WO2024093019A1 - 一种原位催化氧化合成硫酸乙烯酯的方法 - Google Patents

一种原位催化氧化合成硫酸乙烯酯的方法 Download PDF

Info

Publication number
WO2024093019A1
WO2024093019A1 PCT/CN2023/070353 CN2023070353W WO2024093019A1 WO 2024093019 A1 WO2024093019 A1 WO 2024093019A1 CN 2023070353 W CN2023070353 W CN 2023070353W WO 2024093019 A1 WO2024093019 A1 WO 2024093019A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
salt
zone
catalytic oxidation
catalyst
Prior art date
Application number
PCT/CN2023/070353
Other languages
English (en)
French (fr)
Inventor
刘启奎
张小蒙
Original Assignee
山东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东师范大学 filed Critical 山东师范大学
Publication of WO2024093019A1 publication Critical patent/WO2024093019A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/10Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms two oxygen atoms and one sulfur atom, e.g. cyclic sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of organic synthesis and lithium ion batteries, in particular to a method for synthesizing vinyl sulfate by in-situ catalytic oxidation.
  • TS-1 titanium silicalite molecular sieve is a zeolite molecular sieve material developed in the 1980s. It was first introduced by Enichem of Italy into a molecular sieve framework with a ZSM-5 structure to form a titanium silicalite molecular sieve with excellent directional oxidation performance.
  • TS-1 catalyst exhibits excellent catalytic performance in low-temperature oxidation reactions with H2O2 as an oxidant, such as mild reaction conditions, high catalytic activity and selectivity, and simple process flow. It can overcome the shortcomings of traditional process routes, such as long by-products, and harsh reaction conditions, and plays a positive role in promoting the greening of chemical processes.
  • Dithiothreitol is a very important additive in lithium-ion batteries. It can be oxidized to form a film on the surface of the positive electrode of the lithium-ion battery and reduced to a low-impedance film on the surface of the negative electrode, effectively improving the high and low temperature cycle performance and high temperature storage performance of the lithium-ion battery.
  • the existing method of oxidizing alkyl sulfite to prepare alkyl sulfate generally uses oxides, chlorides, and complexes of the transition metal ruthenium as catalysts, and uses potassium permanganate, sodium hypochlorite, and sodium periodate as oxidants. Since the ruthenium catalyst used is expensive, it is combined with the substrate in the reaction system in a complex coordination manner.
  • the reaction After the reaction is completed, the catalyst is difficult to recover, resulting in high production costs.
  • the reaction uses oxidants such as potassium permanganate, which will produce a large amount of salt-containing organic wastewater after the reaction is completed, increasing the cost of three waste treatment, making this route uneconomical and environmentally friendly.
  • Patent CN109422719A reports that hydrogen peroxide is added dropwise to a mixture of cyclic sulfite, an organic solvent and a TS-1 molecular sieve catalyst to carry out a catalytic oxidation reaction to prepare sulfate.
  • the concentration of commercially available hydrogen peroxide is generally 28-30%.
  • the use of hydrogen peroxide with a lower concentration will result in a larger amount of water in the system, which will be conducive to the hydrolysis of vinyl sulfite or vinyl sulfate, resulting in a decrease in yield (the yield in the patent is ⁇ 60%);
  • stabilizers need to be added during the transportation and storage of hydrogen peroxide to inhibit the decomposition of hydrogen peroxide. These stabilizers will also reduce the use effect of hydrogen peroxide to a certain extent, and even affect the purity of the product or increase the cost of removing these substances.
  • the purpose of the present invention is to provide a method for synthesizing vinyl sulfate by in-situ catalytic oxidation, which adopts in-situ generation of hydrogen peroxide and then catalytic oxidation of hydrogen peroxide to synthesize vinyl sulfate.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • the Pd salt is one or two of PdCl 2 , PdSO 4 , Pd(NO 3 ) 2 ⁇ 2H 2 O or Pd(OAc) 2 ;
  • the Au salt is AuCl 3 and/or HAuCl 4 ⁇ 3H 2 O;
  • the mass ratio of Pd salt, Au salt, TS-1 molecular sieve and water is 8-12g: 8-15g: 0.9-1kg: 1-5kg;
  • Continuous flow synthesis reaction pump the suspension obtained in step 2 into the premixing zone of the continuous reactor, and introduce hydrogen and oxygen into it at the same time, control the temperature of the premixing zone to be 10-90° C., and the residence time of the suspension in the premixing zone to be 3-60 seconds to obtain a premixed liquid; the volume ratio of hydrogen and oxygen is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 10-90° C., and the reaction residence time is 15-600 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor, and the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase.
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • the Pd salt is PdCl 2 or Pd(OAc) 2 ; and the Au salt is HAuCl 4 ⁇ 3H 2 O.
  • the amount of water added in step (1) is twice the total amount of TS-1 molecular sieve and the two metal salts.
  • step 3 the mass ratio of the suspension obtained in step 2 to the mixed gas is 1:1-2.
