WO2024093658A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2024093658A1
WO2024093658A1 PCT/CN2023/124803 CN2023124803W WO2024093658A1 WO 2024093658 A1 WO2024093658 A1 WO 2024093658A1 CN 2023124803 W CN2023124803 W CN 2023124803W WO 2024093658 A1 WO2024093658 A1 WO 2024093658A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
time domain
nodes
node
sequence
Prior art date
Application number
PCT/CN2023/124803
Other languages
English (en)
French (fr)
Inventor
刘梦婷
戴喜增
高鑫
尚顺顺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093658A1 publication Critical patent/WO2024093658A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of positioning technology, and in particular to a communication method and a communication device.
  • Reflectors such as smart metasurfaces
  • smart metasurfaces can only amplify and phase-adjust received signals, but cannot change other characteristics of the signal.
  • the reflected signals from different smart metasurfaces are essentially the same. In possible application scenarios, such as positioning or beam management, the receiving end needs to identify the reflected signals from different smart metasurfaces.
  • the transmitter sends different reference signals in different beam directions, so that the reference signals received by the smart metasurfaces in different beam directions are different.
  • the receiver can identify the reflected signals of different smart metasurfaces by distinguishing the beam directions, thereby achieving positioning.
  • this method has high requirements for the transmitter and receiver, and its scope of application is limited.
  • the receiver cannot distinguish the reference signals sent through the same beam, and the distinction accuracy is limited.
  • the present application provides a communication method and a communication device, so that a receiving end can distinguish signals from different reflectors, with a wider range of use and higher distinction accuracy.
  • a communication method can be performed by a first communication device, which can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device, or a chip system provided in the terminal device, or other components for implementing the functions of the terminal device.
  • the communication method provided by the first aspect is described below by taking the first communication device as a terminal device as an example.
  • the communication method comprises: a terminal device receives at least two first signals reflected by at least two nodes, the at least two first signals being orthogonal to each other; and then the terminal device measures the at least two first signals according to configuration information of the at least two nodes.
  • At least two nodes in the embodiment of the present application have reflection or transmission or refraction or other functions, for example, at least two nodes are provided with a smart metasurface, or at least two nodes are located at different positions on the same smart metasurface, or at least two nodes are smart metasurfaces.
  • At least two first signals reflected by at least two nodes can be received by a terminal device.
  • configuration information for signal processing can be configured for at least two nodes respectively, for example, at least two nodes include a first node and a second node, the first node is configured with a first set of configuration information, and the second node is configured with a second set of configuration information.
  • the first node processes (e.g., reflects) the received signal according to the first set of configuration information
  • the second node processes the received signal according to the second set of configuration information.
  • Different configuration information makes the first signals reflected by different nodes have different characteristics. Therefore, the configuration information of at least two nodes enables the terminal device to distinguish the signals reflected by each node from the at least two first signals received. Compared with the current beam-based differentiation of signals from different nodes, the differentiation accuracy can be improved, and the complexity of the transmitting end and the receiving end can be reduced, and it is applicable to more scenarios.
  • the configuration information of the at least two nodes may be implemented in a variety of forms, as long as the at least two first signals reflected by the at least two nodes can be distinguished.
  • the configuration information of at least two nodes includes configuration information of at least two orthogonal sequences.
  • the at least two nodes include a first node and a second node
  • the configuration information of the at least two nodes includes configuration information of a first sequence of the first node and configuration information of a second sequence of the second node, and the first sequence and the second sequence are mutually orthogonal.
  • the first signal from the first node and the first signal from the second node can be distinguished from the at least two first signals received according to the first sequence and the second sequence.
  • the granularity of the orthogonal sequence is a symbol or a time slot.
  • the first sequence is a sequence including M elements, where the M elements correspond to N symbols, and M and N are positive integers.
  • the N symbols are located in one time slot or in a plurality of consecutive time slots.
  • the range of action of the sequence is within 1 time slot, which can effectively reduce the delay.
  • M elements correspond to L time slots, where L is a positive integer. That is, the range of action of M elements is in multiple time slots, and the granularity of the orthogonal sequence is at the time slot level, which can reduce the implementation complexity of the node side reflection signal.
  • the configuration information of at least two orthogonal sequences includes the length of at least two orthogonal sequences and/or at least two index information.
  • the at least two index information is used to indicate the association between at least two orthogonal sequences and at least two nodes. Any two orthogonal sequences of the same length are mutually orthogonal, and orthogonal sequences of fixed length are predefined. Therefore, the orthogonal sequence can be indirectly indicated by configuring the length of the orthogonal sequence.
  • the index of the orthogonal sequence can indicate which orthogonal sequence is specifically used, and the configuration of the orthogonal sequence of each node can be achieved through the index of the orthogonal sequence and the association between at least two nodes.
  • the configuration information of at least two nodes includes at least two time domain configuration information.
  • the at least two nodes include a first node and a second node, and then the configuration information of the at least two nodes includes the first time domain configuration information of the first node and the second time domain configuration information of the second node.
  • the configuration information of the at least two nodes includes the first time domain configuration information of the first node and the second time domain configuration information of the second node.
  • the first time domain configuration information indicates a first duration
  • the second time domain configuration information indicates a second duration
  • the first duration and the second duration are different.
  • the first duration indicates that the first node reflects the signal after receiving the signal for the first duration
  • the second duration indicates that the second node reflects the signal after receiving the signal for the second duration.
  • the first duration may be less than or equal to 1 time slot, that is, the minimum unit of the delay duration of the first node reflection signal is a symbol, and the delay is low.
  • the first duration is greater than 1 time slot. That is, the minimum unit of the delay duration of the first node reflection signal is a time slot, so that the implementation complexity of the node reflection signal is low.
  • the first time domain configuration information indicates a first time domain pattern
  • the second time domain configuration information indicates a second time domain pattern
  • the first time domain pattern and the second time domain pattern are different.
  • the first time domain pattern indicates a first time domain resource occupied by a first signal reflected by a first node
  • the second time domain pattern indicates a second time domain resource occupied by a first signal reflected by a second node
  • the first time domain resource and the second time domain resource are different.
  • the first time domain resource and the second time domain resource are orthogonal.
  • different nodes can realize different time domain patterns by turning on or off circuits.
  • RIS can realize different time domain patterns by controlling the on-off state of a PIN diode connected to a RIS unit.
  • the configuration information of at least two nodes includes at least two frequency domain configuration information.
  • at least two sets of configuration information include first frequency domain configuration information of the first node and second frequency domain configuration information of the second node.
  • the first frequency domain configuration information indicates the first frequency domain resource occupied by the first signal reflected by the first node
  • the second frequency domain configuration information indicates the second frequency domain resource occupied by the first signal reflected by the second node
  • the first frequency domain resource and the second frequency domain resource are different.
  • the first frequency domain resource and the second frequency domain resource are orthogonal. Different nodes selectively reflect the received signal within the corresponding frequency domain range according to the configured frequency domain resources.
  • the frequency domain resources occupied by the received signal are [F1, F2]
  • the frequency domain resources occupied by the signal reflected by the first node are [F1, F3]
  • the first signal reflected by the first node and the first signal reflected by the second node can be distinguished from the at least two first signals received according to the first frequency domain configuration information and the second frequency domain configuration information.
  • the configuration information of at least two nodes includes configuration information of at least two orthogonal sequences and at least two time domain configuration information.
  • at least two nodes include a first node and a second node, and the configuration information of at least two nodes includes configuration information of a first sequence and first time domain configuration information of the first node, and configuration information of a second sequence and second time domain configuration information of the second node. This can improve system capacity.
  • the configuration information of at least two nodes includes first information, and the first information is used to indicate the configuration information of at least two nodes and the association relationship between the at least two nodes.
  • the access network device or the positioning management device may indicate the configuration information of at least two nodes and the corresponding relationship between the at least two nodes to the terminal device, so that the terminal device knows which set of configuration information corresponds to which node.
  • the first information may be included in any set of configuration information of the at least two nodes, or each set of configuration information may include the first information. Alternatively, the first information may also be independent of the configuration information of the at least two nodes and sent by the access network device or the positioning management device to the terminal device.
  • the first information is used to indicate the association between at least two sets of configuration information and at least two nodes, including: the first information indicates the association between the configuration information of at least two nodes and the configuration information of a second signal, and the second signal is reflected by a node to obtain a first signal.
  • the second signal may be a reference signal sent by an access network device, such as a positioning reference signal.
  • the second signal is reflected by a node in the form of a first signal.
  • the terminal device can determine the configuration information of at least two nodes and the corresponding relationship between at least two nodes without sensing the existence of the nodes. This can reduce the leakage of node information (such as identification information and location information) in the network and improve network security.
  • the first information is used to indicate configuration information of at least two nodes and an association relationship between at least two nodes, including: the first information indicates an association relationship between configuration information of at least two nodes and identification information (eg, identity (ID)) of at least two nodes.
  • identification information eg, identity (ID)
  • the first information is used to indicate the configuration information of at least two nodes and the association relationship between at least two nodes, including: the first information indicates the association relationship between the configuration information of at least two nodes and the location information of at least two nodes.
  • the first information can be used to indicate the association relationship between the configuration information of at least two nodes and the location information of at least two nodes, that is, the configuration information of the node can be determined by the location of the node.
  • the first information may indicate an association between configuration information of at least two nodes and configuration information of the second signal, and an association between configuration information of at least two nodes and location information of at least two nodes.
  • the method further includes: the terminal device receives first indication information, and the first indication information is used to activate one or more sets of at least two sets of configuration information.
  • At least two sets of configuration information can be configured or pre-configured in advance to the terminal device by the network (access network device or positioning management device or other functional entity), so that real-time configuration is not required to save signaling overhead and reduce latency.
  • multiple sets of configuration information can be (pre)configured, and one or more sets of configuration information can be activated by the access network device or the positioning management device through the first indication information to notify the terminal device of the configuration information configured by the access network device or the positioning management device for the node.
  • the method further includes: sending the configuration information of at least two nodes to the terminal device in the form of a unicast or broadcast message.
  • the configuration information of the at least two nodes can be dynamically configured to the terminal device by the access network device or the positioning management device, so that the terminal device can obtain the latest configuration information and operate more flexibly.
  • the access network device may send the configuration information of the at least two nodes to the terminal device via a broadcast message or a unicast message, the broadcast message being such as system information blocks (SIB) or positioning system information blocks (posSIB), and the unicast message being such as radio resource control (RRC) signaling.
  • SIB system information blocks
  • posSIB positioning system information blocks
  • RRC radio resource control
  • the positioning management device may send the configuration information of the at least two nodes via an LTE positioning protocol (LTE positioning protocol, LPP) message.
  • LTE positioning protocol LTE positioning protocol
  • the positioning management device sends the configuration information of the at least two nodes to the access network device.
  • the positioning management device sends the configuration information of the at least two nodes to the access network device via the NR positioning protocol annex (NR positioning protocol annex, NRPPa).
  • the access network device then sends the configuration information of the at least two nodes to the terminal device via a unicast or broadcast message.
  • the method further includes: the terminal device receives location information of at least two nodes, and the location information of the at least two nodes can be used for positioning the terminal device.
  • the location information of at least two nodes includes associations between at least two sets of configuration information and the locations of the at least two nodes.
  • the terminal device measures at least two first information according to the configuration information of at least two nodes to obtain at least two measurement results, and the terminal device may send the at least two measurement results to assist the network device in determining the location of the terminal device, or to assist the network in knowing the measurement quality of the terminal, for example, for the network to perform beam management, or other communication purposes.
  • the at least two measurement results correspond one-to-one to the at least two nodes.
  • the terminal device measures a first signal to obtain a measurement result.
  • a communication method is provided that can be performed by a second communication device, which can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a first node, or a chip system arranged in the first node, or other components for implementing the functions of the first node.
  • the following is explained by taking the first node having a reflection function as an example.
  • a reflector (such as an intelligent metasurface) is provided on the first node, or the first node is a reflector, or the first node is a part of a reflector.
  • the communication method provided by the second aspect is described below by taking the second communication device as the first node as an example.
  • the communication method includes: a first node determines a first set of configuration information, and reflects a received second signal according to the first set of configuration information, wherein the first set of configuration information includes a first sequence of configuration information and/or first time domain configuration information.
  • the first set of configuration information indicates a first duration, or the first set of configuration information indicates a first time domain pattern.
  • the first sequence is a sequence including M elements, where M is a positive integer; wherein the M elements correspond to N symbols, the N symbols are located in one time slot or in multiple consecutive time slots, and N is a positive integer; or, the M elements correspond to L time slots, and L is a positive integer.
  • the first duration is less than or equal to 1 time slot, or the first duration is greater than 1 time slot.
  • the first set of configuration information includes first time information, and the first time information is used to indicate the first set of configuration information.
  • the first node uses the first set of configuration information at the time indicated by the first time information.
  • the method further includes: the first node receiving a first set of configuration information; or the first node receiving first indication information, where the first indication information is used to activate a first set of configuration information among multiple sets of configuration information.
  • the method further includes: the first node sends information of the first node to the network device, where the information of the first node includes identification information of the first node and location information of the first node.
  • the beneficial effects of the second aspect and its implementation method can refer to the description of the beneficial effects of the first aspect and its implementation method, which will not be repeated here.
  • a communication method can be performed by a third communication device, which can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a network device, or a chip system set in the network device, or other components for implementing the functions of the network device.
  • the network device can be an access network device, such as a base station.
  • the network device can also be a positioning management device.
  • the network device can also be a core network device, such as a mobility management entity (mobility management entity, MME), a broadcast multicast service center (broadcast multicast service center, BMSC), etc., or can also include corresponding functional entities in the 5G system, such as a core network control plane (control plane, CP) or a user plane (user plan, UP) network function, such as: SMF, access and mobility management function AMF, etc.
  • the core network control plane can also be understood as a core network control plane function (control plane function, CPF) entity.
  • CPF control plane function
  • the communication method provided by the third aspect is described below by taking the third communication device as the network device itself as an example.
  • the communication method includes: a network device sends or activates a first set of configuration information of a first node and a second set of configuration information of a second node.
  • the first set of configuration information includes configuration information of a first sequence
  • the second set of configuration information includes configuration information of a second sequence
  • the first sequence and the second sequence are orthogonal.
  • the first set of configuration information includes first time domain configuration information
  • the second set of configuration information includes second time domain configuration information.
  • the first set of configuration information includes configuration information of the first sequence and first time domain configuration information
  • the second set of configuration information includes configuration information of the second sequence and second time domain configuration information.
  • the access network device may send a first set of configuration information of the first node and a second set of configuration information of the second node to the terminal device via a broadcast message or a unicast message, where the broadcast message is, for example, SIB or posSIB, and the unicast message is, for example, RRC signaling.
  • the broadcast message is, for example, SIB or posSIB
  • the unicast message is, for example, RRC signaling.
  • the positioning management device may send the configuration information of the at least two nodes via an LPP message.
  • the positioning management device sends the first set of configuration information of the first node and the second set of configuration information of the second node to the access network device, for example, the positioning management device sends the first set of configuration information of the first node and the second set of configuration information of the second node via NRPPa.
  • the access network device sends the first set of configuration information of the first node and the second set of configuration information of the second node via a unicast or broadcast message.
  • the first time domain configuration information indicates a first duration
  • the second time domain configuration information indicates a second duration
  • the first duration and the second duration are different
  • the first time domain configuration information indicates a first time domain pattern
  • the second time domain configuration information indicates a second time domain pattern
  • the first time domain pattern and the second time domain pattern are different.
  • the first sequence is a sequence including M elements, where M is a positive integer; wherein the M elements correspond to N symbols, the N symbols are located in one time slot or in multiple consecutive time slots, and N is a positive integer; or, the M elements correspond to L time slots, and L is a positive integer.
  • the first duration is less than or equal to 1 time slot, or the first duration is greater than 1 time slot.
  • the first set of configuration information includes first time information, which is used to indicate the effective time of the first set of configuration information; the first set of configuration information includes second time information, which is used to indicate the effective time of the second set of configuration information.
  • the method further includes: the network device sends first information, where the first information is used to indicate an association relationship between the first set of configuration information, the second set of configuration information, and at least two nodes.
  • the first information is used to indicate an association relationship between a first set of configuration information, a second set of configuration information, and at least two nodes, including: the first information indicates an association relationship between the first set of configuration information, the second set of configuration information, and identification information of at least two nodes; or, the first information indicates an association relationship between the first set of configuration information, the second set of configuration information, and configuration information of a second signal from a network device.
  • the network device sends the first set of configuration information, including: the network device sends first indication information, where the first indication information is used to activate a first set of configuration information among multiple sets of configuration information.
  • the method further includes: the network device obtains information of at least two nodes.
  • the network device is a positioning management device, and the network device obtains information of at least two nodes, including: the network device receives information of at least two nodes sent by the access network device; or the network device receives information sent by at least two nodes respectively.
  • the beneficial effects of the third aspect and its implementation method can refer to the description of the beneficial effects of the first aspect and its implementation method, which will not be repeated here.
  • an embodiment of the present application provides a communication system, including a first node and a second node, wherein the first node is used to determine a first set of configuration information, and reflects a received second signal according to the first set of configuration information; the second node is used to determine a second set of configuration information, and reflects the received second signal according to the second set of configuration information.
  • the first set of configuration information and the second set of configurations make the first signal obtained by the first node reflecting the third signal orthogonal to the first signal obtained by the second node transmitting the third signal.
  • the first set of configuration information includes configuration information of a first sequence
  • the second set of configuration information includes configuration information of a second sequence
  • the first sequence and the second sequence are orthogonal
  • the first set of configuration information includes first time domain configuration information
  • the second set of configuration information includes second time domain configuration information
  • the first set of configuration information includes configuration information of the first sequence and first time domain configuration information
  • the second set of configuration information includes configuration information of the second sequence and second time domain configuration information
  • the first sequence and the second sequence are orthogonal.
  • the first time domain configuration information indicates a first duration
  • the second time domain configuration information indicates a second duration
  • the first duration and the second duration are different
  • the first time domain configuration information indicates a first time domain pattern
  • the second time domain configuration information indicates a second time domain pattern
  • the first time domain pattern and the second time domain pattern are different.
  • the first sequence is a sequence including M elements, where M is a positive integer; wherein the M elements correspond to N symbols, the N symbols are located in one time slot or in multiple consecutive time slots, and N is an integer greater than or equal to 1; or, the M elements correspond to L time slots, and L is a positive integer.
  • the first duration is less than or equal to 1 time slot, or the first duration is greater than 1 time slot.
  • the communication system further includes: a network device, configured to configure the first set of configuration information and the second set of configuration information.
  • an embodiment of the present application provides a communication device, wherein the communication device has the function of implementing the behavior in the method embodiment of any aspect from the first aspect to the third aspect above.
  • the communication device may be the terminal device in the first aspect, or the communication device may be a device capable of implementing the method provided in the first aspect, such as a chip or a chip system.
  • the communication device includes a processing module and a transceiver module, wherein the transceiver module can be used to receive at least two first signals reflected by at least two nodes, and the at least two first signals are orthogonal to each other; the processing module can be used to measure the at least two first signals according to the configuration information of the at least two nodes.
  • the communication device may be the first node in the second aspect, or the communication device may be a device capable of implementing the method provided in the second aspect, such as a chip or a chip system.
  • the communication device includes a processing module and a transceiver module, wherein the processing module may be used to determine a first set of configuration information, wherein the first set of configuration information includes a first sequence of configuration information and/or first time domain configuration information; and the transceiver module may be used to reflect the received second signal according to the first set of configuration information.
  • the communication device may be a network device in the third aspect, or the communication device may be a device capable of implementing the method provided in the third aspect, such as a chip or a chip system.
  • the communication device includes a processing module and a transceiver module, wherein the processing module may be used to configure a first set of configuration information and a second set of configuration information; the transceiver module may be used to send a first set of configuration information and a second set of configuration information; wherein the first set of configuration information includes configuration information of a first sequence, the second set of configuration information includes configuration information of a second sequence, and the first sequence and the second sequence are orthogonal; or, the first set of configuration information includes first time domain configuration information, and the second set of configuration information includes second time domain configuration information; or, the first set of configuration information includes configuration information of a first sequence and first time domain configuration information, and the second set of configuration information includes configuration information of a second sequence and second time domain configuration information.
  • the communication device includes corresponding means or modules for executing the method of any aspect of the first aspect to the third aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit, and it can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood to be a general term for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units (modules) can perform the corresponding functions in the method examples of any aspect of the first aspect to the third aspect above. Please refer to the detailed description in the method examples for details, which will not be repeated here.
  • an embodiment of the present application provides a communication device, which may be the communication device of the fifth aspect above, or a chip or chip system arranged in the communication device of the fifth aspect.
  • the communication device may be a terminal device or a network device.
  • the communication device includes a communication interface and a processor, and optionally, also includes a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the terminal device or the first node or the network device in the above method.
  • an embodiment of the present application provides a communication device, the communication device comprising an input/output interface and a logic circuit.
  • the output interface is used to input and/or output information.
  • the logic circuit is used to execute the method described in any one of the first aspect to the third aspect.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a communication interface, for implementing the method described in any one of the first to third aspects.
  • the chip system also includes a memory for storing a computer program.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • an embodiment of the present application provides a communication system, the communication system comprising a terminal device for implementing the functions related to the first aspect, a node for implementing the functions related to the second aspect, and a network device for implementing the functions related to the third aspect.
  • the communication system may include more terminal devices, more nodes, or more network devices.
  • the present application provides a computer-readable storage medium storing a computer program, which, when executed, implements the method in any one of the first to third aspects described above.
  • a computer program product comprising: a computer program code, when the computer program code is executed, the method in any one of the above-mentioned first to third aspects is executed.
  • the beneficial effects of the fifth to eleventh aspects and their implementations can refer to the description of the beneficial effects of the first or third aspect and their implementations.
  • FIG1 is a schematic diagram of the working principle of a RIS module provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of downlink positioning based on RIS provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a positioning architecture of a communication system applicable to an embodiment of the present application.
  • FIG4 is a network architecture diagram of a communication system applicable to an embodiment of the present application.
  • FIG5 is a network architecture diagram of another communication system applicable to an embodiment of the present application.
  • FIG6 is a network architecture diagram of another communication system applicable to the embodiment of the present application.
  • FIG7 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a node reflecting a received signal according to OCC configuration information provided by an embodiment of the present application.
  • FIG9 is a schematic diagram of a node reflecting a received signal according to OCC configuration information provided by an embodiment of the present application.
  • FIG10 is a schematic diagram of a node reflecting a received signal according to a delay duration provided in an embodiment of the present application
  • FIG11 is a schematic diagram of a node reflecting a received signal according to a time domain pattern provided in an embodiment of the present application
  • FIG12 is another schematic diagram of a node reflecting a received signal according to a time domain pattern provided by an embodiment of the present application.
  • FIG13 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • FIG. 14 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the embodiments of the present application relate to a positioning method. To facilitate understanding of the solutions provided by the embodiments of the present application, some concepts, terms, etc. involved in the embodiments of the present application are first introduced.
  • Positioning method according to the link or interface for transmitting positioning reference signal (PRS), positioning methods can be divided into Uu port positioning method and sidelink (SL) positioning method.
  • Uu port refers to the interface between base station and user equipment.
  • SL refers to the link between devices of the same type, for example, the link between terminal devices. The SL positioning method does not require the participation of the base station.
  • the Uu port positioning method is divided into the following three categories: downlink positioning method, uplink positioning method and uplink and downlink joint positioning method. It should be noted that uplink and downlink are relative here. If the transmission direction from the network device to the terminal device is downlink (this article takes this as an example), then the transmission direction from the terminal device to the network device is uplink. On the contrary, if the transmission direction from the network device to the terminal device is uplink, then the transmission direction from the terminal device to the network device is downlink.
  • Downlink positioning method The terminal device measures the downlink positioning reference signal (DL-PRS) sent by the network side. The terminal device estimates the position of the terminal device based on the measurement results to achieve downlink positioning.
  • Downlink positioning methods include, for example, positioning methods based on downlink time difference of arrival (DL-TDOA) or positioning methods based on downlink angle of departure (DL-AoD).
  • Uplink positioning method the network device sends an uplink positioning reference signal (uplink positioning reference signal, UL-PRS) for measurement.
