, and the current density and the corresponding voltage under different currents are recorded, and the current density-voltage curve is drawn.
  • Figure 2 is a comparison of the current density-voltage curves of the proton exchange membranes of Examples 1-2 and Comparative Examples 1-2 assembled into an electrolytic water tank.
  • the electrolytic water tank composed of the embodiment has a smaller voltage and lower energy consumption at the same current density, indicating that the proton exchange membrane of the present application has a lower internal resistance and a higher ion conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本申请提供一种聚合物及其制备方法和应用,该聚合物具有式1所示的结构,式1中,M来自于酮类单体,Ar来自于芳环共轭单体;X+为一价阳离子;x1、y1以及z1分别为各个嵌段的摩尔占比,且0<x1≤1,0≤z1<1,0≤y1<1,x1+y1+z1=1;n为1~6,m1为0~6,m2为1~8。该聚合物具有较为优异的保湿能力以及阳离子传导能力,有利于改善阳离子交换膜的使用性能。

Description

一种聚合物及其制备方法和应用
本申请要求于2022年11月01日提交中国专利局、申请号为202211353545.1、申请名称为“一种聚合物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种聚合物,尤其涉及一种聚合物及其制备方法和应用,属于燃料电池技术领域。
背景技术
随着科学技术的发展以及人类向碳中和之路迈进步伐的加快,电化学能量存储和转换技术如燃料电池、电解水、储能技术被认为是减少化石能源的依赖和提供清洁能源的最有希望的解决方案之一。其中基于质子交换膜(PEM,Proton Exchange Membrane)的质子交换膜燃料电池、电解水、储能电池技术目前已成为世界各国的研究热点。
质子交换膜在器件中其起到传递质子、并隔绝阴阳极反应物的作用。质子传导率是PEM的关键性能之一,其反映了参加阴阳极反应的质子传输速率。膜内的质子依赖水分子通过运载机理进行传导,因此PEM需要在较好的水合状态下才能进行更好的传导质子。理想的PEM需要具有高质子传导率、机械稳定性、保湿性以及出色的加工性能。
现阶段,为了提高PEM的性能,国内外研究团队已经开展了大量研究。但是,改善的性能过于单一,无法同时兼顾PEM的上述各种性能需求。
发明内容
本申请提供一种聚合物,该聚合物具有较为优异的阳离子传导能力、机械强度以及加工可控性,因此有利于改善阳离子交换膜的使用性能。
本申请还提供一种上述聚合物的制备方法,通过选择合适的主链单元 以及修饰基团,能够得到具有改善阳离子交换膜使用性能的聚合物。
本申请还提供一种阳离子交换膜,包括上述聚合物,该阳离子交换膜不仅在离子传导性以及机械强度方面具有优异的表现,且加工可控性强。
本申请还提供一种燃料电池,包括上述阳离子交换膜,因此在发电效率方面具有优异表现。
本申请还提供一种电解水装置,包括上述阳离子交换膜,因此电解效率的改善程度显著。
本申请提供一种聚合物,所述聚合物具有式1所示的结构,
式1中,M来自于酮类单体,Ar来自于芳环共轭单体;X+为一价阳离子;
x1、y1以及z1分别为各个嵌段的摩尔占比,且0<x1≤1,0≤z1<1,0≤y1<1,x1+y1+z1=1;
n为1~6的整数,m1为0~6的整数,m2为1~8的整数。
如上所述的聚合物,其中,X+为H+
如上所述的聚合物,其中,所述酮类单体选自下述至少一种化合物,
其中,p1和p2各自独立地为0~10的整数,k为1~6的整数,q为0~5 的整数,R1~R5各自独立地选自氢、氟、甲基。
如上所述的聚合物,其中,所述芳环共轭单体选自下述至少一种化合物,
其中,m为0~3的整数,j为1~6的整数,R6-R17各自独立地选自氢、取代或未取代的C1-C18烷基、取代或未取代的C2-C18烯基、取代或未取代的C2-C18炔基,R18选自C1-C18烷基、C2-C18烯基、C2-C18炔基,R19-R20各自独立地选自氢、氟、甲基。
如上所述的聚合物,其中,所述聚合物通过包括以下过程的方法制备得到:
在缚酸剂的存在下,使含有聚合物前驱体、亲水单元和磺酸盐的原料体系发生反应,得到所述聚合物;
所述聚合物前驱体具有式1a的结构,所述亲水单元具有式1b的结构,
式1a中,x以及y分别为各个嵌段的摩尔占比,且0<x≤1,x+y=1;R0选自氢或叔丁氧羰基;m1为0~6的整数,m2为1~8的整数。
如上所述的聚合物,其中,所述亲水单元优选为3-溴丙基甲基醚、1-溴-2-(2-甲氧基乙氧基)乙烷、二乙二醇-2-溴乙基甲醚、1-溴-5-甲氧基戊烷中的一种。