  • the mass ratio of vinyl sulfite to oxygen introduced into the premixing zone is 108:32-64.
  • the temperature of the premixing zone is 60-65°C, and the temperature of the reaction zone is 50-55°C.
  • the residence time of the suspension in the premixing zone is 40 to 50 seconds, and the reaction residence time is 400 to 450 seconds.
  • FIG1 is a SEM characterization image of Au-Pd/TS-1 (Au-Pd@TS-1) catalyst
  • FIG2 is an XRD characterization diagram of Au-Pd/TS-1 catalyst
  • FIG3 is a schematic diagram of a process flow of a method for synthesizing vinyl sulfate by in-situ catalytic oxidation
  • FIG. 4 is a gas chromatogram of the vinyl sulfate product obtained in Example 5.
  • the present invention has the following advantages:
  • the Au-Pd/TS-1 catalyst prepared by the present invention realizes efficient catalysis of two reactions at the same time.
  • H2O2 is produced directly by using H2 and O2 gas streams as raw materials, and its conversion rate can reach>99%.
  • the catalyst can catalyze oxidation to synthesize sulfate, which enables the present invention to realize the in-situ synthesis and consumption of H2O2 , which further improves the conversion rate of synthesizing H2O2 from H2 and O2 (>99.9%).
  • the activity of hydrogen peroxide is significantly improved.
  • the oxidation reaction rate of the present invention is greatly improved, so that the reaction can be completed in a very short time, which avoids the hydrolysis loss caused by long-term contact between raw materials and products and water, thereby obtaining an extremely high yield.
  • the modified catalyst prepared by the present invention is obtained by modifying the conventional TS-1 molecular sieve catalyst, and has the structural characteristics of the molecular sieve catalyst. Compared with the traditional ruthenium-based catalyst or other structural catalysts, it has the advantages of high stability, long life, low cost, etc., and is particularly suitable for the weakly acidic system catalytic oxidation process described in the present invention.
  • the object of the present invention is to provide a method for synthesizing vinyl sulfate by in-situ catalytic oxidation.
  • the present invention is further described below in conjunction with specific embodiments.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • the Pd salt is one or two of PdCl 2 , PdSO 4 , Pd(NO 3 ) 2 ⁇ 2H 2 O or Pd(OAc) 2 ;
  • the Au salt is AuCl 3 and/or HAuCl 4 ⁇ 3H 2 O;
  • the mass ratio of Pd salt, Au salt, TS-1 molecular sieve and water is 8-12g: 8-15g: 0.9-1kg: 1-5kg;
  • step 3 Continuous flow synthesis reaction: As shown in FIG3 , the suspension obtained in step 2 is pumped into the premixing zone of the continuous reactor, and hydrogen and oxygen are introduced therein at the same time, the temperature of the premixing zone is controlled to be 10 to 90° C., and the residence time of the suspension in the premixing zone is 3 to 60 seconds to obtain a premixed liquid; the volume ratio of hydrogen to oxygen is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 10-90° C., and the reaction residence time is 15-600 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor and enters the separation zone.
  • the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase.
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • the Pd salt is PdCl 2 or Pd(OAc) 2 ; and the Au salt is HAuCl 4 ⁇ 3H 2 O.
  • the amount of water added in step 1 is twice the total amount of TS-1 molecular sieve and the two metal salts.
  • step 3 the mass ratio of the suspension obtained in step 2 to the mixed gas is 1:1-2.
  • the mass ratio of vinyl sulfite to oxygen introduced into the premixing zone is 108:32-64.
  • the temperature of the premixing zone is 60-65°C, and the temperature of the reaction zone is 50-55°C.
  • the residence time of the suspension in the premixing zone is 40 to 50 seconds, and the reaction residence time is 400 to 450 seconds.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • Continuous flow synthesis reaction pump the suspension obtained in step 2 into the premixing zone of the continuous reactor, and introduce hydrogen and oxygen into it at the same time, wherein the weight sum of the suspension and the hydrogen and oxygen is 1:1; control the temperature of the premixing zone to be 10° C., and the residence time of the suspension in the premixing zone to be 60 seconds to obtain a premixed liquid; the volume ratio of hydrogen and oxygen in the mixed gas is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 10°C, and the reaction residence time is 600 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor, and the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase; wherein the mass ratio of vinyl sulfite to the oxygen introduced into the premixing zone is 108:32; the mass of the oxygen introduced into the premixing zone is 29.7g;
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • step 3 Continuous flow synthesis reaction: the suspension obtained in step 2 is pumped into the premixing zone of the continuous reactor, and hydrogen and oxygen are introduced therein at the same time, the temperature of the premixing zone is controlled to be 90° C., and the residence time of the suspension in the premixing zone is 3 seconds, to obtain a premixed liquid; the volume ratio of hydrogen to oxygen is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 90° C.