  • the network device estimates the position of the terminal device according to the measurement results to achieve uplink positioning.
  • the uplink positioning reference signal may be an SRS, or other reference signals that can be used for uplink measurement.
  • the SRS may be an uplink reference signal for multiple-input multiple-out-put (MIMO) (MIMO-SRS).
  • MIMO-SRS multiple-input multiple-out-put
  • the SRS may also be an uplink positioning reference signal dedicated to positioning (pos-SRS).
  • Uplink positioning methods for example, include positioning methods based on uplink time difference of arrival (UL-TDOA), or positioning methods based on uplink angle of departure (UL-AoD).
  • the network device measures the uplink positioning signal from the terminal device, and the terminal device measures the downlink positioning reference signal from the network device.
  • the location of the terminal device is estimated based on the measurement results of the network device and the measurement results of the terminal device.
  • Access network equipment refers to the access equipment that the terminal equipment uses to access the mobile communication system wirelessly, including access network (AN) equipment, such as base stations. Access network equipment can also refer to equipment that communicates with terminal equipment over the air interface.
  • the access network device may include an evolved Node B (also referred to as eNB or e-NodeB) in an LTE system or long term evolution-advanced (LTE-A); the network device may also include a next generation node B (gNB) in a fifth generation (5G) system; or, the access network device may also include an access node in a wireless fidelity (Wi-Fi) system, etc.; or the access network device may be a relay station, an on-board device, and a future evolved public land mobile network (PLMN) device, a device in a (device to device, D2D) network, a device in a machine to machine (machine to machine, M2M) network, a device in an Internet of Things (IoT) network, or an access
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU may be divided according to the protocol layer functions of the wireless network they possess, for example, the functions of the packet data convergence protocol (PDCP) layer and the protocol layers above are set in the CU, and the functions of the protocol layers below the PDCP, such as the radio link control (RLC) layer and the medium access control (MAC) layer, are set in the DU.
  • RLC radio link control
  • MAC medium access control
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or part of it can be remote and part of it can be integrated in the DU, and the embodiment of the present application does not impose any restrictions.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and divided into different entities for implementation, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU can directly encapsulate the signaling through the protocol layer and transparently transmit it to the UE or CU without parsing it.
  • the device for implementing the function of the access network device may be the access network device, or may be a device capable of supporting the access network device to implement the function, such as a chip system, which may be installed in the access network device.
  • the device for implementing the function of the access network device is the access network device itself as an example for description.
  • Terminal equipment also known as terminal devices, is a device with wireless transceiver functions, which can send signals to network devices or receive signals from network devices.
  • Terminal equipment may include user equipment (UE), sometimes also called terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the terminal equipment is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, D2D, vehicle to everything (V2X), machine-to-machine/machine-type communications (M2M/MTC), IoT, virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT virtual reality
  • VR virtual reality
  • AR augmented reality
  • industrial control self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices or smart wearable devices, etc., which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing and shoes, etc.
  • the terminal device may also include a relay.
  • the terminal device may be a customer premise equipment (CPE), which may receive signals from network devices and forward the signals to other terminal devices.
  • CPE customer premise equipment
  • any device that can communicate data with a base station may be regarded as a terminal device.
  • vehicle-mounted terminal devices which may be, for example, also referred to as on-board units (OBU) or telematics boxes (T-boxes).
  • OBU on-board units
  • T-boxes telematics boxes
  • the terminal device can be a complete vehicle, or it can be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle can implement the method of the present application through the built-in vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit.
  • the terminal device may refer to a device for realizing the function of the terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system, which may be installed in the terminal device.
  • the terminal device may also be a vehicle detector.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • Positioning management equipment also known as location management network element
  • the positioning management equipment receives positioning requests from other network elements (such as access and mobility management network elements), collects user positioning data, and obtains the user location through positioning calculation.
  • the location management network element can also manage and configure base stations or positioning management units to implement the configuration of positioning reference signals, etc.
  • the embodiments of the present application do not limit the name of the positioning management equipment.
  • the positioning management equipment can also be called a positioning equipment, a location server, a positioning service center, or a positioning processing center.
  • the positioning management equipment involved in the embodiments of the present application may be a location management function (LMF) or a location management component (LMC), or it may be a local location management function (LLMF) located in an access network device, or other network elements with similar functions.
  • LMF location management function
  • LMC location management component
  • LLMF local location management function
  • the role of the LMF network element can be responsible for supporting different types of location services related to the target UE, including positioning the UE and delivering auxiliary data to the UE.
  • Its control plane and user plane are the evolved serving mobile location center (E-SMLC) and the service location protocol (SLP).
  • E-SMLC evolved serving mobile location center
  • SLP service location protocol
  • the LMF network element can interact with the ng-eNB/gNB and the UE as follows:
  • ng-eNB next generation evolved nodeB
  • gNB next generation evolved nodeB
  • NRPPa NR positioning protocol A
  • LTE positioning protocol (LPP) messages are used to transmit UE capability information, auxiliary information, measurement information, etc. to the UE.
  • Time unit refers to a time slot or a symbol.
  • a time slot includes multiple symbols. If there is no special explanation, a symbol refers to a time domain symbol.
  • the time domain symbol can be an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • a time slot can include 12 symbols.
  • Orthogonal sequence which can expand the signal in the time domain, frequency domain, code domain and other dimensions, so that different signals remain orthogonal.
  • the orthogonal sequence in the embodiment of the present application is also referred to as a sequence, and two orthogonal sequences refer to the inner standard product between the two sequence components is equal to zero.
  • the orthogonal sequence can be an orthogonal cover code (OCC), also known as an orthogonal spread spectrum code or an orthogonal mask.
  • OCC can also be regarded as an orthogonal sequence, which can distinguish the same reference signal or sequence from the code domain dimension.
  • the interference between the signals reflected by different reflectors or the signals sent by different antenna ports can be suppressed.
  • the OCC code length or sequence length is 4, the commonly used OCCs are shown in Table 1. It can be seen from Table 1 that any two OCCs are mutually orthogonal, that is, the inner standard product is 0.
  • Reflectors such as intelligent metasurfaces, may also be referred to as reconfigurable intelligent meta-surfaces (RIS) or intelligent reflection surfaces (IRS).
  • RIS reconfigurable intelligent meta-surfaces
  • IRS intelligent reflection surfaces
  • the embodiment of the present application takes the reflector as a RIS as an example.
  • the present application takes the reflector reflecting a signal as an example.
  • the "reflection" in the present application is a broad reflection, including other signals such as refraction and/or transmission. Processing process.
  • RIS is a digitally reconfigurable artificial electromagnetic surface, an artificial composite structure formed by a large number of sub-wavelength digitally reconfigurable artificial electromagnetic units in a certain macroscopic arrangement (periodic or non-periodic).
  • the basic units and arrangement of RIS can be arbitrarily designed, and the characteristics of the electromagnetic field at a specific spatial position can be controlled by changing the state distribution of the basic units.
  • RIS can also reflect signals in a specific frequency domain range. For example, RIS using different metamaterials have different sensitivities to signals of different frequencies, and can achieve reflection, transmission or refraction of specific frequencies.
  • FIG1 is a schematic diagram of the working principle of the RIS module.
  • the RIS module includes a plurality of RIS units, and different RIS units are connected by diodes.
  • RIS can reflect the received electromagnetic wave (incident wave) to obtain a reflected wave.
  • incident wave electromagnetic wave
  • RIS can change the reflection phase difference of the electromagnetic wave.
  • RIS makes the electromagnetic wave follow the generalized Snell's law on the reflection or refraction interface. That is, RIS can make the reflection angle of the electromagnetic wave not equal to the incident angle.
  • the reflection angle of the electromagnetic wave is the reflection angle 1
  • the reflection angle of the electromagnetic wave can be made to be the reflection angle 2.
  • RIS has the ability to shape the electromagnetic wave according to the generalized Snell's law.
  • controlling the RIS unit to adjust the amplitude and/or phase of the received signal can control the reflection coefficient of each RIS unit.
  • the RIS unit adjusting the amplitude and/or phase of the received signal can also be considered as adjusting the amplitude and/or phase of the RIS unit.
  • the reflection coefficient of each RIS unit is different, and the reflection angle or refraction angle of the electromagnetic wave of the RIS unit is also different. That is, controlling multiple RIS units to adjust the amplitude and/or phase of the received signal respectively can adjust the reflection angle or refraction angle of the RIS to the electromagnetic wave, thereby collaboratively realizing fine three-dimensional (3D) passive beamforming for directional signal enhancement or nulling.
  • the RIS unit can be controlled to adjust the amplitude and/or phase of the received signal by controlling the on/off state (on state or off state) of the PIN diode connected to the RIS unit. For example, by applying different bias voltages to the PIN diode, the PIN diode is in an on state or an off state, and the RIS unit connected to the PIN diode is in an on state or an off state.
  • the multiple RIS units included in the RIS are in different states, and the adjustment amounts of the amplitude and/or phase of the received signal by the RIS are different, so that the reflection coefficients of the RIS are also different.
  • the adjustment of the amplitude and/or phase of the received signal by the RIS module can be controlled, for example, the reflection phase of the electromagnetic wave of the RIS is 180° different, and then the reflection coefficient of the RIS, that is, the phase and/or amplitude of the RIS is controlled.
  • the reflection angle of the RIS to the electromagnetic wave is not equal to the incident angle, and directional beam forming is realized, thereby improving the coverage and system capacity of the wireless network.
  • the reflection coefficients of the RIS are different, and the reflection angles of the electromagnetic wave are also different, resulting in different beam directions, so it can be considered that the reflection coefficient of the RIS can be used to adjust the beam direction of the RIS.
  • the RIS in the embodiment of the present application can communicate with a network device (e.g., an access network device or a location management device).
  • a network device e.g., an access network device or a location management device.
  • the RIS can send some information of the RIS itself to the network device, such as the identification information of the RIS, the location information of the RIS, etc.
  • the RIS in the embodiment of the present application can also receive a configuration from the network device and reflect the received signal according to the received configuration.
  • At least one means one or more, and "more than one” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. The character “/” generally indicates that the associated objects before and after are in an "or” relationship. "At least one of the following items” or similar expressions refers to any combination of these more than ten items, including any combination of single or plural items.
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or plural.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • first set of configuration information and the second set of configuration information are only used to distinguish different configuration information, and do not indicate the difference in priority, sending order or importance of the two sets of configuration information.
  • association in the embodiments of the present application may also be referred to as “mapping", “correlation” or “correspondence”.
  • the first set of configuration information is associated with the first node, or the first set of configuration information corresponds (or maps, or correlates) to the first node.
  • the association relationship between multiple sets of configuration information and multiple nodes can be (pre-)configured.
  • RIS can reflect, transmit or refract electromagnetic waves to improve the coverage of wireless networks, and can also be used for positioning to improve positioning accuracy.
  • the signal is blocked by an obstruction and cannot be transmitted, which can also be considered as non-line of sight (NLOS) transmission.
  • NLOS non-line of sight
  • Non-line of sight transmission means that in the presence of obstacles, the wireless signal can only reach the receiving end through reflection, scattering and diffraction.
  • RIS can be deployed in the environment.
  • RIS and access network devices, as well as RIS and terminal RIS can achieve line-of-sight transmission.
  • the signal sent by the access network device or the terminal device is reflected by RIS, so as to achieve more accurate positioning.
  • FIG. 2 is a schematic diagram of downlink positioning based on RIS.
  • FIG. 2 takes three RIS deployed in the environment as an example, and the three RIS are RIS1, RIS2 and RIS3.
  • the obstacle prevents the signal or information sent by the access network device from directly reaching the terminal device. That is, the access network device and the terminal device are NLOS transmission, which will result in low accuracy of terminal device positioning, or even failure to achieve positioning.
  • the signal sent by the access network device is reflected or refracted by RIS1, RIS2 and RIS3, so that the signal sent by the access network device reaches the terminal device.
  • RIS1, RIS2 and RIS3 creating a line-of-sight (LOS) transmission condition between the access network device and the terminal device.
  • the signal sent by the access network device is the same for RIS1, RIS2 and RIS3, that is, the "second signal" in the embodiment of the present application.
  • the terminal device it can receive the line-of-sight transmission signal reflected by the access network device via the RIS.
  • RIS1 reflects the signal sent by the access network device and reaches the terminal device via path S1.
  • RIS2 reflects the signal sent by the access network device and reaches the terminal device through path S2
  • RIS3 reflects the signal sent by the access network device and reaches the terminal device through path S3.
  • RIS1, RIS2 and RIS3 can also be equivalent to "virtual" access network devices.
  • the terminal device measures the signal reflected by RIS1-RIS3, and can determine the location of the terminal device based on the measurement results and the location information of RIS1-RIS3. It can be seen that by deploying RIS1, RIS2 and RIS3, more "virtual" access network devices can be involved in positioning in the environment, thereby improving the accuracy of positioning terminal devices.
  • RIS can only amplify and adjust the phase of the received signal, but cannot change other characteristics of the signal
  • the reflected signals from different RIS are essentially the same to the receiver. What the receiver receives is a signal that is "aliased" by multiple reflected signals. In possible application scenarios, such as positioning or beam management, the receiver needs to identify the reflected signals from different smart metasurfaces.
  • the transmitter can send different reference signals in different beam directions, so that the reference signals received by the RIS in different beam directions are different. After the different RIS reflect the reference signals, they reach the receiver. The receiver can identify the reflected signals of different RIS by distinguishing the beam directions, thereby achieving positioning.
  • the frequency supported by the system is low, there is no beam technology, and it is impossible to send different reference signals in different beam directions. In addition, this solution cannot distinguish the reference signals sent through the same beam.
  • the transmitter is required to send different reference signals in different beam directions, the complexity of the transmitter is increased, and the capability requirements of the transmitter are relatively high.
  • different RISs can use different OCCs and/or time domain resources to reflect received signals, so that the receiving end can distinguish signals reflected by each RIS from signals from different RISs to achieve positioning.
  • the technical solution provided in the embodiment of the present application can be applied to the fifth generation (5th generation, 5G) mobile communication system, or to the LTE system, or can also be applied to the next generation mobile communication system or other similar communication systems.
  • the technical solution of the embodiment of the present application can also be applied to other communication systems, as long as the communication system has a positioning demand for the terminal.
  • the technical solution provided in the embodiment of the present application can also be applied to the vehicle to everything (V2X) system, the Internet of Things (IoT) system, the narrowband Internet of Things (NB-IoT) system, etc., such as an IoT network based on wireless fidelity (WiFi) or a wearable WiFi network.
  • V2X vehicle to everything
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • the communication system can also be applied to future-oriented communication technologies.
  • the system described in the embodiment of the present application is to more clearly illustrate the technical solution of the embodiment of the present application, and does not constitute a limitation on the technical solution provided in the embodiment of the present application. It is known to those skilled in the art that with the evolution of the network architecture, the technical solution provided in the embodiment of the present application is also applicable to similar technical problems.
  • FIG. 3 is a schematic diagram of the positioning architecture of a communication system applicable to an embodiment of the present application.
  • the network elements/modules involved mainly include three parts: the next generation radio access network (NG RAN), the terminal equipment and the core network.
  • the core network includes LMF, access and mobility management function (AMF), SLP and E-SMLC, etc.
  • the positioning server namely the location management function (LMF), is connected to the AMF, and the LMF and AMF are connected through the NLs interface.
  • LMF is responsible for supporting different types of location services for the terminal, including positioning the terminal and delivering auxiliary data to the terminal.
  • AMF can receive location service requests related to the terminal from the 5th generation core network location services (5GC LCS) entity, or AMF itself can also start some location services on behalf of a specific terminal and forward the location service request to LMF. After obtaining the location information returned by the terminal, the relevant The location information is returned to the 5G C LCS entity.
  • 5GC LCS 5th generation core network location services
  • NG RAN may include next generation node B (gNB), next generation evolved node B (ng-eNB) or future evolved network nodes.
  • gNB and ng-eNB are connected through the Xn interface, and LMF is connected to ng-eNB/gNB through the NG-C interface.
  • Figure 3 is an exemplary illustration of a communication system to which the embodiment of the present application is applicable, and does not specifically limit the type, quantity, connection method, etc. of network elements included in the communication system to which the present application is applicable.
  • FIG4 shows a network architecture of a communication system applicable to an embodiment of the present application, and the communication system includes a core network, NG-RAN and a terminal.
  • the core network includes LMF, AMF, secure user plane location (SUPL) location platform (SLP) and E-SMLC and other network elements/modules
  • NG RAN includes gNB, ng-eNB and other network elements/modules, wherein the specific functions of LMF, AMF, SLP, E-SMLC, gNB and ng-eNB and other network elements/modules, and the connection relationship between each network element/module can be found in the introduction of the relevant part of FIG3 above, which will not be repeated here.
  • LMC is added to NG-RAN.
  • the specific deployment method of LMC is to set it inside the base station, such as in the gNB or in the ng-ENB.
  • LMC is a function inside the base station, so there is no need to introduce a new interface.
  • FIG5 shows a network architecture of another communication system applicable to an embodiment of the present application.
  • the communication system also includes a core network, NG-RAN and a terminal.
  • the LMC in the network architecture shown in FIG5 is an independent logical node in NG-RAN and is connected to the base station through a new interface.
  • the LMC is connected to the gNB-CU through the interface Itf.
  • FIG6 shows a network architecture of another communication system applicable to the embodiment of the present application.
  • the communication system also includes a core network, NG-RAN and a terminal.
  • the LMC is an independent logical node in the NG-RAN.
  • the LMC can be connected to multiple base stations at the same time through a new interface as shown in FIG5.
  • FIG6 takes the example of the LMC being connected to two base stations at the same time.
  • the LMC can also be connected to more base stations.
  • FIGS. 3 to 6 are an exemplary description of a communication system applicable to the embodiments of the present application, and do not specifically limit the type, quantity, connection mode, etc. of the network elements included in the communication system applicable to the present application.
  • the network elements/modules indicated by the dotted lines in Figures 3 to 6 are not indispensable, but optional, for example, E-SMLC or SLP is not indispensable; or, the network elements/modules indicated by the dotted lines are another form of existence, for example, gNB or ng-eNB is also called a transmission-reception point (TRP) in some embodiments, and the terminal device is called a secure user plane location (SUPL) enabled terminal (SET) in some embodiments.
  • TRP transmission-reception point
  • SUPL secure user plane location
  • SET secure user plane location
  • the communication method provided in the embodiment of the present application can be applied to positioning.
  • positioning For example, uplink positioning, downlink positioning, uplink and downlink positioning or side positioning.
  • uplink and “downlink” are relative here. If the transmission direction from the access network device to the terminal device is downlink (this article takes this as an example), then the transmission direction from the terminal device to the access network device is uplink; on the contrary, if the transmission direction from the access network device to the terminal device is uplink, then the transmission direction from the terminal device to the access network device is downlink.
  • “Side” refers to devices of the same type. For example, the transmission direction from terminal device to terminal device is side; for another example, the transmission direction from access network device to access network device is also side.
  • the “first signal” and the “second signal” in the embodiments of the present application may be a positioning reference signal (PRS), a sounding reference signal (SRS), a positioning-sounding reference signal (pos-SRS), a tracking reference signal (TRS), a channel state information-reference signal (CSI-RS), a demodulation reference signal (DM-RS), a phase noise tracking reference signal (PT-RS), a sidelink reference signal or a random access preamble.
  • PRS positioning reference signal
  • SRS sounding reference signal
  • pos-SRS positioning-sounding reference signal
  • TRS tracking reference signal
  • CSI-RS channel state information-reference signal
  • DM-RS demodulation reference signal
  • PT-RS phase noise tracking reference signal
  • sidelink reference signal or a random access preamble.
  • the method is applied to the communication system shown in any one of Figures 3 to 6 as an example. It should be noted that the embodiment of the present application only takes the communication system of Figures 3 to 6 as an example, and is not limited to this scenario.
  • the method involves access network equipment and terminal equipment, and may also involve positioning management equipment, etc.
  • the positioning management equipment is an LMF network element as an example. It should be understood that in future communications such as 6G, the positioning management equipment can still be an LMF network element, or have other names, which are not limited in the embodiment of the present application.
  • the access network device may be an access network device currently serving the terminal device.
  • the access network device may be a device in NG RAN, such as gNB, ng-eNB.
  • the access network device may be an LMC.
  • LMC is a function inside the access network device
  • the access network device is the access network device where the LMC is located.
  • the deployment scheme of LMC is as shown in Figure 4 or Figure 5, that is, LMC is connected to a network device or multiple access network devices through an interface as an independent logical node, then the access network device is any access network device connected to LMC.
  • the embodiment of the present application takes the application of the provided communication method to a state in which the radio resource control (RRC) is connected (connected) (denoted as RRC_connected state) as an example.
  • the communication method provided in the embodiment of the present application may also be applicable to a terminal device in an RRC non-connected state (for example, an RRC idle state or an RRC inactive state). It is understandable that when the terminal device is in a non-connected state, the terminal device may be paged back to a connected state, and then the communication method provided in the embodiment of the present application may be executed. Alternatively, when the terminal device is in a non-connected state, the terminal device may send a reference signal through the relevant configuration of the reference signal. For example, after the terminal device enters the non-connected state, the relevant configuration of the reference signal in the connected state may be retained, or the relevant configuration of the reference signal may be obtained through system information.
  • the node in the embodiment of the present application refers to a node having a signal reflection function, for example, the node is provided with a RIS, or the node is a RIS. Among them, multiple nodes can be located on the same reflector. For example, a reflector is provided with two RIS, and these two RIS are equivalent to two nodes. Since the node has the function of reflecting signals, the coverage range can be expanded.
  • the network device can be an access network device or a positioning management device.
  • the process of the communication method is also different, which is described in detail below.
  • the node in the embodiment of the present application refers to a node having a signal reflection function, for example, the node is provided with a RIS, or the node is a RIS.
  • Figure 7 is a flow chart of a communication method provided in an embodiment of the present application.
  • the flow chart shown in Figure 7 is applied to positioning as an example, and the communication method is performed by a network device, at least two nodes and a terminal device as an example.
  • a network device determines at least two nodes.
  • Each node can complete the network access and authentication process by exchanging some information with the network device, as shown in S700a.
  • Each node can send its own identification information (ID) to the access network device to complete the network access and authentication process.
  • ID identification information
  • the terminal device or network device or other third-party entity needs to be positioned, it can send a positioning service demand to the network device.
  • Figure 7 shows that when the terminal device needs to be positioned, the terminal device can send a positioning service demand to the positioning management device.
  • the information of each node can be obtained to determine the node suitable for participating in positioning.
  • the network device can request each node to report its own relevant information, and each node responds to the request of the network device and sends its own relevant information to the network device.
  • the relevant information of the node may include, for example, the identification information of the node or the location information of the node.
  • the location information of the node may include one or more information such as azimuth, pitch angle, coordinates, etc., such as the azimuth of the node compared to a reference point, the pitch angle of the node compared to a reference point, and the coordinates of the node.
  • the network device may be an access network device.
  • the node may report its own relevant information to the access network device.
  • the node may actively report its own relevant information after being powered on or turned on.
  • the node may report its own relevant information in response to a request from the access network device.
  • the access network device may send a request message to each node, and the request message is used to request relevant information of the node. Any node receives the request message, and in response to the request message, sends relevant information of the node to the access network device.
  • the information of the at least one node may be sent to the positioning management device.
  • the positioning management device may send a request message to the access network device to request to obtain relevant information of at least one node.
  • the access network device receives the request message and sends the obtained relevant information of at least one node to the positioning management device.
  • the positioning management device After the positioning management device obtains the relevant information of at least one node, it can determine at least two nodes participating in the positioning according to the relevant information of at least one node. Alternatively, after the access network device obtains the relevant information of at least one node, it can directly determine at least two nodes participating in the positioning according to the relevant information of at least one node. If the positioning management device determines at least two nodes, the at least two nodes can be indicated to the access network device so that the access network device knows that the nodes participating in the positioning are the at least two nodes. For example, the positioning management device can send the identification information of the at least two nodes to the access network device. If the access network device determines at least two nodes, the at least two nodes can also be indicated to the positioning management device. Figure 7 takes the positioning management device determining at least two nodes as an example.
  • the network device determines configuration information of at least two nodes.
