WO2024093824A1 - 生理音采集位置的检测方法、装置、终端设备及介质 - Google Patents

生理音采集位置的检测方法、装置、终端设备及介质 Download PDF

Info

Publication number
WO2024093824A1
WO2024093824A1 PCT/CN2023/127145 CN2023127145W WO2024093824A1 WO 2024093824 A1 WO2024093824 A1 WO 2024093824A1 CN 2023127145 W CN2023127145 W CN 2023127145W WO 2024093824 A1 WO2024093824 A1 WO 2024093824A1
Authority
WO
WIPO (PCT)
Prior art keywords
physiological sound
wearable device
sound collection
collection position
physiological
Prior art date
Application number
PCT/CN2023/127145
Other languages
English (en)
French (fr)
Inventor
郑金山
潘俊杰
任建雷
梁海松
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2024093824A1 publication Critical patent/WO2024093824A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the present invention relates to the field of artificial intelligence technology, and in particular to a method, device, terminal equipment and computer-readable storage medium for detecting a physiological sound collection position.
  • users can use the smart watch they wear to collect and detect parameters such as heart rate, blood pressure, pulse, heart sounds or lung sounds.
  • the main purpose of the present invention is to provide a method, device, terminal equipment and computer-readable storage medium for detecting the physiological sound collection position, aiming to determine the optimal physiological sound collection position, thereby achieving high-quality physiological sound data collection.
  • the present invention provides a method for detecting a physiological sound collection position, the method comprising the following steps:
  • a position correction instruction for the wearable device is triggered to remind the user to move the wearable device to the optimal physiological sound collection position.
  • the step of collecting the physiological sound signal of the wearable device user based on the physiological sound collection instruction includes:
  • the physiological sound signal of the wearable device user is collected through the physiological sound collection module in the wearable device, wherein the physiological sound collection module includes a sensor array, and the sensor array includes multiple bone conduction sensors, and the multiple bone conduction sensors are respectively located at different positions of the wearable device.
  • the wearable device is a wristband device, which includes a watchband and a watch body, and the plurality of bone conduction sensors are respectively located at different positions of the watchband.
  • the method further includes:
  • a corresponding position adjustment instruction is triggered according to the real-time position of the wearable device to remind the user to adjust the position of the wearable device.
  • the method further includes:
  • the wearable device If the wearable device is in a wearing state, executing the step of collecting the physiological sound signal of the wearable device end user based on the physiological sound collection instruction;
  • a wearing instruction is triggered through a display module or a voice module of the wearable device to remind the wearable device end user to wear the wearable device.
  • the method further includes:
  • the position correction instruction is displayed in text, schematic diagram or voice through the display module or voice module in the wearable device to remind the user of the wearable device to move the wearable device to the optimal collection position.
  • the method further includes:
  • a collection error reminder is triggered through the display module or voice module in the wearable device to remind the wearable device user to adjust the collection position of the physiological sound signal.
  • the step of determining a collection position corresponding to the maximum signal strength of the physiological sound signal includes:
  • the collection position corresponding to the maximum signal intensity of the physiological sound signal is determined by the physiological sound analysis module of the wearable device.
  • the present invention further provides a device for detecting a physiological sound collection position, the device comprising:
  • a collection module used to obtain a physiological sound collection instruction, and based on the physiological sound collection instruction, collect physiological sound signals of a wearable device end user;
  • a determination module used to determine a collection position corresponding to the maximum signal strength of the physiological sound signal, and use the collection position as the optimal collection position for the physiological sound;
  • the trigger module is used to trigger a position correction instruction for the wearable device based on the optimal physiological sound collection position to remind the user to move the wearable device to the optimal physiological sound collection position.
  • the present invention also provides a terminal device, which includes a memory, a processor, and a physiological sound collection position detection program stored in the memory and executable on the processor, and the physiological sound collection position detection program, when executed by the processor, implements the steps of the physiological sound collection position detection method as described above.
  • the present invention also proposes a computer-readable storage medium, on which a detection program for a physiological sound collection position is stored.
  • a detection program for a physiological sound collection position is executed by a processor, the steps of the detection method for a physiological sound collection position as described above are implemented.
  • the present invention further provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the steps of the method for detecting the physiological sound collection position as described above are implemented.
  • the present invention provides a method, an apparatus, a terminal device, a computer-readable storage medium and a computer program product for detecting a physiological sound collection position.
  • the method acquires a physiological sound collection instruction and collects a physiological sound signal of a wearable device user based on the physiological sound collection instruction; determines a collection position corresponding to a maximum signal strength of the physiological sound signal and uses the collection position as an optimal physiological sound collection position; and triggers a position correction instruction for the wearable device based on the optimal physiological sound collection position to remind the user to move the wearable device to the optimal physiological sound collection position.
  • the collection position corresponding to the strongest signal strength of the signal will be determined according to the physiological sound signal, and the collection position will be sent to the wearable device user as the best physiological sound collection position to remind the user to move the wearable device to the best physiological sound collection position to collect the physiological sound signal and perform subsequent data processing and other operations.
  • the present invention can guide the wearable device user to place the wearable device at the best physiological sound collection position by triggering the corresponding position correction instruction, thereby improving the quality of the physiological sound signal collected by the wearable device, so that the collected physiological sound signal can be used for subsequent user health detection, avoiding the collection of invalid physiological sound signals caused by improper user operation, and simplifying the complexity of the user's operation when collecting physiological sound, realizing the convenient collection of physiological sound signals, thereby greatly improving the user experience.
  • FIG1 is a schematic diagram of the structure of a hardware operating environment involved in an embodiment of the present invention.
  • FIG2 is a schematic diagram of a first process flow of a method for detecting physiological sound collection positions according to an embodiment of the present invention
  • FIG3 is a schematic diagram of a smart watch integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention
  • FIG4-1 is a first schematic diagram of a watchband integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention
  • FIG4-2 is a second schematic diagram of a watchband integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention
  • FIG4-3 is a third schematic diagram of a watchband integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention.
  • FIG4-4 is a fourth schematic diagram of a watchband integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention.
  • FIG. 4-5 is a fifth schematic diagram of a watchband integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention
  • 4-6 is a sixth schematic diagram of a watchband integrated module according to an embodiment of a method for detecting physiological sound collection positions of the present invention
  • FIG5 is a schematic diagram of wearing a smart watch according to an embodiment of a method for detecting physiological sound collection positions of the present invention
  • FIG6 is a schematic diagram of a third flow chart of an embodiment of a method for detecting physiological sound collection positions according to the present invention.
  • FIG. 7 is a schematic diagram of a fourth flow chart of an embodiment of a method for detecting physiological sound collection positions according to the present invention.
  • FIG. 8 is a schematic diagram of functional modules of an embodiment of a smart furniture control device of the present invention.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the embodiment of the present invention.
  • the terminal device of the embodiment of the present invention can be a wearable device such as a smart watch, a bracelet and a finger ring, or a locator, a mobile phone, a tablet computer, etc.
  • the terminal device in this embodiment can be used to detect the physiological sound collection position.
  • the terminal device may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the device structure shown in FIG. 1 does not limit the detection device for the physiological sound collection position, and may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.
  • the memory 1005 as a computer storage medium may include an operation, a network communication module, a user interface module, and a physiological sound collection position detection program.
  • the operation is a program that manages and controls the hardware and software resources of the device, and supports the running of the physiological sound collection position detection program and other software or programs.
  • the user interface 1003 is mainly used for data communication with the client;
  • the network interface 1004 is mainly used to establish a communication connection with the server;
  • the processor 1001 can be used to call the physiological sound collection position detection program stored in the memory 1005, and execute the following operate:
  • a position correction instruction for the wearable device is triggered to remind the user to move the wearable device to the optimal physiological sound collection position.
  • the processor 1001 may be used to call a physiological sound collection position detection program stored in the memory 1005, and perform the following operations:
  • the physiological sound signal of the wearable device user is collected through the physiological sound collection module in the wearable device, wherein the physiological sound collection module includes a sensor array, and the sensor array includes multiple bone conduction sensors, and the multiple bone conduction sensors are respectively located at different positions of the wearable device.
  • the processor 1001 can be used to call the physiological sound collection position detection program stored in the memory 1005, and perform the following operations:
  • the motion detection module in the wearable device it is detected in real time whether the wearable device user has moved the wearable device to the best physiological sound collection position;
  • a corresponding position adjustment instruction is triggered according to the real-time position of the wearable device to remind the user to adjust the strap position of the wearable device.
  • the processor 1001 may be used to call the physiological sound collection position detection program stored in the memory 1005, and perform the following operations:
  • a step of collecting physiological sound signals of a user of the wearable device based on the physiological sound collection instruction is executed;
  • a wearing instruction is triggered through a display module or a voice module in the wearable device to remind the wearable device user to wear the smart watch.
  • the processor 1001 can be used to call the physiological sound stored in the memory 1005.
  • the detection procedure of the sound collection position is carried out and the following operations are performed:
  • the position correction instruction is displayed in text, schematic diagram or voice, so as to remind the user of the smart watch to move the strap of the smart watch to the optimal collection position.
  • the processor 1001 can be used to call the physiological sound collection position detection program stored in the memory 1005, and perform the following operations:
  • a collection error reminder is triggered through the display module or voice module in the wearable device to remind the wearable device user to adjust the collection position of the physiological sound signal.
  • the processor 1001 may be used to call a physiological sound collection position detection program stored in the memory 1005, and perform the following operations:
  • the physiological sound analysis module in the wearable device determines the collection position corresponding to the maximum signal intensity of the physiological sound signal.
  • FIG. 2 is a flow chart of a first embodiment of a method for detecting physiological sound collection positions according to the present invention.
  • the embodiment of the present invention provides an embodiment of a method for detecting a physiological sound collection position. It should be noted that although a logical sequence is shown in the flowchart, in some cases, the steps shown or described may be executed in a different order than that shown here.
  • physiological sounds include but are not limited to heart sounds and lung sounds.
