WO2024092453A1 - 一种风噪测量方法/装置/设备及存储介质 - Google Patents

一种风噪测量方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2024092453A1
WO2024092453A1 PCT/CN2022/128763 CN2022128763W WO2024092453A1 WO 2024092453 A1 WO2024092453 A1 WO 2024092453A1 CN 2022128763 W CN2022128763 W CN 2022128763W WO 2024092453 A1 WO2024092453 A1 WO 2024092453A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
wind
signal data
terminal device
different
Prior art date
Application number
PCT/CN2022/128763
Other languages
English (en)
French (fr)
Inventor
王宾
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/128763 priority Critical patent/WO2024092453A1/zh
Publication of WO2024092453A1 publication Critical patent/WO2024092453A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a wind noise measurement method/device/equipment and a storage medium.
  • Wind noise is a very disturbing external noise when the device is collecting and playing audio. Wind noise will not only cause a serious decline in audio quality, but even make the device unable to collect or play audio normally. Therefore, it is usually necessary to measure wind noise to measure the impact of wind noise on the device audio, and then evaluate the device's ability to resist wind noise, so as to design and improve the device.
  • the related art only proposes a wind noise measurement method for the sound system microphone, which is only applicable to the sound system microphone, but not to other terminal devices.
  • the method in the related art is only for the evaluation of mono audio signals, which can only measure the impact of wind noise on mono audio signals, but cannot measure the impact of wind noise on multi-channel audio signals. Therefore, there is an urgent need for a wind noise measurement method applicable to various terminal devices and multi-channel audio signals.
  • the wind noise measurement method/device/equipment and storage medium proposed in the present disclosure can be applied to measure wind noise of audio of various terminal devices.
  • an embodiment of the present disclosure provides a wind noise measurement method, which is executed by a terminal device under test, and includes:
  • signal data under a first test environment are collected, and the signal data under the first test environment is sent to a test device, so that the test device determines the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test;
  • an audio test signal is played to the sound collection device, so that the sound collection device collects signal data under the second test environment for different wind speeds and wind directions.
  • the terminal device under test will respectively collect signal data under the first test environment, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, for different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data under the second test environment for different wind speeds and different wind directions, wherein after the sound collection device collects the signal data under the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method applicable to terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • the first test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the sound source device plays an audio test signal to the terminal device under test, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the signal data under the first test environment includes:
  • the audio test signal When the audio test signal is played and wind is applied, the audio test signal data Y1 in the noisy environment collected by the terminal device under test;
  • the audio test signal data Z1 in a quiet environment collected by the terminal device under test.
  • respectively collecting signal data under the first test environment includes:
  • signal data corresponding to each channel under the first test environment is collected respectively.
  • sending the signal data under the first test environment to the test device includes:
  • the signal data corresponding to each channel in the first test environment is sent to the test device.
  • the sound source device includes at least one of the following:
  • the audio test signal played by the sound source device to the terminal device under test is determined by the sound source device based on the audio test signal to be played obtained from other devices;
  • the audio test signal played by the sound source device to the terminal device under test is: the audio test signal to be played obtained by the sound source device from other devices;
  • the audio test signal played by the sound source device to the terminal device under test is: a signal obtained by the sound source device after boosting and compensating the audio test signal to be played obtained from other devices based on environmental noise.
  • respectively collecting signal data under the first test environment includes:
  • the signal data under the first test environment is collected respectively when the anti-noise mode is not turned on and when different anti-noise modes are turned on.
  • sending the signal data under the first test environment to the test device includes:
  • playing the audio test signal to the sound collection device includes:
  • the method further includes:
  • the audio test signal is obtained.
  • an embodiment of the present disclosure provides a wind noise measurement method, which is performed by a sound source device and includes:
  • an audio test signal is played to the terminal device under test, so that the terminal device under test collects signal data under the first test environment respectively for different wind speeds and wind directions.
  • the method further includes:
  • the sound source device includes at least one of the following:
  • playing an audio test signal to the terminal device under test includes:
  • the acquired audio test signal to be played is boosted and compensated, and the boosted and compensated signal is played to the terminal device under test;
  • the playing of the audio test signal to the terminal device under test includes:
  • the acquired audio test signal required to be played is directly played to the terminal device under test.
  • an embodiment of the present disclosure provides a wind noise measurement method, which is performed by a sound collection device and includes:
  • signal data under the second test environment are collected respectively, and the signal data under the second test environment is sent to the test equipment, so that the test equipment can determine the wind noise impact of different wind speeds and different wind directions on the audio quality of the terminal equipment under test.
  • the second test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the terminal device under test plays an audio test signal to the sound collection device, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the audio test signal is only played by the terminal device under test to the sound collection device.
  • the signal data under the second test environment includes:
  • the audio test signal data Z2 in a quiet environment collected by the sound collection device.
  • respectively collecting signal data under the second test environment includes:
  • signal data corresponding to each channel under the second test environment is collected respectively.
  • sending the signal data under the second test environment to the test device includes:
  • the signal data corresponding to each channel in the second test environment is sent to the test device.
  • respectively collecting signal data under the second test environment includes:
  • the signal data under the second test environment is collected respectively when the anti-noise mode is not turned on and when different anti-noise modes are turned on.
  • sending the signal data under the second test environment to the test device includes:
  • the signal data under the second test environment corresponding to when the anti-noise mode is not turned on and the signal data under the second test environments corresponding to different anti-noise modes are sent to the test device.
  • an embodiment of the present disclosure provides a wind noise measurement method, which is executed by a test device and includes:
  • the first test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the sound source device plays an audio test signal to the terminal device under test, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the signal data under the first test environment includes:
  • the audio test signal When the audio test signal is played and wind is applied, the audio test signal data Y1 in the noisy environment collected by the terminal device under test;
  • the audio test signal data Z1 in a quiet environment collected by the terminal device under test.
  • the second test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the terminal device under test plays an audio test signal to the sound collection device, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the audio test signal is only played by the terminal device under test to the sound collection device.
  • the signal data under the second test environment includes:
  • the audio test signal data Z2 in a quiet environment collected by the sound collection device.
  • the receiving signal data in the first test environment corresponding to different wind speeds and different wind directions sent by the tested terminal device includes:
  • the receiving signal data in the second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device includes:
  • calculating the measurement results corresponding to different wind speeds and different wind directions based on the signal data under the first test environment and/or the signal data under the second test environment includes:
  • the determining, based on the measurement result, the wind noise impact of different wind speeds and different wind directions on the audio quality of the tested terminal device includes:
  • the wind noise influence of different wind speeds and different wind directions on the audio quality of each channel of the tested terminal device is determined.
  • the receiving signal data in the first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test includes:
  • the receiving signal data in the second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device includes:
  • the calculating the measurement results corresponding to different wind speeds and different wind directions based on the signal data under the first test environment and/or the signal data under the second test environment includes:
  • the determining, based on the measurement result, the wind noise impact of different wind speeds and different wind directions on the audio quality of the tested terminal device includes:
  • the measurement result includes at least one of the following:
  • Signal quality parameters used to evaluate the communication signals of the terminal device under test.
  • the direction response of the wind noise is: an audio signal sent by the terminal device under test to the signal receiving end after the terminal device under test collects the audio signal;
  • the direction response of the wind noise is: the audio signal collected by the sound collection side after the terminal device under test plays the received audio signal.
  • the signal quality parameter includes at least one of the following:
  • determining the wind noise impact of different wind speeds and different wind directions on the audio quality of the tested terminal device includes:
  • the lowest signal quality parameter corresponding to all wind directions is used to represent the communication quality of the terminal device under test at the corresponding wind speed;
  • the maximum wind speed corresponding to all measurement results that meet the preset conditions in the measurement results corresponding to each wind direction is determined as the maximum wind speed that can be supported under each wind direction, and the minimum wind speed among the maximum wind speeds that can be supported under all wind directions is determined as the maximum wind speed that can be supported by the terminal device under test;
  • the wind speed corresponding to the minimum wind noise overload point corresponding to all wind directions is determined as the maximum wind speed that the terminal device under test can support when collecting ambient sound.
  • the method further includes:
  • the anti-noise effect of each anti-noise mode is determined based on the measurement results corresponding to when different anti-noise modes are turned on and the measurement results corresponding to when the anti-noise mode is not turned on.
  • an embodiment of the present disclosure provides a communication device, which is configured in a terminal device under test, including:
  • a transceiver module used to collect signal data under a first test environment for different wind speeds and different wind directions, and send the signal data under the first test environment to a test device, so that the test device can determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test;
  • the transceiver module is also used to play audio test signals to the sound collection device at different wind speeds and wind directions, so that the sound collection device can collect signal data in the second test environment for different wind speeds and wind directions.
  • an embodiment of the present disclosure provides a communication device, which is configured in a sound source device, including:
  • the transceiver module is used to play audio test signals to the terminal device under test at different wind speeds and wind directions, so that the terminal device under test can collect signal data under the first test environment respectively for different wind speeds and wind directions.
  • an embodiment of the present disclosure provides a communication device, which is configured in a sound collection device, including:
  • the transceiver module is used to collect signal data under the second test environment for different wind speeds and different wind directions, and send the signal data under the second test environment to the test equipment, so that the test equipment can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal equipment under test.
  • an embodiment of the present disclosure provides a communication device, which is configured in a test device, including:
  • a transceiver module used to receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by a tested terminal device, and/or signal data in a second test environment corresponding to different wind speeds and different wind directions sent by a sound collection device;
  • a processing module used to calculate measurement results corresponding to different wind speeds and different wind directions based on the signal data under the first test environment and/or the signal data under the second test environment;
  • the processing module is also used to determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the measured terminal device based on the measurement results.
  • an embodiment of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, it executes any method described in the first to fourth aspects above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes any method described in the first to fourth aspects above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute any one of the methods described in the first to fourth aspects above.
  • an embodiment of the present disclosure provides a communication system, the system comprising the communication device described in aspect 5 to the communication device described in aspect 8, or the system comprising the communication device described in aspect 9, or the system comprising the communication device described in aspect 10, or the system comprising the communication device described in aspect 11.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used for the above-mentioned network device.
  • the terminal device executes the method described in any one of the above-mentioned first to fourth aspects.
  • the present disclosure further provides a computer program product comprising a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to fourth aspects above.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, and is used to support a network device to implement the functions involved in the method described in any one of the first aspect to the fourth aspect, for example, determining or processing at least one of the data and information involved in the above method.
  • the chip system also includes a memory, and the memory is used to store computer programs and data necessary for the source auxiliary node.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • the present disclosure provides a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to fourth aspects above.
  • FIG. 1a is a schematic flow chart of a wind noise measurement method provided by another embodiment of the present disclosure.
  • FIG. 1b and 1c are schematic diagrams showing the connection relationship between various devices during wind noise measurement provided by an embodiment of the present disclosure
  • FIG2 is a flow chart of a wind noise measurement method provided by yet another embodiment of the present disclosure.
  • FIG3 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG4 is a schematic flow chart of a wind noise measurement method provided by yet another embodiment of the present disclosure.
  • FIG5 is a schematic flow chart of a wind noise measurement method provided by another embodiment of the present disclosure.
  • FIG6 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG7 is a schematic flow chart of a wind noise measurement method provided by yet another embodiment of the present disclosure.
  • FIG8 is a flow chart of a wind noise measurement method provided by yet another embodiment of the present disclosure.
  • FIG9 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG10 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG11 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG12 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG13 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG14 is a flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG15a is a schematic flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG15 b is a schematic flow chart of a wind noise measurement method provided in yet another embodiment of the present disclosure.
  • FIG16 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure.
  • FIG17 is a schematic diagram of the structure of a communication device provided by another embodiment of the present disclosure.
  • FIG18 is a schematic diagram of the structure of a communication device provided by another embodiment of the present disclosure.
  • FIG19 is a schematic diagram of the structure of a communication device provided by another embodiment of the present disclosure.
  • FIG20 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • FIG21 is a block diagram of a network-side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination".
  • the equipment When there is no external sound field, the equipment is subjected to the equivalent sound pressure caused by wind with a certain speed and direction.
  • the measurement environment of the wind noise measurement method disclosed in this disclosure should meet the following requirements:
  • test environment should be a free field
  • the noise in the test environment should not affect the test results
  • the natural wind speed in the test environment should be 0m/s
  • the size of the room used for the test should be large enough relative to the air duct and the terminal equipment under test, and should not cause additional impact on the airflow during the test.
  • FIG. 1a is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device under test. As shown in FIG. 1a , the wind noise measurement method may include the following steps:
  • Step 101 collect signal data under a first test environment for different wind speeds and different wind directions, and send the signal data under the first test environment to a test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, play an audio test signal to a sound collection device at different wind speeds and different wind directions, so that the sound collection device can collect signal data under a second test environment for different wind speeds and different wind directions.
  • the first test environment may include:
  • the sound source device plays an audio test signal to the terminal device under test, and the wind generator applies wind with wind speed and wind direction to the terminal device under test;
  • the signal data under the first test environment corresponding to the above-mentioned different wind speeds and different wind directions may include:
  • the audio test signal When the audio test signal is played and wind is applied, the audio test signal data Y1 in the noisy environment collected by the terminal device under test;
  • the audio test signal data Z1 in a quiet environment collected by the terminal device under test.
  • the signal data under the first test environment can be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the wind noise impact determined based on the signal data under the first test environment collected by the terminal device under test is mainly: when the terminal device under test acts as a signal sending end, the wind noise affects the audio signal when the terminal device under test collects the audio signal.
  • the terminal device when it acts as a signal transmitter, it usually needs to first collect audio signals and then send the collected audio signals to the signal receiving end. For example, when user A is talking to user B using his mobile phone A through user B's mobile phone B, if user A is currently speaking, mobile phone A is the signal transmitter and mobile phone B is the signal receiving end, wherein mobile phone A needs to first collect the sound emitted by user A and form an audio signal, and send the audio signal to the signal receiving end (i.e., mobile phone B) so that mobile phone B plays the corresponding audio signal to user B.
  • the signal receiving end i.e., mobile phone B
  • the scenario of "the terminal device under test collects signal data under the first test environment for different wind speeds and different wind directions” specifically simulates the scenario of collecting signals when the terminal device under test acts as a signal transmitter. Therefore, the wind noise influence determined based on the signal data collected by the terminal device under test in the first test environment should be: when the terminal device under test acts as a signal transmitter, the influence of wind noise on the terminal device under test when collecting audio signals.
  • the present disclosure does not limit the form of the above-mentioned terminal device under test, such as the terminal device under test can be head-mounted, hands-free, or handheld.
  • the above-mentioned wind generator should meet the following requirements:
  • the wind generated by the wind generator has characteristics close to natural wind and can work stably during the test;
  • the noise of the wind generator will not affect the test results, and it can work stably at the wind speed required by the test;
  • the size of the wind duct of the wind generator should be large enough compared to the size of the terminal device under test to fully cover the turbulence generated near the terminal device under test, ensuring that the test environment and the natural wind environment are as consistent as possible.
  • the wind generator can be, for example, a radial fan for a short device or an axial fan for a long device.
  • the above-mentioned sound source device may be an artificial mouth and/or a loudspeaker.