  • the network device determines at least two nodes and configures configuration information for signal processing for the at least two nodes.
  • the signal received by the node is called the second signal
  • the signal obtained after reflecting the second signal is called the first signal.
  • the second signal can be a positioning reference signal from the access network device.
  • the configuration information of the at least two nodes may include the configuration information of each node in the at least two nodes.
  • the configuration information of the at least two nodes may be at least two sets of configuration information, one set of configuration information corresponding to one node.
  • the configuration information of the at least two nodes includes a first set of configuration information of the first node and a second set of configuration information of the second node.
  • the first node reflects the received second signal according to the first set of configuration information to obtain the first signal
  • the second node reflects the received second signal according to the second set of configuration information to obtain the first signal.
  • the configuration information of at least two nodes can also be used for each node to determine the configured configuration information.
  • the configuration information of the at least two nodes can enable the first node to determine a first set of configuration information, and can also enable the second node to determine a second set of configuration information.
  • the network device can broadcast the configuration information of at least two nodes, the first node receives the configuration information of at least two nodes, and can determine the first set of configuration information, and the second node receives the configuration information of at least two nodes and can determine the second set of configuration information.
  • the configuration information of at least two nodes can be determined by the access network device, or by the positioning management device.
  • Figure 7 takes the positioning management device determining the configuration information of at least two nodes as an example. For the convenience of description, the following takes the at least two nodes including the first node and the second node as an example.
  • the first signal reflected by the first node and the first signal reflected by the second node can be received by the terminal device.
  • the terminal device For the terminal device, at least two first signals reflected by at least two nodes can be received, and the two first signals are orthogonal to each other. What the terminal device receives is the signal after the superposition of at least two first signals, but the terminal device cannot determine which node each of the at least two first signals is reflected by. In possible scenarios, such as positioning, beam management and other scenarios, the terminal device needs to distinguish which node each of the at least two first signals is reflected by.
  • the first set of configuration information and the second set of configuration information configured by the network device can be used to distinguish the first signal reflected by the first node and the first signal reflected by the second node.
  • the first set of configuration information and the second set of configurations can also make the first signal reflected by the first node and the first signal reflected by the second node orthogonal to each other to reduce interference.
  • the configuration information of at least two nodes includes at least two orthogonal sequence configuration information.
  • the configuration information of at least two nodes includes a first set of configuration information of a first node and a second set of configuration information of a second node
  • the first set of configuration information includes configuration information of a first sequence
  • the second set of configuration information includes configuration information of a second sequence
  • the first sequence and the second sequence are orthogonal. Since the first sequence and the second sequence are orthogonal, the first signal obtained by the first node reflecting the second signal and the first signal obtained by the second node reflecting the second signal are mutually orthogonal in the code domain.
  • the network device configures the determined configuration information for each node separately.
  • the configuration information of at least two nodes includes a first set of configuration information and a second set of configuration information
  • the first set of configuration information includes a first sequence
  • the second set of configuration information includes a second sequence.
  • the network device sends the first set of configuration information to the first node and sends the second set of configuration information to the second node.
  • the configuration information of at least two nodes includes a first sequence and a second sequence, wherein the first sequence and the second sequence and the first node and the second node have an associated relationship.
  • the network device can broadcast the configuration information of at least two nodes, that is, broadcast the first sequence and the second sequence.
  • the first node receives the first sequence and the second sequence, and can determine the configured first sequence based on the first sequence, the second sequence and the associated relationship between the first node and the second node.
  • the second node receives the first sequence and the second sequence, and can determine the configured second sequence based on the associated relationship.
  • the configuration information of at least two nodes includes a first set of configuration information and a second set of configuration information
  • the first set of configuration information includes the length of the first sequence
  • the second set of configuration information includes the length of the second sequence.
  • the orthogonal sequence is indirectly configured for at least two nodes by configuring the length of the sequence.
  • the set of orthogonal sequences of fixed length is known or predefined, so the set of orthogonal sequences can be indirectly indicated by configuring the length of the orthogonal sequence. Any two orthogonal sequences of the same length are mutually orthogonal, so the first node and the second node can select one from the set of orthogonal sequences corresponding to the length.
  • the configuration information of at least two nodes includes a length information.
  • the network device can carry the configuration information (i.e., the one length information) in a broadcast message, and the node receiving the configuration information determines its own orthogonal sequence from the set of orthogonal sequences corresponding to the length according to the agreed or default order according to the length indicated by the length information.
  • the configuration information of at least two nodes includes a first set of configuration information and a second set of configuration information
  • the first set of configuration information includes index information of a first sequence
  • the second set of configuration information includes index information of a second sequence.
  • a set of orthogonal sequences can be predefined or preconfigured, and each orthogonal sequence has a corresponding index. Therefore, an orthogonal sequence can be indicated by an index.
  • a network device can send index information of a first sequence to a first node and index information of a second sequence to a second node.
  • an index can be associated with a node, and each node can determine a configured sequence based on the association.
  • the association between the index and the node can be (pre) configured or (pre) defined.
  • the configuration information of at least two nodes includes index information of multiple sequences.
  • the network device can carry the configuration information (i.e., index information of multiple sequences) in a broadcast message.
  • the first node and the second node receive the configuration information, and according to the association between the index and the node, it can be determined that the first node is configured with the first sequence and the second node is configured with the second sequence.
  • the configuration information of the first sequence may include the length of the first sequence and the index information of the first sequence
  • the configuration information of the second sequence may include the length of the second sequence and the index information of the second sequence
  • the scope of action of OCC can be within the time slot, in other words, the minimum granularity of OCC is a symbol.
  • the first OCC is a sequence including M elements, and these M elements correspond to N symbols, and the N symbols are located in one time slot or multiple consecutive time slots.
  • M and N are both positive integers, that is, the scope of action of M elements is within 1 time slot or multiple consecutive time slots.
  • the M elements are S_1, S_2,..., S_M, where S_1, S_2,..., S_M, and the N symbols are n_1, n_2,..., n_N symbols.
  • n_1, n_2,..., n_N symbols are located in 1 time slot or 2 consecutive time slots, and the minimum granularity of OCC can be considered to be a symbol.
  • the second OCC is also an orthogonal sequence including M elements, and these M elements correspond to N symbols, and the N symbols are located in one time slot or multiple consecutive time slots. When the OCC is within a time slot or multiple consecutive time slots, the delay can be effectively reduced.
  • the number of symbols corresponding to each element can be the same to reduce the implementation complexity of the node side reflection signal.
  • FIG8 is a schematic diagram of a node reflecting a received signal according to OCC configuration information.
  • FIG8 takes at least two nodes including a first node, a second node and a third node as an example.
  • FIG8 takes a time slot including 14 symbols as an example.
  • the OCC indicated by the first OCC configuration information of the first node is a sequence [+1+1+1+1+1] including 6 elements
  • the OCC indicated by the second OCC configuration information of the second node is a sequence [-1+1-1+1-1+1] as an example.
  • FIG8 shows a pattern of a second signal sent by a network device, for example, a second signal with a pattern of comb-2 is sent 6 times in a time slot.
  • FIG8 (b) shows a pattern of signal 1 reflected by the first node according to the first OCC.
  • Signal 1 is a first signal among at least two first signals.
  • FIG8 (c) shows a pattern of signal 2 reflected by the second node according to the second OCC.
  • Signal 2 is a first signal other than signal 1 among at least two first signals.
  • the first signal reflected by the first node according to the first OCC and the first signal reflected by the second node according to the second OCC are orthogonal to each other.
  • the OCC indicated by the third OCC configuration information of the third node may be a sequence [+1-1+1-1+1-1].
  • (d) in Figure 8 shows a pattern of signal 3 reflected by the third node according to the third OCC.
  • Signal 3 is another first signal in addition to signal 1 and signal 2.
  • the three first signals obtained by reflection from the first node, the second node and the third node are mutually orthogonal to each other.
  • Figure 8 takes 6 elements in the OCC, each element corresponding to 2 symbols as an example, that is, the number of symbols corresponding to each element is the same, so that the implementation complexity of the signal transmitted on the node side is low.
  • the scope of action of OCC may also be multiple time slots, that is, OCC is applied between time slots, and it can also be considered that the minimum granularity of OCC is the time slot.
  • the first OCC is an orthogonal sequence including M elements, and these M elements correspond to L time slots, and M and L are both positive integers.
  • these M elements include S_1, S_2, ..., S_M, where S_1, S_2, ..., S_M correspond to k_1, k_2, ..., k_L time slots respectively, so it can also be considered that the minimum granularity of OCC is the time slot.
  • the second OCC is also an orthogonal sequence including M elements, and these M elements correspond to L symbols.
  • OCC Since the minimum granularity of OCC is the time slot, the implementation complexity of the node side reflection signal is reduced. In addition, more OCCs can be used to improve capacity, which can be applicable to scenarios with more nodes in the network. In addition, the number of time slots corresponding to each element can be the same to reduce the implementation complexity of the node side reflection signal.
  • FIG. 9 is another schematic diagram of a node reflecting a received signal according to OCC configuration information.
  • FIG. 9 takes OCC applied to time slots as an example.
  • the OCC indicated by the first OCC configuration information of the first node is a sequence [+1+1+1+1] including 4 elements
  • the OCC indicated by the second OCC configuration information of the second node is a sequence [+1+1-1-1] as an example.
  • (a) in FIG. 9 shows the second signal sent by the network device in 4 consecutive time slots.
  • (b) in FIG. 9 shows a pattern of the first signal reflected by the first node according to the first OCC.
  • FIG. 9 shows a pattern of another first signal reflected by the second node according to the second OCC. It can be seen from (b) in FIG. 9 and (c) in FIG. 9 that the first signal reflected by the first node according to the first OCC and the first signal reflected by the second node according to the second OCC are orthogonal to each other.
  • the OCC indicated by the third OCC configuration information of the third node can be a sequence [+1-1+1-1].
  • (d) in FIG. 9 shows a pattern of another first signal reflected by the third node according to the third OCC.
  • the three first signals reflected by the first node, the second node and the third node are mutually orthogonal.
  • FIG9 takes one element in the OCC corresponding to one time slot as an example, that is, the number of time slots corresponding to each element is the same, so the implementation complexity of transmitting signals on the node side is low.
  • the first set of configuration information includes first time domain configuration information
  • the second set of configuration information includes second time domain configuration information, so that the first signal obtained by the first node reflecting the second signal and the first signal obtained by the second node reflecting the second signal are orthogonal to each other in the time domain.
  • the first time domain configuration information indicates a first duration
  • the second time domain configuration information indicates a second duration
  • the first duration and the second duration are different.
  • the first duration indicates that the first node reflects the signal after receiving the signal for a first duration
  • the second duration indicates that the second node reflects the signal after receiving the signal for a second duration.
  • the minimum unit of the delay duration of the reflected signal of each node can be a symbol or a time slot.
  • the first duration can be less than or equal to 1 time slot, that is, the minimum unit of the delay duration of the reflected signal of the first node is a symbol, and the delay is relatively low.
  • the first duration is greater than P time slots, where P is an integer greater than or equal to 1. That is, the minimum unit of the delay duration of the reflected signal of the first node is a time slot, which makes the complexity of the node reflected signal relatively low.
  • Each node can control the connection RIS according to the configured duration.
  • the on-off state of the PIN diode of the unit, or the reflection delay of the RIS unit to the received signal is controlled by controlling the RIS unit to adjust the phase of the received signal.
  • FIG. 10 is a schematic diagram of a node reflecting a received signal according to a delay duration.
  • FIG. 10 takes the first duration as 0 symbols and the second duration as 2 symbols as an example.
  • FIG. 10 (a) shows a pattern of a second signal sent by a network device.
  • FIG. 10 (b) shows a pattern of a first signal reflected by a first node according to a first duration.
  • FIG. 10 (c) shows a pattern of a first signal reflected by a second node according to a second duration. It can be seen from FIG. 10 (b) and FIG.
  • FIG. 10 (d) shows a pattern of a first signal reflected by a third node according to a third duration. The three first signals reflected by the first node, the second node and the third node are mutually orthogonal in pairs.
  • the first time domain configuration information indicates a first time domain pattern
  • the second time domain configuration information indicates a second time domain pattern
  • the first time domain pattern and the second time domain pattern are different.
  • the first time domain pattern indicates a first time domain resource occupied by a first signal in at least two first nodes
  • the second time domain pattern indicates a second time domain resource occupied by another first signal in at least two first nodes.
  • the first time domain resource and the second time domain resource are different.
  • Different time domain patterns can be achieved by controlling the on-off state of the PIN diode connected to the RIS unit through the RIS set on each node.
  • the time domain pattern can be a time domain pattern located in one time slot, or a time domain pattern located in multiple time slots. In other words, the time domain pattern can be a symbol-level time domain pattern or a slot-level time domain pattern.
  • FIG. 11 is a schematic diagram of a node reflecting a received signal according to a time domain pattern.
  • FIG. 11 takes the on-off state of the PIN diode connected to the RIS unit on the first node as [1 0 0 0 0] and the on-off state of the PIN diode connected to the RIS unit on the second node as [0 1 0 0 0 0] as an example.
  • "1" represents conduction and "0" represents disconnection.
  • FIG. 11 (a) shows a pattern of a second signal sent by a network device in one time slot, for example, a second signal with a comb-2 pattern is repeatedly sent.
  • FIG. 11 shows a pattern of a second signal sent by a network device in one time slot, for example, a second signal with a comb-2 pattern is repeatedly sent.
  • FIG. 11 (b) shows a pattern of a first signal reflected by the first node according to a first time domain pattern.
  • FIG. 11 (c) shows a pattern of a first signal reflected by the second node according to a second time domain pattern. It can be seen from FIG. 11 (b) and FIG. 11 (c) that the first signal reflected by the first node according to the first time domain pattern and the first signal reflected by the second node according to the second time domain pattern are orthogonal to each other.
  • the network device can configure the third node with third time domain configuration information.
  • the third time domain configuration information indicates a third time domain pattern.
  • the on-off state of the PIN diode connected to the RIS unit on the third node is [0 0 1 0 0 0] to form a third time domain pattern.
  • the pattern of the first signal reflected by the third node according to the third time domain pattern is shown.
  • the three first signals reflected by the first node, the second node and the third node are mutually orthogonal to each other.
  • the node realizes the orthogonality of the signal within one time slot by controlling the on-off state of the PIN diode connected to the RIS unit, so the delay is low.
  • FIG. 12 is another schematic diagram of a node reflecting a received signal according to a time domain pattern.
  • FIG. 12 takes the on-off state of the PIN diode connected to the RIS unit on the first node as [1 0 0 0] and the on-off state of the PIN diode connected to the RIS unit on the second node as [0 1 0 0] as an example.
  • "1" represents conduction and "0" represents disconnection.
  • FIG. 12 (a) shows the pattern of the second signal sent by the network device in four consecutive time slots.
  • FIG. 12 (b) shows the pattern of the first signal reflected by the first node to the second signal according to the first time domain pattern.
  • FIG. 12 is another schematic diagram of a node reflecting a received signal according to a time domain pattern.
  • FIG. 12 (c) shows the pattern of the first signal reflected by the second node according to the second time domain pattern. It can be seen from FIG. 12 (b) and FIG. 10 (c) that the first signal reflected by the first node according to the first time domain pattern and the first signal reflected by the second node according to the second time domain pattern are orthogonal to each other.
  • the network device can configure the third node with third time domain configuration information.
  • the third time domain configuration information indicates the third time domain pattern. For example, the on-off state of the PIN diode connected to the RIS unit on the third node is [0 0 1 0] to form a third time domain pattern.
  • the pattern of the first signal reflected by the third node according to the third time domain pattern is shown.
  • the three first signals reflected by the first node, the second node, and the third node are mutually orthogonal.
  • the node realizes the orthogonality of the signal between time slots by controlling the on-off state of the PIN diode connected to the RIS unit. Therefore, the complexity of the node processing the signal is low.
  • the first set of configuration information includes the first frequency domain configuration information
  • the second set of configuration information includes the second frequency domain configuration information, so that the first signal obtained by the first node reflecting the second signal and the first signal obtained by the second node reflecting the second signal are mutually orthogonal in the frequency domain.
  • the first frequency domain configuration information may indicate the first frequency domain resources occupied by the first signal reflected by the first node
  • the second frequency domain configuration information may indicate the second frequency domain resources occupied by the first signal reflected by the second node
  • the first frequency domain resources and the second frequency domain resources are different.
  • the first frequency domain resources and the second frequency domain resources are orthogonal. Different nodes selectively reflect the received signal within the corresponding frequency domain range according to the configured frequency domain resources.
  • the frequency domain resources occupied by the received signal are [F1, F2]
  • the frequency domain resources occupied by the signal reflected by the first node are [F1, F3]
  • the first signal is reflected by the second node.
  • implementation form 1 and implementation form 2 can be combined. That is, the first set of configuration information includes the first OCC configuration information and the first time domain configuration information, and the second set of configuration information includes the second OCC configuration information and the second time domain configuration information.
  • implementation form 3 please refer to the relevant contents of the above implementation forms 1 and 2, which will not be repeated here.
  • the configuration information of at least two nodes may be configured (or determined) by an access network device, or may be configured (or determined) by a positioning management device.
  • the positioning management device determines the configuration information of at least two nodes, it sends the configuration information of the at least two nodes to the access network device.
  • At least two nodes process the received signals according to their respective configuration information. Considering that the distances between at least two nodes and the access network device may be different, the time at which the signal sent by the access network device arrives at different nodes may be different, and thus the sending time of the reflected first signal may also be different.
  • the effective time of the configuration information of each node may be indicated to ensure that the configuration information of each node takes effect at the same time, that is, the use start time of the configuration information configured for each node is the same.
  • the first set of configuration information of the first node may also include first time information
  • the second set of configuration information of the second node may also include second time information.
  • the first time information indicates the start time of use of the first set of configuration information
  • the second time information indicates the start time of use of the second set of configuration information.
  • the time indicated by the first time information is the same as the time indicated by the second time information.
  • a network device may broadcast one or more time information, which may be the same or different, and is used to indicate the effective time of the configuration information configured for each node.
  • the effective time of the configuration information may be an absolute time or a relative time.
  • the first time information may be universal time coordinated (UTC), a frame number, a time slot number, or a time slot number and a symbol.
  • the first time information may be a time offset compared to a reference time.
  • S703 The network device sends configuration information of at least two nodes.
  • the network device determines the configuration information of at least two nodes, and can configure the respective configuration information for each node.
  • the network device can dynamically configure the respective configuration information for the at least two nodes, or can semi-statically configure the respective configuration information for the at least two nodes. Depending on the different network devices, the network device configures the respective configuration information for the at least two nodes differently.
  • the network device is a positioning management device, and configures respective configuration information for each node in a dynamic configuration manner, and can execute S703a or execute S703b-S703c. That is, S703 is S703a, or S703 is S703b-S703c.
  • S703a The positioning management device sends configuration information of at least two nodes.
  • the positioning management device may send a first set of configuration information to the first node, for example, the first set of configuration information may be carried in an LPP message.
  • the positioning management device may also send a second set of configuration information to the second node via an LPP message.
  • the positioning management device sends configuration information of at least two nodes to the access network device.
  • the access network device sends configuration information to at least two nodes.
  • the access network device may send a first set of configuration information to the first node via a first RRC message, and send a second set of configuration information to the second node via a second RRC message.
  • the access network device may send the configuration information of the at least two nodes to the terminal device via a broadcast message, such as a SIB or posSIB.
  • S703c may be executed. That is, S703 is S703c.
  • the semi-static mode configures respective configuration information for at least two nodes, which means that multiple sets of configuration information can be (pre-)configured, and one or more sets of the multiple sets of configuration information are activated through signaling.
  • S703d may be executed. That is, S703 is S703d.
  • the network device sends first indication information to at least two nodes, where the first indication information is used to activate a set of configuration information among the multiple sets of configuration information.
  • the network device sends first indication information to the first node, where the first indication information is used to activate a first set of configuration information among multiple sets of configuration information.
  • the network device sends first indication information to the second node, where the first indication information is used to activate a second set of configuration information among multiple sets of configuration information.
  • the first indication information may be downlink control information (DCI), a media access control (MAC) control element (CE), or RRC signaling.
  • one or more steps indicated by dashed lines can be selected for execution, and this is not limited in the embodiment of the present application.
  • Each node receives the above configuration information and processes the received signal according to the configuration information.
  • the configuration information includes the configuration information of the first OCC and the first time information
  • the second set of configuration information of the second node includes the configuration information of the second OCC and the second time information.
  • the first node reflects the received second signal according to the first OCC at the time indicated by the first time information.
  • the second node reflects the received second signal according to the second OCC at the time indicated by the second time information.
  • S703a may be executed; or, after S702 is executed, S703b-S703c may be executed; or, after S702 is executed, S703c may be executed; or, after S702 is executed, S703d may be executed.
  • the network device sends configuration information of at least two nodes to the terminal device.
  • the network device sends configuration information of at least two nodes to the terminal device, so that the terminal device distinguishes the first signals reflected by each node from the at least two received first signals according to the configuration information of the at least two nodes.
  • the network device sends configuration information of at least two nodes to the terminal device, which is similar to the aforementioned network device sending configuration information to at least two nodes.
  • the network device is a positioning management device, and the positioning management device can send the configuration information of the at least two nodes through an LPP message.
  • the positioning management device sends the configuration information of the at least two nodes to the access network device.
  • the positioning management device sends the configuration information of the at least two nodes to the access network device through NRPPa. Then the access network device sends the configuration information of the at least two nodes to the terminal device through a unicast or broadcast message.
  • the access network device can send the configuration information of the at least two nodes to the terminal device through a broadcast message or a unicast message, the broadcast message is, for example, SIB or posSIB, and the unicast message is, for example, RRC signaling.
  • the network device can also send the configuration information of at least two nodes to the terminal device in a semi-static manner.
  • the network device sends a first indication message to the terminal device, and the first indication message is used to indicate that at least two sets of configuration information in the (pre) configured multiple sets of configuration information are activated, and the at least two sets of configuration information are used for at least two nodes, and the at least two sets of configuration information correspond to at least two nodes one by one.
  • the first indication message is used to indicate that at least two sets of configuration information in the (pre) configured multiple sets of configuration information are activated, and the at least two sets of configuration information are used for at least two nodes, and the at least two sets of configuration information correspond to at least two nodes one by one.
  • S704 can be executed before S703 or after S704.
  • S704 can be executed; or, after S703b-S703c are executed, S704 can be executed; or, after S703c is executed, S704 can be executed; or, after S703d is executed, S704 can be executed.
  • S703a can be executed; or, after S704 is executed, S703b-S703c can be executed; or, after S704 is executed, S703c can be executed; or, after S704 is executed, S703d can be executed.
  • the terminal device determines the association relationship between the configuration information of the at least two nodes and the at least two nodes, that is, determines which set of configuration information belongs to which node.
  • the configuration information of the at least two nodes and the association relationship between the at least two nodes can be notified to the terminal device by the network device.
  • the configuration information of the at least two nodes may also include first information, and the first information may be used to indicate the configuration information of the at least two nodes and the association relationship between the at least two nodes.
  • the first information may be included in any set of configuration information in the configuration information of the at least two nodes, or the first information may also be configuration information independent of each node.
  • the first information may also be sent to the terminal device separately by the network device.
  • the first information may also be pre-configured, in which case the terminal device can read the pre-configured first information.
  • the first information indicates that the configuration information of at least two nodes and the association relationship between at least two nodes can be implemented in multiple forms, for example, including but not limited to the following implementation forms.
  • the specific implementation form used is not limited in the embodiments of the present application.
  • the first information indicates the association between the configuration information of at least two nodes and the configuration information of the second signal.
  • the terminal device does not know the deployed nodes, that is, the terminal device does not perceive the nodes.
  • the association between the configuration information of the second signal and the configuration information of at least two nodes can indirectly represent the association between the configuration information of at least two nodes and the at least two nodes.
  • the configuration information of the second signal can be sent or activated to the terminal device by the network device.
  • the terminal device can determine the configuration information of each node in the configuration information of at least two nodes based on the first information and the configuration information of the second signal.
  • the terminal device can determine the configuration information of at least two nodes and the corresponding relationship between at least two nodes without perceiving the existence of the nodes. In this way, the leakage of node information (such as identification information and location information) in the network can be reduced, and the network security can be improved.