本申请提供一种上述任一项所述的聚合物的制备方法,包括以下步骤:
在缚酸剂的存在下,使含有聚合物前驱体、亲水单元和磺酸盐的原料 体系发生反应,得到所述聚合物;
所述聚合物前驱体具有式1a的结构,所述亲水单元具有式1b的结构,
式1a中,x以及y分别为各个嵌段的摩尔占比,且0<x≤1,x+y=1;R0选自氢或叔丁氧羰基;m1为0~6的整数,m2为1~8的整数。
如上所述的制备方法,其中,所述聚合物前驱体通过包括以下过程的方法制备得到:
在催化剂的存在下,使含有酮类单体、芳环共轭单体和咔唑类单体的混合液体系发生反应,得到所述聚合物前驱体;
所述催化剂优选为三氟乙酸、三氟甲磺酸、甲磺酸中的至少一种。
如上所述的制备方法,其中,所述磺酸盐优选为3-溴-1-丙磺酸钠,4-溴-1-丁磺酸钠,5-溴-1-戊磺酸钠、6-溴-1-己磺酸钠、7-溴-1-庚磺酸钠,8-溴-1-辛磺酸钠、9-溴-1-壬磺酸钠中的一种。
本申请还提供一种阳离子交换膜,所述阳离子交换膜的组成包括上述任一项所述的聚合物。
本申请还提供一种燃料电池,包括如上所述的阳离子交换膜。
本申请还提供一种电解水装置,包括如上所述的阳离子交换膜。
本申请聚合物的支链中的磺酸基团的存在不仅对聚合物的吸湿性以及保湿性具有一定程度的促进作用,而且其是以盐的形式键结在支链上,因此磺酸基团在聚合物中的含量可控,进而能够实现聚合物吸湿性和保湿性的可控,切实满足应用需求;此外,主链中包括咔唑基团且不含有包括醚基、羰基以及砜基等在内的易受攻击基团,因此该聚合物的稳定性高,故而具有优异的化学稳定性和机械强度。因此,本申请的聚合物在离子传导率和机械强度方面具有优异表现,尤其能够根据应用需求做出精确的调整,最终实现离子传导率的可控。
附图说明
图1为实施例19的聚合物主链的1H-NMR谱图;
图2为实施例1-2以及对比例1-2的质子交换膜组装成电解水槽的电流密度-电压曲线对比图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请第一方面提供一种聚合物,所述聚合物具有式1所示的结构,
式1中,M来自于酮类单体,Ar来自于芳环共轭单体;X+为一价阳离子;x1、y1以及z1分别为各个嵌段的摩尔占比,且0<x1≤1,0≤z1<1,0≤y1<1,x1+y1+z1=1;n为1~6的整数,m1为0~6的整数,m2为1~8的整数。
本申请的聚合物至少包括式1所示的三种嵌段,三种嵌段在聚合物中的摩尔占比分别如x1、y1以及z1所示。
需要说明的是,本申请不限定该聚合物的分子量,聚合物的具体分子量可以根据实际需要通过控制单体的加入量调节。此外,本申请亦不限定该聚合物中三种嵌段的排列结构,可以是三种嵌段以任意排列方式发生键结。除了式1所示的按照x1表示的嵌段、z1表示的嵌段以及y1表示的嵌段依次键结外,例如聚合物中还可以包括按照x1表示的嵌段、y1表示的嵌段以及z1表示的嵌段依次键结的嵌段共聚物。
根据本申请提供的技术方案,通过使阳离子交换膜的组成中包括上述 聚合物,可以显著改善阳离子交换膜在离子传导率、化学稳定性以及机械强度方面的性能。发明人基于此现象进行分析,认为可能是:一方面,支链上的磺酸基团有助于提升聚合物的吸湿性和保湿性,由于阳离子的传导需要依赖于环境中的水分子,因此当聚合物为建立了良好的高湿度传导环境后,更利于阳离子维持长效且高效的传导;另一方面,聚合物包括咔唑基团的主链中不含有任何易被攻击的反应基团(例如醚基、羰基以及砜基等),因此,聚合物能够在长期的应用环境中表现出优异的化学稳定性和机械稳定性,降低或避免了由于聚合物化学稳定性差而出现分解、或者机械稳定性较差而出现破裂的现象,进而在阳离子传导方面具有超长的服役周期。并且,当聚合物具有优异的保湿性能时,其也能避免聚合物由于失水导致的脆性增加,进而对聚合物的机械性能也有一定程度的改善作用。
此外,当聚合物中z1大于零时,该聚合物的亲水性支链有助于进一步提高阳离子交换膜的保湿性,并诱导离子交换膜内自组装构建连通的质子传递通道,减少死端,形成高效离子簇结构,从而进一步提升阳离子膜在低湿环境下的离子传导率。
并且包括磺酸基团支链和上述亲水性支链在内的柔性支链和含咔唑基的刚性主链相结合,也会促进聚合物中发生有益于改善阳离子传导效果的微相分离现象。
除了有助于提升离子传导率、化学稳定性以及机械强度之外,值得一提的是,本申请的聚合物还具有相关性能可控的优势。原因在于,在制备聚合物时,可以通过控制原料选择以及步骤顺序等参数避免提供磺酸基团的单元参与聚合反应,只需要选择对应的单体使相互聚合为聚合物单元后,再通过控制聚合物单元和提供磺酸基团的单元的比例,使磺酸基团作为支链进入聚合物中。由于聚合反应是一种链引发反应,因此将磺酸基团作为支链引入至聚合物中,能够避免聚合反应过程难以控制而导致无法获得磺酸基团单元符合预期掺杂量的聚合物。
因此,本申请聚合物特殊的组成结构能够精确控制其中磺酸基团的掺杂比例,最终保证聚合物具有目标掺杂比例的磺酸基团,该可控性不仅能够实现同批次产品的一致性,提升了生产效率,也利于构建聚合物在磺酸基团掺杂方面的差异化,进而实现产品多样性,满足了不同环境对离子传导性能、机械性 能等方面的不同需求。
本申请不限定式1中一价阳离子X+的具体种类,例如可是H+、Na+、K+、Ag+、Li+等。在一种实施方式中,当聚合物用于质子交换膜时,该一价阳离子X+为H+