  • the artificial mouth is used to output an audio test signal simulating a human voice
  • the loudspeaker is used to output an audio test signal in a non-human voice form.
  • the sound source device is a different device, the method of playing the audio test signal to the terminal device under test will also be different.
  • the audio test signal played by the sound source device to the terminal device under test is determined by the sound source device based on the audio test signal to be played obtained from other devices; wherein, in response to the sound source device being a speaker, the audio test signal played by the sound source device to the terminal device under test is: the audio test signal to be played obtained by the sound source device from other devices; that is, when the sound source device is a speaker, after the sound source device obtains the audio test signal to be played from other devices, it will directly play the audio test signal to the terminal device under test.
  • the audio test signal played by the sound source device to the terminal device under test is: the signal obtained by the sound source device after boosting and compensating the audio test signal to be played obtained from other devices based on the environmental noise.
  • the sound source device is an artificial mouth, in order to ensure that it can accurately simulate human voice, before playing the audio test signal to the terminal device under test, it is necessary to first boost and compensate the audio test signal to be played obtained from other devices based on the environmental noise, and then play the compensated signal to the terminal device under test.
  • the sound source device may use the following formula to perform boost compensation on the audio test signal to be played obtained from other devices based on the ambient noise:
  • I is the boost compensation factor (unit: dB) of the audio test signal to be played obtained from other devices under ambient noise
  • N is the A-weighted long-term noise measured by the sound source device.
  • the terminal device under test can also play audio test signals to the sound collection device at different wind speeds and wind directions, so that the sound collection device (such as an artificial ear) can collect signal data in the second test environment for different wind speeds and wind directions, respectively, and send the signal data in the second test environment to the test device, so that the test device can determine the impact of wind noise of different wind speeds and wind directions on the audio quality of the terminal device under test.
  • the sound collection device such as an artificial ear
  • the second test environment may include:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the terminal device under test plays an audio test signal to the sound collection device, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the audio test signal is only played by the terminal device under test to the sound collection device.
  • the signal data under the second test environment may include:
  • the audio test signal data Z2 in a quiet environment is collected by the sound collection device.
  • the above-mentioned wind noise influence determined based on the signal data in the second test environment collected by the terminal device under test is mainly: when the terminal device under test serves as a signal receiving end, the influence of wind noise on the terminal device under test when it plays an audio signal.
  • the terminal device when it acts as a signal receiving end, it usually needs to first receive the audio signal sent by the signal sending end, and then play the audio signal. For example, when user A is talking to user B using his mobile phone A through user B's mobile phone B, if user B is currently speaking, then mobile phone A is the signal receiving end and mobile phone B is the signal sending end, wherein mobile phone B needs to first collect the sound emitted by user B and form an audio signal, and send the audio signal to the signal receiving end (i.e., mobile phone A) so that mobile phone A plays the corresponding audio signal to user A.
  • the signal receiving end i.e., mobile phone A
  • the scenario of "the terminal device under test plays an audio test signal to the sound collection device at different wind speeds and different wind directions, so that the sound collection device collects signal data under the second test environment respectively for different wind speeds and different wind directions” specifically simulates the scenario of playing the signal when the terminal device under test acts as a signal receiving end. Therefore, the wind noise influence determined based on the signal data under the second test environment collected by the terminal device under test should be: when the terminal device under test acts as a signal receiving end, the influence of wind noise on the terminal device under test when it plays the audio signal.
  • Figures 1b and 1c are schematic diagrams of the connection relationship between the various devices during wind noise measurement provided by the embodiment of the present disclosure.
  • the wind generator, the sound source device, and the sound collection device can all be set toward the terminal device under test, wherein the wind generator is used to apply wind of different speeds and directions to the terminal device under test, the sound source device can play an audio test signal toward the terminal device under test, and the sound collection device can collect the audio test signal played by the terminal device under test.
  • the terminal device under test can be installed on a turntable or a bracket, the reference point of the terminal device under test can be on the central axis of the turntable or the bracket, and the main axis direction of the wind generator can be aligned with the reference point of the terminal device under test, wherein the reference point of the terminal device under test can be any point of the terminal device under test, such as the center point of the terminal device under test.
  • the turntable or bracket can be rotated as needed to adjust the angle between the terminal device under test and the wind generator, sound source device, and sound collection device.
  • the horizontal angle and vertical angle between the terminal device under test and the wind generator, sound source device, and sound collection device can be adjusted.
  • the wind direction during the test can be adjusted by adjusting the angle between the terminal device under test and the wind generator.
  • the terminal device under test can be connected to the test device to output signal data in a first test environment to the test device, and the sound collection device can also be connected to the test device to output signal data in a second test environment to the test device.
  • the above Figure 1b simulates the scenario of "direct audio signal interaction between the terminal device under test and other devices”
  • the above Figure 1c simulates the scenario of "the terminal device under test interacts with other devices as an external device for audio signal interaction, or the terminal device under test interacts with other devices for audio signal interaction through a communication system" (i.e., the scenario where the terminal device under test does not directly interact with other devices for audio signals).
  • the measurement environment when measuring wind noise, should be as close as possible to the condition of the device in the real environment, such as the acoustic condition and wind noise condition in the real environment. Also, since the essence of wind noise is pressure fluctuation, when the wind generator applies wind to the terminal device under test during the measurement process, care should be taken to avoid damaging the terminal device under test due to reaching the overload point, thereby affecting the subsequent measurement process.
  • the terminal device under test will respectively collect signal data in the first test environment, and send the signal data in the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, at different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data in the second test environment for different wind speeds and different wind directions, wherein, after the sound collection device collects the signal data in the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG2 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device under test. As shown in FIG2 , the wind noise measurement method may include the following steps:
  • Step 201 In response to the audio test signal played by the sound source device to the terminal device under test including multiple channels, signal data corresponding to each channel under a first test environment is collected respectively.
  • Step 202 Send signal data corresponding to each channel in a first test environment to a test device.
  • the terminal device under test sends signal data corresponding to each channel under a first test environment to the test device, so that the test device determines the wind noise impact of winds of different wind speeds and directions on the audio quality of each channel of the terminal device under test based on the signal data corresponding to each channel under the first test environment.
  • the wind noise measurement method in the present disclosure can also be used to measure the wind noise impact of winds of different wind speeds and different wind directions on the multi-channel audio test signal of the terminal device under test, so it has a wide range of applicability.
  • the terminal device under test will respectively collect signal data under the first test environment, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, at different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data under the second test environment for different wind speeds and different wind directions, respectively, wherein, after the sound collection device collects the signal data under the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • the method of the present disclosure is also suitable for wind noise measurement for multi-channel audio signals, so its applicability is relatively wide.
  • FIG3 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device under test. As shown in FIG3 , the wind noise measurement method may include the following steps:
  • Step 301 In a non-noise-resistant mode and in different noise-resistant modes, signal data under a first test environment are collected for different wind speeds and different wind directions.
  • the anti-noise mode may include a hardware anti-noise mode and/or a software anti-noise mode.
  • the hardware anti-noise mode may include: providing the terminal device under test with hardware for wind protection (such as a windshield); the software anti-noise mode may include: enabling the software for wind noise protection (such as a noise reduction algorithm) of the terminal device under test.
  • Step 302 Send signal data under the first test environment corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on to the test device, as well as signal data under the first test environment corresponding to different wind speeds and different wind directions under different anti-noise modes.
  • the terminal device under test sends signal data under a first test environment corresponding to when the anti-noise mode is not turned on, and signal data under the first test environments corresponding to different anti-noise modes to the test device, so that the test device can determine the wind noise impact of winds of different wind speeds and directions on the audio quality of the terminal device under test when the anti-noise mode is not turned on, and determine the wind noise impact of winds of different wind speeds and directions on the audio quality of the terminal device under test when different anti-noise modes are turned on, and then compare the wind noise impact of winds of different wind speeds and directions on the audio quality of the terminal device under test when different anti-noise modes are turned on with the wind noise impact of winds of different wind speeds and directions on the audio quality of the terminal device under test when the anti-noise mode is not turned on, so as to determine the anti-noise effect of each anti-noise mode, that is, determine the anti-noise effect of each anti-noise mode when the terminal device
  • the terminal device under test will respectively collect signal data in the first test environment, and send the signal data in the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, at different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data in the second test environment for different wind speeds and different wind directions, wherein, after the sound collection device collects the signal data in the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG4 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device under test. As shown in FIG4 , the wind noise measurement method may include the following steps:
  • Step 401 When the anti-noise mode is not turned on, and when different anti-noise modes are turned on, audio test signals are played to the sound collection device at different wind speeds and different wind directions.
  • the terminal device under test plays audio test signals to the sound collection device respectively when the anti-noise mode is not turned on and when different anti-noise modes are turned on, at different wind speeds and different wind directions, so that the sound collection device can collect signal data under the second test environment respectively for different wind speeds and different wind directions when the anti-noise mode is not turned on and when different anti-noise modes are turned on, and sends the signal data under the second test environment corresponding to when the anti-noise mode is not turned on and the signal data under the second test environment corresponding to different anti-noise modes to the test device, so that the test device can determine the anti-noise effect of each anti-noise mode based on the comparison difference between the signal data under the second test environment corresponding to when different anti-noise modes are turned on and the signal data under the second test environment corresponding to when the anti-noise mode is not turned on.
  • the terminal device under test will respectively collect signal data in the first test environment, and send the signal data in the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, at different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data in the second test environment for different wind speeds and different wind directions, wherein, after the sound collection device collects the signal data in the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG5 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device under test. As shown in FIG5 , the wind noise measurement method may include the following steps:
  • Step 501 Acquire an audio test signal.
  • the terminal device under test usually needs to first obtain the audio test signal to be played from other devices, so that the terminal device under test can subsequently play the audio test signal to the sound collection device for subsequent processes.
  • the terminal device under test will respectively collect signal data in the first test environment, and send the signal data in the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, at different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data in the second test environment for different wind speeds and different wind directions, wherein, after the sound collection device collects the signal data in the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG6 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a sound source device. As shown in FIG6 , the wind noise measurement method may include the following steps:
  • Step 601 Play an audio test signal to the terminal device under test at different wind speeds and wind directions, so that the terminal device under test collects signal data under a first test environment for different wind speeds and wind directions.
  • step 601 For a detailed description of step 601, please refer to the above embodiment description.
  • the sound source device will play an audio test signal to the terminal device under test, so that the terminal device under test will collect signal data under the first test environment for different wind speeds and different wind directions, respectively, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test;
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG7 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a sound source device. As shown in FIG7 , the wind noise measurement method may include the following steps:
  • Step 701 Obtain the audio test signal to be played.
  • the sound source device usually needs to first obtain the audio test signal to be played from other devices, so that the sound source device can subsequently play the audio test signal to the terminal device under test for subsequent processes.
  • the sound source device will play an audio test signal to the terminal device under test, so that the terminal device under test will collect signal data under the first test environment for different wind speeds and different wind directions, respectively, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test;
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG8 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is executed by a sound source device. As shown in FIG8 , the wind noise measurement method may include the following steps:
  • Step 801 In response to the sound source device being an artificial mouth, the acquired audio test signal to be played is boosted and compensated based on the environmental noise, and the boosted and compensated signal is played to the terminal device under test.
  • step 801 For a detailed description of step 801, please refer to the above embodiment description.
  • the sound source device will play an audio test signal to the terminal device under test, so that the terminal device under test can collect signal data under the first test environment for different wind speeds and different wind directions, respectively, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG9 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a sound source device. As shown in FIG9 , the wind noise measurement method may include the following steps:
  • Step 901 In response to the sound source device being a loudspeaker, directly play the acquired audio test signal required to be played to the terminal device under test.
  • step 901 For a detailed description of step 901, please refer to the above embodiment description.
  • the sound source device will play an audio test signal to the terminal device under test, so that the terminal device under test can collect signal data under the first test environment for different wind speeds and wind directions, respectively, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and wind directions on the audio quality of the terminal device under test;
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG10 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a sound collection device. As shown in FIG10 , the wind noise measurement method may include the following steps:
  • Step 1001 For different wind speeds and different wind directions, signal data under a second test environment are collected respectively, and the signal data under the second test environment is sent to a test device, so that the test device can determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • step 1001 For a detailed description of step 1001 , please refer to the above embodiment description.
  • the sound collection device will respectively collect signal data under the second test environment, and send the signal data under the second test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG11 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a sound collection device. As shown in FIG11 , the wind noise measurement method may include the following steps:
  • Step 1101 In response to the audio test signal including multiple channels played by the terminal device under test to the sound collection device, signal data corresponding to each channel in a second test environment is collected for different wind speeds and different wind directions.
  • Step 1102 Send signal data corresponding to each channel in the second test environment at different wind speeds and different wind directions to the test equipment.
  • the sound collection device sends the signal data corresponding to each channel in the second test environment to the test device, so that the test device determines the wind noise impact of winds of different wind speeds and different wind directions on the multi-channel audio quality of the terminal device under test based on the signal data corresponding to each channel in the second test environment. Therefore, the wind noise measurement method in the present disclosure can also be applied to wind noise measurement for multi-channel audio signals, and its applicability is relatively wide.
  • the sound collection device will respectively collect signal data under the second test environment, and send the signal data under the second test environment to the test device, so that the test device can determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test; it can be seen that the present disclosure provides a wind noise measurement method applicable to terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • the method of the present disclosure is also applicable to wind noise measurement for multi-channel audio signals, so its applicability is relatively wide.
  • FIG12 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a sound collection device. As shown in FIG12 , the wind noise measurement method may include the following steps:
  • Step 1201 When the anti-noise mode is not turned on and when different anti-noise modes are turned on, signal data under the second test environment is collected for different wind speeds and different wind directions.
  • Step 1202 Send signal data in the second test environment corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on to the test device, as well as signal data in the second test environment corresponding to different wind speeds and different wind directions in different anti-noise modes.
  • the sound collection device sends signal data under the second test environment corresponding to when the anti-noise mode is not turned on, and signal data under the second test environment corresponding to different anti-noise modes to the test device, so that the test device can determine the anti-noise effect of each anti-noise mode based on the signal data under the second test environment corresponding to when different anti-noise modes are turned on and the signal data under the second test environment corresponding to when the anti-noise mode is not turned on, that is, determine the anti-noise effect of each anti-noise mode when the terminal device under test plays an audio signal.
  • the sound collection device will respectively collect signal data under the second test environment, and send the signal data under the second test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG13 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a test device. As shown in FIG13 , the wind noise measurement method may include the following steps:
  • Step 1301 Receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by a tested terminal device, and/or receive signal data in a second test environment corresponding to different wind speeds and different wind directions sent by a sound collection device.
  • step 1301 For a detailed description of step 1301 , please refer to the above embodiment.
  • Step 1302 Calculate measurement results corresponding to different wind speeds and different wind directions based on the signal data in the first test environment and/or the signal data in the second test environment.
  • the measurement result may include at least one of the following:
  • Signal quality parameters used to evaluate the communication signals of the terminal device under test.
  • the above-mentioned "directional response of wind noise” is mainly used to evaluate the wind noise characteristics of the device under different wind directions and wind speeds.
  • the directional response of wind noise can be: the audio signal sent by the terminal device under test to the signal receiving end after collecting the audio signal;
  • the direction response of the wind noise may be: the audio signal collected by the sound collection side after the terminal device under test plays the received audio signal.
