WO2024090637A1 - Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cables and organic-inorganic composite insulation composition for high-voltage direct current cables, manufactured thereby - Google Patents

Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cables and organic-inorganic composite insulation composition for high-voltage direct current cables, manufactured thereby Download PDF

Info

Publication number
WO2024090637A1
WO2024090637A1 PCT/KR2022/016875 KR2022016875W WO2024090637A1 WO 2024090637 A1 WO2024090637 A1 WO 2024090637A1 KR 2022016875 W KR2022016875 W KR 2022016875W WO 2024090637 A1 WO2024090637 A1 WO 2024090637A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic composite
direct current
voltage direct
organic
insulation composition
Prior art date
Application number
PCT/KR2022/016875
Other languages
French (fr)
Korean (ko)
Inventor
이대호
김도균
김인성
한진아
유승건
한세원
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2024090637A1 publication Critical patent/WO2024090637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to a method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables and to an organic-inorganic composite insulation composition for high-voltage direct current cables manufactured thereby.
  • Polyolefin refers to a polymer material with an alkyl group that is formed by polymerizing an alkene, and representative examples include polyethylene (PE) and polypropylene (PP).
  • This polyolefin is a thermoplastic polymer that can be molded by heat. It has good moldability and is easy to process, so it has recyclability and can be remolded by heat.
  • PE and PP are very inexpensive among industrial polymer materials and have excellent physical properties such as mechanical properties and chemical resistance, so they are widely used in various fields such as packaging materials, films, containers, pipes, and the electrical and electronic industries.
  • crosslinked polyethylene obtained by crosslinking low-density polyethylene
  • XLPE crosslinked polyethylene
  • thermosetting thermosetting
  • PP itself has high stiffness, that is, too high modulus of elasticity, making it unsuitable to be used as an insulation material for cables that require flexibility. Accordingly, in order to improve flexibility and impact strength, a method of chemically synthesizing polypropylene copolymer (PPC) or manufacturing a blended material through mechanical mixing with a flexible material is being used, and such thermoplastic and Technology development is being actively conducted to apply thermoplastic elastomer (TPE) material, which has rubber-like flexibility, as a cable insulation material. TPE production by mechanical mixing is obtained through blending at a temperature above the melting point, and polyolefin elastomer (POE) is most widely used as a material for melt blending with PP.
  • PPC polypropylene copolymer
  • TPE thermoplastic elastomer
  • POE polyolefin elastomer
  • POE refers to a material that is made of a copolymerization between ethylene (carbon number 2) and a high carbon number monomer, such as ethylene-butene copolymer and ethylene-octene copolymer, and has rubber-like flexibility and elasticity.
  • Patent Document 1 which provides a method of producing a thermoplastic elastomer by blending polypropylene or polypropylene copolymer with polyolefin elastomer, and polypropylene, polyolefin elastomer, and ethylene.
  • Patent Document 2 which provides a ternary composition of propylene copolymer, discloses 'Tternary composition for cable insulation layer, manufacturing method thereof, cable insulation layer containing the same, and power cable (Publication No. 10-2021-0052962)' there is.
  • This TPE material has the advantage of securing appropriate mechanical properties that can be used as a cable insulation material while lowering the stiffness of PP, but due to the low insulation properties of flexible materials mixed with PP such as POE and interface defects with PP, etc. There is often a need to overcome the resulting degradation of insulation performance.
  • HVDC high voltage direct current
  • the continuous application of voltage in one direction causes the accumulation of space charge inside the insulator, which reduces the effect of electric field distortion within the insulator. This can weaken insulation performance or cause dielectric breakdown.
  • inorganic nanoparticles such as MgO, TiO 2 , ZnO, and hBN. A lot of research is being done.
  • Patent Document 3 which provides a method of reducing space charge by complexing polypropylene with a polymer dispersant of phenolic boron nitride (hBN), 'Insulating material for high-voltage direct current cable for space charge reduction and method of manufacturing same ( Publication number: 10-2022-0012122)' and Patent Document 4's 'DC power cable ( Registration number: 10-2272724)'.
  • hBN phenolic boron nitride
  • inorganic nanomaterials such as magnesium oxide (MgO), titanium oxide (TiO 2 ), zinc oxide (ZnO), and boron nitride (hBN) are mainly used for this purpose, and even if used in small amounts of approximately 1% by weight, Since cable manufacturing involves mass production, it is necessary to develop technology that applies low-cost inorganic materials such as silica (SiO 2 ) in order to reduce the cost burden when applied to actual production.
  • MgO magnesium oxide
  • TiO 2 titanium oxide
  • ZnO zinc oxide
  • hBN boron nitride
  • the present inventors studied the surface treatment of inorganic nanoparticles in thermoplastic elastomer nanocomposites for HVDC cable application to minimize the degree and increase rate of electric field distortion due to space charge accumulation, while maintaining excellent insulation performance and mechanical properties, as well as price competitiveness.
  • the present invention was completed by developing a method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables that can secure and an organic-inorganic composite insulation composition for high-voltage direct current cables manufactured accordingly.
  • the present invention was invented to solve the above-mentioned problems, and in a high-voltage direct-current environment, the degree of electric field distortion due to space charge accumulation and the rate of increase over time are suppressed, and the organic-inorganic composite insulation for high-voltage direct-current cables has excellent insulation performance and mechanical properties.
  • the technical problem is to provide a composition manufacturing method and an organic-inorganic composite insulation composition for high-voltage direct current cables manufactured accordingly.
  • silica nanoparticle dispersion reacting the silica nanoparticle dispersion with an alkoxy silane having a functional group for surface modification to produce silica nanoparticle powder surface-modified with the functional group;
  • It includes manufacturing an organic-inorganic composite insulation composition by melting and mixing the surface-modified silica nanoparticle powder and the polyolefin-based thermoplastic elastomer resin,
  • the functional group for surface modification is at least one selected from the group consisting of methyl group, ethyl group, vinyl group, thiol group, amine group, and fluorine group. ,
  • the organic-inorganic composite insulating composition is characterized in that it suppresses the accumulation of space charges by trapping space charges generated when high voltage direct current voltage is applied by functional groups on the surface of the silica nanoparticles.
  • a method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables is provided.
  • the step of producing the surface-modified silica nanoparticle powder is,
  • Preparing primary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification to the silica nanoparticle dispersion, performing surface modification, and then removing the solvent;
  • It is characterized in that it includes the step of preparing a secondary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification and a solvent to the primary surface-modified silica nanoparticle powder.
  • the polyolefin-based thermoplastic elastomer resin is characterized in that it includes a polypropylene resin, a polyolefin elastomer, and a dispersion modifier.
  • the present invention is characterized in that 0.1 to 5.0% by weight of the surface-modified silica nanoparticle powder is mixed.
  • an organic-inorganic composite insulation composition for high-voltage direct current cables which is manufactured according to the above manufacturing method.
  • the method for manufacturing an organic-inorganic composite insulation composition for a high-voltage direct current cable of the present invention is to surface modify silica nanoparticle powder with an alkoxy silane having a functional group for surface modification and then mix it with a thermoplastic elastomer resin to effectively suppress the accumulation of space charges in the insulation composition.
  • An insulating composition for high voltage direct current cables is provided.
  • the organic-inorganic composite insulation composition for high-voltage direct current cables of the present invention suppresses the degree of electric field distortion due to space charge accumulation and the rate of increase over time in a high-voltage direct current environment, and has excellent insulation performance and mechanical properties.
  • FIG. 1 is a flow chart according to a preferred embodiment of the present invention.
  • Figure 2 shows the cross-sectional SEM shape of a silica nanoparticle shape and a thermoplastic elastomer-silica nanocomposite according to an example.
  • Figure 3 is a graph showing the space charge of the thermoplastic elastomer and thermoplastic elastomer nanocomposite according to Test Example 1 according to voltage application time.
  • Figure 4 is a graph showing the electric field change according to voltage application time of the thermoplastic elastomer and thermoplastic elastomer nanocomposite according to Test Example 1.
  • the organic-inorganic composite insulating composition includes a functional group on the surface of the silica nanoparticle.
  • a method for manufacturing an organic-inorganic composite insulation composition for a high-voltage direct-current cable characterized in that it suppresses the accumulation of space charges by trapping space charges generated when high-voltage direct-current voltage is applied.
  • a silica nanoparticle dispersion is synthesized through a sol-gel reaction (S1).
  • the silica nanoparticle dispersion is characterized in that it is synthesized in the form of silica sol through a sol-gel reaction by adding water and a catalyst to a solvent containing tetravalent alkoxy silane, a precursor.
  • tetravalent alkoxy silane is a silane with four OH (hydroxy groups), including tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. , it is preferably one selected from the group consisting of tetrabutoxysilane, tetraphenoxysilane, tetraacethoxysilane, and mixtures thereof.
  • the solvent is preferably an alcohol-based solvent, such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, t -It is preferably one selected from the group consisting of butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof.
  • alcohol-based solvent such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol
  • t -It is preferably one selected from the group consisting of butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof.
  • the catalyst uses a basic catalyst, ammonium hydroxide, ammonium chloride, methyl amine, ethyl amine, propyl amine, and isopropyl amine. ), butyl amine, cyclohexyl amine, dimethyl amine, diethyl amine, trimethyl amine, triethyl amine, and It is preferable that it is one type selected from the group of mixtures thereof.
  • the catalyst is related not only to the reaction rate but also to the size of the silica particles formed. As the catalyst content increases, the silica particle size increases.
  • the appropriate catalyst content varies depending on conditions such as reaction temperature, reactant concentration, and catalyst type, but in general, when more than 10 parts by weight of the catalyst is used, there is a risk that the silica particle size may become excessively large by hundreds of nm or more, and the catalyst content is 1 weight. If it is less than 100%, the reaction rate becomes too slow, the reaction time becomes too long, and there is a risk that the reaction may not be completed.
  • the water is preferably distilled water, and is preferably used in an amount of 3 parts by weight or more based on 100 parts by weight of the solvent.
  • the silica nanoparticles are formed through the hydrolysis and condensation reaction of the precursor, tetravalent alkoxy silane.
  • the appropriate amount of water varies depending on the reaction temperature, reactant concentration, catalyst type and content, etc., but in general, if the water is less than 3 parts by weight, There is a risk that the hydrolysis of the precursor, tetravalent alkoxy silane, may be too slow, resulting in longer reaction times and incomplete reaction.
  • the temperature of the sol-gel reaction to prepare the silica nanoparticle dispersion is preferably between 20 and 100°C. If the reaction temperature is less than 20°C, it takes a lot of reaction time to form silica, and if the reaction temperature exceeds 100°C, evaporation may occur depending on the alcohol-based solvent.
  • the surface-modified silica nanoparticle powder is characterized by surface treatment through a sol-gel reaction on the surface of the silica nanoparticles by adding an alkoxy silane having a functional group for surface modification to the silica nanoparticle dispersion.
  • the functional group for surface modification may be one or more types selected from the group consisting of methyl group, ethyl group, vinyl group, thiol group, amine group, and fluorine group. and preferably includes an alkoxy silane having a fluorine group to effectively achieve the purpose of the present invention.
  • a material with a high polarity group is often introduced, and this is known to have an effect due to an appropriate level of charge trapping.
  • these materials with large polar groups tend to have high surface energy and high hydrophilicity, they may have low surface energy and low compatibility with hydrophobic polyolefin-based materials, resulting in low dispersibility when mixed.
  • an alkoxy silane having a fluorine group it is preferable to use an alkoxy silane having a fluorine group.
  • fluorine groups they have a unique property of having very high electronegativity, low surface energy, and being hydrophobic. Therefore, silica nanoparticles surface-modified with a material containing a fluorine group can be used to achieve excellent dispersibility in the polyolefin-based thermoplastic elastomer and at the same time suppress space charge accumulation due to high electronegativity.
  • the alkoxy silanes having the above fluorine group include triethoxyfluorosilane, trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy(pentafluorophenyl)silane, triethoxy(pentafluorophenyl)silane, pentafluorophenylethoxydimethylsilane, dimethoxy (methyl)(3,3,3-trifluoropropyl) Selected from the group consisting of silane, trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane, triethoxy (1H,1H,2H,2H-nonafluorohexyl) silane and triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane It is preferable to have at least one type. That is, it is preferably selected from the group consisting of mono
  • the step of preparing surface-modified silica nanoparticle powder includes adding an alkoxy silane having the functional group for surface modification to the silica nanoparticle dispersion, performing surface modification, and then removing the solvent to produce primary surface-modified silica nanoparticles. Preparing powder; And a step of preparing a secondary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification and a solvent to the primary surface-modified silica nanoparticle powder.
  • the first step a certain amount of surface treatment material is added to the silica sol solution, and then the solvent is removed to obtain silica nanoparticles in the form of powder.
  • the powder is redispersed in the solvent and the remaining surface treatment material is added and reacted. It is characterized in that the final surface-modified silica nanoparticle powder is obtained through a washing and drying process.
  • the alkoxy silanes for surface modification are added to the silica nanoparticle dispersion, a surface reaction is allowed to occur in the solution, and the solvent is then removed to prepare the silane in powder form.
  • a surface reaction is allowed to occur in the solution, and the solvent is then removed to prepare the silane in powder form.
  • the first surface-modified silica nanoparticle powder is redispersed in a solvent, and then the remaining alkoxy silane for surface modification is added to cause a surface reaction, and then washed and dried to prepare the powder in powder form. do.
  • the alkoxy silane for surface modification is preferably added in an amount of 1 to 10 parts by weight of the precursor. In this way, through the first and second surface treatment processes, the alkoxy silane for surface modification for surface treatment is ultimately It is preferable that the amount of the precursor is 3 to 20 parts by weight.
  • the inorganic nanoparticle powder when surface treating inorganic nanoparticles in the form of solid powder, the inorganic nanoparticle powder is redispersed in the solution and then a surface modifier is added. During this process, the nanoparticle powder has physical properties between nanoparticles due to the hydroxyl groups on the particle surface. , aggregation occurs due to chemical bonds, making it very difficult to properly disperse in a solvent. In this case, if the surface modification reaction occurs in the form of agglomerated particles, it is difficult for the surface modifier to be evenly formed on the surface of the nanoparticles.
  • the silica nanoparticles synthesized in the present invention are formed into nanoparticles through a sol-gel reaction while the precursor is dissolved in a solution, so they are manufactured in the form of a silica nanoparticle dispersion with little aggregation.
  • the surface modifier can bind evenly to the surface of the nanoparticles.
  • the content of alkoxy silane for primary surface modification used to solve the problem caused by self-bonding of silane for surface modification in the solution may be insufficient to ultimately secure dispersibility in the polymer and express the desired functionality. In this case, it can be solved through a secondary surface modification step as in the present invention.
  • silica powder since the silica powder has undergone primary surface treatment, aggregation between particles due to hydroxyl groups on the surface of the silica nanoparticles can be significantly reduced. Therefore, the surface modification of silica nanoparticles can be more completely achieved through the secondary surface treatment process.