  • a method for detecting the physiological sound collection position is provided, which can be applied to portable and easy-to-operate terminal devices to assist users in determining the best physiological sound collection position before collecting physiological sound signals to collect high-quality physiological sound signals.
  • a main control chip for executing a method for detecting a physiological sound collection position and various functional modules for data transmission with the chip are integrated in the body of the smart watch.
  • at least the following functional modules are integrated: a physiological sound analysis module, a voice module (including a speaker, etc.), a motion sensing module (including an accelerometer and/or a gyroscope), a communication module (including one or more combinations of wireless communications such as cellular communication, WiFi communication, and Bluetooth communication), a memory, a battery, a power management module, a screen display and touch module, and a key module.
  • a physiological sound acquisition module is also integrated in the strap of the smart watch for collecting physiological sound signals of the user on the smart watch end.
  • the physiological sound acquisition module (in this embodiment, the above-mentioned physiological sound acquisition module can be integrated using a flexible circuit board FPC or a printed circuit board PCB assembly) is embedded in the strap through an insert injection molding process.
  • the physiological sound acquisition module uses a bone conduction sensor array, which includes at least 2 bone conduction sensors and is located at different positions of the strap.
  • multiple bone conduction sensors can be located near the strap position on the inside of the user's wrist, so that the user only needs to put the strap on the inside of the wrist close to the chest to measure the corresponding physiological sound signal.
  • the arrangement of multiple bone conduction sensors is not specifically limited.
  • the physiological sound acquisition module of the strap contains a multi-channel analog-to-digital conversion chip, which is responsible for synchronously collecting the original physiological sound signals output by the multiple bone conduction sensors, and converting the original physiological sound signals into analog-to-digital signals to obtain corresponding electrical signals, and then transmitting the electrical signals to the body of the smart watch to be processed by the physiological sound analysis module in the body of the smart watch.
  • the strap exposes the connection electrode between the physiological sound collection module and the outside world, and is connected to the watch body through a spring.
  • a motion sensing module (including an accelerometer and/or a gyroscope) is also integrated in the strap to detect the position of the strap in real time.
  • the integration of bone conduction sensors in the physiological sound data acquisition module is shown in Figures 4-1 to 4-6, where the small squares represent bone conduction sensors and the circles represent the wearing holes on the straps, so that users can adjust the tightness of the smart watch.
  • the number and arrangement of bone conduction sensors are not specifically limited.
  • the number and arrangement of bone conduction sensors with the lowest cost and the best quality of collected physiological sound signals shall prevail.
  • the user of the smart watch before using a smart watch to detect physiological sound signals, needs to wear the smart watch correctly, and then place the strap of the smart watch at the chest position, so as to use the physiological sound acquisition module in the strap to obtain the physiological sound signal of the user of the smart watch.
  • Physiological sound signals before using a smart watch to detect physiological sound signals, the user of the smart watch needs to wear the smart watch correctly, and then place the strap of the smart watch at the chest position, so as to use the physiological sound acquisition module in the strap to obtain the physiological sound signal of the user of the smart watch.
  • a method for detecting the collection position of physiological sounds is proposed.
  • the smart watch is used as an execution subject to execute the method. It can be understood that the method for detecting the collection position of physiological sounds in the present invention is applicable to the detection of the collection position of heart sounds, lung sounds or other forms of biological sounds, and is not specifically limited in this embodiment.
  • the method for detecting the physiological sound collection position in this embodiment includes the following steps:
  • Step S10 obtaining a physiological sound collection instruction, and collecting a physiological sound signal of the wearable device end user based on the physiological sound collection instruction;
  • the wearable device when the wearable device is a smart watch, if the user needs to detect the current bio-sound state, the bio-sound collection instruction can be triggered through the functional components of the smart watch, such as the physical function button or the corresponding virtual function button on the smart watch display.
  • the bio-sound collection instruction can be triggered through the functional components of the smart watch, such as the physical function button or the corresponding virtual function button on the smart watch display.
  • the user needs to move the strap of the smart watch to the chest position so that the strap of the smart watch is close to the chest position.
  • the smart watch after receiving the above-mentioned biological sound collection instruction, the smart watch will use the physiological sound collection module integrated in the smart watch strap to collect the biological sound signal at the chest position of the user on the smart watch end.
  • the user may also hold a smart watch and place the portion of the smart watch strap containing the physiological sound acquisition module close to the location where signal acquisition is required to collect physiological sounds.
  • Step S20 determining a collection position corresponding to the maximum signal strength of the physiological sound signal, and using the collection position as the optimal physiological sound collection position;
  • the smart watch After collecting the physiological sound signal, the smart watch will further determine the maximum signal strength of the physiological sound signal based on the signal strength of the physiological sound signal, obtain the collection position corresponding to the maximum signal strength, and use the collection position as the optimal physiological sound collection position, so that the user can collect the physiological sound signal at the optimal physiological sound collection position.
  • step S20 “determining the collection position corresponding to the maximum signal strength of the physiological sound signal”, may include:
  • Step S201 determining a collection position corresponding to the maximum signal intensity of the physiological sound signal through a physiological sound analysis module of the wearable device.
  • the smart watch After receiving the collected physiological sound signal, the smart watch can use the physiological sound analysis module integrated in the smart watch to analyze and process the above physiological sound signal, and then determine the maximum value of the physiological sound signal.
  • the signal strength corresponds to the acquisition position.
  • Step S30 based on the optimal physiological sound collection position, triggering a position correction instruction for the wearable device to remind the user to move the wearable device to the optimal physiological sound collection position.
  • the smart watch After determining the optimal physiological sound collection position, the smart watch will trigger a corresponding position correction instruction based on the optimal physiological sound collection position.
  • the position correction instruction will remind the user that the best quality physiological sound signal cannot be collected at the current physiological sound collection position, and guide the user to move the smart watch strap to the above-mentioned optimal physiological sound collection position.
  • the smart watch after the smart watch obtains the collection position corresponding to the maximum signal strength of the physiological sound signal, if it detects that the current collection position is the collection position corresponding to the maximum signal strength of the physiological sound signal, it will no longer send a position correction instruction, but will send a collection position correction success instruction and start subsequent operations such as collection, analysis and processing of the physiological sound signal.
  • the smart watch collects physiological sound signals at the chest position of the user on the smart watch end. After collecting the physiological sound signals, the smart watch will further determine the maximum signal strength of the physiological sound signals based on the signal strength of the physiological sound signals, obtain the collection position corresponding to the maximum signal strength, and use the collection position as the best collection position for physiological sound. Then, based on the best collection position for physiological sound, a corresponding position correction instruction is triggered to remind the user to move the smart watch to the above-mentioned best collection position for physiological sound through the position correction instruction.
  • the collection position corresponding to the strongest signal strength of the signal will be determined according to the physiological sound signal, and the collection position will be sent to the user on the smart watch side as the best physiological sound collection position, so as to remind the user to move the smart watch to the best physiological sound collection position to collect the physiological sound signal and perform subsequent data processing and other operations.
  • the present invention can guide the user on the smart watch side to place the smart watch at the best physiological sound collection position by triggering the position correction instruction, so as to improve the quality of the physiological sound signal collected by the smart watch, so that the collected physiological sound signal can be used for subsequent user health detection, avoiding the collection of invalid physiological sound signals caused by improper user operation, and reducing the operation complexity of the user when collecting physiological sound, which greatly improves the user experience.
  • a second embodiment of the present invention for detecting the physiological sound collection position is proposed.
  • “obtaining the physiological sound signal of the wearable device end user through the wearable device” may include:
  • Step S101 based on the physiological sound collection instruction, collect the physiological sound signal of the wearable device end user through the physiological sound collection module of the wearable device, wherein the physiological sound collection module includes a sensor array, and the sensor array includes multiple sensor bone conduction sensors, and the multiple bone conduction sensors are respectively located at different positions of the wearable device.
  • the physiological sound collection module includes a sensor array
  • the sensor array includes multiple sensor bone conduction sensors, and the multiple bone conduction sensors are respectively located at different positions of the wearable device.
  • the smart watch After the smart watch obtains the physiological sound collection instruction, it will further collect the physiological sound signals of the wearable device end user through the physiological sound collection module of the wearable device according to the physiological sound collection instruction.
  • the physiological sound collection module of the wearable device In addition, in order to improve the quality of the collected physiological sound signals and facilitate the subsequent determination of a more accurate optimal physiological sound collection position, in this embodiment, multiple groups of bone conduction sensors are integrated in the wearable device, and the multiple groups of bone conduction sensors are dispersed in different positions of the wearable device to better collect physiological sound signals.
  • the wearable device is a wristband device, which includes a watchband and a watch body, and the multiple bone conduction sensors are respectively located at different positions of the watchband.
  • the smart watch when the wristband device is specifically a smart watch, the smart watch includes a strap and a watch body. Considering that the contact area between the strap of the smart watch and the wearer is larger, the above-mentioned multiple bone conduction sensors can be integrated into the strap of the smart watch to collect physiological sound signals of the smart watch user.
  • a sensor array including multiple bone conduction sensors is integrated in the strap of the smart watch to collect physiological sound signals of the user on the smart watch end.
  • the user on the smart watch end can keep wearing the smart watch and move the smart watch to the user's chest position to collect physiological sound signals.
  • the transmission method of the physiological sound signal from the strap to the watch body is not specifically limited.
  • the connection electrodes exposed by the physiological sound acquisition module in the above-mentioned strap can be used to transmit the physiological sound signal in the form of an electrical signal to the physiological sound analysis module in the watch body for further processing.
  • step S30 of “triggering a position correction instruction for the wearable device based on the optimal physiological sound collection position” the following may also be included:
  • Step S40 determining, by a motion detection module in the wearable device, whether the wearable device user has moved the wearable device to the optimal physiological sound collection position;
  • Step S50 If yes, then perform a physiological sound collection operation at the physiological sound optimal collection position;
  • Step S60 if not, triggering a corresponding position adjustment instruction according to the real-time position of the wearable device to remind the user to adjust the position of the wearable device.
