WO2024092502A1 - 液晶光学器件、液晶透镜阵列、电子产品和制作方法 - Google Patents

液晶光学器件、液晶透镜阵列、电子产品和制作方法 Download PDF

Info

Publication number
WO2024092502A1
WO2024092502A1 PCT/CN2022/128969 CN2022128969W WO2024092502A1 WO 2024092502 A1 WO2024092502 A1 WO 2024092502A1 CN 2022128969 W CN2022128969 W CN 2022128969W WO 2024092502 A1 WO2024092502 A1 WO 2024092502A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
driving voltage
lead
electrode
electrode layer
Prior art date
Application number
PCT/CN2022/128969
Other languages
English (en)
French (fr)
Inventor
冯文斌
刘志强
王滨
叶茂
Original Assignee
成都耶塔科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都耶塔科技有限责任公司 filed Critical 成都耶塔科技有限责任公司
Priority to CN202311330204.7A priority Critical patent/CN117647903A/zh
Priority to CN202311330054.XA priority patent/CN117572694A/zh
Priority to CN202311329855.4A priority patent/CN117572693A/zh
Priority to CN202311787942.4A priority patent/CN117631383A/zh
Priority to CN202280013819.4A priority patent/CN117083566A/zh
Priority to CN202311329846.5A priority patent/CN117572692A/zh
Priority to PCT/CN2022/128969 priority patent/WO2024092502A1/zh
Publication of WO2024092502A1 publication Critical patent/WO2024092502A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention belongs to the technical field of liquid crystal optics, and in particular relates to a liquid crystal optical device, a liquid crystal lens array, an electronic product and a manufacturing method.
  • liquid crystal lenses have the characteristics of electrically controlled focusing, their applications are becoming more and more extensive. In order to apply liquid crystal lenses to different scenarios, it is often necessary to accurately control the potential distribution of the liquid crystal layer in the liquid crystal lens. Since the phase of the liquid crystal material responds linearly to the applied voltage in a certain voltage interval, the voltage interval is called a linear response interval or a liquid crystal linear working interval. In order to facilitate and accurately control the potential distribution of the liquid crystal layer, it is proposed in the prior art to control the voltage driving the liquid crystal lens according to the range of the linear response interval. For example, in the patent with publication number CN114185222A, the liquid crystal device is driven to work by setting the minimum voltage and the maximum voltage of the driving liquid crystal device within the liquid crystal linear working interval.
  • the voltage range of the linear response interval is small, which leads to insufficient optical focal length of the designed liquid crystal device, which greatly limits the application scope of the liquid crystal lens.
  • the present invention provides a liquid crystal lens to solve the technical problem that the optical focal length of the liquid crystal lens is insufficient due to the small linear response range of the liquid crystal material in the existing liquid crystal lens.
  • the present invention provides a liquid crystal optical device, comprising a first transparent substrate, a first electrode layer, a first alignment layer, a liquid crystal layer, a second alignment layer, a second electrode layer, and a second transparent substrate stacked in sequence;
  • the first electrode layer and/or the second electrode layer include electrode units
  • the electrode unit includes a conductive wire and a plurality of lead wires, the conductive wire includes a first position and a second position, the first position and the second position are different, one end of the lead wire is connected to the conductive wire, and the other end thereof is suspended, the lead wire is led out from a position between the first position and the second position of the conductive wire, and the position where the lead wire is connected to the conductive wire is the lead position;
  • the conductive line between the first position and the second position includes a first connecting segment, a second connecting segment and a plurality of extension lines arranged along a preset direction of the electrode unit, the extension line extends from a starting position to a position connected to the first connecting segment, the lead-out position is set at a position where the extension line is connected to the first connecting segment, and the starting position of the extension line is connected to the second connecting segment;
  • the length of the extension line is g(x), where C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage;
  • the first position is used to receive a first driving voltage
  • the second position is used to receive a second driving voltage
  • the width of the conductive line between the first position and the second position is the same, and the lead-out positions are arranged at equal intervals along the preset direction of the electrode unit; in at least one preset area, the lead-out lines are parallel to each other and are arranged at equal intervals along the preset direction of the electrode unit.
  • the lead-out line comprises a first portion and a second portion respectively located on opposite sides of a first reference plane, and the first reference plane is a plane passing through the first position and perpendicular to a preset direction of the electrode unit.
  • the conductive line also includes a third position, the first position is located between the third position and the second position, the third position of the conductive line is used to receive a second driving voltage, the portion of the conductive line located between the first position and the second position has the same width, and the lead-out line is also led out from a position between the first position and the third position of the conductive line.
  • the conductive line is located outside the functional area of the liquid crystal optical device.
  • a high impedance film or a high dielectric constant layer is provided between the second electrode layer and the second alignment layer or between the second electrode layer and the second transparent substrate.
  • the present invention provides a liquid crystal lens array, wherein the liquid crystal lens array comprises a plurality of liquid crystal optical devices as described in the first aspect, wherein the plurality of liquid crystal optical devices are arranged in an array.
  • the present invention provides a liquid crystal lens array, comprising the liquid crystal optical device described in the first aspect, wherein the lead lines of the liquid crystal optical device are extended to form a plurality of extension segments, the plurality of extension segments are arranged in an array, and at least a portion of each extension segment is located in the preset area.
  • the present invention provides an electronic product, comprising a control circuit and the liquid crystal optical device described in the first aspect or the liquid crystal lens array described in the second aspect or the liquid crystal lens array described in the third aspect, wherein the control circuit is electrically connected to the liquid crystal optical device or the liquid crystal lens array.
  • the present invention provides a method for manufacturing a liquid crystal optical device or a liquid crystal lens array, which is used to manufacture the liquid crystal lens described in the first aspect, the liquid crystal lens array described in the second aspect, or the liquid crystal lens array described in the third aspect, and the method comprises the following steps:
  • the liquid crystal lens or the liquid crystal lens array is manufactured according to the shapes of the curve segments on the conductive lines in the first electrode layer and the second electrode layer.
  • the liquid crystal optical device lens, liquid crystal lens array, electronic product and manufacturing method of the present invention utilizes a conductive wire that can be loaded with two driving voltages to generate electric potentials of different sizes distributed along the position of the conductive wire, and multiple lead wires are respectively led out from different positions of the non-conductive wire. Since one end of the lead wire is connected to the conductive wire and the other end is suspended, the lead wire can diffuse the electric potential at the lead-out position on the conductive wire to the area where the lead wire extends.
  • the present invention allows the lead-out position of each extension line of the conductive wire in the preset direction of the electrode unit to be at a distance x from the first position, so that the length g(x) of the extension line satisfies C is a constant, Indicates the rate of change of the phase of the liquid crystal material with the change of voltage, so that even if the first driving voltage V1 loaded at the first position and the second driving voltage V2 loaded at the second position are not within the linear corresponding region of the liquid crystal material, the present invention can also make the phase of the liquid crystal material accurately achieve parabolic distribution.
  • the application of the liquid crystal material is no longer limited by the linear response range of the liquid crystal material, thereby achieving the improvement of the phase distribution accuracy while also greatly improving the optical focal length of the liquid crystal lens, so that the utilization rate of the liquid crystal material is also significantly increased.
  • FIG1 is a response curve diagram of a liquid crystal material
  • FIG2 is a cross-sectional view of a liquid crystal lens of the present invention.
  • FIG3 is a schematic structural diagram of a first electrode unit in Embodiment 1 of the present invention.
  • FIG4 is a schematic diagram of the structure of a second electrode unit in Embodiment 1 of the present invention.
  • FIG5 is a schematic diagram of the structure of the conductive wire in the first electrode unit in Example 1 of the present invention.
  • FIG6 is a schematic diagram of the structure of the conductive wire in the second electrode unit in Example 1 of the present invention.
  • FIG7 is a schematic diagram of the structure of the first connecting section and the second connecting section of the conductive wire in Embodiment 1 of the present invention.
  • FIG8 is a schematic diagram of a structure for extracting a curve segment from a curve that meets a condition in Embodiment 1 of the present invention.
  • FIG9 is a schematic diagram of the structure of an extension line and two adjacent curved segments in Example 1 of the present invention.
  • FIG10 is a schematic diagram of the structure of a liquid crystal lens array in one form in Embodiment 1 of the present invention.
  • FIG11 is a schematic diagram of the structure of another form of a liquid crystal lens array in Example 1 of the present invention.
  • FIG. 12 is a schematic diagram of the structure of the electrode units of the first electrode layer and the second electrode layer projected onto the second reference plane in Embodiment 2 of the present invention
  • FIG13 is a schematic diagram of the structure of a liquid crystal lens array in one form in Embodiment 2 of the present invention.
  • FIG14 is a schematic diagram of the structure of another form of a liquid crystal lens array in Example 2 of the present invention.
  • FIG15 is a schematic diagram of the structure of the first electrode unit in Example 3 of the present invention.
  • FIG16 is a schematic diagram of the structure of a second electrode unit in Example 3 of the present invention.
  • FIG17 is a schematic diagram of the structure of the first conductive wire in Embodiment 3 of the present invention.
  • FIG18 is a schematic diagram of the structure of a second conductive wire in Embodiment 3 of the present invention.
  • FIG19 is a schematic diagram of the exploded structure of the first conductive wire in Embodiment 3 of the present invention.
  • FIG20 is a schematic diagram of the exploded structure of the second conductive wire in Embodiment 3 of the present invention.
  • FIG21 is a schematic structural diagram of a sub-portion of a conductive line in Embodiment 3 of the present invention.
  • FIG22 is a schematic diagram of dividing the response curve of a liquid crystal material into several segments in Example 3 of the present invention.
  • FIG23 is a schematic diagram of a broken line of a response curve of an approximate replacement liquid crystal material in Example 3 of the present invention.
  • FIG24 is a schematic diagram of the structure of a liquid crystal lens array with adjustable focal length in Example 3 of the present invention.
  • FIG25 is a schematic diagram of the structure of another liquid crystal lens array with adjustable focal length in Example 3 of the present invention.
  • FIG26 is a schematic flow chart of a method for driving a liquid crystal lens or a liquid crystal lens rod lens array with adjustable optical power in Embodiment 3 of the present invention
  • FIG. 27 is a schematic diagram of the structure of the electrode units of the first electrode layer and the second electrode layer projected onto the second reference plane in Embodiment 4 of the present invention.
  • FIG28 is a schematic diagram of a liquid crystal lens array structure with adjustable focal length in Example 4 of the present invention.
  • FIG29 is a schematic diagram of the structure of another liquid crystal lens array with adjustable focal length in Example 4 of the present invention.
  • FIG30 is a schematic flow chart of a method for driving a liquid crystal lens or a liquid crystal lens rod lens array with adjustable optical power in Example 4 of the present invention
  • FIG31 is a schematic diagram of the structure of the second electrode layer in Example 5 of the present invention.
  • FIG32 is a schematic diagram of the structure of the second electrode layer after being decomposed into a plurality of electrode units in Example 5 of the present invention.
  • FIG33 is a schematic diagram of the phase distribution of the liquid crystal material corresponding to the Fresnel band in Example 5 of the present invention.
  • FIG34 is a schematic diagram of the structure of an electrode unit in Example 5 of the present invention.
  • FIG35 is a schematic diagram of the structure of another electrode unit in Example 5 of the present invention.
  • FIG36 is a schematic diagram of a first conductive line structure in Example 5 of the present invention.
  • FIG37 is a schematic diagram of another first conductive line structure in Example 5 of the present invention.
  • FIG38 is a schematic diagram of the partial structure of the first conductive line in Example 5 of the present invention.
  • FIG39 is a schematic diagram of the structure of the second electrode layer in Example 6 of the present invention.
  • FIG40 is a schematic diagram of the phase distribution of the liquid crystal material corresponding to the Fresnel ring zone in Example 6 of the present invention.
  • FIG41 is a schematic diagram of the structure of an electrode unit near the center of the second electrode layer in Example 6 of the present invention.
  • FIG42 is a schematic diagram of the structure of an electrode unit located at the periphery of the second electrode layer in Example 6 of the present invention.
  • FIG43 is a schematic diagram of the structure of the first conductive wire in Example 6 of the present invention.
  • FIG. 44 is a schematic diagram of the partial structure of the first conductive wire in Example 6 of the present invention.
  • This embodiment provides a liquid crystal optical device, comprising a first transparent substrate 10, a first electrode layer 20, a first alignment layer 30, a liquid crystal layer 40, a second alignment layer 50, a second electrode layer 60, and a second transparent substrate stacked in sequence;
  • the first electrode layer 20 and/or the second electrode layer 60 include electrode units; the electrode unit 101 includes a conductive wire 61 and a plurality of lead wires 62, the conductive wire 61 includes a first position 611 and a second position 612, the first position 611 and the second position 612 are different, one end of the lead wire 62 is connected to the conductive wire 61, and the other end is suspended.
  • the conductive line between the first position and the second position includes a first connecting segment 614, a second connecting segment 615 and a plurality of extension lines 616 arranged along the first direction, the extension line 616 extends from a starting position to a position connected to the first connecting segment 614, the lead-out position is set at a position where the extension line is connected to the first connecting segment 614, and the starting position of the extension line is connected to the second connecting segment 615;
  • the length of the extension line is g(x), where C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage.
  • the first position is used to receive a first driving voltage
  • the second position is used to receive a second driving voltage
  • this embodiment provides a liquid crystal column lens, which is one of the aforementioned liquid crystal optical devices.
  • the liquid crystal column lens in this embodiment includes a first transparent substrate 10, a first electrode layer 20, a first orientation layer 30, a liquid crystal layer 40, a second orientation layer 50, a second electrode layer 60, and a second transparent substrate stacked in sequence; the lead wire 62 is led out from a position between a first position 611 and a second position 612 of a conductive wire 61, and the position where the lead wire 62 is connected to the conductive wire 61 is the lead-out position.
  • the liquid crystal column lens in this embodiment can adopt a layered structure.
  • the aforementioned liquid crystal layer 40, the first orientation layer 30, the second orientation layer 50, the first electrode layer 20, the second electrode layer 60, the first transparent substrate 10 and the second transparent substrate are respectively located in different layers, and the aforementioned layers are stacked and arranged along the light transmission direction of the liquid crystal optical device, that is, the normal direction of each layer.
  • the arrangement can be shown in Figure 2.
  • Figure 2 from bottom to top along the light transmission direction of the liquid crystal optical device are the first transparent substrate 10, the first electrode layer 20, the first orientation layer 30, the liquid crystal layer 40, the second orientation layer 50, the second electrode layer 60 and the second transparent substrate.
  • first orientation layer 30 and the second orientation layer 50 are respectively located on the opposite sides of the liquid crystal layer 40, the first electrode layer 20 is located on the side of the first orientation layer 30 that is away from the liquid crystal layer 40, and the second electrode layer 60 is located on the side of the second orientation layer 50 that is away from the liquid crystal layer 40; the first transparent substrate 10 is located on the side of the first electrode layer 20 that is away from the liquid crystal layer 40, and the second transparent substrate is located on the side of the second electrode layer 60 that is away from the liquid crystal layer 40;
  • the first transparent substrate 10 and the second transparent substrate can be made of a transparent material with certain strength and rigidity, such as a glass substrate, a plastic substrate, etc.
  • the first substrate can play a role in supporting the liquid crystal optical device.
  • the first transparent substrate 10 can be used as a carrier of the first electrode layer 20, and the first electrode layer 20 can be plated on the first substrate.
  • the second substrate also plays a supporting role and can also be used as a carrier of the second electrode layer 60, and the second electrode layer 60 can be plated on the second transparent substrate.
  • the first electrode layer 20 is a surface electrode. In this embodiment, the first electrode layer 20 is used to form a plane with equipotential.
  • an electrode unit 101 is disposed in the second electrode layer 60 , and the potential generated by the electrode unit 101 is used to form a potential distribution that can affect the deflection of liquid crystal molecules.
  • the electrode unit 101 includes a conductive wire 61 and multiple lead wires 62.
  • the conductive wire 61 includes a first position 611 and a second position 612. The first position 611 and the second position 612 are different. The width of the portion of the conductive wire 61 located between the first position 611 and the second position 612 is the same.
  • One end of the lead wire 62 is connected to the conductive wire 61, and the other opposite end is suspended.
  • the lead wires 62 are led out from a position between a first position 611 and a second position 612 of the conductive wire 61, and the position where the lead wires 62 are connected to the conductive wire 61 is the lead-out position, and each of the lead-out positions is arranged at equal intervals along a preset direction of the electrode unit 101; in at least one preset area, each of the lead wires 62 is parallel to each other and is arranged at equal intervals along the preset direction of the electrode unit 101;
  • the aforementioned preset direction can be arbitrarily specified as needed.
  • the direction can be specified as the preset direction.
  • the aforementioned preset area can be the functional area 90 domain of the liquid crystal lens.
  • the functional area 90 of the liquid crystal lens refers to the area in the liquid crystal lens where light can be modulated as needed.
  • the spacing between two adjacent lead wires 62 can be the same as the spacing between two adjacent lead positions, or it can be different, and there is no restriction here. When the spacing between two adjacent lead wires 62 is different from the spacing between two adjacent lead positions, the spacing between the lead wires 62 can be proportionally enlarged or reduced based on the spacing between the lead positions, and there is no restriction here.
  • the conductive wires 61 in the aforementioned electrode unit 101 include but are not limited to wires with a certain resistance, and thinner lines with a certain resistance and conductivity plated on the second substrate.
  • the conductive wires 61 in this embodiment can be made of transparent conductive materials, and the aforementioned transparent conductive materials include but are not limited to ITO electrode materials, IZO electrode materials, FTO electrode materials, AZO electrode materials, IGZO electrode materials, etc.
  • the lead wires 62 in the electrode unit 101 may be made entirely of transparent material, or at least partially of transparent material, for example, the lead wires 62 located in the liquid crystal lens functional area 90 may be made of transparent material.
  • the number of lead wires 62 may be greater than or equal to 2.
  • a driving voltage can be applied to the electrode unit 101 in the second electrode layer 60 to drive the liquid crystal lens to operate, wherein the first position 611 of the conductive line 61 in the second electrode layer 60 is used to receive a first driving voltage, and the second position 612 is used to receive a second driving voltage.
  • the lead wire 62 in this embodiment adopts a connection method in which one end is connected to the conductive wire 61 and the other end is suspended, the electric potentials at various positions on the same lead wire 62 are equal and equal to the electric potential of the conductive wire 61 at the connection position between the lead wire 62 and the conductive wire 61.
  • the width of the portion of the conductive wire 61 between the first position 611 and the second position 612 is the same, the electric potential of each lead position on the conductive wire 61 is linearly related to the length of the conductive wire 61 from the position to the first position 611.
  • the conductive line between the first position and the second position includes a first connecting segment 614, a second connecting segment 615, and a plurality of extension lines 616 arranged along the first direction, the extension line 616 extends from a starting position to a position connected to the first connecting segment 614, the lead-out position is set at a position where the extension line is connected to the first connecting segment 614, and the starting position of the extension line is connected to the second connecting segment 615;
  • the length of the extension line is g(x), where C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage.
  • the length L of the extension line 616 is set to be associated with the distance between the starting position of the extension line 616 and the first position of the electrode unit in the preset direction of the electrode unit.
  • the length of the extension line and the distance x between the starting position and the first position in the preset direction can satisfy a certain functional relationship.
  • the functional relationship satisfied by the distance x between the starting position of the extension line and the first position in the preset direction is recorded as g(x).
  • the relationship between the length L of the extension line 616 and the distance x between the starting position of the extension line and the first position in the preset direction can also be expressed by a rectangular coordinate system.
  • the second connecting segment 615 is a curve segment. These curve segments are obtained by sequentially intercepting the curves that meet certain requirements. These curve segments are part of the curves that meet certain conditions.
  • the extension line is perpendicular to the first direction.
  • the equation of the aforementioned curve is set to g(x), and the aforementioned conditions are: Assuming that the first driving voltage loaded at the first position 611 is V1 and the second driving voltage loaded at the second position 612 is V2, then the rate of change of the phase along the x direction is:
  • the phase distribution is a
  • the phase distribution of the liquid crystal material in this embodiment satisfies a parabolic distribution.
  • each lead wire 62 and the position through which each lead wire 62 passes can be precisely controlled, when the lead positions are arranged at equal intervals along a preset direction; in a preset area, each lead wire 62 is parallel to each other and arranged at equal intervals along the preset direction, a precise potential distribution that makes the phase of the liquid crystal material parabolic can be obtained, so the liquid crystal lens of this embodiment is a liquid crystal column lens.
  • the shape of the curve segment needs to be precisely controlled to obtain a high-precision potential distribution, making the design simpler.
  • this embodiment only needs the first driving voltage and the second driving voltage to achieve precise control of the potential at each position in the space where the liquid crystal lens is located, so this embodiment can obtain a liquid crystal lens with better effect through a simple driving method.
  • this embodiment can also make the phase of the liquid crystal material accurately achieve parabolic distribution. In this way, the application of the liquid crystal material is no longer limited by the linear response range of the liquid crystal material, thereby greatly improving the optical power of the liquid crystal column lens while improving the phase distribution accuracy, and significantly increasing the utilization rate of the liquid crystal material.
  • the lead wire 62 of the electrode unit 101 includes a first part and a second part respectively located on opposite sides of a first reference plane 80, wherein the first reference plane 80 is a plane passing through the first position 611 and perpendicular to a preset direction of the electrode unit 101.
  • the space where the liquid crystal optical lens is located can be divided into two areas with the reference plane as the boundary, and the lead wire 62 can be extended in both areas.
  • the lead wire 62 can be led out from only one area by using the above structure, so that the potential distribution of the two areas can be controlled.
  • the potential distribution on both sides of the first position 611 can be controlled by applying the driving voltage at two positions, and the length of the conductive wire 61 can be shortened by half, so that the production cost and energy consumption of the liquid crystal column lens are also significantly reduced.
  • the extension line can include only the first part and the second part, or can include other parts except the first part and the second part, which is not limited here.
  • the conductive wire 61 in the electrode unit 101 also includes a third position 613, the first position 611 is located between the third position 613 and the second position 612, the third position 613 of the conductive wire 61 is used to receive a second driving voltage, the portion of the conductive wire 61 located between the first position 611 and the second position 612 has the same width, and the lead-out line 62 is also led out from the position between the first position 611 and the third position 613 of the conductive wire 61.
  • a third position 613 for loading a second driving voltage is added on the basis of the aforementioned second position 612, so that the second driving voltage can be applied to the second position 612 and the third position 613 of the conductive line 61 at the same time.
  • the second driving voltage is applied to the second position 612 and the third position 613 of the conductive line 61 at the same time, a potential that varies with position can be generated between the second position 612 and the first position 611 of the conductive line 61 and between the third position 613 and the first position 611.
  • the lead wires 62 can be led out from both sides of the first position 611, that is, the lead-out position can be located between the second position 612 and the first position 611, or between the third position 613 and the first position 611.
  • the lead wires 62 on both sides of the first position 611 can be used to control the potential distribution on both sides of the first position 611, so that the liquid crystal material forms a symmetrical parabolic phase distribution.
  • the conductive wire 61 is located outside the functional area 90 of the liquid crystal lens.
  • the element that generates the potential distribution needs to be set in the functional area 90 of the liquid crystal lens to form the potential that affects the phase of the liquid crystal material.
  • the element that generates the potential distribution in this way will be limited by the range of the functional area 90, and it is difficult to meet the demand for potential control.
  • the element that generates the potential distribution (conductive wire 61) and the element that controls the potential distribution (lead wire 62) are separated, and the element that generates the potential is located outside the functional area 90, and at least a part of the element that controls the potential is located in the functional area 90 of the liquid crystal optical device. In this way, the element that generates the potential distribution can be free from the limitation of the functional area 90, so that accurate design can be conveniently performed, and the element that generates the potential distribution and the functional area 90 can have no influence on each other.
  • a high impedance film or a high dielectric constant layer is provided between the second electrode layer 60 and the second orientation layer 50 or between the second electrode layer 60 and the second transparent substrate.
  • the potential between adjacent lead lines 62 is made smoother by adding a high impedance film or a high dielectric constant layer.
  • the projections of the conductive line 61 and the surface electrode on the plane parallel to the second electrode layer 60 do not overlap.
  • the surface electrode is absent at the position on the second electrode layer 60 directly opposite to the conductive line 61, so that the conductive line 61 will not be affected by the capacitance effect generated between the surface electrode, thereby further improving the optical effect of the liquid crystal rod lens.
  • this embodiment provides a liquid crystal cylindrical lens array, which includes a plurality of liquid crystal cylindrical lenses 100 described in Embodiment 1, and the plurality of liquid crystal cylindrical lenses 100 are arranged in an array. Since the liquid crystal cylindrical lens array in this embodiment uses the liquid crystal cylindrical lenses 100 in Embodiment 1, the liquid crystal cylindrical lens array in this embodiment not only has a high phase distribution accuracy of the liquid crystal material, but also has a high utilization rate of the liquid crystal material, and can obtain a higher optical focal length.
  • this embodiment provides another form of liquid crystal column lens array.
  • the liquid crystal column lens array includes the liquid crystal column lens 100 described in Example 1.
  • the lead wires 62 of the liquid crystal column lens extend to form a plurality of extension segments 621.
  • the plurality of extension segments 621 are arranged in an array, and at least a portion of each extension segment 621 is located in the preset area.
  • the liquid crystal column lens array of this embodiment is further extended by the lead-out wires 62 of the liquid crystal column lens array in Embodiment 1 to form a plurality of extension segments 621.
  • the potential distribution formed by the portion of each extension segment 621 in the preset area can drive the liquid crystal molecules in the liquid crystal layer 40 to deflect to form a parabolic phase distribution, thereby forming a liquid crystal column lens corresponding to each extension segment 621. Since each extension segment 621 is arranged in an array, the liquid crystal column lenses corresponding to each extension segment 621 are also arranged in an array.
  • each extension section 621 the lead wires 62 are parallel to each other and arranged at equal intervals.
  • the liquid crystal column lens array in the figure has three extension sections 621, so a liquid crystal column lens array composed of three liquid crystal column lenses 100 can be formed.
  • the liquid crystal column lens array in this embodiment is formed by extending the lead wires 62 of the liquid crystal column lens in Embodiment 1, the liquid crystal column lens array in this embodiment not only has high phase distribution accuracy of the liquid crystal material, but also has high utilization rate of the liquid crystal material, and can obtain higher optical focal length.
  • This embodiment provides a method for manufacturing a liquid crystal column lens or a liquid crystal column lens array.
  • the method is used to manufacture the liquid crystal column lens or the liquid crystal lens array described in Embodiment 1.
  • the method comprises the following steps:
  • the corresponding relationship between the phase of the liquid crystal material and the driving voltage refers to the size of the phase of the liquid crystal material when a voltage of a certain magnitude is applied to the liquid crystal material.
  • the corresponding relationship can also be represented by a liquid crystal material response curve. As shown in FIG1 , the horizontal coordinate of the curve in FIG1 is the magnitude of the applied voltage, and the vertical coordinate is the magnitude of the phase of the corresponding liquid crystal material. Therefore, the corresponding relationship between the phase of the liquid crystal material and the driving voltage can also be obtained through the liquid crystal material response curve.
  • this step the first driving voltage V1 and the second driving voltage V2 are selected according to the corresponding relationship between the driving voltage and the phase, so that the magnitude of the selected driving voltage meets the requirements of the phase distribution range of the liquid crystal material.
  • this step can also determine the first driving voltage and the second driving voltage according to the optics of the optical focal length and the phase distribution of the liquid crystal material.
  • the electrodes in the second electrode layer 60 are manufactured according to the shape of the second connecting segment 615 obtained in the previous step.
  • the manufacturing of the liquid crystal column lens or the rest of the liquid crystal lens array can adopt the existing manufacturing method, which will not be described here.
  • the liquid crystal column lens, liquid crystal column lens array, and manufacturing method in this embodiment utilize conductive wires that can be loaded with two driving voltages to generate electric potentials of different sizes distributed with the positions of the conductive wires, and multiple lead wires are respectively led out from different positions of the non-conductive wires. Since one end of the lead wire is connected to the conductive wire and the other end is suspended, the lead wire can diffuse the electric potential at the lead-out position on the conductive wire to the area where the lead wire extends. Even if the first driving voltage V1 loaded at the first position and the second driving voltage V2 loaded at the second position are not within the linear corresponding region of the liquid crystal material, the present invention can also accurately realize the parabolic distribution of the phase of the liquid crystal material.
  • the application of liquid crystal materials is no longer limited by the linear response range of the liquid crystal materials, thereby achieving the improvement of the phase distribution accuracy while also greatly improving the optical focal length of the liquid crystal column lens, so that the utilization rate of the liquid crystal material is also significantly increased.
  • This embodiment provides a liquid crystal lens, which is a type of liquid crystal optical device.
  • the liquid crystal lens can achieve the optical effect of a parabolic liquid crystal lens.
  • the liquid crystal lens in this embodiment includes a first transparent substrate 10, a first electrode layer 20, a first orientation layer 30, a liquid crystal layer 40, a second orientation layer 50, a second electrode layer 60, and a second transparent substrate 70, which are stacked in sequence; except for the first electrode layer 20, the remaining structures are the same as the liquid crystal lens in Example 1.
  • the first electrode layer 20 in this embodiment no longer uses the surface electrode in Example 1, but uses the same electrode unit 101 as the second electrode layer in Example 1.
  • the preset direction of the electrode unit of the first electrode layer is perpendicular to the preset direction of the electrode unit of the second electrode layer.
  • driving voltages can be applied to the electrode unit 101 in the first electrode layer 20 and the electrode unit 101 in the second electrode layer 60, respectively, to drive the liquid crystal lens to work, wherein the first position 611 of the conductive line 61 in the first electrode layer 20 is used to receive the first driving voltage, and the second position 612 is used to receive the second driving voltage; the first position 611 of the conductive line 61 in the second electrode layer 60 is used to receive the third driving voltage, and the second position 612 is used to receive the fourth driving voltage.
  • electrode units 101 are provided in both the first electrode layer 20 and the second electrode layer 60 , and the potentials generated by the electrode units 101 in the two electrode layers are superimposed on each other to form a potential distribution that can affect the deflection of liquid crystal molecules.
  • each lead wire 62 is parallel to each other and arranged at equal intervals along the preset direction, a potential distribution that accurately makes the phase of the liquid crystal material parabolically distributed can be obtained.
  • the preset direction of the electrode unit 101 of the first electrode layer 20 is perpendicular to the preset direction of the electrode unit 101 of the second electrode layer 60, the potentials of the electrode units 101 in the two electrode layers can be superimposed to form a potential distribution that accurately forms a parabolic distribution.
  • this embodiment only requires four driving voltages, namely, the first driving voltage, the second driving voltage, the third driving voltage and the fourth driving voltage, to achieve precise control of the potential at each position of the liquid crystal lens in the space. Therefore, this embodiment can obtain a liquid crystal lens with better effect through a simple driving method.
  • the electrode unit 101 of the liquid crystal lens in this embodiment adopts the aforementioned structure, even if the first driving voltage V1 loaded at the first position 611 and the second driving voltage V2 loaded at the second position 612 in the first electrode layer 20 and the third driving voltage V3 loaded at the first position 611 and the fourth driving voltage V4 loaded at the fourth position in the second electrode layer 60 are not within the linear response region of the liquid crystal material, this embodiment can also make the phase of the liquid crystal material accurately achieve parabolic distribution. In this way, the application of the liquid crystal material is no longer limited by the linear response range of the liquid crystal material, thereby greatly improving the optical power of the liquid crystal column lens while improving the phase distribution accuracy, and significantly increasing the utilization rate of the liquid crystal material.
  • a high impedance film or a high dielectric constant layer is provided between the second electrode layer 60 and the second orientation layer 50 or between the second electrode layer 60 and the second transparent substrate.
  • the potential between adjacent lead wires 62 is made smoother by adding a high impedance film or a high dielectric constant layer.
  • a high impedance film or a high dielectric constant layer may be provided between the first electrode layer 20 and the first orientation layer 30 or between the first electrode layer 20 and the first transparent substrate 10.
  • this embodiment provides a liquid crystal lens array, including the liquid crystal lens described in this embodiment, at least one electrode layer of the first electrode layer 20 and the second electrode layer 60 includes at least two electrode units 101, and the lead lines 62 in the first electrode layer 20 and the lead lines 62 in the second electrode layer 60 are projected on the second reference plane to form a plurality of intersection areas 110 arranged in an array, and the second reference plane is a plane parallel to the lead lines 62 of the first electrode unit 101 and the lead lines 62 of the second electrode unit 101.
  • intersection area 110 refers to the area where the projections of the lead wires 62 in the first electrode layer 20 and the lead wires 62 in the second electrode layer 60 on the second reference plane overlap each other.
  • one electrode unit 101 can be set in one of the electrode layers, and two or more electrode units 101 can be set in the other electrode layer, or two or more electrode units 101 can be set in both electrode layers.