  • the solvent in the silica nanoparticle surface treatment process can be removed by applying temperature and vacuum, and the particle powder can then be washed to remove reaction by-products and foreign substances using a centrifuge or the like.
  • the produced silica nanoparticles preferably have a diameter of 1 to 100 nm. If the particle size is less than 1 nm, the natural inorganic properties of silica may not be properly expressed, and if it exceeds 100 nm, it approaches the micro scale, so it is expected to improve physical properties due to the nano effect, that is, increase in surface and interface area. It is likely that it will be difficult to do.
  • the polyolefin-based thermoplastic elastomer resin may include a polypropylene resin, a polyolefin elastomer, and a dispersion modifier. Melt mixing is performed by adding surface-modified silica nanoparticle powder to the polypropylene resin, polyolefin elastomer, and dispersion modifier at 150 to 25 0°C. A thermoplastic elastomer nanocomposite containing silica nanoparticles is produced by melt mixing.
  • the surface-modified silica nanoparticle powder may be mixed in an amount of 0.1 to 5.0% by weight.
  • silica nanoparticles are included in less than 0.1% by weight, the effect of adding the nanoparticles will be very minimal, and if the silica nanoparticles are added in excess of 5% by weight, there is a risk that agglomeration between silica nanoparticles will increase and the physical properties will deteriorate.
  • the polyolefin-based thermoplastic elastomer resin of the present invention includes 40 to 60 parts by weight of polypropylene resin, 40 to 60 parts by weight of polyolefin elastomer dispersed in the polypropylene resin, and 1 to 20 dispersion modifiers compatible with the polypropylene resin and polyolefin elastomer. It contains parts by weight, and the dispersion modifier is characterized by satisfying the following relational equation 1.
  • E1 is the elastic modulus of the dispersion modifier
  • E2 is the elastic modulus of the polyolefin elastomer
  • E3 is the elastic modulus of the polypropylene resin.
  • the polypropylene resin is characterized in that it is isotactic homo polypropylene (iPP), syndiotactic homo polypropylene (sPP), and polypropylene copolymer (PPC) derived therefrom. Do this.
  • the polypropylene copolymer may be one or more of propylene random copolymer, propylene block copolymer, and reactor-made thermoplastic olefin (RTPO).
  • RTPO reactor-made thermoplastic olefin
  • the polyolefin elastomer is derived from a polyolefin structure and has rubber properties, can form a dispersed phase in the matrix of polypropylene resin, and is manufactured by copolymerizing ethylene and an alpha olefin ( ⁇ -olefin) having 4 to 20 carbon atoms. It is characterized by being
  • the polyolefin elastomer includes ethylene-butene copolymer, ethylene-octene copolymer, ethylene propylene rubber (EPR), and ethylene-propylene diene monomer.
  • EPR ethylene propylene rubber
  • monomer EPDM
  • SBS styrene-ethylene-styrene copolymer
  • SEBS styrene-ethylene-butadiene-styrene copolymer
  • the elastic modulus is in the range of 1 to 100 MPa, and the maximum strain rate can be 500 to 1,500%. This is to compensate for the brittleness of polypropylene resin and provide flexibility. am. If the elastic modulus of the polyolefin elastomer is less than 1 MPa, the elastic modulus is too low to have a significant effect, and if it is more than 100 MPa, it has a value similar to that of the dispersion modifier, which has the disadvantage of being meaningless in compensating for the brittleness of the polypropylene resin. .
  • the maximum strain of the polyolefin elastomer is less than 500% or more than 1,500%, there is a problem in that the elastic modulus of the polyolefin elastomer cannot be adjusted to a range of 1 to 100 MPa.
  • the polyolefin elastomer having an elastic modulus of 1 to 100 MPa and a maximum strain of 500 to 1,500% may be included in the range of 40 to 60 parts by weight, and if the polyolefin elastomer is less than 40 parts by weight, the polyolefin elastomer is formed on a matrix made of polypropylene resin. Even if the elastomer is dispersed, it has the disadvantage of having a high elastic modulus and lack of flexibility. If it exceeds 60 parts by weight, the polyolefin elastomer, which has relatively low heat resistance, does not form an elastic core but becomes a continuous phase and is exposed to the external surface, or depending on the environment, polypropylene resin. The polyolefin elastomers are aggregated or aggregated on the matrix, making it impossible to obtain the desired impact resistance, which results in a decrease in mechanical strength and insulation performance, making it undesirable for use as an insulating material.
  • a low elastic modulus of 300 MPa or less is required to prevent destruction due to bending, considering the bending of the cable.
  • Polypropylene resin is included in an amount of 40 to 60 parts by weight and dispersed in the polypropylene resin.
  • the elastic modulus of the insulating composition may be adjusted to 300 MPa or less. Accordingly, because the polyolefin elastomer can maintain the elastic core-shaped structure within the polypropylene resin matrix, excellent thermal, mechanical, and electrical insulating properties can be maintained.
  • the dispersion modifier includes functional groups of the propylene group contained in the polypropylene resin, the ethylene group forming the polyolefin elastomer, and the olefin group having 4 to 20 carbon atoms, so it can be compatible with the polypropylene resin and the polyolefin elastomer. .
  • the dispersion modifier is an ethylene-propylene random copolymer and ethylene-propylene block copolymer containing ethylene in the polypropylene structure, or an ethylene-propylene block copolymer containing butylene in the polypropylene structure.
  • Propylene-based copolymers such as butylene-propylene random copolymer and butylene-propylene block copolymer can be used.
  • thermoplastic elastomer When melt blending polypropylene and polyolefin elastomer, a matrix-dispersed phase structure is generally formed due to phase separation between the two materials.
  • dispersion modifier By using the dispersion modifier, it is possible to obtain a thermoplastic elastomer with a finer and more uniform dispersed phase.
  • the elastic modulus of the dispersion modifier may be higher than that of the polyolefin elastomer and lower than that of the polypropylene resin, and the range may be 100 to 1,000 MPa.
  • the elastic modulus is less than 100 MPa, it may be effective in compensating for the brittleness of polypropylene resin because it is similar to the elastic modulus of polyolefin elastomer, but as a result, the content of flexible substances increases, leading to a decrease in mechanical strength, dielectric strength, and physical properties at high temperatures. It causes.
  • the elastic modulus of the dispersion modifier exceeds 1,000 MPa, it is adjacent to the elastic modulus range of the propylene resin, making it difficult to compensate for the brittleness of the polypropylene resin.
  • the elastic modifier of the dispersion modifier compatible with polypropylene resin and polyolefin elastomer is in the range of 100 to 1,000 MPa, which is higher than that of polyolefin elastomer and lower than that of polypropylene resin, so that flexibility can be supplemented without further increasing the content of flexible polyolefin elastomer. It is possible to obtain an insulating composition that has excellent impact resistance from room temperature (25 °C) to low temperature (-40 °C), as well as excellent mechanical strength, dielectric strength, and high-temperature properties.
  • the dispersion modifier can be added in the range of 1 to 20 parts by weight. If it is mixed in less than 1 part by weight, it is insufficient to improve the impact resistance of the polypropylene thermoplastic elastomer, and if it exceeds 20 parts by weight, it is mixed with the matrix (polypropylene resin) and the dispersed phase. It exists not only at the interface between (polyolefin elastomers) but also in the bulk phase inside and outside the interface, making it difficult to obtain synergistic improvement in impact resistance through interfacial strengthening.
  • melt mixing In the case of melt mixing, it can be applied in a variety of ways as long as it is applied to the process of molding thermoplastic polymers, such as internal mixer, extrusion, and injection molding.
  • Melt mixing is usually determined by the melting point of the thermoplastic resin, but can be achieved in a preheated state in the range of 150 to 250 °C. If the temperature during melt mixing is less than 150°C, it is difficult for the polypropylene resin to completely melt, and it takes a lot of time to uniformly disperse the polyolefin elastomer on the matrix of the polypropylene resin, making the process inefficient.
  • the temperature should be 250 °C. It is preferable to carry out the following.
  • silica nanoparticles are manufactured by a sol-gel method, and the surface is modified with an alkoxy silane having a functional group such as a fluorine group through a two-step surface treatment process to form a thermoplastic elastomer.
  • An insulating composition for high voltage direct current cables is provided that effectively suppresses the accumulation of space charges in the insulating composition by manufacturing an insulating composition in which silica nanoparticles are evenly dispersed.
  • an organic-inorganic composite insulation composition for a high-voltage direct current cable which is manufactured according to the above manufacturing method.
  • the organic-inorganic composite insulation composition for high-voltage direct current cables can effectively suppress the accumulation of space charges occurring in thermoplastic elastomers made of polypropylene resin and polyolefin elastomer, which increases with the voltage application time. It is possible to significantly reduce space charge accumulation and the resulting electric field distortion change rate. In addition, it has excellent mechanical properties and electrical insulation, so it has the advantage of being used as an insulating material in various electrical and electronic fields, including power cables.
  • it can be used as an insulating material that forms an insulating layer surrounding the conductor of a wire-shaped power cable or as an insulating material in various electrical and electronic fields.
  • thermoplastic elastomer not containing silica nanoparticles was manufactured and the physical properties were compared.
  • Isotactic homopolypropylene (iPP) was used as a polypropylene resin, ethylene-octene copolymer (EOC) was used as a polyolefin elastomer, and ethylene-propylene copolymer was used as a dispersion modifier at 44 parts by weight, 56 parts by weight, and 10 parts by weight, respectively.
  • Thermoplastic elastomers were prepared by melt blending using a null mixer at 200°C and stirring at 60 rpm for 10 minutes. Afterwards, a specimen was manufactured by pressing and cooling at 200°C using a hot press.
  • thermoplastic elastomer nanocomposite using silica nanoparticles surface-modified with fluorine groups
  • TEOS tetraethoxysilane
  • FIG. 1 is an SEM image showing the shape of surface-modified silica nanoparticle powder prepared in this way. As shown in Figure 1(a), it is confirmed that silica nanoparticles with a diameter of about 20 nm are well formed.
  • thermoplastic elastomer nanocomposite containing 1% by weight of silica nanoparticles.
  • Figure 2(b) is a cross-sectional SEM image of the thermoplastic elastomer nanocomposite manufactured using this method.
  • silica nanoparticle powder surface-modified with an amine group was carried out in the same manner as Example 1, except that aminopropyltriethoxysilane, an amine-based silane, was used as a surface modification material.
  • thermoplastic elastomer nanocomposite was carried out in the same manner as in Example 1.
  • Example 2 Proceed as in Example 1, except that methyltrimethoxysilane was used as a material for surface modification of silica nanoparticles.
  • the space charge characteristics of specimens manufactured according to Comparative Examples and Examples were analyzed.
  • the space charge within the specimen was measured by pulsed electro-acoustic (PEA).
  • the detected signal was measured by injecting a short pulse of 350 V, 25 ns, and the space charge and electric field distribution within the specimen were measured for up to 3 hours after applying a voltage equivalent to 30 kV/mm to the specimen.
  • Figure 3 is a graph showing the spatial charge distribution according to the position in the specimen located between the cathode (left) and anode (right).
  • (a) of Figure 3 is a comparative example specimen (Ref) consisting of only a thermoplastic elastomer without silica nanoparticles
  • (b) to (e) are thermoplastic elastomer nanocomposite specimens containing silica nanoparticles of Examples 1 to 4.
  • the corresponding silica nanoparticles are surface-modified silica nanoparticles with (b) fluorine group (F-silica), (c) amine group (A-silica), vinyl group (V-silica), and methyl group (M-silica), respectively. am.
  • the space charge at the electrode and interface shows a pattern of gradually increasing over time. In particular, a lot of accumulation occurs near the cathode interface, and a lot of it is also accumulated in the bulk inside some specimens. You can see that.
  • the nanocomposite specimen made of F-silica with a fluorine group of Example 1 it can be seen that almost no space charge accumulation occurs when voltage is applied for up to 3 hours from the beginning, as shown in FIG. 3(b).
  • the remaining surface-modified silica it can be seen that space charge accumulation is still occurring compared to F-silica.
  • FIG. 4 is a graph showing the electric field distribution obtained from the space charge distribution of FIG. 3.
  • (a) of Figure 4 is a comparative example specimen (Ref) consisting of only a thermoplastic elastomer without silica nanoparticles
  • (b) to (e) are thermoplastic elastomer nanocomposite specimens containing silica nanoparticles of Examples 1 to 4.
  • the corresponding silica nanoparticles are surface-modified silica nanoparticles with (b) fluorine group (F-silica), (c) amine group (A-silica), vinyl group (V-silica), and methyl group (M-silica), respectively. am.
  • Field distortion factor (%) (maximum voltage - average voltage)/(average voltage) ⁇ 100
  • the change in electric field distortion due to space charge between specimens was analyzed by dividing the difference between the average voltage and the maximum voltage formed by applying between two electrodes by the average voltage.
  • the ideal case is 0%, but the electric field As the distortion increases, the electric field distortion value increases. In other words, it is important that the electric field distortion value is low and shows a pattern that does not change over time.
  • the electric field distortion of the specimen (Ref) made only of the thermoplastic elastomer of the comparative example continuously increases, while the electric field distortion of the nanocomposite made of silica nanoparticles (F-silica) surface-modified with fluorine groups is observed. Not only is the value low, but it is clearly confirmed that it is constant with almost no change during the time the voltage is applied. On the other hand, in the case of silica nanocomposites surface-treated with other materials, this effect of improving electric field distortion is not evident.
  • thermoplastic elastomer nanocomposite made of silica nanoparticles (F-silica) surface-modified with fluorine groups accumulates space charge according to voltage application, the resulting electric field distortion phenomenon, and time. It can be seen that the rate of change can be suppressed most effectively.
  • Insulation resistance and breakdown voltage were measured to evaluate the electrical insulation performance of the specimens according to the comparative examples and examples.
  • Insulation resistance was analyzed as a volume resistivity ( ⁇ cm) value by measuring the microcurrent measured after applying DC 1kV voltage to the specimen in accordance with IEC 62631-3-1.
  • the breakdown voltage was measured by placing a specimen in silicone oil insulating oil between two ball electrodes (diameter 20 mm) and increasing the voltage. From this, the maximum applied voltage was applied just before the current began to flow due to specimen destruction. The breakdown voltage, which is voltage, was measured.
  • the mechanical properties of the specimens according to the comparative examples and examples were measured in tensile mode using a universal testing machine (UTM) in accordance with ASTM D-638. From this, the elastic modulus (tensile modulus), tensile strength, and elongation at break (max strain) of the specimen were analyzed and evaluated.
  • UPM universal testing machine
  • Table 1 below is a table showing the results of the insulation performance and mechanical properties of specimens manufactured according to the comparative examples and examples.