  • the user of the smart watch will adjust the position of the smart watch in real time according to the position correction instruction.
  • the smart watch When the user adjusts the position of the smart watch, the smart watch will detect the movement speed and direction of the smart watch in real time through the motion detection module (such as an accelerometer and/or a gyroscope) in the smart watch to determine whether the strap of the smart watch is in the optimal physiological sound collection position (i.e., whether the physiological sound collection module in the strap is in the optimal physiological sound collection position).
  • the motion detection module such as an accelerometer and/or a gyroscope
  • the motion detection module will guide the user of the smart watch to move the smart watch according to the three-dimensional coordinates, so as to place the physiological sound acquisition module in the smart watch strap in the optimal physiological sound acquisition position; if it is detected that the strap is already in the optimal physiological sound acquisition position, the physiological sound signal of the current position can be collected by the physiological sound acquisition module in the strap, and the collected physiological sound signal can be analyzed and processed and subsequently operated by the physiological sound analysis module in the watch body; if it is detected that the strap is still in other positions outside the optimal physiological sound acquisition position, the corresponding position adjustment instruction is triggered according to the real-time position of the smart watch strap, so as to remind the user of the smart watch to move the strap of the smart watch to the optimal physiological sound acquisition position in time based on the position adjustment instruction.
  • the method for real-time detection of whether the strap of the smart watch is in the above-mentioned optimal physiological sound collection position can be specifically: if the signal strength of the physiological sound signal collected by the strap at the current collection position is greater than the strength of the physiological sound signal collected by the strap at other positions, then the current collection position is determined to be the optimal physiological sound collection position.
  • the position adjustment instruction may include a reminder of the moving direction of the smart watch, such as "move the body of the smart watch toward the fingertips” or “slowly turn the strap of the smart watch counterclockwise”.
  • step S10 “obtaining physiological sound collection instructions”, the following may also be included:
  • Step S70 detecting whether the wearable device is in a wearing state
  • Step S80 If the wearable device is in a wearing state, a step of collecting the physiological sound signal of the wearable device user based on the physiological sound collection instruction is executed.
  • Step S90 If the wearable device is not worn, The display module or voice module triggers the wearing instruction to remind the wearable device user to wear the smart watch.
  • the smart watch in order to collect high-quality physiological sound signals, it is necessary to first ensure that the smart watch is in a wearing state (the wearing state in this embodiment is a normal wearing state, that is, the watch body is located directly above the wrist and close to the wrist, and the strap is of moderate tightness).
  • the wearing state in this embodiment is a normal wearing state, that is, the watch body is located directly above the wrist and close to the wrist, and the strap is of moderate tightness).
  • the smart watch can detect whether the smart watch is in a worn state through the infrared sensor in the smart watch; if it is detected that the smart watch is currently in a worn state, it continues to collect the physiological sound signals of the user on the wearable device end; if it is detected that the smart watch is currently not in a worn state, the corresponding trigger wearing instruction is triggered through the display module in the smart watch, and the wearing instruction is displayed in text form, or the corresponding trigger wearing instruction is triggered through the voice module in the smart watch, and the wearing instruction is voice broadcast.
  • step S30 "triggering a position correction instruction for the wearable device based on the optimal physiological sound collection position"
  • the following may also be included:
  • Step A Display the position correction instruction in text, schematic diagram or voice through the display module or voice module in the wearable device to remind the user of the smart watch to move the smart watch to the optimal collection position.
  • the position correction instruction will be displayed in text or schematic form through a display module in the smart watch, such as a display screen, or the position correction instruction will be played in voice through a voice module in the smart watch, such as a speaker.
  • the position correction instruction includes the moving direction of the smart watch strap, for example, the position correction instruction may be "rotate the strap slowly in a counterclockwise direction".
  • the smart watch will also monitor the movement of its strap in real time to determine that the physiological sound collection module in the strap is in the best position for collecting physiological sounds.
  • step S10 of "obtaining a physiological sound collection instruction, and collecting the physiological sound signal of the wearable device end user based on the physiological sound collection instruction the following may also be included:
  • Step B If the physiological sound signal of the wearable device user is not collected within a preset time period, a collection error reminder is triggered through the display module or voice module in the wearable device to remind the wearable device user to adjust the collection position of the physiological sound signal.
  • the strap portion of the watch containing the physiological sound collection module is too far from the chest area and cannot collect physiological sound signals, it is necessary to determine in advance whether a valid physiological sound signal can be detected.
  • the so-called valid physiological sound signal means that its signal strength is greater than the preset minimum intensity threshold.
  • the preset minimum intensity threshold can be flexibly set according to different physiological sound collection scenarios without specific limitation.
  • the smart watch can trigger a collection error reminder through its display module or voice module, prompting the user to adjust the physiological sound collection position of the smart watch or the wearing status of the smart watch in time.
  • the smart watch after receiving the physiological sound collection instruction triggered by the user of the smart watch, the smart watch will collect the physiological sound signal at the chest position of the user of the smart watch based on the physiological sound collection instruction through the physiological sound collection module in the smart watch strap.
  • the smart watch will detect in real time whether the strap of the smart watch is in the above-mentioned optimal physiological sound collection position through the motion detection module in the smart watch during the user adjusting its position. If it is detected that the strap is in the optimal physiological sound collection position, the physiological sound signal of the current position can be collected through the physiological sound collection module in the strap, and the collected physiological sound signal can be analyzed and processed and subsequently operated through the physiological sound analysis module in the watch body. Otherwise, the user of the smart watch is reminded.
  • the smart watch In order to collect high-quality physiological sound signals, the smart watch needs to ensure that it is in a wearing state first. After the smart watch triggers the corresponding position correction instruction based on the optimal physiological sound collection position, the position correction instruction will be displayed in text, schematic diagram or voice through the display module or voice module in the smart watch. In order to avoid the situation where the strap area of the smart watch is too far away from the chest due to improper user operation, resulting in failure to collect physiological sound signals, it is necessary to ensure that the smart watch can detect effective physiological sound signals.
  • the smart watch can detect in real time whether the physiological sound signal acquisition module in its strap is in the best physiological sound acquisition position. Once it is detected that the physiological sound signal acquisition module is not in the best physiological sound acquisition position, the display module or voice module will be used to prompt the user of the smart watch to adjust the position of the smart watch strap.
  • the present invention improves the quality of the physiological sound signals collected by the smart watch, avoids the collection of invalid physiological sound signals caused by improper user operation, and the present invention can guide users to collect physiological sounds, which greatly improves the user experience.
  • an embodiment of the present invention further provides a device for detecting a physiological sound collection position.
  • the device for detecting a physiological sound collection position includes:
  • the collection module 10 is used to obtain a physiological sound collection instruction, and based on the physiological sound collection instruction, collect the physiological sound signal of the wearable device end user;
  • a determination module 20 configured to determine a collection position corresponding to a maximum signal strength of the physiological sound signal, and use the collection position as an optimal collection position for the physiological sound;
  • the trigger module 30 is used to trigger a position correction instruction for the wearable device based on the optimal physiological sound collection position, so as to remind the user to move the wearable device to the optimal physiological sound collection position.
  • the acquisition module 10 includes:
  • the collecting unit is used to collect the physiological sound signals of the wearable device user through the physiological sound collecting module in the wearable device based on the physiological sound collecting instruction, wherein the physiological sound collecting module includes a sensor array, and the sensor array includes a plurality of bone conduction sensors, and the plurality of bone conduction sensors are respectively located at different positions of the wearable device.
  • the physiological sound collection position detection device includes:
  • a first detection module configured to determine, through a motion detection module in the wearable device, whether the wearable device user has moved the wearable device to the optimal physiological sound collection position
  • An execution module configured to execute a physiological sound collection operation at the optimal physiological sound collection position
  • the first instruction triggering module is used to trigger a corresponding position adjustment instruction according to the real-time position of the wearable device if no, so as to remind the user to adjust the position of the wearable device.
  • the physiological sound collection position detection device further includes:
  • a second detection module used to detect whether the wearable device is in a wearing state
  • a collection module used for collecting physiological sound signals of the wearable device user based on the physiological sound collection instruction
  • the second instruction triggering module is used to trigger a wearing instruction through the display module or voice module of the wearable device to remind the wearable device end user to wear the wearable device.
  • the physiological sound collection position detection device further includes:
  • the display and playback module is used to display the position correction instruction in text, schematic diagram or voice through the display module or voice module in the wearable device, so as to remind the user of the wearable device to move the wearable device to the optimal collection position.
  • the physiological sound collection position detection device further includes:
  • the reminder trigger module is used to trigger a collection error reminder through the display module or voice module in the wearable device if the physiological sound signal of the user of the wearable device is not collected within a preset time period, so as to remind the user of the wearable device to adjust the collection position of the physiological sound signal.
  • the determination module 20 includes:
  • the determination unit is used to determine the collection position corresponding to the maximum signal intensity of the physiological sound signal through the physiological sound analysis module of the wearable device.
  • an embodiment of the present invention further proposes a computer-readable storage medium, on which a physiological sound collection position detection program is stored.
  • a physiological sound collection position detection program is executed by a processor, the steps of the physiological sound collection position detection method described below are implemented.
  • the various embodiments of the physiological sound collection position detection device and the computer-readable storage medium of the present invention can all refer to the various embodiments of the physiological sound collection position detection method of the present invention, which will not be described in detail here.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), including a number of instructions for a terminal device (which can be a wearable device, a locator, a smart phone, a tablet computer, etc.) to execute the methods described in each embodiment of the present invention.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal device which can be a wearable device, a locator, a smart phone, a tablet computer, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种生理音采集位置的检测方法、装置、终端设备及计算机可读存储介质,该方法包括:获取生理音采集指令,并基于生理音采集指令,采可穿戴设备端用户的生理音信号;确定生理音信号的最大信号强度所对应的采集位置,并将采集位置作为生理音最佳采集位置;基于生理音最佳采集位置,触发针对可穿戴设备的位置校正指令,以提醒用户将可穿戴设备移动至生理音最佳采集位置。该方法能够确定生理音最佳采集位置,进而实现高质量的生理音数据采集。