  • Each electrode unit 101 in the two electrode layers can form a plurality of intersection areas 110 arranged in an array, and the electric potentials of the two electrode layers in these intersection areas 110 are superimposed on each other to form a parabolic distribution of electric potentials.
  • the electric field generated by the distributed electric potentials in these areas can drive the liquid crystal molecules to deflect, thereby forming liquid crystal lenses. And the aperture and spacing of the aforementioned liquid crystal lenses can be adjusted as needed.
  • each intersection area 110 can form an electric potential with accurate parabolic distribution, thereby obtaining a liquid crystal lens array with better effect.
  • the liquid crystal lens array in this embodiment adopts the liquid crystal lens in Example 1, the liquid crystal lens array in this embodiment not only has high phase distribution accuracy of the liquid crystal material, but also has high utilization rate of the liquid crystal material, and can obtain a higher optical focal length.
  • this embodiment provides another form of liquid crystal lens array, in which the liquid crystal lens array includes the liquid crystal lens described in this embodiment, wherein the lead wires 62 of the electrode unit 101 in at least one of the first electrode layer 20 and the second electrode layer 60 of the liquid crystal lens extend to form a plurality of extension segments 621, and the projections of the extension segments 621 of the electrode unit 101 in the first electrode layer 20 and the extension segments 621 of the electrode unit 101 in the second electrode layer 60 on the second reference plane form a plurality of intersection areas 110 arranged in an array; in the same intersection area 110, the lead wires 62 of the same electrode unit 101 are parallel to each other and are arranged at equal intervals along a preset direction of the electrode unit 101, and the second reference plane is a plane parallel to both the lead wires 62 of the first electrode unit 101 and the lead wires 62 of the second electrode unit 101.
  • the liquid crystal lens array of this embodiment can be formed by extending the lead wire 62 of the liquid crystal lens in the embodiment to form a plurality of extension segments 621.
  • Each extension segment 621 can control the potential distribution of the corresponding area, thereby driving the liquid crystal molecules in the liquid crystal layer 40 in the corresponding area to deflect.
  • the projections of the extension segments 621 in the two electrode layers on the second reference plane form a plurality of overlapping areas, namely the aforementioned intersection area 110, each area corresponding to a liquid crystal lens.
  • the potential distribution formed by the part of each extension segment 621 in the intersection area 110 can drive the liquid crystal molecules in the liquid crystal layer 40 to deflect to form a parabolic phase distribution.
  • the potential distribution formed by the part of each extension segment 621 in the intersection area 110 can drive the liquid crystal molecules in the liquid crystal layer 40 to deflect to form a parabolic phase distribution. After the potentials of the two electrode layers are superimposed, a parabolic potential distribution is formed in the intersection area 110. Since the junction areas 110 are arranged in an array, the liquid crystal lenses corresponding to the junction areas 110 are also arranged in an array.
  • each intersection area 110 can form an electric potential with accurate parabolic distribution, thereby obtaining a liquid crystal lens array with better effect. Since the liquid crystal column lens array in this embodiment is formed by extending the lead wire 62 of the liquid crystal column lens in Example 1, the liquid crystal column lens array in this embodiment not only has high phase distribution accuracy of the liquid crystal material, but also has high utilization rate of the liquid crystal material, and can obtain a higher optical focal length.
  • This embodiment provides a method for manufacturing a liquid crystal lens or a liquid crystal lens array.
  • the method is used to manufacture the liquid crystal lens or the liquid crystal lens array described in this embodiment.
  • the method comprises the following steps:
  • S2B determining a first driving voltage V1, a second driving voltage V2, a third driving voltage V1 and a fourth driving voltage V2 according to the corresponding relationship;
  • the first driving voltage V1 and the second driving voltage V2 for driving the electrode unit 101 in the first electrode layer 20 and the third driving voltage V3 and the fourth driving voltage V4 for driving the electrode unit 101 in the first electrode layer 20 are selected according to the corresponding relationship between the driving voltage and the phase, so that the magnitude of the selected driving voltage meets the requirements of the phase distribution range of the liquid crystal material.
  • this step can also determine the first driving voltage V1, the second driving voltage V2, the third driving voltage V1 and the fourth driving voltage V2 according to the optical power and the optics of the phase distribution of the liquid crystal material.
  • S3B determining the shape of each second connecting segment 615 on the conductive line 61 in the first electrode layer 20 according to the first driving voltage V1 and the second driving voltage V2 and the corresponding relationship;
  • each curve segment in the second connecting segment 615 is sequentially intercepted from the curve g(x) as a standard for making each curve segment 6 in the first electrode layer 20 .
  • a liquid crystal lens or a liquid crystal lens array is manufactured according to the shapes of the curve segments 6141 on the conductive lines 61 in the first electrode layer 20 and the second electrode layer 60 .
  • the electrodes in the first electrode layer 20 are manufactured according to the shapes of the curve segments 6141 obtained in S3 and the electrodes in the second electrode layer 60 are manufactured according to the shapes of the curve segments 6141 obtained in S4.
  • the remaining parts of the liquid crystal lens or liquid crystal lens array can be manufactured using existing manufacturing methods, which will not be described in detail here.
  • the liquid crystal lens or liquid crystal lens array manufactured using the above method can significantly improve its optical power, and the utilization rate of the liquid crystal material is also significantly increased.
  • the liquid crystal lens, liquid crystal lens array and manufacturing method of the present invention utilize conductive wires that can load two driving voltages to generate electric potentials of different sizes distributed with the positions of the conductive wires, and multiple lead wires are respectively led out from different positions of the non-conductive wires. Since one end of the lead wire is connected to the conductive wire and the other end is suspended, the lead wire can diffuse the electric potential of the lead position on the conductive wire to the area where the lead wire extends.
  • the present invention arranges the lead positions at equal intervals along the first direction; in the preset area of the second electrode layer, each lead wire is parallel to each other and arranged at equal intervals along the first direction, and the distance x between the lead position of each extension line and the first position and the length of the extension line satisfy the functional relationship g(x), so that even if the first driving voltage V1 loaded at the first position and the second driving voltage V2 loaded at the second position are not in the linear corresponding area of the liquid crystal material, the present invention can also make the phase of the liquid crystal material in the first electrode layer and the second electrode layer accurately realize parabolic distribution.
  • the present invention arranges the first electrode layer and the second electrode layer on both sides of the liquid crystal layer, and makes the preset directions of the electrode units in the two electrode layers perpendicular to each other, so that the electric potentials generated by the electrode units in the two electrode layers are superimposed to form an accurate parabolic distribution of electric potentials.
  • the application of liquid crystal materials is no longer limited by the linear response range of liquid crystal materials, thereby improving the phase distribution accuracy while also greatly improving the optical focal length of the liquid crystal lens, so that the utilization rate of the liquid crystal material is also significantly increased.
  • the present embodiment provides a liquid crystal column lens with adjustable optical focal length, which belongs to a type of liquid crystal optical device.
  • the liquid crystal column lens with adjustable optical focal length in the present embodiment comprises a first transparent substrate 10, a first electrode layer 20, a first orientation layer 30, a liquid crystal layer 40, a second orientation layer 50, a second electrode layer 60, and a second transparent substrate 70 which are stacked in sequence; except for the first electrode layer 20 and the second electrode layer 60, the remaining structures of the liquid crystal lens in the present embodiment can adopt the same structural form as that in Example 1.
  • the first electrode layer 20 is a surface electrode. In this embodiment, the first electrode layer 20 is used to form a plane with equipotential.
  • an electrode unit 101 is provided in the second electrode layer 60, and each of the electrode units 101 in the second electrode layer 60 includes a conductive wire 61 and a plurality of lead wires 62.
  • the conductive wire 61 includes a plurality of sub-portions 611 arranged along a preset direction of the electrode unit 101, wherein the preset direction of the electrode unit 101 can be arbitrarily specified as needed, for example, if it is necessary to control the potential distribution of each position in a certain direction in the space where the liquid crystal lens is located, then the direction can be specified as the preset direction of the electrode unit 101.
  • the aforementioned preset direction can be arbitrarily specified as needed, for example, if it is necessary to use the electrode unit 101 to control the potential distribution of each position in a certain direction in the space where the liquid crystal lens is located, then the direction can be specified as the preset direction.
  • the aforementioned multiple sub-sections 611 indicate that the number of sub-sections 611 of the guiding wire 61 is 2 or more.
  • the conductive wire 61 and the lead wire 62 in this embodiment include but are not limited to a wire with a certain resistance, and a thin wire with a certain resistance and conductivity plated on a transparent second substrate. The same material as that of the conductive wire and the lead wire in Embodiment 1 can be used.
  • any sub-portion 611 of the conductive line 61 includes a first position 6111 and a second position 6112, and the first position 6111 and the second position 6112 are different.
  • the width of the portion of the sub-portion 611 between the first position 6111 and the second position 6112 is the same, and the first position 6111 of the sub-portion 611 is used to receive a first driving voltage, and the second position 6112 is used to receive a second driving voltage.
  • a first driving voltage is loaded at a first position 6111 of each sub-section 611
  • a second driving voltage is loaded at a second position 6112 of each sub-section 611. Since the first position 6111 and the second position 6112 are different, the positions at which the first driving voltage and the second driving voltage are loaded on each sub-section 611 are also different.
  • the lead wire 62 is led out from a position between a first position 6111 and a second position 6112 of the sub-portion 611.
  • the position where the lead wire 62 is connected to the conductive wire 61 is the lead-out position.
  • the lead-out position is located between the first position 6111 and the second position 6112 of the sub-portion 611, and at least two lead-out positions are different.
  • each lead wire 62 is parallel to each other.
  • the lead wire 62 in this embodiment is connected to the conductive wire 61 at one end and the other end is suspended, the potentials of various positions on the same lead wire 62 are equal and equal to the potential of the conductive wire 61 at the connection position between the lead wire 62 and the conductive wire 61.
  • the width of the portion of the sub-portion 611 between the first position 6111 and the second position 6112 is the same, the potential of each lead position on the sub-portion 611 is linearly related to the length of the conductive wire 61 from the position to the first position 6111.
  • the sub-section 611 includes multiple extension lines 6114, a first connecting line 6115 and a second connecting line 6116. Two adjacent extension lines 6114 are connected by the first connecting line 6115 or the second connecting line 6116.
  • the multiple extension lines 6114 are arranged in sequence along the preset direction of the electrode unit 101.
  • the extension line 6114 extends from a starting position 6118 to a position connected to the first connecting line 6115.
  • the lead-out position is set at the position where the extension line 6114 is connected to the first connecting line 6115, and the starting position 6118 of the extension line 6114 is connected to the second connecting line 6116.
  • each extension line 6114 is connected end to end through the first connection line 6115 or the second connection line 6116 to form a potential distribution when the first driving voltage and the second driving voltage are applied.
  • the aforementioned multiple extension lines 6114 are arranged in sequence along the preset direction of the electrode unit 101, so that the potential distribution at each position of the preset direction of the electrode unit 101 can be controlled by using the potential on different extension lines 6114.
  • the starting position 6118 and the lead-out position of at least one of the plurality of extension lines 6114 are connected to two adjacent extension lines 6114 through the second connection line 6116 and the first connection line 6115, respectively.
  • the second conductive line 61 forms a structure that bends back and forth in a direction perpendicular to the preset direction of the electrode unit 101, and the lead-out position can be set at the bending point, so that the first conductive line 61 occupies less space and the lead-out position can be more accurate, thereby improving the accuracy of potential distribution control.
  • the spacing between two adjacent extension lines 6114 is less than or equal to 100 ⁇ m.
  • the length of the extension line 6114 is f(x), where f(x) is a broken line composed of multiple straight line segments, and the endpoints of each straight line end of f(x) are located on g(x), where C is a constant, Represents the rate of change of the phase of the liquid crystal material with the change of voltage, and the origin position 6117 is the first position 6111 of one of the sub-portions 611.
  • the first position 6111 of a sub-section 611 on the conductive line 61 is selected as the origin.
  • the length L of the extension line 6114 is set to be associated with the distance between the lead-out position and the origin position 6117 of the conductive line 61.
  • the length L of the extension line 6114 and the distance x between the lead-out position and the origin position 6117 of the conductive line 61 can satisfy a certain functional relationship.
  • the functional relationship satisfied by the length L of the extension line 6114 and the distance x between the lead-out position and the origin position 6117 of the conductive line 61 is recorded as f(x).
  • the relationship between the length L of the extension line 6114 and the distance x between the lead-out position and the origin position 6117 of the conductive line 61 can also be expressed by a rectangular coordinate system.
  • We may as well use the distance x between the lead-out position and the origin position 6117 of the conductive line 61 as the x-axis of the rectangular coordinate system, and the length L of the extension line 6114 as the y-axis to establish a rectangular coordinate system, and then y f(x) is satisfied in the rectangular coordinate system.
  • the function graph corresponding to the function f(x) is a broken line composed of multiple straight line segments.
  • each straight line segment is located on the graph corresponding to the function g(x), that is, the broken line with the endpoint on g(x) is used to approximate g(x).
  • C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage.
  • the phase distribution of the liquid crystal material in this embodiment satisfies a parabolic distribution.
  • each sub-section 611 corresponds to a section of the response curve, and the sub-sections 611 can be combined to correspond to a response curve in a larger range.
  • the conductive line 61 includes n sub-portions 611, and the n sub-portions 611 are located on the same side of the origin position 6117 in the preset direction of the electrode unit 101, that is, the conductive line 61 is set on one side, and the lead line 62 accordingly includes a first part and a second part located on opposite sides of the first reference plane 80, respectively, and the first reference plane 80 is a plane passing through the origin position 6117 of the conductive line 61 and perpendicular to the preset direction. As shown in FIG.
  • the space where the liquid crystal lens is located is divided into two regions with the first reference plane 80 as the boundary, wherein the second conductive line 61 can span the two regions, so that the same conductive line 61 can be used to control the potential distribution of the two regions, thereby shortening the length of the conductive line 61 by half, and significantly reducing the manufacturing cost and energy consumption of the liquid crystal lens.
  • the first driving voltage of the i-th sub-section 611 is Vui and the second driving voltage is Vwi , as shown in FIG10, C/g(x) is divided into n segments, wherein the driving voltage corresponding to the starting position of the i-th segment is Vsi , and the driving voltage corresponding to the end position is Vei .
  • the first driving voltage and the second driving voltage loaded on the n sub-sections 611 satisfy:
  • the response curve C/g(x) of the liquid crystal material is divided into three sections.
  • the conductive wire 61 includes 2m+1 sub-portions 611, and the 2m+1 sub-portions 611 are symmetrically distributed on both sides of the origin position 6117 along the preset direction of the electrode unit 101.
  • the conductive wire 61 and the lead wire 62 are arranged in a manner with respect to the first reference plane 80, and the sub-portion 611 in the middle position spans both sides of the first reference plane 80, and is itself symmetrical in shape with respect to the first reference plane 80.
  • the sub-portion 611 in the middle position also includes a third position 6113, and the first position 6111 is located between the third position 6113 and the second position 6112.
  • the third position 6113 of the conductive wire 61 is used to receive the second driving voltage, and the width of the portion of the conductive wire 61 between the first position 6111 and the second position 6112 is the same, and the lead wire 62 is also led out from the position between the first position 6111 and the third position 6113 of the conductive wire 61.
  • a third position 6113 for loading a second driving voltage is added on the basis of the aforementioned second position 6112, so that the second driving voltage can be applied to the second position 6112 and the third position 6113 of the conductive line 61 at the same time.
  • the lead wires 62 on both sides of the first position 6111 can be used to control the potential distribution on both sides of the first position 6111, so that the liquid crystal material forms a symmetrical parabolic phase distribution.
  • the first driving voltage of the K-th sub-section 611 from the origin position 6117 toward the preset direction of the electrode unit 101 is Vu K
  • the second driving voltage is Vw K
  • C/g(x) is correspondingly divided into m segments, wherein the driving voltage corresponding to the starting position of the k-th segment is Vs k , and the driving voltage corresponding to the end position is Ve k
  • the first driving voltage and the second driving voltage loaded on the m sub-sections 611 from the origin position 6117 toward the preset direction of the electrode unit 101 satisfy:
  • Vwi - Vui Ve i -Vs i
  • the first driving voltage of the remaining sub-sections 611 is the same as the first driving voltage loaded by the symmetrical sub-section 611, and the second driving voltage is the same as the second driving voltage loaded by the symmetrical sub-section 611.
  • the conductive wire 61 is provided with 5 sub-sections 611.
  • the response curve C/g(x) of the liquid crystal material is divided into three sections.
  • the second sub-section 611 measured from the origin position 6117 in the direction opposite to the preset direction of the electrode unit 101 and the second sub-section 611 measured from the origin position 6117 in the preset direction of the electrode unit 101 are symmetrical to each other, and the first position 6111 and the second position 6112 of the two are also symmetrical positions, and the first driving voltage and the second driving voltage loaded on the two are also the same.
  • the third sub-section 611 counted from the origin position 6117 in the direction opposite to the preset direction of the electrode unit 101 is symmetrical to the third sub-section 611 counted from the origin position 6117 in the preset direction of the electrode unit 101, and the first position 6111 and the second position 6112 of the two are also symmetrical positions, and the first driving voltage and the second driving voltage loaded by the two are also the same.
  • the number of sub-sections 611 can be set as needed, and there is no restriction here. The more the number of sub-sections 611, the more accurate the potential distribution generated.
  • the conductive wire 61 is located outside the functional area 90 of the liquid crystal lens with adjustable focal length.
  • the element that generates the potential distribution needs to be set in the functional area 90 of the liquid crystal lens to form the potential that affects the phase of the liquid crystal material.
  • the element that generates the potential distribution in this way will be limited by the range of the functional area 90, and it is difficult to meet the demand for potential control.
  • the element that generates the potential distribution (conductive wire 61) and the element that controls the potential distribution (lead wire 62) are separated, and the element that generates the potential is located outside the functional area 90, and at least a part of the element that controls the potential is located in the functional area 90 of the liquid crystal optical device.
  • the element that generates the potential distribution can be free from the limitation of the functional area 90, so that accurate design can be conveniently performed, and the element that generates the potential distribution and the functional area 90 can have no influence on each other.
  • a high impedance film or a high dielectric constant layer is disposed between the second electrode layer 60 and the second alignment layer or between the second electrode layer 60 and the second transparent substrate.
  • a high impedance film or a high dielectric constant layer is disposed between the first electrode layer 20 and the first alignment layer 30 or between the first electrode layer 20 and the first transparent substrate 10 .
  • a high-resistance film or a high-dielectric-constant layer is added to make the potential between adjacent lead lines 62 smoother.
  • the present embodiment provides a liquid crystal column lens array with adjustable focal length, which includes a plurality of liquid crystal column lenses 100 with adjustable focal length as described in Embodiment 1, and the plurality of liquid crystal column lenses 100 with adjustable focal length are arranged in an array.
  • the liquid crystal column lens array with adjustable focal length in the present embodiment adopts the liquid crystal column lens 100 with adjustable focal length in Embodiment 1
  • the liquid crystal column lens array with adjustable focal length in the present embodiment not only has high phase distribution accuracy of the liquid crystal material, but also has high utilization rate of the liquid crystal material, and can obtain a higher focal length, and can adjust the focal length of each liquid crystal column lens in the liquid crystal column lens array by adjusting the difference between the first driving voltage and the second driving voltage of each sub-unit 611, thereby adjusting the focal length of the entire liquid crystal column lens array.
  • this embodiment provides another form of liquid crystal column lens array with adjustable optical focal length.
  • the liquid crystal column lens array with adjustable optical focal length includes the crystal column lens 100 described in this embodiment.
  • the lead wire 62 of the liquid crystal column lens with adjustable optical focal length extends to form a plurality of extension segments 621.
  • the plurality of extension segments 621 are arranged in an array, and at least a portion of each extension segment 621 is located in the preset area.
  • the optical focal length adjustable liquid crystal column lens array of this embodiment is further extended through the lead-out line 62 of the optical focal length adjustable liquid crystal column lens array in Example 1 to form a plurality of extension segments 621.
  • the potential distribution formed by the portion of each extension segment 621 in the preset area can drive the liquid crystal molecules in the liquid crystal layer 40 to deflect to form a parabolic phase distribution, thereby forming an optical focal length adjustable liquid crystal column lens corresponding to each extension segment 621. Since each extension segment 621 is arranged in an array, the optical focal length adjustable liquid crystal column lens corresponding to each extension segment 621 is also arranged in an array.
  • each extension section 621 the lead wires 62 are parallel to each other and arranged at equal intervals.
  • the optical focal length adjustable liquid crystal rod lens array in the figure has three extension sections 621, so an optical focal length adjustable liquid crystal rod lens array consisting of three optical focal length adjustable liquid crystal rod lenses 100 can be formed.
  • the optical focal length adjustable liquid crystal column lens array in the present embodiment is formed by extending the lead wire 62 of the optical focal length adjustable liquid crystal column lens in Example 1, the optical focal length adjustable liquid crystal column lens array in the present embodiment not only has high phase distribution accuracy of the liquid crystal material, but also has high utilization rate of the liquid crystal material, and can obtain a higher optical focal length, and the optical focal length can be adjusted by adjusting the two driving voltages on the sub-portions of each conductive line.
  • this embodiment provides a method for driving a liquid crystal cylindrical lens or a liquid crystal cylindrical lens array with adjustable optical focal length.
  • the method is used to drive the liquid crystal cylindrical lens or the liquid crystal cylindrical lens array described in this embodiment.
  • the method includes the following steps:
  • S1C obtaining a corresponding relationship curve between the phase of the liquid crystal material in the liquid crystal cylindrical lens or the liquid crystal cylindrical lens array and the driving voltage;
  • the corresponding relationship curve between the phase of the liquid crystal material and the driving voltage refers to the curve formed by the size of the phase of the liquid crystal material when a certain voltage is applied to the liquid crystal material.
  • the corresponding relationship curve is represented by the liquid crystal material response curve. As shown in FIG1, the horizontal coordinate of the curve in the figure is the size of the applied voltage, and the vertical coordinate is the size of the phase of the corresponding liquid crystal material. Therefore, the corresponding relationship between the phase of the liquid crystal material and the driving voltage can also be obtained through the liquid crystal material response curve.
  • the driving voltage range of the liquid crystal column lens is selected according to the above correspondence curve, so that the driving voltage within the selected range is located on the correspondence curve.
  • the portion between Va and Vd in the figure can be selected as the driving voltage range.
  • S3C dividing the corresponding relationship curve into segments corresponding to the number of sub-sections of the conductive line within the driving voltage range according to the corresponding relationship curve and the driving voltage range;
  • the conductive line includes n sub-portions, and the n sub-portions are located on the same side of the origin position in the first direction, the corresponding relationship curve C/g(x) is correspondingly divided into n segments.
  • the conductive line includes 2m+1 sub-portions, and the 2m+1 sub-portions are symmetrically distributed on both sides of the origin along the first direction, the corresponding relationship curve C/g(x) is correspondingly divided into m segments.
  • S5C driving the conditions satisfied by the first driving voltage and the second driving voltage of each sub-section according to the voltage corresponding to the starting position of each segment and the voltage corresponding to the end position as the voltage adjustment condition;
  • C/g(x) is divided into n segments, wherein the driving voltage corresponding to the starting position of the i-th segment is Vs i , and the driving voltage corresponding to the end position is Ve i .
  • the voltage adjustment condition is that the first driving voltage and the second driving voltage loaded by the n sub-sections satisfy:
  • the conductive line includes 2m+1 sub-portions, and the 2m+1 sub-portions are symmetrically distributed on both sides of the origin along the first direction, the corresponding relationship curve C/g(x) is correspondingly divided into m segments.
  • the first driving voltage of the Kth sub-section from the origin to the first direction is Vu K
  • the second driving voltage is Vw K
  • C/g(x) is divided into m segments, wherein the driving voltage corresponding to the starting position of the kth segment is Vs k
  • the driving voltage corresponding to the end position is Ve k .
  • the voltage adjustment condition is that the first driving voltage and the second driving voltage loaded on the m sub-sections from the origin to the first direction satisfy:
  • Vwi - Vui Ve i -Vs i
  • the first driving voltage of the remaining sub-sections is the same as the first driving voltage loaded on the sub-section symmetrical thereto, and the second driving voltage of the remaining sub-sections is the same as the second driving voltage loaded on the sub-section symmetrical thereto.
  • S6C Adjust the difference between the first driving voltage and the second driving voltage, and make the first driving voltage and the second driving voltage satisfy a voltage adjustment condition.
  • the optical power of the liquid crystal cylindrical lens can be adjusted by adjusting the difference in the driving voltages of the various sub-sections under the aforementioned conditions.
  • the liquid crystal column lens with adjustable focal length, the liquid crystal column lens array with adjustable focal length, the electronic product and the manufacturing method are configured to be composed of a plurality of sub-sections, and each sub-section is used to generate electric potentials of different sizes distributed with the position of the conductive line, and a plurality of lead wires are respectively led out from different positions of the conductive line. Since one end of the lead wire is connected to the conductive line and the other end is suspended, the lead wire can diffuse the electric potential at the lead-out position on the conductive line to the area where the lead wire extends.
  • the distance between the lead-out position of each extension line of the conductive line in the first direction and the position of the origin of the conductive line and the length f(x) of the extension line satisfy that f(x) is a broken line composed of a plurality of straight line segments, and the endpoints of each straight line segment of f(x) are located on g(x).
  • f(x) is a broken line composed of a plurality of straight line segments, and the endpoints of each straight line segment of f(x) are located on g(x).
  • the application of liquid crystal materials is no longer limited by the linear response range of liquid crystal materials, thereby improving the phase distribution accuracy while also greatly improving the focal length of the liquid crystal column lens with adjustable focal length, so that the utilization rate of the liquid crystal material is also significantly increased.
  • the focal length of the liquid crystal column lens can also be adjusted by adjusting the voltage loaded on each sub-section.
  • the present embodiment provides a liquid crystal lens with adjustable focal length, which belongs to a liquid crystal optical device.
  • the liquid crystal lens with adjustable focal length in the present embodiment can achieve the effect of a parabolic liquid crystal lens.
  • the liquid crystal lens with adjustable focal length in the present embodiment comprises a first transparent substrate 10, a first electrode layer 20, a first orientation layer 30, a liquid crystal layer 40, a second orientation layer 50, a second electrode layer 60, and a second transparent substrate 70 which are stacked in sequence; except for the first electrode layer 20, the remaining layers of the present embodiment can adopt the same structure as the liquid crystal column lens in Example 3.
  • electrode units 101 are provided in both the first electrode layer 20 and the second electrode layer 60, and the potential generated by the electrode units 101 in the two electrode layers is superimposed to form a potential distribution that can affect the deflection of the liquid crystal molecules.
  • the electrode units 101 in the first electrode layer 20 and the electrode units 101 in the second electrode layer 60 can adopt the same structural form and the same voltage driving method as the electrode units in the second electrode layer 60 in Embodiment 3.
  • the projections of the lead wires 62 in the first electrode layer and the lead wires 62 in the second electrode layer 60 on the second reference plane have a part of the area intersecting with each other.
  • the preset direction of the electrode units 101 of the first electrode layer 20 is perpendicular to the preset direction of the electrode units 101 of the second electrode layer 60; since the preset direction of the electrode units 101 of the first electrode layer is perpendicular to the preset direction of the electrode units 101 of the second electrode layer 60; therefore, under the comprehensive effect of the potential distribution generated by the electrode units 101 in the first electrode layer and the second electrode layer 60, the phase distribution of the liquid crystal material is an accurate parabolic distribution.
  • each sub-section 611 corresponds to a section of the response curve, and the sub-sections 611 can be combined to correspond to a response curve in a larger range.
  • this embodiment provides an array of liquid crystal lenses 100 with adjustable optical focal length, including the liquid crystal lenses 100 described in this embodiment, wherein at least one of the first electrode layer 20 and the second electrode layer 60 includes at least two electrode units 101, and projections of the lead lines 62 in the first electrode layer 20 and the lead lines 62 in the second electrode layer 60 on a second reference plane form a plurality of intersection areas 110 arranged in an array, and the second reference plane is a plane parallel to both the lead lines 62 of the first electrode unit 101 and the lead lines 62 of the second electrode unit 101.
  • intersection area 110 refers to the area where the projections of the lead wires 62 in the first electrode layer 20 and the lead wires 62 in the second electrode layer 60 on the second reference plane overlap each other.
  • one electrode unit 101 can be set in one of the electrode layers, and two or more electrode units 101 can be set in the other electrode layer, or two or more electrode units 101 can be set in both electrode layers.
  • Each electrode unit 101 in the two electrode layers can form a plurality of intersection areas 110 arranged in an array, and the electric potentials of the two electrode layers in these intersection areas 110 are superimposed on each other to form a parabolically distributed electric potential.
  • the electric field generated by the distributed electric potentials in these areas can drive the liquid crystal molecules to deflect, thereby forming liquid crystal lenses 100 one by one. And the aperture and spacing of the aforementioned liquid crystal lens 100 can be adjusted as needed.
  • the liquid crystal material in each intersection area 110 can form a phase with an accurate parabolic distribution, thereby obtaining a liquid crystal lens 100 array with better effect.
  • the liquid crystal lens 100 array in this embodiment adopts the liquid crystal lens 100 in this embodiment, the liquid crystal lens 100 array in this embodiment not only has a high phase distribution accuracy of the liquid crystal material, but also has a high utilization rate of the liquid crystal material, and can obtain a higher optical focal length.
  • the optical focal length of each liquid crystal lens in the liquid crystal lens array can be adjusted by adjusting the difference between the first driving voltage and the second driving voltage of each sub-unit, thereby adjusting the optical focal length of the entire liquid crystal lens array.
  • the present embodiment provides another form of a liquid crystal lens array with adjustable focal length.
  • the liquid crystal lens array 100 includes the liquid crystal lens 100 described in the present embodiment, wherein the lead wires 62 of the electrode units 101 in at least one of the first electrode layer 20 and the second electrode layer 60 of the liquid crystal lens 100 extend to form a plurality of extension segments 621, and projections of the extension segments 621 of the electrode units 101 in the first electrode layer 20 and the extension segments 621 of the electrode units 101 in the second electrode layer 60 on the second reference plane form a plurality of intersection regions 110 arranged in an array; in the same intersection region 110, the lead wires 62 of the same electrode unit 101 are parallel to each other and are arranged at equal intervals along a preset direction of the electrode unit 101, and the second reference plane is a plane parallel to both the lead wires 62 of the first electrode unit 101 and the lead wires 62 of the second electrode unit 101.
  • the liquid crystal lens 100 array of this embodiment can be formed by extending the lead wire 62 of the liquid crystal lens 100 of this embodiment to form a plurality of extension segments 621.
  • Each extension segment 621 can control the potential distribution of the corresponding area, thereby driving the liquid crystal molecules in the liquid crystal layer 40 of the corresponding area to deflect.
  • the projections of the extension segments 621 in the two electrode layers on the second reference plane form a plurality of overlapping areas, namely the aforementioned intersection area 110, each area corresponding to a liquid crystal lens 100.
  • the potential distribution formed by the portion of each extension segment 621 in the intersection area 110 can drive the liquid crystal molecules in the liquid crystal layer 40 to deflect to form a parabolic phase distribution.
  • the potential distribution formed by the portion of each extension segment 621 in the intersection area 110 can drive the liquid crystal molecules in the liquid crystal layer 40 to deflect to form a parabolic phase distribution.
  • a parabolic potential distribution is formed in the intersection area 110. Since the junction areas 110 are arranged in an array, the liquid crystal lenses 100 corresponding to the junction areas 110 are also arranged in an array.
  • the liquid crystal material in each intersection area 110 can form an electric potential with a precise parabolic distribution, thereby obtaining a liquid crystal lens 100 array with a better effect. Since the liquid crystal column lens array in this embodiment is formed by extending the lead wires 62 of the liquid crystal column lens in this embodiment, the liquid crystal column lens array in this embodiment not only has a high phase distribution accuracy of the liquid crystal material, but also has a high utilization rate of the liquid crystal material, and can obtain a higher optical power, and the optical power can be adjusted by adjusting the two driving voltages on the sub-portions of each conductive line.
  • this embodiment provides a method for driving a liquid crystal lens or a liquid crystal lens array with adjustable focal length.
  • the method is used to drive the liquid crystal lens or the liquid crystal lens array described in this embodiment.
  • the method includes the following steps:
  • S1D Obtaining a corresponding relationship curve between the phase of the liquid crystal material in the liquid crystal lens or the liquid crystal lens array and the driving voltage;
  • the corresponding relationship curve between the phase of the liquid crystal material and the driving voltage refers to the curve formed by the size of the phase of the liquid crystal material when a certain voltage is applied to the liquid crystal material.
  • the corresponding relationship curve is represented by the liquid crystal material response curve. As shown in FIG1, the horizontal coordinate of the curve in the figure is the size of the applied voltage, and the vertical coordinate is the size of the phase of the corresponding liquid crystal material. Therefore, the corresponding relationship between the phase of the liquid crystal material and the driving voltage can also be obtained through the liquid crystal material response curve.
  • the driving voltage range of the liquid crystal lens is selected according to the above-mentioned corresponding relationship curve, so that the driving voltage within the selected range is located on the corresponding relationship curve.