  • the sound collection side may be a human ear or a device for collecting sound.
  • wind noise overload point is mainly the maximum wind speed in different directions at which the device can work normally for a long time (work in the linear region). Among them, when the signal clips or reaches the peak signal, it can be considered that the wind noise overload point has been reached.
  • wind noise distortion rate is used to indicate the proportion of distorted signals and evaluate the degree of wind noise distortion. Since the influence of wind noise is unstable, the distortion caused by wind noise will appear intermittently. The higher the wind speed, the more frequent the distortion will appear. Based on this, the wind noise distortion rate is calculated in the present disclosure to evaluate the degree of wind noise distortion.
  • signal quality parameter may include at least one of the following:
  • SNR Signal-to-Noise ratio
  • SDR Signal-to-Distortion Ratio
  • SAR Source-to-artifact ratio
  • STOI Short-Time Objective Intelligibility
  • the present disclosure does not specifically limit the specific calculation method of "calculating the measurement results corresponding to different wind speeds and different wind directions based on the signal data under the first test environment and/or the signal data under the second test environment", and any calculation method for obtaining the above measurement results is within the protection scope of the present disclosure.
  • Step 1303 Determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test based on the measurement results.
  • the method for determining the wind noise impact of different wind speeds and different wind directions on the audio quality of the terminal device under test based on the measurement results may include any one or more of the following:
  • the first method for different wind speeds, the lowest signal quality parameter corresponding to all wind directions is used to represent the communication quality of the terminal device under test at the corresponding wind speed.
  • the SNR value in the measurement result corresponding to wind direction two can be used to represent the SNR communication quality of the terminal device under test at the corresponding wind speed.
  • the second method determine the maximum wind speed corresponding to all measurement results that meet the preset conditions in the measurement results corresponding to each wind direction as the maximum wind speed supportable under each wind direction, and determine the minimum wind speed among the maximum wind speed supportable under all wind directions as the maximum wind speed supportable by the terminal device under test.
  • the preset condition may be flexibly set according to different stages of the test and different requirements.
  • the preset condition may be that the wind noise distortion rate is lower than a specific value.
  • the measurement results that meet the preset conditions for wind direction 1 are: the measurement results corresponding to wind speed 1m/s, and the measurement results corresponding to wind speed 3m/s.
  • the maximum wind speed that can be supported by wind direction 1 is: 3m/s; similarly, suppose that the maximum wind speed that can be supported by wind direction 2 is: 4m/s, and the maximum wind speed that can be supported by wind direction 3 is: 2m/s.
  • the minimum wind speed among the maximum wind speeds that can be supported under all wind directions i.e. wind directions 1 to 3) is 2m/s, so it can be determined that the maximum wind speed that can be supported by the terminal device under test is 2m/s.
  • the third method determine the wind speed corresponding to the minimum wind noise overload point corresponding to all wind directions as the maximum wind speed that the terminal device under test can support when collecting ambient sound.
  • the measurement equipment calculates that the wind direction 1 is when the wind speed is 3m/s, and the wind noise overload point corresponding to wind direction 1 is: the first value; the wind direction 2 is when the wind speed is 5m/s, and the wind noise overload point corresponding to wind direction 2 is: the second value; the wind direction 3 is when the wind speed is 4m/s, and the wind noise overload point corresponding to wind direction 3 is: the third value.
  • the first value is less than the third value and less than the second value, it can be determined that the wind noise overload point corresponding to wind direction 1 is the smallest wind noise overload point corresponding to all wind directions.
  • the wind speed corresponding to the wind noise overload point corresponding to wind direction 1 can be determined as the maximum wind speed that the terminal device under test can support when collecting ambient sound, that is, the maximum wind speed that the terminal device under test can support when collecting ambient sound is 3m/s.
  • the maximum wind speed that the tested terminal device can support when collecting ambient sound means: when the tested terminal device collects ambient sound at a wind speed less than or equal to the maximum wind speed that can be supported, it can be guaranteed that no distortion will occur. Based on this, the wind speed and wind direction scenario applicable to the normal operation of the tested terminal device can be determined based on the maximum wind speed that can be supported.
  • the measuring device will receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test, and/or signal data in a second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device; then, the measurement results corresponding to different wind speeds and different wind directions will be calculated based on the signal data in the first test environment and/or the signal data in the second test environment; and the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test will be determined based on the measurement results; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG14 is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a test device. As shown in FIG14 , the wind noise measurement method may include the following steps:
  • Step 1401 receiving signal data corresponding to each channel in a first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test, and/or receiving signal data corresponding to each channel in a second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device.
  • Step 1402 Calculate measurement results of each channel corresponding to different wind speeds and different wind directions based on the signal data corresponding to each channel under the first test environment and/or the signal data corresponding to each channel under the second test environment.
  • Step 1403 determine the wind noise impact of different wind speeds and different wind directions on the audio quality of each channel of the terminal device under test based on the measurement results of each channel corresponding to different wind speeds and different wind directions.
  • steps 1401 - 1403 please refer to the above embodiment description.
  • the measuring device will receive the signal data in the first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test, and/or the signal data in the second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device; then, the measurement results corresponding to different wind speeds and different wind directions will be calculated based on the signal data in the first test environment and/or the signal data in the second test environment; and the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test will also be determined based on the measurement results; it can be seen that the present disclosure provides a wind noise measurement method applicable to terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices. In addition, the method of the present disclosure is also applicable to wind noise measurement for multi-channel audio signals, so it has a wide range of applicability.
  • FIG15a is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a test device. As shown in FIG15a , the wind noise measurement method may include the following steps:
  • Step 1501a receiving signal data in a first test environment corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on, and signal data in the first test environment corresponding to different wind speeds and different wind directions under different anti-noise modes, and/or receiving signal data in a second test environment corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on, and signal data in the second test environment corresponding to different wind speeds and different wind directions under different anti-noise modes.
  • Step 1502a calculating the measurement results corresponding to different wind speeds and different wind directions under different anti-noise modes based on the signal data in the first test environment corresponding to different wind speeds and different wind directions under different anti-noise modes and/or the signal data in the second test environment, and calculating the measurement results corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on based on the signal data in the first test environment corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on and/or the signal data in the second test environment.
  • Step 1503a based on the measurement results corresponding to different wind speeds and different wind directions in different anti-noise modes, determine the wind noise impact of different wind speeds and different wind directions in different anti-noise modes on the audio quality of the terminal device under test; based on the measurement results corresponding to different wind speeds and different wind directions when the anti-noise mode is not turned on, determine the wind noise impact of different wind speeds and different wind directions on the audio quality of the terminal device under test when the anti-noise mode is not turned on.
  • steps 1501a-1503a For a detailed description of steps 1501a-1503a, please refer to the above embodiment description.
  • the measuring device will receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test, and/or signal data in a second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device; then, the measurement results corresponding to different wind speeds and different wind directions will be calculated based on the signal data in the first test environment and/or the signal data in the second test environment; and the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test will be determined based on the measurement results; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • FIG. 15b is a flow chart of a wind noise measurement method provided by an embodiment of the present disclosure. The method is performed by a test device. As shown in FIG. 15b , the wind noise measurement method may include the following steps:
  • the anti-noise effect of different anti-noise modes can be determined by subtracting the corresponding measurement results when the anti-noise mode is not turned on under the same conditions from the corresponding measurement results when the anti-noise mode is turned on.
  • the size of the difference obtained by subtraction can be used to evaluate the anti-noise effect of each anti-noise mode.
  • the measurement result of the SNR calculated is: SNR A
  • the wind speed is 3 m/s
  • the wind direction is one
  • the anti-noise mode is not turned on
  • the measurement result of the SNR calculated is: SNR B
  • the SNR obtained by subtraction can be used to evaluate the anti-noise effect of the hardware anti-noise mode, where, if the SNR obtained by subtraction is a positive number, the larger the SNR obtained by subtraction, the better the anti-noise improvement of the hardware anti-noise mode, and if the SNR obtained by subtraction is a negative number or 0, it means that the anti-noise improvement of the hardware anti-noise mode is poor.
  • the measuring device will receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test, and/or signal data in a second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device; then, the measurement results corresponding to different wind speeds and different wind directions will be calculated based on the signal data in the first test environment and/or the signal data in the second test environment; and the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test will be determined based on the measurement results; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • Equivalent sound pressure of wind the equivalent sound pressure caused by wind of specified speed and direction to the microphone when there is no external sound field (hereinafter referred to as wind noise).
  • the equivalent sound pressure should be a function of wind direction ⁇ , frequency f, wind speed v, caused by the vortex of the system and turbulence in the air.
  • test environment should be a free field.
  • the noise in the test environment should not affect the test results.
  • the equivalent continuous sound pressure of 1/3 octave should be less than the NR10 curve.
  • the wind speed in the test environment should be 0m/s
  • Room size The room size is large enough relative to the air duct and test equipment. It does not cause additional impact on the test airflow.
  • the wind generator should be a device with characteristics close to those of natural wind and be able to work stably during the test.
  • the noise of the equipment should not affect the test results, and it can work stably at the wind speed required by the test.
  • the size of the air duct is large enough compared to the size of the device under test, and is large enough to completely cover the turbulence generated near the device under test, so that the test environment and the natural wind environment are as consistent as possible.
  • the radial fan for short devices or the axial fan for long devices recommended in GB 12060.4-2012 IEC 60268-4.
  • the device under test be installed on a turntable to facilitate adjustment of the wind direction of the test.
  • the angles of the wind generator and the device under test can also be adjusted according to actual conditions.
  • the equipment is installed at the position corresponding to the artificial head according to the actual use situation, which is used to simulate the acoustic environment and wind noise in actual use.
  • test position corresponding to the standard artificial mouth instead of the artificial mouth to play the test signal
  • a standard coaxial test speaker is used to play the test signal instead of the artificial mouth at the corresponding test position.
  • the present invention is applicable to the following devices or modes including but not limited to:
  • the device In order to simulate the situation of the device in the real environment, the device must be tested under the conditions of simulating the real scene, including the influence of the human body, external components, and brackets.
  • the reference point of the device under test should be selected according to the actual use situation.
  • the present invention is applicable to the test of the audio frequency of the device under test
  • the device is installed at the corresponding position of the artificial head or the bracket, and the terminal device, artificial head and bracket are regarded as the device under test. It is used to simulate the impact of the human body or other objects on the terminal device in real situations.
  • the artificial mouth should be calibrated at the MRP according to relevant standards such as [ITU-T P.340].
  • the parameters of equalization and loudness can be found in [ITU-T P.581].
  • test signal Since wind noise related tests are performed in a noisy environment, the test signal needs to be compensated for the environmental noise according to the Lombard effect.
  • the device under test should be installed on a turntable, with the device reference point on the vertical line of the center of the turntable, and the main axis of the wind generator aligned with the center of the device under test.
  • the horizontal angle between the wind generator and the device is The vertical angle is ⁇ .
  • the artificial mouth plays the test signal of the corresponding loudness, and records the noisy signal data Y collected by the device under test under stable conditions
  • the device under test should be installed on a turntable, with the device reference point on the vertical line of the center of the turntable, and the main axis of the wind generator aligned with the center of the device.
  • the horizontal angle between the wind generator and the device is The vertical angle is ⁇ .
  • the device under test plays the test signal in the corresponding mode, and the artificial ear records the test signal in the noisy environment as Y
  • test results should include the following data:
  • the directional response of wind noise is the output signal of the device under test under different wind directions and wind speeds. It is a function of the device's output with respect to wind direction ⁇ , wind speed v, and frequency f.
  • the wind noise overload point should be the maximum wind speed in different directions at which the equipment can work normally for a long time (work in the linear area).
  • the wind noise overload point is considered reached when the signal clips or reaches a peak signal.
  • the present invention proposes to use the ratio of distorted signals in the calculated signal as a parameter for evaluating the degree of wind noise distortion.
  • the relevant parameters of signal quality should be calculated under different wind directions ⁇ and wind speeds v.
  • test signal in a quiet environment is Z
  • test signal in a noisy environment is Y
  • the calculation should be performed for each channel of the output.
  • the multi-channel signal obtained by this test method can also be converted into a mono signal according to related methods, which is convenient for evaluating related parameters.
  • the test should include different modes that the terminal needs to test, including hardware settings (with or without windshield), software settings (related noise reduction algorithm). Tests in different modes are conducted separately.
  • the parameter with the lowest signal quality in all directions at the corresponding wind speed should be selected as the conclusion.
  • the maximum wind speed that meets the conditions at all angles and all channels should be selected as the conclusion.
  • the judgment criteria should refer to relevant standards and be formulated according to the actual conditions of different stages and functions of the device.
  • the present invention proposes a method for measuring the impact of wind on the audio service quality of terminal equipment. It is used to measure the impact of wind on the equipment in different directions and at different wind speeds, so as to obtain the signal quality of the equipment at different wind speeds and the wind speed scenarios that the equipment can support, and uses multi-channel and mono-channel equipment, as well as a method for evaluating the relevant noise reduction effect.
  • FIG. 16 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 16 , the device may include:
  • a transceiver module used to collect signal data under a first test environment for different wind speeds and different wind directions, and send the signal data under the first test environment to a test device, so that the test device can determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test;
  • the transceiver module is also used to play audio test signals to the sound collection device at different wind speeds and wind directions, so that the sound collection device can collect signal data in the second test environment for different wind speeds and wind directions.
  • the terminal device under test will respectively collect signal data under the first test environment, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; or, at different wind speeds and different wind directions, the terminal device under test will play an audio test signal to the sound collection device, so that the sound collection device can collect signal data under the second test environment for different wind speeds and different wind directions, wherein, after the sound collection device collects the signal data under the second test environment, it will be sent to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test.
  • the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • the first test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the sound source device plays an audio test signal to the terminal device under test, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the signal data under the first test environment includes:
  • the audio test signal When the audio test signal is played and wind is applied, the audio test signal data Y1 in the noisy environment collected by the terminal device under test;
  • the audio test signal data Z1 in a quiet environment collected by the terminal device under test.
  • the transceiver module is further used for:
  • signal data corresponding to each channel under the first test environment is collected respectively.
  • the transceiver module is further used for:
  • the signal data corresponding to each channel in the first test environment is sent to the test device.
  • the sound source device includes at least one of the following:
  • the audio test signal played by the sound source device to the terminal device under test is determined by the sound source device based on the audio test signal to be played obtained from other devices;
  • the audio test signal played by the sound source device to the terminal device under test is: the audio test signal to be played obtained by the sound source device from other devices;
  • the audio test signal played by the sound source device to the terminal device under test is: a signal obtained by the sound source device after boosting and compensating the audio test signal to be played obtained from other devices based on environmental noise.
  • the transceiver module is further used for:
  • the signal data under the first test environment is collected respectively when the anti-noise mode is not turned on and when different anti-noise modes are turned on.
  • the transceiver module is further used for:
  • the transceiver module is further used for:
  • the device is further used for:
  • the audio test signal is obtained.
  • FIG. 17 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 17 , the device may include:
  • the transceiver module is used to play audio test signals to the terminal device under test at different wind speeds and wind directions, so that the terminal device under test can collect signal data under the first test environment respectively for different wind speeds and wind directions.