  • thermoplastic elastomer nanocomposite (F-silica) specimen using silica nanoparticles surface-modified with fluorine groups shows the best mechanical properties and insulation performance.
  • the modulus value which indicates the hardness of the material, does not change significantly at the level of 300 MPa, so the flexibility as a cable insulation material is not greatly affected, but the mechanical strength due to external shock is further increased by increasing the tensile strength and elongation at break. It shows the results.
  • due to the improvement in insulation resistance and insulation strength the stability against insulation breakdown that may occur due to the voltage applied during cable operation is further improved.
  • thermoplastic elastomer nanocomposite is expected to be actively used not only as an insulating material for high-voltage direct current cables but also as an insulating material in various industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

The present invention relates to a method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables and an organic-inorganic composite insulation composition manufactured thereby, wherein the method comprises the steps of: adding water and a catalyst to alkoxy silane in a solvent and synthesizing a dispersion of silica nanoparticles by a sol-gel reaction; reacting the silica nanoparticle dispersion with alkoxysilane having a surface-modifying functional group to prepare silica nanoparticle powder having a surface modified with the functional group; and melt mixing the surface-modified silica nanoparticle powder with a polyolefin-based thermoplastic elastomer resin to afford the organic-inorganic composite insulation composition, wherein the surface-modifying functional group is at least one selected from the group consisting of methyl, ethyl, vinyl, thiol, amine, and fluorine groups and the organic-inorganic composite insulation composition suppresses the accumulation of space charges by trapping the space charges generated upon application of high-voltage direct current. The method of manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables according to the present invention is designed to surface modify silica nanoparticle powder with alkoxysilane having a surface-modifying functional group and then mix same with a thermoplastic elastomer resin, thus providing an insulation composition for high-voltage direct current cables, which effectively suppresses the accumulation of space charges in the insulation composition. The resulting organic-inorganic composite insulating composition suppresses the degree and temporal increase rate of electric field distortion due to space charge accumulation in a high-voltage direct current environment, while exhibiting excellent insulating performance and mechanical properties.

Description

고전압 직류케이블용 유무기 복합 절연 조성물 제조방법 및 이에 따라 제조된 고전압 직류케이블용 유무기 복합 절연 조성물Method for manufacturing an organic-inorganic composite insulating composition for high-voltage direct-current cables and an organic-inorganic composite insulating composition for high-voltage direct-current cables manufactured thereby
본 발명은 고전압 직류케이블용 유무기 복합 절연 조성물 제조방법 및 이에 따라 제조된 고전압 직류케이블용 유무기 복합 절연 조성물에 관한 것이다.The present invention relates to a method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables and to an organic-inorganic composite insulation composition for high-voltage direct current cables manufactured thereby.
폴리올레핀(polyolefin)은 알켄(alkene)으로부터 중합되어 형성되는 알킬(alkyl)기를 갖는 고분자 물질을 통칭하며, 폴리에틸렌 (polyethylene, PE)과 폴리프로필렌(polypropylene, PP)이 대표적인 예이다. 이러한 폴리올레핀은 열에 의해 성형가능한 열가소성 고분자(thermoplastic polymer)로서 성형성이 좋아 공정이 간편하여 열에 의해 재성형이 가능한 재활용성을 갖는다. 특히 PE, PP는 공업용 고분자 소재 중에서도 가격이 매우 저렴하면서 기계적 물성, 내화학성과 같은 물성이 우수하여 포장재, 필름, 용기, 파이프 및 전기전자산업 등 다양한 분야에서 널리 활용되고 있다. Polyolefin refers to a polymer material with an alkyl group that is formed by polymerizing an alkene, and representative examples include polyethylene (PE) and polypropylene (PP). This polyolefin is a thermoplastic polymer that can be molded by heat. It has good moldability and is easy to process, so it has recyclability and can be remolded by heat. In particular, PE and PP are very inexpensive among industrial polymer materials and have excellent physical properties such as mechanical properties and chemical resistance, so they are widely used in various fields such as packaging materials, films, containers, pipes, and the electrical and electronic industries.
예컨대 전력 케이블의 경우 저밀도 폴리에틸렌을 가교하여 얻어지는 가교 폴리에틸렌(crosslinked polyethylene, XLPE)이 널리 사용되고 있으며, 최근에는 PP 기반 소재를 활용하려는 기술 개발이 더욱 활발히 이루어지고 있다. 이는 PP 기반 소재가 가교 폴리에틸렌과 비교하여 높은 용융 온도(melting temperature)를 가져 전력용량 증가 추세에 따른 내열성 증가에 대한 필요성에 부합할 뿐만 아니라, 가교 및 가교 부산물 제거 과정이 없기 때문에 공정적 부담을 대폭 줄일 수 있으며, 또한 기존 XLPE는 열경화성으로 인하여 재성형성을 얻기 힘든 반면, PP는 재활용성에 의한 친환경성을 확보할 수 있기 때문이다.For example, in the case of power cables, crosslinked polyethylene (XLPE), obtained by crosslinking low-density polyethylene, is widely used, and recently, technology development to utilize PP-based materials is becoming more active. This not only meets the need for increased heat resistance according to the trend of increasing power capacity as PP-based materials have a higher melting temperature compared to cross-linked polyethylene, but also significantly reduces the process burden because there is no cross-linking and cross-linking by-product removal process. This is because while existing XLPE is difficult to obtain remoldability due to thermosetting, PP can secure eco-friendliness through recyclability.
하지만 PP는 그 자체로는 고강성(stiffness), 즉 탄성계수(modulus)가 너무 높아 유연성이 요구되는 케이블용 절연 소재로 사용되기에는 부적합하다. 이에, 유연성 및 이를 통한 충격강도 향상을 위하여 폴리프로필렌 공중합체(polypropylene copolymer, PPC)를 화학적으로 합성하거나, 또는 유연성 물질과의 기계적 혼합을 통하여 블렌딩 소재를 제조하는 방법이 사용되고 있으며, 이와 같은 열가소성 및 고무와 같은 유연성을 동시에 갖는 열가소성 탄성체(thermoplastic elastomer, TPE) 소재를 케이블 절연재료로 응용하는 기술 개발이 활발히 이루어지고 있다. 기계적 혼합에 의한 TPE 제조는 용융점 이상의 온도에서 블렌딩을 통하여 얻어지는데, PP와 용융 블렌딩하는 소재로서 폴리올레핀 탄성체(polyolefin elastomer, POE)가 가장 널리 사용되고 있다. POE는 에틸렌-부텐 공중합체, 에틸렌-옥텐 공중합체 등과 같이 에틸렌(탄소수 2)과 탄소수가 높은 단량체간의 공중합으로 이루어져 고무와 같은 유연성 및 탄성을 갖는 물질을 말한다. However, PP itself has high stiffness, that is, too high modulus of elasticity, making it unsuitable to be used as an insulation material for cables that require flexibility. Accordingly, in order to improve flexibility and impact strength, a method of chemically synthesizing polypropylene copolymer (PPC) or manufacturing a blended material through mechanical mixing with a flexible material is being used, and such thermoplastic and Technology development is being actively conducted to apply thermoplastic elastomer (TPE) material, which has rubber-like flexibility, as a cable insulation material. TPE production by mechanical mixing is obtained through blending at a temperature above the melting point, and polyolefin elastomer (POE) is most widely used as a material for melt blending with PP. POE refers to a material that is made of a copolymerization between ethylene (carbon number 2) and a high carbon number monomer, such as ethylene-butene copolymer and ethylene-octene copolymer, and has rubber-like flexibility and elasticity.
이는 폴리프로필렌 또는 폴리프로필렌 공중합체에 폴리올레핀 탄성체를 블렌딩하여 열가소성 탄성체를 제조하는 방법을 제공하는 특허문헌 1의 '전력 케이블용 절연체(등록번호: 10-2174435)'와, 폴리프로필렌, 폴리올레핀 탄성체 및 에틸렌-프로필렌 공중합체의 삼성분계 조성물을 제공하는 특허문헌 2의 '케이블 절연층용 삼성분계 조성물, 그 제조방법 및 이를 포함하는 케이블 절연층, 전력 케이블(공개번호: 10-2021-0052962)'에 개시되어 있다.This includes 'Insulator for Power Cable (Registration Number: 10-2174435)' in Patent Document 1, which provides a method of producing a thermoplastic elastomer by blending polypropylene or polypropylene copolymer with polyolefin elastomer, and polypropylene, polyolefin elastomer, and ethylene. -Patent Document 2, which provides a ternary composition of propylene copolymer, discloses 'Tternary composition for cable insulation layer, manufacturing method thereof, cable insulation layer containing the same, and power cable (Publication No. 10-2021-0052962)' there is.
이러한 TPE 소재는 PP의 강직성(stiffness)을 낮추면서 케이블 절연소재로 사용될 수 있는 적절한 기계적 물성이 확보되는 장점이 있지만, POE 등 PP와 혼합되는 유연성 재료 자체의 낮은 절연성 및 PP와의 계면 결함 등으로 인해 발생하는 절연성능 저하를 극복해야될 필요성이 종종 발생한다. This TPE material has the advantage of securing appropriate mechanical properties that can be used as a cable insulation material while lowering the stiffness of PP, but due to the low insulation properties of flexible materials mixed with PP such as POE and interface defects with PP, etc. There is often a need to overcome the resulting degradation of insulation performance.
특히, 고전압 직류(High voltage direct current, HVDC) 환경 하에서는 교류와 달리 한방향으로의 지속적인 전압인가로 인하여 절연체 내부에 발생하는 공간전하(space charge)가 축적되는 현상이 발생하는데, 절연체내 전계 왜곡 효과를 일으켜 절연성능을 약화시키거나 절연파괴(dielectric breakdown)를 초래할 수 있게 된다. 이러한 공간전하축적 억제를 위하여 MgO, TiO2, ZnO, hBN 등의 무기나노입자를 첨가함으로써 절연층 내 공간전하를 트랩핑(trapping)하여 공간전하를 저감시킬 수 있는 나노복합형 절연소재 개발에 대한 연구가 많이 이루어지고 있다.In particular, in a high voltage direct current (HVDC) environment, unlike alternating current, the continuous application of voltage in one direction causes the accumulation of space charge inside the insulator, which reduces the effect of electric field distortion within the insulator. This can weaken insulation performance or cause dielectric breakdown. In order to suppress this space charge accumulation, research is being conducted on the development of a nanocomposite insulating material that can reduce space charges by trapping space charges in the insulating layer by adding inorganic nanoparticles such as MgO, TiO 2 , ZnO, and hBN. A lot of research is being done.
예로써, 폴리프로필렌에 판산형 질화붕소(hBN)를 고분자 분산제와 함께 복합화하여 공간전하를 저감하는 방법을 제공하는 특허문헌 3의‘공간전하저감을 위한 고전압 직류 케이블용 절연재료 및 이의 제조방법 (공개번호: 10-2022-0012122)’과 저밀도 폴리에틸렌과 비닐실란으로 표면개질된 산화마그네슘(MgO)이 포함된 절연층 소재를 통하여 공간전하 저감효과 방법을 제공하는 특허문헌 4의 ‘직류 전력 케이블 (등록번호: 10-2272724)’에 개시되어있다. For example, Patent Document 3, which provides a method of reducing space charge by complexing polypropylene with a polymer dispersant of phenolic boron nitride (hBN), 'Insulating material for high-voltage direct current cable for space charge reduction and method of manufacturing same ( Publication number: 10-2022-0012122)' and Patent Document 4's 'DC power cable ( Registration number: 10-2272724)'.
이와 같은 나노복합소재를 통하여 공간전하축적이 상대적으로 억제되는 효과는 확인되나, 공간전하축적억제를 보다 최소화하기위한 소재 개발은 계속하여 필요한 상황이며, 특히 무기나노입자 표면개질에 따른 공간전하축적 효과에 대한 연구는 매우 희박한 실정이다. 또한, 특허문헌 4에서와 같이 일정시간 전압인가 후 분석시 공간전하 저감효과가 있는 경우에라도 전압인가시간에 따라 공간전하축적 및 이에 따른 전계왜곡정도가 지속적으로 증가되는 현상을 해결하는 것이 매우 중요하다. Although the effect of relatively suppressing space charge accumulation through such nanocomposite materials has been confirmed, the development of materials to further minimize space charge accumulation suppression is still necessary, especially the effect of space charge accumulation due to surface modification of inorganic nanoparticles. Research on this is very rare. In addition, even if there is a space charge reduction effect when analyzing after applying voltage for a certain period of time as in Patent Document 4, it is very important to solve the phenomenon of space charge accumulation and the resulting degree of electric field distortion continuously increasing depending on the voltage application time. .
즉, 전압인가시간에 따른 공간전하 및 전계왜곡 증가율을 가능한 한 낮춤으로써 보다 안정적인 고압직류 환경에서 사용을 보장할 수 있게 된다. 아울러, 공간전하 특성만 따로 분석할 것이 아니라 절연성능과 기계적 물성을 통합적으로 분석함으로써 케이블 소재로서의 적용 가능성에 대한 평가가 이루어져야 한다. In other words, by reducing the increase rate of space charge and electric field distortion according to voltage application time as much as possible, use in a more stable high-voltage direct current environment can be guaranteed. In addition, the applicability as a cable material should be evaluated by comprehensively analyzing the insulation performance and mechanical properties, rather than analyzing only the space charge characteristics separately.
또한, 이와같은 목적으로 산화마그네슘(MgO), 산화티타늄(TiO2), 산화아연(ZnO), 질화붕소(hBN) 등의 무기나노소재가 주로 사용되는데, 대략 1 중량% 내외의 소량을 사용하더라도 케이블 제조시 대량생산을 하게되므로 실제 생산 적용시 비용에 대한 부담을 줄이기 위해서는 실리카(SiO2) 등의 저가의 무기소재를 적용하는 기술개발이 필요하다.Additionally, inorganic nanomaterials such as magnesium oxide (MgO), titanium oxide (TiO 2 ), zinc oxide (ZnO), and boron nitride (hBN) are mainly used for this purpose, and even if used in small amounts of approximately 1% by weight, Since cable manufacturing involves mass production, it is necessary to develop technology that applies low-cost inorganic materials such as silica (SiO 2 ) in order to reduce the cost burden when applied to actual production.
이에 본 발명자들은 HVDC 케이블 적용을 위한 열가소성 탄성체 나노복합재에 있어서 무기나노입자의 표면처리 연구를 통하여 공간전하축적에 따른 전계왜곡 정도 및 그 증가율을 최소화함과 동시에 우수한 절연성능 및 기계적 물성, 아울러 가격경쟁력을 확보할 수 있는 고전압 직류케이블용 유무기 복합 절연 조성물 제조방법 및 이에 따라 제조된 고전압 직류케이블용 유무기 복합 절연 조성물을 개발하여 본 발명을 완성하였다.Accordingly, the present inventors studied the surface treatment of inorganic nanoparticles in thermoplastic elastomer nanocomposites for HVDC cable application to minimize the degree and increase rate of electric field distortion due to space charge accumulation, while maintaining excellent insulation performance and mechanical properties, as well as price competitiveness. The present invention was completed by developing a method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables that can secure and an organic-inorganic composite insulation composition for high-voltage direct current cables manufactured accordingly.