  • the part between Va and Vd in the figure can be selected as the driving voltage range.
  • S3D dividing the correspondence curve into segments corresponding to the number of sub-sections of the conductive line within the driving voltage range according to the correspondence curve and the range of the driving voltage;
  • the response relationship curve C/g(x) is correspondingly divided into n segments.
  • the response relationship curve C/g(x) is correspondingly divided into m segments.
  • S5D driving the conditions satisfied by the first driving voltage and the second driving voltage of each sub-section according to the voltage corresponding to the starting position of each segment and the voltage corresponding to the end position as the voltage adjustment condition;
  • C/g(x) is divided into n segments, wherein the driving voltage corresponding to the starting position of the i-th segment is Vs i , and the driving voltage corresponding to the end position is Ve i .
  • the voltage adjustment condition is that the first driving voltage and the second driving voltage loaded by the n sub-sections satisfy:
  • the response relationship curve C/g(x) is correspondingly divided into m segments.
  • the first driving voltage of the Kth sub-section from the origin position toward the preset direction of the electrode unit is Vu K
  • the second driving voltage is Vw K
  • C/g(x) is divided into m segments, wherein the driving voltage corresponding to the starting position of the kth segment is Vs k
  • the driving voltage corresponding to the end position is Ve k .
  • the voltage adjustment condition is that the first driving voltage and the second driving voltage loaded on the m sub-sections from the origin position toward the preset direction of the electrode unit satisfy:
  • Vwi - Vui Ve i -Vs i
  • the first driving voltage of the remaining sub-sections is the same as the first driving voltage loaded on the sub-section symmetrical thereto, and the second driving voltage of the remaining sub-sections is the same as the second driving voltage loaded on the sub-section symmetrical thereto.
  • S6D Adjust the difference between the first driving voltage and the second driving voltage of each sub-section in the first electrode layer and the second electrode layer, and make the first driving voltage and the second driving voltage meet the voltage adjustment condition.
  • the optical power of the liquid crystal lens can be adjusted by adjusting the difference in the driving voltages of the various sub-units under the aforementioned conditions.
  • the liquid crystal lens with adjustable focal length, the liquid crystal lens array with adjustable focal length and the driving method, the conductive wires in each electrode layer are set to be composed of a plurality of sub-sections, and each sub-section is used to generate electric potentials of different sizes distributed with the position of the conductive wire, and a plurality of lead wires are respectively led out from different positions of the conductive wire. Since one end of the lead wire is connected to the conductive wire and the other end is suspended, the lead wire can diffuse the electric potential at the lead-out position on the conductive wire to the area where the lead wire extends.
  • the distance between the lead-out position of each extension line of the conductive wire and the position of the origin of the conductive wire in the preset direction of the electrode unit and the length f(x) of the extension line satisfy that f(x) is a broken line composed of a plurality of straight line segments, and the endpoints of each straight line segment of f(x) are located on g(x).
  • the present invention can also make the phase of the liquid crystal material accurately realize parabolic distribution, and the liquid crystal material forms an accurate parabolic distribution through the superposition of the electric potentials generated by the two electrode layers.
  • the application of liquid crystal materials is no longer limited by the linear response range of liquid crystal materials, thereby improving the phase distribution accuracy while also greatly improving the focal length of the liquid crystal lens with adjustable focal length, so that the utilization rate of liquid crystal materials is also significantly increased.
  • the focal length of the liquid crystal lens can also be adjusted by adjusting the voltage loaded on each sub-unit.
  • This embodiment provides a Fresnel liquid crystal rod lens, which belongs to a liquid crystal optical device.
  • the Fresnel lens in this embodiment includes a first transparent substrate 10, a first electrode layer 20, a first alignment layer 30, a liquid crystal layer 40, a second alignment layer 50, a second electrode layer 60, and a second transparent substrate 70 which are stacked in sequence.
  • the rest of the structure of the Fresnel liquid crystal rod lens in this embodiment can adopt the same structure as that in the first embodiment.
  • the first electrode layer 20 is a surface electrode. In this embodiment, the first electrode layer 20 is used to form a plane with equipotential.
  • the second electrode layer includes a plurality of electrode units 61, and the plurality of electrode units 61 are sequentially arranged along a first direction;
  • the first direction can be arbitrarily specified as needed. For example, if the potential distribution of each position in a certain direction in the space where the liquid crystal lens is located needs to be controlled, the direction can be specified as the first direction.
  • the aforementioned multiple electrode units 61 means that the number of electrode units 61 in the second electrode layer is 2 or more.
  • one of the electrode units 61 mainly includes a first conductive line 611 and a plurality of second conductive lines 612 .
  • the first conductive line 611 includes a first position 6111 and a second position 6112, the first position 6111 and the second position 6112 are different, the width of the portion of the first conductive line 611 between the first position 6111 and the second position 6112 is the same, the first position 6111 is used to receive a first driving voltage, and the second position 6112 is used to receive a second driving voltage;
  • the first conductive wire 611 and the second conductive wire 612 in this embodiment include but are not limited to a wire with a certain resistance, and a thin wire with a certain resistance and conductivity plated on a transparent second substrate.
  • the conductive wires in this embodiment can be made of transparent conductive materials, and the aforementioned transparent conductive materials include but are not limited to ITO electrode materials, IZO electrode materials, FTO electrode materials, AZO electrode materials, IGZO electrode materials, etc.
  • a first driving voltage is loaded at a first position 6111 on the first conductive line 611
  • a second driving voltage is loaded at a second position 6112 on the first conductive line 611. Since the first position 6111 and the second position 6112 are different, the positions at which the first driving voltage and the second driving voltage are loaded on the first conductive line 611 are also different.
  • one end of the second conductive line 612 is connected to the first conductive line 611, and the other end is suspended.
  • the position where the first conductive line 611 and the second conductive line 612 are connected is the lead-out position 6116, at least a part of the lead-out position 6116 is located between the first position 6111 and the second position 6112 of the first conductive line 611, and at least two lead-out positions 6116 are different; in at least one preset area 90 of the second electrode layer, each second conductive line 612 is parallel to each other.
  • the second conductive line 612 in this embodiment is connected to the first conductive line 611 at one end and the other end is suspended, the potentials of various positions on the same second conductive line 612 are equal and equal to the potential of the first conductive line 611 at the position where the second conductive line 612 is connected to the first conductive line 611.
  • the width of the portion of the first conductive line 611 between the first position 6111 and the second position 6112 is the same, the potential of each lead-out position 6116 on the first conductive line 611 is linearly related to the length of the first conductive line 611 from the position to the first position 6111.
  • the first conductive line 611 includes a plurality of extension segments 6113, a first connecting segment 6114 and a second connecting segment 6115. Two adjacent extension segments 6113 are connected via the first connecting segment 6114 or the second connecting segment 6115.
  • the plurality of extension segments 6113 are arranged in sequence along a first direction.
  • the extension segment 6113 extends from a starting position 6117 to a position connected to the first connecting segment 6114.
  • the lead-out position 6116 is set at a position where the extension segment 6113 is connected to the first connecting segment 6114.
  • the starting position 6117 of the extension segment 6113 is connected to the second connecting segment 6115.
  • each extension segment 6113 is connected end to end through the first connecting segment 6114 or the second connecting segment 6115 to form a potential distribution when the first driving voltage and the second driving voltage are applied.
  • the aforementioned multiple extension segments 6113 are arranged in sequence along the first direction, so that the potential distribution at each position of the Fresnel liquid crystal rod lens in the first direction can be controlled by using the potential on different extension segments 6113.
  • the starting position 6117 and the lead-out position 6116 of at least one of the plurality of extension segments 6113 are connected to two adjacent extension segments 6113 through the second connecting segment 6115 and the first connecting segment 6114, respectively.
  • the second conductive line 612 forms a structure that bends back and forth in a direction perpendicular to the first direction, and the lead-out position 6116 can be set at the bending point, so that the first conductive line 611 occupies less space and the lead-out position 6116 can be more accurate, thereby improving the accuracy of potential distribution control.
  • the length of the extension section 6113 is g(x), where C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage.
  • the distance between the lead-out position 6116 of the extension section 6113 extending in the first direction and the first position 6111 may also be expressed as the position of the starting position 6117 of the extension section 6113 in the first direction.
  • the length L of the extension section 6113 of each electrode unit 61 is set to be associated with the distance between the starting position 6117 of the extension section 6113 and the first position 6111 in the first direction.
  • the length L of the extension section 6113 and the distance x between the starting position 6117 of the extension section 6113 and the first position 6111 in the first direction can satisfy a certain functional relationship.
  • the functional relationship satisfied by the length L of the extension section 6113 and the distance x between the starting position 6117 of the extension section 6113 and the first position 6111 in the first direction is recorded as g(x).
  • the relationship between the length L of the extension section 6113 and the distance x between the starting position 6117 of the extension section 6113 and the first position 6111 in the first direction can also be expressed by a rectangular coordinate system.
  • We may as well take the distance x between the starting position 6117 of the extension section 6113 and the first position 6111 in the first direction as the x-axis of the rectangular coordinate system, and take the length L of the extension section 6113 as the y-axis to establish a rectangular coordinate system, then y g(x) is satisfied in the rectangular coordinate system.
  • C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage.
  • the phase distribution of the liquid crystal material in this embodiment satisfies a parabolic distribution.
  • the constant C in the functional relationship g(x) satisfied by each electrode unit 61 is also different. Therefore, different constants C can be set according to the parabolic shapes of the corresponding Fresnel zones that achieve equivalent effects, so that the phase distribution of the liquid crystal material in this embodiment satisfies the corresponding parabolic distribution, which is not limited here.
  • each electrode unit 61 in the second electrode layer corresponds to at least one Fresnel band; when the electrode unit 61 is loaded with the first driving voltage and the second driving voltage, the electric potential generated by the second conductive line 612 of the electrode unit 61 causes the liquid crystal in the liquid crystal layer to form a phase distribution equivalent to the Fresnel band corresponding to the electrode unit 61.
  • Figure 33 includes three electrode units 61, each electrode unit 61 corresponds to a Fresnel zone, and the curve below the electrode unit 61 in Figure 5 represents the phase distribution of the liquid crystal material corresponding to the electrode unit 61, wherein the horizontal axis of the curve represents the position of the liquid crystal material along the Fresnel liquid crystal column lens in the first direction, and the vertical axis of the curve represents the phase of the liquid crystal material at this position.
  • the curvature of the optical surface in optical imaging determines the imaging characteristics.
  • its surface curvature can be kept unchanged, but the thickness of its surface can be reduced during the processing.
  • the lens designed in this way can still converge the light and focus the light incident on its surface to the focal point.
  • the spherical lens can be regarded as a number of non-continuous splits, and the redundant parts between the splits are removed, but the original curvature of its surface is kept unchanged during the processing, and the deflection of the light is not affected.
  • the functions of the aforementioned several non-continuous splits are realized by a series of Fresnel bands on the Fresnel lens.
  • This embodiment can also use a liquid crystal lens to achieve an effect equivalent to that of a Fresnel lens. Since the traditional Fresnel lens is composed of a series of Fresnel bands, this embodiment uses each electrode unit 61 to correspondingly realize the optical effect of each Fresnel band in the Fresnel lens. The effects achieved by all electrode units 61 are combined together to be equivalent to the overall optical effect of a Fresnel lens.
  • phase distribution equivalent to the Fresnel band means that the modulation effect of the liquid crystal layer on the light after forming the aforementioned phase distribution is equivalent to the modulation effect of the corresponding Fresnel band on the light.
  • this embodiment utilizes the length of the extension section 6113 at different positions in the first direction in the electrode unit 61 to satisfy the aforementioned functional relationship so as to make the potential of the extraction position 6116 in the first direction form a specific distribution, and this potential distribution makes the phase distribution of the liquid crystal material in the radial direction satisfy the parabolic distribution. Since the potential at each location on the second conductive line 612 is equal to the potential at the extraction position 6116, the aforementioned characteristic potential distribution extends along the second conductive line 612 to the functional area of the Fresnel liquid crystal rod lens, thereby achieving the corresponding Fresnel band optical effect.
  • this embodiment After the second electrode layer of this embodiment adopts the aforementioned structure, only two driving voltages, namely the first driving voltage and the second driving voltage, are required to achieve precise control of the potential at each position of the Fresnel band corresponding to the electrode unit 61. Therefore, this embodiment can obtain a Fresnel lens with better effect through a simple driving method.
  • the Fresnel liquid crystal rod lens in this embodiment adopts the aforementioned electrode structure, even if the first driving voltage V1 loaded at the first position 6111 and the second driving voltage V2 loaded at the second position 6112 are not within the linear response region of the liquid crystal material, this embodiment can also enable the phase of the liquid crystal material to accurately achieve parabolic distribution. In this way, the application of the liquid crystal material is no longer limited by the linear response range of the liquid crystal material, thereby greatly improving the optical power of the Fresnel liquid crystal rod lens while improving the phase distribution accuracy, and significantly increasing the utilization rate of the liquid crystal material.
  • the spacing between adjacent extension sections 6113 is less than or equal to 100 ⁇ m.
  • the above structure can further improve the control accuracy of the potential distribution.
  • the extension section 6113 is a straight line perpendicular to the first direction.
  • the extension section 6113 is set in the form of a straight line, and the direction of the extension section 6113 is set to be perpendicular to the first direction.
  • the design and production of the second conductive line 612 can be simplified.
  • the second connecting section 6115 can also be a curve segment obtained by sequentially intercepting from the curve with the equation g(x).
  • the lead-out positions 6116 are arranged at equal intervals along the first direction; in at least one preset area 90 of the second electrode layer, the second conductive lines 612 are arranged at equal intervals along the first direction.
  • the preset area 90 may be a functional area of a liquid crystal column lens.
  • the functional area of a liquid crystal lens refers to an area in the liquid crystal lens that can modulate light as needed.
  • the electrode unit 61 includes a central electrode unit 601 and at least two outer electrode units 602.
  • the second conductive lines 612 of the outer electrode units 602 are located on both sides of the second conductive lines 612 of the central electrode unit 601.
  • the first conductive line 611 of the central electrode unit 601 also includes a third position 6118, the first position 6111 is located between the third position 6118 and the second position 6112, at least a portion of the lead-out position 6116 is located between the second position 6112 and the third position 6118, and the third position 6118 of the first conductive line 611 of the central electrode unit 601 is used to receive a second driving voltage.
  • a third position 6118 for loading a driving voltage is added on the basis of the second position 6112 of the aforementioned central electrode unit 601, wherein the third position 6118 of the central electrode unit 601 is used to load a second driving voltage, so that the second driving voltage can be applied to the second position 6112 and the third position 6118 of the conductive line at the same time.
  • the lead wires on both sides of the first position 6111 can be used to control the potential distribution on both sides of the first position 6111, and a potential distribution that is symmetrical on both sides can also be formed.
  • the second conductive line 612 of the electrode unit 61 includes a first part and a second part respectively located on opposite sides of a first reference plane 80, and the first reference plane 80 is a plane passing through the first position 6111 of the center electrode unit 601 and perpendicular to the preset direction.
  • the space where the liquid crystal lens is located is divided into two areas with the first reference plane 80 as the boundary, wherein the second conductive line 612 can span the two areas, so that the potential distribution of the two areas can be controlled by the same conductive line, thereby shortening the length of the conductive line by half, and significantly reducing the production cost and energy consumption of the liquid crystal lens.
  • the conductive line of the electrode unit 61 is located on the same side of the first reference plane 80 as the first part or the second part, so that the conductive line only needs to occupy one area to control the potential distribution of the two areas.
  • the conductive wire is located outside the functional area of the liquid crystal column lens.
  • the element that generates the potential distribution needs to be set in the functional area of the liquid crystal lens to form a potential that affects the phase of the liquid crystal material.
  • the element that generates the potential distribution in this way will be limited by the scope of the functional area, and it is difficult to meet the demand for potential control.
  • the element that generates the potential distribution (conductive wire) and the element that controls the potential distribution (lead wire) are separated, and the element that generates the potential is located outside the functional area, and at least a part of the element that controls the potential is located in the functional area of the liquid crystal optical device. In this way, the element that generates the potential distribution can be free from the limitation of the functional area, so that accurate design can be conveniently carried out, and the element that generates the potential distribution and the functional area can have no influence on each other.
  • a high impedance film or a high dielectric constant layer is provided between the second electrode layer and the second orientation layer or between the second electrode layer and the second transparent substrate 70.
  • the potential between adjacent lead lines is made smoother by adding a high impedance film or a high dielectric constant layer.
  • the projections of the first conductive line 611 and the surface electrode on a plane parallel to the second electrode layer do not overlap.
  • the surface electrode is left vacant at a position on the second electrode layer directly opposite to the first conductive line 611, so that the first conductive line 611 will not be affected by the capacitance effect generated between the surface electrode, thereby further improving the optical effect of the liquid crystal column lens.
  • the Fresnel liquid crystal column lens in this embodiment uses the first conductive wire that can load two driving voltages in the electrode unit to generate different potentials with the distribution of the conductive wire position, and makes multiple second conductive wires lead out from different positions of the non-conductive wire respectively. Since one end of the second conductive wire is connected to the conductive wire and the other end is suspended, the second conductive wire can diffuse the potential of the lead-out position on the first conductive wire to the area where the lead-out line extends. In addition, since each second conductive wire is parallel to each other in at least one preset area of the second electrode layer, a column lens can be formed.
  • the present invention sets the distance between the lead-out position of the extension section in the first direction and the first position as x, then the length of the extension section satisfies the functional relationship g(x), so that even if the first driving voltage V1 loaded at the first position and the second driving voltage V2 loaded at the second position are not in the linear corresponding area of the liquid crystal material, the electrode unit can also make the phase of the liquid crystal material accurately achieve parabolic distribution. Since multiple electrode units are arranged in sequence along the first direction, these electrode units can be combined together to achieve an optical effect equivalent to that of a complete Fresnel lens.
  • liquid crystal materials is no longer limited by the linear response range of liquid crystal materials, thereby improving the phase distribution accuracy while also greatly improving the optical focal length of the liquid crystal cylindrical lens, so that the utilization rate of the liquid crystal material is also significantly increased.
  • the present embodiment provides a Fresnel liquid crystal lens, which belongs to a liquid crystal optical device.
  • the Fresnel lens in the present embodiment includes a first transparent substrate 10, a first electrode layer 20, a first orientation layer 30, a liquid crystal layer 40, a second orientation layer 50, a second electrode layer 60, and a second transparent substrate 70 which are stacked in sequence. Except for the first electrode layer 20 and the second electrode layer 60, the rest of the structure of the Fresnel liquid crystal column lens in the present embodiment can adopt the same structural form as that in Example 1.
  • the first electrode layer 20 is a surface electrode. In this embodiment, the first electrode layer 20 is used to form a plane with equipotential.
  • the second electrode layer 60 includes a plurality of electrode units 61, and the plurality of electrode units 61 are sequentially arranged from a position close to the center of the second electrode layer 60 to a position far from the center of the second electrode layer 60;
  • the aforementioned plurality of electrode units 61 refers to the number of electrode units 61 in the second electrode layer 60 being 2 or more. These electrode units 61 are roughly in the shape of concentric rings and are arranged on the second electrode layer 60 in sequence from the center to the outside.
  • one of the electrode units 61 mainly includes a first conductive line 611 and a plurality of second conductive lines 612.
  • the first conductive line 611 includes a first position 6111 and a second position 6112.
  • the first position 6111 and the second position 6112 are different.
  • the width of the portion of the first conductive line 611 located between the first position 6111 and the second position 6112 is the same.
  • the first position 6111 is used to receive a first driving voltage
  • the second position 6112 is used to receive a second driving voltage.
  • the first conductive line 611 and the second conductive line 612 in this embodiment include but are not limited to a wire with a certain resistance, and a thin line with a certain resistance and conductivity plated on a transparent second substrate.
  • the first conductive line 611 and the second conductive line 612 in this embodiment can be made of the same material as the first conductive line and the second conductive line in Example 5.
  • a first driving voltage is loaded at a first position 6111 on the first conductive line 611
  • a second driving voltage is loaded at a second position 6112 on the first conductive line 611. Since the first position 6111 and the second position 6112 are different, the positions at which the first driving voltage and the second driving voltage are loaded on the first conductive line 611 are also different.
  • one end of the second conductive line 612 is connected to the first conductive line 611, and the other end is suspended.
  • the position where the second conductive line 612 is connected to the first conductive line 611 is a lead-out position 6116, and at least a portion of the lead-out position 6116 is located between the first position 6111 and the second position 6112 of the first conductive line 611, and at least two lead-out positions 6116 are different.
  • the second conductive line 612 in this embodiment is connected to the first conductive line 611 at one end and the other end is suspended, the potentials of various positions on the same second conductive line 612 are equal and equal to the potential of the first conductive line 611 at the position where the second conductive line 612 is connected to the first conductive line 611.
  • the width of the portion of the first conductive line 611 between the first position 6111 and the second position 6112 is the same, the potential of each lead-out position 6116 on the first conductive line 611 is linearly related to the length of the first conductive line 611 from the position to the first position 6111.
  • the first conductive line 611 includes a plurality of extension segments 6113, a first connection segment 6114, and a second connection segment 6115. Two adjacent extension segments 6113 are connected by the first connection segment 6114 or the second connection segment 6115.
  • the plurality of extension segments 6113 are arranged in sequence from the center of the second electrode layer 60 to the direction away from the center of the second electrode layer 60.
  • the extension segment 6113 extends from a starting position 6117 to a position connected to the first connection segment 6114.
  • the lead-out position 6116 is set at a position where the extension segment 6113 is connected to the first connection segment 6114.
  • the starting position 6117 of the extension segment 6113 is connected to the second connection segment 6115.
  • the plurality of extension segments 6113 are arranged along the radial direction of the Fresnel lens, so that the potential distribution at each radial position of the Fresnel lens can be controlled by using the potential on different extension segments 6113.
  • the end of each extension segment 6113 at the starting position 6117 is connected via a first connecting segment 6114, while the end of each extension segment 6113 away from the starting position 6117 is connected via a second connecting segment 6115, so that each extension segment 6113 can be connected end to end to form an electric potential distribution when the first driving voltage and the second driving voltage are loaded.
  • the length of the extension segment 6113 is g(x), where C is a constant, It indicates the rate of change of the phase of the liquid crystal material with the change of voltage.
  • the length L of the extension section 6113 in the electrode unit is set to be associated with the distance in the radial direction between the starting position 6117 of the extension section 6113 and the first position of the electrode unit.
  • the distance x in the radial direction between the starting position of the extension section and the first position of the electrode unit can satisfy a certain functional relationship.
  • the functional relationship satisfied by the distance x in the radial direction between the starting position of the extension section and the first position of the electrode unit is recorded as g(x).
  • the relationship between the length L of the extension section 6113 and the distance x in the radial direction between the starting position of the extension section and the first position of the electrode unit can also be expressed by a rectangular coordinate system.
  • the phase distribution of the liquid crystal material in this embodiment satisfies a parabolic distribution.
  • the parabolic shapes of the parabolic distribution satisfied by the liquid crystal material of each Fresnel ring in the liquid crystal Fresnel lens are different.
  • the parabola satisfied by the liquid crystal material of the Fresnel ring in the central part has a wider width and a smaller slope
  • the parabola satisfied by the liquid crystal material of the Fresnel ring in the peripheral part has a wider width and a larger slope.
  • the constant C in the function relationship g(x) satisfied by each electrode unit 61 is also different.
  • the constant C in the central electrode unit g(x) is smaller, while the constant C in the peripheral electrode unit g(x) is larger. Therefore, different constants C can be set according to the parabolic shape of the Fresnel ring zone that achieves the same effect, so that the phase distribution of the liquid crystal material in this embodiment satisfies the corresponding parabolic distribution, which is not limited here.
  • each electrode unit 61 in the second electrode layer 60 corresponds to at least one Fresnel ring zone; when the electrode unit 61 is loaded with the first driving voltage and the second driving voltage, the electric potential generated by the second conductive line 612 of the electrode unit 61 causes the liquid crystal in the liquid crystal layer 40 to form a phase distribution equivalent to the Fresnel ring zone corresponding to the electrode unit 61.
  • FIG40 includes two electrode units 61, each electrode unit 61 corresponds to a Fresnel ring zone, and the curve below the electrode unit 61 in FIG40 represents the phase distribution of the liquid crystal material corresponding to the electrode unit 61, wherein the horizontal axis of the curve represents the position of the liquid crystal material along the radial direction of the Fresnel liquid crystal lens, and the vertical axis of the curve represents the phase of the liquid crystal material.
  • phase distribution equivalent to the Fresnel ring zone means that when the liquid crystal layer 40 forms the aforementioned phase distribution, the modulation effect on light is equivalent to the modulation effect on light by the corresponding Fresnel ring zone.
  • this embodiment utilizes the length of the extension section 6113 at different positions in the radial direction in the electrode unit 61 to satisfy the aforementioned functional relationship to make the electric potential of the extraction position 6116 in the radial direction form a specific distribution, and this electric potential distribution makes the phase distribution of the liquid crystal material in the radial direction satisfy the parabolic distribution. Since the electric potential at each location on the second conductive line 612 is equal to the electric potential at the extraction position 6116, the electric potential distribution with the aforementioned characteristics extends to each circumferential position of the Fresnel liquid crystal lens along the second conductive line 612, thereby achieving the optical effect of the corresponding Fresnel ring zone.
  • the second electrode layer 60 of this embodiment adopts the aforementioned structure, only two driving voltages, namely the first driving voltage and the second driving voltage, are required to achieve precise control of the potential at each position of the Fresnel ring zone corresponding to the electrode unit 61. Therefore, this embodiment can obtain a better Fresnel lens through a simple driving method.
  • the Fresnel liquid crystal lens in this embodiment adopts the aforementioned electrode structure, even if the first driving voltage V1 loaded at the first position 6111 and the second driving voltage V2 loaded at the second position 6112 are not within the linear response region of the liquid crystal material, this embodiment can also enable the phase of the liquid crystal material to accurately achieve parabolic distribution. In this way, the application of the liquid crystal material is no longer limited by the linear response range of the liquid crystal material, thereby greatly improving the optical power of the Fresnel liquid crystal lens while improving the phase distribution accuracy, and significantly increasing the utilization rate of the liquid crystal material.
  • the second conductive wire 612 is in the shape of an arc.
  • different second conductive wires 612 are led out from different lead-out positions 6116, and these second conductive wires are arranged from the inside to the outside along the radial direction of the Fresnel liquid crystal lens.
  • Each second conductive wire can be in the shape of a segment of an arc, and these arcs can be concentric arcs.
  • the electrode unit 61 can achieve the effect of a circular Fresnel ring zone, and all electrode units 61 can be combined to achieve the optical effect of a circular Fresnel lens.
  • the extension section 6113 of the first conductive line 611 is in the shape of an arc.
  • the extension section 6113 of the first conductive line 611 is arranged from the inside to the outside along the radial direction of the Fresnel liquid crystal lens, and each second conductive line 612 can be in the shape of an arc, and these arcs can be concentric arcs.
  • the length of the extension section 6113 can be set by setting the radius of the arc, so the design and production of the second electrode layer 60 can be simplified.
  • the present embodiment also includes an electrode lead group, which includes a first electrode lead 613 and a second electrode lead 614 extending from near the center of the second electrode layer 60 toward a direction away from the second electrode layer 60, one end of the first electrode lead 613 is connected to a first driving voltage, and the other end is electrically connected to a first position 6111 of the first conductive line 611, one end of the second electrode lead 614 is connected to a second driving voltage, and the other end is electrically connected to a second position 6112 of the first conductive line 611, and the starting position 6117 of the extension section 6113 and the suspended end of the second conductive line 612 are respectively located on opposite sides of the first electrode lead 613.
  • an electrode lead group which includes a first electrode lead 613 and a second electrode lead 614 extending from near the center of the second electrode layer 60 toward a direction away from the second electrode layer 60, one end of the first electrode lead 613 is connected to a first driving voltage, and the other end is electrically connected to a first position 6111
  • the first electrode lead 613 and the second electrode lead 614 are provided in this embodiment to introduce the first driving voltage and the second driving voltage into the first position 6111 and the second position 6112 of the first conductive line 611 respectively.
  • the first electrode lead 613 and the second electrode lead 614 are both led out from the inside to the outside.
  • the outer ends of the first electrode lead 613 and the second electrode lead 614 can be connected to the power supply of the liquid crystal Fresnel lens.
  • the starting position 6117 of the extension section 6113 and the suspended end of the second conductive line 612 are respectively arranged on the opposite sides of the first electrode lead 613, so that the first electrode line can enter the position close to the center of the liquid crystal Fresnel lens, thereby being electrically connected to the first position 6111 of the electrode unit 61 close to the center of the Fresnel.
  • the first electrode lead 613 and the second electrode lead 614 can be led out from the gap position between the starting position 6117 of each extension section 6113 and the suspended end of each second conductive line 612, so as to be connected to the power supply.
  • the electrode lead group further includes a third electrode lead 615, and the third electrode lead 615 extends from the second position 6112 of the first conductive line 611 along the radial direction of the liquid crystal lens to a position connected to the second electrode lead 614. Since the second position 6112 of the first conductive line 611 may be far away from the second electrode lead 614, in this embodiment, the third electrode lead 615 is provided to connect the second position 6112 located on one side of the first electrode lead 613 with the second electrode lead 614 located on the other side of the first electrode lead 613.
  • the spacing between adjacent second conductive lines 612 is less than or equal to 100 ⁇ m.
  • the spacing between adjacent second conductive lines 612 is less than or equal to 100 ⁇ m, a more accurate potential distribution can be obtained.
  • the spacing between adjacent second conductive lines 612 refers to the spacing between two adjacent second conductive lines 612 in the radial direction of the Fresnel liquid crystal lens, ie, the distance d in the figure.
  • the spacing between adjacent extension segments 6113 is less than or equal to 100 ⁇ m.
  • a high impedance film or a high dielectric constant layer is provided between the second electrode layer 60 and the second alignment layer or between the second electrode layer 60 and the second transparent substrate.
  • the Fresnel liquid crystal lens in this embodiment uses the first conductive wire that can load two driving voltages in the electrode unit to generate electric potentials of different sizes distributed with the position of the conductive wire, and makes multiple second conductive wires lead out from different positions of the non-conductive wire. Since one end of the second conductive wire is connected to the conductive wire and the other end is suspended, the second conductive wire can diffuse the electric potential at the lead-out position on the first conductive wire to the area where the lead-out wire extends.
  • the present invention sets the distance x between the starting position of the extension section and the center of the second electrode layer and the length of the extension section to satisfy the function optical g(x).
  • the electrode unit can also make the phase of the liquid crystal material accurately achieve parabolic distribution. Since multiple electrode units are arranged in sequence from the position close to the center of the second electrode layer to the position away from the center of the second electrode layer, these electrode units can be combined together to achieve an optical effect equivalent to that of a complete Fresnel lens.
  • liquid crystal materials is no longer limited by the linear response range of liquid crystal materials, thereby achieving the improvement of phase distribution accuracy while also greatly improving the optical focal length of the liquid crystal column lens, so that the utilization rate of liquid crystal materials is also significantly increased.
  • This embodiment provides an electronic product, which includes a control circuit and the liquid crystal optical device in any of the above embodiments, wherein the control circuit is electrically connected to the liquid crystal optical device.
  • the electronic product includes but is not limited to an imaging device, a display device, a mobile phone, an AR device, a VR device, a naked-eye 3D product, a wearable device, etc.
  • the functional blocks shown in the above-described block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, etc.
  • ASIC application specific integrated circuit
  • the elements of the present invention are programs or code segments that are used to perform the required tasks.
  • the program or code segment can be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link by a data signal carried in a carrier wave.
  • "Machine-readable medium" can include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, optical fiber media, radio frequency (RF) links, etc.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, etc.
  • the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices.
  • the present invention is not limited to the order of the above steps, that is, the steps can be performed in the order mentioned in the embodiments, or in a different order from the embodiments, or several steps can be performed simultaneously.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)