  • the sound source device will play an audio test signal to the terminal device under test, so that the terminal device under test can collect signal data under the first test environment for different wind speeds and different wind directions, respectively, and send the signal data under the first test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • the device is further used for:
  • the sound source device includes at least one of the following:
  • the transceiver module in response to the sound source device being an artificial mouth, is further configured to:
  • the acquired audio test signal to be played is boosted and compensated, and the boosted and compensated signal is played to the terminal device under test;
  • the transceiver module is further used for:
  • the acquired audio test signal required to be played is directly played to the terminal device under test.
  • FIG. 18 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 18 , the device may include:
  • the transceiver module is used to collect signal data under the second test environment for different wind speeds and different wind directions, and send the signal data under the second test environment to the test equipment, so that the test equipment can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal equipment under test.
  • the sound collection device will respectively collect signal data under the second test environment, and send the signal data under the second test environment to the test device, so that the test device can determine the wind noise impact of winds with different wind speeds and different wind directions on the audio quality of the terminal device under test; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the impact of wind noise on various types of terminal devices.
  • the second test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the terminal device under test plays an audio test signal to the sound collection device, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the audio test signal is only played by the terminal device under test to the sound collection device.
  • the signal data under the second test environment includes:
  • the audio test signal data Z2 in a quiet environment collected by the sound collection device.
  • the transceiver module is further used for:
  • signal data corresponding to each channel under the second test environment is collected respectively.
  • the transceiver module is further used for:
  • the signal data corresponding to each channel in the second test environment is sent to the test device.
  • the transceiver module is further used for:
  • the signal data under the second test environment is collected respectively when the anti-noise mode is not turned on and when different anti-noise modes are turned on.
  • the transceiver module is further used for:
  • the signal data under the second test environment corresponding to when the anti-noise mode is not turned on and the signal data under the second test environments corresponding to different anti-noise modes are sent to the test device.
  • FIG. 19 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 19 , the device may include:
  • a transceiver module used to receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by a tested terminal device, and/or signal data in a second test environment corresponding to different wind speeds and different wind directions sent by a sound collection device;
  • a processing module used to calculate measurement results corresponding to different wind speeds and different wind directions based on the signal data under the first test environment and/or the signal data under the second test environment;
  • the processing module is further used to determine the wind noise impact of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test based on the measurement results.
  • the measuring device will receive signal data in a first test environment corresponding to different wind speeds and different wind directions sent by the terminal device under test, and/or signal data in a second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device; thereafter, the measurement results corresponding to different wind speeds and different wind directions will be calculated based on the signal data in the first test environment and/or the signal data in the second test environment; and the wind noise influence of winds of different wind speeds and different wind directions on the audio quality of the terminal device under test will also be determined based on the measurement results; it can be seen that the present disclosure provides a wind noise measurement method suitable for terminal devices, which can be used to measure the influence of wind noise on various types of terminal devices.
  • the first test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the sound source device plays an audio test signal to the terminal device under test, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the signal data under the first test environment includes:
  • the audio test signal When the audio test signal is played and wind is applied, the audio test signal data Y1 in the noisy environment collected by the terminal device under test;
  • the audio test signal data Z1 in a quiet environment collected by the terminal device under test.
  • the second test environment includes:
  • the wind generator alone applies wind of the wind speed and the wind direction to the terminal device under test;
  • the terminal device under test plays an audio test signal to the sound collection device, and the wind generator applies wind of the wind speed and the wind direction to the terminal device under test;
  • the audio test signal is only played by the terminal device under test to the sound collection device.
  • the signal data under the second test environment includes:
  • the audio test signal data Z2 in a quiet environment collected by the sound collection device.
  • the transceiver module is further used for:
  • the receiving signal data in the second test environment corresponding to different wind speeds and different wind directions sent by the sound collection device includes:
  • the processing module is further configured to:
  • the processing module is also used for:
  • the wind noise influence of different wind speeds and different wind directions on the audio quality of each channel of the tested terminal device is determined.
  • the transceiver module is further used for:
  • the transceiver module is also used for:
  • the processing module is further configured to:
  • the processing module is also used for:
  • the measurement result includes at least one of the following:
  • Signal quality parameters used to evaluate the communication signals of the terminal device under test.
  • the direction response of the wind noise is: an audio signal sent by the terminal device under test to the signal receiving end after collecting the audio signal;
  • the direction response of the wind noise is: the audio signal collected by the sound collection side after the terminal device under test plays the received audio signal.
  • the signal quality parameter includes at least one of the following:
  • the processing module is further configured to:
  • the lowest signal quality parameter corresponding to all wind directions is used to represent the communication quality of the terminal device under test at the corresponding wind speed;
  • the maximum wind speed corresponding to all the measurement results that meet the preset conditions in the measurement results corresponding to each wind direction is determined as the maximum wind speed that can be supported under each wind direction, and the minimum wind speed among the maximum wind speeds that can be supported under all wind directions is determined as the maximum wind speed that can be supported by the terminal device under test;
  • the wind speed corresponding to the minimum wind noise overload point corresponding to all wind directions is determined as the maximum wind speed that the terminal device under test can support when collecting ambient sound.
  • the device is further used for:
  • the anti-noise effect of each anti-noise mode is determined based on the measurement results corresponding to when different anti-noise modes are turned on and the measurement results corresponding to when the anti-noise mode is not turned on.
  • FIG 20 is a schematic diagram of the structure of a communication device 2000 provided in an embodiment of the present application.
  • the communication device 2000 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 2000 may include one or more processors 2001.
  • the processor 2001 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 2000 may further include one or more memories 2002, on which a computer program 2004 may be stored, and the processor 2001 executes the computer program 2004 so that the communication device 2000 performs the method described in the above method embodiment.
  • data may also be stored in the memory 2002.
  • the communication device 2000 and the memory 2002 may be provided separately or integrated together.
  • the communication device 2000 may further include a transceiver 2005 and an antenna 2006.
  • the transceiver 2005 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 2005 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., and is used to implement a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., and is used to implement a transmitting function.
  • the communication device 2000 may further include one or more interface circuits 2007.
  • the interface circuit 2007 is used to receive code instructions and transmit them to the processor 2001.
  • the processor 2001 runs the code instructions to enable the communication device 2000 to execute the method described in the above method embodiment.
  • the processor 2001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 2001 may store a computer program 2003, which runs on the processor 2001 and enables the communication device 2000 to perform the method described in the above method embodiment.
  • the computer program 2003 may be fixed in the processor 2001, in which case the processor 2001 may be implemented by hardware.
  • the communication device 2000 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 20.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 21 includes a processor 2101 and an interface 2102.
  • the number of processors 2101 can be one or more, and the number of interfaces 2102 can be multiple.
  • the chip further includes a memory 2103, and the memory 2103 is used to store necessary computer programs and data.
  • the present application also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least one in the present application can also be described as one or more, and a plurality can be two, three, four or more, which is not limited in the present application.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in each table in the present application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by the present application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles in the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.