本申请不限定酮类单体的具体形式,只要能够提供羰基的单体都能作为本申请的酮类单体。例如其可以来自于以下C1-C12结构式所示的至少一种化合物。
其中,p1和p2各自独立地为0~10的整数,k为1~6的整数,q为0~5的整数,R1~R5各自独立地选自氢、氟、甲基。
本申请不限定芳环共轭单体的具体形式,只要能够提供芳环的单体都可作为本申请的芳环共轭单体。例如其可以来自于以下A1-A7结构式所示的至少一种化合物。
其中,m为0~3的整数,j为1~6的整数,R6-R17各自独立地选自氢、取代或未取代的C1-C18烷基、取代或未取代的C2-C18烯基、取代或未取代的C2-C18炔基,R18选自C1-C18烷基、C2-C18烯基、C2-C18炔基,R19-R20各自独立地选自氢、氟、甲基。
本申请的聚合物可以通过包括以下过程的方法制备得到:
在缚酸剂的存在下,使含有聚合物前驱体、亲水单元和磺酸盐的原料体系发生反应,得到所述聚合物;
所述聚合物前驱体具有式1a的结构,所述亲水单元具有式1b的结构,
式1a中,x以及y分别为各个嵌段的摩尔占比,且0<x≤1,x+y=1;R0选自氢或叔丁氧羰基;m1为0~6的整数,m2为1~8的整数。
示例性地,当m1和m2均为3时,亲水单元如式1b-1所示。
本申请的亲水单元可以选自3-溴丙基甲基醚、1-溴-2-(2-甲氧基乙氧基)乙烷、二乙二醇-2-溴乙基甲醚、1-溴-5-甲氧基戊烷中的一种。
在具体实施过程中,可以先将聚合物前驱体、亲水单元以及磺酸盐溶解于溶剂中得到原料体系,然后加入缚酸剂进行反应,随后对反应液进行包括沉淀处理、洗涤处理以及干燥处理的后处理,得到聚合物。
在制备过程中,可以通过控制磺酸盐、亲水单元各自与聚合物前驱体的质量比,从而实现聚合物中磺酸基团和亲水基团的比例可控,进而得到符合目标需求的聚合物。
需要注意的是,磺酸盐中的阳离子和聚合物中的X+对应。例如,当需要制备X+为Na+的聚合物时,选择磺酸钠盐;当需要制备X+为K+的聚合物时,选择磺酸钾盐。而当需要制备X+为H+的聚合物时,对选择的磺酸盐中的金属阳离子不做限定,但是在制备完成后需要进行酸交换处理,从而使其中的金属阳离子交换成为H+
本申请第二方面提供一种前述第一方面的聚合物的制备方法,包括以下 步骤:
在缚酸剂的存在下,使含有聚合物前驱体、亲水单元和磺酸盐的原料体系发生反应,得到所述聚合物;
所述聚合物前驱体具有式1a的结构,所述亲水单元具有式1b的结构,
式1a中,x以及y分别为各个嵌段的摩尔占比,且0<x≤1,x+y=1;R0选自氢或叔丁氧羰基;m1为0~6的整数,m2为1~8的整数。
其中,原料体系是溶解有聚合物前驱体、亲水单元和磺酸盐的溶液体系。本申请不限定该原料体系的溶剂选择,例如包括N-甲基吡咯烷酮,二甲基亚砜或二甲基乙酰胺中的至少一种。
将缚酸剂加入原料体系中进行反应,在缚酸剂的存在下,亲水单元和磺酸盐与聚合物前驱体中的咔唑单元反应,并最终得到式1所示的聚合物。能够理解的是,反应完成后,需要对反应液进行沉淀处理、洗涤处理以及干燥处理等后处理。
其中,沉淀处理是指将反应液与沉淀剂反应,使聚合物析出。沉淀剂例如选择水、乙酸乙酯、乙醇、甲醇、异丙醇、正丙醇中的至少一种;随后对沉淀体系进行过滤,利用去离子水并对滤出的聚合物进行洗涤处理后进行干燥处理,得到聚合物。
本申请对制备方法中的相关制备参数不做过多限定,只要能够合成聚合物即可。
示例性地,缚酸剂选自无水碳酸钾、氢氧化钠、氢氧化钾或氢化钠中的至少一种;反应时间为24~72h;反应温度为60~90℃;聚合物前驱体、亲水单元和磺酸盐之间的质量比可以根据离子传导率、机械强度等相关性能的差异化需求进行针对性调整;以X+为Na+为例,磺酸盐例如选自3-溴-1-丙磺酸钠,4-溴-1-丁磺酸钠,5-溴-1-戊磺酸钠、6-溴-1-己磺酸钠、7-溴-1-庚磺酸钠,8-溴-1-辛磺酸钠、9-溴-1-壬磺酸钠中的一种。
在一种具体实施方式中,式1a所示的聚合物前驱体通过包括以下过程的 方法制备得到:
在催化剂的存在下,使含有酮类单体、芳环共轭单体和咔唑类单体的混合液体系发生反应,得到所述聚合物前驱体;所述催化剂选自三氟乙酸、三氟甲磺酸、甲磺酸中的至少一种,当催化剂为多种化合物的混合物时,本申请不限定各个化合物之间的质量比,在一种实施方式中,催化剂为三氟乙酸和三氟甲磺酸的混合物,且二者的质量比为1:1。
其中,酮类单体和芳环共轭单体的选择如前所述,此处不再赘述;咔唑类单体具体选自式1a-1或式1a-2所示的化合物。
上述混合液体系中的溶剂例如可以选自二氯甲烷、三氯甲烷、四氢呋喃中的至少一种;反应温度为-15~30℃。
进一步地,酮类单体与咔唑类单体的摩尔比为1~2:1;酮类单体:咔唑单体:芳环=(1~2):a:b(a+b=1),酮类单体与催化剂的摩尔比为1:1~20。
当反应结束后,需要对反应体系进行纯化处理从而得到聚合物前驱体。纯化处理包括依次进行的沉淀、溶解、再沉淀的步骤。具体地,使反应液与沉淀剂反应,使体系析出沉淀;随后利用溶解剂对析出的沉淀进行溶解处理得到产物溶液;再向产物溶液中加入沉淀剂使发生再沉淀,对得到沉淀进行洗涤、过滤以及干燥,最终得到纯化后的聚合物前驱体。
上述纯化处理中,沉淀剂例如选自甲醇、乙醇、乙酸乙酯、水、异丙醇、正丙醇中的至少一种;溶解剂例如选自N-甲基吡咯烷酮、二甲基亚砜、二甲基甲酰胺或二甲基乙酰胺中的至少一种。
本申请第三方面提供一种阳离子交换膜,该阳离子交换膜的组成包括前述第一方面的聚合物。