Abstract

一种液晶光学器件、液晶透镜阵列、电子产品和制作方法。液晶光学器件,包括依次层叠设置的第一透明基板(10)、第一电极层(20)、第一取向层(30)、液晶层(40)、第二取向层(50)、第二电极层(60)、第二透明基板;第一电极层(20)和/或第二电极层(60)中包括电极单元(101);电极单元(101)包括导电线(61)和多根引出线(62),导电线(61)包括第一位置(611)和第二位置(612),第一位置(611)和第二位置(612)不同,引出线(62)的一端与导电线连接,相对的另一端悬空,引出线(62)从导电线(61)的第一位置(611)和第二位置(612)之间的位置引出,引出线(62)与导电线(61)连接的位置为引出位置。可以提高液晶材料的利用率。

Description

液晶光学器件、液晶透镜阵列、电子产品和制作方法 技术领域
本发明属于液晶光学技术领域,具体是一种液晶光学器件、液晶透镜阵列、电子产品和制作方法。
背景技术
由于液晶透镜具有电控调焦的特点,因此应用越来越广泛。为了可以将液晶透镜应用到不同的场景中,往往需要对液晶透镜中液晶层的电势分布进行精确的控制。由于液晶材料的相位在某个电压区间对所施加的电压是线性响应的,该电压区间称为线性响应区间或液晶线性工作区间。为了方便精确地控制液晶层的电势分布,现有技术中提出了根据线性响应区间的范围来控制驱动液晶透镜的电压。例如在公开号为CN114185222A的专利中,采用将驱动液晶器件的最小电压和最大电压设置在液晶线性工作区间内的方式来驱动该液晶器件工作。如图1中的液晶材料的响应曲线所示,虽然在线性响应区间内选择驱动电压可以方便准确的驱动液晶透镜工作,但是线性响应区间的电压范围较小,从而导致了所设计的液晶器件的光焦度不够,使液晶透镜的应用范围受到了极大的限制。
发明内容
有鉴于此,本发明提供了一种液晶透镜用以解决现有的液晶透镜由于液晶材料的线性响应区间范围小,导致液晶透镜的光焦度不够的技术问题。
本发明采用的技术方案是:
第一方面,本发明提供一种液晶光学器件,包括依次层叠设置的第一透明基板、第一电极层、第一取向层、液晶层、第二取向层、第二电极层、第二透明基板;
所述第一电极层和/或第二电极层中包括电极单元;
所述电极单元包括导电线和多根引出线,所述导电线包括第一位置和第二位置,所述第一位置和所述第二位置不同,所述引出线的一端与所述导电线连接,相对的另一端悬空,所述引出线从导电线的第一位置和第二位置之间的位置引出,所述引出线与所述导电线连接的位置为引出位置;
在第一位置和第二位置之间的导电线包括第一连接段、第二连接段和多个沿电极单元的预设方向排列的延伸线、所述延伸线由起始位置延伸至与第一连接段相连接的位置,所述引出位置设置于延伸线与第一连接段相连的位置,所述延伸线的起始位置与第二连接段连接;
设在电极单元的预设方向上导电线的各个延伸线的引出位置与第一位置的距离为x,则延伸线的长度为g(x),其中
Figure PCTCN2022128969-appb-000001
C为常数,
Figure PCTCN2022128969-appb-000002
表示液晶材料的相位随电压变化的变化率;
所述第一位置用于接收第一驱动电压,第二位置用于接收第二驱动电压。
液晶光学器件,所述导电线位于第一位置和第二位置之间的部分宽度相同,各个所述引出位置沿所述电极单元的预设方向等间距排布;在至少一个预设区域中,各根引出线相互平行且沿所述电极单元的预设方向等间距设置。
优选地,所述引出线包括分别位于第一参考平面的相对两侧的第一部分和第二部分,所述第一参考平面为过第一位置且与所述电极单元的预设方向垂直的平面。
优选地,所述导电线还包括第三位置,所述第一位置位于第三位置和第二位置之间,所述导电线的第三位置用于接收第二驱动电压,所述导电线位于第一位置和第二位置之间的部分宽度相同,所述引出线还从导电线的第一位置和第三位置之间的位置引出。
优选地,所述导电线位于液晶光学器件的功能区外。
优选地,所述第二电极层和第二取向层之间或者第二电极层和第二透明基板之间设置有高阻抗膜或者高介电常数层。
第二方面,本发明提供一种液晶透镜阵列,所述液晶透镜阵列包括多个第一方面所述的液晶光学器件,所述多个液晶光学器件成阵列排布。
第三方面,本发明提供一种液晶透镜阵列,所述液晶透镜阵列包括第一方面所述的液晶光学器件,件,所述液晶光学器件的引出线延伸形成多个延伸段,所述多个延伸段成阵列排布,各个延伸段的至 少一部分位于所述预设区域中。
第四方面,本发明提供一种电子产品,包括控制电路和第一方面所述的液晶光学器件或者第二方面所述的液晶透镜阵列或者第三方面所述的液晶透镜阵列,所述控制电路与所述液晶光学器件或者液晶透镜阵列电连接。
第五方面,本发明提供一种液晶光学器件或液晶透镜阵列的制作法,用于制作第一方面所述的液晶透镜或者第二方面所述的液晶透镜阵列或者第三方面所述的液晶透镜阵列,所述方法包括以下步骤:
获取液晶透镜或液晶透镜阵列中液晶材料的相位与驱动电压的对应关系;
根据所述对应关系确定第一驱动电压V1、第二驱动电压V2、第三驱动电压V3和第四驱动电压V4;
根据所述第一驱动电压V1和所述第二驱动电压V2以及所述对应关系确定第一电极层中导电线上各个曲线段的形状;
根据所述第三驱动电压V3和所述第四驱动电压V4以及所述对应关系确定第二电极层中导电线上各个曲线段的形状;
根据第一电极层和第二电极层中导电线上各个曲线段的形状制作液晶透镜或液晶透镜阵列。
有益效果:本发明的液晶光学器件透镜、液晶透镜阵列、电子产品和制作方法,利用可以加载两个驱动电压的导电线产生随导电线位置分布的大小不同的电势,并使多根引出线分别从不导电线的不同位置引出,由于引出线一端与所述导电线连接,相对的另一端悬空,因此引出线可以将导电线上引出位置的电势扩散到引出线延伸的区域。在前述结构的基础上,本发明通过让在电极单元的预设方向上导电线的各个延伸线的引出位置与第一位置的距离为x,则延伸线的长度g(x),满足
Figure PCTCN2022128969-appb-000003
C为常数,
Figure PCTCN2022128969-appb-000004
表示液晶材料的相位随电压变化的变化率,这样即使第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应区域内,本发明也可以使液晶材料的相位准确的实现抛物线分布。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升液晶透镜的光焦度,使液晶材料的利用率也得到了显著增加。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,这些均在本发明的保护范围内。
图1为液晶材料的响应曲线图;
图2为本发明的液晶透镜的剖视图;
图3为本发明实施例1中第一种电极单元的结构示意图;
图4为本发明实施例1中第二种电极单元的结构示意图;
图5为本发明实施例1中第一种电极单元中的导电线的结构示意图;
图6为本发明实施例1中第二种电极单元中的导电线的结构示意图;
图7为本发明实施例1中导电线的第一连接段和第二连接段的结构示意图;
图8为在本发明实施例1中从满足条件的曲线中截取曲线段的结构示意图;
图9为本发明实施例1中延伸线和与其相邻的两个曲线段的结构示意图;
图10为本发明实施例1中其中一种形式的液晶透镜阵列的结构示意图;
图11为本发明实施例1中另一种形式的液晶透镜阵列的结构示意图;
图12为本发明实施例2中第一电极层和第二电极层的电极单元在第二参考平面上投影的结构示意图;
图13为本发明实施例2中其中一种形式的液晶透镜阵列的结构示意图;
图14为本发明实施例2中另一种形式的液晶透镜阵列的结构示意图;
图15为本发明实施例3中第一种电极单元的结构示意图;
图16为本发明实施例3中第二种电极单元的结构示意图;
图17为本发明实施例3中第一种导电线的结构示意图;
图18为本发明实施例3中第二种导电线的结构示意图;
图19为本发明实施例3中第一种导电线的分解结构示意图;
图20为本发明实施例3中第二种导电线的分解结构示意图;
图21为本发明实施例3中导电线的一个子部的结构示意图;
图22为本发明实施例3中将液晶材料的响应曲线划分为若干段的示意图;
图23为本发明实施例3中近似替代液晶材料的响应曲线的折线的示意图;
图24为本发明实施例3中一种光焦度可调的液晶透镜阵列的结构示意图;
图25为本发明实施例3中另一种光焦度可调的液晶透镜阵列的结构示意图;
图26为本发明实施例3中光焦度可调的液晶透镜或液晶透镜柱透镜阵列的驱动方法的流程示意图;
图27为本发明实施例4中第一电极层和第二电极层的电极单元在第二参考平面上投影的结构示意图;
图28为本发明实施例4中一种光焦度可调的液晶透镜阵列结构示意图;
图29为本发明实施例4中另一种光焦度可调的液晶透镜阵列的结构示意图;
图30为本发明中实施例4中光焦度可调的液晶透镜或液晶透镜柱透镜阵列的驱动方法的流程示意图;
图31为本发明中实施例5中第二电极层的结构示意图;
图32为本发明中实施例5中第二电极层分解为多个电极单元后的结构示意图;
图33为本发明中实施例5中菲涅尔带对应的液晶材料的相位分布的示意图;
图34为本发明中实施例5中一种的电极单元的结构示意图;
图35为本发明中实施例5中另一种电极单元的结构示意图;
图36为本发明中实施例5中一种第一导电线结构示意图;
图37为本发明中实施例5中另一种第一导电线结构示意图;
图38为本发明中实施例5中第一导电线的局部结构示意图。
图39为本发明中实施例6中第二电极层的结构示意图;
图40为本发明中实施例6中菲涅尔环带对应的液晶材料的相位分布的示意图;
图41为本发明中实施例6中靠近第二电极层中心的电极单元的结构示意图;
图42为本发明中实施例6中位于第二电极层***的电极单元的结构示意图;
图43为本发明中实施例6中第一导电线的结构示意图;
图44为本发明中实施例6中第一导电线的局部结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。
实施例1
本实施例提供一种液晶光学器件,包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板;
所述第一电极层20和/或第二电极层60中包括电极单元;电极单元101包括导电线61和多根引出线62,所述导电线61包括第一位置611和第二位置612,所述第一位置611和所述第二位置612不同,所述引出线62的一端与所述导电线61连接,相对的另一端悬空。
在第一位置和第二位置之间的导电线包括第一连接段614、第二连接段615和多个沿第一方向排列的延伸线616、所述延伸线616由起始位置延伸至与第一连接段614相连接的位置,所述引出位置设置于延伸线与第一连接段614相连的位置,所述延伸线的起始位置与第二连接段连接615;
设在电极单元的预设方向上导电线的各个延伸线616的引出位置与第一位置的距离为x,则延伸线的长度为g(x),其中
Figure PCTCN2022128969-appb-000005
C为常数,
Figure PCTCN2022128969-appb-000006
表示液晶材料的相位随电压变化的变化率。
所述第一位置用于接收第一驱动电压,第二位置用于接收第二驱动电压。
如图2所示,本实施例提供一种液晶柱透镜,属于前述液晶光学器件的一种,本实施例中的液晶柱透镜包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板;所述引出线62从导电线61的第一位置611和第二位置612之间的位置引出,所述引出线62与所述导电线61连接的位置为引出位置。
本实施例中的液晶柱透镜可以采用层状的结构。前述液晶层40,第一取向层30、第二取向层50、第一电极层20、第二电极层60、第一透明基板10和第二透明基板分别位于不同的层,前述各层沿着液晶光学器件的通光方向即各层的法向方向层叠排布。排布方式可以参见图2所示,在图2中沿着液晶光学器件的通光方向从下到上依次是第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60和第二透明基板。即第一取向层30和第二取向层50分别位于液晶层40的相对两侧,所述第一电极层20位于所述第一取向层30背向液晶层40的一侧,所述第二电极层60位于第二取向层50背向液晶层40的一侧;所述第一透明基板10位于第一电极层20背向液晶层40的一侧,所述第二透明基板位于第二电极层60背向液晶层40的一侧;
其中第一透明基板10和第二透明基板可以采用具有一定强度和刚度的透明材料制作,例如玻璃基板、塑料基板等。其中第一基板可以起到支撑液晶光学器件的作用。其中第一透明基板10可以作为第一电极层20的承载体,第一电极层20可以镀在第一基板上。其中第二基板也起到支撑作用,还可以作为第二电极层60的承载体,第二电极层60可以镀在第二透明基板上。
其中第一电极层20为面电极,本实施例利用第一电极层20形成一个等电势的平面。
如图3所示,本实施例在第二电极层60中设置了电极单元101,利用电极单元101所产生的电势形成可以影响液晶分子偏转的电势分布。
如图3和图4所示,电极单元101包括导电线61和多根引出线62,如图5所示,所述导电线61包括第一位置611和第二位置612,所述第一位置611和所述第二位置612不同,所述导电线61位于第一位置611和第二位置612之间的部分宽度相同,所述引出线62的一端与所述导电线61连接,相对的另一端悬空。
所述引出线62从导电线61的第一位置611和第二位置612之间的位置引出,所述引出线62与所述导电线61连接的位置为引出位置,各个所述引出位置沿所述电极单元101的预设方向等间距排布;在至少一个预设区域中,各根引出线62相互平行且沿所述电极单元101的预设方向等间距设置;
前述预设方向可以根据需要任意指定,例如需要利用电极单元101来控制液晶透镜所处空间中某一方向上各个位置的电势分布,则可以将该方向指定为预设方向。前述预设区域可以是液晶透镜的功能区90域。其中液晶透镜的功能区90是指液晶透镜中可以根据需要对光线进行调制的区域。其中相邻两根引出线62之间的间距可以和相邻两个引出位置之间的间距相同,也可以不同这里不做限制。当相邻两根引出线62之间的间距和相邻两个引出位置之间的间距不相同时,引出线62之间的间距可以在引出位置之间的间距的基础上等比例的放大或者缩小,这里不做限制。
前述电极单元101中的导电线61包括但不限于具有一定电阻的导线、镀在第二基板上的具有一定电阻且可以导电的较薄的线条。为了提高透镜的效果,本实施例中的导电线61都可以采用透明的导电材料制作,前述透明的导电材料包括但不限于ITO电极材料、IZO电极材料、FTO电极材料、AZO电极材料、IGZO电极材料等。
电极单元101中的引出线62可以全部采用透明材料制作,也可以是至少一部分采用透明材料制作,例如可以让位于液晶透镜功能区90中的那部分引出线62采用透明材料制作。其中引出线62的根数可以大于等于2根。
如图3所示,本实施例可以对第二电极层60中的电极单元101施加驱动电压来驱动液晶透镜工作,其中所述第二电极层60中的导电线61的第一位置611用于接收第一驱动电压,第二位置612用于接收第二驱动电压。
当导电线61上的第一位置611和第二位置612分别加载了前述两个驱动电压后,就可以在前述两个位置之间的导电线61上形成大小随导电线61位置分布的电势。又由于在本实施例中的引出线62的采用了一端与所述导电线61连接,相对的另一端悬空的连接方式,因此同一根引出线62上各个位置的电势相等,且等于该引出线62与导电线61连接位置处的导电线61的电势。又由于在本实施例中,导电线61位于第一位置611和第二位置612之间的部分宽度相同,因此导电线61上各个引出位置的电势与该位置至第一位置611之间的导电线61的长度成线性关系。
如图9所示,在第一位置和第二位置之间的导电线包括第一连接段614、第二连接段615和多个沿第一方向排列的延伸线616、所述延伸线616由起始位置延伸至与第一连接段614相连接的位置,所述引出位置设置于延伸线与第一连接段614相连的位置,所述延伸线的起始位置与第二连接段连接615;
设在电极单元的预设方向上导电线的各个延伸线616的引出位置与第一位置的距离为x,则延伸线的长度为g(x),其中
Figure PCTCN2022128969-appb-000007
C为常数,
Figure PCTCN2022128969-appb-000008
表示液晶材料的相位随电压变化的变化率。
本实施例将延伸线616的长度L设置为和延伸线616的起始位置与该电极单元的第一位置之间在该电极单元预设方向上的距离相关联,具体可以使延伸线的长度和起始位置到第一位置之间在预设方向上的距离x满足一定的函数关系,为便于描述,延伸线的起始位置同第一位置之间在预设方向上的距离x所满足的函数关系记为g(x)。为了方便理解也可以通过直角坐标系表示延伸线616的长度L与延伸线的起始位置同该电极单元的第一位置之间在预设方向上的距离x之间的关系。我们不妨将延伸线616的起始位置与该电极单元的第一位置之间在预设方向上的距离作为直角坐标系的x轴,而将延伸线616的长度L作为y轴来建立直角坐标系,则在该直角坐标系中满足y=g(x)。其中
Figure PCTCN2022128969-appb-000009
C为常数,
Figure PCTCN2022128969-appb-000010
表示液晶材料的相位随电压变化的变化率。
如图8所示,作为一种优选的实施方式,第二连接段615为曲线段。这些曲线段为在满足一定要求的曲线上依次截取所得到的曲线段,这些曲线段是满足一定条件的曲线的一部分,所述延伸线与第一方向垂直。为了便于描述在本文中,前述曲线的方程设为g(x),前述满足的条件为
Figure PCTCN2022128969-appb-000011
设在第一位置611加载的第一驱动电压为V1,在第二位置612加载的第二驱动电压为V2,那么沿着x方向相位的变化率为:
Figure PCTCN2022128969-appb-000012
因为
Figure PCTCN2022128969-appb-000013
所以
Figure PCTCN2022128969-appb-000014
Figure PCTCN2022128969-appb-000015
则相位分布为
Figure PCTCN2022128969-appb-000016
当满足相位沿着x轴方向呈抛物线分布时
Figure PCTCN2022128969-appb-000017
因此
Figure PCTCN2022128969-appb-000018
即当满足
Figure PCTCN2022128969-appb-000019
时,本实施例中液晶材料的相位分布满足抛物线分布。
其中
Figure PCTCN2022128969-appb-000020
表示液晶相位随电压的变化率,反映在图1所示的响应曲线上则表示该响应曲线的斜率。从前述关系式中也可以看曲线g(x)的斜率正比于响应曲线斜率的倒数。
在本实施例中,由于每根引出线62上的电势和每个引出线62所经过的位置都可以精确控制,当所述引出位置沿预设方向等间距排布;在预设区域中,各根引出线62相互平行且沿所述预设方向等间距设置时,就可以得到精确的使液晶材料的相位成抛物柱面分布的电势分布,因此本实施例的液晶透镜为液晶柱透镜。采用前述结构后只需要精确控制曲线段的形状既可以获得高精度的电势分布,使设计更加简单。并且本实施例只需要第一驱动电压、第二驱动电压就可以实现对液晶透镜所处空间各个位置电势的精确控制,因此本实施例通过简单的驱动方式就可以获得效果更好的液晶透镜。
此外,由于本实施例中的液晶透镜的电极单元101采用了前述结构,因此即使第二电极层60中第一位置611加载的第一驱动电压V1和第二位置612加载的第二驱动电压V2以不在液晶材料的线性响应区域内,本实施例也可以使液晶材料的相位准确的实现抛物面分布。这样对液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而在提高相位分布精度的同时也大大提升了液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。
根据一种可选但有利的实施方式,电极单元101的引出线62包括分别位于第一参考平面80的相对两侧的第一部分和第二部分,所述第一参考平面80为过第一位置611且与该电极单元101的预设方向垂直的平面。
如图3所示,本实施例可以以参考平面为界将液晶光透镜所处空间划分为两个区域,并让引出线62在两个区域都有延伸。本实施例采用前述结构可以使引出线62只从一个区域引出,就可以控制两 个区域的电势分布,这样只需要在两个位置施加驱动电压就可以控制第一位置611两侧的电势分布,并且导电线61的长度可以缩短一半,使液晶柱透镜的制作成本和能耗也显著降低。在本实施例中延长线可以只包括第一部分和第二部分,也可以包括除第一部分和第二部分之外的其它部分,这里不做限制。
参见图4和图6,作为一种可选但有利的实施方式,电极单元101中的导电线61还包括第三位置613,所述第一位置611位于第三位置613和第二位置612之间,所述导电线61的第三位置613用于接收第二驱动电压所述导电线61位于第一位置611和第二位置612之间的部分宽度相同,所述引出线62还从导电线61的第一位置611和第三位置613之间的位置引出。
本实施例在前述第二位置612的基础上增加了一个加载第二驱动电压的第三位置613,这样可以同时在导电线61的第二位置612和第三位置613施加第二驱动电压,。当导电线61的第二位置612和第三位置613同时施加第二驱动电压后,在导电线61的第二位置612到第一位置611之间以及第三位置613到第一位置611之间都能产生随位置变化电势,引出线62可以从第一位置611的两侧分别引出,即引出位置既可以位于第二位置612至第一位置611之间,也可以位于第三位置613到第一位置611之间。采用前述结构后,可以利用第一位置611两侧的引出线62来控制第一位置611两侧的电势分布,从而使液晶材料形成对称的抛物线的相位分布。
根据一种可选但有利的实施方式,在本实施例中所述导电线61位于液晶透镜的功能区90外。在现有技术中,需要将产生电势分布的元件设置在液晶透镜的功能区90中才能形成影响液晶材料相位的电势。但是这种方式产生电势分布的元件会受到功能区90范围的限制,难以满足电势控制的需求。而本实施例将产生电势分布的元件(导电线61)和控制电势分布的元件(引出线62)分离开来,并使产生电势的元件位于功能区90外,让至少一部分控制电势的元件位于液晶光学器件的功能区90中。这样产生电势分布的元件可以不受功能区90的限制,从而可以方便地进行精确的设计,并且产生电势分布的元件和功能区90可以互不影响。
根据一种可选但有利的实施方式,在本实施例中所述第二电极层60和第二取向层50之间或者第二电极层60和第二透明基板之间设置有高阻抗膜或者高介电常数层。本实施例通过添加高阻抗膜或者高介电常数层方式来使相邻引出线62之间的电势变得更加平滑。
在本实施例中所述导电线61和所述面电极在与第二电极层60平行的平面上的投影不重合。
本实施例在第二电极层60上与导电线61正对的位置使面电极空缺,这样导电线61就不会因为受到与面电极之间所产生的电容效应的影响,从而使液晶柱透镜的光学的效果得到进一步的提高。
如图10所示,本实施例提供一种液晶柱透镜阵列,该液晶柱透镜阵列包括多个实施例1中所述的液晶柱透镜100,所述多个液晶柱透镜100成阵列排布。由于本实施例中的液晶柱透镜阵列采用了实施例1中的液晶柱透镜100,因此本实施例中的液晶柱透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度。
如图11所示,本实施例提供另一种形式的液晶柱透镜阵列,在本实施例中所述液晶柱透镜阵列包括实施例1中所述的液晶柱透镜100,所述液晶柱透镜的引出线62延伸形成多个延伸段621,所述多个延伸段621成阵列排布,各个延伸段621的至少一部分位于所述预设区域中。
本实施例的液晶柱透镜阵列通过实施例1中液晶柱透镜阵列的引出线62继续延伸形成多个延伸段621,当加载了第一驱动电压和第二驱动电压后各个延伸段621在预设区域中的那部分所形成的电势分布可以驱动液晶层40中的液晶分子偏转形成抛物线的相位分布,从而形成与各个延伸段621对应的液晶柱透镜。由于各个延伸段621以阵列的方式排布的,因此各个延伸段621对应的液晶柱透镜也以阵列的形式排布。
如图11所示,在每个延伸段621中,各个引出线62相互平行且等间距设置。图中的液晶柱透镜阵列具有3个延伸段621,因此可以形成由3个液晶柱透镜100组成的液晶柱透镜阵列。
由于本实施例中的液晶柱透镜阵列有实施例1中的液晶柱透镜的引出线62延伸形成,因此本实施例中的液晶柱透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度。
本实施例提供一种液晶柱透镜或液晶柱透镜阵列的制作方法,该方法用于制作实施例1所述的液 晶柱透镜或者液晶透镜阵列,所述方法包括以下步骤:
S1:获取液晶柱透镜或液晶柱透镜阵列中液晶材料的相位与驱动电压的对应关系;
其中液晶材料的相位与驱动电压的对应关系是指当对液晶材料施加某一大小的电压时液晶材料对应的相位的大小。该对应关系也可以用液晶材料响应曲线来表示。如图1所示,图1中曲线的横坐标为所施加的电压大小,纵坐标为相应的液晶材料的相位的大小。因此也可以通过液晶材料响应曲线来获取液晶材料的相位与驱动电压的对应关系。
S2:根据所述对应关系确定第一驱动电压V1和第二驱动电压V2;
本步骤根据前述驱动电压与相位的对应关系来选择第一驱动电压V1和第二驱动电压V2,使所选择的驱动电压的大小满足液晶材料相位分布范围的要求。为了满足光焦度的要求,本步骤还可以根据光焦度与液晶材料相位分布的光学来确定第一驱动电压和第二驱动电压。
S3:根据所述第一驱动电压V1和所述第二驱动电压V2以及所述对应关系确定导电线61上第二连接段615的形状;
当第一驱动电压V1和所述第二驱动电压V2以及液晶材料的相位与驱动电压的对应关系确定后就可以获得液晶分子的相位随电压变化的变化率