  • the reaction residence time is 15 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor, and the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase.
  • the mass ratio of vinyl sulfite to oxygen introduced into the premixing zone is 108:64; the mass of oxygen introduced into the premixing zone is 355.5 g.
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • step 3 Continuous flow synthesis reaction: the suspension obtained in step 2 is pumped into the premixing zone of the continuous reactor, and hydrogen and oxygen are introduced therein at the same time, the temperature of the premixing zone is controlled to be 30° C., and the residence time of the suspension in the premixing zone is 40 seconds, to obtain a premixed liquid; the volume ratio of hydrogen to oxygen is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 60° C.
  • the reaction residence time is 100 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor, and the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase.
  • the mass ratio of vinyl sulfite to oxygen introduced into the premixing zone is 108:50; the mass of oxygen introduced into the premixing zone is 92.6 g.
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • step 3 Continuous flow synthesis reaction: the suspension obtained in step 2 is pumped into the premixing zone of the continuous reactor, and hydrogen and oxygen are introduced therein at the same time, the temperature of the premixing zone is controlled to be 65° C., and the residence time of the suspension in the premixing zone is 40 seconds, to obtain a premixed liquid; the volume ratio of hydrogen to oxygen is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 50° C.
  • the reaction residence time is 400 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor, and the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase; wherein the mass ratio of vinyl sulfite to the oxygen introduced into the premixing zone is 108:40; wherein the mass of the oxygen introduced into the premixing zone is 148.1 g;
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • a method for synthesizing vinyl sulfate by in-situ catalytic oxidation comprises the following steps:
  • step 3 Continuous flow synthesis reaction: the suspension obtained in step 2 is pumped into the premixing zone of the continuous reactor, and hydrogen and oxygen are introduced therein at the same time, the temperature of the premixing zone is controlled to be 60°C, and the residence time of the suspension in the premixing zone is 50 seconds, to obtain a premixed liquid; the volume ratio of hydrogen to oxygen is 1:1;
  • the premixed liquid flows out of the premixing zone and enters the reaction zone.
  • the vinyl sulfite-ethylene dichloride solution obtained in step 2 is pumped into the reaction zone.
  • the temperature of the reaction zone is controlled to be 55° C.
  • the reaction residence time is 450 seconds to obtain a reaction liquid.
  • the reaction liquid flows out of the reactor, and the Au-Pd/TS-1 catalyst is separated by a filter.
  • the obtained filtrate is treated by a centrifugal separator to obtain an aqueous phase and an organic phase; wherein the mass ratio of vinyl sulfite to the oxygen introduced into the premixing zone is 108:60; wherein the mass of the oxygen introduced into step 3 is 222.2 g;
  • the obtained organic phase is added with the same volume of deionized water, pumped into a centrifugal extractor, separated to obtain an organic phase solution, and the obtained organic phase solution is distilled and crystallized to obtain a vinyl sulfate product.
  • the introduction of hydrogen and oxygen in Examples 1 to 5 is a continuous process, and it is sufficient to ensure that hydrogen and oxygen can be continuously introduced during the process, and the amount of oxygen introduced can be 1.2 to 1.5 times the expected amount, so that the vinyl sulfite can be fully reacted.
  • Figure 1 is a SEM characterization image of the Au-Pd/TS-1 (Au-Pd@TS-1) catalyst. It can be seen from the figure that TS-1, as the main structure of the catalyst, is loaded with Au and Pd nanoparticles, that is, the Au-Pd@TS-1 modified catalyst is successfully synthesized.
  • Figure 2 is the XRD characterization diagram of the Au-Pd/TS-1 catalyst. It can be seen from the figure that the modified catalyst basically retains the TS-1 crystal structure, and its characteristic peaks are basically consistent with the standard TS-1 molecular sieve, indicating that the modified catalyst still has the excellent crystal properties of the TS-1 molecular sieve.
  • the method for synthesizing vinyl sulfate by in-situ catalytic oxidation of Examples 1 to 5 is adopted, hydrogen peroxide is synthesized using the developed Au-Pd/TS-1 catalyst, and vinyl sulfite is directly oxidized.
  • efficient output of vinyl sulfate products can be achieved.
  • the yield of vinyl sulfate based on the amount of vinyl sulfite can reach more than 95%.
  • the Au-Pd/TS-1 catalyst can be used repeatedly, and the purity of the product vinyl sulfate is more than 99.9%. As shown in Figure 4, the purity of the vinyl sulfate obtained in Example 5 is 99.97%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种原位催化氧化合成硫酸乙烯酯的方法,通过Pd盐和Au盐改性TS-1分子筛,得到Au-Pd/TS-1分子筛,催化氧气与氢气生成过氧化氢,在反应器中原位氧化亚硫酸乙烯酯合成硫酸乙烯酯。本发明制备Au-Pd/TS-1分子筛催化剂兼具催化合成过氧化氢与催化氧化亚硫酸酯两种催化活性,可显著提高反应速率,使原料在较短的停留时间内彻底转化,并且有效抑制产物水解,有机相经过洗涤和蒸发结晶即可得到高纯度硫酸乙烯酯产品。