本申请的阳离子交换膜的组成包括前述聚合物,因此在离子传导率和机械强度方面具有优异的表现。
本申请阳离子交换膜具体传导的阳离子类型和聚合物中的X+相关。
当X+为Na+或K+时,该阳离子交换膜应用于氯碱工业或电渗析领域,用 于实现Na+或K+的交换;
当X+为H+时,该阳离子交换膜实际为质子交换膜,能够用于燃料电池、电解水领域中,实现H+的传导。
本申请不限定阳离子交换膜的制备方法,例如对聚合物溶解后进行流延处理,再经过干燥处理后得到。
需要指出的是,当制备质子交换膜时,本申请不限定酸交换处理的具体时机。例如,可以对聚合物进行酸交换处理后再进行例如流延处理的成膜处理,也可以先对聚合物进行成膜处理再对聚合物膜进行酸交换处理。
本申请的酸交换处理是指利用酸液对待交换物进行浸泡处理。其中,酸液选自硫酸、盐酸、硝酸或磷酸,进一步地,酸液的浓度为1~5mol/L;浸泡处理的时长视酸液的浓度、磺酸盐的含量而定,一般为12~72h。
本申请第四方面提供一种燃料电池,该燃料电池包括上述阳离子交换膜。具体地,该阳离子交换膜在燃料电池中是用于传导氢离子的电解质隔膜。本申请燃料电池的结构与现阶段的燃料电池结构无显著差异,唯一差别在于本申请燃料电池中的电解质隔膜采用前述阳离子交换膜。
由于本申请的燃料电池包括上述阳离子交换膜,因此能够显著改善燃料电池包括循环性能在内的电性能。
本申请第五方面还提供一种电解水装置,该电解水装置包括上述阳离子交换膜。具体地,该阳离子交换膜在电解水装置中是用于传导氢离子的质子交换膜。本申请电解水装置的结构与现阶段的电解水装置结构无显著差异,唯一差别在于本申请电解水装置中的质子交换膜采用前述阳离子交换膜。
由于本申请的电解水装置包括上述阳离子交换膜,因此能够显著改善电解水装置的电解效率,提升氢气收率。
以下,通过具体实施例对本申请的聚合物进行详细介绍。
实施例1
本实施例聚合物以及质子交换膜的制备方法包括以下步骤:
1)将咔唑单体、联苯单体和丁二酮单体溶解于二氯甲烷中得到混合液体系,溶液的固含量为10wt.%。在0℃下在搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、联苯单体、丁二酮单体与催化剂的摩尔比为 3:1:4:50,在室温下反应10小时后,将反应液缓慢倾倒入甲醇中进行沉淀析出,过滤得到白色固体粗产物,将粗产物溶于二甲基甲酰胺中,并再次缓慢倾倒入甲醇中充分沉淀提纯,得到白色纤维状固体,过滤并用去离子水清洗三遍以上,得到纯化的聚咔唑-联苯-丁二酮共聚物;
2)将纯化的聚咔唑-联苯-丁二酮共聚物溶解于二甲基亚砜中,待完全溶解后,加入无水碳酸钾、3-溴-1-丙磺酸钠单体、亲水单体3-溴丙基甲基醚,聚咔唑-联苯-丁二酮共聚物、无水碳酸钾、3-溴-1-丙磺酸钠单体以及3-溴丙基甲基醚的摩尔比分别为5:2:4:1,在80℃下搅拌反应72h。反应结束后,待反应液冷却至室温后,将其缓慢倾倒入去离子水中沉淀析出,过滤,并用去离子水洗涤三遍以上,得到本实施例的聚合物;
3)将烘干后的聚合物溶解于二甲基亚砜中得到铸膜液后流延成膜,将膜浸泡于1mol/L硫酸中进行离子交换得到本实施例的质子交换膜。
实施例2
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、三联苯单体和三氟苯乙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、联苯单体、三氟苯乙酮单体与催化剂的摩尔比为3:1:4:60。其余实验步骤同实施例1。
实施例3
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、三联苯单体和三氟苯乙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、联苯单体、三氟苯乙酮单体与催化剂的摩尔比为3:1:4:40。
实施例4
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别 在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、芴和三氟丙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、芴、三氟丙酮单体与催化剂的摩尔比为3:1:4:80。
实施例5
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、1,2-二苯基乙烷和2,3-己烷二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟乙酸,咔唑单体、1,2-二苯基乙烷、2,3-己烷二酮与催化剂的摩尔比为4:1:5:70。
实施例6
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、甲基咔唑和丁二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟乙酸,咔唑单体、甲基咔唑和丁二酮单体与催化剂的摩尔比为4:1:5:70。
实施例7
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、乙基咔唑和三氟苯乙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟乙酸、三氟甲磺酸,咔唑单体、乙基咔唑和三氟苯乙酮单体、三氟乙酸以及三氟甲磺酸催化剂的摩尔比分别为5:1:6:60:60。