  • node information such as identification information and location information
  • the first information indicates the association between the configuration information of at least two nodes and the identification information of at least two nodes.
  • the identification information of the node may be the ID of the node, which may uniquely identify the node.
  • the identification information of the node may also be information agreed upon between the terminal device and the node for identifying the node, such as a virtual ID, which may be an ID that uniquely identifies the node, or another ID.
  • the terminal device may determine the configuration information of each node in the configuration information of at least two nodes based on the identification information of at least two nodes and the first information.
  • the first information may indicate the association between the configuration information of at least two nodes and the location information of at least two nodes.
  • the first information indicates the association between the configuration information of at least two nodes and the location information of at least two nodes, so that the terminal device can determine the configuration information of each node from the location information of at least two nodes.
  • the network device may send the location information of at least two nodes to the terminal device.
  • the terminal device measures at least two first signals according to configuration information of at least two nodes.
  • the terminal device can determine the first signal reflected by each node from the at least two first signals according to the configuration information of the at least two nodes. Thus, the terminal device measures the at least two first signals and obtains at least two measurement results.
  • the location of the terminal device can be determined in combination with the location information of at least two nodes. That is, the terminal device can determine the location of the terminal device based on the downlink positioning method.
  • the terminal device can also report at least two measurement results to the network device, so that the network device can determine the location of the terminal device based on the uplink positioning method.
  • the terminal device can execute S706. It should be noted that the reporting of at least two measurement results by the terminal device to the network device is not affected by whether the terminal device determines the location of the terminal device based on the at least two measurement results.
  • the terminal device can still report at least two measurement results to the network device.
  • the at least two measurement results can be used for calculation or judgment of positioning integrity, beam management and other purposes.
  • S706 The terminal device sends at least two measurement results to the network device.
  • the terminal device sends at least two measurement results to the network device. It can be understood that the at least two measurement results correspond to at least two nodes one-to-one.
  • the terminal device may send at least two measurement results to the positioning management device, such as S706a. That is, S706 may be S706a.
  • the terminal device may also first send at least two measurement results to the access network device, and the access network device receives at least two measurement results and sends at least two measurement results to the positioning management device, such as S706b-S706c, that is, S706 may be S706b-S706c.
  • the terminal device may directly send at least two measurement results to the access network device, such as S706d, that is, S706 may be S706d.
  • the access network device receives at least two measurement results sent by the terminal device, and may perform beam management or position calculation or positioning integrity, etc. For the network device, when calculating the position of the terminal device, it is necessary to determine the measurement results corresponding to each node in the at least two measurement results.
  • the terminal device sends second information to the network device, where the second information indicates an association relationship between at least two measurement results and at least two nodes.
  • the terminal device may send the at least two measurement results and the second information to the network device together, or may send the at least two measurement results and the second information separately to the network device.
  • the at least two measurement results and the second information may be carried in one signaling, or may be carried in one signaling separately.
  • the second information may indicate an association relationship between at least two measurement results and identification information of at least two nodes.
  • the network device may determine the measurement result corresponding to each node in the at least two measurement results according to the identification information of each node and the second information.
  • the second information may indicate an association relationship between at least two measurement results and configuration information of the second signal.
  • the network device may determine the measurement result corresponding to each node in the at least two measurement results according to the configuration information of the second signal and the second information.
  • the second information may indicate an association relationship between at least two measurement results and location information of at least two nodes.
  • the network device may determine the measurement result corresponding to each node in the at least two measurement results according to the location information of the at least two nodes and the second information.
  • the network device may determine the location of the terminal device based on the uplink positioning method according to at least two measurement results.
  • the network device may also control the reflected power of the node or perform beam management according to at least two measurement results.
  • the access network device may adjust the reflected power of each node according to at least two measurement results.
  • the embodiment of the present application provides a method that allows the receiving end to distinguish the signals reflected by each reflector. For example, by configuring different orthogonal sequences or reflection delays or time domain patterns for each reflector, the signals reflected by each reflector are orthogonal to each other, and the signals reflected by each reflector are distinguished by the configuration information of each reflector.
  • the application scenarios are wider. For example, it can be applied to scenarios without beam technology. And it can distinguish the signals sent through the same beam, improving the distinction accuracy.
  • the process shown in Figure 7 above takes the execution of network devices, nodes and terminal devices as an example.
  • the communication method provided in the embodiment of the present application can also be applied to the side link.
  • the interaction between terminal devices is through PC5 messages.
  • the role of at least one terminal device is the same as that of the network device in the embodiment of the present application, and the terminal device can execute the behavior of the network device in the embodiment of the present application.
  • the interaction between the node and the terminal device is through the PC5 message.
  • the node can send its own configuration information to the terminal device through the PC5 message.
  • the methods provided by the embodiments of the present application are introduced from the perspective of the interaction between the terminal device and the network device.
  • the network device and the terminal device may include hardware structures and/or software modules, and realize the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether a function among the functions is executed in the form of hardware structure, software module, or hardware structure plus software module depends on the specific application and design constraints of the technical solution.
  • FIG. 13 is a schematic block diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may include a processing module 1310 and a transceiver module 1320.
  • a storage unit may be further included, which may be used to store instructions (codes or programs) and/or data.
  • the processing module 1310 and the transceiver module 1320 may be coupled to the storage unit.
  • the processing module 1310 may read the instructions (codes or programs) and/or data in the storage unit to implement the corresponding method.
  • the above-mentioned modules may be independently arranged or partially or fully integrated.
  • the communication device 1300 can implement the behaviors and functions of the terminal device in the above-mentioned method embodiments.
  • the communication device 1300 can be a terminal device, or a component (such as a chip or circuit) applied to the terminal device, or a chip or chipset in the terminal device or a part of the chip used to execute related method functions.
  • the transceiver module 1320 is used to receive at least two first signals reflected by at least two nodes, and the at least two first signals are orthogonal to each other.
  • the processing module 1310 is used to measure the at least two first signals according to the configuration information of the at least two nodes.
  • the configuration information of at least two nodes includes configuration information of at least two orthogonal sequences; or, the configuration information of at least two nodes includes at least two time domain configuration information; or, the configuration information of at least two nodes includes configuration information of at least two orthogonal sequences and at least two time domain configuration information.
  • At least two nodes include a first node and a second node
  • at least two time domain configuration information include first time domain configuration information of the first node and second time domain configuration information of the second node; wherein the first time domain configuration information indicates a first duration, the second time domain configuration information indicates a second duration, and the first duration and the second duration are different; or, the first time domain configuration information indicates a first time domain pattern, the second time domain configuration information indicates a second time domain pattern, and the first time domain pattern and the second time domain pattern are different.
  • the first time domain pattern indicates a first time domain resource occupied by a first signal reflected by a first node
  • the second time domain pattern indicates a second time domain resource occupied by a first signal reflected by a second node
  • the first time domain resource and the second time domain resource are different.
  • At least two orthogonal sequences include a first sequence, the first sequence includes M elements, M is a positive integer; wherein the M elements correspond to N symbols, the N symbols are located in one time slot or in multiple consecutive time slots, and N is an integer greater than or equal to 1; or, the M elements correspond to L time slots, and L is a positive integer.
  • the first duration is less than or equal to 1 time slot, or the first duration is greater than 1 time slot.
  • the configuration information of at least two nodes includes first information, and the first information is used to indicate the configuration information of the at least two nodes and an association relationship between the at least two nodes.
  • the first information is used to indicate configuration information of at least two nodes and an association relationship between at least two nodes, including:
  • the first information is used to indicate the association between configuration information of at least two nodes and identification information of at least two nodes; or, the first information is used to indicate the association between configuration information of at least two nodes and configuration information of a second signal, and a first signal is obtained by reflecting the second signal through a node.
  • the transceiver module 1320 is further used to receive first indication information, where the first indication information is used to activate one or more sets of configuration information among at least two sets of configuration information.
  • the transceiver module 1320 is further used to receive configuration information of the at least two nodes, and the configuration information of the at least two nodes is carried in an RRC message or an LPP message.
  • the transceiver module 1320 is further configured to receive location information of the at least two nodes.
  • the communication device 1300 measures at least two first signals according to the configuration information of at least two nodes to obtain at least two measurement results, and the transceiver module 1320 is also used to send at least two measurement results, and the at least two measurement results correspond one-to-one to at least two nodes.
  • the communication device 1300 can implement the behaviors and functions of the nodes in the above-mentioned method embodiments.
  • the communication device 1300 can be a node, or a component (such as a chip or a circuit) applied to a node, or a chip or chipset in the node or a part of the chip used to execute related method functions.
  • the processing module 1310 may be configured to determine a first set of configuration information, where the first set of configuration information includes a first sequence of configuration information and/or first time domain configuration information, and reflect the received signal according to the first set of configuration information.
  • the first time domain configuration information indicates the first duration, or the first time domain configuration information indicates the first time Domain pattern.
  • the first sequence includes M elements, where M is a positive integer; wherein the M elements correspond to N symbols, the N symbols are located in one time slot or in multiple consecutive time slots, and N is a positive integer; or, the M elements correspond to L time slots, and L is a positive integer.
  • the first duration is less than or equal to 1 time slot, or the first duration is greater than 1 time slot.
  • the first set of configuration information includes first time information, and the first time information is used to indicate the effective time of the first set of configuration information.
  • the transceiver module 1320 is used to receive a first set of configuration information, or the transceiver module 1320 is used to receive first indication information, where the first indication information is used to activate a first set of configuration information among multiple sets of configuration information.
  • the transceiver module 1320 is further configured to send information of the communication device 1300 to the network device, where the information of the communication device 1300 includes identification information of the communication device 1300 and location information of the communication device 1300 .
  • the communication device 1300 can implement the behaviors and functions of the network device in the above-mentioned method embodiments.
  • the communication device 1300 can be a network device, or a component (such as a chip or circuit) used in a network device, or a chip or chipset in the network device or a part of a chip used to execute related method functions.
  • the transceiver module 1320 is used to send or activate a first set of configuration information of the first node and a second set of configuration information of the second node; wherein the first set of configuration information includes configuration information of a first sequence, the second set of configuration information includes configuration information of a second sequence, and the first sequence and the second sequence are orthogonal; or, the first set of configuration information includes first time domain configuration information, and the second set of configuration information includes second time domain configuration information; or, the first set of configuration information includes configuration information of the first sequence and first time domain configuration information, the second set of configuration information includes configuration information of the second sequence and second time domain configuration information, and the first sequence and the second sequence are orthogonal.
  • the first time domain configuration information indicates a first duration
  • the second time domain configuration information indicates a second duration
  • the first duration and the second duration are different
  • the first time domain configuration information indicates a first time domain pattern
  • the second time domain configuration information indicates a second time domain pattern
  • the first time domain pattern and the second time domain pattern are different.
  • the first sequence is a sequence including M elements, where M is a positive integer; wherein the M elements correspond to N symbols, the N symbols are located in one time slot or in multiple consecutive time slots, and N is a positive integer; or, the M elements correspond to L time slots, and L is a positive integer.
  • the first duration is less than or equal to 1 time slot, or the first duration is greater than 1 time slot.
  • the first set of configuration information includes first time information
  • the second set of configuration information includes second time information.
  • the first time information is used to indicate the effective time of the first set of configuration information
  • the second time information is used to indicate the effective time of the second set of configuration information.
  • the transceiver module 1320 is further used to send first information, where the first information is used to indicate an association relationship between the first set of configuration information, the second set of configuration information, and at least two nodes.
  • the first information is used to indicate an association relationship between a first set of configuration information, a second set of configuration information, and at least two nodes, including: the first information indicates an association relationship between the first set of configuration information, the second set of configuration information, and identification information of at least two nodes; or, the first information indicates an association relationship between the first set of configuration information, the second set of configuration information, and configuration information of a second signal from a network device.
  • the transceiver module 1320 is used to send a first set of configuration information, including: the transceiver module 1320 is used to send first indication information, and the first indication information is used to activate a first set of configuration information among multiple sets of configuration information.
  • the transceiver module 1320 is further configured to obtain information of at least two nodes.
  • the communication device 1300 is a positioning management device, and the transceiver module 1320 obtains information of at least two nodes, including: the transceiver module 1320 receives information of at least two nodes sent by the access network device; or, the transceiver module 1320 receives information sent by at least two nodes respectively.
  • processing module 1310 in the embodiment of the present application can be implemented by a processor or a processor-related circuit component
  • transceiver module 1320 can be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • Figure 14 is a schematic block diagram of a communication device 1400 provided in an embodiment of the present application.
  • the communication device 1400 can be a terminal device, which can implement the functions of the terminal device in the method provided in the embodiment of the present application.
  • the communication device 1400 can also be a device that can support the terminal device to implement the corresponding functions in the method provided in the embodiment of the present application, wherein the communication device 1400 can be a chip system.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the communication device 1400 can also be a network device, which can implement the functions of the network device in the method provided in the embodiment of the present application.
  • the communication device 1400 can also be a device that can support the network device to implement the corresponding functions in the method provided in the embodiment of the present application
  • the communication device 1400 may be a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • specific functions please refer to the description in the above method embodiment.
  • the communication device 1400 includes one or more processors 1401, which can be used to implement or support the communication device 1400 to implement the function of the terminal device in the method provided in the embodiment of the present application. See the detailed description in the method example for details, which will not be repeated here.
  • One or more processors 1401 can also be used to implement or support the communication device 1400 to implement the function of the network device in the method provided in the embodiment of the present application. See the detailed description in the method example for details, which will not be repeated here.
  • the processor 1401 can also be referred to as a processing unit or a processing module, which can implement certain control functions.
  • the processor 1401 can be a general-purpose processor or a dedicated processor, etc.
  • the central processing unit can be used to control the communication device 1400, execute software programs and/or process data.
  • Different processors can be independent devices, or they can be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device 1400 includes one or more memories 1402 for storing instructions 1404, and the instructions can be executed on the processor 1401, so that the communication device 1400 performs the method described in the above method embodiment.
  • the memory 1402 and the processor 1401 can be set separately or integrated together, and the memory 1402 and the processor 1401 can also be considered to be coupled.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which can be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 1401 may operate in conjunction with the memory 1402. At least one of the at least one memory may be included in the processor. It should be noted that the memory 1402 is not necessary, so it is illustrated by dotted lines in Figure 14.
  • data may also be stored in the memory 1402.
  • the processor and memory may be provided separately or integrated together.
  • the memory 1402 may be a non-volatile memory, such as a hard disk (hard, disk, drive, HDD) or a solid-state drive (solid-state, drive, SSD), etc., or a volatile memory (volatile, memory), such as a random access memory (random-access, memory, RAM).
  • the memory is any other medium that can be used to carry or store a desired program code in the form of an instruction or data structure and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device that can realize a storage function, for storing program instructions and/or data.
  • the communication device 1400 may include instructions 1403 (sometimes also referred to as codes or programs), and the instructions 1403 may be executed on the processor so that the communication device 1400 performs the method described in the above embodiment.
  • the processor 1401 may store data.
  • the communication device 1400 may further include a transceiver 1405 and an antenna 1406.
  • the transceiver 1405 may be referred to as a transceiver unit, a transceiver module, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to implement the transceiver function of the communication device 1400 through the antenna 1406.
  • the processor 1401 and the transceiver 1405 described in the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency identification (RFID), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), or an electronic device.
  • the communication device described in this article may be an independent device (e.g., an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (e.g., a module that can be embedded in other devices).
  • aforementioned description of the terminal device and the network device which will not be repeated here.
  • the communication device 1400 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, an antenna, a speaker, a microphone, an input and output module, a sensor module, a motor, a camera, or a display screen, etc. It is understood that in some embodiments, the communication device 1400 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication device in the above embodiments may be a terminal device (or network device) or a circuit, or a chip applied to a terminal device (or network device) or other combination devices, components, etc. having the above terminal device functions (or network devices).
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the communication device When the communication device is a chip system, the communication device may be a field programmable gate array (FPGA), an ASIC, a system on chip (SoC), a CPU, a network processor (NP), a digital signal processing circuit (DSP), a micro controller unit (MCU), a programmable logic device (PLD) or other integrated chips.
  • the processing module may be a processor of a chip system.
  • the transceiver module or the communication interface may be an input/output interface or an interface circuit of a chip system.
  • the interface circuit may be a code/data read/write interface circuit.
  • the interface circuit may be used to receive code instructions (code instructions are stored in a memory, may be read directly from the memory, or may be read from the memory through other devices) and transmit them to the processor; the processor may be used to run the code instructions to execute the method in the above method embodiment.
  • the interface circuit may also be a signal transmission interface circuit between a communication processor and a transceiver.
  • the device may include a transceiver unit and a processing unit, wherein the transceiver unit may be an input/output circuit and/or a communication interface; and the processing unit may be an integrated processor or microprocessor or integrated circuit.
  • the embodiment of the present application also provides a communication system, specifically, the communication system includes at least one terminal device and at least one network device and at least one node.
  • the communication system includes a terminal device and a node for implementing the relevant functions of Figure 7 above.
  • the communication system includes a first node and a second node, the first node is used to determine a first set of configuration information, and reflects a received second signal according to the first set of configuration information, and the second node is used to determine a second set of configuration information, and reflects the received second signal according to the second set of configuration information; wherein the first signal obtained by the first node reflecting the second signal is orthogonal to the first signal obtained by the second node transmitting the second signal.
  • the first set of configuration information includes configuration information of a first sequence
  • the second set of configuration information includes configuration information of a second sequence
  • the first sequence and the second sequence are orthogonal
  • the first set of configuration information includes first time domain configuration information
  • the second set of configuration information includes second time domain configuration information
  • the first set of configuration information includes configuration information of the first sequence and first time domain configuration information
  • the second set of configuration information includes configuration information of the second sequence and second time domain configuration information
  • the first sequence and the second sequence are orthogonal.
  • the first time domain configuration information indicates a first duration
  • the second time domain configuration information indicates a second duration
  • the first duration and the second duration are different
  • the first time domain configuration information indicates a first time domain pattern
  • the second time domain configuration information indicates a second time domain pattern
  • the first time domain pattern and the second time domain pattern are different.
  • the communication system further includes: a network device, which is used to send or activate the first set of configuration information and the second set of configuration information.
  • a network device which is used to send or activate the first set of configuration information and the second set of configuration information.
  • a computer-readable storage medium is also provided in an embodiment of the present application, including instructions, which, when executed on a computer, enables the computer to execute the method executed by the terminal device or network device or node in FIG. 7 .
  • a computer program product is also provided in an embodiment of the present application, including instructions, which, when executed on a computer, enable the computer to execute the method executed by the terminal device or network device or node in FIG. 7 .