본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 고압직류 환경에서 공간전하 축적에 의한 전계왜곡 정도 및 시간에 따른 증가율이 억제됨과 동시에 절연성능 및 기계적 물성이 우수한 고전압 직류케이블용 유무기 복합 절연 조성물 제조방법 및 이에 따라 제조된 고전압 직류케이블용 유무기 복합 절연 조성물을 제공하는 것을 기술적 해결과제로 한다.The present invention was invented to solve the above-mentioned problems, and in a high-voltage direct-current environment, the degree of electric field distortion due to space charge accumulation and the rate of increase over time are suppressed, and the organic-inorganic composite insulation for high-voltage direct-current cables has excellent insulation performance and mechanical properties. The technical problem is to provide a composition manufacturing method and an organic-inorganic composite insulation composition for high-voltage direct current cables manufactured accordingly.
상기의 기술적 과제를 해결하기 위하여 본 발명은,In order to solve the above technical problems, the present invention,
알콕시 실란이 포함된 용매에 물과 촉매를 투입하고, 졸겔반응으로 실리카 나노입자 분산액을 합성하는 단계;Adding water and a catalyst to a solvent containing alkoxy silane and synthesizing a silica nanoparticle dispersion through a sol-gel reaction;
상기 실리카 나노입자 분산액을 표면개질용 작용기를 갖는 알콕시 실란과 반응시켜 상기 작용기로 표면개질된 실리카 나노입자 분말을 제조하는 단계;reacting the silica nanoparticle dispersion with an alkoxy silane having a functional group for surface modification to produce silica nanoparticle powder surface-modified with the functional group;
상기 표면개질된 실리카 나노입자 분말과 폴리올레핀계 열가소성 탄성체 수지를 용융 혼합하여 유무기 복합 절연 조성물을 제조하는 단계;를 포함하여 이루어지고, It includes manufacturing an organic-inorganic composite insulation composition by melting and mixing the surface-modified silica nanoparticle powder and the polyolefin-based thermoplastic elastomer resin,
상기 표면개질용 작용기는 메틸(methyl)기, 에틸(ethyl)기, 비닐(vinyl)기, 티올(thiol)기, 아민(amine)기 및 불소(fluorine)기로 이루어진 군으로부터 선택되는 1종 이상이고, The functional group for surface modification is at least one selected from the group consisting of methyl group, ethyl group, vinyl group, thiol group, amine group, and fluorine group. ,
상기 유무기 복합 절연 조성물은, 상기 실리카 나노입자 표면의 작용기에 의해 고전압 직류 전압 인가시 발생하는 공간전하를 트랩핑(trapping)하여 공간전하의 축적을 억제하는 것을 특징으로 하는,The organic-inorganic composite insulating composition is characterized in that it suppresses the accumulation of space charges by trapping space charges generated when high voltage direct current voltage is applied by functional groups on the surface of the silica nanoparticles.
고전압 직류케이블용 유무기 복합 절연 조성물 제조방법을 제공한다.A method for manufacturing an organic-inorganic composite insulation composition for high-voltage direct current cables is provided.
본 발명에서 상기 표면개질된 실리카 나노입자 분말을 제조하는 단계는,In the present invention, the step of producing the surface-modified silica nanoparticle powder is,
상기 실리카 나노입자 분산액에 상기 표면개질용 작용기를 갖는 알콕시 실란을 투입하고 표면개질한 후 용매를 제거하여 1차 표면개질된 실리카 나노입자 분말을 제조하는 단계;Preparing primary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification to the silica nanoparticle dispersion, performing surface modification, and then removing the solvent;
상기 1차 표면개질된 실리카 나노입자 분말에 상기 표면개질용 작용기를 갖는 알콕시 실란과 용매를 함께 투입하여 2차 표면개질된 실리카 나노입자 분말을 제조하는 단계;를 포함하는 것을 특징으로 한다.It is characterized in that it includes the step of preparing a secondary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification and a solvent to the primary surface-modified silica nanoparticle powder.
본 발명에서 상기 폴리올레핀계 열가소성 탄성체 수지는 폴리프로필렌 수지, 폴리올레핀 탄성체 및 분산 개질제를 포함하는 것을 특징으로 한다.In the present invention, the polyolefin-based thermoplastic elastomer resin is characterized in that it includes a polypropylene resin, a polyolefin elastomer, and a dispersion modifier.
본 발명에서 상기 표면개질된 실리카 나노입자 분말이 0.1 ~ 5.0 중량% 혼합된 것을 특징으로 한다.The present invention is characterized in that 0.1 to 5.0% by weight of the surface-modified silica nanoparticle powder is mixed.
상기의 다른 기술적 과제를 해결하기 위하여 본 발명은,In order to solve the above other technical problems, the present invention,
상기 제조방법에 따라 제조되는 것을 특징으로 하는, 고전압 직류케이블용 유무기 복합 절연 조성물을 제공한다.Provided is an organic-inorganic composite insulation composition for high-voltage direct current cables, which is manufactured according to the above manufacturing method.
본 발명의 고전압 직류케이블용 유무기 복합 절연 조성물 제조방법은 표면개질용 작용기를 갖는 알콕시 실란으로 실리카 나노입자 분말을 표면개질한 후 열가소성 탄성체 수지와 혼합하여 절연 조성물의 공간전하의 축적을 효과적으로 억제하는 고전압 직류케이블용 절연 조성물을 제공한다.The method for manufacturing an organic-inorganic composite insulation composition for a high-voltage direct current cable of the present invention is to surface modify silica nanoparticle powder with an alkoxy silane having a functional group for surface modification and then mix it with a thermoplastic elastomer resin to effectively suppress the accumulation of space charges in the insulation composition. An insulating composition for high voltage direct current cables is provided.
본 발명의 고전압 직류케이블용 유무기 복합 절연 조성물은 고압 직류 환경에서 공간전하 축적에 의한 전계왜곡 정도 및 시간에 따른 증가율이 억제됨과 동시에 절연성능 및 기계적 물성이 우수하다.The organic-inorganic composite insulation composition for high-voltage direct current cables of the present invention suppresses the degree of electric field distortion due to space charge accumulation and the rate of increase over time in a high-voltage direct current environment, and has excellent insulation performance and mechanical properties.
도 1은 본 발명의 바람직한 실시예에 따른 순서도이다.1 is a flow chart according to a preferred embodiment of the present invention.
도 2는 실시예에 따른 실리카 나노입자 형상 및 열가소성 탄성체-실리카 나노복합재의 단면 SEM 형상이다.Figure 2 shows the cross-sectional SEM shape of a silica nanoparticle shape and a thermoplastic elastomer-silica nanocomposite according to an example.
도 3은 시험예 1에 따른 열가소성 탄성체 및 열가소성 탄성체 나노복합재의 전압인가시간에 따른 공간전하를 나타내는 그래프이다.Figure 3 is a graph showing the space charge of the thermoplastic elastomer and thermoplastic elastomer nanocomposite according to Test Example 1 according to voltage application time.
도 4는 시험예 1에 따른 열가소성 탄성체 및 열가소성 탄성체 나노복합재의 전압인가시간에 따른 전계변화를 나타내는 그래프이다.Figure 4 is a graph showing the electric field change according to voltage application time of the thermoplastic elastomer and thermoplastic elastomer nanocomposite according to Test Example 1.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 반응, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 반응, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, reactions, components, or a combination thereof described in the specification, but are not intended to indicate the presence of one or more other features or numbers. It should be understood that this does not exclude in advance the presence or addition of steps, reactions, components or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having meanings consistent with the meanings they have in the context of the related technology, and unless clearly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
본 발명의 일 측면에 따르면, 알콕시 실란이 포함된 용매에 물과 촉매를 투입하고, 졸겔반응으로 실리카 나노입자 분산액을 합성하는 단계; 상기 실리카 나노입자 분산액을 표면개질용 작용기를 갖는 알콕시 실란과 반응시켜 상기 작용기로 표면개질된 실리카 나노입자 분말을 제조하는 단계; 상기 표면개질된 실리카 나노입자 분말과 폴리올레핀계 열가소성 탄성체 수지를 용융 혼합하여 유무기 복합 절연 조성물을 제조하는 단계;를 포함하여 이루어지고, 상기 표면개질용 작용기는 메틸(methyl)기, 에틸(ethyl)기, 비닐(vinyl)기, 티올(thiol)기, 아민(amine)기 및 불소(fluorine)기로 이루어진 군으로부터 선택되는 1종 이상이고, 상기 유무기 복합 절연 조성물은, 상기 실리카 나노입자 표면의 작용기에 의해 고전압 직류 전압 인가시 발생하는 공간전하를 트랩핑(trapping)하여 공간전하의 축적을 억제하는 것을 특징으로 하는, 고전압 직류케이블용 유무기 복합 절연 조성물 제조방법을 제공한다.According to one aspect of the present invention, adding water and a catalyst to a solvent containing an alkoxy silane and synthesizing a silica nanoparticle dispersion through a sol-gel reaction; reacting the silica nanoparticle dispersion with an alkoxy silane having a functional group for surface modification to produce silica nanoparticle powder surface-modified with the functional group; It includes the step of melting and mixing the surface-modified silica nanoparticle powder and the polyolefin-based thermoplastic elastomer resin to prepare an organic-inorganic composite insulation composition, wherein the surface-modifying functional group is a methyl group and an ethyl group. group, a vinyl group, a thiol group, an amine group, and a fluorine group, and the organic-inorganic composite insulating composition includes a functional group on the surface of the silica nanoparticle. Provided is a method for manufacturing an organic-inorganic composite insulation composition for a high-voltage direct-current cable, characterized in that it suppresses the accumulation of space charges by trapping space charges generated when high-voltage direct-current voltage is applied.
먼저 졸겔반응으로 실리카 나노입자 분산액을 합성한다(S1).First, a silica nanoparticle dispersion is synthesized through a sol-gel reaction (S1).
상기 실리카 나노입자 분산액은 전구체인 4가 알콕시 실란이 포함된 용매에물과 촉매를 투입하여 졸겔(sol-gel) 반응을 통하여 실리카졸(silica sol) 형태로 합성하는 것을 특징으로 한다. The silica nanoparticle dispersion is characterized in that it is synthesized in the form of silica sol through a sol-gel reaction by adding water and a catalyst to a solvent containing tetravalent alkoxy silane, a precursor.
여기서 4가 알콕시 실란은 OH(하이드록시기)가 4개인 실란이며, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.Here, tetravalent alkoxy silane is a silane with four OH (hydroxy groups), including tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. , it is preferably one selected from the group consisting of tetrabutoxysilane, tetraphenoxysilane, tetraacethoxysilane, and mixtures thereof.
상기 용매는 알콜계 용매를 사용하는 것이 바람직하며, 메틸알콜(methyl alcohol), 에틸알콜(ethyl alcohol), 프로필알콜(propyl alcohol), 이소프로필알콜(isopropyl alcohol), 부틸알콜(butyl alcohol), t-부틸알콜(tert-butyl alcohol), 펜틸알콜(pentyl alcohol), 벤질알콜(benzyl alcohol)로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다. The solvent is preferably an alcohol-based solvent, such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, t -It is preferably one selected from the group consisting of butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof.
상기 촉매는 염기성 촉매를 사용하며, 수산화암모늄(ammonium hydroxide), 염화암모늄(ammonium chloride), 메틸아민(methyl amine), 에틸아민(ethyl amine), 프로필아민(propyl amine), 이소프로필아민(isopropyl amine), 부틸아민(butyl amine), 시클로헥실아민(cyclohexyl amine), 디메틸아민(dimethyl amine), 디에틸아민(diethyl amine), 트리메틸아민(trimethyl amine), 트리에틸아민(triethyl amine)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.The catalyst uses a basic catalyst, ammonium hydroxide, ammonium chloride, methyl amine, ethyl amine, propyl amine, and isopropyl amine. ), butyl amine, cyclohexyl amine, dimethyl amine, diethyl amine, trimethyl amine, triethyl amine, and It is preferable that it is one type selected from the group of mixtures thereof.
상기 촉매는 전구체 100중량부 대비 1내지 10중량부를 사용하는 것이 바람직하다. It is preferable to use 1 to 10 parts by weight of the catalyst based on 100 parts by weight of the precursor.
상기 촉매는 반응속도 뿐만 아니라 형성되는 실리카 입자 크기와 관련되어있는데, 촉매함량이 많을수록 실리카 입자 크기가 증가하게 된다. 적정한 촉매함량은반응온도, 반응물 농도 및 촉매 종류 등 조건에 따라 달라지게 되나, 대체로 상기 촉매를 10중량부 이상 사용하는 경우, 실리카 입자크기가 수백 nm이상 지나치게 커질 우려가 있으며, 촉매함량이 1중량부 미만인 경우, 반응속도가 너무 느려지게 되어 반응시간이 지나치게 길어지고 반응이 완결되지 않을 우려가 있다.The catalyst is related not only to the reaction rate but also to the size of the silica particles formed. As the catalyst content increases, the silica particle size increases. The appropriate catalyst content varies depending on conditions such as reaction temperature, reactant concentration, and catalyst type, but in general, when more than 10 parts by weight of the catalyst is used, there is a risk that the silica particle size may become excessively large by hundreds of nm or more, and the catalyst content is 1 weight. If it is less than 100%, the reaction rate becomes too slow, the reaction time becomes too long, and there is a risk that the reaction may not be completed.
상기 물은 증류수를 사용하는 것이 바람직하며, 상기 용매 100중량부에 대하여 3중량부 이상 사용하는 것이 바람직하다. The water is preferably distilled water, and is preferably used in an amount of 3 parts by weight or more based on 100 parts by weight of the solvent.
상기 실리카 나노입자는 전구체인 4가 알콕시 실란의 가수분해 및 축합반응을 통하여 형성되는데, 물의 적정량은 반응온도, 반응물 농도, 촉매종류 및 함량 등에 따라 달라지게 되나, 대체로 물을 3 중량부 미만인 경우, 전구체인 4가 알콕시 실란이 가수분해가 지나치게 느려지게 되어 반응시간이 길어지고 반응이 완결되지 않을 우려가 있다. The silica nanoparticles are formed through the hydrolysis and condensation reaction of the precursor, tetravalent alkoxy silane. The appropriate amount of water varies depending on the reaction temperature, reactant concentration, catalyst type and content, etc., but in general, if the water is less than 3 parts by weight, There is a risk that the hydrolysis of the precursor, tetravalent alkoxy silane, may be too slow, resulting in longer reaction times and incomplete reaction.