实施例8
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、丙基咔唑和三 氟丙酮酸甲酯单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟乙酸、三氟甲磺酸,咔唑单体、丙基咔唑、三氟丙酮酸甲酯单体、三氟乙酸与三氟甲磺酸催化剂的摩尔比分别为4:1:5:5:75。
实施例9
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、间三联苯和三氟丙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、间三联苯、三氟丙酮单体与催化剂的摩尔比分别为4:1:5:75。
实施例10
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于部分步骤1)和部分步骤2)与实施例1不同,具体为:
1)将咔唑单体、9,10-二氢菲和2,3-己烷二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟乙酸和三氟甲磺酸,咔唑单体、9,10-二氢菲、2,3-己烷二酮单体、三氟乙酸和三氟甲磺酸的摩尔比分别为4:1:5:5:90。其余与实施例1的步骤1)相同;
2)将纯化的共聚物溶解于二甲基亚砜中,待完全溶解后,加入无水碳酸钾、3-溴-1-丙磺酸钠单体、亲水单体1-溴-2-(2-甲氧基乙氧基)乙烷,共聚物、无水碳酸钾、3-溴-1-丙磺酸钠单体、1-溴-2-(2-甲氧基乙氧基)乙烷的摩尔比分别为5:2:4:1,其余与实施例1的步骤2)相同。
实施例11
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于部分步骤1)和部分步骤2)与实施例1不同,具体为:
1)将咔唑单体、9,10-二氢菲和2,3-己烷二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系 中缓慢滴加催化剂三氟乙酸和三氟甲磺酸,咔唑单体、9,10-二氢菲、2,3-己烷二酮单体、三氟乙酸和三氟甲磺酸的摩尔比分别为5:1:6:6:100。其余与实施例1的步骤1)相同;
2)将纯化的共聚物溶解于二甲基亚砜中,待完全溶解后,加入无水碳酸钾、6-溴-1-己磺酸钠单体、亲水单体二乙二醇-2-溴乙基甲醚,共聚物、无水碳酸钾、6-溴-1-己磺酸钠单体、二乙二醇-2-溴乙基甲醚的摩尔比分别为5:2:4:1,其余与实施例1的步骤2)相同。
实施例12
本实施例聚合物以及质子交换膜的制备方法与实施例11基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、三联苯和3,4-己二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、三联苯、3,4-己二酮单体与催化剂的摩尔比分别为3:1:4:70。
实施例13
本实施例聚合物以及质子交换膜的制备方法与实施例11基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、三联苯和3,4-己二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、三联苯、3,4-己二酮单体与催化剂的摩尔比分别为3:1:4:80。
实施例14
本实施例聚合物以及质子交换膜的制备方法与实施例11基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、1,2-二苯基乙烷和1,1,1-三氟-2-丁酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、1,2-二苯基乙烷、1,1,1-三氟-2-丁酮单体与催化剂的摩尔比分别为3:1:5:50。
实施例15
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于部分步骤1)和部分步骤2)与实施例1不同,具体为:
1)将咔唑单体、1,3-二苯丙烷和三氟苯乙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、1,3-二苯丙烷、三氟苯乙酮单体与催化剂的摩尔比分别为4:1:5:60。其余与实施例1的步骤1)相同;
2)将纯化的共聚物溶解于二甲基亚砜中,待完全溶解后,加入氢化钠、5-溴-1-戊磺酸钠单体、亲水单体1-溴-5-甲氧基戊烷,共聚物、氢化钠、5-溴-1-戊磺酸钠单体、1-溴-5-甲氧基戊烷的摩尔比分别为4:2:3:1,其余与实施例1的步骤2)相同。
实施例16
本实施例聚合物以及质子交换膜的制备方法与实施例15基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、二甲基芴和三氟丙酮酸甲酯单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为15wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、二甲基芴、三氟丙酮酸甲酯单体与催化剂的摩尔比分别为2:1:3:50。