Figure PCTCN2022128969-appb-000021
然后根据关系式
Figure PCTCN2022128969-appb-000022
获得曲线g(x)的方程。最后在曲线g(x)上依次截取出第二连接段615中的各个曲线段。
S4:根据导电线61上第二连接段615的形状制作液晶柱透镜或液晶透镜阵列。
本步骤按照前述步骤中所得到的第二连接段615的形状来制作第二电极层60中的电极。液晶柱透镜或液晶透镜阵列其余部分的制作均可以采用现有的制作方法,这里不做赘述。
本实施例中的液晶柱透镜、液晶柱透镜阵列、制作方法利用可以加载两个驱动电压的导电线产生随导电线位置分布的大小不同的电势,并使多根引出线分别从不导电线的不同位置引出,由于引出线一端与所述导电线连接,相对的另一端悬空,因此引出线可以将导电线上引出位置的电势扩散到引出线延伸的区域。采用本实施例的方案即使第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应区域内,本发明也可以使液晶材料的相位准确的实现抛物线分布。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。
实施例2
本实施例提供一种液晶透镜,属于液晶光学器件的一种,该液晶透镜可以实现抛物面液晶透镜的光学效果。本实施例中的液晶透镜包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板70;其中除了第一电极层20以外,其余结构与实施例1中的液晶透镜相同。而本实施例中的第一电极层20则不再采用实施例1中的面电极,而是采用与实施例1中第二电极层相同的电极单元101。
如图12所示,所述第一电极层的电极单元的预设方向与第二电极层的电极单元的预设方向相互垂直;本实施例可以分别对第一电极层20中的电极单元101和第二电极层60中的电极单元101施加驱动电压来驱动液晶透镜工作,其中第一电极层20中的导电线61的第一位置611用于接收第一驱动电压,第二位置612用于接收第二驱动电压;所述第二电极层60中的导电线61的第一位置611用于接收第三驱动电压,第二位置612用于接收第四驱动电压。
本实施例在第一电极层20和第二电极层60中均设置了电极单元101,利用两个电极层中电极单元101所产生的电势相互叠加后形成可以影响液晶分子偏转的电势分布。
在本实施例中,无论是对于第一电极层20中的电极单元101还是第二电极层60中的电极单元101来说,由于每根引出线62上的电势和每个引出线62所经过的位置都可以精确控制,当所述引出位置沿预设方向等间距排布;在预设区域中,各根引出线62相互平行且沿所述预设方向等间距设置时,就可以得到精确的使液晶材料的相位成抛物线分布的电势分布。采用前述结构后只需要精确控制曲线段的形状既可以获得高精度的电势分布,使设计更加简单。由于所述第一电极层20的电极单元101的预设方向与第二电极层60的电极单元101的预设方向相互垂直,因此两个电极层中电极单元101 的电势相叠加之后可以形成精确地成抛物面分布的电势分布。
并且本实施例只需要第一驱动电压、第二驱动电压、第三驱动电压和第四驱动电压这四个驱动电压就可以实现对液晶透镜所处空间各个位置电势的精确控制,因此本实施例通过简单的驱动方式就可以获得效果更好的液晶透镜。
此外,由于本实施例中的液晶透镜的电极单元101采用了前述结构,因此即使第一电极层20中第一位置611加载的第一驱动电压V1和第二位置612加载的第二驱动电压V2以及第二电极层60中第一位置611加载的第三驱动电压V3和第四位置加载的第四驱动电压V4不在液晶材料的线性响应区域内,本实施例也可以使液晶材料的相位准确的实现抛物面分布。这样对液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而在提高相位分布精度的同时也大大提升了液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。
根据一种可选但有利的实施方式,在本实施例中所述第二电极层60和第二取向层50之间或者第二电极层60和第二透明基板之间设置有高阻抗膜或者高介电常数层。本实施例通过添加高阻抗膜或者高介电常数层方式来使相邻引出线62之间的电势变得更加平滑。同理也可以在第一电极层20和第一取向层30之间或者第一电极层20和第一透明基板10之间设置高阻抗膜或者高介电常数层。
如图13所示,本实施例提供一种液晶透镜阵列,包括本实施例中所述的液晶透镜,所述第一电极层20和第二电极层60中的至少一个电极层包括至少两个电极单元101,所述第一电极层20中的引出线62和第二电极层60中的引出线62在第二参考平面上的投影形成多个呈阵列排布的交接区域110,所述第二参考平面为与第一电极单元101的引出线62和第二电极单元101的引出线62均平行的平面。
前述交接区域110是指第一电极层20中的引出线62和第二电极层60中的引出线62在第二参考面的投影相互交叠的区域。本实施例可以在其中一个电极层中设置一个电极单元101,并在另一个电极层中设置2个或2个以上的电极单元101,也可以在两个电极层中均设置2个或2个以上的电极单元101。两个电极层中的各个电极单元101的可以形成多个呈阵列排布的交接区域110,在这些交接区域110中两个电极层的电势相互叠加,形成抛物面分布的电势,这些区域的所分布的电势所产生的电场可以驱动液晶分子偏转从而形成一个个的液晶透镜。且前述液晶透镜的孔径、间隔可以根据需要进行调整。
本实施例采用前述结构后,可以使每个交接区域110都形成精确的抛物面分布的电势,从而得到效果更好的液晶透镜阵列。并且由于本实施例中的液晶透镜阵列采用了实施例1中的液晶透镜,因此本实施例中的液晶透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度。
如图14所示,本实施例提供另一种形式的液晶透镜阵列,在本实施例中所述液晶透镜阵列包括本实施例中所述的液晶透镜,其中液晶透镜的第一电极层20和第二电极层60中至少一个电极层中的电极单元101的引出线62延伸形成多个延长段621,所述第一电极层20中电极单元101的延长段621和第二电极层60中电极单元101的延长段621在第二参考平面上的投影形成多个呈阵列排布的交接区域110;在同一所述交接区域110中,同一电极单元101的各根引出线62相互平行且沿该电极单元101的预设方向等间距设置,所述第二参考平面为与第一电极单元101的引出线62和第二电极单元101的引出线62均平行的平面。
本实施例的液晶透镜阵列可以通过是实施例中液晶透镜的引出线62继续延伸形成多个延长段621,每个延长段621可以控制各自对应区域的电势分布,从而驱动各自对应区域的液晶层40中的液晶分子偏转,两个电极层中的延长段621在第二参考平面上的投影形成多个相互交叠的区域,即前述交接区域110,每个区域对应一个液晶透镜。当第一电极层20加载了第一驱动电压和第二驱动电压后各个延长段621在交接区域110中的那部分所形成的电势分布可以驱动液晶层40中的液晶分子偏转形成抛物线的相位分布。同理当第二电极层60加载了三驱动电压和第四驱动电压后各个延长段621在交接区域110中的那部分所形成的电势分布可以驱动液晶层40中的液晶分子偏转形成抛物线的相位分布。两个电极层的电势叠加后在交接区域110中形成抛物面的电势分布。由于交接区域110呈阵列排布的因此各个交接区域110对应的液晶透镜也以阵列的形式排布。
本实施例采用前述结构后,可以使每个交接区域110都形成精确的抛物面分布的电势,从而得到 效果更好的液晶透镜阵列。由于本实施例中的液晶柱透镜阵列有实施例1中的液晶柱透镜的引出线62延伸形成,因此本实施例中的液晶柱透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度。
本实施例提供一种液晶透镜或液晶透镜阵列的制作方法,该方法用于制作本实施例中所述的液晶透镜或者液晶透镜阵列,所述方法包括以下步骤:
S1B:获取液晶透镜或液晶透镜阵列中液晶材料的相位与驱动电压的对应关系;
S2B:根据所述对应关系确定第一驱动电压V1、第二驱动电压V2、第三驱动电压V1和第四驱动电压V2;
本步骤根据前述驱动电压与相位的对应关系来选择用于驱动第一电极层20中电极单元101的第一驱动电压V1和第二驱动电压V2以及用于驱动第一电极层20中电极单元101的第三驱动电压V3和第四驱动电压V4,使所选择的驱动电压的大小满足液晶材料相位分布范围的要求。为了满足光焦度的要求,本步骤还可以根据光焦度与液晶材料相位分布的光学来确定第一驱动电压V1、第二驱动电压V2、第三驱动电压V1和第四驱动电压V2。
S3B:根据所述第一驱动电压V1和所述第二驱动电压V2以及所述对应关系确定第一电极层20中导电线61上各个第二连接段615的形状;
当第一驱动电压V1和所述第二驱动电压V2以及液晶材料的相位与驱动电压的对应关系确定后就可以获得液晶分子的相位随电压变化的变化率
Figure PCTCN2022128969-appb-000023
然后根据关系式
Figure PCTCN2022128969-appb-000024
获得曲线g(x)的方程。最后在曲线g(x)上依次截取出第二连接段615中的各个曲线段,作为制作第一电极层20中各个曲线段6的标准。
S4B:根据所述第三驱动电压V3和所述第四驱动电压V4以及所述对应关系确定第二电极层60中导电线61上各个第二连接段615的形状;
同理当第三驱动电压V3和所述第四驱动电压V4以及液晶材料的相位与驱动电压的对应关系确定后就可以获得液晶分子的相位随电压变化的变化率
Figure PCTCN2022128969-appb-000025
然后根据关系式
Figure PCTCN2022128969-appb-000026
获得曲线g(x)的方程。最后在曲线g(x)上依次截取出第二分部615中的各个曲线段6141,作为制作第二电极层60中各个曲线段6141的标准。
S5B:根据第一电极层20和第二电极层60中导电线61上各个曲线段6141的形状制作液晶透镜或液晶透镜阵列。
本步骤按照S3中所得到的各个曲线段6141的形状来制作第一电极层20中的电极,按照S4中所得到的各个曲线段6141的形状来制作第二电极层60中的电极。液晶透镜或液晶透镜阵列其余部分的制作均可以采用现有的制作方法,这里不做赘述。采用前述方法制作得到的液晶透镜或者液晶透镜阵列可以显著提升其光焦度,使液晶材料的利用率也得到显著增加。
本发明的液晶透镜、液晶透镜阵列和制作方法,利用可以加载两个驱动电压的导电线产生随导电线位置分布的大小不同的电势,并使多根引出线分别从不导电线的不同位置引出,由于引出线一端与所述导电线连接,相对的另一端悬空,因此引出线可以将导电线上引出位置的电势扩散到引出线延伸的区域。在前述结构的基础上,本发明通过让引出位置沿第一方向等间距排布;在第二电极层的预设区域中,使各根引出线相互平行且沿所述第一方向等间距设置,并使各个延伸线的引出位置与第一位置的距离x和延伸线的长度满足函数关系g(x),这样即使第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应区域内,本发明也可以使第一电极层和第二电极层中液晶材料的相位准确的实现抛物线分布。本发明通过在液晶层两侧设置第一电极层和第二电极层,并使两个电极层中电极单元的预设方向相互垂直,这样两个电极层中的电极单元所产生的电势叠加形成精确的成抛物面分布的电势。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升液晶透镜的光焦度,使液晶材料的利用率也 得到了显著增加。
实施例3
本实施例提供一种光焦度可调的液晶柱透镜,属于液晶光学器件的一种,本实施例中的光焦度可调的液晶柱透镜包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板70;除第一电极层20和第二电极层60外,本实施例中液晶透镜的其余结构可以采用和实施例1中的相同的结构形式。
其中第一电极层20为面电极,本实施例利用第一电极层20形成一个等电势的平面。
如图15和图16所示,在本实施例中,本实施例在第二电极层60中设置了电极单101,第二电极层60的中电极单元101均包括导电线61和多根引出线62,如图17和图18所示,所述导电线61包括沿电极单元101的预设方向排列的多个子部611,其中电极单元101的预设方向可以根据需要任意指定,例如需要控制液晶透镜所处空间中某一方向上各个位置的电势分布,则可以将该方向指定为电极单元101的预设方向。前述预设方向可以根据需要任意指定,例如需要利用电极单元101来控制液晶透镜所处空间中某一方向上各个位置的电势分布,则可以将该方向指定为预设方向。
前述多个子部611是指导电线61的子部611的数量为2个或者2个以上。本实施例中的导电线61和引出线62包括但不限于具有一定电阻的导线、镀在透明第二基板上的具有一定电阻且可以导电的较薄的线条。可以采用实施例1中的导电线和引出线相同的材料。
如图19和图20所示,对于导电线61的任意一个子部611来说均包括了第一位置6111和第二位置6112,并且前述第一位置6111和所述第二位置6112不同。所述子部611位于第一位置6111和第二位置6112之间的部分宽度相同,所述子部611的第一位置6111用于接收第一驱动电压,第二位置6112用于接收第二驱动电压。
本实施例分别在各个子部611的第一位置6111加载第一驱动电压,在各个子部611的第二位置6112加载第二驱动电压,由于第一位置6111和第二位置6112不同,因此在各个子部611上加载第一驱动电压和第二驱动电压的位置也不相同。
当子部611上的第一位置6111和第二位置6112分别加载了前述两个驱动电压后,就可以在前述两个位置之间的子部611上形成大小随子部611的位置分布的电势。
所述引出线62的一端与所述导电线61连接,相对的另一端悬空,所述引出线62从子部611的第一位置6111和第二位置6112之间的位置引出,所述引出线62与所述导电线61连接的位置为引出位置,所述引出位置位于子部611的第一位置6111和第二位置6112之间,且至少两个引出位置不同;在电极单元101的至少一个预设区域中,各根引出线62相互平行。
由于本实施例中的引出线62的采用了一端与所述导电线61连接,相对的另一端悬空的连接方式,因此同一根引出线62上各个位置的电势相等,且等于该引出线62与导电线61连接位置处的导电线61的电势。又由于在本实施例中,子部611位于第一位置6111和第二位置6112之间的部分宽度相同,因此子部611上各个引出位置的电势与该位置至第一位置6111之间的导电线61的长度成线性关系。
如图21所示,所述子部611包括多个延伸线6114、第一连接线6115和第二连接线6116,相邻两个延伸线6114之间通过第一连接线6115或者第二连接线6116相连接,所述多个延伸线6114沿电极单元101的预设方向依次排列,所述延伸线6114由起始位置6118延伸至与第一连接线6115相连接的位置,所述引出位置设置于延伸线6114与第一连接线6115相连的位置,所述延伸线6114的起始位置6118与第二连接线6116连接。
在本实施例中,各个延伸线6114通过第一连接线6115或者第二连接线6116首尾连接在一起从而在加载第一驱动电压和第二驱动电压的情况下形成电势分布。前述多个延伸线6114沿电极单元101的预设方向依次排列,这样可以利用不同延伸线6114上的电势来控制电极单元101的预设方向各个位置上的电势分布。
作为一种可选但有利的实施方式,所述多个延伸线6114中的至少一个延伸线6114的起始位置6118和引出位置分别通过第二连接线6116和第一连接线6115与相邻的两个延伸线6114相连。采用前述结构后第二导电线61形成沿与电极单元101的预设方向垂直的方向来回弯折的结构,引出位置可以设置在弯折点处,这样可以使第一导电线61占用空间更小,也可以使引出位置更加准确,从而 提高电势分布控制的精度。为了进一步提高精度,在本实施例中相邻两个延伸线6114之间的间距小于等于100μm。
如图17和图18所示,对于电极单元101来说,设在电极单元101的预设方向上导电线61的各个延伸线6114的引出位置与导电线61原点位置6117的距离为x,则延伸线6114的长度为f(x),其中f(x)为由多段直线段组成的折线,f(x)的每段直线端的端点均位于g(x)上,其中
Figure PCTCN2022128969-appb-000027
C为常数,
Figure PCTCN2022128969-appb-000028
表示液晶材料的相位随电压变化的变化率,所述原点位置6117为其中一个子部611的第一位置6111。
具体实施时将导电线61上的一个子部611的第一位置6111选为原点,本实施例将延伸线6114的长度L设置为与引出位置与导电线61原点位置6117的距离相关联,具体可以使延伸线6114的长度L同引出位置与导电线61原点位置6117的距离x满足一定的函数关系,为便于描述,延伸线6114的长度L同引出位置与导电线61原点位置6117的距离x所满足的函数关系记为f(x)。为了方便理解也可以通过直角坐标系表示延伸线6114的长度L同引出位置与导电线61原点位置6117的距离x之间的关系。我们不妨将引出位置与导电线61原点位置6117的距离x作为直角坐标系的x轴,而将延伸线6114的长度L作为y轴来建立直角坐标系,则在该直角坐标系中满足y=f(x)。如图12所示,其中函数f(x)对应的函数图像为由多段直线段组成的折线,如图22和图23所示,每一段直线段的端点均位于函数g(x)对应的图像上,即用端点在g(x)上的折线来近似代替g(x)。其中
Figure PCTCN2022128969-appb-000029
C为常数,
Figure PCTCN2022128969-appb-000030
表示液晶材料的相位随电压变化的变化率。
对任意一个子部611来说,设在第一位置6111加载的第一驱动电压为V1,在第二位置6112加载的第二驱动电压为V2,那么沿着x方向相位的变化率为:
Figure PCTCN2022128969-appb-000031
当满足
Figure PCTCN2022128969-appb-000032
时,本实施例中液晶材料的相位分布满足抛物线分布。
其中
Figure PCTCN2022128969-appb-000033
表示液晶相位随电压的变化率,反映在图1所示的响应曲线上则表示该响应曲线的斜率。从前述关系式中也可以看曲线g(x)的斜率正比于响应曲线斜率的倒数。
通过前述分析可以看出电极单元101作用时可以使液晶材料的相位分布满足抛物柱面分布,由于本实施例将导电线61拆分成了多个子部611,因此每个子部611对应了响应曲线中的一段,各个子部611组合起来就可以对应较大范围内响应曲线。通过在各个子部611上加载与响应曲线相对应的第一驱动电压和第二驱动电压,并等比例地调节各个子部611的第一驱动电压和第二驱动电压的差值就可以在较大的光焦度范围内调整液晶透镜的光焦度。
作为其中一种可选但有利的实施方式,在本实施例中所述导电线61包括n个子部611,所述n个子部611在电极单元101的预设方向上位于原点位置6117的同一侧,即导电线61采用单侧设置的方式,相应地引出线62包括分别位于第一参考平面80的相对两侧的第一部分和第二部分,所述第一参考平面80为过的导电线61原点位置6117且与所述预设方向垂直的平面。如图15所示,以第一参考平面80为界将液晶透镜所处空间划分为两个区域,其中第二导电线61可以跨越两个区域,这样可以用同一根导电线61控制两个区域的电势分布,从而使导电线61的长度缩短一半,使液晶透镜的制 作成本和能耗也显著降低。
设第i个子部611的第一驱动电压为Vu i,第二驱动电压为Vw i,如图10所示,将C/g(x)对应划分为n段,其中第i段起点位置对应的驱动电压为Vs i,终点位置对应的驱动电压为Ve i,n个子部611所加载的第一驱动电压和第二驱动电压满足:
|Vw i-Vu i|≤Ve i-Vs i,并且Vw 1-Vu 1:Vw 2-Vu 2:……Vw n-Vu n=Ve 1-Vs 1:Ve 2-Vs 2:……Ve n-Vs n,其中n为大于等于2的整数,2≤i≤n。在满足前述条件下调节各个子部611的驱动电压就可以调节液晶透镜的光焦度。
例如17图中所示,导电线61设置了3个子部611,其中第1个子部611的第一驱动电压Vu 1=V1,第二驱动电压Vw 1=V2,第2个子部611的第一驱动电压Vu 2=V3,第二驱动电压Vw 2=V4,第3个子部611的第一驱动电压Vu 3=V5,第二驱动电压Vw 3=V6。
如22图所示相应将液晶材料的响应曲线C/g(x)划分为3段。其中第1段起点位置对应的驱动电压Vs 1=Va,终点位置对应的驱动电压为Ve 1=Vb;其中第2段起点位置对应的驱动电压Vs 2=Vb,终点位置对应的驱动电压为Ve 2=Vc;其中第3段起点位置对应的驱动电压Vs 3=Vc,终点位置对应的驱动电压为Ve 3=Vd,则各个子部611的驱动电压满足:
Figure PCTCN2022128969-appb-000034
如图18所示,作为其中一种可选但有利的实施方式,所述导电线61包括2m+1个子部611,所述2m+1个子部611沿电极单元101的预设方向对称分布在原点位置6117的两侧。在前述结构中导电线61和引出线62采用了关于第一参考平面80对此设置的方式,处于中间位置的子部611跨越了第一参考平面80的两侧,其自身为关于第一参考平面80对称的形状。在这种方式中处于中间位置的子部611还包括第三位置6113,所述第一位置6111位于第三位置6113和第二位置6112之间,所述导电线61的第三位置6113用于接收第二驱动电压,所述导电线61位于第一位置6111和第二位置6112之间的部分宽度相同,所述引出线62还从导电线61的第一位置6111和第三位置6113之间的位置引出。
本实施例在前述第二位置6112的基础上增加了一个加载第二驱动电压的第三位置6113,这样可以同时在导电线61的第二位置6112和第三位置6113施加第二驱动电压。当导电线61的第二位置6112和第三位置6113同时施加第二驱动电压后,在导电线61的第二位置6112到第一位置6111之间以及第三位置6113到第一位置6111之间都能产生随位置变化的电势,引出线62可以从第一位置6111的两侧分别引出,即引出位置既可以位于第二位置6112至第一位置6111之间,也可以位于第三位置6113到第一位置6111之间。采用前述结构后,可以利用第一位置6111两侧的引出线62来控制第一位置6111两侧的电势分布,从而使液晶材料形成对称的抛物线的相位分布。
当采用前述对称结构时,设从原点位置6117朝电极单元101的预设方向的第K个子部611的第一驱动电压为Vu K,第二驱动电压为Vw K,如图22所示,将C/g(x)对应划分为m段,其中第k段起点位置对应的驱动电压为Vs k,终点位置对应的驱动电压为Ve k,从原点位置6117朝电极单元101的预设方向的m个子部611所加载的第一驱动电压和第二驱动电压满足:
|Vw i-Vu i|≤Ve i-Vs i,并且Vw 1-Vu 1:Vw 2-Vu 2:……Vw n-Vu n=Ve 1-Vs 1:Ve 2-Vs 2:……Ve n-Vs n,其中n为大于等于2的整数,2≤i≤n;
其余子部611的第一驱动电压和与其对称的子部611所加载的第一驱动电压相同,第二驱动电压与其对称的子部611所加载的第二驱动电压相同。在满足前述条件下调节各个子部611的驱动电压就可以调节液晶透镜的光焦度。
例如图18所示,导电线61设置了5个子部611,从原点位置6117朝电极单元101的预设方向起算的第1个子部611的第一驱动电压Vu1=V1,第二驱动电压Vw1=V2,第2个子部611的第一驱动电压Vu2=V3,第二驱动电压Vw2=V4,第3个子部611的第一驱动电压Vu3=V5,第二驱动电压Vw3=V6。
如图22所示,相应将液晶材料的响应曲线C/g(x)划分为3段。其中第1段起点位置对应的驱动电压Vs1=Va,终点位置对应的驱动电压为Ve1=Vb;其中第2段起点位置对应的驱动电压Vs2=Vb,终点位置对应的驱动电压为Ve2=Vc;其中第3段起点位置对应的驱动电压Vs3=Vc,终点位置对应的驱动电压为Ve3=Vd,则各个子部611的驱动电压满足:
Figure PCTCN2022128969-appb-000035
如图18所示,而从原点位置6117朝电极单元101的预设方向相反的方向起算的第2个子部611与从原点位置6117朝电极单元101的预设方向起算的第2个子部611相互对称,两者的第一位置6111和第二位置6112也为相互对称的位置,两者所加载的第一驱动电压和第二驱动电压也相同。
从原点位置6117朝电极单元101的预设方向相反的方向起算的第3个子部611与从原点位置6117朝电极单元101的预设方向起算的第3个子部611相互对称,两者的第一位置6111和第二位置6112也为相互对称的位置,两者所加载的第一驱动电压和第二驱动电压也相同。在本实施例中子部611的数量可以根据需要进行设置,这里不做限制,子部611的数量越多所产生的电势分布也就越精确。
作为其中一种可选但有利的实施方式,在本实施例中所述导电线61位于光焦度可调的液晶透镜的功能区90外。在现有技术中,需要将产生电势分布的元件设置在液晶透镜的功能区90中才能形成影响液晶材料相位的电势。但是这种方式产生电势分布的元件会受到功能区90范围的限制,难以满足电势控制的需求。而本实施例将产生电势分布的元件(导电线61)和控制电势分布的元件(引出线62)分离开来,并使产生电势的元件位于功能区90外,让至少一部分控制电势的元件位于液晶光学器件的功能区90中。这样产生电势分布的元件可以不受功能区90的限制,从而可以方便地进行精确的设计,并且产生电势分布的元件和功能区90可以互不影响。
作为一种可选但有利的实施方式,所述第二电极层60和第二取向层之间或者第二电极层60和第二透明基板之间设置有高阻抗膜或者高介电常数层。