상기 실리카 나노입자 분산액을 제조하기 위한 졸겔반응의 온도는 20 내지 100 ℃에서 이루어지는 것이 바람직하다. 반응 온도가 20 ℃ 미만일 경우 실리카 형성을 위한 반응시간이 많이 소요되며, 반응 온도가 100 ℃를 초과할 경우 알콜계 용매에 따라 증발하는 경우가 있을 수 있다.The temperature of the sol-gel reaction to prepare the silica nanoparticle dispersion is preferably between 20 and 100°C. If the reaction temperature is less than 20°C, it takes a lot of reaction time to form silica, and if the reaction temperature exceeds 100°C, evaporation may occur depending on the alcohol-based solvent.
다음으로 표면개질된 실리카 나노입자 분말을 제조한다(S2). Next, surface-modified silica nanoparticle powder is prepared (S2).
본 발명에 있어서 상기 표면개질된 실리카 나노입자 분말은 상기 실리카 나노입자 분산액에 표면개질용 작용기를 갖는 알콕시 실란을 투입하여 실리카 나노입자 표면에서의 졸겔 반응을 통하여 표면처리하는 것을 특징으로 한다. In the present invention, the surface-modified silica nanoparticle powder is characterized by surface treatment through a sol-gel reaction on the surface of the silica nanoparticles by adding an alkoxy silane having a functional group for surface modification to the silica nanoparticle dispersion.
상기 표면개질용 작용기는 메틸(methyl)기, 에틸(ethyl)기, 비닐(vinyl)기, 티올(thiol)기, 아민(amine)기 및 불소(fluorine)기로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 바람직하게는 불소기를 갖는 알콕시 실란을 포함하여야 본 발명의 목적을 효과적으로 달성할 수 있다. The functional group for surface modification may be one or more types selected from the group consisting of methyl group, ethyl group, vinyl group, thiol group, amine group, and fluorine group. and preferably includes an alkoxy silane having a fluorine group to effectively achieve the purpose of the present invention.
공간전하축적 억제를 위하여 일반적으로 극성기가 높은 물질을 도입하는 경우가 많은데, 이는 적절한 레벨의 전하 트랩핑(charge trapping)에 의한 효과로 알려져있다. 하지만, 이러한 극성기가 큰 물질은 표면에너지가 높고 친수성이 큰 경향이 있기 때문에 표면에너지가 낮고 소수성인 폴리올레핀계 물질과 상용성이 낮아 혼합시 분산성이 낮은 문제점이 있을 수 있다.In order to suppress space charge accumulation, a material with a high polarity group is often introduced, and this is known to have an effect due to an appropriate level of charge trapping. However, since these materials with large polar groups tend to have high surface energy and high hydrophilicity, they may have low surface energy and low compatibility with hydrophobic polyolefin-based materials, resulting in low dispersibility when mixed.
따라서 불소기를 갖는 알콕시 실란을 이용함이 바람직하다. 불소기의 경우, 전기음성도가 매우 높으면서도 표면에너지가 낮고 소수성인 독특한 성질이 있다. 따라서, 폴리올레핀계 열가소성 탄성체 내에 분산성이 우수함과 동시에 높은 전기음성도에 의한 공간전하축적 억제효과를 이룰 수 있도록 불소기를 포함하는 물질로 표면개질된 실리카 나노입자를 사용할 수 있다. Therefore, it is preferable to use an alkoxy silane having a fluorine group. In the case of fluorine groups, they have a unique property of having very high electronegativity, low surface energy, and being hydrophobic. Therefore, silica nanoparticles surface-modified with a material containing a fluorine group can be used to achieve excellent dispersibility in the polyolefin-based thermoplastic elastomer and at the same time suppress space charge accumulation due to high electronegativity.
상기 불소기를 갖는 알콕시 실란류는, triethoxyfluorosilane, trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy(pentafluorophenyl)silane, triethoxy(pentafluorophenyl)silane, pentafluorophenylethoxydimethylsilane, dimethoxy (methyl)(3,3,3-trifluoropropyl)silane, trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane, triethoxy (1H,1H,2H,2H-nonafluorohexyl) silane 및 triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane로 이루어지는 군으로부터 선택되는 1종 이상인 것이 바람직하다. 즉, 불소기를 가지는 1 내지 3가 알콕시 실란으로 이루어진 군 및 이의 혼합물 군에서 선택되는 것이 바람직하다.The alkoxy silanes having the above fluorine group include triethoxyfluorosilane, trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy(pentafluorophenyl)silane, triethoxy(pentafluorophenyl)silane, pentafluorophenylethoxydimethylsilane, dimethoxy (methyl)(3,3,3-trifluoropropyl) Selected from the group consisting of silane, trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane, triethoxy (1H,1H,2H,2H-nonafluorohexyl) silane and triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane It is preferable to have at least one type. That is, it is preferably selected from the group consisting of monovalent to trivalent alkoxy silanes having a fluorine group and mixtures thereof.
본 발명에서 표면개질된 실리카 나노입자 분말을 제조하는 단계는, 상기 실리카 나노입자 분산액에 상기 표면개질용 작용기를 갖는 알콕시 실란을 투입하고 표면개질한 후 용매를 제거하여 1차 표면개질된 실리카 나노입자 분말을 제조하는 단계; 및 상기 1차 표면개질된 실리카 나노입자 분말에 상기 표면개질용 작용기를 갖는 알콕시 실란과 용매를 함께 투입하여 2차 표면개질된 실리카 나노입자 분말을 제조하는 단계;를 포함하는 것을 특징으로 한다.In the present invention, the step of preparing surface-modified silica nanoparticle powder includes adding an alkoxy silane having the functional group for surface modification to the silica nanoparticle dispersion, performing surface modification, and then removing the solvent to produce primary surface-modified silica nanoparticles. Preparing powder; And a step of preparing a secondary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification and a solvent to the primary surface-modified silica nanoparticle powder.
1차 단계에서 실리카졸 용액에 표면처리 물질 일정량을 투입한 후 용매를 제거하여 실리카 나노입자 분말형태로 얻고, 2차 단계에서는 용매에 분말을 재분산 후 나머지 표면처리물질을 투입하고 반응한 이후, 세척 및 건조 과정을 거쳐 최종적인 표면개질된 실리카 나노입자 분말을 얻는 것을 특징으로 한다. In the first step, a certain amount of surface treatment material is added to the silica sol solution, and then the solvent is removed to obtain silica nanoparticles in the form of powder. In the second step, the powder is redispersed in the solvent and the remaining surface treatment material is added and reacted. It is characterized in that the final surface-modified silica nanoparticle powder is obtained through a washing and drying process.
상기 1차 표면처리 단계에서는 상기 표면개질용 알콕시 실란 중 일부를 실리카 나노입자 분산액에 투입 후 용액 내에서 표면반응이 일어나도록 하며, 이후 용매를 제거하여 분말 형태로 제조한다. 1차 표면처리시 표면개질용 알콕시 실란은 바람직하게는 전구체의 1 내지 10 중량부를 투입하는 것이 바람직하다.In the first surface treatment step, some of the alkoxy silanes for surface modification are added to the silica nanoparticle dispersion, a surface reaction is allowed to occur in the solution, and the solvent is then removed to prepare the silane in powder form. During primary surface treatment, it is preferable to add 1 to 10 parts by weight of the alkoxy silane for surface modification of the precursor.
상기 2차 표면처리 단계에서는 상기 1차 표면개질된 실리카 나노입자 분말을 용매에 재분산하고, 이후 나머지 표면개질용 알콕시 실란을 투입후 표면반응이 일어나도록 하며, 이후 세척 및 건조하여 분말형태로 제조한다. 2차 표면처리시 표면개질용 알콕시 실란은 바람직하게는 전구체의 1 내지 10 중량부를 투입하는 것이 바람직하며, 이와 같이 1, 2차 표면처리과정을 통하여 최종적으로는 표면처리용 표면개질용 알콕시 실란은 전구체의 3 내지 20 중량부가 되도록 하는 것이 바람직하다.In the second surface treatment step, the first surface-modified silica nanoparticle powder is redispersed in a solvent, and then the remaining alkoxy silane for surface modification is added to cause a surface reaction, and then washed and dried to prepare the powder in powder form. do. During the secondary surface treatment, the alkoxy silane for surface modification is preferably added in an amount of 1 to 10 parts by weight of the precursor. In this way, through the first and second surface treatment processes, the alkoxy silane for surface modification for surface treatment is ultimately It is preferable that the amount of the precursor is 3 to 20 parts by weight.
일반적으로 고체 분말형태의 무기 나노입자를 표면처리하는 경우, 무기나노입자 분말을 용액 내 재분산한 후 표면개질제를 투입하는데, 이 과정에서 나노입자 분말은 입자표면의 하이드록시기로 인하여 나노입자간 물리적, 화학적 결합에 의한 응집이 일어나 제대로 용매에 분산되기 매우 힘들게 된다. 이런 경우, 뭉쳐진 응집 입자형태로 표면개질 반응이 일어나면 나노입자 표면이 골고루 표면개질제가 형성되기 어렵다. In general, when surface treating inorganic nanoparticles in the form of solid powder, the inorganic nanoparticle powder is redispersed in the solution and then a surface modifier is added. During this process, the nanoparticle powder has physical properties between nanoparticles due to the hydroxyl groups on the particle surface. , aggregation occurs due to chemical bonds, making it very difficult to properly disperse in a solvent. In this case, if the surface modification reaction occurs in the form of agglomerated particles, it is difficult for the surface modifier to be evenly formed on the surface of the nanoparticles.
반면, 본 발명에서 합성된 실리카 나노입자는 전구체가 용액내 용해된 상태에서 졸겔 반응을 통하여 나노입자로 형성된 상태이므로 응집이 거의 없는 실리카 나노입자 분산액 형태로 제조된다. 이와 같이 실리카 나노입자가 용액에 잘 분산된 상태에서 표면개질제를 투입함으로써 나노입자 표면에 고르게 표면개질제가 결합할 수 있는 특징이 있다. On the other hand, the silica nanoparticles synthesized in the present invention are formed into nanoparticles through a sol-gel reaction while the precursor is dissolved in a solution, so they are manufactured in the form of a silica nanoparticle dispersion with little aggregation. In this way, by adding the surface modifier while the silica nanoparticles are well dispersed in the solution, the surface modifier can bind evenly to the surface of the nanoparticles.
한편, 이와 같은 용액내 표면개질반응의 경우에도 표면개질을 위해 투입되는 표면개질용 알콕시 실란의 함량이 일정량 이상 많아지면 실리카 나노입자와는 별도로 용액내 표면개질용 알콕시 실란 자체간의 졸겔 반응에 의하여 응집 혹은 뭉침이 일어나 표면개질 효율이 저하될 수 있다. 따라서, 표면개질용 알콕시 실란 함량을 가능한 줄임으로써 이러한 문제점을 해결할 수 있으며, 전구체 대비 10 중량부 이하로 사용하는 것이 바람직하다. 반면, 전구체 대비 1 중량부 이하로 사용하면 표면개질 효과가 미미하여 추후 고분자 내 분산성을 확보하기 어렵다.Meanwhile, even in the case of such a surface modification reaction in a solution, when the content of the alkoxy silane for surface modification used for surface modification increases beyond a certain amount, agglomeration occurs through a sol-gel reaction between the alkoxy silane itself for surface modification in the solution, separately from the silica nanoparticles. Alternatively, agglomeration may occur and the surface modification efficiency may be reduced. Therefore, this problem can be solved by reducing the content of alkoxy silane for surface modification as much as possible, and it is preferable to use it in an amount of 10 parts by weight or less compared to the precursor. On the other hand, if less than 1 part by weight is used compared to the precursor, the surface modification effect is minimal, making it difficult to secure dispersibility within the polymer later.
한편, 용액 내에서 표면개질용 실란 자체 결합에 의한 문제를 해결하기 위해 사용한 1차 표면개질용 알콕시 실란 함량은 최종적으로 고분자 내 분산성 확보 및 이루고자 하는 기능성을 발현하기에 부족할 경우가 발생할 수도 있다. 이 경우, 본 발명에서와 같이 2차 표면개질 단계를 통해 해결할 수 있다. On the other hand, the content of alkoxy silane for primary surface modification used to solve the problem caused by self-bonding of silane for surface modification in the solution may be insufficient to ultimately secure dispersibility in the polymer and express the desired functionality. In this case, it can be solved through a secondary surface modification step as in the present invention.
이 경우, 실리카 분말은 1차 표면처리가 되어있는 상태이기 때문에, 실리카 나노입자 표면의 하이드록시기에 의한 입자간 응집을 현저히 줄일 수 있다. 따라서, 2차 표면처리 과정을 통하여 실리카 나노입자의 표면개질을 보다 완벽하게 달성할 수 있다. In this case, since the silica powder has undergone primary surface treatment, aggregation between particles due to hydroxyl groups on the surface of the silica nanoparticles can be significantly reduced. Therefore, the surface modification of silica nanoparticles can be more completely achieved through the secondary surface treatment process.
상기 실리카 나노입자 표면처리 과정에서의 용매 제거는 온도 및 진공을 가하여 제거할 수 있으며, 이후 입자분말은 원심분리기 등을 이용한 세척과정을 통하여 반응부산물 및 이물질을 제거할 수 있다. The solvent in the silica nanoparticle surface treatment process can be removed by applying temperature and vacuum, and the particle powder can then be washed to remove reaction by-products and foreign substances using a centrifuge or the like.
제조된 실리카 나노입자는 직경이 1 내지 100 nm인 것이 바람직하다. 입자크기가 1 nm 미만이 되면 실리카 본연의 무기 성질이 제대로 발현되지 못할 수 있으며, 100 nm를 초과하는 경우에는 마이크로 스케일에 가까워지기 때문에 나노 효과, 즉 표면 및 계면 면적의 증대로 인한 물성향상을 기대하기 어려울 가능성이 크다.The produced silica nanoparticles preferably have a diameter of 1 to 100 nm. If the particle size is less than 1 nm, the natural inorganic properties of silica may not be properly expressed, and if it exceeds 100 nm, it approaches the micro scale, so it is expected to improve physical properties due to the nano effect, that is, increase in surface and interface area. It is likely that it will be difficult to do.
마지막으로 상기 표면개질된 실리카 나노입자 분말과 폴리올레핀계 열가소성 탄성체 수지를 용융 혼합하여 유무기 복합 절연 조성물을 제조한다(S3).Finally, the surface-modified silica nanoparticle powder and the polyolefin-based thermoplastic elastomer resin are melted and mixed to prepare an organic-inorganic composite insulation composition (S3).