实施例17
本实施例聚合物以及质子交换膜的制备方法与实施例15基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、菲和三氟苯乙酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟乙酸和三氟甲磺酸,咔唑单体、菲、三氟苯乙酮单体、三氟乙酸和三氟甲磺酸的摩尔比分别为5:1:6:12:80。
实施例18
本实施例聚合物以及质子交换膜的制备方法与实施例15基本一致,区别在于步骤1)中的原料和原料比例不同,具体为:将咔唑单体、1,1'-联苯-2,2'-二醇和3,4-己二酮单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含 量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,咔唑单体、1,1'-联苯-2,2'-二醇、3,4-己二酮单体与催化剂的摩尔比分别为2:1:3:30。
实施例19
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于部分步骤1)和部分步骤2)与实施例1不同,具体为:
1)将咔唑单体和丁二酮单体溶解于二氯甲烷中得到混合溶液,溶液的固含量为10wt.%。在0℃下搅拌中向混合溶液中缓慢滴加催化剂三氟乙酸,咔唑单体、丁二酮单体与催化剂的摩尔比为1:1:15。其余与实施例1的步骤1)相同;
2)将纯化的共聚物溶解于二甲基亚砜中,待完全溶解后,加入无水碳酸钾、5-溴-1-戊磺酸钠单体、亲水单体1-溴-2-(2-甲氧基乙氧基)乙烷,共聚物、无水碳酸钾、5-溴-1-戊磺酸钠单体、1-溴-2-(2-甲氧基乙氧基)乙烷的摩尔比分别为4:4:3:1,其余与实施例1的步骤2)相同。
对本实施例制备得到的聚合物进行核磁共振氢谱的表征,图1为实施例19的聚合物主链的1H-NMR谱图,根据图1可获得该聚合物主链的1H NMR数据为:1H NMR(400MHz,CDCl3)δ11.6(s,1H),7.96(d,J=1.7Hz,2H),7.31(d,J=4.1Hz,4H),2.17(s,3H),2.05(s,3H).
实施例20
本实施例聚合物以及质子交换膜的制备方法与实施例1基本一致,区别在于部分步骤2)与实施例1不同,具体为:
将纯化的聚咔唑-联苯-丁二酮共聚物溶解于二甲基亚砜中,待完全溶解后,加入无水碳酸钾、3-溴-1-丙磺酸钠单体,共聚物、无水碳酸钾、3-溴-1-丙磺酸钠单体的摩尔比分别为5:2:4,其余与实施例1的步骤2)相同。
对比例1
本对比例的质子交换膜的制备方法与实施例1基本一致,区别在于步骤2)中的原料不同,具体为:将实施例1中步骤1)制备的共聚物溶解于二甲 基亚砜中,待完全溶解后,加入无水碳酸钾、3-溴-1-丙磺酸钠单体和溴辛烷单体,共聚物、无水碳酸钾、3-溴-1-丙磺酸钠单体和溴辛烷单体各单体的摩尔比分别为5:2:4:1,其余步骤同实施例1。
对比例2
本对比例聚合物以及质子交换膜的制备方法与实施例19基本一致,区别在于部分步骤1)和部分步骤2)与实施例1不同,具体为:
1)将靛红单体和联苯单体溶解于二氯甲烷中得到混合液体系,混合液体系的固含量为10wt.%。在0℃下搅拌中向混合液体系中缓慢滴加催化剂三氟甲磺酸,各单体与催化剂的摩尔比为1:1:15。其余与实施例19的步骤1)相同;
2)将纯化的共聚物溶解于二甲基亚砜中,待完全溶解后,加入无水碳酸钾、5-溴-1-戊磺酸钠单体,共聚物、无水碳酸钾和5-溴-1-戊磺酸钠单体的摩尔比分别为4:4:3,其余与实施例19的步骤2)相同。
试验例
1、对以上实施例和对比例中的质子交换膜按照下述方法进行离子传导率的检测,结果见表1。
检测方法:采用交流阻抗法在电化学工作站上用双电极测试,测试频率为1Hz~1MHz。在80℃下,100%相对湿度测试。
2、对以上实施例和对比例中的质子交换膜按照下述方法进行拉伸强度的检测,结果见表1。
检测方法:使用万能材料试验机进行检测。
3、对以上实施例和对比例中的质子交换膜按照下述方法进行吸水率的检测,结果见表1。
检测方法:称量干态下的膜重量得到W,将膜在去离子水中充分浸泡24h后取出,用滤纸快速吸去表面水滴,称重得到湿重W湿,重复三次过程,膜的吸水率=(W湿-W)/W×100%。
表1

根据表1可知,相对于对比例,包括本申请聚合物的质子交换膜具有优异的离子传导率、吸水率以及拉伸强度。
4、将实施例1-2以及对比例1-2的质子交换膜组装成燃料电池膜电极进行燃料电池性能的检测,结果见表2。
表2

从表2中可看出,实施例1和实施例2的最大功率密度高于对比例,表明本申请的质子交换膜的传质能力更强,具有优异的离子传导率。
5、将实施例1-2以及对比例1-2的质子交换膜组装成电解水槽进行电解水性能检测,测试方法为:将膜制备为膜电极,在膜电极组装为电解水单槽,在槽两端施加不同电流,并记录下不同电流下的电流密度以及其所对应的电压,绘制电流密度-电压曲线图。图2为实施例1-2以及对比例1-2的质子交换膜组装成电解水槽的电流密度-电压曲线对比图。从图2中可看出,相比于对比例,实施例组成的电解水槽在相同的电流密度下,电解槽的电压更小,能耗更低,表明本申请的质子交换膜具有更低的内阻和更高的离子传导率。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种聚合物,其中,所述聚合物具有式1所示的结构,