  • the embodiment of the present application provides a chip system, which includes a processor and may also include a memory, for implementing the functions of the terminal device in the aforementioned method; or for implementing the functions of the network device in the aforementioned method.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a RAM, a magnetic disk or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及通信装置,该通信方法包括:终端设备接收由至少两个节点反射的至少两个第一信号,该至少两个第一信号相互正交;终端设备根据至少两个节点的配置信息对至少两个第一信号进行测量。至少两个节点反射的至少两个第一信号可被终端设备接收。通过为各个节点配置用于信号处理的配置信息,使得终端设备从接收的至少两个第一信号中区分出由各个节点反射的信号。

Description

一种通信方法及通信装置
相关申请的交叉引用
本申请要求在2022年11月04日提交中国国家知识产权局、申请号为202211379333.0、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种通信方法及通信装置。
背景技术
反射体,例如智能超表面,可以对电磁波进行反射、折射或透射,提高无线网络的覆盖,也可应用于定位,以提高定位的准确度。一般地,智能超表面只能对接收到的信号进行放大、调相等,而无法改变信号的其它特征,这样对于接收端来说,来自不同智能超表面的反射信号本质上是相同的。在可能的应用场景中,例如定位或者波束管理中,需要接收端识别来自不同智能超表面的反射信号。
目前,发送端在不同波束方向发送不同的参考信号,这样位于不同波束方向上的智能超表面接收的参考信号是不同的。接收端通过区分波束方向可以识别不同智能超表面的反射信号,从而实现定位。然而该方法对发送端和接收端要求很高,适用范围有限。另外,接收端也无法区分通过同一波束发送的参考信号,区分准确度有限。
发明内容
本申请提供一种通信方法及通信装置,使得接收端可以区分来自不同的反射体的信号,使用范围更广,区分准确度更高。
第一方面,提供了一种通信方法可由第一通信装置执行,该第一通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片***。示例性地,该通信装置为终端设备,或者为设置在终端设备中的芯片***,或者为用于实现终端设备的功能的其他部件。为方便描述,下面以所述第一通信装置为终端设备为例,描述第一方面提供的通信方法。
所述通信方法包括:终端设备接收由至少两个节点反射的至少两个第一信号,该至少两个第一信号相互正交;之后,终端设备根据至少两个节点的配置信息对至少两个第一信号进行测量。
本申请实施例中的至少两个节点具有反射或者透射或者折射或者其他功能,例如至少两个节点设置了智能超表面,或者至少两个节点位于同一智能超表面上的不同位置,或者至少两个节点为智能超表面。至少两个节点反射的至少两个第一信号可被终端设备接收。本申请实施例可为至少两个节点分别配置用于信号处理的配置信息,例如,至少两个节点包括第一节点和第二节点,第一节点被配置第一套配置信息,第二节点被配置第二套配置信息。第一节点根据第一套配置信息对接收的信号进行处理(例如反射),第二节点根据第二套配置信息对接收的信号进行处理。不同的配置信息使得不同节点反射的第一信号具有的特征不同。因此,至少两个节点的配置信息可使得终端设备从接收的至少两个第一信号中区分出由各个节点分别反射的信号。相较于目前基于波束区分来自不同节点的信号来说,可以提高区分准确度,并且降低发送端和接收端的复杂度,适用更多场景。
在可能的实现方式中,至少两个节点的配置信息有多种实现形式,只要能区分由至少两个节点反射的至少两个第一信号即可。
实现形式一,至少两个节点的配置信息包括至少两个正交序列的配置信息。例如,至少两个节点包括第一节点和第二节点,那么至少两个节点的配置信息包括第一节点的第一序列的配置信息和第二节点的第二序列的配置信息,第一序列和第二序列相互正交。通过为第一节点和第二节点配置不同的序列,使得由第一节点和第二节点反射的至少两个第一信号正交。对于终端设备来说,可根据第一序列和第二序列从接收的至少两个第一信号区分来自第一节点的第一信号和第二节点的第一信号。
可选地,正交序列的粒度为符号或者时隙。例如,第一序列为包括M个元素的序列,这M个元素对应N个符号,M,N为正整数。其中,N个符号位于一个时隙内或者连续的多个时隙内。当正交序 列作用范围在1个时隙内,可以有效降低时延。或者,M个元素对应L个时隙,L为正整数。即M个元素的作用范围在多个时隙,正交序列的粒度是时隙级,可以降低节点侧反射信号的实现复杂度。
可选地,至少两个正交序列的配置信息包括至少两个正交序列的长度和/或至少两个索引信息。至少两个索引信息用于指示至少两个正交序列和至少两个节点之间的关联关系。任意两个长度相同的正交序列相互正交,且固定长度的正交序列是预定义的,因此,通过配置正交序列的长度可以间接指示正交序列。正交序列的索引可以指示具体采用哪个正交序列,通过正交序列的索引和至少两个节点的关联关系可以实现对各个节点的正交序列的配置。
实现形式二,至少两个节点的配置信息包括至少两个时域配置信息。例如,至少两个节点包括第一节点和第二节点,那么至少两个节点的配置信息包括第一节点的第一时域配置信息和第二节点的第二时域配置信息。通过为第一节点和第二节点配置不同的时域配置,使得由第一节点和第二节点反射的至少两个第一信号在时域上正交。对于接收端来说,可根据第一时域配置信息和第二时域配置信息从接收的至少两个第一信号中区分出由第一节点反射的第一信号和由第二节点反射的第一信号。
在可能的实现方式中,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同。第一时长指示第一节点接收信号后经过第一时长对该信号进行反射,第二时长指示第二节点接收信号后经过第二时长对该信号进行反射。通过为不同节点配置不同的时长,使得有不同节点反射的信号相互正交。
其中,第一时长可以小于或等于1个时隙,也就是,第一节点反射信号的延迟时长的最小单位为符号,时延较低。或者,第一时长大于1个时隙。也就是,第一节点反射信号的延迟时长的最小单位为时隙,使得节点反射信号的实现复杂度较低。
在可能的实现方式中,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。第一时域图案指示由第一节点反射的第一信号占用的第一时域资源,第二时域图案指示由第二节点反射的第一信号占用的第二时域资源,第一时域资源和第二时域资源不同。一种可能的实现方式,第一时域资源和第二时域资源正交。可选地,不同节点可通过开启或关断电路来实现不同的时域图案。例如,RIS可通过控制连接RIS单元的PIN二极管的通断状态来实现不同的时域图案。
实现形式三,至少两个节点的配置信息包括至少两个频域配置信息。例如,至少两套配置信息包括第一节点的第一频域配置信息和第二节点的第二频域配置信息。第一频域配置信息指示由第一节点反射的第一信号占用的第一频域资源,第二频域配置信息指示由第二节点反射的第一信号占用的第二频域资源,第一频域资源和第二频域资源不同。可选地,第一频域资源和第二频域资源正交。不同节点根据被配置的频域资源对接收到的信号在相应频域范围内选择性地反射。例如,接收到的信号占用的频域资源为[F1,F2],第一节点反射的信号占用的频域资源为[F1,F3],第二节点反射的信号占用的频域资源为[F4,F2],其中F3<=F4。从而对于接收端来说,可根据第一频域配置信息和第二频域配置信息从接收的至少两个第一信号中区分出由第一节点反射的第一信号和由第二节点反射的第一信号。
可选地,上述实施形式一至实现形式三可以相互结合。例如,至少两个节点的配置信息包括至少两个正交序列的配置信息和至少两个时域配置信息。例如,至少两个节点包括第一节点和第二节点,至少两个节点的配置信息包括第一节点的第一序列的配置信息和第一时域配置信息,以及第二节点的第二序列的配置信息和第二时域配置信息。这样可以提升***容量。
在可能的实现方式中,至少两个节点的配置信息包括第一信息,该第一信息用于指示至少两个节点的配置信息和至少两个节点之间的关联关系。接入网设备或定位管理设备可向终端设备指示至少两个节点的配置信息和至少两个节点之间的对应关系,从而使得终端设备明确哪套配置信息是与哪个节点相对应的。其中,第一信息可以包含在至少两个节点的配置信息中的任意一套配置信息内,或者每套配置信息都可以包含第一信息。或者,第一信息也可以独立于所述至少两个节点的配置信息,由接入网设备或定位管理设备发送给终端设备。
可选地,第一信息用于指示至少两套配置信息和至少两个节点之间的关联关系,包括:第一信息指示至少两个节点的配置信息和第二信号的配置信息的关联关系,该第二信号经过一个节点反射后获得一个第一信号。第二信号可以为接入网设备发送的参考信号,例如可以是定位参考信号。例如,第二信号经过节点以第一信号的形式反射。通过配置至少两个节点的配置信息和定位参考信号之间的关联关系,终端设备无需感知节点的存在,即可确定至少两个节点的配置信息和至少两个节点之间的对应关系。如 此,可以减少网络中节点信息(例如标识信息、位置信息)的泄露,提高网络安全性。
可选地,第一信息用于指示至少两个节点的配置信息和至少两个节点之间的关联关系,包括:第一信息指示至少两个节点的配置信息和至少两个节点的标识信息(例如身份(identity,ID))之间的关联关系。
可选地,第一信息用于指示至少两个节点的配置信息和至少两个节点之间的关联关系,包括:第一信息指示至少两个节点的配置信息和至少两个节点的位置信息之间的关联关系。对于终端设备自身确定该终端设备的位置的场景,例如UE-based定位场景,第一信息可用于指示至少两个节点的配置信息和至少两个节点的位置信息之间的关联关系,即通过节点的位置可以确定该节点被配置的配置信息。
上述第一信息的三种示例中的多种示例可以结合。例如,第一信息可指示至少两个节点的配置信息和第二信号的配置信息的关联关系,以及至少两个节点的配置信息和至少两个节点的位置信息之间的关联关系。
在可能的实现方式中,所述方法还包括:终端设备接收第一指示信息,所述第一指示信息用于激活至少两套配置信息中的一套或多套。至少两套配置信息可以是网络(接入网设备或者定位管理设备或者其它功能实体)提前配置或者预配置给终端设备的,从而无需实时配置,以节省信令开销,并降低时延。例如,可以(预)配置多套配置信息,由接入网设备或定位管理设备通过第一指示信息激活其中的一套或多套配置信息,以通知终端设备接入网设备或定位管理设备为节点所配置的配置信息。
在可能的实现方式中,所述方法还包括:至少两个节点的配置信息以单播或者广播消息的形式发给终端设备。该至少两个节点的配置信息可由接入网设备或者定位管理设备动态配置给终端设备,如此终端设备可获得最新的配置信息,操作更为灵活。
作为一种示例,接入网设备可以通过广播消息或单播消息向终端设备发送该至少两个节点的配置信息,广播消息例如***信息块(system information blocks,SIB)或定位***信息块(positioning system information blocks,posSIB),单播消息例如为无线资源控制(radio resource control,RRC)信令。
作为另一种示例,定位管理设备可以通过LTE定位协议(LTE positioning protocol,LPP)消息发送该至少两个节点的配置信息。或者,定位管理设备将该至少两个节点的配置信息发送给接入网设备。例如定位管理设备通过NR定位协议附属(NR positioning protocol annex,NRPPa)将该至少两个节点的配置信息发送给接入网设备。接入网设备再通过单播或者广播消息该至少两个节点的配置信息发送给终端设备。
在可能的实现方式中,所述方法还包括:终端设备接收至少两个节点的位置信息,所述至少两个节点的位置信息可用于该终端设备的定位。
可选地,至少两个节点的位置信息包括至少两套配置信息与至少两个节点的位置之间的关联关系。
在可能的实现方式中,所述终端设备根据至少两个节点的配置信息对至少两个第一信息进行测量获得至少两个测量结果,终端设备可发送这至少两个测量结果,以辅助网络设备确定终端设备的位置,或者辅助网络知晓终端的测量质量,例如用于网络进行波束管理,或者其它通信用途。其中,至少两个测量结果与至少两个节点一一对应。换句话说,终端设备对一个第一信号进行测量获得一个测量结果。
第二方面,提供了一种通信方法可由第二通信装置执行,该第二通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片***。示例性地,该通信装置为第一节点,或者为设置在第一节点中的芯片***,或者为用于实现第一节点的功能的其他部件。下述以第一节点具有反射功能为例进行说明。例如第一节点上设置有反射体(例如智能超表面),或者第一节点为一个反射体,或者第一节点为一个反射体中的某个部分。为方便描述,下面以所述第二通信装置为第一节点为例,描述第二方面提供的通信方法。
所述通信方法包括:第一节点确定第一套配置信息,并根据第一套配置信息对接收的第二信号进行反射。其中,第一套配置信息包括第一序列的配置信息和/或第一时域配置信息。
在可能的实现方式中,第一套配置信息指示第一时长,或者,第一套配置信息指示第一时域图案。
在可能的实现方式中,第一序列为包括M个元素的序列,M为正整数;其中,M个元素对应N个符号,N个符号位于一个时隙内或连续的多个时隙内,N为正整数;或者,M个元素对应L个时隙,L为正整数。
在可能的实现方式中,第一时长小于或等于1个时隙,或者,第一时长大于1个时隙。
在可能的实现方式中,第一套配置信息包括第一时间信息,该第一时间信息用于指示第一套配置信 息的生效时间。第一节点在第一时间信息指示的时间使用第一套配置信息。
在可能的实现方式中,所述方法还包括:第一节点接收第一套配置信息;或者,第一节点接收第一指示信息,该第一指示信息用于激活多套配置信息中的第一套配置信息。
在可能的实现方式中,所述方法还包括:第一节点向网络设备发送第一节点的信息,所述第一节点的信息包括第一节点的标识信息和第一节点的位置信息。
第二方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述,此处不再赘述。
第三方面,提供了一种通信方法可由第三通信装置执行,该第三通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片***。示例性地,该通信装置为网络设备,或者为设置在网络设备中的芯片***,或者为用于实现网络设备的功能的其他部件。网络设备可以是接入网设备,例如基站。网络设备也可以是定位管理设备。网络设备还可以是核心网设备,例如可以是移动管理实体(mobility management entity,MME)、广播多播服务中心(broadcast multicast service center,BMSC)等,或者也可以包括5G***中的相应功能实体,例如核心网控制面(control plane,CP)或用户面(user plan,UP)网络功能等,例如:SMF、接入和移动性管理功能AMF等。其中,核心网控制面也可以理解为核心网控制面功能(control plane function,CPF)实体。为方便描述,下面以所述第三通信装置为网络设备本身为例,描述第三方面提供的通信方法。
所述通信方法包括:网络设备发送或激活第一节点的第一套配置信息和第二节点的第二套配置信息。其中,第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列的配置信息,第一序列和第二序列正交。或者,第一套配置信息包括第一时域配置信息,第二套配置信息包括第二时域配置信息。或者,第一套配置信息包括第一序列的配置信息和第一时域配置信息,第二套配置信息包括第二序列的配置信息和第二时域配置信息。
作为一种示例,接入网设备可以通过广播消息或单播消息向终端设备发送第一节点的第一套配置信息和第二节点的第二套配置信息,广播消息例如为SIB或posSIB,单播消息例如为RRC信令。
作为另一种示例,定位管理设备可以通过LPP消息发送该至少两个节点的配置信息。或者,定位管理设备将第一节点的第一套配置信息和第二节点的第二套配置信息发送给接入网设备,例如定位管理设备通过NRPPa第一节点的第一套配置信息和第二节点的第二套配置信息。然后接入网设备再通过单播或者广播消息发送第一节点的第一套配置信息和第二节点的第二套配置信息。
在可能的实现方式中,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同;或者,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。
在可能的实现方式中,第一序列为包括M个元素的序列,M为正整数;其中,M个元素对应N个符号,N个符号位于一个时隙内或连续的多个时隙内,N为正整数;或者,M个元素对应L个时隙,L为正整数。
在可能的实现方式中,第一时长小于或等于1个时隙,或者,第一时长大于1个时隙。
在可能的实现方式中,第一套配置信息包括第一时间信息,该第一时间信息用于指示第一套配置信息的生效时间;第一套配置信息包括第二时间信息,该第二时间信息用于指示第二套配置信息的生效时间。
在可能的实现方式中,所述方法还包括:网络设备发送第一信息,该第一信息用于指示第一套配置信息、第二套配置信息和至少两个节点之间的关联关系。
在可能的实现方式中,第一信息用于指示第一套配置信息、第二套配置信息和至少两个节点之间的关联关系,包括:第一信息指示第一套配置信息、第二套配置信息和至少两个节点的标识信息的关联关系;或者,所述第一信息指示第一套配置信息、第二套配置信息和来自网络设备的第二信号的配置信息之间的关联关系。
在可能的实现方式中,网络设备发送第一套配置信息,包括:网络设备发送第一指示信息,该第一指示信息用于激活多套配置信息中的第一套配置信息。
在可能的实现方式中,所述方法还包括:网络设备获取至少两个节点的信息。
在可能的实现方式中,网络设备为定位管理设备,网络设备获取至少两个节点的信息,包括:网络设备接收接入网设备发送的至少两个节点的信息;或者,网络设备接收至少两个节点分别发送的信息。
第三方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述,此处不再赘述。
第四方面,本申请实施例提供了一种通信***,包括第一节点和第二节点,其中,第一节点用于确定第一套配置信息,并根据第一套配置信息对接收的第二信号进行反射;第二节点用于确定第二套配置信息,并根据第二套配置信息对接收的第二信号进行反射。第一套配置信息和第二套配置使得第一节点反射第三信号得到的第一信号和第二节点发射第三信号得到的第一信号正交。
在可能的实现方式中,第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列的配置信息,第一序列和第二序列正交;或者,第一套配置信息包括第一时域配置信息,第二套配置信息包括第二时域配置信息;或者,第一套配置信息包括第一序列的配置信息和第一时域配置信息,第二套配置信息包括第二序列的配置信息和第二时域配置信息,第一序列和第二序列正交。
在可能的实现方式中,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同;或者,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。
在可能的实现方式中,第一序列为包括M个元素的序列,M为正整数;其中,M个元素对应N个符号,N个符号位于一个时隙内或连续的多个时隙内,N为大于或等于1的整数;或者,M个元素对应L个时隙,L为正整数。
在可能的实现方式中,第一时长小于或等于1个时隙,或者,第一时长大于1个时隙。
在可能的实现方式中,所述通信***还包括:网络设备,用于配置第一套配置信息和第二套配置信息。
第五方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面至第三方面任意方面方法实施例中行为的功能,具体可以参见第一方面至第三方面的相关描述,此处不再赘述。例如,该通信装置可以是第一方面中的终端设备,或者该通信装置可以是能够实现第一方面提供的方法的装置,例如芯片或芯片***。例如,通信装置包括处理模块和收发模块,其中,收发模块可用于接收由至少两个节点反射的至少两个第一信号,该至少两个第一信号相互正交;处理模块可用于根据至少两个节点的配置信息对至少两个第一信号进行测量。
或者,该通信装置可以是第二方面中的第一节点,或者该通信装置可以是能够实现第二方面提供的方法的装置,例如芯片或芯片***。例如,通信装置包括处理模块和收发模块,其中,处理模块可用于确定第一套配置信息,该所述第一套配置信息包括第一序列的配置信息和/或第一时域配置信息;收发模块可用于根据第一套配置信息对接收的第二信号进行反射。
或者,该通信装置可以是第三方面中的网络设备,或者该通信装置可以是能够实现第三方面提供的方法的装置,例如芯片或芯片***。例如,通信装置包括处理模块和收发模块,其中,处理模块可用于配置第一套配置信息和第二套配置信息;收发模块可用于发送第一套配置信息和第二套配置信息;其中,第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列的配置信息,第一序列和第二序列正交;或者,第一套配置信息包括第一时域配置信息,第二套配置信息包括第二时域配置信息;或者,第一套配置信息包括第一序列的配置信息和第一时域配置信息,第二套配置信息包括第二序列的配置信息和第二时域配置信息。
在一个可能的设计中,该通信装置包括用于执行第一方面至第三方面任意方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第一方面至第三方面任意方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请实施例提供一种通信装置,该通信装置可以为上述第五方面的通信装置,或者为设置在第五方面中的通信装置中的芯片或芯片***。该通信装置可以为终端设备或网络设备。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述方法中由终端设备或第一节点或网络设备所执行的方法。
第七方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输 出接口用于输入和/或输出信息。逻辑电路用于执行第一方面至第三方面中的任意一个方面中所述的方法。
第八方面,本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括通信接口,用于实现第一方面至第三方面中的任意一个方面中所述的方法。在一种可能的实现方式中,所述芯片***还包括存储器,用于保存计算机程序。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供了一种通信***,所述通信***包括用于实现第一方面相关功能的终端设备、用于实现第二方面相关功能的节点和用于实现第三方面相关功能的网络设备。当然,所述通信***可以包括更多终端设备、更多节点或者更多网络设备。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面至第三方面中的任意一个方面中的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面至第三方面中的任意一个方面中的方法被执行。
上述第五方面至第十一方面及其实现方式的有益效果可以参考对第一方面或第三方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例提供的RIS模块的工作原理示意图;
图2为本申请实施例提供的基于RIS的下行定位示意图;
图3为本申请实施例适用的一种通信***的定位架构的示意图;
图4为本申请实施例适用的一种通信***的网络架构图;
图5为本申请实施例适用的另一种通信***的网络架构图;
图6为本申请实施例适用的再一种通信***的网络架构图;
图7为本申请实施例提供的通信方法的流程示意图;
图8为本申请实施例提供的节点根据OCC配置信息对接收的信号进行反射的一示意图;
图9为本申请实施例提供的节点根据OCC配置信息对接收的信号进行反射的一示意图;
图10为本申请实施例提供的节点根据延迟时长对接收的信号进行反射的示意图;
图11为本申请实施例提供的节点根据时域图案对接收的信号进行反射的一示意图;
图12为本申请实施例提供的节点根据时域图案对接收的信号进行反射的另一示意图;
图13为本申请实施例提供的通信装置的一种结构示意图;
图14为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
本申请实施例涉及定位方法,为方便理解本申请实施例提供的方案,首先对本申请实施例涉及的一些概念、用语等进行介绍。
1)定位方法,根据传输定位参考信号(positioning reference signal,PRS)的链路或接口,定位方法可分为Uu口定位方法和侧行链路(sidelink,SL)定位方法。可以理解的是,Uu口指的是基站和用户设备之间的接口。SL指的是相同类型设备间的链路,例如,终端设备到终端设备之间的链路。SL定位方法无需基站的参与。
对于Uu口定位方法来说,根据PRS的来源,Uu口定位方法又分为以下三类:下行定位方法、上行定位方法以及上下行联合定位方法。需要说明的是,这里上行和下行是相对而言的,如果网络设备到终端设备的传输方向为下行(本文以此为例),那么终端设备到网络设备的传输方向为上行。相反,如果网络设备到终端设备的传输方向为上行,那么终端设备到网络设备的传输方向为下行。
下行定位方法,终端设备对网络侧发送的下行定位参考信号(downlink positioning reference signal,DL-PRS)进行测量。终端设备根据测量结果估计终端设备的位置,实现下行定位。下行定位方法,例如包括基于下行到达时间差(downlink time difference of arrival,DL-TDOA)的定位方法,或者,基于下行离开角(downlink angle of departure,DL-AoD)的定位方法。
上行定位方法,网络设备对终端设备发送的上行定位参考信号(uplink positioning reference signal, UL-PRS)进行测量。网络设备根据测量结果估计终端设备的位置,实现上行定位。上行定位参考信号可以是SRS,或者其他可用于上行测量的参考信号。本申请实施例对此并不进行限定。例如,SRS可以为用于多输入多输出(multiple-input multiple-out-put,MIMO)的上行参考信号(MIMO-SRS)。SRS也可以为专用于定位的上行定位参考信号(pos-SRS)。上行定位方法,例如包括基于上行到达时间差(uplink time difference of arrival,UL-TDOA)的定位方法,或者,基于上行离开角(uplink angle of departure,UL-AoD)的定位方法。
上下行联合定位方法,网络设备对来自终端设备的上行定位信号进行测量,以及终端设备对来自网络设备下行定位参考信号进行测量。基于网络设备的测量结果和终端设备的测量结果估计终端设备的位置。
2)接入网设备,是终端设备通过无线方式接入到移动通信***中的接入设备,例如包括接入网(access network,AN)设备,例如基站。接入网设备也可以是指在空口与终端设备通信的设备。接入网设备可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B)(也简称为eNB或e-NodeB);网络设备也可以包括第五代(5th generation,5G)***中的下一代节点B(next generation node B,gNB);或者,接入网设备也可以包括无线保真(wireless-fidelity,Wi-Fi)***中的接入节点等;或者接入网设备可以为中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、(device to device,D2D)网络中的设备、机器到机器(machine to machine,M2M)网络中的设备、物联网(internet of things,IoT)网络中的设备或者PLMN网络中的接入网设备等。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。
本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备,也可以是能够支持接入网设备实现该功能的装置,例如芯片***,该装置可以被安装在接入网设备中。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备本身为例进行描述。