Description

生理音采集位置的检测方法、装置、终端设备及介质
本申请要求于2022年10月31日提交中国专利局、申请号为202211351552.8、发明名称为“生理音采集位置的检测方法、装置、终端设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及人工智能技术领域,尤其涉及一种生理音采集位置的检测方法、装置、终端设备及计算机可读存储介质。
背景技术
随着人们对自身健康状况愈加重视,各种能实现身体健康数据采集功能的可穿戴设备不断涌现,使得用户能够直接利用可穿戴设备进行自我诊断。
比如,用户可利用佩戴的智能手表对心率、血压、脉搏、心音或肺音等参数进行采集和检测。
但是,由于非专业医护人员,用户在利用可穿戴产品采集身体功能参数时,无法将可穿戴产品置于合适的采集位置,导致采集的数据可能存在信号差、杂音多等问题,甚至可能采集到无效数据。
发明内容
本发明的主要目的在于提供一种生理音采集位置的检测方法、装置、终端设备及计算机可读存储介质,旨在确定生理音最佳采集位置,进而实现高质量的生理音数据采集。
为实现上述目的,本发明提供一种生理音采集位置的检测方法,所述方法包括以下步骤:
获取生理音采集指令,并基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号;
确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;
基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒用户将所述可穿戴设备移动至所述生理音最佳采集位置。
可选地,所述基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号的步骤,包括:
基于所述生理音采集指令,通过所述可穿戴设备中的生理音采集模块,采集所述可穿戴设备端用户的生理音信号,其中,在所述生理音采集模块中包括传感器阵列,在所述传感器阵列中包含多个传感器骨传导传感器,多个所述骨传导传感器分别位于所述可穿戴设备的不同位置。
可选地,可穿戴设备为腕带设备,腕带设备包括表带和表体,多个所述骨传导传感器分别位于所述表带的不同位置。
可选地,在所述基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令的步骤之后,还包括:
通过所述可穿戴设备中的运动检测模块,确定所述可穿戴设备端用户是否已将所述可穿戴设备移动至所述生理音最佳采集位置;
若是,则在所述生理音最佳采集位置处执行生理音采集操作;
若否,则根据所述可穿戴设备的实时位置,触发对应的位置调整指令,以提醒用户调整所述可穿戴设备的位置。
可选地,在所述获取生理音采集指令的步骤之后,还包括:
检测所述可穿戴设备是否处于佩戴状态;
若所述可穿戴设备处于佩戴状态,则执行基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号的步骤;
若所述可穿戴设备处于未佩戴状态,则通过所述可穿戴设备的显示模块或者语音模块触发佩戴指令,以提醒所述可穿戴设备端用户佩戴所述可穿戴设备。
可选地,在所述基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令的步骤之后,还包括:
通过所述可穿戴设备中的显示模块或者语音模块,将所述位置校正指令进行文字展示、示意图展示或者语音播放,以提醒所述可穿戴设备端用户将所述可穿戴设备移动至所述最佳采集位置。
可选地,在所述获取生理音采集指令,并基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号的步骤之后,还包括:
若是在预设时间段内未采集到所述可穿戴设备端用户的生理音信号,则通过所述可穿戴设备中的显示模块或者语音模块,触发采集报错提醒,以提醒所述可穿戴设备端用户调整生理音信号的采集位置。
可选地,所述确定所述生理音信号的最大信号强度所对应的采集位置的步骤,包括:
通过所述可穿戴设备的生理音分析模块,确定所述生理音信号的最大信号强度所对应的采集位置。
为实现上述目的,本发明还提供一种生理音采集位置的检测装置,所述生理音采集位置的检测装置包括:
采集模块,用于获取生理音采集指令,并基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号;
确定模块,用于确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;
触发模块,用于基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒用户将可穿戴设备移动至所述生理音最佳采集位置。
为实现上述目的,本发明还提供一种终端设备,所述终端设备包括存储器、处理器和存储在所述存储器上并可在所述处理器上运行的生理音采集位置的检测程序,所述生理音采集位置的检测程序被所述处理器执行时实现如上所述的生理音采集位置的检测方法的步骤。
此外,为实现上述目的,本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有生理音采集位置的检测程序,所述生理音采集位置的检测程序被处理器执行时实现如上所述的生理音采集位置的检测方法的步骤。
为实现上述目的,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时实现如上所述的生理音采集位置的检测方法的步骤。
本发明提供一种生理音采集位置的检测方法、装置、终端设备、计算机可读存储介质以及计算机程序产品,通过获取生理音采集指令,并基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号;确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒用户将所述可穿戴设备移动至所述生理音最佳采集位置。
相比于现有技术中用户无法准确测得生理音数据,在本发明中,在由可穿戴设备采集到可穿戴设备端用户的生理音信号后,将根据该生理音信号确定该信号的最强信号强度对应的采集位置,并将该采集位置作为生理音最佳采集位置发送给可穿戴设备端用户,以提醒用户将可穿戴设备移动至该生理音最佳采集位置处进行生理音信号的采集以及后续的数据处理等操作。因此,本发明能够在确定生理音最佳采集位置处后,通过触发对应的位置校正指令指导可穿戴设备端用户将可穿戴设备置于该定生理音最佳采集位置,如此,提升了可穿戴设备所采集的生理音信号的质量,以将采集到的生理音信号用于后续用户身体健康检测,避免了用于用户操作不当所导致的无效生理音信号的采集,并且,简化了用户进行生理音采集时的操作复杂,实现了生理音信号的便捷采集,因此,极大程度上提升了用户体验。
附图说明
图1为本发明实施例方案涉及的硬件运行环境的结构示意图;
图2为本发明生理音采集位置的检测方法一实施例的第一流程示意图;
图3为本发明生理音采集位置的检测方法一实施例的智能手表集成模块示意图;
图4-1为本发明生理音采集位置的检测方法一实施例的表带集成模块第一示意图;
图4-2为本发明生理音采集位置的检测方法一实施例的表带集成模块第二示意图;
图4-3为本发明生理音采集位置的检测方法一实施例的表带集成模块第三示意图;
图4-4为本发明生理音采集位置的检测方法一实施例的表带集成模块第四示意图;
图4-5为本发明生理音采集位置的检测方法一实施例的表带集成模块第五示意图;
图4-6为本发明生理音采集位置的检测方法一实施例的表带集成模块第六示意图;
图5为本发明生理音采集位置的检测方法一实施例的智能手表佩戴示意图;
图6为本发明生理音采集位置的检测方法一实施例的第三流程示意图;
图7为本发明生理音采集位置的检测方法一实施例的第四流程示意图;
图8为本发明智能家具控制装置一实施例的功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,图1是本发明实施例方案涉及的硬件运行环境的设备结构示意图。
本发明实施例的终端设备可以是智能手表、手环和指环等可穿戴设备,也可以是***、手机、平板电脑等,本实施例中的终端设备可用于生理音采集位置的检测。
如图1所示,该终端设备可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的设备结构并不构成对生理音采集位置的检测设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作、网络通信模块、用户接口模块以及生理音采集位置的检测程序。操作是管理和控制设备硬件和软件资源的程序,支持生理音采集位置的检测程序以及其它软件或程序的运行。在图1所示的设备中,用户接口1003主要用于与客户端进行数据通信;网络接口1004主要用于与服务器建立通信连接;而处理器1001可以用于调用存储器1005中存储的生理音采集位置的检测程序,并执行以下 操作:
获取生理音采集指令,并基于生理音采集指令,采集可穿戴设备端用户的生理音信号;
确定生理音信号的最大信号强度所对应的采集位置,并将采集位置作为生理音最佳采集位置;
基于生理音最佳采集位置,触发针对可穿戴设备的位置校正指令,以提醒用户将可穿戴设备移动至生理音最佳采集位置。
进一步地,处理器1001可以用于调用存储器1005中存储的生理音采集位置的检测程序,并执行以下操作:
基于生理音采集指令,通过可穿戴设备中的生理音采集模块,采集可穿戴设备端用户的生理音信号,其中,在生理音采集模块中包括传感器阵列,在传感器阵列中包含多个骨传导传感器,多个骨传导传感器分别位于可穿戴设备的不同位置。
进一步地,基于所述生理音最佳采集位置,触发针对可穿戴设备的位置校正指令的步骤之后,处理器1001可以用于调用存储器1005中存储的生理音采集位置的检测程序,并执行以下操作:
通过可穿戴设备中的运动检测模块,实时检测可穿戴设备端用户是否已将可穿戴设备移动至生理音最佳采集位置;
若是,则在生理音最佳采集位置处执行生理音采集操作;
若否,则根据可穿戴设备的实时位置触发对应位置调整指令,以提醒用户调整可穿戴设备的表带位置。
进一步地,在获取生理音采集指令的步骤之后,处理器1001可以用于调用存储器1005中存储的生理音采集位置的检测程序,并执行以下操作:
检测可穿戴设备是否处于佩戴状态;
若可穿戴设备处于佩戴状态,则执行基于生理音采集指令,采集可穿戴设备端用户的生理音信号的步骤;
若可穿戴设备处于未佩戴状态,则通过可穿戴设备中的显示模块或者语音模块触发佩戴指令,以提醒可穿戴设备用户佩戴智能手表。
进一步地,在基于所述生理音最佳采集位置,触发针对可穿戴设备的位置校正指令的步骤之后,处理器1001可以用于调用存储器1005中存储的生 理音采集位置的检测程序,并执行以下操作:
通过可穿戴设备中的显示模块或者语音模块,将位置校正指令进行文字展示、示意图展示或者语音播放,以提醒智能手表端用户将智能手表的表带移动至最佳采集位置。
进一步地,在获取生理音采集指令,并基于生理音采集指令,采集可穿戴设备端用户的生理音信号的步骤之后,处理器1001可以用于调用存储器1005中存储的生理音采集位置的检测程序,并执行以下操作:
若是在预设时间段内未采集到可穿戴设备用户的生理音信号,则通过可穿戴设备中的显示模块或者语音模块,触发采集报错提醒,以提醒可穿戴设备端用户调整生理音信号的采集位置。
进一步地,处理器1001可以用于调用存储器1005中存储的生理音采集位置的检测程序,并执行以下操作:
通过可穿戴设备中的生理音分析模块,确定生理音信号的最大信号强度所对应的采集位置。
参照图2,图2为本发明生理音采集位置的检测方法第一实施例的流程示意图。
本发明实施例提供了生理音采集位置的检测方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以不同于此处的顺序执行所示出或描述的步骤。
由于人体的心、肺、肠等器官不停地运动着,并不断地发出各种各样的声信号,因此,可将称这些信号称之为生理音,在本实施例中,生理音包括但不限于心音和肺音。
考虑到一般用户在使用可穿戴设备等终端设备对心肺音等生理音进行自检时,由于缺少设备操作必要指导,使得用户无法找到正确的测试位置进行生理音检测,导致测得的生理音信号出现噪音多、信号强度弱等质量问题,影响后续用户身体健康评估的准确性。
因此,在本发明中,提供了一种生理音采集位置的检测方法,可应用于便携易操作的终端设备,协助用户确定生理音最佳采集位置后再进行生理音信号采集,以采集到高质量的生理音信号。
在一实施例中,在上述可穿戴设备具体为智能手表等腕带设备时,如图 3所示,在该智能手表的表体集成了用于执行生理音采集位置的检测方法的主控芯片,以及与该芯片进行数据传输的各个功能模块,在本实施例中至少以下功能模块:生理音分析模块、语音模块(包括喇叭等)、运动传感模块(包括加速度计和/或陀螺仪)、通信模块(包括蜂窝通信、WiFi通信、蓝牙通信等无线通信中的一种或多种组合)、存储器、电池、电源管理模块、屏幕显示及触摸模块和按键模块。
除此之外,考虑到智能手表的表带所产生的接触面积更大,还在智能手表的表带还集成了生理音采集模块,用于智能手表端用户的生理音信号采集。具体地,通过嵌件注塑工艺,将生理音采集模块(在本实施例中可利用柔性电路板FPC或印制线路板PCB组件集成上述生理音采集模块)嵌入表带。生理音采集模块采用了骨传导传感器阵列,该阵列包含至少2个骨传导传感器,且位于表带的不同位置,比如,多个骨传导传感器可位于靠近用户手腕内侧的表带位置,使得用户只需将手腕内侧的表带紧贴胸腔就可测得对应的生理音信号,在本实施例中不对多个骨传导传感器的排列方式做具体限定。另外,表带的生理音采集模块中含有一个多路模数转换芯片,负责同步采集多路骨传导传感器输出的原始生理音信号,并将该原始生理音信号进行模数转换得到对应的电信号,进而将该电信号传输至智能手表的表体,以通过智能手表表体中的生理音分析模块对其进行处理。在表带与表体间的接触部分,表带露出生理音采集模块与外界的连接电极,并通过弹片与表体连接。除此之外,在表带中也集成了运动传感模块(包括加速度计和/或陀螺仪),以实时检测表带所处位置。
具体地,例如,生理音数据采集模块中的骨传导传感器的集成方式,如图4-1至4-6所示,图中的小方块表示骨传导传感器,圆圈表示表带上的佩戴孔,以供用户调节智能手表佩戴的松紧度。在本实施例中不对骨传导传感器的数量和排列方式做具体限定,除了上述列举的排列方式,在本实施例中,在能够采集到用户生理音信号的基础上,以成本最低且所采集的生理音信号质量最佳的骨传导传感器数量和排列方式为准。
另外,如图5所示,在本发明中,在利用智能手表进行生理音信号检测之前,智能手表端用户先正确需要佩戴智能手表,进而将该智能手表的表带置于胸腔位置处,以利用该表带中的生理音采集模块,获取智能手表端用户 的生理音信号。
基于上述智能手表的硬件结构,提出一种生理音采集位置的检测方法,智能手表作为执行主体用于执行该方法,并且,可以理解的是,本发明中的生理音采集位置的检测方法适用于心音、肺音或者其它形式的生物音的采集位置的检测,在本实施例中不做具体限定。
具体地,本实施例中的生理音采集位置的检测方法,包括以下步骤:
步骤S10,获取生理音采集指令,并基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号;
需要说明的是,在本实施例中,在可穿戴设备为智能手表时,若是用户需要对当前的生物音状态进行检测,那么可通过智能手表的功能组件,比如实体功能按键或者智能手表显示屏上对应的虚拟功能按键,触发生物音采集指令。另外,如图5所示,在触发生物音采集指令后,用户需将佩戴的智能手表的表带移动至胸口位置,使智能手表的表带贴近胸腔位置。
如此,智能手表在接收到上述生物音采集指令后,将利用智能手表表带中集成的生理音采集模块,采集智能手表端用户胸口位置处的生物音信号。
在一实施例中,除了如图5所示的生理音信号获取方式,也可由用户手持智能手表,并将智能手表表带包含生理音采集模块的部分,紧贴需进行信号采集的位置进行生理音的采集。
步骤S20,确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;
智能手表在采集到生理音信号后,将进一步根据该生理音信号的信号强度,确定该生理音信号的最大信号强度,并获取该最大信号强度所对应的采集位置,并将该采集位置作为生理音最佳采集位置,以供用户在该生理音最佳采集位置处进行生理音信号采集。
进一步地,上述步骤S20,“确定所述生理音信号的最大信号强度所对应的采集位置”,可以包括:
步骤S201,通过所述可穿戴设备的生理音分析模块,确定所述生理音信号的最大信号强度所对应的采集位置。
智能手表在接收到采集的生理音信号后,将可用智能手表中集成的生理音分析模块,对上述生理音信号进行分析处理,进而确定生理音信号的最大 信号强度所对应的采集位置。
步骤S30,基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒用户将所述可穿戴设备移动至所述生理音最佳采集位置。
智能手表在确定生理音最佳采集位置后,将基于该生理音最佳采集位置触发对应的位置校正指令,以通过该位置校正指令提醒用户在当前的生理音采集位置处无法采集到质量最好的生理音信号,并指导用户将智能手表的表带移动至上述生理音最佳采集位置。
在另一实施例中,智能手表在获取到生理音信号的最大信号强度所对应的采集位置后,若是检测到当前采集位置即为生理音信号的最大信号强度所对应的采集位置,将不再发送位置校正指令,而是发送采集位置校正成功指令,并开始进行生理音信号的采集、分析和处理等后续操作。
在本实施例中,智能手表采集智能手表端用户胸口位置处的生理音信号。智能手表在采集到生理音信号后,将进一步根据该生理音信号的信号强度,确定该生理音信号的最大信号强度,并获取该最大信号强度所对应的采集位置,并将该采集位置作为生理音最佳采集位置。进而基于该生理音最佳采集位置触发对应的位置校正指令,以通过该位置校正指令提醒用户将智能手表移动至上述生理音最佳采集位置。