    式1中,M来自于酮类单体,Ar来自于芳环共轭单体;X+为一价阳离子;
    x1、y1以及z1分别为各个嵌段的摩尔占比,且0<x1≤1,0≤z1<1,0≤y1<1,x1+y1+z1=1;
    n为1~6的整数,m1为0~6的整数,m2为1~8的整数。
  2. 根据权利要求1所述的聚合物,其中,X+为H+
  3. 根据权利要求1或2所述的聚合物,其中,所述酮类单体选自下述至少一种化合物,
    其中,p1和p2各自独立地为0~10的整数,k为1~6的整数,q为0~5的整数,R1~R5各自独立地选自氢、氟、甲基。
  4. 根据权利要求1或2所述的聚合物,其中,所述芳环共轭单体选自下述至少一种化合物,
    其中,m为0~3的整数,j为1~6的整数,R6-R17各自独立地选自氢、取代或未取代的C1-C18烷基、取代或未取代的C2-C18烯基、取代或未取代的C2-C18炔基,R18选自C1-C18烷基、C2-C18烯基、C2-C18炔基,R19-R20各自独立地选自氢、氟、甲基。
  5. 根据权利要求1-4任一项所述的聚合物,其中,所述聚合物通过包括以下过程的方法制备得到:
    在缚酸剂的存在下,使含有聚合物前驱体、亲水单元和磺酸盐的原料体系发生反应,得到所述聚合物;
    所述聚合物前驱体具有式1a的结构,所述亲水单元具有式1b的结构,
    式1a中,x以及y分别为各个嵌段的摩尔占比,且0<x≤1,x+y=1;R0选自氢或叔丁氧羰基;m1为0~6的整数,m2为1~8的整数。
  6. 根据权利要求5所述的聚合物,其中,所述亲水单元选自3-溴丙基甲基醚、1-溴-2-(2-甲氧基乙氧基)乙烷、二乙二醇-2-溴乙基甲醚、1-溴-5-甲氧基戊烷中的一种。
  7. 一种权利要求1-6任一项所述的聚合物的制备方法,其中,包括以下步骤:
    在缚酸剂的存在下,使含有聚合物前驱体、亲水单元和磺酸盐的原料体系发生反应,得到所述聚合物;
    所述聚合物前驱体具有式1a的结构,所述亲水单元具有式1b的结构,
    式1a中,x以及y分别为各个嵌段的摩尔占比,且0<x≤1,x+y=1;R0选自氢或叔丁氧羰基;m1为0~6的整数,m2为1~8的整数。
  8. 根据权利要求7所述的制备方法,其中,所述聚合物前驱体通过包括以下过程的方法制备得到:
    在催化剂的存在下,使含有酮类单体、芳环共轭单体和咔唑类单体的混合液体系发生反应,得到所述聚合物前驱体;
    所述催化剂选自三氟乙酸、三氟甲磺酸、甲磺酸中的至少一种。
  9. 根据权利要求7或8所述的制备方法,其中,所述磺酸盐选自3-溴-1-丙磺酸钠,4-溴-1-丁磺酸钠,5-溴-1-戊磺酸钠、6-溴-1-己磺酸钠、7-溴-1-庚磺酸钠,8-溴-1-辛磺酸钠、9-溴-1-壬磺酸钠中的一种。
  10. 一种阳离子交换膜,其中,所述阳离子交换膜的组成包括权利要求1-6任一项所述的聚合物。
  11. 一种燃料电池,其中,包括权利要求10所述的阳离子交换膜。
  12. 一种电解水装置,其中,包括权利要求10所述的阳离子交换膜。
PCT/CN2023/128753 2022-11-01 2023-10-31 一种聚合物及其制备方法和应用 WO2024094024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211353545.1A CN117986539A (zh) 2022-11-01 2022-11-01 一种聚合物及其制备方法和应用
CN202211353545.1 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024094024A1 true WO2024094024A1 (zh) 2024-05-10

Family

ID=90889525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128753 WO2024094024A1 (zh) 2022-11-01 2023-10-31 一种聚合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117986539A (zh)
WO (1) WO2024094024A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903449A (zh) * 2019-12-02 2020-03-24 大连理工大学 一种靛红芳烃共聚物、制备方法及应用
KR102168673B1 (ko) * 2019-04-29 2020-10-21 한국화학연구원 카바졸계 음이온 교환 소재 및 이를 바인더로 포함하는 연료전지용 전극, 막-전극 접합체
CN114395112A (zh) * 2022-01-12 2022-04-26 北京化工大学 一种含疏水嵌段型聚咔唑阴离子交换膜及制备方法
CN115044048A (zh) * 2022-06-29 2022-09-13 中国科学院长春应用化学研究所 一种嵌段式无醚键聚合物及其制备方法和离子交换膜、燃料电池或液流电池