Description

一种原位催化氧化合成硫酸乙烯酯的方法 技术领域
本发明涉及有机合成和锂离子电池技术领域,具体说是一种原位催化氧化合成硫酸乙烯酯的方法。
背景技术
TS-1钛硅分子筛是上世纪八十年代开发的沸石分子筛材料,最早由意大利Enichem公司将钛元素引入具有ZSM-5结构的分子筛骨架形成的具有优良定向氧化性能的钛硅分子筛。TS-1催化剂在以H 2O 2为氧化剂的低温氧化反应中表现出优异的催化性能,如反应条件温和、催化活性和选择性高、工艺流程简单,可克服传统工艺路线长、副产多、反应条件苛刻的缺点,在推动化学工艺的绿色化进程方面具有积极的作用。
硫酸乙烯酯(DTD)是锂离子电池中非常重要的添加剂,其可在锂离子电池正极表面氧化成膜及负极表面还原成低阻抗膜,有效提升锂离子电池的高低温循环性能及高温存储性能。现有的将亚硫酸烷基酯氧化制备硫酸烷基酯的方法,一般使用过渡金属钌的氧化物、氯化物、络合物作为催化剂,以高锰酸钾、次氯酸钠高碘酸钠为氧化剂,由于使用的钌催化剂价格昂贵,在反应体系中以络合配位的方式与底物结合,反应结束后催化剂难以回收,造成生产成本高。另外,反应使用了高锰酸钾等氧化剂,上述氧化剂在反应结束后会产生大量含盐有机废水,提高了三废处理费用,使得该路线并不经济和环保。
CN109422719A专利报道将双氧水滴加到环状亚硫酸酯、有机溶剂和TS-1分子筛催化剂的混合物中进行催化氧化反应制备硫酸酯,但是其问题在于:(1)一般市售双氧水的浓度为28-30%,使用浓度较低的双氧水会导致体系中水量较大,会有利于亚硫酸乙烯酯或者硫酸乙烯酯的水解,导致收率下降(该专利收率<60%);(2)双氧水的运输与储存过程需要加入稳定剂来抑制双氧水的分解,这些稳定剂一定程 度上也会降低双氧水的使用效果,甚至影响产物的纯度或增加去除这些物质的成本。
发明内容
为解决常规双氧水浓度过低、氧化活性较弱、反应时间长、原料或产品水解损失大、产品收率低等问题,本发明的目的是提供一种原位催化氧化合成硫酸乙烯酯的方法,采用原位生成双氧水,然后双氧水催化氧化合成硫酸乙烯酯。
本发明为实现上述目的,通过以下技术方案实现:
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将Pd盐和Au盐溶于水中,然后加入TS-1分子筛,搅拌均匀,升温至60-105℃下反应8-24小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在350~450℃下还原处理2~3小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为5~10%;
所述Pd盐为PdCl 2、PdSO 4、Pd(NO 3) 2·2H 2O或Pd(OAc) 2中的一种或两种;
所述Au盐为AuCl 3和/或HAuCl 4·3H 2O;
其中Pd盐、Au盐、TS-1分子筛和水的质量比为8~12g:8~15g:0.9~1kg:1~5kg;
②准备原料:将步骤①所得Au-Pd/TS-1催化剂与水混合,得到质量浓度1~10%的悬浮液;将亚硫酸乙烯酯与二氯乙烷混合,配制亚硫酸乙烯酯质量分数为10~60%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,控制预混区的温度为10~90℃,悬浮液在预混区的停留时间为3~60秒,得到预混液;所述氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为10~90℃,反应停留时间为15~600秒,得到反 应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
优选的,所述Pd盐为PdCl 2或Pd(OAc) 2;所述Au盐为HAuCl 4·3H 2O。
优选的,步骤(1)中加入水的量为TS-1分子筛及两种金属盐总量的2倍。
优选的,步骤③中,步骤②所得悬浮液与混合气体的质量比为1:1~2。
优选的,步骤③中,亚硫酸乙烯酯与预混区通入氧气的质量比为108:32~64。
优选的,预混区的温度为60~65℃,反应区的温度为50~55℃。
优选的,悬浮液在预混区的停留时间为40~50秒,反应停留时间为400~450秒。
附图说明
图1为Au-Pd/TS-1(Au-Pd@TS-1)催化剂的SEM表征图;
图2为Au-Pd/TS-1催化剂的XRD表征图;
图3为原位催化氧化合成硫酸乙烯酯方法的工艺流程示意图;
图4为实施例5所得硫酸乙烯酯产品的气相色谱图。
本发明相比现有技术具有以下优点:
本发明制备的Au-Pd/TS-1催化剂同时实现了两个反应的高效催化,首先是H 2和O 2气流为原料直接法生产H 2O 2,其转化率可以达到>99%,同时该催化剂可以催化氧化合成硫酸酯,这使得本发明实现了H 2O 2原位合成与消耗,这进一步提高了H 2和O 2合成H 2O 2的转化率(>99.9%)。
由于实现了双氧水的原位合成和使用,双氧水的活性得到显著提高,叠加本发明制备改性催化剂针对亚硫酸酯氧化反应的高效催化作用,本发明的氧化反应速率大幅提高,使其能够在很短的时间内完成反应,这就避免了原料和产物与水长时间接触导致的水解损失,从而得到极高的收率。
本发明所制备的改性催化剂是基于常规TS-1分子筛催化剂改性得到,具有分子筛催化剂的结构特点,相较于传统钌基催化剂或者其他结构催化剂具备稳定高、寿命长、成本低等优势,尤其适用于本发明所述的弱酸性体系催化氧化工艺。
具体实施方式
本发明的目的是提供一种原位催化氧化合成硫酸乙烯酯的方法,以下结合具体实施例来对本发明作进一步的描述。