相比于现有技术中用户无法准确测得生理音数据,在本发明中,在由智能手表采集到智能手表端用户的生理音信号后,将根据该生理音信号确定该信号的最强信号强度对应的采集位置,并将该采集位置作为生理音最佳采集位置发送给智能手表端用户,以提醒用户将智能手表移动至该生理音最佳采集位置处进行生理音信号的采集以及后续的数据处理等操作。因此,本发明能够在确定生理音最佳采集位置处后,通过触发的位置校正指令指导智能手表端用户将智能手表置于该定生理音最佳采集位置,如此,提升了智能手表所采集的生理音信号的质量,以将采集到的生理音信号用于后续用户身体健康检测,避免了用于用户操作不当所导致的无效生理音信号的采集,并且,降低了用户进行生理音采集时的操作复杂度,极大程度上提升了用户体验。
进一步地,基于本发明生理音采集位置的检测的第一实施例,提出本发明生理音采集位置的检测的第二实施例。
在本实施例中,上述步骤S10中,“通过所述可穿戴设备,获取所述可穿戴设备端用户的生理音信号”,可以包括:
步骤S101,基于所述生理音采集指令,通过所述可穿戴设备的生理音采集模块,采集所述可穿戴设备端用户的生理音信号,其中,在所述生理音采集模块中包括传感器阵列,在所述传感器阵列中包含多个传感器骨传导传感器,多个所述骨传导传感器分别位于所述可穿戴设备的不同位置。
智能手表在获取到生理音采集指令后,将进一步根据该生理音采集指令,通过可穿戴设备的生理音采集模块,采集可穿戴设备端用户的生理音信号。并且,为了提升所采集生理音信号的质量,以便于后续确定更加精准的生理音最佳采集位置,在本实施例中,在可穿戴设备集成了多组骨传导传感器,并将多组骨传导传感器分散置于可穿戴设备的不同位置,以更好的采集生理音信号。
进一步地,可穿戴设备为腕带设备,腕带设备包括表带和表体,多个所述骨传导传感器分别位于所述表带的不同位置。
可以理解的是,在腕带设备具体为智能手表时,智能手表包含了表带和表体部分,考虑到智能手表的表带与佩戴者所产生的接触面积更大,可在智能手表的表带集成上述的多个骨传导传感器,用于采集智能手表端用户的生理音信号。
在此种场景下,如上所述,在智能手表的表带中集成包含多个骨传导传感器的传感器阵列,用于采集智能手表端用户的生理音信号,此时,智能手表端用户可在保持智能手表佩戴状态下,将智能手表移动至用户胸口位置进行生理音信号的采集。
在本实施例中不对生理音信号从表带传输至表体的传输方式做具体限定,比如,可利用上述表带中的生理音采集模块暴露的连接电极,将该生理音信号以电信号方式传输至表体中的生理音分析模块进行下一步处理。
进一步地,如图6所示,上述步骤S30,“基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令”之后,还可以包括:
步骤S40,通过所述可穿戴设备中的运动检测模块,确定所述可穿戴设备端用户是否已将所述可穿戴设备移动至所述生理音最佳采集位置;
步骤S50,若是,则在所述生理音最佳采集位置处执行生理音采集操作;
步骤S60,若否,则根据所述可穿戴设备的实时位置触发对应位置调整指令,以提醒用户调整所述可穿戴设备位置。
需要说明的是,在本实施例中,在智能手表在触发位置校正指令后,智能手表端用户将根据该位置校正指令,实时调整智能手表的位置。
而智能手表将在用户调整其位置的过程中,通过智能手表中的运动检测模块(比如加速度计和/或陀螺仪),实时检测智能手表的运动速度和运动方向等参数,以确定智能手表的表带是否已处于上述生理音最佳采集位置(即表带中的生理音采集模块是否处于生理音最佳采集位置),比如,在生理音最佳采集位置处运动检测模块对应的三维坐标(x1,y1,z1),进而,运动检测模块将依据该三维坐标,指导智能手表端用户移动智能手表,以将智能手表表带中的生理音采集模块置于生理音最佳采集位置;若是检测到该表带已处于生理音最佳采集位置,则可通过表带中的生理音采集模块采集当前位置的生理音信号,并通过表体中的生理音分析模块,对采集到的生理音信号进行分析处理及后续操作;若是检测到表带仍处于生理音最佳采集位置之外的其它位置,则根据智能手表表带的实时位置,触发对应位置调整指令,以基于该位置调整指令,提醒智能手表端用户及时将智能手表的表带移动至所述生理音最佳采集位置。
其中,实时检测智能手表的表带是否已处于上述生理音最佳采集位置的方式具体可以为:若是在当前采集位置处由表带采集的生理音信号的信号强度大于其它位置处采表带采集生理音信号的强度,则判定当前采集位置为生理音最佳采集位置。
在一实施例中,若上述位置调整指令是通过语音模块(比如扬声器),以语音播报方式进行触发的,那么,在该位置调整指令中,可包含智能手表移动方向提醒,比如“向指尖方向移动智能手表的表体”或者“逆时针方向缓慢转动智能手表的表带”等。
进一步地,上述步骤S10,“获取生理音采集指令”之后,还可以包括:
步骤S70,检测所述可穿戴设备是否处于佩戴状态;
步骤S80,若所述可穿戴设备处于佩戴状态,则执行基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号的步骤。
步骤S90,若所述可穿戴设备处于未佩戴状态,则通过所述可穿戴设备 的显示模块或者语音模块触发佩戴指令,以提醒所述可穿戴设备端用户佩戴所述智能手表。
需要说明的是,在本实施例中,为了采集到高质量的生理音信号,需要先保障智能手表处于佩戴状态(本实施例中的佩戴状态为正常佩戴状态,即表***于腕部的正上方且紧贴腕部,而表带松紧度适中)。
因此,智能手表在接收到用户触发的生理音采集指令后,可通过智能手表中的红外传感器,检测智能手表是否处于佩戴状态;若是检测到智能手表当前处于佩戴状态,则继续采集可穿戴设备端用户的生理音信号;若是检测到智能手表当前处于未佩戴状态,则通过智能手表中的显示模块触发对应触发佩戴指令,并将该佩戴指令以文字方式进行展示,或者,通过智能手表中的语音模块触发对应触发佩戴指令,并对该佩戴指令语音播报。
进一步地,上述步骤S30,“基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令”之后,还可以包括:
步骤A,通过所述可穿戴设备中的显示模块或者语音模块,将所述位置校正指令进行文字展示、示意图展示或者语音播放,以提醒所述智能手表端用户将所述智能手表移动至所述最佳采集位置。
智能手表在基于生理音最佳采集位置触发对应的位置校正指令后,将通过智能手表中的显示模块,比如显示屏,将该位置校正指令进行文字展示或者示意图展示,又或者,通过智能手表中的语音模块,比如扬声器,将该位置校正指令进行语音播放。
具体地,例如,在上述位置校正指令中包含了智能手表表带的移动方向,比如,该位置校正指令可以为“将表带以逆时针方向缓慢旋转”。同时,智能手表也将实时监测其表带的移动过程,以确定表带中的生理音采集模块已处于生理音最佳采集位置。
进一步地,上述步骤S10,“获取生理音采集指令,并基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号”之后,还可以包括:
步骤B,若是在预设时间段内未采集到所述可穿戴设备端用户的生理音信号,则通过所述可穿戴设备中的显示模块或者语音模块,触发采集报错提醒,以提醒所述可穿戴设备端用户调整生理音信号的采集位置。
需要说明的是,在本实施例中,为了避免由于用户操作不当导致智能手 表的包含生理音采集模块的表带部分距离胸腔区域过远,无法采集到生理音信号的情况,需要预先确定是否能够检测到有效的生理音信号,所谓有效的生理音信号,是指其信号强度大于预设最低强度阈值,该预设最低强度阈值可根据不同的生理音采集场景灵活设置,不做具体限定。
具体地,例如,如图7所示,若是在预设时间段都内未采集到智能手表端用户有效的生理音信号,此时意味着用户可能存在操作不当或者智能手表佩戴姿势不正常等问题,智能手表可通过其显示模块或者语音模块,触发采集报错提醒,提升用户及时调整智能手表的生理音采集位置或者智能手表佩戴状态。
在本实施例中,智能手表在接收到智能手表端用户触发的生理音采集指令后,将基于该生理音采集指令,通过智能手表表带中的生理音采集模块,采集智能手表端用户胸口位置处的生理音信号。智能手表将在用户调整其位置的过程中,通过智能手表中的运动检测模块,实时检测智能手表的表带是否已处于上述生理音最佳采集位置。若是检测到该表带已处于生理音最佳采集位置,则可通过表带中的生理音采集模块采集当前位置的生理音信号,并通过表体中的生理音分析模块,对采集到的生理音信号进行分析处理及后续操作。否则对智能手表端用户进行提醒。为了采集到高质量的生理音信号,智能手表需要先保障其处于佩戴状态。智能手表在基于生理音最佳采集位置触发对应的位置校正指令后,将通过智能手表中的显示模块或者语音模块,将该位置校正指令进行文字展示、示意图展示或者语音播放。为了避免由于用户操作不当导致智能手表的表带区域距离胸腔部分过远,导致未采集到生理音信号的情况,需要确定智能手表够检测到有效的生理音信号。