3)终端设备,也称为终端装置,是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、车到万物(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、IoT、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景中的终端设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。终端设备还可以包括中继(relay),例如,终端设备可以是客户终端设备(customer premise equipment,CPE),CPE可接收来自网络设备的信号,并将该信号转发给其他终端设备。或者理解为,能够与基站进行数据通信的都可以看作终端设备。如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)或远程通信模组(也就(telematics box,T-box)。
终端设备可以作为整车,还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
在本申请实施例中,终端设备可以是指用于实现终端设备的功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片***,该装置可以被安装在终端设备中。例如终端设备也可以是车辆探测器。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备本身为例进行描述。
4)定位管理设备,也称为位置管理网元,主要负责定位管理。例如,定位管理设备如接收其他网元(如接入与移动性管理网元)的定位请求,并对用户的定位数据进行收集,通过定位计算后获得用户位置。位置管理网元还可以对基站或定位管理单元进行管理和配置,实现定位参考信号的配置等。本申请实施例对定位管理设备的名称不作限定,例如,定位管理设备也可以称为定位设备、位置服务器、定位服务中心或定位处理中心等。本申请实施例涉及的定位管理设备可为位置管理功能(location management function,LMF)或者位置管理组件(location management component,LMC),或者可以是位于接入网设备中的本地位置管理功能(local location management function,LLMF),或者其它具有类似功能的网元等。为了方便描述,下述实施例均以定位管理设备为LMF为例进行介绍。
在基于5G核心网的定位架构中,LMF网元的作用可以是负责支持有关目标UE的不同类型的位置服务,包括对UE的定位和向UE传递辅助数据,其控制面和用户面分别是演进服务移动定位中心(evolved serving mobile location centre,E-SMLC)和服务定位协议(service location protocol,SLP)。LMF网元可以与ng-eNB/gNB和UE进行如下的信息交互:
与下一代演进型基站(next generation evolved nodeB,ng-eNB)/gNB之间通过NR定位协议A(NR positioning protocol A,NRPPa)消息进行信息交互,例如获取PRS、探测参考信号(sounding reference signal,SRS)配置信息、小区定时、小区位置信息等;
与UE之间通过LTE定位协议(LTE positioning protocol,LPP)消息进行UE能力信息传递、辅助信息传递、测量信息传递等。
5)时间单元,指时隙(slot)或者符号(symbol),一个时隙包括多个符号。如果没有特殊说明,符号均指时域符号,这里的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。在OFDM符号采用常规循环前缀(normal cyclic prefix,NCP)情况下,一个时隙可以包括14个符号;在OFDM符号采用扩展循环前缀(extended cyclic prefix,ECP)的情况下,一个时隙可以包括12个符号。
6)正交序列,可以对信号进行时域、频域、码域等维度上的扩展,从而使得不同信号保持正交。本申请实施例中的正交序列也简称为序列,两个正交序列指的是两个序列成分之间的内标积都等于零。例如,正交序列可以是正交覆盖码(orthogonal cover code,OCC),也称为正交扩频码或者正交掩码。OCC也可以看成是正交序列,可从码域维度区分同一参考信号或者序列。例如,对于同一参考信号,例如频域位置相同(例如使用相同的子载波)、并且时域位置相同(例如使用相同的OFDM符号),当不同反射体或者不同天线端口采用不同OCC,则可以抑制不同反射体反射后的信号或者不同天线端口发送信号之间的干扰。示例性地,当OCC码长或序列长度为4时,常用的OCC如表1所示。从表1可以看出,任意两个OCC之间相互正交,即内标积为0。
表1
7)反射体,可反射或者折射或者透射电磁波,提高无线网络的覆盖和容量。反射体,例如包括智能超表面,也可以称为可重配智能表面(reconfigurable intelligent meta-surface,RIS),或者称为智能反射表面(intelligent reflection surface,IRS)。本申请实施例以反射体是RIS为例。另外,本申请实施例以反射体反射信号为例。本申请实施例中的“反射”是广义上的反射,包括折射和/或透射等其它信号 处理过程。
RIS是一种数字式可重构的人工电磁表面,由大量亚波长的数字可重构人工电磁单元按一定的宏观排列方式(周期性或非周期性)形成的人工复合结构。RIS的基本单元和排列方式都可任意设计,通过改变基本单元的状态分布可以控制特定空间位置的电磁场的特性。另外,RIS也可以反射特定频域区间的信号,例如采用不同超材料的RIS对不同频率的信号的敏感性不同,可以做到特定频率的反射或透射或折射。
示例性的,请参见图1,为RIS模块的工作原理示意图。如图1所示,RIS模块包括多个RIS单元,不同的RIS单元之间通过二极管连接。RIS可对接收的电磁波(入射波)进行反射,得到反射波。应理解,电磁波从一种介质传播到另一种具有不同折射率的介质时,除了发生反射还会发生折射,所以RIS可以改变电磁波的反射相位差。也可以理解为,RIS使得电磁波在反射或折射界面上遵循广义斯涅耳定律。也就是RIS可使得电磁波的反射角可以不等于入射角。相对于传统表面(电磁波的反射角是反射角1)来说,可以使得电磁波的反射角为反射角2。换句话说,RIS相对于传统表面,RIS具有根据广义斯涅尔斯定律对电磁波整形的能力。
具体的,控制RIS单元对接收的信号进行幅度和/或相位的调整,可控制每个RIS单元的反射系数。RIS单元对接收的信号进行幅度和/或相位的调整也可以认为是调整RIS单元的幅度和/或相位。应理解,每个RIS单元的反射系数不同,该RIS单元对电磁波的反射角或者折射角也有所不同。也就是控制多个RIS单元分别对接收的信号进行幅度和/或相位的调整,可调整RIS对电磁波的反射角或者折射角,从而协同地实现用于定向信号增强或零陷的精细的三维(3D)无源波束形成。
在一些实施例中,可通过控制连接RIS单元的PIN二极管的通断状态(开启状态或关闭状态)来控制RIS单元对接收的信号进行幅度和/或相位的调整。例如通过为PIN二极管施加不同的偏压,使得该PIN二极管处于开启状态或关闭状态,也就使得与该PIN二极管连接的RIS单元处于开启状态或关闭状态。RIS包括的多个RIS单元处于不同状态,RIS对接收信号的幅度和/或相位的调整量不同,使得RIS的反射系数也所有不同。所以通过控制RIS单元的状态可控制RIS模块对接收信号的幅度和/或相位的调整,例如使得RIS对电磁波的反射相位相差180°,进而控制RIS的反射系数,即RIS的相位和/或幅度。这样可使得RIS对电磁波的反射角不等于入射角,实现定向波束形成,从而可提升无线网络的覆盖和***容量。RIS的反射系数不同,对电磁波的反射角也不同,导致波束方向也有所不同,所以可认为RIS的反射系数可用于调整RIS的波束方向。
需要说明的是,在本申请实施例中的RIS可以与网络设备(例如,接入网设备或定位管理设备)进行通信。例如,RIS可以向网络设备发送该RIS自身的一些信息,例如,RIS的标识信息、RIS的位置信息等。本申请实施例中的RIS也可以接收来自网络设备的配置,根据所接收的配置对所接收的信号进行反射。
8)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这十多个些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一套配置信息和第二套配置信息,只是为了区分不同的配置信息,而并不是表示这两套配置信息的优先级、发送顺序或者重要程度等的不同。
本申请实施例中的“关联”也可以称为“映射”、“相关”或者“对应”。例如,第一套配置信息与第一节点关联,也可以为第一套配置信息与第一节点对应(或映射,或相关)。可以(预)配置多套配置信息与多个节点的关联关系。
如前述,RIS可以反射、透射或折射电磁波,提高无线网络的覆盖,也可应用于定位,以提高定位的准确度。例如,在可能的定位场景中存在遮挡物,由于信号被遮挡物遮挡,终端设备或接入网设备侧无法接收到来自发送端的直达信号或视距(line of sight,LOS)信号,或者环境中部署的接入网设备较 少,使得定位的准确度较低,甚至无法实现定位。其中,信号被遮挡物遮挡无法传输,也可以认为是,非视距(not line of sight,NLOS)传输。非视距传输是指有障碍物的情况下,无线信号只能通过反射,散射和衍射方式到达接收端。示例性地,当接入网设备和终端设备之间的传播路径上存在障碍物,这种情况下,可在环境中部署RIS,通过合理的部署,RIS和接入网设备以及RIS和终端RIS可以实现视距传输。通过RIS来反射接入网设备或终端设备发送的信号,从而实现更为精确的定位。
例如,请参见图2,为基于RIS的下行定位示意图。图2以环境中部署了3个RIS为例,这3个RIS分别为RIS1、RIS2和RIS3。图2中的接入网设备和终端设备之间具有障碍物,该障碍物使得接入网设备发送的信号或信息无法直接到达终端设备。即接入网设备和终端设备之间是NLOS传输,会导致终端设备定位的精确度较低,甚至无法实现定位。但是由于部署了RIS1、RIS2和RIS3,通过RIS1、RIS2和RIS3对接入网设备发送的信号的反射或折射,使得接入网设备发送的信号到达终端设备。相当于RIS1、RIS2和RIS3在接入网设备和终端设备之间创建了视距(light of sight,LOS)传输的条件。可以理解的是,接入网设备发送的信号对于RIS1、RIS2和RIS3来说是相同的,也就是本申请实施例中的“第二信号”。对于终端设备来说,能够接收到接入网设备经由RIS反射的视距传输信号,例如,RIS1反射接入网设备发送的信号经过路径S1到达终端设备。同理,RIS2反射接入网设备发送的信号经过路径S2到达终端设备,RIS3反射接入网设备发送的信号经过路径S3到达终端设备。对于终端设备来说,RIS1、RIS2和RIS3也可以相当于“虚拟”接入网设备。终端设备通过测量RIS1-RIS3反射的信号,并根据测量结果和RIS1-RIS3的位置信息可以确定终端设备所在的位置。可见,通过部署RIS1、RIS2和RIS3使得环境中参与定位的“虚拟”接入网设备更多,从而可提高定位终端设备的精确度。
然而,由于RIS只能对接收到的信号进行放大、调相等,而无法改变信号的其它特征,这样对于接收端来说,来自不同RIS的反射信号本质上是相同的。而接收端接收到的是一个由多个反射信号“混叠”后的信号,在可能的应用场景中,例如定位或者波束管理中,需要接收端识别来自不同智能超表面的反射信号。
一种可能的实现方式中,发送端可在不同波束方向发送不同的参考信号,这样位于不同波束方向上的RIS接收的参考信号是不同的。不同的RIS反射参考信号后到达接收端,接收端通过区分波束方向可以识别不同RIS的反射信号,从而实现定位。然而当***中支持的频率较低时,没有波束技术,也就无法在不同波束方向发送不同的参考信号。另外,该方案无法区分通过同一波束发送的参考信号。且由于要求发送端在不同波束方向发送不同的参考信号,增加了发送端的复杂度,对发送端的能力要求较高。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,不同的RIS可以使用不同的OCC和/或时域资源反射所接收的信号,使得接收端可以从来自不同RIS的信号中区分经由各个RIS分别反射的信号,实现定位。
本申请的实施例提供的技术方案可以应用于第五代(5th generation,5G)移动通信***,或者应用于LTE***,或者还可以应用于下一代移动通信***或其他类似的通信***。当然,本申请实施例的技术方案也可以应用于其它的通信***,只要该通信***存在对终端的定位需求即可。例如,本申请的实施例提供的技术方案也可以应用于车到万物(vehicle to everything,V2X)***,物联网(internet of things,IoT)***,窄带物联网(narrow band internet of things,NB-IoT)***等,例如基于无线保真(wireless fidelity,WiFi)的IoT网络或可穿戴式WiFi网络。此外,所述通信***还可以适用于面向未来的通信技术,本申请实施例描述的***是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
示例性的,请参见图3,为本申请实施例适用的一种通信***的定位架构的示意图,如图3所示,涉及的网元/模块主要包括下一代无线接入网络(next generation radio access network,NG RAN)、终端设备和核心网三部分。其中,核心网包括LMF、接入和移动性管理功能(access and mobility management function,AMF)、SLP以及E-SMLC等。定位服务器即定位管理功能(location management function,LMF)连接到AMF,LMF和AMF之间通过NLs接口连接。LMF负责支持有关终端的不同类型的位置服务,包括对终端的定位和向终端传递辅助数据。AMF可以从第5代核心网络定位服务(5th generation core network location services,5GC LCS)实体接收与终端相关的位置服务请求,或者AMF本身也可代表特定终端启动一些位置服务,并将位置服务请求转发给LMF。得到终端返回的位置信息后,将相关 位置信息返回给5G C LCS实体。
NG RAN可以包括下一代节点B(next generation node B,gNB)、下一代演进型基站(next generation evolved nodeB,ng-eNB)或者未来演进的网络节点等。gNB、ng-eNB之间通过Xn接口连接,LMF与ng-eNB/gNB通过NG-C接口连接。
应理解,上述图3是本申请实施例可适用的通信***的一种示例性说明,并不对本申请适用的通信***所包括网元的类型、数量、连接方式等进行具体限定。
例如,图4示出了本申请实施例适用的一种通信***的网络架构,该通信***包括核心网、NG-RAN和终端。核心网包括LMF、AMF、安全用户平面定位(secure user plane location,SUPL)定位平台(SUPL location platform,SLP)以及E-SMLC等网元/模块,NG RAN包括gNB、ng-eNB等网元/模块,其中LMF、AMF、SLP、E-SMLC、gNB以及ng-eNB等网元/模块的具体功能、各个网元/模块之间的连接关系可以参见上文图3相关部分的介绍,这里不再赘述。
与图3不同的是,图4所示的网络架构中NG-RAN中增加了LMC,LMC的具体部署方式是设置在基站内部,如设置在gNB中或设置在ng-ENB中。在这种网络架构中,LMC作为是基站内部的一个功能,因此不需要引入新的接口。
图5示出了本申请实施例适用的另一种通信***的网络架构,如图5所示,通信***同样包括核心网、NG-RAN和终端。与图4不同的是,图5所示的网络架构中的LMC在NG-RAN中作为一个独立的逻辑节点,通过一个新接口与基站相连接,例如图5中,LMC通过接口Itf与gNB-CU相连。
图6示出了本申请实施例适用的再一种通信***的网络架构,如图6所示,通信***同样包括核心网、NG-RAN和终端,LMC在NG-RAN中作为一个独立的逻辑节点,与图5不同的是,LMC可以图5经过新接口同时与多个基站连接。图6以LMC与两个基站同时相连为例,在具体实施时LMC还可以与更多的基站相连。
上述图3-图6是本申请实施例可适用的通信***的一种示例性说明,并不对本申请适用的通信***所包括网元的类型、数量、连接方式等进行具体限定。且图3-图6中虚线示意的网元/模块不是不必可少的,是可选的,例如E-SMLC或SLP不是必不可少的;或者,虚线示意的网元/模块是另一种存在形式,例如gNB或ng-eNB在一些实施例中也称为发送-接收节点(transmission-reception point,TRP),终端设备在一些实施例称为安全用户平面定位(secure user plane location,SUPL)使能终端(SUPL enabled terminal,SET)。
本申请实施例提供的通信方法可应用于定位。例如,上行定位、下行定位、上下行定位或者侧行定位。需要说明的是,这里“上行”和“下行”是相对而言的,如果接入网设备到终端设备的传输方向为下行(本文以此为例),那么终端设备到接入网设备的传输方向为上行;相反,如果接入网设备到终端设备的传输方向为上行,那么终端设备到接入网设备的传输方向为下行。“侧行”指的是相同类型的设备之间,例如,终端设备到终端设备的传输方向为侧行;又例如,接入网设备到接入网设备的传输方向也为侧行。
本申请实施例中的“第一信号”和“第二信号”可以是定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、定位探测参考信号(positioning-sounding reference signal,pos-SRS)、跟踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information-reference signal,CSI-RS)、解调参考信号(demodulatin reference signal,DM-RS)、相位噪声跟踪参考信号(phase noise tracking reference signal,PT-RS)、侧行链路参考信号或者随机接入前导码(preamble)。
在下文的介绍过程中,以该方法应用于图3-图6中任一所示的通信***为例。需要说明的是,本申请实施例只是以通过图3-图6的通信***为例,并不限制于这种场景。另外,该方法涉及接入网设备和终端设备,还可能涉及定位管理设备等,在下文中,以定位管理设备是LMF网元为例,应理解,在未来通信如6G中,定位管理设备仍可以是LMF网元,或有其它的名称,本申请实施例不作限定。另外,接入网设备可以是当前为终端设备服务的接入网设备。该接入网设备可以是NG RAN中的设备,例如gNB、ng-eNB。或者,该接入网设备可以是LMC。如前文所述,如果LMC作为接入网设备内部的一个功能,那么该接入网设备为LMC所在的接入网设备。如果LMC的部署方案如图4或图5,即LMC作为一个独立的逻辑节点通过接口与一个网络设备或多个接入网设备连接,那么该接入网设备为与LMC连接的任意一个接入网设备。
本申请实施例以所提供的通信方法应用于处于无线控制资源(radio resource control,RRC)连接(connected)状态(记为RRC_connected状态)为例。本申请实施例提供的通信方法也可以适用于处于RRC非连接态(例如RRC空闲态或者RRC非激活态)的终端设备。可以理解的是,当终端设备处于非连接态,可以将终端设备寻呼回连接态,再执行本申请实施例提供的通信方法。或者,当终端设备处于非连接态,终端设备可以通过参考信号的相关配置发送参考信号。例如,终端设备进入非连接态之后,可以保留连接态下参考信号的相关配置,或者通过***信息获取参考信号的相关配置。
下面结合附图对本申请实施例提供的方案进行详细介绍。需要说明的是,在本申请的各个实施例对应的附图中,凡是用虚线表示的步骤均为可选的步骤。本申请实施例中的节点指的是具有反射信号功能的节点,例如,该节点设置有RIS,或者,该节点为RIS。其中,多个节点可以位于同一个反射体。例如,一个反射体设置有两个RIS,这两个RIS相当于两个节点。由于节点具有反射信号的功能,因此可以扩大覆盖范围。例如,可以部署多个节点,接入网设备发送的信号,经由多个节点反射后被终端设备接收。终端设备可接收多个信号,并对这多个信号进行测量,以用于确定终端设备的位置。在本申请实施例中,网络设备可以是接入网设备,也可以是定位管理设备。根据网络设备的具体实现的不同,通信方法的流程也有所不同,具体在下文中详细介绍。另外,本申请实施例中的节点指的是具有反射信号功能的节点,例如,该节点设置有RIS,或者,该节点为RIS。
请参见图7,为本申请实施例提供的通信方法的流程示意图。图7所示的流程以应用于定位为例,该通信方法由网络设备、至少两个节点和终端设备执行为例。
S701、网络设备确定至少两个节点。
网络中可能部署多个节点,对于不同定位需求,可以参与定位的节点也有所不同。各个节点可以通过与网络设备交互一些信息,完成入网、认证过程,如S700a所示。各个节点可以向接入网设备发送自身的标识信息(ID)等,完成入网、认证过程。终端设备或网络设备或其它第三方实体有需求定位时,可以向网络设备发送定位服务需求。如S700b所示,图7以终端设备有需求定位时,终端设备可以向定位管理设备发送定位服务需求。对于网络设备来说,确定终端设备有定位需求时,可以获取各个节点的信息,以确定适合参与定位的节点。例如,网络设备可请求各个节点上报自身的相关信息,各个节点响应于网络设备的请求,将自身的相关信息发送给网络设备。节点的相关信息,例如可以包括节点的标识信息或者节点的位置信息。该节点的位置信息可以包括方位、俯仰角、坐标中等的一种或多种信息,例如节点相较于某一参考点所在方位、节点相较于某一参考点的俯仰角、节点的坐标中的一种或多种信息。
示例性地,网络设备可以为接入网设备。所述节点可向接入网设备上报自身的相关信息。例如,所述节点上电或开机后可主动上报自身的相关信息。又例如,所述节点可响应于该接入网设备的请求上报自身的相关信息。具体地,该接入网设备可向各个节点发送请求消息,该请求消息用于请求节点的相关信息。任意一个节点接收请求消息,响应于该请求消息,向接入网设备发送给节点的相关信息。接入网设备获得至少一个节点的相关信息之后,可将该至少一个节点的信息发送给定位管理设备。或者,定位管理设备可向接入网设备发送请求消息,以请求获取至少一个节点的相关信息。接入网设备接收该请求消息,将获得的至少一个节点的相关信息发送给定位管理设备。
定位管理设备获得至少一个节点的相关信息之后,可以根据至少一个节点的相关信息确定参与定位的至少两个节点。或者,接入网设备获得至少一个节点的相关信息之后,可直接根据至少一个节点的相关信息确定参与定位的至少两个节点。如果定位管理设备确定至少两个节点可以将这至少两个节点指示给接入网设备,以使得接入网设备知道参与定位的节点是这至少两个节点。例如,定位管理设备可以将这至少两个节点的标识信息发送给接入网设备。如果接入网设备确定至少两个节点,也可以将这至少两个节点指示给定位管理设备。图7以定位管理设备确定至少两个节点为例。
S702、网络设备确定至少两个节点的配置信息。
网络设备确定至少两个节点,为这至少两个节点配置用于信号处理的配置信息。为方便描述,将节点接收的信号称为第二信号,对第二信号反射后获得的信号称为第一信号,第二信号可以是来自接入网设备的定位参考信号。
其中,至少两个节点的配置信息可以包括至少两个节点中各个节点的配置信息,换句话说,至少两个节点的配置信息可以是至少两套配置信息,一套配置信息对应一个节点。以至少两个节点包括第一节点和第二节点为例,至少两个节点的配置信息包括第一节点的第一套配置信息和第二节点的第二套配置 信息。第一节点根据第一套配置信息对接收的第二信号进行反射获得第一信号,第二节点根据第二套配置信息对接收的第二信号进行反射获得第一信号。
或者,至少两个节点的配置信息也可以用于各个节点确定被配置的配置信息。以至少两个节点包括第一节点和第二节点为例,该至少两个节点的配置信息可以使得第一节点确定第一套配置信息,也可以使得第二节点确定第二套配置信息。例如,网络设备可以广播至少两个节点的配置信息,第一节点接收至少两个节点的配置信息,可以确定第一套配置信息,第二节点接收至少两个节点的配置信息,可以确定第二套配置信息。至少两个节点的配置信息可由接入网设备确定,也可以由定位管理设备确定,图7以定位管理设备确定至少两个节点的配置信息为例。为方便描述,后续以至少两个节点包括第一节点和第二节点为例。
第一节点反射的第一信号和第二节点反射的第一信号可被终端设备接收。对于终端设备来说,可接收由至少两个节点反射的至少两个第一信号,这两个第一信号相互正交。终端设备接收到的是至少两个第一信号叠加之后的信号,但终端设备无法确定这至少两个第一信号中的各个第一信号是由哪个节点反射得到的。在可能的场景中,比如定位、波束管理等场景,终端设备需要区分这至少两个第一信号中的各个第一信号是由哪个节点反射的。为此,网络设备配置的第一套配置信息和第二套配置信息可用于区分由第一节点反射的第一信号和由第二节点反射的第一信号。另外,第一套配置信息和第二套配置还可以使得由第一节点反射的第一信号和由第二节点反射的第一信号相互正交,以降低干扰。
在本申请实施例中,至少两个节点的配置信息的具体实现形式包括如下几种。
实现形式一,至少两个节点的配置信息包括至少两个正交序列配置信息。例如,至少两个节点的配置信息包括第一节点的第一套配置信息和第二节点的第二套配置信息,第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列的配置信息,第一序列和第二序列正交。由于第一序列和第二序列正交,因此,第一节点反射第二信号获得的第一信号和第二节点反射第二信号获得的第一信号在码域上相互正交。
作为一种示例,网络设备为各个节点单独配置所确定的配置信息。例如,至少两个节点的配置信息包括第一套配置信息和第二套配置信息,第一套配置信息包括第一序列,第二套配置信息包括第二序列。网络设备向第一节点发送第一套配置信息,向第二节点发送第二套配置信息。或者,至少两个节点的配置信息包括第一序列和第二序列,其中,第一序列和第二序列以及第一节点和第二节点具有关联关系。网络设备可广播至少两个节点的配置信息,即广播第一序列和第二序列。第一节点接收第一序列和第二序列,根据第一序列、第二序列以及第一节点和第二节点之间的关联关系可以确定被配置第一序列。类似地,第二节点接收第一序列和第二序列,根据该关联关系可以确定被配置第二序列。
作为另一种示例,至少两个节点的配置信息包括第一套配置信息和第二套配置信息,第一套配置信息包括第一序列的长度,第二套配置信息包括第二序列的长度。即通过配置序列的长度为至少两个节点间接配置正交序列。可以理解的是,固定长度的正交序列集合是已知的或者预定义,因此,通过配置正交序列的长度可以间接指示正交序列集合。任意两个长度相同的正交序列相互正交,因此,第一节点和第二节点从该长度对应的正交序列集合中分别选择一个即可。例如,可以按照约定或默认顺序选择,如第一节点选择正交序列集合中的第一个序列,第二节点选择正交序列集合中的第二个序列。或者,至少两个节点的配置信息包括一个长度信息。示例性地,网络设备可以在广播消息中携带该配置信息(即所述一个长度信息),接收到该配置信息的节点根据该长度信息指示的长度按照约定或者默认顺序从该长度对应的正交序列集合中确定各自的正交序列。
作为又一种示例,至少两个节点的配置信息包括第一套配置信息和第二套配置信息,第一套配置信息包括第一序列的索引信息,第二套配置信息包括第二序列的索引信息。例如,可以预定义或者预配置正交序列集合,各个正交序列具有对应的索引。因此,通过索引可指示正交序列。例如,网络设备可以向第一节点发送第一序列的索引信息,向第二节点发送第二序列的索引信息。或者,可将索引与节点关联起来,各个节点可根据该关联关系确定被配置的序列。其中,索引和节点的关联关系可以是(预)配置或(预)定义的。例如,至少两个节点的配置信息包括多个序列的索引信息。示例性地,网络设备可以在广播消息中携带该配置信息(即多个序列的索引信息)。第一节点和第二节点接收该配置信息,根据索引和节点的关联关系可以确定第一节点被配置第一序列,第二节点被配置第二序列。
可选地,第一序列的配置信息可包括第一序列的长度和第一序列的索引信息,第二序列的配置信息可包括第二序列的长度和第二序列的索引信息。
其中,OCC的作用范围可以是在时隙内,换句话说,OCC的最小粒度是符号。例如,以第一序列是第一OCC,第二序列是第二OCC为例。第一OCC为包括M个元素的序列,这M个元素对应N个符号,N个符号位于一个时隙内或者连续的多个时隙内。M为和N均为正整数,即M个元素的作用范围在1个时隙内或者连续的多个时隙内。例如,M个元素为S_1,S_2,…,S_M,其中S_1,S_2,…,S_M,N个符号为n_1,n_2,…,n_N个符号。n_1,n_2,…,n_N个符号位于1个时隙或者连续的2个时隙,可以认为OCC的最小粒度是符号。同理,第二OCC也为包括M个元素的正交序列,这M个元素对应N个符号,N个符号位于一个时隙内或者连续的多个时隙内。当OCC的作为范围在1个时隙内或者连续的多个时隙内,可以有效降低时延。另外,每个元素对应的符号个数可以相同,以降低节点侧反射信号的实现复杂度。