상기 폴리올레핀계 열가소성 탄성체 수지는 폴리프로필렌 수지, 폴리올레핀 탄성체 및 분산 개질제를 포함할 수 있고, 용융 혼합은 폴리프로필렌 수지, 폴리올레핀 탄성체 및 분산 개질제에 표면개질된 실리카 나노입자 분말 함께 투입하여 150 내지 25 0℃에서 용융 혼합하여 실리카 나노입자가 포함된 열가소성 탄성체 나노복합재가 제조된다. The polyolefin-based thermoplastic elastomer resin may include a polypropylene resin, a polyolefin elastomer, and a dispersion modifier. Melt mixing is performed by adding surface-modified silica nanoparticle powder to the polypropylene resin, polyolefin elastomer, and dispersion modifier at 150 to 25 0°C. A thermoplastic elastomer nanocomposite containing silica nanoparticles is produced by melt mixing.
상기 표면개질된 실리카 나노입자 분말이 0.1 ~ 5.0 중량% 혼합될 수 있다.The surface-modified silica nanoparticle powder may be mixed in an amount of 0.1 to 5.0% by weight.
실리카 나노입자가 0.1 중량%미만으로 포함되는 경우, 나노입자를 첨가한 효과가 매우 미비하게 되며, 5 중량% 초과하여 첨가되는 경우 실리카 나노입자간 뭉침이 증가하여 물성이 저하될 우려가 있다.If the silica nanoparticles are included in less than 0.1% by weight, the effect of adding the nanoparticles will be very minimal, and if the silica nanoparticles are added in excess of 5% by weight, there is a risk that agglomeration between silica nanoparticles will increase and the physical properties will deteriorate.
본 발명의 폴리올레핀계 열가소성 탄성체 수지는 폴리프로필렌 수지 40 내지 60 중량부와, 폴리프로필렌 수지에 분산되는 폴리올레핀 탄성체 40 내지 60 중량부와, 폴리프로필렌 수지 및 폴리올레핀 탄성체와 상용성을 갖는 분산 개질제 1 내지 20 중량부를 포함하고, 분산 개질제는 하기 관계식 1을 만족하는 것을 특징으로 한다.The polyolefin-based thermoplastic elastomer resin of the present invention includes 40 to 60 parts by weight of polypropylene resin, 40 to 60 parts by weight of polyolefin elastomer dispersed in the polypropylene resin, and 1 to 20 dispersion modifiers compatible with the polypropylene resin and polyolefin elastomer. It contains parts by weight, and the dispersion modifier is characterized by satisfying the following relational equation 1.
[관계식 1][Relational Expression 1]
E2 < E1 < E3E2 < E1 < E3
단, E1은 분산 개질제의 탄성계수, E2는 폴리올레핀 탄성체의 탄성계수, E3은 폴리프로필렌 수지의 탄성계수이다.However, E1 is the elastic modulus of the dispersion modifier, E2 is the elastic modulus of the polyolefin elastomer, and E3 is the elastic modulus of the polypropylene resin.
폴리프로필렌 수지가 40 중량부 미만으로 첨가되면 도체에 절연층으로 피복되더라도 외부 충격에 의해 절연층이 쉽게 박리되어 버려 도체를 감싸는 절연층의 절연 소재로 사용되기에 부적절하다. 이와 달리 폴리프로필렌 수지가 60 중량부를 초과하여 첨가되면 절연재료에 유연성을 부여할 수 없게 되어 절연층으로 완전히 피복하더라도 내충격성에 취약한 단점이 있다. 이에 따라 폴리프로필렌 수지는 40 내지 60 중량부로 포함되어 매트릭스를 이루는 것이 바람직하다.If less than 40 parts by weight of polypropylene resin is added, even if the conductor is covered with an insulating layer, the insulating layer is easily peeled off due to external impact, making it unsuitable for use as an insulating material for the insulating layer surrounding the conductor. On the other hand, if the polypropylene resin is added in excess of 60 parts by weight, flexibility cannot be imparted to the insulating material, so even if it is completely covered with an insulating layer, it has the disadvantage of being weak in impact resistance. Accordingly, it is preferable that 40 to 60 parts by weight of polypropylene resin be included to form the matrix.
상기 폴리프로필렌 수지는, 이소택틱 호모 폴리프로필렌(isotactic homo polypropylene, iPP), 신디오택틱 호모 폴리프로필렌(syndiotactic homo polypropylene, sPP) 및 이로부터 유래되는 폴리프로필렌 공중합체(lypropylene copolymer, PPC)인 것을 특징으로 한다. The polypropylene resin is characterized in that it is isotactic homo polypropylene (iPP), syndiotactic homo polypropylene (sPP), and polypropylene copolymer (PPC) derived therefrom. Do this.
상기 폴리프로필렌 공중합체는 프로필렌 랜덤 공중합체(propylene random copolymer), 프로필렌 블록 공중합체(propylene block copolymer) 및 반응형 폴리올레핀(reactor-made thermoplastic olefin, RTPO) 중 하나 이상이 사용될 수 있다. The polypropylene copolymer may be one or more of propylene random copolymer, propylene block copolymer, and reactor-made thermoplastic olefin (RTPO).
본 발명에서 폴리올레핀 탄성체는 폴리올레핀 구조로부터 유래되어 고무성질을 갖는 것으로, 폴리프로필렌 수지의 매트릭스상에 분산상을 이룰 수 있으며, 에틸렌과, 탄소 수 4 내지 20의 알파 올레핀(α-olefin)을 공중합하여 제조되는 것을 특징으로 한다.In the present invention, the polyolefin elastomer is derived from a polyolefin structure and has rubber properties, can form a dispersed phase in the matrix of polypropylene resin, and is manufactured by copolymerizing ethylene and an alpha olefin (α-olefin) having 4 to 20 carbon atoms. It is characterized by being
상기 폴리올레핀 탄성체는, 에틸렌-부텐 공중합체(ethylene-butene copolymer), 에틸렌-옥텐 공중합체(ethylene-octene copolymer), 에틸렌-프로필렌 고무(ethylene propylene rubber, EPR), 에틸렌-프로필렌 디엔 모노머(ethylene propylene diene monomer, EPDM), 스티렌-에틸렌-스티렌 공중합체(styrene-butadiene-styrene copolymer, SBS) 및 스티렌-에틸렌-부타디엔-스티렌 공중합체(styrene-ethylene-butadiene-styrene copolymer, SEBS) 중 하나 이상인 것을 사용할 수 있다.The polyolefin elastomer includes ethylene-butene copolymer, ethylene-octene copolymer, ethylene propylene rubber (EPR), and ethylene-propylene diene monomer. monomer, EPDM), styrene-ethylene-styrene copolymer (SBS), and styrene-ethylene-butadiene-styrene copolymer (SEBS) can be used. there is.
폴리올레핀 탄성체의 경우 탄성계수가 1 이상 100 MPa 미만의 범위이고, 최대 변형률이 500 내지 1,500 %인 물성을 가질 수 있는데, 이는 폴리프로필렌 수지의 취성(brittleness)을 보완하고 유연성을 부여할 수 있도록 하기 위함이다. 폴리올레핀 탄성체의 탄성계수가 1 MPa 미만이면 탄성계수가 너무 낮아 유의미한 효과를 가져오지 못하고, 100 MPa 이상이면 분산 개질제의 탄성계수와 비슷한 값을 가지게 되어 폴리프로필렌 수지의 취성을 보완하기에는 무의미해지는 단점이 있다. 폴리올레핀 탄성체의 최대변형률이 500 % 미만이거나 1,500 %를 초과할 경우 폴리올레핀 탄성체의 탄성계수를 1 이상 100 MPa 미만의 범위로 조절할 수 없게 되는 문제점이 있다.In the case of polyolefin elastomers, the elastic modulus is in the range of 1 to 100 MPa, and the maximum strain rate can be 500 to 1,500%. This is to compensate for the brittleness of polypropylene resin and provide flexibility. am. If the elastic modulus of the polyolefin elastomer is less than 1 MPa, the elastic modulus is too low to have a significant effect, and if it is more than 100 MPa, it has a value similar to that of the dispersion modifier, which has the disadvantage of being meaningless in compensating for the brittleness of the polypropylene resin. . If the maximum strain of the polyolefin elastomer is less than 500% or more than 1,500%, there is a problem in that the elastic modulus of the polyolefin elastomer cannot be adjusted to a range of 1 to 100 MPa.
이와 같이 1 내지 100 MPa의 탄성계수와 500 내지 1,500 %의 최대변형률을 갖는 폴리올레핀 탄성체는 40 내지 60 중량부의 범위로 포함될 수 있으며, 폴리올레핀 탄성체가 40 중량부 미만이면 폴리프로필렌 수지로 이루어진 매트릭스 상에 폴리올레핀 탄성체가 분산되더라도 탄성계수가 높고 유연성이 부족한 단점이 있으며, 60 중량부를 초과하면 상대적으로 내열성이 낮은 폴리올레핀 탄성체가 탄성코어로 이루지 않고 연속상이 되어 외부 표면으로 노출이 되거나, 또는 환경에 따라 폴리프로필렌 수지 매트릭스 상에서 폴리올레핀 탄성체들이 뭉쳐지거나 응집되어 버려 원하는 내충격성능을 얻을 수 없게 되며, 이로 인해 기계적 강도나 절연성능 저하를 초래하게 되므로, 절연 소재로 사용하기에 바람직하지 않다.As such, the polyolefin elastomer having an elastic modulus of 1 to 100 MPa and a maximum strain of 500 to 1,500% may be included in the range of 40 to 60 parts by weight, and if the polyolefin elastomer is less than 40 parts by weight, the polyolefin elastomer is formed on a matrix made of polypropylene resin. Even if the elastomer is dispersed, it has the disadvantage of having a high elastic modulus and lack of flexibility. If it exceeds 60 parts by weight, the polyolefin elastomer, which has relatively low heat resistance, does not form an elastic core but becomes a continuous phase and is exposed to the external surface, or depending on the environment, polypropylene resin. The polyolefin elastomers are aggregated or aggregated on the matrix, making it impossible to obtain the desired impact resistance, which results in a decrease in mechanical strength and insulation performance, making it undesirable for use as an insulating material.
특히 절연 소재로 사용되기 위해서 케이블의 휘어짐을 감안하여 구부러짐에 대한 파괴를 방지하기 위해 300 MPa 이하의 낮은 탄성계수를 요구하기도 하는데, 폴리프로필렌 수지가 40 내지 60 중량부로 포함되면서 폴리프로필렌 수지에 분산되는 폴리올레핀 탄성체가 40 내지 60 중량부 범위로 포함됨에 따라 절연 조성물의 탄성계수를 300 MPa 이하로 조절할 수도 있다. 이에 따라 폴리올레핀 탄성체가 폴리프로필렌 수지 매트릭스 내 탄성코어 형태의 구조를 유지해줄 수 있기 때문에 열적, 기계적 및 전기절연 물성이 우수하게 유지될 수 있게 된다.In particular, in order to be used as an insulating material, a low elastic modulus of 300 MPa or less is required to prevent destruction due to bending, considering the bending of the cable. Polypropylene resin is included in an amount of 40 to 60 parts by weight and dispersed in the polypropylene resin. As the polyolefin elastomer is included in the range of 40 to 60 parts by weight, the elastic modulus of the insulating composition may be adjusted to 300 MPa or less. Accordingly, because the polyolefin elastomer can maintain the elastic core-shaped structure within the polypropylene resin matrix, excellent thermal, mechanical, and electrical insulating properties can be maintained.
본 발명에서 분산 개질제는 폴리프로필렌 수지 내 포함되어 있는 프로필렌기, 폴리올레핀 탄성체를 이루는 에틸렌기 및 탄소 수 4 내지 20의 올레핀기의 기능기를 포함함으로써, 폴리프로필렌 수지 및 폴리올레핀 탄성체와 상용성을 가질 수 있다.In the present invention, the dispersion modifier includes functional groups of the propylene group contained in the polypropylene resin, the ethylene group forming the polyolefin elastomer, and the olefin group having 4 to 20 carbon atoms, so it can be compatible with the polypropylene resin and the polyolefin elastomer. .
상기 분산 개질제는 폴리프로필렌 구조에 에틸렌이 포함된 에틸렌-프로필렌 랜덤 공중합체(ethylene-propylene random copolymer) 및 에틸렌-프로필렌 블록 공중합체(ethylene-propylene block copolymer)나, 폴리프로필렌 구조에 부틸렌이 포함된 부틸렌-프로필렌 랜덤 공중합체(butylene-propylene random copolymer) 및 부틸렌-프로필렌 블록 공중합체(butylene-propylene block copolymer) 등 프로필렌 기반 공중합체(propylene-based copolymer)가 사용될 수 있다The dispersion modifier is an ethylene-propylene random copolymer and ethylene-propylene block copolymer containing ethylene in the polypropylene structure, or an ethylene-propylene block copolymer containing butylene in the polypropylene structure. Propylene-based copolymers such as butylene-propylene random copolymer and butylene-propylene block copolymer can be used.
폴리프로필렌과 폴리올레핀 탄성체와 용융 블렌딩시, 일반적으로 두 물질간 상분리로 인한 매트리스상-분산상인 구조가 형성되는데, 상기 분산 개질제를 사용함으로써 보다 미세하고 균일한 분산상이 형성된 열가소성 탄성체를 얻을 수 있게 된다. When melt blending polypropylene and polyolefin elastomer, a matrix-dispersed phase structure is generally formed due to phase separation between the two materials. By using the dispersion modifier, it is possible to obtain a thermoplastic elastomer with a finer and more uniform dispersed phase.
분산 개질제의 탄성계수는 관계식 1에서와 같이 폴리올레핀 탄성체의 탄성계수보다 높고, 폴리프로필렌 수지의 탄성계수보다 낮을 수 있으며, 그 범위는 100 내지 1,000 MPa일 수 있다.As shown in Equation 1, the elastic modulus of the dispersion modifier may be higher than that of the polyolefin elastomer and lower than that of the polypropylene resin, and the range may be 100 to 1,000 MPa.
탄성계수가 100 MPa 미만이면 폴리올레핀 탄성체의 탄성계수와 유사해져 폴리프로필렌 수지의 취성을 보완하는데 효과가 있을지는 모르나, 결과적으로 유연성 물질 함량이 더욱 늘어나버려 기계적 강도, 절연강도 및 고온에서의 물성 저하를 초래하게 된다. 반면, 분산 개질제의 탄성계수가 1,000 MPa를 초과하면 프로필렌 수지의 탄성계수 범위에 인접하게 되어버려 폴리프로필렌 수지의 취성을 보완하는데 어려움이 있다.If the elastic modulus is less than 100 MPa, it may be effective in compensating for the brittleness of polypropylene resin because it is similar to the elastic modulus of polyolefin elastomer, but as a result, the content of flexible substances increases, leading to a decrease in mechanical strength, dielectric strength, and physical properties at high temperatures. It causes. On the other hand, if the elastic modulus of the dispersion modifier exceeds 1,000 MPa, it is adjacent to the elastic modulus range of the propylene resin, making it difficult to compensate for the brittleness of the polypropylene resin.