因此,在本发明中,智能手表能够实时检测其表带中的生理音信号采集模块是否处于生理音最佳采集位置,一旦检测生理音信号采集模块不处于该生理音最佳采集位置,将及时通过显示模块或者语音模块提升智能手表端用户调整智能手表表带位置。如此,本发明提升了智能手表所采集的生理音信号的质量,避免了用于用户操作不当所导致的无效生理音信号的采集,并且,本发明能够指导用户进行生理音采集,极大程度上提升了用户体验。
此外,本发明实施例还提出一种生理音采集位置的检测装置,参照图8,所述生理音采集位置的检测装置包括:
采集模块10,用于获取生理音采集指令,并基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号;
确定模块20,用于确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;
触发模块30,用于基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒用户将可穿戴设备移动至所述生理音最佳采集位置。
进一步地,所述采集模块10,包括:
采集单元,用于基于所述生理音采集指令,通过所述可穿戴设备中的生理音采集模块,采集所述可穿戴设备用户的生理音信号,其中,在所述生理音采集模块中包括传感器阵列,在所述传感器阵列中包含多个骨传导传感器,多个所述骨传导传感器分别位于所述可穿戴设备的不同位置。
进一步地,所述生理音采集位置的检测装置,包括:
第一检测模块,用于通过所述可穿戴设备中的运动检测模块,确定所述可穿戴设备端用户是否已将所述可穿戴设备移动至所述生理音最佳采集位置;
执行模块,用于在所述生理音最佳采集位置处执行生理音采集操作;
第一指令触发模块,用于若否,则根据所述可穿戴设备的实时位置,触发对应的位置调整指令,以提醒用户调整所述可穿戴设备的位置。
进一步地,所述生理音采集位置的检测装置,还包括:
第二检测模块,用于检测所述可穿戴设备是否处于佩戴状态;
采集模块,用于基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号;
第二指令触发模块,用于通过所述可穿戴设备的显示模块或者语音模块触发佩戴指令,以提醒所述可穿戴设备端用户佩戴所述可穿戴设备。
进一步地,所述生理音采集位置的检测装置,还包括:
展示播放模块,用于通过所述可穿戴设备中的显示模块或者语音模块,将所述位置校正指令进行文字展示、示意图展示或者语音播放,以提醒所述可穿戴设备端用户将所述可穿戴设备移动至所述最佳采集位置。
进一步地,所述生理音采集位置的检测装置,还包括:
提醒触发模块,用于若是在预设时间段内未采集到所述可穿戴设备端用户的生理音信号,则通过所述可穿戴设备中的显示模块或者语音模块,触发采集报错提醒,以提醒所述可穿戴设备端用户调整生理音信号的采集位置。
进一步地,所述确定模块20,包括:
确定单元,用于通过所述可穿戴设备的生理音分析模块,确定所述生理音信号的最大信号强度所对应的采集位置。
本发明生理音采集位置的检测***的具体实施方式的拓展内容与上述生理音采集位置的检测方法各实施例基本相同,在此不做赘述。
此外,本发明实施例还提出一种计算机可读存储介质,所述存储介质上存储有生理音采集位置的检测程序,所述生理音采集位置的检测程序被处理器执行时实现如下所述的生理音采集位置的检测方法的步骤。
本发明生理音采集位置的检测设备和计算机可读存储介质各实施例,均可参照本发明生理音采集位置的检测方法各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是可穿戴设备、***、智能手机和平板电脑等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种生理音采集位置的检测方法,其特征在于,所述生理音采集位置的检测方法应用于可穿戴设备,所述生理音采集位置的检测方法包括:
    获取所述可穿戴设备端用户的生理音采集指令,并基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号;
    确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;
    基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒用户将可穿戴设备移动至所述生理音最佳采集位置。
  2. 如权利要求1所述的生理音采集位置的检测方法,其特征在于,所述基基于所述生理音采集指令,采集可穿戴设备端用户的生理音信号的步骤,包括:
    基于所述生理音采集指令,通过所述可穿戴设备中的生理音采集模块,采集所述可穿戴设备用户的生理音信号,其中,在所述生理音采集模块中包括传感器阵列,在所述传感器阵列中包含多个骨传导传感器,多个所述骨传导传感器分别位于所述可穿戴设备的不同位置。
  3. 如权利要求2所述的生理音采集位置的检测方法,其特征在于,可穿戴设备为腕带设备,腕带设备包括表带和表体,多个所述骨传导传感器分别位于所述表带的不同位置。
  4. 如权利要求1所述的生理音采集位置的检测方法,其特征在于,在所述基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令的步骤之后,还包括:
    通过所述可穿戴设备中的运动检测模块,确定所述可穿戴设备端用户是否已将所述可穿戴设备移动至所述生理音最佳采集位置;
    若是,则在所述生理音最佳采集位置处执行生理音采集操作;
    若否,则根据所述可穿戴设备的实时位置,触发对应的位置调整指令,以提醒用户调整所述可穿戴设备的位置。
  5. 如权利要求1所述的生理音采集位置的检测方法,其特征在于,在所述获取生理音采集指令的步骤之后,还包括:
    检测所述可穿戴设备是否处于佩戴状态;
    若所述可穿戴设备处于佩戴状态,则执行基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号的步骤;
    若所述可穿戴设备处于未佩戴状态,则通过所述可穿戴设备的显示模块或者语音模块触发佩戴指令,以提醒所述可穿戴设备端用户佩戴所述可穿戴设备。
  6. 如权利要求1所述的生理音采集位置的检测方法,其特征在于,在所述基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令的步骤之后,还包括:
    通过所述可穿戴设备中的显示模块或者语音模块,将所述位置校正指令进行文字展示、示意图展示或者语音播放,以提醒所述可穿戴设备端用户将所述可穿戴设备移动至所述最佳采集位置。
  7. 如权利要求1所述的生理音采集位置的检测方法,其特征在于,在所述获取生理音采集指令,并基于所述生理音采集指令,采集所述可穿戴设备端用户的生理音信号的步骤之后,还包括:
    若是在预设时间段内未采集到所述可穿戴设备端用户的生理音信号,则通过所述可穿戴设备中的显示模块或者语音模块,触发采集报错提醒,以提醒所述可穿戴设备端用户调整生理音信号的采集位置。
  8. 如权利要求1所述的生理音采集位置的检测方法,其特征在于,所述确定所述生理音信号的最大信号强度所对应的采集位置的步骤,包括:
    通过所述可穿戴设备的生理音分析模块,确定所述生理音信号的最大信号强度所对应的采集位置。
  9. 一种生理音采集位置的检测装置,其特征在于,所述生理音采集位置 的检测装置包括:
    采集模块,用于获取生理音采集指令,并基于所述生理音采集指令,采可穿戴设备端用户的生理音信号;
    确定模块,用于确定所述生理音信号的最大信号强度所对应的采集位置,并将所述采集位置作为生理音最佳采集位置;
    触发模块,用于基于所述生理音最佳采集位置,触发针对所述可穿戴设备的位置校正指令,以提醒所述可穿戴设备端用户将所述可穿戴设备的表带移动至所述生理音最佳采集位置。
  10. 一种可穿戴设备,其特征在于,所述终端设备包括存储器、处理器和存储在所述存储器上并可在所述处理器上运行的基生理音采集位置的检测程序,所述生理音采集位置的检测程序被所述处理器执行时实现如权利要求1至8中任一项所述的生理音采集位置的检测方法的步骤。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有生理音采集位置的检测程序,所述生理音采集位置的检测程序被处理器执行时实现如权利要求1至8中任一项所述的生理音采集位置的检测方法的步骤。
PCT/CN2023/127145 2022-10-31 2023-10-27 生理音采集位置的检测方法、装置、终端设备及介质 WO2024093824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211351552.8 2022-10-31
CN202211351552.8A CN115670499A (zh) 2022-10-31 2022-10-31 生理音采集位置的检测方法、装置、终端设备及介质