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将Pd盐和Au盐溶于水中,然后加入TS-1分子筛,搅拌均匀,升温至60-105℃下反应8-24小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在350~450℃下还原处理2~3小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为5~10%;
所述Pd盐为PdCl 2、PdSO 4、Pd(NO 3) 2·2H 2O或Pd(OAc) 2中的一种或两种;
所述Au盐为AuCl 3和/或HAuCl 4·3H 2O;
其中Pd盐、Au盐、TS-1分子筛和水的质量比为8~12g:8~15g:0.9~1kg:1~5kg;
②准备原料:将步骤①所得Au-Pd/TS-1催化剂与水混合,得到质量浓度1~10%的悬浮液;将亚硫酸乙烯酯与二氯乙烷混合,配制亚硫酸乙烯酯质量分数为10~60%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:如图3所示,将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,控制预混区的温度为10~90℃,悬浮液在预混区的停留时间为3~60秒,得到预混液;所述氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为10~90℃,反应停留时间为15~600秒,得到反应液,反应液自反应器中流出,进入分离区,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏结晶,得到硫酸乙烯酯产品。
优选的,所述Pd盐为PdCl 2或Pd(OAc) 2;所述Au盐为HAuCl 4·3H 2O。
优选的,步骤①中加入水的量为TS-1分子筛及两种金属盐总量的2倍。
优选的,步骤③中,步骤②所得悬浮液与混合气体的质量比为1:1~2。
优选的,步骤③中,亚硫酸乙烯酯与预混区通入氧气的质量比为108:32~64。
优选的,预混区的温度为60~65℃,反应区的温度为50~55℃。
优选的,悬浮液在预混区的停留时间为40~50秒,反应停留时间为400~450秒。
实施例1
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将8g PdCl 2和8g AuCl 3溶于1kg水中,然后加入1kg TS-1分子筛,搅拌均匀,升温至60℃下反应8小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在350℃下还原处理2小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为5%;
②准备原料:取100g步骤①所得Au-Pd/TS-1催化剂与9900kg水混合,得到悬浮液;将100g亚硫酸乙烯酯与900g二氯乙烷混合,配制亚硫酸乙烯酯质量分数为10%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,其中悬浮液与氢气和氧气的重量和的质量比为1:1;控制预混区的温度为10℃,悬浮液在预混区的停留时间为60秒,得到预混液;所述混合气体中氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为10℃,反应停留时间为600秒,得到反应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分 离器处理,得到水相和有机相;其中亚硫酸乙烯酯与预混区通入氧气的质量比为108:32;预混区通入氧气的质量为29.7g;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
实施例2
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将12g PdSO 4和15g HAuCl 4·3H 2O溶于5kg水中,然后加入900g TS-1分子筛,搅拌均匀,升温至105℃下反应4小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在450℃下还原处理3小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为10%;
②准备原料:将100g步骤①所得Au-Pd/TS-1催化剂与900g水混合,得到质量浓度10%的悬浮液;将600g亚硫酸乙烯酯与400g二氯乙烷混合,配制亚硫酸乙烯酯质量分数为60%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,控制预混区的温度为90℃,悬浮液在预混区的停留时间为3秒,得到预混液;所述氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为90℃,反应停留时间为15秒,得到反应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;其中亚硫酸乙烯酯与预混区通入氧气的质量比为108:64;预混区通入氧气的质量为355.5g;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
实施例3