同理在本实施例中,所述第一电极层20和第一取向层30之间或者第一电极层20和第一透明基板10之间设置有高阻抗膜或者高介电常数层。
本实施例通过添加高阻抗膜或者高介电常数层方式来使相邻引出线62之间的电势变得更加平滑。
如图24所示,本实施例提供一种光焦度可调的液晶柱透镜阵列,该液晶光柱透镜阵列包括多个本实施例1、中所述的光焦度可调的液晶柱透镜100,所述多个光焦度可调的液晶柱透镜100成阵列排布。由于本实施例中的光焦度可调的液晶柱透镜阵列采用了本实施例1中的光焦度可调的液晶柱透镜100,因此本实施例中的光焦度可调的液晶柱透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度,并且可以通过调整各个子部611的第一驱动电压和第二驱动电压的差值来调整液晶柱透镜阵列中每一个液晶柱透镜的光焦度,从而调整整个液晶柱透镜阵列的光焦度。
如图25所示,本实施例提供另一种形式的光焦度可调的液晶柱透镜阵列,在本实施例中所述光焦度可调的液晶柱透镜阵列包括本实施例中所述的晶柱透镜100,所述光焦度可调的液晶柱透镜的引出线62延伸形成多个延伸段621,所述多个延伸段621成阵列排布,各个延伸段621的至少一部分位于所述预设区域中。
本实施例的光焦度可调的液晶柱透镜阵列通过实施例1中光焦度可调的液晶柱透镜阵列的引出线62继续延伸形成多个延伸段621,当加载了第一驱动电压和第二驱动电压后各个延伸段621在预设区域中的那部分所形成的电势分布可以驱动液晶层40中的液晶分子偏转形成抛物线的相位分布,从而形成与各个延伸段621对应的光焦度可调的液晶柱透镜。由于各个延伸段621以阵列的方式排布的,因此各个延伸段621对应的光焦度可调的液晶柱透镜也以阵列的形式排布。
如图25所示,在每个延伸段621中,各个引出线62相互平行且等间距设置。图中的光焦度可调 的液晶柱透镜阵列具有3个延伸段621,因此可以形成由3个光焦度可调的液晶柱透镜100组成的光焦度可调的液晶柱透镜阵列。
由于本实施例中的光焦度可调的液晶柱透镜阵列有实施例1中的光焦度可调的液晶柱透镜的引出线62延伸形成,因此本实施例中的光焦度可调的液晶柱透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度,并且可以通过调整各个导电线的子部上的两个驱动电压来调整光焦度。
如图26所示,本实施例提供一种光焦度可调的液晶柱透镜或液晶透镜柱透镜阵列的驱动方法,该方法用于驱动本实施例中所述的液晶柱透镜或者液晶柱透镜阵列,所述方法包括以下步骤:
S1C:获取液晶柱透镜或液晶柱透镜阵列中液晶材料的相位与驱动电压的对应关系曲线;
其中液晶材料的相位与驱动电压的对应关系曲线是指当对液晶材料施加某一大小的电压时液晶材料对应的相位的大小所形成的曲线。该对应关系曲线即液晶材料响应曲线来表示。如图1所示,图中曲线的横坐标为所施加的电压大小,纵坐标为相应的液晶材料的相位的大小。因此也可以通过液晶材料响应曲线来获取液晶材料的相位与驱动电压的对应关系。
S2C:根据所述对应关系曲线确定驱动电压的范围;
本步骤根据前述对应关系曲线来选择液晶柱透镜的驱动电压的范围,使所选择的范围内的驱动电压位于对应关系曲线上即可。例如可以选择图中位于Va和Vd之间的部分作为驱动电压的范围。
S3C:根据所述对应关系曲线和驱动电压的范围在驱动电压范围内将对应关系曲线划分为与导电线的子部数量对应的段;
当所述导电线包括n个子部,所述n个子部在第一方向上位于原点位置的同一侧时,将应关系曲线C/g(x)对应划分为n段。
当所述导电线包括2m+1个子部,所述2m+1个子部沿第一方向对称分布在原点位置的两侧时,将应关系曲线C/g(x)对应划分为m段。
S4C:获取对应关系曲线各段起点位置对应的电压和终点位置对应的电压;
S5C:根据各段起点位置对应的电压和终点位置对应的电压驱动各个子部的第一驱动电压和第二驱动电压所满足的条件作为电压调节条件;
在本实施例中,当导电线包括n个子部,所述n个子部在第一方向上位于原点位置的同一侧时,将C/g(x)对应划分为n段,其中第i段起点位置对应的驱动电压为Vs i,终点位置对应的驱动电压为Ve i,电压调节条件为n个子部所加载的第一驱动电压和第二驱动电压满足:
|Vw i-Vu i|≤Ve i-Vs i,并且Vw 1-Vu 1:Vw 2-Vu 2:……Vw n-Vu n=Ve 1-Vs 1:Ve 2-Vs 2:……Ve n-Vs n,其中n为大于等于2的整数,2≤i≤n。
在本实施例中,当所述导电线包括2m+1个子部,所述2m+1个子部沿第一方向对称分布在原点位置的两侧时,将应关系曲线C/g(x)对应划分为m段。
设从原点位置朝第一方向的第K个子部的第一驱动电压为Vu K,第二驱动电压为Vw K,将C/g(x)对应划分为m段,其中第k段起点位置对应的驱动电压为Vs k,终点位置对应的驱动电压为Ve k,电压调节条件为从原点位置朝第一方向的m个子部所加载的第一驱动电压和第二驱动电压满足:
|Vw i-Vu i|≤Ve i-Vs i,并且Vw 1-Vu 1:Vw 2-Vu 2:……Vw n-Vu n=Ve 1-Vs 1:Ve 2-Vs 2:……Ve n-Vs n,其中n为大于等于2的整数,2≤i≤n;
其余子部的第一驱动电压和与其对称的子部所加载的第一驱动电压相同,第二驱动电压与其对称的子部所加载的第二驱动电压相同。
S6C:调节第一驱动电压和第二驱动电压之间的差值,并使第一驱动电压和第二驱动电压满足电压调节条件。
本实施例在满足前述条件下调节各个子部的驱动电压就的差值可以调节液晶柱透镜的光焦度。
本实施例中的光焦度可调的液晶柱透镜、光焦度可调的液晶柱透镜阵列、电子产品和制作方法,将导电线设置为由多个子部组成,利用各个子部产生随导电线位置分布的大小不同的电势,并使多根引出线分别从导电线的不同位置引出,由于引出线一端与所述导电线连接,相对的另一端悬空,因此引出线可以将导电线上引出位置的电势扩散到引出线延伸的区域。在前述结构的基础上,使在第一方 向上导电线的各个延伸线的引出位置与导电线原点位置的距离和延伸线的长度f(x)满足f(x)为由多段直线段组成的折线,f(x)的每段直线段的端点均位于g(x)上。这样即使各个子部第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应区域内,本实施例也可以使液晶材料的相位准确的实现抛物线分布。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升光焦度可调的液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。还可以通过调节加载在各个子部上的电压来调节液晶柱透镜的光焦度。
实施例4
本实施例提供一种光焦度可调的液晶透镜,属于一种液晶光学器件,本实施例的光焦度可调的液晶透镜可以实现抛物面液晶透镜的效果。本实施例中的光焦度可调的液晶透镜包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板70;除第一电极层20外,本实施例的其余各层可以采用与实施例3中的液晶柱透镜相同的结构。
如图27所示,本实施例在第一电极层20和第二电极层60中均设置了电极单元101,利用两个电极层中电极单元101所产生的电势相互叠加后形成可以影响液晶分子偏转的电势分布。在本实施例中第一电极层20中的电极单元101和第二电极层60中的电极单元101可以采用与实施例3中第二电极层60中的电极单元相同的结构形式和相同的电压驱动方式。第一电极层中的引出线62和第二电极层60中的引出线62在第二参考平面上的投影具有一部分相互交接的区域。所述第一电极层20的电极单元101的预设方向与第二电极层60的电极单元101的预设方向相互垂直;由于所述第一电极层的电极单元101的预设方向与第二电极层60的电极单元101的预设方向相互垂直;因此在第一电极层和第二电极层60中的电极单元101所产生的电势分布的综合作用下,液晶材料的相位分布为精确的抛物面分布。
由于本实施例将导电线61拆分成了多个子部611,因此每个子部611对应了响应曲线中的一段,各个子部611组合起来就可以对应较大范围内响应曲线。通过在各个子部611上加载与响应曲线相对应的第一驱动电压和第二驱动电压,并等比例地调节各个子部611的第一驱动电压和第二驱动电压的差值就可以在较大的光焦度范围内调整液晶透镜的光焦度。
如图28所示,本实施例提供一种光焦度可调的液晶透镜100阵列,包括本实施例中所述的液晶透镜100,所述第一电极层20和第二电极层60中的至少一个电极层包括至少两个电极单元101,所述第一电极层20中的引出线62和第二电极层60中的引出线62在第二参考平面上的投影形成多个呈阵列排布的交接区域110,所述第二参考平面为与第一电极单元101的引出线62和第二电极单元101的引出线62均平行的平面。
前述交接区域110是指第一电极层20中的引出线62和第二电极层60中的引出线62在第二参考面的投影相互交叠的区域。本实施例可以在其中一个电极层中设置一个电极单元101,并在另一个电极层中设置2个或2个以上的电极单元101,也可以在两个电极层中均设置2个或2个以上的电极单元101。两个电极层中的各个电极单元101的可以形成多个呈阵列排布的交接区域110,在这些交接区域110中两个电极层的电势相互叠加,形成抛物面分布的电势,这些区域的所分布的电势所产生的电场可以驱动液晶分子偏转从而形成一个个的液晶透镜100。且前述液晶透镜100的孔径、间隔可以根据需要进行调整。
本实施例采用前述结构后,可以使每个交接区域110内的液晶材料都形成精确的抛物面分布的相位,从而得到效果更好的液晶透镜100阵列。并且由于本实施例中的液晶透镜100阵列采用了本实施例中的液晶透镜100,因此本实施例中的液晶透镜100阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度。并且可以通过调整各个子部的第一驱动电压和第二驱动电压的差值来调整液晶透镜阵列中每一个液晶透镜的光焦度,从而调整整个液晶透镜阵列的光焦度。
如图29所示,本实施例提供另一种形式的光焦度可调的液晶透镜阵列,在本实施例中所述液晶透镜100阵列包括本实施例中所述的液晶透镜100,其中液晶透镜100的第一电极层20和第二电极层60中至少一个电极层中的电极单元101的引出线62延伸形成多个延伸段621,所述第一电极层20中 电极单元101的延伸段621和第二电极层60中电极单元101的延伸段621在第二参考平面上的投影形成多个呈阵列排布的交接区域110;在同一所述交接区域110中,同一电极单元101的各根引出线62相互平行且沿该电极单元101的预设方向等间距设置,所述第二参考平面为与第一电极单元101的引出线62和第二电极单元101的引出线62均平行的平面。
本实施例的液晶透镜100阵列可以通过是本实施例中液晶透镜100的引出线62继续延伸形成多个延伸段621,每个延伸段621可以控制各自对应区域的电势分布,从而驱动各自对应区域的液晶层40中的液晶分子偏转,两个电极层中的延伸段621在第二参考平面上的投影形成多个相互交叠的区域,即前述交接区域110,每个区域对应一个液晶透镜100。当第一电极层20的各个子部加载了第一驱动电压和第二驱动电压后各个延伸段621在交接区域110中的那部分所形成的电势分布可以驱动液晶层40中的液晶分子偏转形成抛物线的相位分布。同理当第二电极层60的各个子部加载了第一驱动电压和第二驱动电压后各个延伸段621在交接区域110中的那部分所形成的电势分布可以驱动液晶层40中的液晶分子偏转形成抛物线的相位分布。两个电极层的电势叠加后在交接区域110中形成抛物面的电势分布。由于交接区域110呈阵列排布的因此各个交接区域110对应的液晶透镜100也以阵列的形式排布。
本实施例采用前述结构后,可以使每个交接区域110内的液晶材料都形成精确的抛物面分布的电势,从而得到效果更好的液晶透镜100阵列。由于本实施例中的液晶柱透镜阵列有本实施例中的液晶柱透镜的引出线62延伸形成,因此本实施例中的液晶柱透镜阵列不仅液晶材料的相位分布精度高,并且液晶材料的利用率高,可以获得更高的光焦度,并且可以通过调整各个导电线的子部上的两个驱动电压来调整光焦度。
如图30所示,本实施例提供一种光焦度可调的液晶透镜或液晶透镜阵列的驱动方法,该方法用于驱动本实施例中所述的液晶透镜或者液晶透镜阵列,所述方法包括以下步骤:
S1D:获取液晶透镜或液晶透镜阵列中液晶材料的相位与驱动电压的对应关系曲线;
其中液晶材料的相位与驱动电压的对应关系曲线是指当对液晶材料施加某一大小的电压时液晶材料对应的相位的大小所形成的曲线。该对应关系曲线即液晶材料响应曲线来表示。如图1所示,图中曲线的横坐标为所施加的电压大小,纵坐标为相应的液晶材料的相位的大小。因此也可以通过液晶材料响应曲线来获取液晶材料的相位与驱动电压的对应关系。
S2D:根据所述对应关系曲线确定驱动电压的范围;
本步骤根据前述对应关系曲线来选择液晶透镜的驱动电压的范围,使所选择的范围内的驱动电压位于对应关系曲线上即可。例如可以选择图中位于Va和Vd之间的部分作为驱动电压的范围。
S3D:根据所述对应关系曲线和驱动电压的范围在驱动电压范围内将对应关系曲线划分为与导电线的子部数量对应的段;
当所述导电线包括n个子部,所述n个子部在电极单元的预设方向上位于原点位置的同一侧时,将应关系曲线C/g(x)对应划分为n段。
当所述导电线包括2m+1个子部,所述2m+1个子部沿电极单元的预设方向对称分布在原点位置的两侧时,将应关系曲线C/g(x)对应划分为m段。
S4D:获取对应关系曲线各段起点位置对应的电压和终点位置对应的电压;
S5D:根据各段起点位置对应的电压和终点位置对应的电压驱动各个子部的第一驱动电压和第二驱动电压所满足的条件作为电压调节条件;
在本实施例中,当导电线包括n个子部,所述n个子部在电极单元的预设方向上位于原点位置的同一侧时,将C/g(x)对应划分为n段,其中第i段起点位置对应的驱动电压为Vs i,终点位置对应的驱动电压为Ve i,电压调节条件为n个子部所加载的第一驱动电压和第二驱动电压满足:
|Vw i-Vu i|≤Ve i-Vs i,并且Vw 1-Vu 1:Vw 2-Vu 2:……Vw n-Vu n=Ve 1-Vs 1:Ve 2-Vs 2:……Ve n-Vs n,其中n为大于等于2的整数,2≤i≤n。
在本实施例中,当所述导电线包括2m+1个子部,所述2m+1个子部沿电极单元的预设方向对称分布在原点位置的两侧时,将应关系曲线C/g(x)对应划分为m段。
设从原点位置朝电极单元的预设方向的第K个子部的第一驱动电压为Vu K,第二驱动电压为Vw K,将 C/g(x)对应划分为m段,其中第k段起点位置对应的驱动电压为Vs k,终点位置对应的驱动电压为Ve k,电压调节条件为从原点位置朝电极单元的预设方向的m个子部所加载的第一驱动电压和第二驱动电压满足:
|Vw i-Vu i|≤Ve i-Vs i,并且Vw 1-Vu 1:Vw 2-Vu 2:……Vw n-Vu n=Ve 1-Vs 1:Ve 2-Vs 2:……Ve n-Vs n,其中n为大于等于2的整数,2≤i≤n;
其余子部的第一驱动电压和与其对称的子部所加载的第一驱动电压相同,第二驱动电压与其对称的子部所加载的第二驱动电压相同。
S6D:调节第一电极层和第二电极层中各个子部第一驱动电压和第二驱动电压之间的差值,并使第一驱动电压和第二驱动电压满足电压调节条件。
本实施例在满足前述条件下调节各个子部的驱动电压就的差值可以调节液晶透镜的光焦度。
本实施例中的光焦度可调的液晶透镜、光焦度可调的液晶透镜阵列和驱动方法,将各个电极层中的导电线设置为由多个子部组成,利用各个子部产生随导电线位置分布的大小不同的电势,并使多根引出线分别从导电线的不同位置引出,由于引出线一端与所述导电线连接,相对的另一端悬空,因此引出线可以将导电线上引出位置的电势扩散到引出线延伸的区域。在前述结构的基础上,使在电极单元的预设方向上导电线的各个延伸线的引出位置与导电线原点位置的距离和延伸线的长度f(x)满足f(x)为由多段直线段组成的折线,f(x)的每段直线段的端点均位于g(x)上。这样即使各个子部第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应区域内,本发明也可以使液晶材料的相位准确的实现抛物线分布,通过两个电极层所产生的电势叠加使液晶材料形成精确的抛物面分布。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升光焦度可调的液晶透镜的光焦度,使液晶材料的利用率也得到了显著增加。还可以通过调节加载在各个子部上的电压来调节液晶透镜的光焦度。
实施例5
本实施例提供了一种菲涅尔液晶柱透镜,属于一种液晶光学器件,本实施例中的菲涅尔透镜包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板70;
除第一电极层20和第二电极层60外,本实施例中菲涅尔液晶柱透镜的其余结构可以采用和实施例1中的相同的结构形式。
其中第一电极层20为面电极,本实施例利用第一电极层20形成一个等电势的平面。
如图31和图32所示,在本实施例中,所述第二电极层包括多个电极单元61,所述多个电极单元61沿第一方向依次排布;
其中第一方向可以根据需要任意指定,例如需要控制液晶透镜所处空间中某一方向上各个位置的电势分布,则可以将该方向指定为第一方向。前述多个电极单元61是指第二电极层中电极单元61的数量为2个或者2个以上。
如图34和图35所示,对于其中一个电极单元61来说,主要包括第一导电线611和多根第二导电线612。
如图36和图37所示,所述第一导电线611包括第一位置6111和第二位置6112,所述第一位置6111和所述第二位置6112不同,所述第一导电线611位于第一位置6111和第二位置6112之间的部分宽度相同,所述第一位置6111用于接收第一驱动电压,所述第二位置6112用于接收第二驱动电压;
本实施例中的第一导电线611和第二导电线612包括但不限于具有一定电阻的导线、镀在透明第二基板上的具有一定电阻且可以导电的较薄的线条。为了提高透镜的效果,本实施例中的导电线都可以采用透明的导电材料制作,前述透明的导电材料包括但不限于ITO电极材料、IZO电极材料、FTO电极材料、AZO电极材料、IGZO电极材料等。
如图34和图36所示,本实施例分别在第一导电线611上的第一位置6111加载第一驱动电压,在第一导电线611上的第二位置6112加载第二驱动电压,由于第一位置6111和第二位置6112不同,因此在第一导电线611上加载第一驱动电压和第二驱动电压的位置也不相同。
当第一导电线611上的第一位置6111和第二位置6112分别加载了前述两个驱动电压后,就可以 在前述两个位置之间的第一导电线611上形成大小随第一导电线611位置分布的电势。
如图34所示,其中,所述第二导电线612的一端与所述第一导电线611连接,相对的另一端悬空,所述第一导电线611与所述第二导电线612连接的位置为引出位置6116,至少一部分所述引出位置6116位于第一导电线611的第一位置6111和第二位置6112之间,且至少两个引出位置6116不同;在第二电极层的至少一个预设区域90中,各根第二导电线612相互平行。
由于本实施例中的第二导电线612的采用了一端与所述第一导电线611连接,相对的另一端悬空的连接方式,因此同一根第二导电线612上各个位置的电势相等,且等于该第二导电线612与第一导电线611连接位置处的第一导电线611的电势。又由于在本实施例中,第一导电线611位于第一位置6111和第二位置6112之间的部分宽度相同,因此第一导电线611上各个引出位置6116的电势与该位置至第一位置6111之间的第一导电线611的长度成线性关系。
如图38所示,所述第一导电线611包括多个延伸段6113、第一连接段6114和第二连接段6115,相邻两个延伸段6113之间通过第一连接段6114或者第二连接段6115相连接,所述多个延伸段6113沿第一方向依次排列,所述延伸段6113由起始位置6117延伸至与第一连接段6114相连接的位置,所述引出位置6116设置于延伸段6113与第一连接段6114相连的位置,所述延伸段6113的起始位置6117与第二连接段6115连接。
在本实施例中,各个延伸段6113通过第一连接段6114或者第二连接段6115首尾连接在一起从而在加载第一驱动电压和第二驱动电压的情况下形成电势分布。前述多个延伸段6113沿第一方向依次排列,这样可以利用不同延伸段6113上的电势来控制菲涅尔液晶柱透镜第一方向各个位置上的电势分布。
作为一种可选但有利的实施方式,所述多个延伸段6113中的至少一个延伸段6113的起始位置6117和引出位置6116分别通过第二连接段6115和第一连接段6114与相邻的两个延伸段6113相连。采用前述结构后第二导电线612形成沿与第一方向垂直的方向来回弯折的结构,引出位置6116可以设置在弯折点处,这样可以使第一导电线611占用空间更小,也可以使引出位置6116更加准确,从而提高电势分布控制的精度。
对于任意一个电极单元61,设在第一方向上延伸段6113的引出位置6116与该第一电极单元61的第一位置6111之间的距离为x,则延伸段6113的长度为g(x),其中
Figure PCTCN2022128969-appb-000036
C为常数,
Figure PCTCN2022128969-appb-000037
表示液晶材料的相位随电压变化的变化率。
前述在第一方向上延延伸段6113的引出位置6116与第一位置6111之间的距离也可以表示为延伸段6113的起始位置6117在第一方向上的位置。
本实施例将各个电极单元61延伸段6113的长度L设置为与在第一方向上延伸段6113的起始位置6117和第一位置6111之间的距离相关联,具体可以使延伸段6113的长度L与在第一方向上延伸段6113的起始位置6117和第一位置6111之间的距离x满足一定的函数关系,为便于描述,延伸段6113的长度L与在第一方向上延伸段6113的起始位置6117和第一位置6111之间的距离x所满足的函数关系记为g(x)。为了方便理解也可以通过直角坐标系表示延伸段6113的长度L与在第一方向上延伸段6113的起始位置6117和第一位置6111之间的距离x之间的关系。我们不妨将在第一方向上延伸段6113的起始位置6117和第一位置6111之间的距离x作为直角坐标系的x轴,而将延伸段6113的长度L作为y轴来建立直角坐标系,则在该直角坐标系中满足y=g(x)。其中
Figure PCTCN2022128969-appb-000038
C为常数,
Figure PCTCN2022128969-appb-000039
表示液晶材料的相位随电压变化的变化率。
对于菲涅尔液晶柱透镜中的一个电极单元61来说,设在第一位置6111加载的第一驱动电压为V1,在第二位置6112加载的第二驱动电压为V2,那么沿着x方向相位的变化率为:
Figure PCTCN2022128969-appb-000040
即当满足
Figure PCTCN2022128969-appb-000041
时,本实施例中液晶材料的相位分布满足抛物线分布。
其中
Figure PCTCN2022128969-appb-000042
表示液晶相位随电压的变化率,反映在图1所示的响应曲线上则表示该响应曲线的斜率。从前述关系式中也可以看曲线g(x)的斜率正比于响应曲线斜率的倒数。
对于一个电极单元61来说,采用前述结构后由于每根第二导线的电势可以通过其引出位置6116进行精确的控制,而第二导线在第二液晶层中所经过的位置也可以精确控制,当g(x)满足
Figure PCTCN2022128969-appb-000043
时,就可以得到能够使使液晶材料的相位在径向方向上成抛物线分布的精确的电势分布。
由于同一个菲涅尔透镜中不同菲涅尔带的光学效果可能不同,不同设计的菲涅尔透镜中各个菲涅尔带的光学效果也可能不同,因此各个电极单元61所满足的函数关系g(x)中的常数C也不相同,由此可以根据其对应实现等同效果的菲涅尔带的抛物线形状来设置不同的常数C,使本实施例中液晶材料的相位分布满足对应的抛物线分布,这里不做限制。
如图33所示,在本实施例中,所述第二电极层中的每个电极单元61对应至少一个菲涅尔带;当所述电极单元61加载第一驱动电压和第二驱动电压后,所述电极单元61的第二导电线612所产生的电势使液晶层中的液晶形成与所述电极单元61对应的菲涅尔带等效的相位分布。
例如图33中包括了3个电极单元61,每个电极单元61对应一个菲涅尔带,图5中电极单元61下方的曲线表示电极单元61所对应的液晶材料的相位分布,其中曲线的横坐标表示液晶材料沿菲涅尔液晶柱透镜在第一方向上的位置,而曲线的纵坐标表示在该位置的液晶材料的相位。
根据菲涅尔透镜的设计和加工原理,光学成像中光学表面曲率决定成像特性,在光学透镜的设计中可以保持其表面曲率不变,但在加工的过程中减少其表面的厚度,这样设计的透镜依然能对光线起到汇聚作用,能将入射到其表面的光线聚焦到焦点处。在透镜的实际加工和应用中可以将球面透镜看作若干个非连续的分体,并将分体间的多余部分去除,但在加工的过程中保持其表面原有的曲率不变,不影响光线的偏转,前述若干个非连续的分体的功能由菲涅尔透镜上一系列的菲涅尔带来实现。本实施例也可以利用液晶透镜来实现与菲涅尔透镜等效的效果。由于传统的菲涅尔透镜由一系列的菲涅尔带组成,因此本实施例利用各个电极单元61来对应实现菲涅尔透镜中各个菲涅尔带的光学效果。所有的电极单元61实现的效果组合在一起则等同与一个菲涅尔透镜的整体光学效果。
这里与菲涅尔带等效的相位分布是指当液晶层形成前述相位分布后对光线的调制效果与对应的与对应的菲涅尔带对光线的调制效果等同。
如图33所示,本实施例利用电极单元61中的在第一方向上处于不同位置的延伸段6113的长度满足前述函数关系来使引出位置6116在第一方向上的电势成一种特定的分布,而这种电势分布使液晶材料的在径向方向上的相位分布满足抛物线分布。由于第二导电线612的上各处的电势与引出位置6116的电势相等,因此前述特点的电势分布随第二导电线612延伸到菲涅尔液晶柱透镜的功能区中,从而实现了对应的菲涅尔带的光学效果。