이처럼 폴리프로필렌 수지 및 폴리올레핀 탄성체와 상용성이 있는 분산 개질제의 탄성계수가 폴리올레핀 탄성체보다 높고 폴리프로필렌 수지보다 낮은 100 내지 1,000 MPa 범위를 가짐으로써, 유연성 폴리올레핀 탄성체의 함량을 추가로 늘리지 않아도 유연성을 보완할 수 있으며, 상온(25 ℃)에서부터 저온(-40 ℃)까지 내충격성이 우수하면서도 기계적 강도, 절연강도 및 고온물성이 우수한 절연 조성물을 얻을 수 있게 된다.As such, the elastic modifier of the dispersion modifier compatible with polypropylene resin and polyolefin elastomer is in the range of 100 to 1,000 MPa, which is higher than that of polyolefin elastomer and lower than that of polypropylene resin, so that flexibility can be supplemented without further increasing the content of flexible polyolefin elastomer. It is possible to obtain an insulating composition that has excellent impact resistance from room temperature (25 ℃) to low temperature (-40 ℃), as well as excellent mechanical strength, dielectric strength, and high-temperature properties.
분산 개질제는 1 내지 20 중량부 범위로 첨가될 수 있는데, 1 중량부 미만으로 혼합되면 폴리프로필렌 열가소성 탄성체의 내충격성을 향상시키기에 부족한 양이고, 20 중량부를 초과하면 매트릭스(폴리프로필렌 수지)와 분산상(폴리올레핀 탄성체) 사이의 계면 뿐만 아니라 계면 내외부 벌크상에도 존재하게 되어 계면 강화작용에 의한 시너지적 내충격성 향상을 얻는데 어려움이 있다.The dispersion modifier can be added in the range of 1 to 20 parts by weight. If it is mixed in less than 1 part by weight, it is insufficient to improve the impact resistance of the polypropylene thermoplastic elastomer, and if it exceeds 20 parts by weight, it is mixed with the matrix (polypropylene resin) and the dispersed phase. It exists not only at the interface between (polyolefin elastomers) but also in the bulk phase inside and outside the interface, making it difficult to obtain synergistic improvement in impact resistance through interfacial strengthening.
용융 혼합의 경우 인터널 믹서(internal mixer), 압출(extrusion) 및 사출(injection molding) 등 열가소성 고분자를 성형하는 공정에 적용되는 방식이라면 다양하게 적용될 수 있다. 용융 혼합은 보통 열가소성 수지의 용융점에 따라 결정되지만 150 내지 250 ℃ 범위로 예열된 상태에서 이루어질 수 있다. 용융 혼합 시 온도가 150 ℃ 미만이면 폴리프로필렌 수지가 완전히 용융되기 어려울 뿐만 아니라 폴리올레핀 탄성체가 폴리프로필렌 수지의 매트릭스 상에 균일한 분산이 이루어지는데 많은 시간이 소모되어 공정이 비효율적으로 이루어지는 단점이 있다. 반면 용융 혼합 시 온도가 250 ℃를 초과하면 각 물질의 열화 문제가 발생할 수 있으며, 특히 폴리올레핀 탄성체의 물성 변형을 초래할 수 있어 분산상 형성에 어려움이 발생할 수 있기 때문에 폴리올레핀 탄성체의 열안정성을 고려하여 250 ℃ 이하에서 실시하는 것이 바람직하다.In the case of melt mixing, it can be applied in a variety of ways as long as it is applied to the process of molding thermoplastic polymers, such as internal mixer, extrusion, and injection molding. Melt mixing is usually determined by the melting point of the thermoplastic resin, but can be achieved in a preheated state in the range of 150 to 250 °C. If the temperature during melt mixing is less than 150°C, it is difficult for the polypropylene resin to completely melt, and it takes a lot of time to uniformly disperse the polyolefin elastomer on the matrix of the polypropylene resin, making the process inefficient. On the other hand, if the temperature exceeds 250 ℃ during melt mixing, problems with the deterioration of each material may occur, and in particular, it may cause deformation of the physical properties of the polyolefin elastomer, which may lead to difficulties in forming a dispersed phase. Therefore, considering the thermal stability of the polyolefin elastomer, the temperature should be 250 ℃. It is preferable to carry out the following.
상기와 같이 본 발명의 고전압 직류케이블용 유무기 복합 절연 조성물 제조방법은 졸겔 방법에 의하여 실리카 나노입자가 제조되고, 2단계 표면처리공정을 통하여 불소기와 같은 작용기를 갖는 알콕시 실란으로 표면개질함으로써 열가소성 탄성체 내 실리카 나노입자가 고르게 분산된 절연 조성물을 제조하여 절연 조성물의 공간전하의 축적을 효과적으로 억제하는 고전압 직류케이블용 절연 조성물을 제공한다.As described above, in the method of manufacturing the organic-inorganic composite insulation composition for high-voltage direct current cable of the present invention, silica nanoparticles are manufactured by a sol-gel method, and the surface is modified with an alkoxy silane having a functional group such as a fluorine group through a two-step surface treatment process to form a thermoplastic elastomer. An insulating composition for high voltage direct current cables is provided that effectively suppresses the accumulation of space charges in the insulating composition by manufacturing an insulating composition in which silica nanoparticles are evenly dispersed.
본 발명의 다른 일 측면에 따르면, 상기 제조방법에 따라 제조되는 것을 특징으로 하는, 고전압 직류케이블용 유무기 복합 절연 조성물을 제공한다.According to another aspect of the present invention, there is provided an organic-inorganic composite insulation composition for a high-voltage direct current cable, which is manufactured according to the above manufacturing method.
본 발명에 따른 고전압 직류케이블용 유무기 복합 절연 조성물은 폴리프로필렌 수지와 폴리올레핀 탄성체로 이루어진 열가소성 탄성체에서 발생하는 공간전하축적을 효과적으로 억제할 수 있는 효과를 얻을 수 있으며, 이를 통하여 전압인가 시간에 따라 증가되는 공간전하 축적 및 이로 인한 전계왜곡 변화율을 현격하게 줄일 수 있게 된다. 또한, 기계적 물성 및 전기절연이 우수하여 전력 케이블을 포함한 다양한 전기전자 분야에 절연 소재로 활용될 수 있는 장점이 있다.The organic-inorganic composite insulation composition for high-voltage direct current cables according to the present invention can effectively suppress the accumulation of space charges occurring in thermoplastic elastomers made of polypropylene resin and polyolefin elastomer, which increases with the voltage application time. It is possible to significantly reduce space charge accumulation and the resulting electric field distortion change rate. In addition, it has excellent mechanical properties and electrical insulation, so it has the advantage of being used as an insulating material in various electrical and electronic fields, including power cables.
바람직하게는, 와이어 형태의 전력 케이블의 도체를 감싸는 절연층을 형성하는 절연 소재로 활용되거나 각종 전기전자 분야의 절연 소재로도 활용될 수 있다.Preferably, it can be used as an insulating material that forms an insulating layer surrounding the conductor of a wire-shaped power cable or as an insulating material in various electrical and electronic fields.
이하에서는 본 발명의 일 실시예를 참조하여 더욱 상세하게 설명한다. 다만, 이하의 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 이에 의하여 본 발명의 권리범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to an embodiment. However, the following examples are only examples to aid understanding of the present invention, and the scope of the present invention is not limited thereto.
<비교예 1><Comparative Example 1> 폴리올레핀계 열가소성 탄성체 제조Manufacture of polyolefin-based thermoplastic elastomers
비교예에서는 실리카 나노입자가 포함되지 않은 열가소성 탄성체를 제조하여 물성을 비교해보고자 하였다. In a comparative example, a thermoplastic elastomer not containing silica nanoparticles was manufactured and the physical properties were compared.
폴리프로필렌 수지로서 이소택틱 호모 폴리프로필렌(iPP), 폴리올레핀 탄성체로 에틸렌-옥텐 공중합체(EOC), 분산 개질제로 에틸렌-프로필렌 공중합체를 사용하여 각각 44 중량부, 56 중량부 및 10 중량부로 하여 인터널 믹서를 사용하여 200 ℃에서 10 분 동안 60 rpm으로 교반하여 용융 블렌딩함으로써, 열가소성 탄성체를 제조하였다. 이후 핫 프레스(hot press)를 이용하여 200 ℃에서 압착 및 냉각하여 시편을 제조하였다.Isotactic homopolypropylene (iPP) was used as a polypropylene resin, ethylene-octene copolymer (EOC) was used as a polyolefin elastomer, and ethylene-propylene copolymer was used as a dispersion modifier at 44 parts by weight, 56 parts by weight, and 10 parts by weight, respectively. Thermoplastic elastomers were prepared by melt blending using a null mixer at 200°C and stirring at 60 rpm for 10 minutes. Afterwards, a specimen was manufactured by pressing and cooling at 200°C using a hot press.
<실시예 1><Example 1> 불소기로 표면개질된 실리카나노입자에 의한 열가소성 탄성체 나노복합재 제조Manufacture of thermoplastic elastomer nanocomposite using silica nanoparticles surface-modified with fluorine groups
테트라에톡시실란(tetraethoxysilane, TEOS) 100 중량부 기준으로 에탄올(ethanol) 200 중량부, 증류수 100 중량부 및 암모니아수 1.5 중량부를 혼합하여 고형분이 7 중량%에 도달할 때까지 10 시간 가량 60 ℃에서 반응시켜 실리카 나노입자 분산액을 제조하였다. Based on 100 parts by weight of tetraethoxysilane (TEOS), mix 200 parts by weight of ethanol, 100 parts by weight of distilled water, and 1.5 parts by weight of aqueous ammonia and react at 60°C for about 10 hours until the solid content reaches 7% by weight. A silica nanoparticle dispersion was prepared.
이후, 상기 실리카 나노입자 분산액에 불소계 실란인 트리메톡시(3,3,3-트리플루오로프로필)실란 (trimethoxy(3,3,3-trifluoropropyl)silane)을 TEOS대비 10중량부를 투입하여 표면개질하였다.Afterwards, 10 parts by weight of trimethoxy(3,3,3-trifluoropropyl)silane, a fluorine-based silane, was added to the silica nanoparticle dispersion to modify the surface. did.
먼저 1차로 상기 불소계 실란을 5중량부 투입하고 60 ℃에서 10 시간 동안 반응켰으며, 이후 진공을 가하여 용매를 제거하여 1차 표면개질된 실리카 나노입자 분말을 제조하였다. First, 5 parts by weight of the fluorine-based silane was added and reacted at 60°C for 10 hours, and then vacuum was applied to remove the solvent to prepare primary surface-modified silica nanoparticle powder.
이후 2차로 상기 불소기 실란을 5 중량부를 시클로헥산(cyclohexane)과 함께 투입한 후, 강한 교반과 함께 60 ℃에서 10 시간 동안 반응켰으며, 이후 원심분리기로 3회 세척 후 진공오븐에 건조하여 최종적인 표면개질된 실리카 나노입자 분말을 수득하였다. 도 1은 이와같은 방법으로 제조된 표면개질된 실리카 나노입자 분말의 형상을 보여주는 SEM 이미지이다. 도 1(a)에서 보듯이 20 nm 수준의 직경을 갖는 실리카 나노입자가 잘 형성되어있는 것이 확인된다. Afterwards, 5 parts by weight of the fluorine-containing silane was added together with cyclohexane, followed by reaction at 60°C for 10 hours with strong stirring, and then washed three times with a centrifuge and dried in a vacuum oven to obtain the final product. Surface-modified silica nanoparticle powder was obtained. Figure 1 is an SEM image showing the shape of surface-modified silica nanoparticle powder prepared in this way. As shown in Figure 1(a), it is confirmed that silica nanoparticles with a diameter of about 20 nm are well formed.
이후, 비교예 1에서의 열가소성 탄성체를 제조하는 과정에서 상기 표면개질된 실리카 나노입자를 함께 투입함으로써 실리카 나노입자가 1 중량% 포함된 열가소성 탄성체 나노복합재를 제조하였다. 도 2(b)는 이와 같은 방법으로 제조된 열가소성 탄성체 나노복합재의 단면 SEM 이미지이다. 도 2(b)에서 수십 마이크로미터 크기의 분산상은 폴리올레핀 탄성체가 폴리프로필렌수지와 혼합시 상분리에 의해 형성되는 모양이며, 도 2(b)의 오른쪽의 확대된 이미지에서 보듯이, 실리카 나노입자가 이러한 열가소성 탄성체 내에 뭉침없이 잘 분산되어있는 것이 확인된다. Thereafter, in the process of manufacturing the thermoplastic elastomer in Comparative Example 1, the surface-modified silica nanoparticles were added together to prepare a thermoplastic elastomer nanocomposite containing 1% by weight of silica nanoparticles. Figure 2(b) is a cross-sectional SEM image of the thermoplastic elastomer nanocomposite manufactured using this method. In Figure 2(b), a dispersed phase measuring several tens of micrometers is formed by phase separation when polyolefin elastomer is mixed with polypropylene resin, and as can be seen in the enlarged image on the right side of Figure 2(b), silica nanoparticles form these It was confirmed that it was well dispersed without agglomeration within the thermoplastic elastomer.
<실시예 2><Example 2> 아민기로 표면개질된 실리카나노입자에 의한 열가소성 탄성체 나노복합재 제조Manufacture of thermoplastic elastomer nanocomposite using silica nanoparticles surface-modified with amine groups
아민기로 표면개질된 실리카 나노입자 분말을 제조하는 과정은 실시예 1과 동일한 방법으로 실시하되, 표면개질용 물질로서 아민계 실란인 아미노프로필트리에톡시실란 (aminopropyltriethoxysilane)을 사용하였다. The process of producing silica nanoparticle powder surface-modified with an amine group was carried out in the same manner as Example 1, except that aminopropyltriethoxysilane, an amine-based silane, was used as a surface modification material.
이후 열가소성 탄성체 나노복합재를 제조하는 과정은 실시예 1과 동일하게 실시하였다. Thereafter, the process of manufacturing the thermoplastic elastomer nanocomposite was carried out in the same manner as in Example 1.
<실시예 3><Example 3> 비닐기 표면개질된 실리카나노입자에 의한 열가소성 탄성체 나노복합재 제조Manufacture of thermoplastic elastomer nanocomposite using vinyl surface-modified silica nanoparticles
실시예 1과 동일하게 진행하되, 실리카 나노입자 표면개질용 물질로서 비닐계 실란인 비닐트리메톡시실란 (vinyltrimethoxysilane)을 사용하였다. Proceed as in Example 1, but vinyltrimethoxysilane, a vinyl silane, was used as a material for surface modification of silica nanoparticles.
<실시예 4><Example 4> 메틸기 표면개질된 실리카나노입자에 의한 열가소성 탄성체 나노복합재 제조Manufacture of thermoplastic elastomer nanocomposite using methyl group surface-modified silica nanoparticles
실시예 1과 동일하게 진행하되, 실리카 나노입자 표면개질용 물질로서 메틸트리메톡시실란 (methyltrimethoxysilane)을 사용하였다. Proceed as in Example 1, except that methyltrimethoxysilane was used as a material for surface modification of silica nanoparticles.