WO2023106657A1 (ko) * 2021-12-08 2023-06-15 한국화학연구원 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168673B1 (ko) * 2019-04-29 2020-10-21 한국화학연구원 카바졸계 음이온 교환 소재 및 이를 바인더로 포함하는 연료전지용 전극, 막-전극 접합체
CN110903449A (zh) * 2019-12-02 2020-03-24 大连理工大学 一种靛红芳烃共聚物、制备方法及应用
WO2023106657A1 (ko) * 2021-12-08 2023-06-15 한국화학연구원 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법
CN114395112A (zh) * 2022-01-12 2022-04-26 北京化工大学 一种含疏水嵌段型聚咔唑阴离子交换膜及制备方法
CN115044048A (zh) * 2022-06-29 2022-09-13 中国科学院长春应用化学研究所 一种嵌段式无醚键聚合物及其制备方法和离子交换膜、燃料电池或液流电池

Also Published As

Publication number Publication date
CN117986539A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
Chen et al. Tunable multi-cations-crosslinked poly (arylene piperidinium)-based alkaline membranes with high ion conductivity and durability
JP2020536165A (ja) アニオン交換膜およびアイオノマーとして使用するための安定なカチオン性ペンダント基を有するものを含むポリ(アリールピペリジニウム)ポリマー
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
CN109417181B (zh) 包括稳定的紫罗烯的能量转换装置
KR20060071690A (ko) 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
US20230105570A1 (en) Carbazole-based anion exchange material, preparation method therefor, and use thereof
JP2010070750A (ja) ポリマー、高分子電解質及びその用途
Qian et al. Dense 1, 2, 4, 5-tetramethylimidazolium-functionlized anion exchange membranes based on poly (aryl ether sulfone) s with high alkaline stability for water electrolysis
CN103814062A (zh) 含磺酸基聚合物、含磺酸基的芳香族化合物及其制备方法、聚合物电解质材料、聚合物电解质成形体及固体聚合物型燃料电池
US7838612B2 (en) Arylene fluorinated sulfonimide compositions
Wan et al. Towards highly conducting and stable poly (fluorenyl biphenyl)-based anion exchange membranes by grafting dual Y-shaped side-chains
CN105017171B (zh) 含苯并噁唑二胺共聚酰胺电解质的制备方法和应用
WO2024094024A1 (zh) 一种聚合物及其制备方法和应用
Yin et al. Enhancement in proton conductivity by blending poly (polyoxometalate)-b-poly (hexanoic acid) block copolymers with sulfonated polysulfone
CN115536885B (zh) 一种亚微相分离阴离子交换膜的制备方法
CN116535619A (zh) 一种高分子量亚芳基靛红聚合物、离子溶剂膜制备方法及应用
WO2012036347A1 (ko) 트리 블록 공중합체, 및 그로부터 제조되는 전해질 막
CN114805757A (zh) 磺化苯代聚苯基离聚物及其制备方法、质子交换膜
JP2008166199A (ja) 高分子電解質、高分子電解質膜及びこれを備える燃料電池
JP4245991B2 (ja) 固体高分子電解質、それを用いた膜、触媒電極層、膜/電極接合体及び燃料電池
CN112521535A (zh) 高碱稳定性阴离子交换膜及其制备方法
CN103087318B (zh) 一种侧链磺酸化的聚砜及其制备方法
Wen et al. Poly (aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability
KR101014020B1 (ko) 술폰화 멀티 블록 공중합체의 제조방법
CN117430849B (zh) 一种长侧链聚芳烷阴离子交换膜及其制备方法