  • the predefined in the present application may be understood as defined, predefined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本公开提出一种风噪测量方法/装置/设备及存储介质,方法包括:针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送所述第一测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由所述声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。

Description

一种风噪测量方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及风噪测量方法/装置/设备及存储介质。
背景技术
设备在采集音频和播放音频的过程中,风噪是干扰十分大的一项外在噪声,风噪不仅会造成音频质量的严重下降,甚至会让设备无法正常采集或播放音频。因此通常需要对风噪进行测量,以测量风噪对设备音频的影响,进而评估设备对抗风噪的能力,以便于设计和改善设备。
但是,相关技术中仅是针对声***传声器提出了风噪测量方法,该风噪测量方法仅适用于声***传声器,而不适用于其他终端设备,并且相关技术中的方法仅是针对单声道音频信号的评估,其只能测量风噪对单声道音频信号的影响,无法测量风噪对多声道音频信号的影响。因此,亟需一种适用于各终端设备以及多声道音频信号的风噪测量方法。
发明内容
本公开提出的风噪测量方法/装置/设备及存储介质,能够适用于对各类终端设备的音频进行风噪测量。
第一方面,本公开实施例提供一种风噪测量方法,该方法被被测终端设备执行,包括:
针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送所述第一测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;或者
在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由所述声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。
本公开中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
可选的,所述第一测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由声源设备向被测终端设备播放音频测试信号。
可选的,所述第一测试环境下的信号数据包括:
仅施加风时,所述被测终端设备采集到的纯噪声信号数据X1;
播放音频测试信号且施加风时,所述被测终端设备采集到的带噪环境下音频测试信号数据Y1;
仅播放音频测试信号时,所述被测终端设备采集到的安静环境下音频测试信号数据Z1。
可选的,所述分别采集第一测试环境下的信号数据,包括:
响应于声源设备向被测终端设备播放的音频测试信号包括多声道,分别采集第一测试环境下各个声道对应的信号数据。
可选的,所述向测试设备发送所述第一测试环境下的信号数据,包括:
向测试设备发送第一测试环境下各个声道对应的信号数据。
可选的,所述声源设备包括以下至少一种:
人工嘴;
扬声器。
可选的,所述声源设备向被测终端设备播放的音频测试信号为所述声源设备基于从其他设备处获取到的所需要播放的音频测试信号确定得到;
其中,响应于所述声源设备为扬声器,所述声源设备向被测终端设备播放的音频测试信号为:所述声源设备从其他设备处获取到的所需要播放的音频测试信号;
响应于所述声源设备为人工嘴,所述声源设备向被测终端设备播放的音频测试信号为:所述声源设备基于环境噪声对从其他设备处获取到的所需要播放的音频测试信号进行提升补偿之后的信号。
可选的,所述分别采集第一测试环境下的信号数据,包括:
在未开启抗噪模式下、以及开启不同抗噪模式下,分别采集所述第一测试环境下的信号数据。
可选的,所述向测试设备发送所述第一测试环境下的信号数据,包括:
向所述测试设备发送未开启抗噪模式时对应的第一测试环境下的信号数据,以及不同抗噪模式分别对应的第一测试环境下的信号数据。
可选的,所述向声音采集设备播放音频测试信号,包括:
在未开启抗噪模式下、以及开启不同抗噪模式下,分别向声音采集设备播放音频测试信号。
可选的,所述方法还包括:
获取所述音频测试信号。
第二方面,本公开实施例提供一种风噪测量方法,该方法被声源设备执行,包括:
在不同风速、不同风向下,向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
可选的,所述方法还包括:
获取所需要播放的音频测试信号。
可选的,所述声源设备包括以下至少一种:
人工嘴;
扬声器。
可选的,响应于所述声源设备为人工嘴,所述向被测终端设备播放音频测试信号,包括:
基于环境噪声对获取到的所需要播放的音频测试信号进行提升补偿,向所述被测终端设备播放提升补偿之后的信号;
响应于所述声源设备为扬声器,所述向被测终端设备播放音频测试信号,包括:
直接向所述被测终端设备播放获取到的所需要播放的音频测试信号。
第三方面,本公开实施例提供一种风噪测量方法,该方法被声音采集设备执行,包括:
针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并向测试设备发送所述第二测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
可选的,所述第二测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由被测终端设备向声音采集设备播放音频测试信号。
可选的,所述第二测试环境下的信号数据包括:
仅施加风时,所述声音采集设备采集到的纯噪声信号数据X2;
播放音频测试信号且施加风时,所述声音采集设备采集到的带噪环境下音频测试信号数据Y2;
仅播放音频测试信号时,所述声音采集设备采集到的安静环境下音频测试信号数据Z2。
可选的,所述分别采集第二测试环境下的信号数据,包括:
响应于被测终端设备向声音采集设备播放的音频测试信号包括多声道,分别采集第二测试环境下各个声道对应的信号数据。
可选的,所述向测试设备发送所述第二测试环境下的信号数据,包括:
向测试设备发送第二测试环境下各个声道对应的信号数据。
可选的,所述分别采集第二测试环境下的信号数据,包括:
在未开启抗噪模式下、以及开启不同抗噪模式下,分别采集所述第二测试环境下的信号数据。
可选的,所述向测试设备发送所述第二测试环境下的信号数据,包括:
向所述测试设备发送未开启抗噪模式时对应的第二测试环境下的信号数据,以及不同抗噪模式分别对应的第二测试环境下的信号数据。
第四方面,本公开实施例提供一种风噪测量方法,该方法被测试设备执行,包括:
接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;
基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;
基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
可选的,所述第一测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由声源设备向被测终端设备播放音频测试信号。
可选的,所述第一测试环境下的信号数据包括:
仅施加风时,所述被测终端设备采集到的纯噪声信号数据X1;
播放音频测试信号且施加风时,所述被测终端设备采集到的带噪环境下音频测试信号数据Y1;
仅播放音频测试信号时,所述被测终端设备采集到的安静环境下音频测试信号数据Z1。
可选的,所述第二测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由被测终端设备向声音采集设备播放音频测试信号。
可选的,所述第二测试环境下的信号数据包括:
仅施加风时,所述声音采集设备采集到的纯噪声信号数据X2;
播放音频测试信号且施加风时,所述声音采集设备采集到的带噪环境下音频测试信号数据Y2;
仅播放音频测试信号时,所述声音采集设备采集到的安静环境下音频测试信号数据Z2。
可选的,所述接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,包括:
接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下各个声道对应的信号数据;
所述接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据,包括:
接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下各个声道对应的信号数据。
可选的,所述基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果,包括:
基于所述第一测试环境下各个声道对应的信号数据和/或第二测试环境下各个声道对应的信号数据计算不同风速、不同风向对应的各个声道的测量结果;
所述基于所述测量结果确定不同风速、不同风向对所述被测终端设备音频质量的风噪影响,包括:
基于不同风速、不同风向对应的各个声道的测量结果确定不同风速、不同风向对所述被测终端设备的各个声道音频质量的风噪影响。
可选的,所述接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,包括:
接收被测终端设备发送的未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据;
所述接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据,包括:
接收声音采集设备发送的未开启抗噪模式时不同风速、不同风向对应的第二测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第二测试环境下的信号数据。
可选的,所述基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果,包括:
基于不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同抗噪模式下不同风速、不同风向对应的测量结果;以及
基于未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算未开启抗噪模式时不同风速、不同风向对应的测量结果;
所述基于所述测量结果确定不同风速、不同风向对所述被测终端设备音频质量的风噪影响,包括:
基于不同抗噪模式下不同风速、不同风向对应的测量结果确定不同抗噪模式下不同风速、不同风向对所述被测终端设备音频质量的风噪影响;
基于未开启抗噪模式时不同风速、不同风向对应的测量结果确定未开启抗噪模式时不同风速、不同风向对所述被测终端设备音频质量的风噪影响。
可选的,所述测量结果包括以下至少一种:
风噪的方向响应;
风噪过载点;
风噪失真率;
用于评估被测终端设备的通信信号的信号质量参数。
可选的,响应于被测终端设备为信号发送端,所述风噪的方向响应为:所述被测终端设备采集到音频信号后,向信号接收端所发送的音频信号;
响应于被测终端设备为信号接收端,所述风噪的方向响应为:所述被测终端设备播放了接收到的音频信号后,声音采集侧所采集到的音频信号。
可选的,所述信号质量参数包括以下至少一种:
信噪比SNR;
信号失真比SDR;
源伪影比SAR;
短时客观可懂度STOI;
语音质量的感知评估PESQ。
可选的,所述确定不同风速、不同风向对所述被测终端设备音频质量的风噪影响,包括:
针对不同风速,利用所有风向下对应的最低的信号质量参数来表示所述被测终端设备在对应风速下的通信质量;
将各个风向对应的测量结果中满足预设条件的所有测量结果对应的最大风速确定为各个风向下可支持的最大风速,将所有风向下可支持的最大风速中的最小风速确定为所述被测终端设备可支持的最大风速;
将所有风向下对应的最小的风噪过载点对应的风速确定为所述被测终端设备采集环境声时可支持的最大风速。
可选的,所述方法还包括:
基于开启不同抗噪模式时对应的测量结果与未开启抗噪模式时对应的测量结果,确定各个抗噪模式的抗噪效果。
第五方面,本公开实施例提供一种通信装置,该装置被配置在被测终端设备中,包括:
收发模块,用于针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送所述第一测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;或者
所述收发模块,还用于在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由所述声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。
第六方面,本公开实施例提供一种通信装置,该装置被配置在声源设备中,包括:
收发模块,用于在不同风速、不同风向下,向被测终端设备播放音频测试信号,以由所述被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
第七方面,本公开实施例提供一种通信装置,该装置被配置在声音采集设备中,包括:
收发模块,用于针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并向测试设备发送所述第二测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。
第八方面,本公开实施例提供一种通信装置,该装置被配置在测试设备中,包括:
收发模块,用于接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;
处理模块,用于基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;
所述处理模块,还用于基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
第九方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面至第四方面任一所述的方法。
第十方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面至第四方面任一所述的方法。
第十一方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面至第四方面任一所述的方法。
第十二方面,本公开实施例提供一种通信***,该***包括第五方面所述的通信装置至第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置,或者,该***包括第十方面所述的通信装置,或者,该***包括第十一方面所述的通信装置。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面至第四方面的任一方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面的任一方面所述的方法。
第十五方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第一方面至第四方面的任一方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十六方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面的任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a为本公开另一个实施例所提供的风噪测量方法的流程示意图;
图1b和图1c为本公开实施例所提供的风噪测量时各设备之间的连接关系示意图;
图2为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图3为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图4为本公开又一个实施例所提供的风噪测量方法的流程示意图;
图5为本公开另一个实施例所提供的风噪测量方法的流程示意图;
图6为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图7为本公开又一个实施例所提供的风噪测量方法的流程示意图;
图8为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图9为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图10为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图11为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图12为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图13为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图14为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图15a为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图15b为本公开再一个实施例所提供的风噪测量方法的流程示意图;
图16为本公开一个实施例所提供的通信装置的结构示意图;
图17为本公开另一个实施例所提供的通信装置的结构示意图;
图18为本公开另一个实施例所提供的通信装置的结构示意图;
图19为本公开另一个实施例所提供的通信装置的结构示意图;
图20是本公开一个实施例所提供的一种用户设备的框图;
图21为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、风噪
无外声场时,设备由具备一定速度和一定方向的风引起的等效声压。
本公开中的风噪测量方法的测量环境应满足以下要求:
测试环境应为自由场;
测试环境的噪声不应对测试结果造成影响;
测试环境内的自然风速应为0m/s;
若是在房间中对风噪进行测量,则测试所使用房间的尺寸相对于风道和被测终端设备应足够大,且不对测试时的气流造成额外的影响。
下面参考附图对本公开实施例所提供的风噪测量方法/装置/设备及存储介质进行详细描述。
图1a为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由被测终端设备执行,如图1a所示,该风噪测量方法可以包括以下步骤:
步骤101、针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。
其中,在本公开的一个实施例之中,该第一测试环境可以包括:
仅由风发生器向被测终端设备施加具备风速和风向的风;
由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加具备风速和风向的风;
仅由声源设备向被测终端设备播放音频测试信号。
基于此,在本公开的一个实施例之中,上述的不同风速、不同风向对应的第一测试环境下的信号数据可以包括:
仅施加风时,被测终端设备采集到的纯噪声信号数据X1;
播放音频测试信号且施加风时,被测终端设备采集到的带噪环境下音频测试信号数据Y1;
仅播放音频测试信号时,被测终端设备采集到的安静环境下音频测试信号数据Z1。
以及,在本公开的一个实施例之中,被测终端设备针对不同风速、不同风向采集到第一测试环境下的信号数据后,可以将该第一测试环境下的信号数据发送至测试设备,以由测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。需要说明的是,本公开中,基于被测终端设备采集的第一测试环境下的信号数据所确定出的风噪影响主要为:当被测终端设备作为信号发送端时,风噪在被测终端设备采集音频信号时对其的影响。
具体而言,在本公开的一个实施例之中,当终端设备作为信号发送端时,其通常需要先采集音频信号,并再将采集的音频信号发送至信号接收端。例如,当用户A正利用自己的手机A通过用户B的手机B与用户B通话时,若当前用户A正在说话,则此时手机A为信号发送端,手机B为信号接收端,其中,手机A需要先采集用户A发出的声音并形成音频信号,并将该音频信号发送至信号接收端(即手机B),以便手机B向用户B播放对应的音频信号。基于此,本公开中,“被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据”这一场景具体就是模拟被测终端设备作为信号发送端时采集信号的场景。由此,基于被测终端设备采集的第一测试环境下的信号数据所确定出的风噪影响应当为:当被测终端设备作为信号发送端时,风噪在被测终端设备采集音频信号时对其的影响。
进一步地,需要说明的是,本公开对上述被测终端设备的形式不做限定,如该被测终端设备可以为头戴式、免提式、或者手持式。以及,在本公开的一个实施例之中,上述上述风发生器应满足以下要求:
该风发生器产生的风和自然风特性接近,并且能在测试过程中稳定工作;
风发生器的噪声不会对测试结果造成影响,且在测试需求的风速下都可以稳定工作;
风发生器的风道的尺寸相比被测终端设备的尺寸应足够大,以足够完全覆盖被测终端设备附近产生的湍流,确保测试环境和自然风环境尽量一致。
以及,示例的,在本公开的一个实施例之中,该风发生器例如可以为短装置用径流式风扇或长装置用轴向风扇。
在本公开的一个实施例之中,上述的声源设备可以为人工嘴和/或扬声器。其中,人工嘴用于输出模拟人声的音频测试信号,扬声器用于输出非人声形式的音频测试信号。以及,当声源设备为不同设备时,其向被测终端设备播放音频测试信号的方法也会有所不同。
具体的,声源设备向被测终端设备播放的音频测试信号为声源设备基于从其他设备处获取到的所需 要播放的音频测试信号确定得到;其中,响应于声源设备为扬声器,该声源设备向被测终端设备播放的音频测试信号为:声源设备从其他设备处获取到的所需要播放的音频测试信号;也即是,当声源设备为扬声器时,声源设备从其他设备处获取到所需播放的音频测试信号之后,会直接向被测终端设备播放该音频测试信号。
响应于声源设备为人工嘴,声源设备向被测终端设备播放的音频测试信号为:声源设备基于环境噪声对从其他设备处获取到的所需要播放的音频测试信号进行提升补偿之后的信号。其中,根据隆巴德效应(Lombard effect)可知,在实际情况下,当外界环境噪音较大时,人发声时会自觉升高音量,基于此,当声源设备为人工嘴时,为了确保其能够精确模拟人发声,其在向被测终端设备播放音频测试信号之前,需要先基于环境噪声对从其他设备处获取到的所需要播放的音频测试信号进行提升补偿,并再向被测终端设备播放提成补偿之后的信号。
其中,在本公开的一个实施例之中,声源设备可以利用如下公式来基于环境噪声对从其他设备处获取到的所需要播放的音频测试信号进行提升补偿:
Figure PCTCN2022128763-appb-000001
其中,I为环境噪声下对从其他设备处获取到的所需要播放的音频测试信号的提升补偿两(单位:dB),N为声源设备测得的A计权长期噪声。
再进一步地,在本公开的一个实施例之中,被测终端设备也可以在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由声音采集设备(如人工耳)针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并将第二测试环境下的信号数据发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。
其中,上述的第二测试环境可以包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由被测终端设备向声音采集设备播放音频测试信号。
基于此,第二测试环境下的信号数据可以包括:
仅施加风时,声音采集设备采集到的纯噪声信号数据X2;
播放音频测试信号且施加风时,声音采集设备采集到的带噪环境下音频测试信号数据Y2;
仅播放音频测试信号时,声音采集设备采集到的安静环境下音频测试信号数据Z2。
以及,需要说明的是,在本公开的一个实施例之中,上述的基于被测终端设备采集的第二测试环境下的信号数据所确定出的风噪影响主要为:当被测终端设备作为信号接收端时,风噪在被测终端设备播放音频信号时对其的影响。
具体而言,在本公开的一个实施例之中,当终端设备作为信号接收端时,其通常需要先接收信号发送端发送的音频信号,并再播放该音频信号。例如,当用户A正利用自己的手机A通过用户B的手机B与用户B通话时,若当前用户B正在说话,则此时手机A为信号接收端,手机B为信号发送端,其中,手机B需要先采集用户B发出声音并形成音频信号,并将该音频信号发送至信号接收端(即手机A)以便手机A向用户A播放对应的音频信号。基于此,本公开中,“被测终端设备在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据”这一场景具体就是模拟被测终端设备作为信号接收端时播放信号的场景。由此,基于被测终端设备采集的第二测试环境下的信号数据所确定出的风噪影响应当为:当被测终端设备作为信号接收端时,风噪在被测终端设备播放音频信号时对其的影响。
以下对本公开实施例的方法中声音采集设备、风发生器、声源设备、被测终端设备、测量设备之间的连接关系进行介绍。图1b和图1c为本公开实施例所提供的风噪测量时各设备之间的连接关系示意图。 如图1b和图1c所示,风发生器、声源设备、声音采集设备均可以朝向被测终端设备设置,其中,风发生器用于向被测终端设备施加不同速度、不同方向的风,声源设备可以朝向被测终端设备播放音频测试信号,声音采集设备可以采集被测终端设备播放的音频测试信号。以及,该被测终端设备可以安装在转台或支架上,该被测终端设备的参考点可以在转台或支架的中轴线上,且风发生器主轴方向可以对准该被测终端设备的参考点,其中,该被测终端设备的参考点可以是被测终端设备的任一点,如可以是被测终端设备的中心点。以及,在测试风噪时,还可以根据需要转动转台或支架以调整被测终端设备与风发生器、声源设备、声音采集设备之间的角度,如可以调整被测终端设备与风发生器、声源设备、声音采集设备之间的水平夹角和垂直夹角,其中,通过调整被测终端设备与风发生器之间的角度可以调整测试时的风向。