本实施例的第二电极层采用前述结构后只需要第一驱动电压和第二驱动电压两个驱动电压就可以实现对电极单元61所对应的菲涅尔带的各个位置电势的精确控制,因此本实施例通过简单的驱动方式就可以获得效果更好的菲涅尔透镜。
此外,由于本实施例中的菲涅尔液晶柱透镜采用了前述电极结构,因此即使第一位置6111加载的第一驱动电压V1和第二位置6112加载的第二驱动电压V2不在液晶材料的线性相应区域内,本实施例也可以使液晶材料的相位准确的实现抛物线分布。这样对液晶材料的应用就不再受到液晶材料线 性响应区间的限制,从而在提高相位分布精度的同时也大大提升了菲涅尔液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。
作为一种可选但有利的实施方式,在本实施例中相邻所述延伸段6113之间的间距小于等于100μm。采用前述结构可以进一步提高对电势分布的控制精度。
如图34和图35所示,作为一种可选但有利的实施方式,在本实施例中所述延伸段6113为与第一方向相垂直的直线。本实施例将延伸段6113设置为直线的形式,并将延伸段6113的方向设置为与第一方向相垂直的方向,这样只要将延伸段6113与第一连接段6114相连接的位置排列在与第一方向平行的同一直线上,并使延伸段6113的起始位置6117位于方程为g(x)的曲线上即可,这样可以简化第二导电线612的设计和制作。此外,为了进一步的简化第二导电线612的设计和制作,还可以使第二连接段6115为从方程为g(x)的曲线上依次截取所得到的曲线段。
作为一种可选但有利的实施方式,在本实施例中各个所述引出位置6116沿第一方向等间距排布;在第二电极层的至少一个预设区域90中,各根第二导电线612沿所述第一方向等间距设置。其中预设区域90可以是液晶柱透镜的功能区域。其中液晶透镜的功能区是指液晶透镜中可以根据需要对光线进行调制的区域。
如图32所示,所述电极单元61包括中心电极单元601和至少两个外侧电极单元602,在所述预设区域90中,所述外侧电极单元602的第二导电线612位于中心电极单元601的第二导电线612的两侧。采用前述结构后本实施例的菲涅尔透镜的菲涅尔带可以由中间向两边依次排布。
如图35和图36所示,作为一种可选但有利的实施方式,在本实施例中所述中心电极单元601的第一导电线611还包括第三位置6118,所述第一位置6111位于第三位置6118和第二位置6112之间,至少一部分所述引出位置6116位于第二位置6112和第三位置6118之间,所述中心电极单元601的第一导电线611的第三位置6118用于接收第二驱动电压。
本实施例在前述中心电极单元601的第二位置6112基础上增加了一个加载驱动电压的第三位置6118,其中中心电极单元601的第三位置6118用于加载第二驱动电压,这样可以同时在导电线的第二位置6112和第三位置6118施加第二驱动当导电线的第二位置6112和第三位置6118同时施加第二驱动电压后,在导电线的第二位置6112到第一位置6111之间以及第三位置6118到第一位置6111之间都能产生随位置变化的电势,引出线可以从第一位置6111的两侧分别引出,即引出位置6116既可以位于第二位置6112至第一位置6111之间,也可以位于第三位置6118到第一位置6111之间。采用前述结构后,可以利用第一位置6111两侧的引出线来控制第一位置6111两侧的电势分布,还可以形成两边对称的电势分布。
作为一种可选但有利的实施方式,如图36所示,对应一个电极单元61来说所述电极单元61的第二导电线612包括分别位于第一参考平面80的相对两侧的第一部分和第二部分,所述第一参考平面80为过的中心电极单元601的第一位置6111且与所述预设方向垂直的平面。
如图34和图36所示,以第一参考平面80为界将液晶透镜所处空间划分为两个区域,其中第二导电线612可以跨越两个区域,这样可以用同一根导电线控制两个区域的电势分布,从而使导电线的长度缩短一半,使液晶透镜的制作成本和能耗也显著降低。
为了节约控制,在本实施例中所述电极单元61导电线同第一部分或第二部分位于所述第一参考平面80的同一侧,这样导电线只需要占用一根区域就可以实现对两个区域的电势分布进行控制。
作为其中一种可选但有利的实施方式,在本实施例中所述导电线位于液晶柱透镜的功能区外。在现有技术中,需要将产生电势分布的元件设置在液晶透镜的功能区中才能形成影响液晶材料相位的电势。但是这种方式产生电势分布的元件会受到功能区范围的限制,难以满足电势控制的需求。而本实施例将产生电势分布的元件(导电线)和控制电势分布的元件(引出线)分离开来,并使产生电势的元件位于功能区外,让至少一部分控制电势的元件位于液晶光学器件的功能区中。这样产生电势分布的元件可以不受功能区的限制,从而可以方便地进行精确的设计,并且产生电势分布的元件和功能区可以互不影响。
作为一种可选但有利的实施方式,在本实施例中所述第二电极层和第二取向层之间或者第二电极层和第二透明基板70之间设置有高阻抗膜或者高介电常数层。本实施例通过添加高阻抗膜或者高介 电常数层方式来使相邻引出线之间的电势变得更加平滑。
作为一种可选但有利的实施方式,所述第一导电线611和所述面电极在与第二电极层平行的平面上的投影不重合。本实施例在第二电极层上与第一导电线611正对的位置使面电极空缺,这样第一导电线611就不会因为受到与面电极之间所产生的电容效应的影响,从而使液晶柱透镜的光学的效果得到进一步的提高。
本实施例中的菲涅尔液晶柱透镜利用电极单元中可以加载两个驱动电压的第一导电线产生随导电线位置分布的大小不同的电势,并使多根第二导电线分别从不导电线的不同位置引出,由于第二导电线一端与所述导电线连接,相对的另一端悬空,因此第二导电线可以将第一导电线上引出位置的电势扩散到引出线延伸的区域。又由于在第二电极层的至少一个预设区域中,各根第二导电线相互平行,因此可以形成柱透镜。在前述结构的基础上,本发明设置第一方向上延伸段的引出位置与第一位置之间的距离为x,则延伸段的长度满足函数关系g(x),这样即使第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应区域内,电极单元也可以使液晶材料的相位准确的实现抛物线分布。由于多个电极单元沿第一方向依次排布,因此这些电极单元组合在一起可以实现与完整的菲涅尔透镜等效的光学效果。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。
实施例6
本实施例提供了一种菲涅尔液晶透镜,属于一种液晶光学器件,本实施例中的菲涅尔透镜包括依次层叠设置的第一透明基板10、第一电极层20、第一取向层30、液晶层40、第二取向层50、第二电极层60、第二透明基板70;除第一电极层20和第二电极层60外,本实施例中菲涅尔液晶柱透镜的其余结构可以采用和实施例1中的相同的结构形式。
其中第一电极层20为面电极,本实施例利用第一电极层20形成一个等电势的平面。
如图39所示,在本实施例中,所述第二电极层60包括多个电极单元61,所述多个电极单元61由靠近第二电极层60中心的位置向远离第二电极层60中心的位置依次排布;
前述多个电极单元61是指第二电极层60中电极单元61的数量为2个或者2个以上。这些电极单元61大致成同心环带的形状,并且由中心向外依次排布在第二电极层60上。
如图41所示,对于其中一个电极单元61来说,主要包括第一导电线611和多根第二导电线612,所述第一导电线611包括第一位置6111和第二位置6112,所述第一位置6111和所述第二位置6112不同,所述第一导电线611位于第一位置6111和第二位置6112之间的部分宽度相同,所述第一位置6111用于接收第一驱动电压,所述第二位置6112用于接收第二驱动电压;
本实施例中的第一导电线611和第二导电线612包括但不限于具有一定电阻的导线、镀在透明第二基板上的具有一定电阻且可以导电的较薄的线条。本实施例中的第一导电线611和第二导电线612可以采用实施例5中第一导电线和第二导电线相同的材料。
如图39、图42和图43所示,本实施例分别在第一导电线611上的第一位置6111加载第一驱动电压,在第一导电线611上的第二位置6112加载第二驱动电压,由于第一位置6111和第二位置6112不同,因此在第一导电线611上加载第一驱动电压和第二驱动电压的位置也不相同。
当第一导电线611上的第一位置6111和第二位置6112分别加载了前述两个驱动电压后,就可以在前述两个位置之间的第一导电线611上形成大小随第一导电线611位置分布的电势。
如图41和图42所示,其中,所述第二导电线612的一端与所述第一导电线611连接,相对的另一端悬空,所述第二导电线612与所述第一导电线611连接的位置为引出位置6116,至少一部分所述引出位置6116位于第一导电线611的第一位置6111和第二位置6112之间,且至少两个引出位置6116不同;
由于本实施例中的第二导电线612的采用了一端与所述第一导电线611连接,相对的另一端悬空的连接方式,因此同一根第二导电线612上各个位置的电势相等,且等于该第二导电线612与第一导电线611连接位置处的第一导电线611的电势。又由于在本实施例中,第一导电线611位于第一位置6111和第二位置6112之间的部分宽度相同,因此第一导电线611上各个引出位置6116的电势与该位 置至第一位置6111之间的第一导电线611的长度成线性关系。
如图44所示,所述第一导电线611包括多个延伸段6113、第一连接段6114和第二连接段6115,相邻两个延伸段6113之间通过第一连接段6114或者第二连接段6115相连接,所述多个延伸段6113由靠近第二电极层60中心向远离第二电极层60中心的方向依次排列,所述延伸段6113由起始位置6117延伸至与第一连接段6114相连接的位置,所述引出位置6116设置于延伸段6113与第一连接段6114相连的位置,所述延伸段6113的起始位置6117与第二连接段6115连接。在本实施例中,前述多个延伸段6113沿菲涅尔透镜的径向方向排列,这样可以利用不同延伸段6113上的电势来控制菲涅尔透镜各个径向位置上的电势分布。各个延伸段6113的起始位置6117的那一端通过第一连接段6114相连接,而各个延伸段6113远离起始位置6117的那一端则通过第二连接段6115相连接,这样各个延伸段6113就可以首尾连接在一起从而在加载第一驱动电压和第二驱动电压的情况下形成电势分布。
对于其中任意一个电极单元,设延伸段的起始位置与该电极单元的第一位置之间在径向方向上的距离为x,,则延伸段6113的长度为g(x),其中
Figure PCTCN2022128969-appb-000044
C为常数,
Figure PCTCN2022128969-appb-000045
表示液晶材料的相位随电压变化的变化率。
本实施例将电极单元中延伸段6113的长度L设置为与延伸段6113的起始位置6117与该电极单元的第一位置之间在径向方向上的距离相关联,具体可以使延伸段的起始位置同该电极单元的第一位置之间在径向方向上的距离x满足一定的函数关系,为便于描述,延伸段的起始位置同该电极单元的第一位置之间在径向方向上的距离x所满足的函数关系记为g(x)。为了方便理解也可以通过直角坐标系表示延伸段6113的长度L与延伸段的起始位置同该电极单元的第一位置之间在径向方向上的距离x之间的关系。我们不妨将延伸段6113的起始位置6117与该电极单元的第一位置之间在径向方向上的距离作为直角坐标系的x轴,而将延伸段6113的长度L作为y轴来建立直角坐标系,则在该直角坐标系中满足y=g(x)。其中
Figure PCTCN2022128969-appb-000046
C为常数,
Figure PCTCN2022128969-appb-000047
表示液晶材料的相位随电压变化的变化率。
对于菲涅尔液晶透镜中的一个电极单元61来说,设在第一位置6111加载的第一驱动电压为V1,在第二位置6112加载的第二驱动电压为V2,那么沿着x方向相位的变化率为:
Figure PCTCN2022128969-appb-000048
当满足
Figure PCTCN2022128969-appb-000049
时,本实施例中液晶材料的相位分布满足抛物线分布。
其中
Figure PCTCN2022128969-appb-000050
表示液晶相位随电压的变化率,反映在图1所示的响应曲线上则表示该响应曲线的斜率。从前述关系式中也可以看曲线g(x)的斜率正比于响应曲线斜率的倒数。
对于一个电极单元61来说,采用前述结构后由于每根第二导线的电势可以通过其引出位置6116进行精确的控制,而第二导线在第二液晶层40中所经过的位置也可以精确控制,当g(x)满足
Figure PCTCN2022128969-appb-000051
时,就可以得到能够使液晶材料的相位在径向方向上成抛物线分布的精确的电势分布。
由于同一个菲涅尔透镜中不同菲涅尔环带的光学效果可能不同,不同设计的菲涅尔透镜中各个菲涅尔环带的光学效果也可能不同,因此液晶菲涅尔透镜中各个菲涅尔环带的液晶材料所满足的抛物线分布的抛物线形状不同。例如中心部分菲涅尔环带的液晶材料所满足的抛物线的宽度较宽,斜率较小,而***部分菲涅尔环带的液晶材料所满足的抛物线的宽度较载,斜率较大。
对此各个电极单元61所满足的函数关系g(x)中的常数C也不相同,例如中心部分电极单元g(x) 中的常数C较小,而***部分电极单元g(x)中的常数C较大。由此可以根据其对应实现等同效果的菲涅尔环带的抛物线形状来设置不同的常数C,使本实施例中液晶材料的相位分布满足对应的抛物线分布,这里不做限制。
如图4所示,在本实施例中,所述第二电极层60中的每个电极单元61对应至少一个菲涅尔环带;当所述电极单元61加载第一驱动电压和第二驱动电压后,所述电极单元61的第二导电线612所产生的电势使液晶层40中的液晶形成与所述电极单元61对应的菲涅尔环带等效的相位分布。
例如图40中包括了两个电极单元61,每个电极单元61对应一个菲涅尔环带,图40中电极单元61下方的曲线表示电极单元61所对应的液晶材料的相位分布,其中曲线的横坐标表示液晶材料沿菲涅尔液晶透镜径向方向的位置,曲线的纵坐标表示液晶材料的相位。
这里与菲涅尔环带等效的相位分布是指当液晶层40形成前述相位分布后对光线的调制效果与对应的与对应的菲涅尔环带对光线的调制效果等同。
如图40所示,本实施例利用电极单元61中的在径向方向上处于不同位置的延伸段6113的长度满足前述函数关系来使引出位置6116在径向方向上的电势成一种特定的分布,而这种电势分布使液晶材料的在径向方向上的相位分布满足抛物线分布。由于第二导电线612的上各处的电势与引出位置6116的电势相等,因此前述特点的电势分布随第二导电线612延伸到菲涅尔液晶透镜的各个周向位置,从而实现了对应的菲涅尔环带的光学效果。
本实施例的第二电极层60采用前述结构后只需要第一驱动电压和第二驱动电压两个驱动电压就可以实现对电极单元61所对应的菲涅尔环带的各个位置电势的精确控制,因此本实施例通过简单的驱动方式就可以获得效果更好的菲涅尔透镜。
此外,由于本实施例中的菲涅尔液晶透镜采用了前述电极结构,因此即使第一位置6111加载的第一驱动电压V1和第二位置6112加载的第二驱动电压V2不在液晶材料的线性响应区域内,本实施例也可以使液晶材料的相位准确的实现抛物线分布。这样对液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而在提高相位分布精度的同时也大大提升了菲涅尔液晶透镜的光焦度,使液晶材料的利用率也得到了显著增加。
在本实施例中,作为一种可选但有利的实施方式,所述第二导电线612为圆弧形。对于一个电极单元61来说,不同的第二导电线612从不同的引出位置6116引出,这些第二导线沿着菲涅尔液晶透镜的径向方向由内向外排布。每个第二导线都可以是一段圆弧的形状,这些圆弧可以是同心的圆弧。当第二导电线612为圆弧形时,电极单元61可以实现一个圆环形的菲涅尔环带的效果,所有电极单元61组合后可以实现圆形的菲涅尔透镜的光学效果。
作为一种可选但有利的实施方式,在本实施例中,所述第一导电线611的延伸段6113为圆弧形。第一导电线611的延伸段6113沿着菲涅尔液晶透镜的径向方向由内向外排布,每个第二导电线612都可以是一段圆弧的形状,这些圆弧可以是同心的圆弧。采用前述结构后通过可以设置圆弧的半径来设置延伸段6113的长度,因此可以简化第二电极层60的设计和制作。
作为一种可选但有利的实施方式,在本实施例中还包括电极引线组,所述电极引线组包括由靠近第二电极层60中心朝远离第二电极层60中的方向延伸的第一电极引线613和第二电极引线614,所述第一电极引线613的一端接第一驱动电压,另一端与第一导电线611的第一位置6111电连接,所述第二电极引线614的一端接第二驱动电压,另一端与第一导电线611的第二位置6112电连接,所述延伸段6113的起始位置6117和第二导电线612的悬空的一端分别位于第一电极引线613的相对的两侧。
为了方便给菲涅尔液晶透镜加载驱动电压,本实施例设置了第一电极引线613和第二电极引线614分别将第一驱动电压和第二驱动电压引入到第一导电线611的第一位置6111和第二位置6112。第一电极引线613和第二电极引线614都从内向外引出。第一电极引线613和第二电极引线614靠外的一端可以连接液晶菲涅尔透镜的电源。本实施例将延伸段6113的起始位置6117和第二导电线612的悬空的一端分别设置在第一电极引线613的相对的两侧,这样可以是第一电极线能够进入到靠近液晶菲涅尔透镜中心的位置,从而与靠近菲涅尔中心的电极单元61的第一位置6111电连接。采用前述结构后,第一电极引线613和第二电极引线614可以从各个延伸段6113的起始位置6117和各个第二 导电线612悬空端之间的空隙位置引出,以便与电源连接。
在本实施例中作为一种可选但有利的实施方式,所述电极引线组还包括第三电极引线615,所述第三电极引线615从第一导电线611的第二位置6112沿液晶透镜的径向方向延伸至与第二电极引线614相连的位置。由于第一导电线611的第二位置6112可能距离第二电极引线614较远,因此,本实施例通过设置第三电极引线615将位于第一电极引线613一侧的第二位置6112与位于第一电极引线613另一侧的第二电极引线614连接起来。
作为一种可选但有利的实施方式,相邻所述第二导电线612之间的间距小于等于100μm。在相邻所述第二导电线612之间的间距小于等于100μm的情况可以得到更加精确的电势分布。
如图39所示,前述相邻第二导电线612之间的间距是指相邻两根第二导电线612在菲涅尔液晶透镜径向方向上的间距,即图中的距离d。作为一种可选但有利的实施方式,相邻延伸段6113之间间距小于等于100μm。
作为一种可选但有利的实施方式,在本实施例中所述第二电极层60和第二取向层之间或者第二电极层60和第二透明基板之间设置有高阻抗膜或者高介电常数层。
本实施例中的菲涅尔液晶透镜利用电极单元中可以加载两个驱动电压的第一导电线产生随导电线位置分布的大小不同的电势,并使多根第二导电线分别从不导电线的不同位置引出,由于第二导电线一端与所述导电线连接,相对的另一端悬空,因此第二导电线可以将第一导电线上引出位置的电势扩散到引出线延伸的区域。在前述结构的基础上,本发明设置延伸段的起始位置与第二电极层中心的距离x和延伸段的长度满足函数光学g(x)。这样即使第一位置加载的第一驱动电压V1和第二位置加载的第二驱动电压V2不在液晶材料的线性相应响应区域内,电极单元也可以使液晶材料的相位准确的实现抛物线分布。由于多个电极单元由靠近第二电极层中心的位置向远离第二电极层中心的位置依次排布,因此这些电极单元组合在一起可以实现与完整的菲涅尔透镜等效的光学效果。采用本发明的方案后液晶材料的应用就不再受到液晶材料线性响应区间的限制,从而实现提高相位分布精度的同时也大大提升液晶柱透镜的光焦度,使液晶材料的利用率也得到了显著增加。
实施例7
本实施例提供一种电子产品,该电子产品包括控制电路和前述任一实施例中的液晶光学器件,所述控制电路与所述液晶光学器件电连接。所述电子产品包括但不限于成像装置、显示装置、移动电话、AR设备、VR设备、裸眼3D产品、可穿戴设备等。
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或***。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 液晶光学器件,其特征在于,包括依次层叠设置的第一透明基板、第一电极层、第一取向层、液晶层、第二取向层、第二电极层、第二透明基板;
    所述第一电极层和/或第二电极层中包括电极单元;
    所述电极单元包括导电线和多根引出线,所述导电线包括第一位置和第二位置,所述第一位置和所述第二位置不同,所述引出线的一端与所述导电线连接,相对的另一端悬空,所述引出线从导电线的第一位置和第二位置之间的位置引出,所述引出线与所述导电线连接的位置为引出位置;
    在第一位置和第二位置之间的导电线包括第一连接段、第二连接段和多个沿电极单元的预设方向排列的延伸线、所述延伸线由起始位置延伸至与第一连接段相连接的位置,所述引出位置设置于延伸线与第一连接段相连的位置,所述延伸线的起始位置与第二连接段连接;
    设在电极单元的预设方向上导电线的各个延伸线的引出位置与第一位置的距离为x,则延伸线的长度为g(x),其中
    Figure PCTCN2022128969-appb-100001
    C为常数,
    Figure PCTCN2022128969-appb-100002
    表示液晶材料的相位随电压变化的变化率;
    所述第一位置用于接收第一驱动电压,第二位置用于接收第二驱动电压。
  2. 根据权利要求1所述的液晶光学器件,其特征在于,所述导电线位于第一位置和第二位置之间的部分宽度相同,各个所述引出位置沿所述电极单元的预设方向等间距排布;在至少一个预设区域中,各根引出线相互平行且沿所述电极单元的预设方向等间距设置。
  3. 根据权利要求2所述的液晶光学器件,其特征在于,所述引出线包括分别位于第一参考平面的相对两侧的第一部分和第二部分,所述第一参考平面为过第一位置且与所述电极单元的预设方向垂直的平面。
  4. 根据权利要求2所述的液晶光学器件,其特征在于,所述导电线还包括第三位置,所述第一位置位于第三位置和第二位置之间,所述导电线的第三位置用于接收第二驱动电压,所述导电线位于第一位置和第二位置之间的部分宽度相同,所述引出线还从导电线的第一位置和第三位置之间的位置引出。
  5. 根据权利要求2所述的液晶光学器件,其特征在于,所述导电线位于液晶光学器件的功能区外。
  6. 根据权利要求2至5中任一项所述的液晶光学器件,其特征在于,所述第二电极层和第二取向层之间或者第二电极层和第二透明基板之间设置有高阻抗膜或者高介电常数层。
  7. 液晶透镜阵列,其特征在于,该液晶透镜阵列包括多个所述权利要求2至6中任一项所述的液晶光学器件,所述多个液晶光学器件成阵列排布。
  8. 液晶透镜阵列,其特征在于,包括权利要求2至6中任一项所述的液晶光学器件,所述液晶光学器件的引出线延伸形成多个延伸段,所述多个延伸段成阵列排布,各个延伸段的至少一部分位于所述预设区域中。
  9. 电子产品,其特征在于,包括控制电路和权利要求2至6中任一项所述的液晶光学器件或者权利要求7至8中任一项所述的液晶透镜阵列,所述控制电路与所述液晶光学器件或者液晶透镜阵列电连接。
  10. 液晶光学器件或液晶透镜阵列的制作方法,其特征在于,用于制作权利要求1至6中任一项所述的液晶光学器件或者权利要求7至8中任一项的液晶透镜阵列,所述方法包括以下步骤:
    获取液晶光学器件或液晶透镜阵列中液晶材料的相位与驱动电压的对应关系;
    根据所述对应关系确定第一驱动电压V1、第二驱动电压V2、第三驱动电压V3和第四驱动电压V4;
    根据所述第一驱动电压V1和所述第二驱动电压V2以及所述对应关系确定第一电极层中导电线上各个曲线段的形状;
    根据所述第三驱动电压V3和所述第四驱动电压V4以及所述对应关系确定第二电极层中导电线上各个曲线段的形状;
    根据第一电极层和第二电极层中导电线上各个曲线段的形状制作液晶光学器件或液晶透镜阵列。
PCT/CN2022/128969 2022-11-01 2022-11-01 液晶光学器件、液晶透镜阵列、电子产品和制作方法 WO2024092502A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202311330204.7A CN117647903A (zh) 2022-11-01 2022-11-01 光焦度可调的液晶透镜、阵列、电子产品和驱动方法
CN202311330054.XA CN117572694A (zh) 2022-11-01 2022-11-01 光焦度可调的液晶柱透镜、阵列、电子产品和驱动方法
CN202311329855.4A CN117572693A (zh) 2022-11-01 2022-11-01 液晶透镜、液晶透镜阵列、电子产品和制作方法
CN202311787942.4A CN117631383A (zh) 2022-11-01 2022-11-01 菲涅尔液晶柱透镜和电子产品
CN202280013819.4A CN117083566A (zh) 2022-11-01 2022-11-01 液晶光学器件、液晶透镜阵列、电子产品和制作方法
CN202311329846.5A CN117572692A (zh) 2022-11-01 2022-11-01 菲涅尔液晶透镜和电子产品
PCT/CN2022/128969 WO2024092502A1 (zh) 2022-11-01 2022-11-01 液晶光学器件、液晶透镜阵列、电子产品和制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128969 WO2024092502A1 (zh) 2022-11-01 2022-11-01 液晶光学器件、液晶透镜阵列、电子产品和制作方法