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将9g Pd(NO 3) 2·2H 2O和10g AuCl 3溶于2kg水中,然后加入1kg TS-1分子筛,搅拌均匀,升温至80℃下反应10小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在400℃下还原处理2.5小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为6%;
②准备原料:将400g步骤①所得Au-Pd/TS-1催化剂与9600g水混合,得到质量浓度4%的悬浮液;将200g亚硫酸乙烯酯与800g二氯乙烷混合,配制亚硫酸乙烯酯质量分数为20%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,控制预混区的温度为30℃,悬浮液在预混区的停留时间为40秒,得到预混液;所述氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为60℃,反应停留时间为100秒,得到反应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;其中亚硫酸乙烯酯与预混区通入氧气的质量比为108:50;预混区通入氧气的质量为92.6g;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
实施例4
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将5g Pd(OAc) 2、5g PdCl 2、8g AuCl 3和6g HAuCl 4·3H 2O溶于3kg水中,然后加入950g TS-1分子筛,搅拌均匀,升温至70℃下反应15小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在420℃下还原处理2小时,得到Au-Pd/TS-1催化剂;其 中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为8%;
②准备原料:将800g步骤①所得Au-Pd/TS-1催化剂与9200g水混合,得到质量浓度8%的悬浮液;将400g亚硫酸乙烯酯与600g二氯乙烷混合,配制亚硫酸乙烯酯质量分数为40%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,控制预混区的温度为65℃,悬浮液在预混区的停留时间为40秒,得到预混液;所述氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为50℃,反应停留时间为400秒,得到反应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;其中亚硫酸乙烯酯与预混区通入氧气的质量比为108:40;其中预混区通入氧气的质量为148.1g;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
实施例5
一种原位催化氧化合成硫酸乙烯酯的方法,包括以下步骤:
①Au-Pd/TS-1催化剂的制备:将10g Pd(OAc) 2和10g HAuCl 4·3H 2O溶于2kg水中,然后加入980g TS-1分子筛,搅拌均匀,升温至90℃下反应20小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在400℃下还原处理2.5小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为8%;
②准备原料:将600g步骤①所得Au-Pd/TS-1催化剂与9400g水混合,得到质量浓度6%的悬浮液;将400g亚硫酸乙烯酯与600g二氯乙烷混合,配制亚硫酸乙烯酯质量分数为40%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其 中通入氢气和氧气,控制预混区的温度为60℃,悬浮液在预混区的停留时间为50秒,得到预混液;所述氢气和氧气的体积比为1:1;
预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为55℃,反应停留时间为450秒,得到反应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;其中亚硫酸乙烯酯与预混区通入氧气的质量比为108:60;其中步骤③通入氧气的质量为222.2g;
将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
实施例1~5中的通入氢气和氧气为连续过程,只要保证该过程中氢气和氧气可以持续通入即可,并且氧气的量可以通入预计的用量的1.2~1.5倍,以便使得亚硫酸乙烯酯充分反应。
图1为Au-Pd/TS-1(Au-Pd@TS-1)催化剂的SEM表征图,由图中可以看出,TS-1作为催化剂主体结构,负载了Au、Pd纳米颗粒,即成功合成了Au-Pd@TS-1改性催化剂。
图2为Au-Pd/TS-1催化剂的XRD表征图,由图中可以看出,改性后的催化剂基本保留了TS-1晶体结构,其特征峰与标准TS-1分子筛基本一致,说明改性催化剂依然具备TS-1分子筛的优良晶体特性。
采用实施例1~5的原位催化氧化合成硫酸乙烯酯的方法,采用研发的Au-Pd/TS-1催化剂合成双氧水,直接氧化亚硫酸乙烯酯,经过连续流反应技术,可以实现硫酸乙烯酯产品的高效产出,一般硫酸乙烯酯以亚硫酸乙烯酯的量计,产率能达到95%以上,Au-Pd/TS-1催化剂可以反复使用,产品硫酸乙烯酯的纯度为99.9%以上,如图4中实施例5所得硫酸乙烯酯的纯度为99.97%。