进一步地,参考图1b和1c,被测终端设备可以与测试设备连接,用于向测试设备输出第一测试环境下的信号数据,声音采集设备也可以与测试设备连接,用于向测试设备输出第二测试环境下的信号数据。
以及,需要说明的是,上述图1b模拟的是“被测终端设备与其他设备之间直接进行音频信号交互”的场景,上述图1c模拟的是“被测终端设备作为外接设备与其他设备进行音频信号交互,或者,被测终端设备与其他设备之间通过通信***进行音频信号交互”的场景(即被测终端设备与其他设备未直接进行音频信号交互的场景)。
还需要说明的是,在本公开的一个实施例之中,在测量风噪时,应当使得测量环境尽可能地接近于真实环境下设备的情况,如接近于真实环境下声学情况和风噪情况。以及,由于风噪声的本质为压力波动,因此,在测量过程中,风发生器向被测终端设备施加风时,应当小心避免因达到过载点而损坏被测终端设备从而影响后续测量过程。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图2为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由被测终端设备执行,如图2所示,该风噪测量方法可以包括以下步骤:
步骤201、响应于声源设备向被测终端设备播放的音频测试信号包括多声道,分别采集第一测试环境下各个声道对应的信号数据。
步骤202、向测试设备发送第一测试环境下各个声道对应的信号数据。
其中,在本公开的一个实施例之中,被测终端设备通过向测试设备发送第一测试环境下各个声道对应的信号数据,以由测试设备基于第一测试环境下各个声道对应的信号数据确定不同风速、不同风向的风对被测终端设备的各个声道音频质量的风噪影响。
由上述步骤可知,本公开中的风噪测量方法还可以用于测量不同风速、不同风向的风对被测终端设备的多声道音频测试信号的风噪影响,则其适用性较广。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。以及,本公开的方法还适用于针对多声道音频信号进行风噪测量,则其适用性较广。
图3为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由被测终端设备执行,如图3所示,该风噪测量方法可以包括以下步骤:
步骤301、在未开启抗噪模式下、以及开启不同抗噪模式下,针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
在本公开的一个实施例之中,该抗噪模式可以包括硬件式的抗噪模式和/或软件式的抗噪模式。其中,该硬件式的抗噪模式可以为:为被测终端设备佩戴用于防风的硬件(如防风罩);该软件式的抗噪模式可以为:将被测设终端设备的用于抗风噪的软件(如降噪算法)开启。
步骤302、向测试设备发送未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据,以及不同抗噪模式下不同风速、不同风向分别对应的第一测试环境下的信号数据。
在本公开的一个实施例之中,被测终端设备通过向测试设备发送未开启抗噪模式时对应的第一测试环境下的信号数据,以及不同抗噪模式分别对应的第一测试环境下的信号数据,以便测试设备可以确定未开启抗噪模式时,不同风速、不同风向的风对被测终端设备音频质量的风噪影响,以及确定开启不同抗噪模式时,不同风速、不同风向的风对被测终端设备音频质量的风噪影响,进而通过比对开启不同抗噪模式时不同风速、不同风向的风对被测终端设备音频质量的风噪影响与未开启抗噪模式时不同风速、不同风向的风对被测终端设备音频质量的风噪影响,以确定各个抗噪模式的抗噪效果,即:确定在被测终端设备采集音频信号时,各个抗噪模式的抗噪效果。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图4为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由被测终端设备执行,如图4所示,该风噪测量方法可以包括以下步骤:
步骤401、在未开启抗噪模式时、以及开启不同抗噪模式时,在不同风速、不同风向下分别向声音采集设备播放音频测试信号。
其中,在本公开的一个实施例之中,被测终端设备通过在未开启抗噪模式时、以及开启不同抗噪模式时,在不同风速、不同风向下,分别向声音采集设备播放音频测试信号,以使得声音采集设备可以在未开启抗噪模式下、以及开启不同抗噪模式下,针对不同风速、不同风向分别采集第二测试环境下的信号数据,并向测试设备发送未开启抗噪模式时对应的第二测试环境下的信号数据,以及不同抗噪模式分别对应的第二测试环境下的信号数据,以便测试设备可以基于开启不同抗噪模式时对应的第二测试环境下的信号数据与未开启抗噪模式时对应的第二测试环境下的信号数据之间的对比差距,确定各个抗噪模式的抗噪效果。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图5为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由被测终端设备执行,如图5所示,该风噪测量方法可以包括以下步骤:
步骤501、获取音频测试信号。
其中,在本公开的一个实施例之中,被测终端设备通常需要先从其他设备处获取到要播放的音频测 试信号,以便后续被测终端设备可以向声音采集设备播放音频测试信号进行后续流程。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图6为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声源设备执行,如图6所示,该风噪测量方法可以包括以下步骤:
步骤601、在不同风速、不同风向下,向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
其中,关于步骤601的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的风噪测量方法之中,在不同风速、不同风向下,声源设备会向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据针对不同风速、不同风向,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图7为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声源设备执行,如图7所示,该风噪测量方法可以包括以下步骤:
步骤701、获取所需要播放的音频测试信号。
其中,在本公开的一个实施例之中,声源设备通常需要先从其他设备处获取到所需要播放的音频测试信号,以便后续声源设备可以向被测终端设备播放音频测试信号进行后续流程。
综上所述,本公开实施例提供的风噪测量方法之中,在不同风速、不同风向下,声源设备会向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据针对不同风速、不同风向,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图8为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声源设备执行,如图8所示,该风噪测量方法可以包括以下步骤:
步骤801、响应于声源设备为人工嘴,基于环境噪声对获取到的所需要播放的音频测试信号进行提升补偿,向被测终端设备播放提升补偿之后的信号。
其中,关于步骤801的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的风噪测量方法之中,在不同风速、不同风向下,声源设备会向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据针对不同风速、不同风向,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图9为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声源设备执行,如图9所示,该风噪测量方法可以包括以下步骤:
步骤901、响应于所述声源设备为扬声器,直接向被测终端设备播放获取到的所需要播放的音频测试信号。
其中,关于步骤901的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的风噪测量方法之中,在不同风速、不同风向下,声源设备会向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的 信号数据针对不同风速、不同风向,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图10为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声音采集设备执行,如图10所示,该风噪测量方法可以包括以下步骤:
步骤1001、针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并向测试设备发送第二测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
其中,关于步骤1001的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,声音采集设备会分别采集第二测试环境下的信号数据,并向测试设备发送第二测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图11为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声音采集设备执行,如图11所示,该风噪测量方法可以包括以下步骤:
步骤1101、响应于被测终端设备向声音采集设备播放的音频测试信号包括多声道,针对不同风速、不同风向,分别采集第二测试环境下各个声道对应的信号数据。
步骤1102、向测试设备发送不同风速、不同风向下第二测试环境下各个声道对应的信号数据。
其中,在本公开的一个实施例之中,声音采集设备通过向测试设备发送第二测试环境下各个声道对应的信号数据,以由测试设备基于第二测试环境下各个声道对应的信号数据确定不同风速、不同风向的风对被测终端设备的多声道音频质量的风噪影响。由此,本公开中的风噪测量方法还可以适用于针对多声道音频信号进行风噪测量,则其适用性较广。
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,声音采集设备会分别采集第二测试环境下的信号数据,并向测试设备发送第二测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。以及,本公开的方法还适用于针对多声道音频信号进行风噪测量,则其适用性较广。
图12为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由声音采集设备执行,如图12所示,该风噪测量方法可以包括以下步骤:
步骤1201、在未开启抗噪模式下、以及开启不同抗噪模式下,针对不同风速、不同风向,分别采集所述第二测试环境下的信号数据。
步骤1202、向所述测试设备发送未开启抗噪模式时不同风速、不同风向对应的第二测试环境下的信号数据,以及不同抗噪模式下不同风速、不同风向分别对应的第二测试环境下的信号数据。
在本公开的一个实施例之中,声音采集设备通过向测试设备发送未开启抗噪模式时对应的第二测试环境下的信号数据,以及不同抗噪模式分别对应的第二测试环境下的信号数据,以便测试设备可以基于开启不同抗噪模式时对应的第二测试环境下的信号数据与未开启抗噪模式时对应的第二测试环境下的信号数据,确定各个抗噪模式的抗噪效果,即:确定在被测终端设备播放音频信号时,各个抗噪模式的抗噪效果
综上所述,本公开实施例提供的风噪测量方法之中,针对不同风速、不同风向,声音采集设备会分别采集第二测试环境下的信号数据,并向测试设备发送第二测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图13为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由测试设备执行,如图13所示,该风噪测量方法可以包括以下步骤:
步骤1301、接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/ 或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据。
其中,关于步骤1301的详细介绍可以参考上述实施例。
步骤1302、基于第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果。
其中,在本公开的一个实施例之中,该测量结果可以包括以下至少一种:
风噪的方向响应;
风噪过载点;
风噪失真率;
用于评估被测终端设备的通信信号的信号质量参数。
具体的,在本公开的一个实施例之中,上述的“风噪的方向响应”主要用于评估设备在不同风向、不同风速下的风噪特性。其中,响应于被测终端设备为信号发送端,该风噪的方向响应可以为:所述被测终端设备采集到音频信号后,向信号接收端所发送的音频信号;
响应于被测终端设备为信号接收端,该风噪的方向响应可以为:所述被测终端设备播放了接收到的音频信号后,声音采集侧所采集到的音频信号。其中,该声音采集侧可以为人耳或者用于采集声音的设备。
上述的“风噪过载点”主要为不同方向上,设备能长时间正常工作(工作在线性区域)的最大风速。其中,当信号中有信号发生削波或是达到峰值信号可认为达到风噪过载点。
上述的“风噪失真率”用于指示出现失真信号的比例,评价风噪失真程度。其中,由于风噪的影响是不稳定的,因此,风噪引起的失真会间断出现,其中,风速越高时,失真出现会越频繁。基于此,本公开中通过计算出风噪失真率来评价风噪失真程度。
上述的“信号质量参数”可以包括以下至少一种:
信噪比(Signal-to-Noise ratio,SNR);
信号失真比(Signal-to-Distortion Ratio,SDR);
源伪影比(source-to-artifact ratio,SAR);
短时客观可懂度(Short-Time Objective Intelligibility,STOI);
语音质量的感知评估(Perceptual evaluation of speech quality,PESQ)。
需要说明的是,本公开中对“基于第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果”的具体计算方法不做具体限定,其中,计算得到上述测量结果的任一计算方法均在本公开的保护范围内。
步骤1303、基于测量结果确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。
具体的,在本公开的一个实施例之中,上述的基于测量结果确定不同风速、不同风向对被测终端设备音频质量的风噪影响的方法可以包括以下任一种或任多种:
第一种:针对不同风速,利用所有风向下对应的最低的信号质量参数来表示被测终端设备在对应风速下的通信质量。
例如,在风速3m/s下,针对三个不同风向分别得到了测量结果,其中,该三个风向分别为风向一、风向二、风向二;以及,假设风向一对应的测量结果中的SNR的值小于风向三对应的测量结果中的SNR的值小于风向二对应的测量结果中的SNR的值,即,在风速3m/s下,所有风向下对应的最低SNR的值为风向二对应的测量结果中的SNR的值,此时可以利用风向二对应的测量结果中的SNR的值来表示被测终端设备在对应风速下的SNR通信质量。
第二种:将各个风向对应的测量结果中满足预设条件的所有测量结果对应的最大风速确定为各个风向下可支持的最大风速,将所有风向下可支持的最大风速中的最小风速确定为所述被测终端设备可支持的最大风速。
其中,该预设条件可以是根据测试的不同阶段以及不同需求灵活性设置的,例如,该预设条件可以为风噪失真率低于特定值等。
示例的,假设风向一下满足预设条件的测量结果为:风速1m/s对应的测量结果、风速3m/s对应的 测量结果。则此时可以确定风向一下可支持的最大风速为:3m/s;同理的,假设确定出风向二下可支持的最大风速为:4m/s、风向三下可支持的最大风速为:2m/s。其中,所有风向下(即风向一至风向三)可支持的最大风速中的最小风速为2m/s,由此可以确定被测终端设备可支持的最大风速为2m/s。
第三种:将所有风向下对应的最小的风噪过载点对应的风速确定为被测终端设备采集环境声时可支持的最大风速。
其中,在本公开的一个实施例之中,该风噪过载点可以理解为出现失真的最大风速,每一风向下会对应一个风噪过载点。基于此,本公开中将所有风向下的最小风噪过载点对应的风速确定为被测终端设备采集环境声时可支持的最大风速。
示例的,假设测量设备计算得到的,风向一下是在风速3m/s时出现风噪过载点,且风向一对应的风噪过载点为:第一值;风向二下是在风速5m/s时出现风噪过载点,且风向二对应的风噪过载点为:第二值;风向三下是在风速4m/s时出现风噪过载点,且风向三对应的风噪过载点为:第三值。其中,第一值小于第三值小于第二值,则可以确定,风向一对应的风噪过载点为所有风向下对应的最小的风噪过载点,此时,可以将风向一对应的风噪过载点所对应的风速确定为被测终端设备采集环境声时可支持的最大风速,即:被测终端设备采集环境声时可支持的最大风速为3m/s。
以及,在本公开的一个实施例之中,上述的被测终端设备采集环境声时可支持的最大风速意为:当被测终端设备在风速小于或等于该可支持的最大风速下采集环境声时,可以保证不会出现失真的情况。基于此,基于该可支持的最大风速即可确定出该被测终端设备正常工作所适用的风速和风向场景。
综上所述,本公开实施例提供的风噪测量方法之中,测量设备会接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;之后,会基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;并还会基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图14为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由测试设备执行,如图14所示,该风噪测量方法可以包括以下步骤:
步骤1401、接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下各个声道对应的信号数据,和/或,接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下各个声道对应的信号数据。
步骤1402、基于所述第一测试环境下各个声道对应的信号数据和/或第二测试环境下各个声道对应的信号数据计算不同风速、不同风向对应的各个声道的测量结果。
步骤1403、基于不同风速、不同风向对应的各个声道的测量结果确定不同风速、不同风向对被测终端设备的各个声道音频质量的风噪影响。
关于步骤1401-1403的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的风噪测量方法之中,测量设备会接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;之后,会基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;并还会基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。以及,本公开的方法还适用于针对多声道音频信号进行风噪测量,则其适用性较广。
图15a为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由测试设备执行,如图15a所示,该风噪测量方法可以包括以下步骤:
步骤1501a、接收被测终端设备发送的未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据,和/或,接收声音采集设备发送的未开启抗噪模式时不同风速、不同风向对应的第二测试环境下的信号数据,以 及,不同抗噪模式下不同风速、不同风向对应的第二测试环境下的信号数据。
步骤1502a、基于不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同抗噪模式下不同风速、不同风向对应的测量结果,以及基于未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算未开启抗噪模式时不同风速、不同风向对应的测量结果。
步骤1503a、基于不同抗噪模式下不同风速、不同风向对应的测量结果确定不同抗噪模式下不同风速、不同风向对被测终端设备音频质量的风噪影响;基于未开启抗噪模式时不同风速、不同风向对应的测量结果确定未开启抗噪模式时不同风速、不同风向对被测终端设备音频质量的风噪影响。
其中,关于步骤1501a-1503a的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的风噪测量方法之中,测量设备会接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;之后,会基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;并还会基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
图15b为本公开实施例所提供的一种风噪测量方法的流程示意图,该方法由测试设备执行,如图15b所示,该风噪测量方法可以包括以下步骤:
1501b、基于开启不同抗噪模式时对应的测量结果与未开启抗噪模式时对应的测量结果,确定各个抗噪模式的抗噪效果。
具体的,在本公开的一个实施例之中,可以利用开启不同抗噪模式时对应的测量结果减去相同条件下未开启抗噪模式时对应的测量结果,以此来确定不同抗噪模式的抗噪效果。其中,减去得到的差值的大小可以用来评估各个抗噪模式的抗噪效果。
示例的,假设在风速3m/s、风向一时,开启了硬件式的抗噪模式时计算所得的SNR的测量结果为:SNR A,在风速3m/s、风向一时,未开启抗噪模式时计算所得的SNR的测量结果为:SNR B,则利用SNR A减去SNR B得到SNR,即:SNR=SNR A-SNR B,此时可以利用相减得到的SNR来评估硬件式的抗噪模式的抗噪效果,其中,若相减得到的SNR为正数,则若相减得到的SNR越大,说明硬件式的抗噪模式的抗噪改善越好,若相减得到的SNR为负数或0,则说明硬件式的抗噪模式的抗噪改善较差。
需要说明的是,上述仅针对“硬件式的抗噪模式”进行了相关举例介绍,其中,“软件式的抗噪模式”的计算方法原理类同,在此不再赘述。
综上所述,本公开实施例提供的风噪测量方法之中,测量设备会接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;之后,会基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;并还会基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
以下对本公开的方法进行详细举例介绍。
特性解释。
风的等效声压:无外声场时,传声器由规定速度和方向的风引起的等效声压(以下简称风噪)。等效声压应为风的方向θ,频率f,风速v,的函数。由***的涡流和空气中的湍流造成。
测试环境要求:
测试环境:
测试环境应为自由场。
环境噪声:
测试环境的噪声不应对测试结果造成影响。1/3倍频程的等效持续声压应小于NR10曲线
风速:
测试环境内风速应为0m/s
房间尺寸:房间尺寸相对于风道和测试设备因足够大。不对测试的气流造成额外的影响
测试设备:
风发生器:
参考GB 12060.4-2012 IEC 60268-4的要求,风发生器应选用和自然风特性接近的设备,并且能在测试过程中稳定工作。
设备的噪声不应对测试结果造成影响,且在测试需求的风速下都可以稳定工作。
风道的尺寸相比被测设备的尺寸相比因足够大,足够完全覆盖被测设备附近产生的湍流,使测试环境和自然风环境尽量一致。如GB 12060.4-2012 IEC 60268-4中推荐的短装置用径流式风扇或长装置用轴向风扇。
使用的风发生器的具体参数须在测试报告中注明。
转台:
为保证测试的准确性和风发生器的设备体积,被测设备推荐安装在转台上,便于调整测试的风向。
也可根据实际情况,调整风发生器和被测设备的角度。
人工头
在测量时,设备因根据实际使用实况,安装在人工头对应的位置进行测试。用于模拟实际使用情况下的声学环境和风噪情况。
测试声源
人工嘴:
对于人声作为输入源的设备,用标准的人工嘴对应的测试位置代替人工嘴播放测试信号
测试扬声器:
不用人声作为输入源的设备,用标准的同轴测试音箱在对应的测试位置代替人工嘴播放测试信号。
被测设备:
本发明适用于包括但不限于以下设备或是模式:
头戴、免提、手持
为了模拟真实环境下设备的情况,设备须在模拟真实场景的情况下进行测试,包括人体的影响、外接部件、支架。被测设备的参考点应根据实际使用情况进行选择。
存在不同硬件设置(防风罩)和软件设置(降噪算法)的模式应各自分开进行测量,用于评估不同模式下的风噪。
本发明适用对于被测设备本身音频的测试;
也适用被测设备作为外接设备或是在通信***中进行测试;
测量方法
测试设置
根据实际适用场景,设备安装在人工头或是支架对应的位置,将终端设备、人工头和支架的整体视为被测设备。用于模拟真实情况下,人体或是其他物体对终端设备的影响。
测试信号响度
人工嘴应根据相关标准如[ITU-T P.340]在MRP处进行校准。均衡和响度的参数可参考[ITU-T P.581].