Publications (1)

Publication Number Publication Date
WO2024092502A1 true WO2024092502A1 (zh) 2024-05-10

Family

ID=88712050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128969 WO2024092502A1 (zh) 2022-11-01 2022-11-01 液晶光学器件、液晶透镜阵列、电子产品和制作方法

Country Status (2)

Country Link
CN (6) CN117083566A (zh)
WO (1) WO2024092502A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130235288A1 (en) * 2012-03-08 2013-09-12 Japan Display West Inc. Liquid-crystal lens, display apparatus and electronic equipment
US20150219909A1 (en) * 2014-02-03 2015-08-06 Samsung Display Co., Ltd. Three dimensional (3d) image display device and liquid crystal lens panel therefor
US20190113772A1 (en) * 2016-06-16 2019-04-18 Optica Amuka (A.A.) Ltd. Tunable Lenses for Spectacles
CN111090209A (zh) * 2019-11-13 2020-05-01 昆山龙腾光电股份有限公司 可变焦的液晶透镜、液晶透镜的驱动方法及显示装置
CN113325651A (zh) * 2021-06-10 2021-08-31 电子科技大学 一种液晶光学相控阵热透镜效应补偿装置、***及方法
CN114637155A (zh) * 2022-03-14 2022-06-17 成都耶塔科技有限责任公司 液晶透镜、眼镜、电子产品和液晶透镜驱动方法
CN114637146A (zh) * 2022-03-28 2022-06-17 成都耶塔科技有限责任公司 液晶光学器件、液晶光学器件阵列、电子产品和驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130235288A1 (en) * 2012-03-08 2013-09-12 Japan Display West Inc. Liquid-crystal lens, display apparatus and electronic equipment
US20150219909A1 (en) * 2014-02-03 2015-08-06 Samsung Display Co., Ltd. Three dimensional (3d) image display device and liquid crystal lens panel therefor
US20190113772A1 (en) * 2016-06-16 2019-04-18 Optica Amuka (A.A.) Ltd. Tunable Lenses for Spectacles
CN111090209A (zh) * 2019-11-13 2020-05-01 昆山龙腾光电股份有限公司 可变焦的液晶透镜、液晶透镜的驱动方法及显示装置
CN113325651A (zh) * 2021-06-10 2021-08-31 电子科技大学 一种液晶光学相控阵热透镜效应补偿装置、***及方法
CN114637155A (zh) * 2022-03-14 2022-06-17 成都耶塔科技有限责任公司 液晶透镜、眼镜、电子产品和液晶透镜驱动方法
CN114637146A (zh) * 2022-03-28 2022-06-17 成都耶塔科技有限责任公司 液晶光学器件、液晶光学器件阵列、电子产品和驱动方法

Also Published As

Publication number Publication date
CN117572693A (zh) 2024-02-20
CN117572692A (zh) 2024-02-20
CN117647903A (zh) 2024-03-05
CN117083566A (zh) 2023-11-17
CN117572694A (zh) 2024-02-20
CN117631383A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
KR101417742B1 (ko) 조정 가능한 전기-광학 액정 렌즈 및 이러한 렌즈를 형성시키는 방법
CN107111172B (zh) 液晶元件、偏转元件、液晶模块以及电子设备
CN114637146B (zh) 液晶光学器件、液晶光学器件阵列、电子产品和驱动方法
CN109856867A (zh) 液晶透镜及液晶眼镜
WO2024092502A1 (zh) 液晶光学器件、液晶透镜阵列、电子产品和制作方法
WO2021196998A1 (zh) 菲涅尔液晶透镜结构及显示装置
CN115586677A (zh) 菲涅尔液晶透镜、电子产品和菲涅尔液晶透镜驱动方法
CN209460544U (zh) 液晶透镜及液晶眼镜
CN220709503U (zh) 液晶透镜和电子产品
CN115586678A (zh) 液晶光学器件、液晶光学器件阵列、电子产品和驱动方法
CN113219758B (zh) 液晶透镜阵列器件、成像装置及成像方法
US20230305358A1 (en) Liquid crystal optical device, array, electronic product, and driving method thereof
CN118311808A (zh) 液晶光学器件、电子产品和驱动方法
CN117406503A (zh) 液晶菲涅尔透镜、眼镜、电子产品和驱动方法
CN117539092A (zh) 液晶菲涅尔透镜和电子产品
CN116466530A (zh) 光轴可移动的液晶柱透镜、电子产品和驱动方法
CN118192125A (zh) 液晶光学器件和电子产品
JP6514088B2 (ja) 液晶光学素子
CN118112859A (zh) 液晶透镜、电子产品、光焦度调节方法和像散调节方法
CN111913327A (zh) 电场产生基板及包含其的液晶透镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963821

Country of ref document: EP

Kind code of ref document: A1