Claims (7)

  1. 一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:包括以下步骤:
    ①Au-Pd/TS-1催化剂的制备:将Pd盐和Au盐溶于水中,然后加入TS-1分子筛,搅拌均匀,升温至60-105℃下反应8-24小时,得到反应液,将反应液鼓风干燥去除水分,得到白色粉末,将所得白色粉末置于管式炉中在350~450℃下还原处理2~3小时,得到Au-Pd/TS-1催化剂;其中管式炉的环境为氢气和氩气的混合气体,混合气体中氢气的体积浓度为5~10%;
    所述Pd盐为PdCl 2、PdSO 4、Pd(NO 3) 2·2H 2O或Pd(OAc) 2中的一种或两种;
    所述Au盐为AuCl 3和/或HAuCl 4·3H 2O;
    其中Pd盐、Au盐、TS-1分子筛和水的质量比为8~12g:8~15g:0.9~1kg:1~5kg;
    ②准备原料:将步骤①所得Au-Pd/TS-1催化剂与水混合,得到质量浓度1~10%的悬浮液;将亚硫酸乙烯酯与二氯乙烷混合,配制亚硫酸乙烯酯质量分数为10~60%的亚硫酸乙烯酯-二氯乙烷溶液;备用;
    ③连续流合成反应:将步骤②所得悬浮液泵入连续反应器的预混区,同时向其中通入氢气和氧气,控制预混区的温度为10~90℃,悬浮液在预混区的停留时间为3~60秒,得到预混液;所述氢气和氧气的体积比为1:1;
    预混液从预混区流出后进入反应区,同时将步骤②所得亚硫酸乙烯酯-二氯乙烷溶液泵入反应区,控制反应区温度为10~90℃,反应停留时间为15~600秒,得到反应液,反应液自反应器中流出,通过过滤器将Au-Pd/TS-1催化剂分离,所得滤液经离心分离器处理,得到水相和有机相;
    将所得有机相加入同体积的去离子水,泵入离心萃取器中,分液,得到有机相溶液,将所得有机相溶液蒸馏、结晶,得到硫酸乙烯酯产品。
  2. 根据权利要求1所述的一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:所述Pd盐为PdCl 2或Pd(OAc) 2;所述Au盐为HAuCl 4·3H 2O。
  3. 根据权利要求1所述的一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:步骤(1)中加入水的量为TS-1分子筛及两种金属盐总量的2倍。
  4. 根据权利要求1所述的一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:步骤③中,步骤②所得悬浮液与混合气体的质量比为1:1~2。
  5. 根据权利要求1所述的一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:步骤③中,亚硫酸乙烯酯与预混区通入氧气的质量比为108:32~64。
  6. 根据权利要求1所述的一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:预混区的温度为60~65℃,反应区的温度为50~55℃。
  7. 根据权利要求1所述的一种原位催化氧化合成硫酸乙烯酯的方法,其特征在于:悬浮液在预混区的停留时间为40~50秒,反应停留时间为400~450秒。
PCT/CN2023/070353 2022-11-01 2023-01-04 一种原位催化氧化合成硫酸乙烯酯的方法 WO2024093019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211353140.8A CN115611852B (zh) 2022-11-01 2022-11-01 一种原位催化氧化合成硫酸乙烯酯的方法
CN202211353140.8 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024093019A1 true WO2024093019A1 (zh) 2024-05-10

Family

ID=84877073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070353 WO2024093019A1 (zh) 2022-11-01 2023-01-04 一种原位催化氧化合成硫酸乙烯酯的方法

Country Status (2)