由于进行风噪相关的测试时,都是噪声环境。根据隆巴德效应(Lombard effect),测试信号需要针对环境噪声进行补偿。
测试角度
根据实际使用情况,选择不同水平角和垂直角度的风向进行测试。
发送端
1)被测设备应安装在转台上,设备参考点在转台中心的垂直线上,风发生器主轴方向对准被测设备中心。风发生器和设备的水平夹角为
Figure PCTCN2022128763-appb-000002
垂直夹角为θ。
在不同水平角和垂直角度上重复2-5)
2)给被测设备上施加规定速度v的风,被测设备处的风速应该保持稳定。
3)记录稳定情况下被测设备采集到的纯噪声数据X,人工耳记录测试时的环境噪声。
4)根据环境噪声,人工嘴播放对应响度的测试信号,记录稳定情况下被测设备采集到的带噪信号数据Y
5)关闭风发生器,根据环境噪声,人工嘴播放对应响度的测试信号,记录稳定情况下被测设备采集到的安静环境下测试信号数据Z。
改变风速重复上述实验。
接收端
1)被测设备应安装在转台上,设备参考点在转台中心的垂直线上,风发生器主轴方向对准设备中心。风发生器和设备的水平夹角为
Figure PCTCN2022128763-appb-000003
垂直夹角为θ。
在不同水平角和垂直角度上重复2-5)
2)给被测设备上施加规定速度v的风,被测设备处的风速应该保持稳定。
3)记录稳定情况下人工耳记录到的噪声X
4)被测设备在对应模式下播放测试信号,人工耳记录带噪环境下测试信号为Y
5)关闭风发生器,根据噪声X,被测设备播放测试信号,人工耳记录安静环境下测试信号为Z
改变风速重复上述实验
注1:风噪声的本质为压力波动,应当小心避免设备因达到过载点损坏设备从而影响后续实验
测试结果:
测试结果应包含以下数据:
风噪的方向响应
风噪的方向响应是不同风向、不同风速下,被测设备输出信号。为设备的输出关于风的方向θ,风速v,频率f的函数。
用于评估设备在不同风向、不同风速下的风噪特性
风噪过载点:
风噪过载点应为不同方向上,设备能长时间正常工作(工作在线性区域)的最大风速。
信号中有信号发生削波或是达到峰值信号即可认为达到风噪过载点。
风噪失真率:
由于风噪在传声器中的信号有不稳定的特性,风噪引起的失真会间断出现,并且有风速越高失真出现越频繁的特点。
因此本发明提出通过计算信号中出现失真信号的比例,作为评价风噪失真程度的参数。
评价信号质量的相关参数:
信号质量的相关参数(如SNR、SDR、SAR、STOI、PESQ)应计算在不同风的方向θ,风速v下的参数。
通过不同场景下噪声X,安静环境下测试信号为Z,带噪环境下测试信号为Y,计算相关参数
对于多声道音频的应用:
对于输出多个声道的音频,应对输出的每一个声道进行计算。
在评估设备的风噪的方向响应和信号质量的相关参数时,本测试方法得到的多声道信号也可以根据相关方法转换成的单声道信号,便于评估相关参数。
测试结论:
测试应包含终端需要测试的不同模式,包括硬件设置(有无防风罩),软件设置(相关降噪算法)。不同模式下的测试分开进行。
1)绝对参数
1、评价设备信号质量时,应选取对应风速下,所有方向上信号质量最低的参数作为结论。
2、评估设备可以支持的风速场景时,应选在所有角度、所有声道上都满足条件的最大风速作为结论。判定标准应参考相关标准根据设备的不同阶段、不同功能的实际情况制定。
3、评估设备采集环境声支持的风速时,选取所有角度、所有声道上风噪过载点的最小值作为结论,以保证设备在该风速下不会出现失真的情况。
2)评估改进效果
评估软硬件设置的效果时,在保证没有其他变量的情况下,通过打开相关设置测量得到的参数A减去关闭相关设置测量得到的相关参数B作为结论。
例如评估防风罩对SNR的提升效果时:
本发明技术方案的关键点
本发明提出了一种风对终端设备的音频服务质量影响的测量方法。用于测量不同方向和不同风速下风对设备的影响,从而得出设备在不同风速下的信号质量和设备可以支持的风速场景,并且使用多声道和单声道设备,以及评估相关降噪效果的方法。
图16为本公开实施例所提供的一种通信装置的结构示意图,如图16所示,装置可以包括:
收发模块,用于针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送所述第一测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;或者
所述收发模块,还用于在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由所述声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。
综上所述,在本公开实施例提供的通信装置之中,针对不同风速、不同风向,被测终端设备会分别采集第一测试环境下的信号数据,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;或者,在不同风速、不同风向下,被测终端设备会向声音采集设备播放音频测试信号,以由声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据,其中,声音采集设备采集到第二测试环境下的信号数据后,会发送至测试设备,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
可选的,在本公开的一个实施例之中,所述第一测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由声源设备向被测终端设备播放音频测试信号。
可选的,在本公开的一个实施例之中,所述第一测试环境下的信号数据包括:
仅施加风时,所述被测终端设备采集到的纯噪声信号数据X1;
播放音频测试信号且施加风时,所述被测终端设备采集到的带噪环境下音频测试信号数据Y1;
仅播放音频测试信号时,所述被测终端设备采集到的安静环境下音频测试信号数据Z1。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
响应于声源设备向被测终端设备播放的音频测试信号包括多声道,分别采集第一测试环境下各个声道对应的信号数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
向测试设备发送第一测试环境下各个声道对应的信号数据。
可选的,在本公开的一个实施例之中,所述声源设备包括以下至少一种:
人工嘴;
扬声器。
可选的,在本公开的一个实施例之中,所述声源设备向被测终端设备播放的音频测试信号为所述声 源设备基于从其他设备处获取到的所需要播放的音频测试信号确定得到;
其中,响应于所述声源设备为扬声器,所述声源设备向被测终端设备播放的音频测试信号为:所述声源设备从其他设备处获取到的所需要播放的音频测试信号;
响应于所述声源设备为人工嘴,所述声源设备向被测终端设备播放的音频测试信号为:所述声源设备基于环境噪声对从其他设备处获取到的所需要播放的音频测试信号进行提升补偿之后的信号。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
在未开启抗噪模式下、以及开启不同抗噪模式下,分别采集所述第一测试环境下的信号数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
向所述测试设备发送未开启抗噪模式时对应的第一测试环境下的信号数据,以及不同抗噪模式分别对应的第一测试环境下的信号数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
在未开启抗噪模式下、以及开启不同抗噪模式下,分别向声音采集设备播放音频测试信号。
可选的,在本公开的一个实施例之中,所述装置还用于:
获取所述音频测试信号。
图17为本公开实施例所提供的一种通信装置的结构示意图,如图17所示,装置可以包括:
收发模块,用于在不同风速、不同风向下,向被测终端设备播放音频测试信号,以由所述被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
综上所述,在本公开实施例提供的通信装置之中,在不同风速、不同风向下,声源设备会向被测终端设备播放音频测试信号,以由被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据针对不同风速、不同风向,并向测试设备发送第一测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
可选的,在本公开的一个实施例之中,所述装置还用于:
获取所需要播放的音频测试信号。
可选的,在本公开的一个实施例之中,所述声源设备包括以下至少一种:
人工嘴;
扬声器。
可选的,在本公开的一个实施例之中,响应于所述声源设备为人工嘴,所述收发模块还用于:
基于环境噪声对获取到的所需要播放的音频测试信号进行提升补偿,向所述被测终端设备播放提升补偿之后的信号;
响应于所述声源设备为扬声器,所述收发模块还用于:
直接向所述被测终端设备播放获取到的所需要播放的音频测试信号。
图18为本公开实施例所提供的一种通信装置的结构示意图,如图18所示,装置可以包括:
收发模块,用于针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并向测试设备发送所述第二测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
综上所述,在本公开实施例提供的通信装置之中,针对不同风速、不同风向,声音采集设备会分别采集第二测试环境下的信号数据,并向测试设备发送第二测试环境下的信号数据,以使测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
可选的,在本公开的一个实施例之中,所述第二测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由被测终端设备向声音采集设备播放音频测试信号。
可选的,在本公开的一个实施例之中,所述第二测试环境下的信号数据包括:
仅施加风时,所述声音采集设备采集到的纯噪声信号数据X2;
播放音频测试信号且施加风时,所述声音采集设备采集到的带噪环境下音频测试信号数据Y2;
仅播放音频测试信号时,所述声音采集设备采集到的安静环境下音频测试信号数据Z2。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
响应于被测终端设备向声音采集设备播放的音频测试信号包括多声道,分别采集第二测试环境下各个声道对应的信号数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
向测试设备发送第二测试环境下各个声道对应的信号数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
在未开启抗噪模式下、以及开启不同抗噪模式下,分别采集所述第二测试环境下的信号数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
向所述测试设备发送未开启抗噪模式时对应的第二测试环境下的信号数据,以及不同抗噪模式分别对应的第二测试环境下的信号数据。
图19为本公开实施例所提供的一种通信装置的结构示意图,如图19所示,装置可以包括:
收发模块,用于接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;
处理模块,用于基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;
所述处理模块,还用于基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
综上所述,在本公开实施例提供的通信装置之中,测量设备会接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;之后,会基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;并还会基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;由此可知,本公开提供了一种适用于终端设备的风噪测量方法,可以用于测量风噪对各类型终端设备的影响。
可选的,在本公开的一个实施例之中,所述第一测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由声源设备向被测终端设备播放音频测试信号。
可选的,在本公开的一个实施例之中,所述第一测试环境下的信号数据包括:
仅施加风时,所述被测终端设备采集到的纯噪声信号数据X1;
播放音频测试信号且施加风时,所述被测终端设备采集到的带噪环境下音频测试信号数据Y1;
仅播放音频测试信号时,所述被测终端设备采集到的安静环境下音频测试信号数据Z1。
可选的,在本公开的一个实施例之中,所述第二测试环境包括:
仅由风发生器向被测终端设备施加所述风速和所述风向的风;
由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
仅由被测终端设备向声音采集设备播放音频测试信号。
可选的,在本公开的一个实施例之中,所述第二测试环境下的信号数据包括:
仅施加风时,所述声音采集设备采集到的纯噪声信号数据X2;
播放音频测试信号且施加风时,所述声音采集设备采集到的带噪环境下音频测试信号数据Y2;
仅播放音频测试信号时,所述声音采集设备采集到的安静环境下音频测试信号数据Z2。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下各个声道对应的信号数据;
所述接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据,包括:
接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下各个声道对应的信号数据。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于所述第一测试环境下各个声道对应的信号数据和/或第二测试环境下各个声道对应的信号数据计算不同风速、不同风向对应的各个声道的测量结果;
所述处理模块还用于:
基于不同风速、不同风向对应的各个声道的测量结果确定不同风速、不同风向对所述被测终端设备的各个声道音频质量的风噪影响。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
接收被测终端设备发送的未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据;
所述收发模块还用于:
接收声音采集设备发送的未开启抗噪模式时不同风速、不同风向对应的第二测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第二测试环境下的信号数据。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同抗噪模式下不同风速、不同风向对应的测量结果;以及
基于未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算未开启抗噪模式时不同风速、不同风向对应的测量结果;
所述处理模块还用于:
基于不同抗噪模式下不同风速、不同风向对应的测量结果确定不同抗噪模式下不同风速、不同风向对所述被测终端设备音频质量的风噪影响;
基于未开启抗噪模式时不同风速、不同风向对应的测量结果确定未开启抗噪模式时不同风速、不同风向对所述被测终端设备音频质量的风噪影响。
可选的,在本公开的一个实施例之中,所述测量结果包括以下至少一种:
风噪的方向响应;
风噪过载点;
风噪失真率;
用于评估被测终端设备的通信信号的信号质量参数。
可选的,在本公开的一个实施例之中,响应于被测终端设备为信号发送端,所述风噪的方向响应为:所述被测终端设备采集到音频信号后,向信号接收端所发送的音频信号;
响应于被测终端设备为信号接收端,所述风噪的方向响应为:所述被测终端设备播放了接收到的音频信号后,声音采集侧所采集到的音频信号。
可选的,在本公开的一个实施例之中,所述信号质量参数包括以下至少一种:
信噪比SNR;
信号失真比SDR;
源伪影比SAR;
短时客观可懂度STOI;
语音质量的感知评估PESQ。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
针对不同风速,利用所有风向下对应的最低的信号质量参数来表示所述被测终端设备在对应风速下的通信质量;
将各个风向对应的测量结果中满足预设条件的所有测量结果对应的最大风速确定为各个风向下可 支持的最大风速,将所有风向下可支持的最大风速中的最小风速确定为所述被测终端设备可支持的最大风速;
将所有风向下对应的最小的风噪过载点对应的风速确定为所述被测终端设备采集环境声时可支持的最大风速。
可选的,在本公开的一个实施例之中,所述装置还用于:
基于开启不同抗噪模式时对应的测量结果与未开启抗噪模式时对应的测量结果,确定各个抗噪模式的抗噪效果。
请参见图20,图20是本申请实施例提供的一种通信装置2000的结构示意图。通信装置2000可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置2000可以包括一个或多个处理器2001。处理器2001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置2000中还可以包括一个或多个存储器2002,其上可以存有计算机程序2004,处理器2001执行所述计算机程序2004,以使得通信装置2000执行上述方法实施例中描述的方法。可选的,所述存储器2002中还可以存储有数据。通信装置2000和存储器2002可以单独设置,也可以集成在一起。
可选的,通信装置2000还可以包括收发器2005、天线2006。收发器2005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置2000中还可以包括一个或多个接口电路2007。接口电路2007用于接收代码指令并传输至处理器2001。处理器2001运行所述代码指令以使通信装置2000执行上述方法实施例中描述的方法。
在一种实现方式中,处理器2001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器2001可以存有计算机程序2003,计算机程序2003在处理器2001上运行,可使得通信装置2000执行上述方法实施例中描述的方法。计算机程序2003可能固化在处理器2001中,该种情况下,处理器2001可能由硬件实现。
在一种实现方式中,通信装置2000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图20的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存 储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图21所示的芯片的结构示意图。图21所示的芯片包括处理器2101和接口2102。其中,处理器2101的数量可以是一个或多个,接口2102的数量可以是多个。
可选的,芯片还包括存储器2103,存储器2103用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种风噪测量方法,其特征在于,所述方法被被测终端设备执行,包括:
    针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送所述第一测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;或者
    在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由所述声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一测试环境包括:
    仅由风发生器向被测终端设备施加所述风速和所述风向的风;
    由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
    仅由声源设备向被测终端设备播放音频测试信号。
  3. 如权利要求2所述的方法,其特征在于,所述第一测试环境下的信号数据包括:
    仅施加风时,所述被测终端设备采集到的纯噪声信号数据X1;
    播放音频测试信号且施加风时,所述被测终端设备采集到的带噪环境下音频测试信号数据Y1;
    仅播放音频测试信号时,所述被测终端设备采集到的安静环境下音频测试信号数据Z1。
  4. 如权利要求2所述的方法,其特征在于,所述分别采集第一测试环境下的信号数据,包括:
    响应于声源设备向被测终端设备播放的音频测试信号包括多声道,分别采集第一测试环境下各个声道对应的信号数据。