举例来说,请参见图8,为节点根据OCC配置信息对接收的信号进行反射的一示意图。图8以至少两个节点包括第一节点、第二节点和第三节点为例。图8以1个时隙包括14个符号为例。其中,第一节点的第一OCC配置信息指示的OCC为包括6个元素的序列[+1+1+1+1+1+1],第二节点的第二OCC配置信息指示的OCC为序列[-1+1-1+1-1+1]为例。其中,图8中的(a)示出了网络设备发送的第二信号的图样,例如在1个时隙内重复6次发送图样为comb-2的第二信号。图8中的(b)示出了第一节点根据第一OCC反射的信号1的图样。信号1为至少两个第一信号中的一个第一信号。图8中的(c)示出了第二节点根据第二OCC反射的信号2的图样。信号2为至少两个第一信号中除信号1之外的一个第一信号。从图8中的(b)和图8中的(c)可以看出,第一节点根据第一OCC反射的第一信号和第二节点根据第二OCC反射的第一信号相互正交。第三节点的第三OCC配置信息指示的OCC可为序列[+1-1+1-1+1-1]。相应的,图8中的(d)示出了第三节点根据第三OCC反射的信号3的图样。信号3为除信号1和信号2之外的另一个第一信号。第一节点、第二节点和第三节点反射获得的三个第一信号之间两两相互正交。另外,图8以OCC中的6个元素,每个元素对应2个符号为例,即每个元素对应的符号个数相同,从而节点侧发射信号的实现复杂度较低。
在一些实施例中,OCC的作用范围也可以是多个时隙,即OCC应用于时隙间,也可以认为,OCC的最小粒度是时隙。例如,第一OCC为包括M个元素的正交序列,这M个元素对应L个时隙,M和L均为正整数。例如,这M个元素包括S_1,S_2,…,S_M,其中S_1,S_2,…,S_M分别对应k_1,k_2,…,k_L个时隙,因此,也可以认为,OCC的最小粒度是时隙。同理,第二OCC也为包括M个元素的正交序列,这M个元素对应L个符号。由于OCC的最小粒度是时隙,因此,降低节点侧反射信号的实现复杂度。另外,能够使用更多的OCC,提升容量,能够适用于网络中节点较多的场景。另外,每个元素对应的时隙个数可以相同,以降低节点侧反射信号的实现复杂度。
举例来说,请参见图9,为节点根据OCC配置信息对接收的信号进行反射的另一示意图。与图8的不同之处,图9以OCC应用于时隙间为例。第一节点的第一OCC配置信息指示的OCC为包括4个元素的序列[+1+1+1+1],第二节点的第二OCC配置信息指示的OCC为序列[+1+1-1-1]为例。其中,图9中的(a)示出了网络设备在连续4个时隙内发送的第二信号。图9中的(b)示出了第一节点根据第一OCC反射的第一信号的图样。图9中的(c)示出了第二节点根据第二OCC反射的另一个第一信号的图样。从图9中的(b)和图9中的(c)可以看出,第一节点根据第一OCC反射的第一信号和第二节点根据第二OCC反射的第一信号相互正交。第三节点的第三OCC配置信息指示的OCC可为序列[+1-1+1-1]。相应的,图9中的(d)示出了第三节点根据第三OCC反射的其它一个第一信号的图样。第一节点、第二节点和第三节点反射获得的三个第一信号之间两两相互正交。另外,图9以OCC中的1个元素对应1个时隙为例,即每个元素对应的时隙个数相同,从而节点侧发射信号的实现复杂度较低。
实现形式二,第一套配置信息包括第一时域配置信息,第二套配置信息包括第二时域配置信息,使得第一节点反射第二信号获得的第一信号和第二节点反射第二信号获得的第一信号在时域上相互正交。
在一些实施例中,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同。第一时长指示第一节点接收信号后经过第一时长对该信号进行反射,第二时长指示第二节点接收信号后经过第二时长对该信号进行反射。通过为不同节点配置不同的时长,使得有不同节点反射的信号相互正交。各个节点反射信号的延迟时长的最小单位可以是符号,也可以是时隙。例如,第一时长可以小于或等于1个时隙,也就是,第一节点反射信号的延迟时长的最小单位为符号,时延较低。或者,第一时长大于P个时隙,P为大于或等于1的整数。也就是,第一节点反射信号的延迟时长的最小单位为时隙,使得节点反射信号的复杂度较低。各个节点根据被配置的时长,可通过控制连接RIS 单元的PIN二极管的通断状态,或者通过控制RIS单元对接收的信号进行相位的调整来控制RIS单元对接收的信号的反射延迟。
举例来说,请参见图10,为节点根据延迟时长对接收的信号进行反射的示意图。图10以第一时长为0个符号,第二时长为2个符号为例。其中,图10中的(a)示出了网络设备发送的第二信号的图样。图10中的(b)示出了第一节点根据第一时长反射的第一信号的图样。图10中的(c)示出了第二节点根据第二时长反射的第一信号的图样。从图10中的(b)和图10中的(c)可以看出,第一节点根据第一时长反射的第一信号和第二节点根据第二时长反射的第一信号相互正交。当然如果有更多节点,例如,至少两个节点还包括第三节点,网络设备可为第三节点配置第三时域配置信息。该第三时域配置信息指示第三时长,例如为4个符号。相应的,图10中的(d)示出了第三节点根据第三时长反射的第一信号的图样。第一节点、第二节点和第三节点反射的三个第一信号之间两两相互正交。
在一些实施例中,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。第一时域图案指示至少两个第一节点中的一个第一信号占用的第一时域资源;第二时域图案指示至少两个第一节点中的另一个第一信号占用的第二时域资源。第一时域资源和第二时域资源不同。通过各个节点上设置的RIS可通过控制连接RIS单元的PIN二极管的通断状态来实现不同的时域图案。时域图案可以是位于1个时隙内的时域图案,也可以是位于多个时隙的时域图案。换句话说,时域图案可以是符号级的时域图案,也可以是时隙级的时域图案。
举例来说,请参见图11,为节点根据时域图案对接收的信号进行反射的一示意图。图11以第一节点上连接RIS单元的PIN二极管的通断状态为[1 0 0 0 0 0]、第二节点上连接RIS单元的PIN二极管的通断状态为[0 1 0 0 0 0]为例。其中,“1”表示导通,“0”表示断开。图11中的(a)示出了网络设备在1个时隙内发送的第二信号的图样,例如重复发送图样为comb-2的第二信号。图11中的(b)示出了第一节点根据第一时域图案反射的第一信号的图样。图11中的(c)示出了第二节点根据第二时域图案反射的第一信号的图样。从图11中的(b)和图11中的(c)可以看出,第一节点根据第一时域图案反射的第一信号和第二节点根据第二时域图案反射的第一信号相互正交。当然如果有更多节点,例如,至少两个节点还包括第三节点,网络设备可为第三节点配置第三时域配置信息。该第三时域配置信息指示第三时域图案。例如,第三节点上连接RIS单元的PIN二极管的通断状态为[0 0 1 0 0 0]形成第三时域图案。如图11中的(d)示出了第三节点根据第三时域图案反射的第一信号的图样。第一节点、第二节点和第三节点反射的三个第一信号之间两两相互正交。如图11所示,节点通过控制连接RIS单元的PIN二极管的通断状态在1个时隙内实现信号的正交,因此,时延较低。
又例如,请参见图12,为节点根据时域图案对接收的信号进行反射的另一示意图。图12以第一节点上连接RIS单元的PIN二极管的通断状态为[1 0 0 0]、第二节点上连接RIS单元的PIN二极管的通断状态为[0 1 0 0]为例。其中,“1”表示导通,“0”表示断开。图12中的(a)示出了网络设备在连续4个时隙上发送的第二信号的图样。图12中的(b)示出了第一节点根据第一时域图案对第二信号反射的第一信号的图样。图12中的(c)示出了第二节点根据第二时域图案反射的第一信号的图样。从图12中的(b)和图10中的(c)可以看出,第一节点根据第一时域图案反射的第一信号和第二节点根据第二时域图案反射的第一信号相互正交。当然如果有更多节点,例如,至少两个节点还包括第三节点,网络设备可为第三节点配置第三时域配置信息。该第三时域配置信息指示第三时域图案。例如,第三节点上连接RIS单元的PIN二极管的通断状态为[0 0 1 0]形成第三时域图案。如图12中的(d)示出了第三节点根据第三时域图案反射的第一信号的图样。第一节点、第二节点和第三节点反射的三个第一信号之间两两相互正交。如图12所示,节点通过控制连接RIS单元的PIN二极管的通断状态在时隙间实现信号的正交,因此,节点处理信号的复杂度较低。
实现形式三,第一套配置信息包括第一频域配置信息,第二套配置信息包括第二频域配置信息,使得第一节点反射第二信号获得的第一信号和第二节点反射第二信号获得的第一信号在频域上相互正交。第一频域配置信息可指示由第一节点反射的第一信号占用的第一频域资源,第二频域配置信息可指示由第二节点反射的第一信号占用的第二频域资源,第一频域资源和第二频域资源不同。可选地,第一频域资源和第二频域资源正交。不同节点根据被配置的频域资源对接收到的信号在相应频域范围内选择性地反射。例如,接收到的信号占用的频域资源为[F1,F2],第一节点反射的信号占用的频域资源为[F1,F3],第二节点反射的信号占用的频域资源为[F4,F2],其中F3<=F4。从而对于接收端来说,可根据第一频域配置信息和第二频域配置信息从接收的至少两个第一信号中区分出由第一节点反射的第一信号和由第 二节点反射的第一信号。
上述实现形式一到实现形式三中的多种实现形式可以结合,以提升网络容量。例如,实现形式一和实现形式二可以结合。即第一套配置信息包括第一OCC配置信息和第一时域配置信息,第二套配置信息包括第二OCC配置信息和第二时域配置信息。关于实现形式三可参考前述实现形式一和实现形式二的相关内容,此处不再赘述。
在本申请实施例中,至少两个节点的配置信息可由接入网设备配置(或者确定),也可以由定位管理设备配置(或确定)。一种可能的实现方式,定位管理设备确定至少两个节点的配置信息之后,将该至少两个节点的配置信息发送给接入网设备。至少两个节点根据各自的配置信息对接收的信号进行处理。考虑到至少两个节点与接入网设备之间的距离可能不同,接入网设备发送的信号到达不同节点的时间可能不同,从而反射的第一信号的发送时间也有可能不同。为了尽量保证多个节点反射的第一信号相互正交,可以指示各个节点的配置信息的生效时间,以保证各个节点的配置信息同时生效,也就是,指定为各个节点配置的配置信息的使用起始时间相同。
例如,第一节点的第一套配置信息还可以包括第一时间信息,第二节点的第二套配置信息还可以包括第二时间信息。第一时间信息指示第一套配置信息的使用起始时间,第二时间信息指示第二套配置信息的使用起始时间。第一时间信息指示的时间和第二时间信息指示的时间相同。又例如,网络设备可以广播一个或多个时间信息,该一个或多个时间信息可以相同或不同,用于指示各个节点被配置的配置信息的生效时间。配置信息的生效时间可以是绝对时间,也可以是相对时间。以第一时间信息为例,第一时间信息可以是世界统一时(universal time coordinated,UTC)、帧号、时隙号或者时隙号以及符号。或者,第一时间信息可以是相较于参考时间的一个时间偏移。
S703、网络设备发送至少两个节点的配置信息。
网络设备确定至少两个节点的配置信息,可向各个节点配置各自的配置信息。网络设备可以动态地为至少两个节点分别配置各自的配置信息,也可以通过半静态方式为至少两个节点分别配置各自的配置信息。根据网络设备的不同,网络设备为至少两个节点分别配置各自的配置信息也有所不同。
例如,网络设备是定位管理设备,以动态配置方式为各个节点配置各自的配置信息,可以执行S703a或者执行S703b-S703c。即S703为S703a,或者,S703为S703b-S703c。
S703a、定位管理设备发送至少两个节点的配置信息。
例如,定位管理设备可向第一节点发送第一套配置信息,例如第一套配置信息可承载于LPP消息。类似的,定位管理设备也可以通过LPP消息向第二节点发送第二套配置信息。
S703b、定位管理设备向接入网设备发送至少两个节点的配置信息。
S703c、接入网设备向至少两个节点发送配置信息。
例如,接入网设备可通过第一RRC消息向第一节点发送第一套配置信息,通过第二RRC消息向第二节点发送第二套配置信息。又例如,接入网设备可以通过广播消息向终端设备发送该至少两个节点的配置信息,广播消息,例如为SIB或posSIB。
又例如,网络设备是接入网设备,以动态配置方式为各个节点配置各自的配置信息,可以执行S703c。即S703为S703c。
半静态方式为至少两个节点分别配置各自的配置信息,指的是,可以(预)配置多套配置信息,通过信令激活这多套配置信息中的一套或多套。
例如,网络设备是定位管理设备或接入网设备,以半静态配置方式为各个节点配置各自的配置信息,可以执行S703d。即S703为S703d。
S703d、网络设备向至少两个节点发送第一指示信息,该第一指示信息用于激活多套配置信息中的一套配置信息。
例如,网络设备向第一节点发送第一指示信息,该第一指示信息用于激活多套配置信息中的第一套配置信息。网络设备向第二节点发送第一指示信息,该第一指示信息用于激活多套配置信息中的第二套配置信息。该第一指示信息可以是下行控制信息(downlink control information,DCI)、媒体接入控制(media access control,MAC)控制元素(control element,CE)或者RRC信令。
可以理解的是,图7中示意S703的三个虚线示意步骤可以选择其中一个或者多个虚线框示意的步骤执行,本申请实施例不作限定。
各个节点接收到上述配置信息,根据该配置信息对接收的信号进行处理。例如,第一节点的第一套 配置信息包括第一OCC的配置信息和第一时间信息,第二节点的第二套配置信息包括第二OCC的配置信息和第二时间信息。第一节点在第一时间信息指示的时间根据第一OCC对接收的第二信号进行反射。第二节点在第二时间信息指示的时间根据第二OCC对接收的第二信号进行反射。
总的来说,S702执行之后,可以执行S703a;或者,S702执行之后,可以执行S703b-S703c;或者,S702执行之后,可以执行S703c;或者,S702执行之后,可以执行S703d。
S704、网络设备向终端设备发送至少两个节点的配置信息。
网络设备向终端设备发送至少两个节点的配置信息,以便终端设备根据至少两个节点的配置信息从接收的至少两个第一信号中区分由各个节点反射的第一信号。
网络设备向终端设备发送至少两个节点的配置信息,与前述网络设备向至少两个节点配置信息类似。例如,网络设备是定位管理设备,定位管理设备可以通过LPP消息发送该至少两个节点的配置信息。或者,定位管理设备将该至少两个节点的配置信息发送给接入网设备。例如定位管理设备通过NRPPa将该至少两个节点的配置信息发送给接入网设备。然后接入网设备再通过单播或者广播消息该至少两个节点的配置信息发送给终端设备。如果网络设备是接入网设备,接入网设备可以通过广播消息或单播消息向终端设备发送该至少两个节点的配置信息,广播消息例如为SIB或posSIB,单播消息例如为RRC信令。或者,网络设备也可以通过半静态方式向终端设备发送至少两个节点的配置信息。例如,网络设备向终端设备发送第一指示信息,该第一指示信息用于指示(预)配置的多套配置信息中的至少两套配置信息被激活,且该至少两套配置信息用于至少两个节点,该至少两套配置信息与至少两个节点一一对应。具体可参考前述S703a-S703d的内容,此处不再赘述。
需要说明的是,S704可以在S703之前执行,也可以在S704之后执行。例如,S703a执行之后,可以执行S704;或者,S703b-S703c执行之后,可以执行S704;或者,S703c执行之后,可以执行S704;或者,S703d执行之后,可以执行S704。又例如,S704执行之后,可执行S703a;或者,S704执行之后,可执行S703b-S703c;或者,S704执行之后,可执行S703c;或者,S704执行之后,可执行S703d。
可选地,终端设备确定这至少两个节点的配置信息与至少两个节点之间的关联关系,即确定哪套配置信息是哪个节点的。在本申请实施例中,至少两个节点的配置信息与至少两个节点之间的关联关系可由网络设备通知给终端设备。例如,至少两个节点的配置信息还可以包括第一信息,该第一信息可用于指示至少两个节点的配置信息和至少两个节点之间的关联关系。其中,第一信息可以包含于至少两个节点的配置信息中的任意一套配置信息,或者,第一信息也可以是独立于各个节点的配置信息。当然,第一信息也可以由网络设备单独发送给终端设备。或者,第一信息也可以是预配置的,这种情况下,终端设备读取预配置的第一信息即可。
第一信息指示至少两个节点的配置信息和至少两个节点之间的关联关系有多种实现形式,例如包括但不限于如下几种实现形式,具体使用何种实现形式,本申请实施例不作限制。
实现形式一,第一信息指示至少两个节点的配置信息和第二信号的配置信息的关联关系。考虑到,终端设备并不知道已经部署的各个节点,也就是说,终端设备对节点并不感知。这种情况下,通过第二信号的配置信息和至少两个节点的配置信息的关联关系可间接表征至少两个节点的配置信息与至少两个节点之间的关联关系。可以理解的是,第二信号的配置信息可由网络设备发送或激活给终端设备。从而终端设备根据第一信息以及第二信号的配置信息可以确定至少两个节点的配置信息中各个节点的配置信息。通过配置至少两个节点的配置信息和定位参考信号之间的关联关系,终端设备无需感知节点的存在,即可确定至少两个节点的配置信息和至少两个节点之间的对应关系。如此,可以减少网络中节点信息(例如标识信息、位置信息)的泄露,提高网络安全性。
实现形式二,第一信息指示至少两个节点的配置信息和至少两个节点的标识信息之间的关联关系。节点的标识信息可以是节点的ID,该ID可以唯一标识节点。节点的标识信息也可以是终端设备和节点之间约定的用于标识节点的信息,例如为虚拟的ID,该虚拟的ID可以是唯一标识节点的ID,也可以是其他的ID。这种形式下,终端设备根据至少两个节点的标识信息以及第一信息可以确定至少两个节点的配置信息中各个节点的配置信息。
实现形式三,第一信息可指示至少两个节点的配置信息和至少两个节点的位置信息的关联关系。例如在UE-based定位场景中,通过第一信息指示至少两个节点的配置信息和至少两个节点的位置信息的关联关系,可以使得终端设备从至少两个节点的位置信息中确定各个节点的配置信息。例如,在可能的实现方式中,网络设备可向终端设备发送至少两个节点的位置信息。
S705、终端设备根据至少两个节点的配置信息对至少两个第一信号进行测量。
终端设备可根据至少两个节点的配置信息从至少两个第一信号中确定由各个节点反射的第一信号。从而终端设备对至少两个第一信号进行测量,可获得至少两个测量结果。
终端设备获得至少两个测量结果之后,结合至少两个节点的位置信息可以确定终端设备的位置。也就是,终端设备可以基于下行定位方法确定终端设备所在位置。可选地,终端设备也可以将至少两个测量结果上报给网络设备,从而网络设备基于上行定位方法可以确定终端设备的位置。例如,终端设备可执行S706。需要说明的是,终端设备向网络设备上报至少两个测量结果不受终端设备是否根据至少两个测量结果确定终端设备的位置。也就是说,即使终端设备根据至少两个测量结果确定终端设备的位置,终端设备还是可以向网络设备上报至少两个测量结果。示例性地,所述至少两个测量结果可用于定位完好性(Positioning integrity)的计算或判断、波束管理等其它用途。
S706、终端设备向网络设备发送至少两个测量结果。
终端设备向网络设备发送至少两个测量结果,可以理解的是,该至少两个测量结果与至少两个节点一一对应。示例性的,终端设备可向定位管理设备发送至少两个测量结果,如S706a。即S706可以是S706a。示例性的,终端设备也可以先向接入网设备发送至少两个测量结果,接入网设备接收至少两个测量结果向定位管理设备发送至少两个测量结果,如S706b-S706c,即S706可以是S706b-S706c。或者,终端设备可直接向接入网设备发送至少两个测量结果,如S706d,即S706可以是S706d。接入网设备接收终端设备发送的至少两个测量结果,可以进行波束管理或位置计算或定位完好性等。对于网络设备来说,在计算终端设备的位置时,需要确定至少两个测量结果中与各个节点对应的测量结果。
可以理解的是,图7中示意S706的三个虚线示意步骤可以选择其中一个或者多个虚线框示意的步骤执行,本申请实施例不作限定。
在可能的实现方式中,终端设备向网络设备发送第二信息,该第二信息指示至少两个测量结果与至少两个节点的关联关系。终端设备可将至少两个测量结果与第二信息一起发送给网络设备,也可以将至少两个测量结果与第二信息分别发送给网络设备。换句话说,至少两个测量结果与第二信息可以承载于一条信令,也可以各自承载于一条信令。
示例性的,第二信息可指示至少两个测量结果与至少两个节点的标识信息的关联关系。网络设备根据各个节点的标识信息以及第二信息可确定至少两个测量结果中与各个节点对应的测量结果。
示例性的,第二信息可指示至少两个测量结果与第二信号的配置信息的关联关系。网络设备根据第二信号的配置信息以及第二信息可确定至少两个测量结果中与各个节点对应的测量结果。
示例性的,第二信息可指示至少两个测量结果与至少两个节点的位置信息的关联关系。网络设备根据至少两个节点的位置信息以及第二信息可确定至少两个测量结果中与各个节点对应的测量结果。
网络设备可根据至少两个测量结果基于上行定位方法确定终端设备的位置。当然,网络设备也可以根据至少两个测量结果来控制节点的反射功率或者进行波束管理。例如,接入网设备根据至少两个测量结果可调整各个节点的反射功率。
针对利用反射体的场景中,本申请实施例提供了一种可以使得接收端区分由各个反射体反射的信号。例如,通过为各个反射体配置不同的正交序列或者反射延迟或者时域图案使得各个反射体反射的信号相互正交,且通过各个反射体的配置信息区分由各个反射体反射的信号。相较于目前基于波束来区分由各个反射体反射的信号来说,应用场景更广。例如,可应用于没有波束技术的场景中。且可以区分通过同一波束发送的信号,提高区分精度。
需要说明的是,上述图7所示流程以网络设备、节点和终端设备执行为例。在可能的场景中,本申请实施例提供的通信方法也可以应用于侧行链路。与图7所示流程不同之处在于,在侧行链路中,终端设备间的交互通过PC5消息。可选地,侧行链路中通信的多个终端设备中,至少有一个终端设备的角色同本申请实施例中的网络设备相同,该终端设备可执行本申请实施例中网络设备的行为。另外,节点与终端设备之间的交互通过PC5消息,例如节点可以将自身的配置信息通过PC5消息发送给终端设备。
上述本申请提供的实施例中,分别从终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述 各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图13为本申请实施例提供的通信装置1300的示意性框图。该通信装置1300可以包括处理模块1310和收发模块1320。可选地,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1310和收发模块1320可以与该存储单元耦合,例如,处理模块1310可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个模块可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1300能够对应实现上述方法实施例中终端设备的行为和功能,通信装置1300可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,收发模块1320用于接收由至少两个节点反射的至少两个第一信号,该至少两个第一信号相互正交。处理模块1310用于根据至少两个节点的配置信息对至少两个第一信号进行测量。
作为一种可选的实现方式,至少两个节点的配置信息包括至少两个正交序列的配置信息;或者,至少两个节点的配置信息包括至少两个时域配置信息;或者,至少两个节点的配置信息包括至少两个正交序列的配置信息和至少两个时域配置信息。
作为一种可选的实现方式,至少两个节点包括第一节点和第二节点,至少两个时域配置信息包括第一节点的第一时域配置信息和第二节点的第二时域配置信息;其中,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同;或者,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。
作为一种可选的实现方式,第一时域图案指示由第一节点反射的第一信号占用的第一时域资源,第二时域图案指示由第二节点反射的第一信号占用的第二时域资源,第一时域资源和第二时域资源不同。
作为一种可选的实现方式,至少两个正交序列包括第一序列,第一序列包括M个元素,M为正整数;其中,M个元素对应N个符号,N个符号位于一个时隙内或连续的多个时隙内,N为大于或等于1的整数;或者,M个元素对应L个时隙,L为正整数。
作为一种可选的实现方式,第一时长小于或等于1个时隙,或者,第一时长大于1个时隙。
作为一种可选的实现方式,至少两个节点的配置信息包括第一信息,第一信息用于指示所述至少两个节点的配置信息和至少两个节点之间的关联关系。
作为一种可选的实现方式,第一信息用于指示至少两个节点的配置信息和至少两个节点之间的关联关系,包括:
第一信息用于指示至少两个节点的配置信息和至少两个节点的标识信息的关联关系;或者,第一信息用于指示至少两个节点的配置信息和第二信号的配置信息的关联关系,一个第一信号由第二信号经过一个节点反射得到。
作为一种可选的实现方式,所述收发模块1320还用于接收第一指示信息,该第一指示信息用于激活至少两套配置信息中的一套或多套配置信息。
作为一种可选的实现方式,所述收发模块1320还用于接收所述至少两个节点的配置信息,所述至少两个节点的配置信息承载于RRC消息或LPP消息。
作为一种可选的实现方式,所述收发模块1320还用于接收所述至少两个节点的位置信息。
作为一种可选的实现方式,通信装置1300根据至少两个节点的配置信息对至少两个第一信号进行测量,获得至少两个测量结果,所述收发模块1320还用于发送至少两个测量结果,该至少两个测量结果与至少两个节点一一对应。
一些可能的实施方式中,通信装置1300能够对应实现上述方法实施例中节点的行为和功能,通信装置1300可以为节点,也可以为应用于节点中的部件(例如芯片或者电路),也可以是节点中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,处理模块1310可用于确定第一套配置信息,该第一套配置信息包括第一序列的配置信息和/或第一时域配置信息,并根据第一套配置信息对接收的信号进行反射。
作为一种可选的实现方式,第一时域配置信息指示第一时长,或者,第一时域配置信息指示第一时 域图案。
作为一种可选的实现方式,第一序列包括M个元素,M为正整数;其中,M个元素对应N个符号,N个符号位于一个时隙内或连续的多个时隙内,N为正整数;或者,M个元素对应L个时隙,L为正整数。
作为一种可选的实现方式,第一时长小于或等于1个时隙,或者,第一时长大于1个时隙。
作为一种可选的实现方式,第一套配置信息包括第一时间信息,该第一时间信息用于指示第一套配置信息的生效时间。
作为一种可选的实现方式,收发模块1320用于接收第一套配置信息,或者,收发模块1320用于接收第一指示信息,该第一指示信息用于激活多套配置信息中的第一套配置信息。
作为一种可选的实现方式,收发模块1320还用于向网络设备发送通信装置1300的信息,通信装置1300的信息包括通信装置1300的标识信息和通信装置1300的位置信息。
一些可能的实施方式中,通信装置1300能够对应实现上述方法实施例中网络设备的行为和功能,通信装置1300可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路),也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,收发模块1320用于发送或激活第一节点的第一套配置信息和第二节点的第二套配置信息;其中,第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列的配置信息,第一序列和第二序列正交;或者,第一套配置信息包括第一时域配置信息,第二套配置信息包括第二时域配置信息;或者,第一套配置信息包括第一序列的配置信息和第一时域配置信息,第二套配置信息包括第二序列的配置信息和第二时域配置信息,第一序列和第二序列正交。
作为一种可选的实现方式,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同;或者,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。
作为一种可选的实现方式,第一序列为包括M个元素的序列,M为正整数;其中,M个元素对应N个符号,N个符号位于一个时隙内或连续的多个时隙内,N为正整数;或者,M个元素对应L个时隙,L为正整数。
作为一种可选的实现方式,第一时长小于或等于1个时隙,或者,第一时长大于1个时隙。
作为一种可选的实现方式,第一套配置信息包括第一时间信息,第二套配置信息包括第二时间信息,第一时间信息用于指示第一套配置信息的生效时间,第二时间信息用于指示第二套配置信息的生效时间。
作为一种可选的实现方式,收发模块1320还用于发送第一信息,该第一信息用于指示第一套配置信息、第二套配置信息和至少两个节点之间的关联关系。
在可能的实现方式中,第一信息用于指示第一套配置信息、第二套配置信息和至少两个节点之间的关联关系,包括:第一信息指示第一套配置信息、第二套配置信息和至少两个节点的标识信息的关联关系;或者,所述第一信息指示第一套配置信息、第二套配置信息和来自网络设备的第二信号的配置信息之间的关联关系。
在可能的实现方式中,收发模块1320用于发送第一套配置信息,包括:收发模块1320用于发送第一指示信息,该第一指示信息用于激活多套配置信息中的第一套配置信息。
在可能的实现方式中,收发模块1320还用于获取至少两个节点的信息。
在可能的实现方式中,通信装置1300为定位管理设备,收发模块1320获取至少两个节点的信息,包括:收发模块1320接收接入网设备发送的至少两个节点的信息;或者,收发模块1320接收至少两个节点分别发送的信息。