Publications (1)

Publication Number Publication Date
WO2024093824A1 true WO2024093824A1 (zh) 2024-05-10

Family

ID=85045172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127145 WO2024093824A1 (zh) 2022-10-31 2023-10-27 生理音采集位置的检测方法、装置、终端设备及介质

Country Status (2)

Country Link
CN (1) CN115670499A (zh)
WO (1) WO2024093824A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115670499A (zh) * 2022-10-31 2023-02-03 歌尔科技有限公司 生理音采集位置的检测方法、装置、终端设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152884A (en) * 1996-04-25 2000-11-28 Bjoergaas; Per Samuel Method and instrument for examination of heart/arteries using microphones
CN108267730A (zh) * 2017-12-13 2018-07-10 广州爱听贝科技有限公司 一种用于胎心音监听的辅助定位方法、***及装置
CN109646042A (zh) * 2019-01-29 2019-04-19 电子科技大学 一种基于压电传感器的可穿戴心音和肺音监测装置
CN110115596A (zh) * 2018-02-06 2019-08-13 财团法人工业技术研究院 肺音监测装置及其肺音监测方法
CN112450891A (zh) * 2019-08-19 2021-03-09 华为技术有限公司 生理参数的采集方法和装置与生理参数的处理方法和装置
CN112641460A (zh) * 2020-12-15 2021-04-13 浙江大学 一种基于微机电压电声学传感器的生理音检测装置及方法
CN115670499A (zh) * 2022-10-31 2023-02-03 歌尔科技有限公司 生理音采集位置的检测方法、装置、终端设备及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152884A (en) * 1996-04-25 2000-11-28 Bjoergaas; Per Samuel Method and instrument for examination of heart/arteries using microphones
CN108267730A (zh) * 2017-12-13 2018-07-10 广州爱听贝科技有限公司 一种用于胎心音监听的辅助定位方法、***及装置
CN110115596A (zh) * 2018-02-06 2019-08-13 财团法人工业技术研究院 肺音监测装置及其肺音监测方法
CN109646042A (zh) * 2019-01-29 2019-04-19 电子科技大学 一种基于压电传感器的可穿戴心音和肺音监测装置
CN112450891A (zh) * 2019-08-19 2021-03-09 华为技术有限公司 生理参数的采集方法和装置与生理参数的处理方法和装置
CN112641460A (zh) * 2020-12-15 2021-04-13 浙江大学 一种基于微机电压电声学传感器的生理音检测装置及方法
CN115670499A (zh) * 2022-10-31 2023-02-03 歌尔科技有限公司 生理音采集位置的检测方法、装置、终端设备及介质

Also Published As

Publication number Publication date
CN115670499A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US11825536B2 (en) Patient-worn wireless physiological sensor with pairing functionality
KR102302640B1 (ko) 신체 조직 전기 신호의 검출 및 사용
US8519835B2 (en) Systems and methods for sensory feedback
US20080294058A1 (en) Wearable Device, System and Method for Measuring a Pulse While a User is in Motion
US20080208009A1 (en) Wearable Device, System and Method for Measuring Vital Parameters
WO2024093824A1 (zh) 生理音采集位置的检测方法、装置、终端设备及介质
US11759127B2 (en) Authentication device, authentication system, authentication method, and non-transitory storage medium storing program
US20180301054A1 (en) Systems and methods for facilitating mind-body-emotion state self-adjustment and functional skills development by way of biofeedback and environmental monitoring
JP2019526293A (ja) 心拍数測定方法、心拍数測定装置及び装着可能装置
WO2024093829A1 (zh) 终端设备控制方法、装置、终端设备及介质
CN108852323A (zh) 一种可穿戴设备和调整可穿戴设备的方法
WO2024093723A1 (zh) 智能手表和生理数据测量方法
WO2024093827A1 (zh) 手表设备、生理音测量的方法、装置以及计算机存储介质
CN212067683U (zh) 投篮手势分析手环
JP7484250B2 (ja) 携帯型心電装置及び心電測定システム
WO2021117707A1 (ja) 心電波形計測装置、情報管理システム、心電波形計測装置の制御方法、及び、プログラム
CN113995403A (zh) 佩戴状态的检测方法、装置、***、存储介质和电子设备
WO2021142297A1 (en) Systems and methods including ear-worn devices for vestibular rehabilitation exercises
CN111613333A (zh) 自助健康检测方法、装置、存储介质及移动终端
CN110268480A (zh) 一种生物测定数据存储方法、电子设备及***
US20240197194A1 (en) Biological information measurement device, control method for biological information measurement device, and program
JP7320261B2 (ja) 情報処理システム、方法、及びプログラム
US20240197248A1 (en) Biometric information measurement device, control method of biometric information measurement device, and program
EP3909500A1 (en) Systems and methods for using algorithms and acoustic input to control, monitor, annotate, and configure a wearable health monitor that monitors physiological signals
CN116419188A (zh) 数据传输方法、护膝、终端设备及数据传输设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884756

Country of ref document: EP

Kind code of ref document: A1