Country Link
CN (1) CN115611852B (zh)
WO (1) WO2024093019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425715A (zh) * 2023-03-16 2023-07-14 福州大学 一种连续氧化亚硫酸乙烯酯制备硫酸乙烯酯的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422719A (zh) * 2017-08-30 2019-03-05 张家港市国泰华荣化工新材料有限公司 环状硫酸酯的制备方法
CN111909129A (zh) * 2020-09-03 2020-11-10 常熟市常吉化工有限公司 一种双氧水直接氧化制备环状硫酸酯的方法
CN112387305A (zh) * 2020-11-16 2021-02-23 江苏扬农化工集团有限公司 一种核壳结构催化剂的合成及原位生成双氧水制备环氧氯丙烷的方法
WO2022092429A1 (ko) * 2020-10-27 2022-05-05 솔브레인 주식회사 유기 황 화합물의 제조방법
CN114917848A (zh) * 2022-05-19 2022-08-19 胜华新能源科技(东营)有限公司 一种合成硫酸乙烯酯的装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707095B (zh) * 2018-07-17 2021-03-05 山东石大胜华化工集团股份有限公司 连续制备硫酸乙烯酯的方法
CN109988145B (zh) * 2019-05-13 2021-05-28 福建博鸿新能源科技有限公司 一种硫酸乙烯酯的制备方法
CN110386916A (zh) * 2019-07-23 2019-10-29 常熟市常吉化工有限公司 一种环状硫酸酯的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422719A (zh) * 2017-08-30 2019-03-05 张家港市国泰华荣化工新材料有限公司 环状硫酸酯的制备方法
CN111909129A (zh) * 2020-09-03 2020-11-10 常熟市常吉化工有限公司 一种双氧水直接氧化制备环状硫酸酯的方法
WO2022092429A1 (ko) * 2020-10-27 2022-05-05 솔브레인 주식회사 유기 황 화합물의 제조방법
CN112387305A (zh) * 2020-11-16 2021-02-23 江苏扬农化工集团有限公司 一种核壳结构催化剂的合成及原位生成双氧水制备环氧氯丙烷的方法
CN114917848A (zh) * 2022-05-19 2022-08-19 胜华新能源科技(东营)有限公司 一种合成硫酸乙烯酯的装置和方法

Also Published As

Publication number Publication date
CN115611852B (zh) 2023-11-10
CN115611852A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN109988145B (zh) 一种硫酸乙烯酯的制备方法
CN103949253B (zh) 一种氧化亚铜二氧化钛复合结构及其制备方法
WO2024093019A1 (zh) 一种原位催化氧化合成硫酸乙烯酯的方法
CN112973729B (zh) 一种富含氧空位/AuCu合金的TiO2纳米方片的制备方法及用途
CN105924372A (zh) 一种二甲基二硫醚的生产方法
CN107814418A (zh) 一种间歇式镍钴铝前驱体制备方法
CN112892561A (zh) 一种无铅铋基混合卤化钙钛矿纳米片及其制备方法和应用
CN114195757A (zh) 一种硫酸乙烯酯的合成方法
CN102718633B (zh) 一种制备对苯二酚的方法
CN103406021B (zh) 一种双液相净化磷化氢的方法
Xiao et al. Intermediate stabilization for tuning photocatalytic selective oxidation of CH4 to CH3OH over Co3O4/ZnO
CN102336658B (zh) 一种3,5-二甲基苯甲酸的生产方法
WO2019144475A1 (zh) 高价态铁盐的制备方法
CN116217539A (zh) 一种催化双氧水氧化制备硫酸乙烯酯的方法
CN116876022A (zh) 一种具有自支撑双功能电解水催化剂的制备方法
CN112619399B (zh) 一种亚硝酰硫酸制备过程中的尾气处理方法
CN116139941A (zh) 一种用于提高次氯酸根氧化性能的镍基催化剂及其制备方法和应用
CN115558954A (zh) 一种氧掺杂碳纳米片负载钯单原子催化剂及其制备方法和应用
CN114478243A (zh) 用氧气催化氧化法合成二羟基对苯二甲酸二甲酯的方法
KR101515677B1 (ko) 균일한 팔라듐 나노 입자-탄소 복합체를 촉매로 한 수소와 산소를 이용한 과산화수소 직접 생산
CN217725508U (zh) 一种硫酸乙烯酯的清洁制备***
CN115819397A (zh) 一种环状硫酸酯的制备方法
CN110229053A (zh) 一种对苯醌的制备方法
CN218530890U (zh) 一种含双二硫结构化合物的制备***
CN116283479B (zh) 一种制备电子级八氟丙烷的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23883969

Country of ref document: EP

Kind code of ref document: A1