应理解,本申请实施例中的处理模块1310可以由处理器或处理器相关电路组件实现,收发模块1320可以由收发器或收发器相关电路组件或者通信接口实现。
图14为本申请实施例提供的通信装置1400的示意性框图。其中,该通信装置1400可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能。通信装置1400也可以是能够支持终端设备实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置1400可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。该通信装置1400也可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能。通信装置1400也可以是能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置, 其中,该通信装置1400可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置1400包括一个或多个处理器1401,可用于实现或用于支持通信装置1400实现本申请实施例提供的方法中终端设备的功能。具体参见方法示例中的详细描述,此处不做赘述。一个或多个处理器1401也可以用于实现或用于支持通信装置1400实现本申请实施例提供的方法中网络设备的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器1401也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器1401可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置1400进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,通信装置1400中包括一个或多个存储器1402,用以存储指令1404,所述指令可在所述处理器1401上被运行,使得通信装置1400执行上述方法实施例中描述的方法。存储器1402和处理器1401可以单独设置,也可以集成在一起,也可以认为存储器1402和处理器1401耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1401可能和存储器1402协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器1402不是必须的,所以在图14中以虚线进行示意。
可选地,所述存储器1402中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器1402可以是非易失性存储器,比如硬盘(hard,disk,drive,HDD)或固态硬盘(solid-state,drive,SSD)等,还可以是易失性存储器(volatile,memory),例如随机存取存储器(random-access,memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选地,通信装置1400可以包括指令1403(有时也可以称为代码或程序),所述指令1403可以在所述处理器上被运行,使得所述通信装置1400执行上述实施例中描述的方法。处理器1401中可以存储数据。
可选地,通信装置1400还可以包括收发器1405以及天线1406。所述收发器1405可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线1406实现通信装置1400的收发功能。
本申请中描述的处理器1401和收发器1405可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成芯片(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选地,通信装置1400还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1400可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是终端设备(或网络设备)也可以是电路,也可以是应用于终端设备(或网络设备)中的芯片或者其他具有上述终端设备功能(或网络设备)的组合器件、部件等。当通信装置是终端设备(或网络设备)时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端设备(或网络设备)功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片***时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是ASIC,还可以是***芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。 处理模块可以是芯片***的处理器。收发模块或通信接口可以是芯片***的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信***,具体的,通信***包括至少一个终端设备和至少一个网络设备以及至少一个节点。示例性的,通信***包括用于实现上述图7的相关功能的终端设备和节点。例如,该通信***包括第一节点和第二节点,第一节点用于确定第一套配置信息,并根据第一套配置信息对接收的第二信号进行反射,第二节点用于确定第二套配置信息,并根据第二套配置信息对接收的第二信号进行反射;其中,第一节点反射第二信号得到的第一信号和第二节点发射第二信号得到的第一信号正交。
作为一种可选的实现方式,第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列的配置信息,第一序列和第二序列正交;或者,第一套配置信息包括第一时域配置信息,第二套配置信息包括第二时域配置信息;或者,第一套配置信息包括第一序列的配置信息和第一时域配置信息,第二套配置信息包括第二序列的配置信息和第二时域配置信息,第一序列和第二序列正交。
作为一种可选的实现方式,第一时域配置信息指示第一时长,第二时域配置信息指示第二时长,第一时长和第二时长不同;或者,第一时域配置信息指示第一时域图案,第二时域配置信息指示第二时域图案,第一时域图案和第二时域图案不同。
作为一种可选的实现方式,所述通信***还包括:网络设备,用于发送或激活第一套配置信息和第二套配置信息。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图7中终端设备或网络设备或节点执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图7中终端设备或网络设备或节点执行的方法。
本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现前述方法中终端设备的功能;或者用于实现前述方法中网络设备的功能。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative,logical,block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only,memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (53)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收由至少两个节点反射的至少两个第一信号,所述至少两个第一信号相互正交;
    所述终端设备根据所述至少两个节点的配置信息对所述至少两个第一信号进行测量。
  2. 如权利要求1所述的方法,其特征在于,所述至少两个节点的配置信息包括至少两个正交序列的配置信息;或者,
    所述至少两个节点的配置信息包括至少两个时域配置信息;或者,
    所述至少两个节点的配置信息包括至少两个正交序列的配置信息和至少两个时域配置信息。
  3. 如权利要求2所述的方法,其特征在于,所述至少两个节点包括第一节点和第二节点,所述至少两个时域配置信息包括所述第一节点的第一时域配置信息和所述第二节点的第二时域配置信息;
    其中,所述第一时域配置信息指示第一时长,所述第二时域配置信息指示第二时长,所述第一时长和所述第二时长不同;或者,
    所述第一时域配置信息指示第一时域图案,所述第二时域配置信息指示第二时域图案,所述第一时域图案和所述第二时域图案不同。
  4. 如权利要求2所述的方法,其特征在于,
    所述第一时域图案指示由所述第一节点反射的第一信号占用的第一时域资源,所述第二时域图案指示由所述第二节点反射的第一信号占用的第二时域资源,所述第一时域资源和所述第二时域资源不同。
  5. 如权利要求2所述的方法,其特征在于,所述至少两个正交序列包括第一序列,所述第一序列包括M个元素,所述M为正整数;
    其中,所述M个元素对应N个符号,所述N个符号位于一个时隙内或连续的多个时隙内,N为正整数;
    或者,所述M个元素对应L个时隙,所述L为正整数。
  6. 如权利要求3所述的方法,其特征在于,所述第一时长小于或等于1个时隙,或者,所述第一时长大于1个时隙。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述至少两个节点的配置信息包括第一信息,所述第一信息用于指示所述至少两个节点的配置和所述至少两个节点之间的关联关系。
  8. 如权利要求7所述的方法,其特征在于,所述第一信息用于指示所述至少两个节点的配置信息和所述至少两个节点之间的关联关系,包括:
    所述第一信息用于指示所述至少两个节点的配置信息和所述至少两个节点的标识信息的关联关系;或者,
    所述第一信息用于指示所述至少两个节点的配置信息和第二信号的配置信息的关联关系,一个所述第一信号由所述第二信号经过一个所述节点反射得到。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于激活至少两套配置信息中的一套或多套配置信息。
  10. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述至少两个节点的配置信息,所述至少两个节点的配置信息承载于无线资源控制RRC消息或定位协议接口消息。
  11. 如权利要求1-10任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述至少两个节点的位置信息。
  12. 如权利要求1-10任一项所述的方法,其特征在于,所述终端设备根据所述至少两个节点的配置信息对所述至少两个第一信号进行测量,获得至少两个测量结果,所述方法还包括:
    所述终端设备发送所述至少两个测量结果,所述至少两个测量结果与所述至少两个节点一一对应。
  13. 一种通信方法,其特征在于,包括:
    第一节点确定第一套配置信息,所述第一套配置信息包括第一序列的配置信息和/或第一时域配置信息;
    所述第一节点根据所述第一套配置信息对接收的信号进行反射。
  14. 如权利要求13所述的方法,其特征在于,所述第一时域配置信息指示第一时长,或者,所述第一时域配置信息指示第一时域图案。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一序列包括M个元素,所述M为正整数;其中,所述M个元素对应N个符号,所述N个符号位于一个时隙内或连续的多个时隙内,N为大于或等于1的整数;或者,所述M个元素对应L个时隙,所述L为正整数。
  16. 如权利要求13或14所述的方法,其特征在于,所述第一时长小于或等于1个时隙,或者,所述第一时长大于1个时隙。
  17. 如权利要求13-16任一项所述的方法,其特征在于,所述第一套配置信息包括第一时间信息,所述第一时间信息用于指示所述第一套配置信息的生效时间。
  18. 如权利要求13-17任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收所述第一套配置信息;或者,
    所述第一节点接收第一指示信息,所述第一指示信息用于激活多套配置信息中的所述第一套配置信息。
  19. 一种通信方法,其特征在于,包括:
    所述网络设备发送或激活第一节点的第一套配置信息和第二节点的第二套配置信息;
    其中,所述第一套配置信息包括第一序列的配置信息,所述第二套配置信息包括第二序列的配置信息,所述第一序列和所述第二序列正交;或者,
    所述第一套配置信息包括第一时域配置信息,所述第二套配置信息包括第二时域配置信息;或者,
    所述第一套配置信息包括第一序列的配置信息和第一时域配置信息,所述第二套配置信息包括第二序列的配置信息和第二时域配置信息,所述第一序列和所述第二序列正交。
  20. 如权利要求19所述的方法,其特征在于,所述第一时域配置信息指示第一时长,所述第二时域配置信息指示第二时长,所述第一时长和所述第二时长不同;或者,
    所述第一时域配置信息指示第一时域图案,所述第二时域配置信息指示第二时域图案,所述第一时域图案和所述第二时域图案不同。
  21. 如权利要求19或20所述的方法,其特征在于,所述第一套配置信息包括第一时间信息,所述第二套配置信息包括第二时间信息,所述第一时间信息用于指示所述第一套配置信息的生效时间,所述第二时间信息用于指示所述第二套配置信息的生效时间。
  22. 一种通信***,其特征在于,包括:
    第一节点,用于确定第一套配置信息,并根据所述第一套配置信息对接收的第二信号进行反射;
    第二节点,用于确定第二套配置信息,并根据所述第二套配置信息对接收的第二信号进行反射;
    其中,所述第一节点反射所述第二信号得到的第一信号和所述第二节点发射所述第二信号得到的第一信号正交。
  23. 如权利要求22所述的通信***,其特征在于,所述第一套配置信息包括第一序列的配置信息,所述第二套配置信息包括第二序列的配置信息,所述第一序列和所述第二序列正交;或者,
    所述第一套配置信息包括第一时域配置信息,所述第二套配置信息包括第二时域配置信息;或者,
    所述第一套配置信息包括第一序列的配置信息和第一时域配置信息,所述第二套配置信息包括第二序列的配置信息和第二时域配置信息,所述第一序列和所述第二序列正交。
  24. 如权利要求23所述的通信***,其特征在于,所述第一时域配置信息指示第一时长,所述第二时域配置信息指示第二时长,所述第一时长和所述第二时长不同;或者,
    所述第一时域配置信息指示第一时域图案,所述第二时域配置信息指示第二时域图案,所述第一时域图案和所述第二时域图案不同。
  25. 如权利要求24所述的通信***,其特征在于,所述第一时域图案指示由所述第一节点反射的第一信号占用的第一时域资源,所述第二时域图案指示由所述第二节点反射的第一信号占用的第二时域资源,所述第一时域资源和所述第二时域资源不同。
  26. 如权利要求23或24所述的通信***,其特征在于,所述第一序列包括M个元素,所述M为正整数;其中,所述M个元素对应N个符号,所述N个符号位于一个时隙内或连续的多个时隙内,N为正整数;或者,所述M个元素对应L个时隙,所述L为正整数。
  27. 如权利要求24所述的通信***,其特征在于,所述第一时长小于或等于1个时隙,或者,所述 第一时长大于1个时隙。
  28. 如权利要求22-24任一项所述的通信***,其特征在于,所述通信***还包括:
    网络设备,用于发送或激活所述第一套配置信息和所述第二套配置信息。
  29. 一种通信装置,其特征在于,包括处理模块和收发模块;
    所述收发模块,用于接收由至少两个节点反射的至少两个第一信号,所述至少两个第一信号相互正交;
    所述处理模块,用于根据所述至少两个节点的配置信息对所述至少两个第一信号进行测量。
  30. 如权利要求29所述的装置,其特征在于,所述至少两个节点的配置信息包括至少两个正交序列的配置信息;或者,
    所述至少两个节点的配置信息包括至少两个时域配置信息;或者,
    所述至少两个节点的配置信息包括至少两个正交序列的配置信息和至少两个时域配置信息。
  31. 如权利要求30所述的装置,其特征在于,所述至少两个节点包括第一节点和第二节点,所述至少两个时域配置信息包括所述第一节点的第一时域配置信息和所述第二节点的第二时域配置信息;
    其中,所述第一时域配置信息指示第一时长,所述第二时域配置信息指示第二时长,所述第一时长和所述第二时长不同;或者,
    所述第一时域配置信息指示第一时域图案,所述第二时域配置信息指示第二时域图案,所述第一时域图案和所述第二时域图案不同。
  32. 如权利要求30所述的装置,其特征在于,
    所述第一时域图案指示由所述第一节点反射的第一信号占用的第一时域资源,所述第二时域图案指示由所述第二节点反射的第一信号占用的第二时域资源,所述第一时域资源和所述第二时域资源不同。
  33. 如权利要求30所述的装置,其特征在于,所述至少两个正交序列包括第一序列,所述第一序列包括M个元素,所述M为正整数;
    其中,所述M个元素对应N个符号,所述N个符号位于一个时隙内或连续的多个时隙内,N为正整数;
    或者,所述M个元素对应L个时隙,所述L为正整数。
  34. 如权利要求31所述的装置,其特征在于,所述第一时长小于或等于1个时隙,或者,所述第一时长大于1个时隙。
  35. 如权利要求29-34任一项所述的装置,其特征在于,所述至少两个节点的配置信息包括第一信息,所述第一信息用于指示所述至少两个节点的配置和所述至少两个节点之间的关联关系。
  36. 如权利要求35所述的装置,其特征在于,所述第一信息用于指示所述至少两个节点的配置信息和所述至少两个节点之间的关联关系,包括:
    所述第一信息用于指示所述至少两个节点的配置信息和所述至少两个节点的标识信息的关联关系;或者,
    所述第一信息用于指示所述至少两个节点的配置信息和第二信号的配置信息的关联关系,一个所述第一信号由所述第二信号经过一个所述节点反射得到。
  37. 如权利要求29-36任一项所述的装置,其特征在于,所述收发模块还用于:
    接收第一指示信息,所述第一指示信息用于激活至少两套配置信息中的一套或多套配置信息。
  38. 如权利要求29-36任一项所述的装置,其特征在于,所述收发模块还用于:
    接收所述至少两个节点的配置信息,所述至少两个节点的配置信息承载于无线资源控制RRC消息或定位协议接口消息。
  39. 如权利要求29-38任一所述的装置,其特征在于,所述收发模块还用于:
    接收所述至少两个节点的位置信息。
  40. 如权利要求29-38任一项所述的装置,其特征在于,所述通信装置根据所述至少两个节点的配置信息对所述至少两个第一信号进行测量,获得至少两个测量结果,所述收发模块还用于:
    发送所述至少两个测量结果,所述至少两个测量结果与所述至少两个节点一一对应。
  41. 一种通信装置,其特征在于,包括处理模块和收发模块;
    所述处理模块,用于确定第一套配置信息,所述第一套配置信息包括第一序列的配置信息和/或第一时域配置信息;
    所述收发模块,用于根据所述第一套配置信息对接收的信号进行反射。
  42. 如权利要求41所述的装置,其特征在于,所述第一时域配置信息指示第一时长,或者,所述第一时域配置信息指示第一时域图案。
  43. 如权利要求41或42所述的装置,其特征在于,所述第一序列包括M个元素,所述M为正整数;其中,所述M个元素对应N个符号,所述N个符号位于一个时隙内或连续的多个时隙内,N为大于或等于1的整数;或者,所述M个元素对应L个时隙,所述L为正整数。
  44. 如权利要求41或42所述的装置,其特征在于,所述第一时长小于或等于1个时隙,或者,所述第一时长大于1个时隙。
  45. 如权利要求41-44任一项所述的装置,其特征在于,所述第一套配置信息包括第一时间信息,所述第一时间信息用于指示所述第一套配置信息的生效时间。
  46. 如权利要求41-45任一项所述的装置,其特征在于,所述收发模块还用于:
    接收所述第一套配置信息;或者,
    接收第一指示信息,所述第一指示信息用于激活多套配置信息中的所述第一套配置信息。
  47. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一节点的第一套配置信息和第二节点的第二套配置信息;其中,所述第一套配置信息包括第一序列的配置信息,所述第二套配置信息包括第二序列的配置信息,所述第一序列和所述第二序列正交;或者,所述第一套配置信息包括第一时域配置信息,所述第二套配置信息包括第二时域配置信息;或者,所述第一套配置信息包括第一序列的配置信息和第一时域配置信息,所述第二套配置信息包括第二序列的配置信息和第二时域配置信息,所述第一序列和所述第二序列正交;
    收发模块,用于发送或激活所述第一套配置信息和所述第二套配置信息。
  48. 如权利要求47所述的装置,其特征在于,所述第一时域配置信息指示第一时长,所述第二时域配置信息指示第二时长,所述第一时长和所述第二时长不同;或者,
    所述第一时域配置信息指示第一时域图案,所述第二时域配置信息指示第二时域图案,所述第一时域图案和所述第二时域图案不同。
  49. 如权利要求47或48所述的装置,其特征在于,所述第一套配置信息包括第一时间信息,所述第二套配置信息包括第二时间信息,所述第一时间信息用于指示所述第一套配置信息的生效时间,所述第二时间信息用于指示所述第二套配置信息的生效时间。
  50. 一种通信装置,其特征在于,包括处理模块和收发模块;
    所述处理模块,用于确定第一套配置信息和第二套配置信息;
    所述收发模块,用于发送或激活所述第一套配置信息和所述第二套配置信息;
    其中,所述第一套配置信息包括第一序列的配置信息,第二套配置信息包括第二序列配置信息,所述第一序列和所述第二序列正交;或者,
    所述第一套配置信息包括第一时域配置信息,所述第二套配置信息包括第二时域配置信息;或者,
    所述第一套配置信息包括第一序列的配置信息和第一时域配置信息,所述第二套配置信息包括第二序列的配置信息和第二时域配置信息,所述第一序列和所述第二序列正交。
  51. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至21任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至21中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至21中任一项所述的方法。
PCT/CN2023/124803 2022-11-04 2023-10-16 一种通信方法及通信装置 WO2024093658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211379333.0 2022-11-04
CN202211379333.0A CN117998279A (zh) 2022-11-04 2022-11-04 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024093658A1 true WO2024093658A1 (zh) 2024-05-10

Family

ID=90891583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124803 WO2024093658A1 (zh) 2022-11-04 2023-10-16 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117998279A (zh)
WO (1) WO2024093658A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203443A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种定位信息上报的方法及通信装置
US20220014935A1 (en) * 2020-07-10 2022-01-13 Huawei Technologies Co., Ltd. Systems and methods using configurable surfaces for wireless communication
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备
US20220272731A1 (en) * 2019-05-02 2022-08-25 Lg Electronics Inc. Method for transmitting and receiving signals, and apparatus for supporting same in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220272731A1 (en) * 2019-05-02 2022-08-25 Lg Electronics Inc. Method for transmitting and receiving signals, and apparatus for supporting same in wireless communication system
WO2021203443A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种定位信息上报的方法及通信装置
US20220014935A1 (en) * 2020-07-10 2022-01-13 Huawei Technologies Co., Ltd. Systems and methods using configurable surfaces for wireless communication
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "On EIS test metric", 3GPP DRAFT; R4-1915390, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chongqing, China; 20191014 - 20191018, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819589 *

Also Published As

Publication number Publication date
CN117998279A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
JP7270765B2 (ja) オンデマンド位置参照信号伝送の測定
CN114175687B (zh) 针对诸如NR-IoT设备等无线设备且对地理围栏有用的定位支持
CN113039844A (zh) 用于定位参考设计的方法
US20230022225A1 (en) Methods and systems for managing reflecting surface
WO2024093658A1 (zh) 一种通信方法及通信装置
CN114270954A (zh) 多功率等级操作
WO2022206238A1 (zh) 通信方法及装置
CN117730586A (zh) 用于在无线通信***中进行侧链路定位的方法和设备
CN117939391A (zh) 相对定位方法及通信装置
CN117641548A (zh) 一种通信方法、装置、存储介质以及芯片***
WO2023202302A1 (zh) 一种定位方法及通信装置
WO2023125583A1 (zh) 一种参考信号的传输方法、装置、存储介质及芯片
WO2022165825A1 (zh) 一种基于参考信号的通信方法及相关装置
WO2023004591A1 (zh) 位置获得方法、装置、设备、介质、芯片、产品及程序
US20240205700A1 (en) Communication method and communication apparatus
WO2024031294A1 (zh) 通信方法以及通信设备
KR20230150710A (ko) Sl 측위를 위한 동기화 방법 및 장치
WO2022082462A1 (zh) 一种通信方法及装置
KR20230129287A (ko) Sl 측위를 위한 sl prs 전송 방법 및 장치
KR20230154005A (ko) Sl rtt 측위에서 스위칭 갭 설정 방법 및 장치
KR20230129293A (ko) Nr v2x에서 혼잡 제어를 기반으로 측위를 수행하는 방법 및 장치
CN118139164A (zh) 一种定位方法及通信装置
KR20240040279A (ko) 무선 통신 시스템에서 사이드링크 포지셔닝 방법 및 장치
CN117295018A (zh) 定位广播的配置方法及通信装置
KR20230129311A (ko) Nr v2x에서 측위 그룹을 형성하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884590

Country of ref document: EP

Kind code of ref document: A1