  5. 如权利要求4所述的方法,其特征在于,所述向测试设备发送所述第一测试环境下的信号数据,包括:
    向测试设备发送第一测试环境下各个声道对应的信号数据。
  6. 如权利要求2所述的方法,其特征在于,所述声源设备包括以下至少一种:
    人工嘴;
    扬声器。
  7. 如权利要求6所述的方法,其特征在于,所述声源设备向被测终端设备播放的音频测试信号为所述声源设备基于从其他设备处获取到的所需要播放的音频测试信号确定得到;
    其中,响应于所述声源设备为扬声器,所述声源设备向被测终端设备播放的音频测试信号为:所述声源设备从其他设备处获取到的所需要播放的音频测试信号;
    响应于所述声源设备为人工嘴,所述声源设备向被测终端设备播放的音频测试信号为:所述声源设备基于环境噪声对从其他设备处获取到的所需要播放的音频测试信号进行提升补偿之后的信号。
  8. 如权利要求1所述的方法,其特征在于,所述分别采集第一测试环境下的信号数据,包括:
    在未开启抗噪模式下、以及开启不同抗噪模式下,分别采集所述第一测试环境下的信号数据。
  9. 如权利要求8所述的方法,其特征在于,所述向测试设备发送所述第一测试环境下的信号数据,包括:
    向所述测试设备发送未开启抗噪模式时对应的第一测试环境下的信号数据,以及不同抗噪模式分别对应的第一测试环境下的信号数据。
  10. 如权利要求1所述的方法,其特征在于,所述向声音采集设备播放音频测试信号,包括:
    在未开启抗噪模式下、以及开启不同抗噪模式下,分别向声音采集设备播放音频测试信号。
  11. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述音频测试信号。
  12. 一种风噪测量方法,其特征在于,所述方法被声源设备执行,包括:
    在不同风速、不同风向下,向被测终端设备播放音频测试信号,以由所述被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    获取所需要播放的音频测试信号。
  14. 如权利要求13所述的方法,其特征在于,所述声源设备包括以下至少一种:
    人工嘴;
    扬声器。
  15. 如权利要求14所述的方法,其特征在于,响应于所述声源设备为人工嘴,所述向被测终端设备播放音频测试信号,包括:
    基于环境噪声对获取到的所需要播放的音频测试信号进行提升补偿,向所述被测终端设备播放提升补偿之后的信号;
    响应于所述声源设备为扬声器,所述向被测终端设备播放音频测试信号,包括:
    直接向所述被测终端设备播放获取到的所需要播放的音频测试信号。
  16. 一种风噪测量方法,其特征在于,所述方法被声音采集设备执行,包括:
    针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并向测试设备发送所述第二测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。
  17. 如权利要求16所述的方法,其特征在于,所述第二测试环境包括:
    仅由风发生器向被测终端设备施加所述风速和所述风向的风;
    由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
    仅由被测终端设备向声音采集设备播放音频测试信号。
  18. 如权利要求17所述的方法,其特征在于,所述第二测试环境下的信号数据包括:
    仅施加风时,所述声音采集设备采集到的纯噪声信号数据X2;
    播放音频测试信号且施加风时,所述声音采集设备采集到的带噪环境下音频测试信号数据Y2;
    仅播放音频测试信号时,所述声音采集设备采集到的安静环境下音频测试信号数据Z2。
  19. 如权利要求16所述的方法,其特征在于,所述分别采集第二测试环境下的信号数据,包括:
    响应于被测终端设备向声音采集设备播放的音频测试信号包括多声道,分别采集第二测试环境下各个声道对应的信号数据。
  20. 如权利要求19所述的方法,其特征在于,所述向测试设备发送所述第二测试环境下的信号数据,包括:
    向测试设备发送第二测试环境下各个声道对应的信号数据。
  21. 如权利要求16所述的方法,其特征在于,所述分别采集第二测试环境下的信号数据,包括:
    在未开启抗噪模式下、以及开启不同抗噪模式下,分别采集所述第二测试环境下的信号数据。
  22. 如权利要求21所述的方法,其特征在于,所述向测试设备发送所述第二测试环境下的信号数据,包括:
    向所述测试设备发送未开启抗噪模式时对应的第二测试环境下的信号数据,以及不同抗噪模式分别对应的第二测试环境下的信号数据。
  23. 一种风噪测量方法,其特征在于,所述方法被测试设备执行,包括:
    接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;
    基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;
    基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响。
  24. 如权利要求23所述的方法,其特征在于,所述第一测试环境包括:
    仅由风发生器向被测终端设备施加所述风速和所述风向的风;
    由声源设备向被测终端设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
    仅由声源设备向被测终端设备播放音频测试信号。
  25. 如权利要求24所述的方法,其特征在于,所述第一测试环境下的信号数据包括:
    仅施加风时,所述被测终端设备采集到的纯噪声信号数据X1;
    播放音频测试信号且施加风时,所述被测终端设备采集到的带噪环境下音频测试信号数据Y1;
    仅播放音频测试信号时,所述被测终端设备采集到的安静环境下音频测试信号数据Z1。
  26. 如权利要求23所述的方法,其特征在于,所述第二测试环境包括:
    仅由风发生器向被测终端设备施加所述风速和所述风向的风;
    由被测终端设备向声音采集设备播放音频测试信号,且由风发生器向被测终端设备施加所述风速和所述风向的风;
    仅由被测终端设备向声音采集设备播放音频测试信号。
  27. 如权利要求26所述的方法,其特征在于,所述第二测试环境下的信号数据包括:
    仅施加风时,所述声音采集设备采集到的纯噪声信号数据X2;
    播放音频测试信号且施加风时,所述声音采集设备采集到的带噪环境下音频测试信号数据Y2;
    仅播放音频测试信号时,所述声音采集设备采集到的安静环境下音频测试信号数据Z2。
  28. 如权利要求23所述的方法,其特征在于,所述接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,包括:
    接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下各个声道对应的信号数据;
    所述接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据,包括:
    接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下各个声道对应的信号数据。
  29. 如权利要求28所述的方法,其特征在于,所述基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果,包括:
    基于所述第一测试环境下各个声道对应的信号数据和/或第二测试环境下各个声道对应的信号数据计算不同风速、不同风向对应的各个声道的测量结果;
    所述基于所述测量结果确定不同风速、不同风向对所述被测终端设备音频质量的风噪影响,包括:
    基于不同风速、不同风向对应的各个声道的测量结果确定不同风速、不同风向对所述被测终端设备的各个声道音频质量的风噪影响。
  30. 如权利要求23所述的方法,其特征在于,所述接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,包括:
    接收被测终端设备发送的未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据;
    所述接收声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据,包括:
    接收声音采集设备发送的未开启抗噪模式时不同风速、不同风向对应的第二测试环境下的信号数据,以及,不同抗噪模式下不同风速、不同风向对应的第二测试环境下的信号数据。
  31. 如权利要求29所述的方法,其特征在于,所述基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果,包括:
    基于不同抗噪模式下不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同抗噪模式下不同风速、不同风向对应的测量结果;以及
    基于未开启抗噪模式时不同风速、不同风向对应的第一测试环境下的信号数据和/或第二测试环境下的信号数据计算未开启抗噪模式时不同风速、不同风向对应的测量结果;
    所述基于所述测量结果确定不同风速、不同风向对所述被测终端设备音频质量的风噪影响,包括:
    基于不同抗噪模式下不同风速、不同风向对应的测量结果确定不同抗噪模式下不同风速、不同风向对所述被测终端设备音频质量的风噪影响;
    基于未开启抗噪模式时不同风速、不同风向对应的测量结果确定未开启抗噪模式时不同风速、不同风向对所述被测终端设备音频质量的风噪影响。
  32. 如权利要求23-31任一所述的方法,其特征在于,所述测量结果包括以下至少一种:
    风噪的方向响应;
    风噪过载点;
    风噪失真率;
    用于评估被测终端设备的通信信号的信号质量参数。
  33. 如权利要求32所述的方法,其特征在于,响应于被测终端设备为信号发送端,所述风噪的方向响应为:所述被测终端设备采集到音频信号后,向信号接收端所发送的音频信号;
    响应于被测终端设备为信号接收端,所述风噪的方向响应为:所述被测终端设备播放了接收到的音频信号后,声音采集侧所采集到的音频信号。
  34. 如权利要求32所述的方法,其特征在于,所述信号质量参数包括以下至少一种:
    信噪比SNR;
    信号失真比SDR;
    源伪影比SAR;
    短时客观可懂度STOI;
    语音质量的感知评估PESQ。
  35. 如权利要求32所述的方法,其特征在于,所述确定不同风速、不同风向对所述被测终端设备音频质量的风噪影响,包括:
    针对不同风速,利用所有风向下对应的最低的信号质量参数来表示所述被测终端设备在对应风速下的通信质量;
    将各个风向对应的测量结果中满足预设条件的所有测量结果对应的最大风速确定为各个风向下可支持的最大风速,将所有风向下可支持的最大风速中的最小风速确定为所述被测终端设备可支持的最大风速;
    将所有风向下对应的最小的风噪过载点对应的风速确定为所述被测终端设备采集环境声时可支持的最大风速。
  36. 如权利要求31所述的方法,其特征在于,所述方法还包括:
    基于开启不同抗噪模式时对应的测量结果与未开启抗噪模式时对应的测量结果,确定各个抗噪模式的抗噪效果。
  37. 一种通信装置,被配置在被测终端设备中,包括:
    收发模块,用于针对不同风速、不同风向,分别采集第一测试环境下的信号数据,并向测试设备发送所述第一测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对所述被测终端设备音频质量的风噪影响;或者
    所述收发模块,还用于在不同风速、不同风向下,向声音采集设备播放音频测试信号,以由所述声音采集设备针对不同风速、不同风向,分别采集第二测试环境下的信号数据。
  38. 一种通信装置,被配置在声源设备中,包括:
    收发模块,用于在不同风速、不同风向下,向被测终端设备播放音频测试信号,以由所述被测终端设备针对不同风速、不同风向,分别采集第一测试环境下的信号数据。
  39. 一种通信装置,被配置在声音采集设备中,包括:
    收发模块,用于针对不同风速、不同风向,分别采集第二测试环境下的信号数据,并向测试设备发送所述第二测试环境下的信号数据,以使所述测试设备确定不同风速、不同风向的风对被测终端设备音频质量的风噪影响。
  40. 一种通信装置,被配置在测试设备中,包括:
    收发模块,用于接收被测终端设备发送的不同风速、不同风向对应的第一测试环境下的信号数据,和/或,声音采集设备发送的不同风速、不同风向对应的第二测试环境下的信号数据;
    处理模块,用于基于所述第一测试环境下的信号数据和/或第二测试环境下的信号数据计算不同风速、不同风向对应的测量结果;
    所述处理模块,还用于基于所述测量结果确定不同风速、不同风向的风对所述被测终端设备音频质 量的风噪影响。
  41. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至11中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求12-15所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求16-22所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求23-36所述的方法。
  42. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至11中任一项所述的方法,或用于运行所述代码指令以执行如权利要求12-15所述的方法,或用于运行所述代码指令以执行如权利要求16-22所述的方法,或用于运行所述代码指令以执行如权利要求23-36所述的方法。
  43. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至11中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求12-15所述的方法被实现,或当所述指令被执行时,使如权利要求16-22所述的方法被实现,或当所述指令被执行时,使如权利要求23-36所述的方法被实现。
PCT/CN2022/128763 2022-10-31 2022-10-31 一种风噪测量方法/装置/设备及存储介质 WO2024092453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128763 WO2024092453A1 (zh) 2022-10-31 2022-10-31 一种风噪测量方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128763 WO2024092453A1 (zh) 2022-10-31 2022-10-31 一种风噪测量方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024092453A1 true WO2024092453A1 (zh) 2024-05-10

Family

ID=90929296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128763 WO2024092453A1 (zh) 2022-10-31 2022-10-31 一种风噪测量方法/装置/设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024092453A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182116A (zh) * 2019-12-31 2020-05-19 紫光展讯通信(惠州)有限公司 多通道音频测试装置及测试方法
CN112437391A (zh) * 2020-12-09 2021-03-02 苏州思必驰信息科技有限公司 用于开放环境的麦克风测试方法及***
CN212910051U (zh) * 2020-10-10 2021-04-06 聆感智能科技(深圳)有限公司 一种风噪测试模拟装置
CN113670369A (zh) * 2021-07-09 2021-11-19 南京航空航天大学 基于移动终端的风速测量及风噪声检测方法及装置
US20220208207A1 (en) * 2020-12-28 2022-06-30 Shenzhen Shokz Co., Ltd. Audio signal processing method and system for echo suppression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182116A (zh) * 2019-12-31 2020-05-19 紫光展讯通信(惠州)有限公司 多通道音频测试装置及测试方法
CN212910051U (zh) * 2020-10-10 2021-04-06 聆感智能科技(深圳)有限公司 一种风噪测试模拟装置
CN112437391A (zh) * 2020-12-09 2021-03-02 苏州思必驰信息科技有限公司 用于开放环境的麦克风测试方法及***
US20220208207A1 (en) * 2020-12-28 2022-06-30 Shenzhen Shokz Co., Ltd. Audio signal processing method and system for echo suppression
CN113670369A (zh) * 2021-07-09 2021-11-19 南京航空航天大学 基于移动终端的风速测量及风噪声检测方法及装置

Similar Documents

Publication Publication Date Title
WO2017113899A1 (zh) 麦克风校准方法、装置及移动终端、存储介质
CN109845288B (zh) 用于麦克风之间的输出信号均衡的方法和装置
US10368154B2 (en) Systems, devices and methods for executing a digital audiogram
CN101448180A (zh) 一种移动电话扬声器测试***
CN110248016B (zh) 用于自动调节免提***的***
US20190066651A1 (en) Electronic device and control method of earphone device
CN104604254A (zh) 声音处理装置、方法和程序
US20090061843A1 (en) System and Method for Measuring the Speech Quality of Telephone Devices in the Presence of Noise
CN112954563B (zh) 信号处理方法、电子设备、装置及存储介质
CN108737948A (zh) 扬声器位置检测***、装置和方法
US9525954B2 (en) Audio device and audio producing method
CN105764008B (zh) 一种调试扩声***传输频率特性的方法及装置
CN111586527A (zh) 智慧语音处理***
WO2024092453A1 (zh) 一种风噪测量方法/装置/设备及存储介质
CN112437391B (zh) 用于开放环境的麦克风测试方法及***
CN108769864B (zh) 音频均衡处理方法、装置以及电子设备
CN208112957U (zh) 声学产品测试装置以及声学产品检测***
US10136241B1 (en) Audio playing system capable of automatically personally compensating
CN112382305B (zh) 调节音频信号的方法、装置、设备和存储介质
CN108810745A (zh) 啸叫测试方法、啸叫测试***与相关装置
CN112116923A (zh) 自动调节***音量的方法、装置、终端设备及存储介质
WO2017156880A1 (zh) 一种终端音频参数管理方法、装置及***
CN112995882A (zh) 一种智能设备音频开环测试方法
Aubauer et al. Optimized second-order gradient microphone for hands-free speech recordings in cars
WO2020063798A1 (zh) 一种回声消除方法、装置及智能音箱