<시험예 1> <Test Example 1> 공간전하 분석Space charge analysis
본 시험예에서는 비교예와 실시예에 따라 제조된 시편에 대하여 공간전하특성을 분석하였다. 시편내 공간전하(space charge)는 펄스형 전기-음향법(Pulsed Electro Acoustic, PEA)에 의하여 측정하였다. 350 V, 25 ns의 단펄스를 주입하여 검출된 신호를 측정하였으며, 30 kV/mm에 해당하는 전압을 시편에 인가한 후 최대 3 시간동안 시편내 발생하는 공간전하와 전계분포를 측정하였다. In this test example, the space charge characteristics of specimens manufactured according to Comparative Examples and Examples were analyzed. The space charge within the specimen was measured by pulsed electro-acoustic (PEA). The detected signal was measured by injecting a short pulse of 350 V, 25 ns, and the space charge and electric field distribution within the specimen were measured for up to 3 hours after applying a voltage equivalent to 30 kV/mm to the specimen.
도 3은 cathode(왼편)과 anode(오른편) 사이 위치한 시편 내 위치에 따른 공간전하분포를 나타내는 그래프이다. 도 3의 (a)는 실리카 나노입자없이 열가소성 탄성체만으로 이루어진 비교예 시편(Ref), (b)~(e)는 실시예 1~4의 실리카 나노입자를 포함하는 열가소성 탄성체 나노복합재 시편으로서, 이에 해당하는 실리카 나노입자는 각각 (b) 불소기(F-silica), (c) 아민기(A-silica), 비닐기(V-silica) 및 메틸기(M-silica)로 표면개질된 실리카 나노입자이다. Figure 3 is a graph showing the spatial charge distribution according to the position in the specimen located between the cathode (left) and anode (right). (a) of Figure 3 is a comparative example specimen (Ref) consisting of only a thermoplastic elastomer without silica nanoparticles, and (b) to (e) are thermoplastic elastomer nanocomposite specimens containing silica nanoparticles of Examples 1 to 4. The corresponding silica nanoparticles are surface-modified silica nanoparticles with (b) fluorine group (F-silica), (c) amine group (A-silica), vinyl group (V-silica), and methyl group (M-silica), respectively. am.
도 3(a)에서 보듯이, 비교예 시편의 경우 전극 및 계면에서 공간전하가 시간에 따라 서서히 증가하는 패턴을 보이고 있으며, 특히 cathode면 계면 근처에서 축적이 많이 일어나며 일부 시편내부 벌크에도 많이 축적되는 것을 볼 수 있다. 반면, 실시예 1의 불소기를 갖는 F-silica에 의한 나노복합재 시편은 도 3(b)에서 보듯이, 초기부터 최대 3 시간 동안의 전압인가시 공간전하 축적이 거의 일어나지 않는 것을 확인할 수 있다. 반면, 나머지 표면개질 실리카의 경우 F-silica에 비하여 여전히 공간전하 축적이 일어나고 있는 것을 볼 수 있다. 이러한 공간전하의 변화를 보다 엄밀하게 분석하기 위하여, 실험결과 (a)~(e)를 통하여 구해진 그래프의 적분을 통하여 시편내 축적된 공간전하 총량을 구하였으며, 초기값(2min 측정결과)대비 그 증가율을 도 3의 (f)에 나타내었다. 즉, 측정 초기 2 분의 공간전하 총량을 100으로 설정하고 이후 전압인가 시간에 다른 공간전하축적량 변화율을 백분율로 표시하였다. 도 3(f)에서 나타나듯이, 열가소성 탄성체(ref) 및 다른 나노복합재는 전압인가 시간동안 지속적으로 공간전하 축적이 일어나는 반면, 불소기 표면개질 실리카 나노입자에 의한 열가소성 탄성체 나노복합재(F-silica)의 경우, 전압인가시간 동안 가장 안정적인 공간전하 특성을 나타냄이 분명히 확인되었다. As shown in Figure 3(a), in the case of the comparative example specimen, the space charge at the electrode and interface shows a pattern of gradually increasing over time. In particular, a lot of accumulation occurs near the cathode interface, and a lot of it is also accumulated in the bulk inside some specimens. You can see that. On the other hand, in the nanocomposite specimen made of F-silica with a fluorine group of Example 1, it can be seen that almost no space charge accumulation occurs when voltage is applied for up to 3 hours from the beginning, as shown in FIG. 3(b). On the other hand, in the case of the remaining surface-modified silica, it can be seen that space charge accumulation is still occurring compared to F-silica. In order to analyze these changes in space charge more rigorously, the total amount of space charge accumulated in the specimen was obtained through integration of the graph obtained through experimental results (a) to (e), and the amount compared to the initial value (2 min measurement result) was calculated. The increase rate is shown in Figure 3(f). That is, the total amount of space charge in the first 2 minutes of measurement was set to 100, and the rate of change in other space charge accumulation amounts at the subsequent voltage application time was expressed as a percentage. As shown in Figure 3(f), while space charge accumulation occurs continuously during the voltage application time in thermoplastic elastomers (ref) and other nanocomposites, thermoplastic elastomer nanocomposites (F-silica) using fluorine-based surface-modified silica nanoparticles. In the case of , it was clearly confirmed that it exhibited the most stable space charge characteristics during the voltage application time.
도 4는 도 3의 공간전하분포로부터 얻어지는 전계분포를 나타내는 그래프이다. 도 4의 (a)는 실리카 나노입자없이 열가소성 탄성체만으로 이루어진 비교예 시편(Ref), (b)~(e)는 실시예 1~4의 실리카 나노입자를 포함하는 열가소성 탄성체 나노복합재 시편으로서, 이에 해당하는 실리카 나노입자는 각각 (b) 불소기(F-silica), (c) 아민기(A-silica), 비닐기(V-silica) 및 메틸기(M-silica)로 표면개질된 실리카 나노입자이다. FIG. 4 is a graph showing the electric field distribution obtained from the space charge distribution of FIG. 3. (a) of Figure 4 is a comparative example specimen (Ref) consisting of only a thermoplastic elastomer without silica nanoparticles, and (b) to (e) are thermoplastic elastomer nanocomposite specimens containing silica nanoparticles of Examples 1 to 4. The corresponding silica nanoparticles are surface-modified silica nanoparticles with (b) fluorine group (F-silica), (c) amine group (A-silica), vinyl group (V-silica), and methyl group (M-silica), respectively. am.
도 4(a)에서 보듯이, 비교예의 열가소성 탄성체만으로 이루어진 시편(Ref)은 도3(a)에서 나타난 공간전하 축적에 의하여 전계 왜곡이 일어나는 것을 알 수 있다. 즉, 전압인가 시간에 따라 캐소드(cathode)쪽에서는 지속적으로 실제 전계가 감소하는 반면, 애노드(anode)쪽에서는 지속적으로 실제 전계가 증가하는 현상을 확인할 수 있다. 반면, F-silica가 포함된 나노복합재 시편의 경우, 도 3(b)에서 공간전하축적이 거의 없는 안정된 현상으로 인하여 도4(b)에서의 전계변화도 전압인가 시간에 따라 거의 변화없이 일정한 안정된 양상을 보이고 있다. As shown in FIG. 4(a), it can be seen that electric field distortion occurs in the specimen (Ref) composed of only the thermoplastic elastomer of the comparative example due to the accumulation of space charges shown in FIG. 3(a). In other words, it can be seen that the actual electric field continuously decreases on the cathode side depending on the voltage application time, while the actual electric field continuously increases on the anode side. On the other hand, in the case of a nanocomposite specimen containing F-silica, due to the stable phenomenon with almost no space charge accumulation in Figure 3(b), the electric field change in Figure 4(b) is also stable with little change depending on the voltage application time. It is showing signs.
이와 같이 공간전하 축적에 의하여 전계가 지속적으로 왜곡되면 결국 절연성능 저하 및 파괴로까지 이어질 수 있기 때문에 전계왜곡을 줄이는 것이 고압직류환경에서 매우 중요하다. 도 4(a)~(e)의 전계왜곡 정도를 보다 정량적으로 파악하기 위하여 다음과 같은 전계왜곡도(Field distortion factor)를 정의하여 분석하였다. In this way, if the electric field is continuously distorted due to space charge accumulation, it can eventually lead to deterioration of insulation performance and destruction, so reducing electric field distortion is very important in a high-voltage direct current environment. In order to more quantitatively understand the degree of electric field distortion in Figures 4(a) to (e), the following field distortion factor was defined and analyzed.
전계왜곡도(Field distoration factor, %) = (최대 전압 - 평균전압)/(평균전압)×100Field distortion factor (%) = (maximum voltage - average voltage)/(average voltage) × 100
즉, 두 전극사이 인가되어 형성되는 평균전압과 최대전압과의 차이를 평균전압으로 나눈 값으로 시편간 공간전하에 의한 전계왜곡도 변화를 분석하였으며, 상기 식에서 보듯이 이상적인 경우는 0 %이지만, 전계왜곡이 커질수록 상기 전계왜곡도값은 증가하게 된다. 즉, 상기 전계왜곡도 값은 낮으면서도 시간에 따라 변화하지 않는 패턴을 보이는 것이 중요하다. 도 4(f)에서 보듯이, 비교예의 열가소성 탄성체만으로 된 시편(Ref)이 전계왜곡도가 지속적으로 증가하는 반면, 불소기로 표면개질된 실리카 나노입자(F-silica)에 의한 나노복합재는 전계 왜곡도 값이 낮을 뿐만 아니라, 전압인가되는 시간동안의 변화도 거의 없이 일정한 것이 잘 확인된다. 반면, 다른 물질로 표면처리된 실리카 나노복합재의 경우는 이러한 전계왜곡도의 개선 효과가 잘 나타나지 않음을 알 수 있다. In other words, the change in electric field distortion due to space charge between specimens was analyzed by dividing the difference between the average voltage and the maximum voltage formed by applying between two electrodes by the average voltage. As shown in the equation above, the ideal case is 0%, but the electric field As the distortion increases, the electric field distortion value increases. In other words, it is important that the electric field distortion value is low and shows a pattern that does not change over time. As shown in FIG. 4(f), the electric field distortion of the specimen (Ref) made only of the thermoplastic elastomer of the comparative example continuously increases, while the electric field distortion of the nanocomposite made of silica nanoparticles (F-silica) surface-modified with fluorine groups is observed. Not only is the value low, but it is clearly confirmed that it is constant with almost no change during the time the voltage is applied. On the other hand, in the case of silica nanocomposites surface-treated with other materials, this effect of improving electric field distortion is not evident.
따라서, 도 3과 도 4의 공간전하 분석을 통하여, 불소기로 표면개질된 실리카 나노입자(F-silica)에 의한 열가소성 탄성체 나노복합재가 전압인가에 따른 공간전하 축적 및 이에 의한 전계왜곡 현상 그리고 시간에 따른 변화율을 가장 효과적으로 억제할 수 있음을 알 수 있다. Therefore, through the space charge analysis of FIGS. 3 and 4, the thermoplastic elastomer nanocomposite made of silica nanoparticles (F-silica) surface-modified with fluorine groups accumulates space charge according to voltage application, the resulting electric field distortion phenomenon, and time. It can be seen that the rate of change can be suppressed most effectively.
<시험예 2> <Test Example 2> 절연성능 및 기계적 성능 평가Insulation performance and mechanical performance evaluation
본 비교예 및 실시예에 따른 시편의 전기적 절연성능 평가를 위하여 절연저항 및 절연파괴전압을 측정하였다. 절연저항은 IEC 62631-3-1에 의거하여 시편에 DC 1kV 전압을 인가한 이후 측정되는 미세 전류를 측정함으로써 부피저항(volume resistivity, Ωcm) 값으로 분석하였다. 절연파괴전압은 IEC 60243에 의거하여 실리콘 오일 절연유 내 시편을 두 볼(ball)전극(직경 20 mm)사이 위치한 후 전압을 올리면서 측정하였고, 이로부터 시편파괴에 의해 전류가 흐르기 시작하기 직전 최대 인가전압인 절연파괴전압(breakdown voltage)을 측정하였다. Insulation resistance and breakdown voltage were measured to evaluate the electrical insulation performance of the specimens according to the comparative examples and examples. Insulation resistance was analyzed as a volume resistivity (Ωcm) value by measuring the microcurrent measured after applying DC 1kV voltage to the specimen in accordance with IEC 62631-3-1. In accordance with IEC 60243, the breakdown voltage was measured by placing a specimen in silicone oil insulating oil between two ball electrodes (diameter 20 mm) and increasing the voltage. From this, the maximum applied voltage was applied just before the current began to flow due to specimen destruction. The breakdown voltage, which is voltage, was measured.
본 비교예 및 실시예에 따른 시편의 기계적 물성은 ASTM D-638에 의거하여 UTM(universal testing machine)을 이용하여 인장모드(tensile mode)로 측정하였다. 이로부터 시편의 탄성계수(인장 모듈러스, tensile modulus), 인장강도(tensile strength) 및 파괴연신율(max strain)을 분석하여 평가하였다. The mechanical properties of the specimens according to the comparative examples and examples were measured in tensile mode using a universal testing machine (UTM) in accordance with ASTM D-638. From this, the elastic modulus (tensile modulus), tensile strength, and elongation at break (max strain) of the specimen were analyzed and evaluated.
아래 표 1은 상기 비교예 및 실시예에 따라 제조된 시편의 절연성능 및 기계적 물성에 대한 결과를 나타내는 표이다.Table 1 below is a table showing the results of the insulation performance and mechanical properties of specimens manufactured according to the comparative examples and examples.
REFREF F-silicaF-silica A-silicaA-silica V-silicaV-silica M-silicaM-silica
모듈러스 (MPa)Modulus (MPa) 335335 353353 348.7348.7 331.2331.2 355.7355.7
인장강도 (MPa)Tensile strength (MPa) 20.720.7 24.024.0 19.819.8 19.419.4 18.318.3
파괴연신율 (%)Elongation at break (%) 821821 921921 826826 793793 727727
절연저항(Ωcm)Insulation resistance (Ωcm) 1.1×1017 1.1×10 17 7.2×1017 7.2×10 17 2.8×1017 2.8×10 17 2.7×1017 2.7×10 17 4.6×1017 4.6×10 17
AC절연강도(kV/mm)AC insulation strength (kV/mm) 107.5107.5 136.0136.0 128.8128.8 118.1118.1 116.6116.6
DC절연강도(kV/mm)DC insulation strength (kV/mm) 325.5325.5 352.0352.0 248.0248.0 312.2312.2 292.8292.8
표 1을 참조하면, 불소기로 표면개질된 실리카 나노입자를 사용한 열가소성 탄성체 나노복합재(F-silica) 시편이 기계적 물성 및 절연성능이 가장 우수한 결과를 나타내고 있음을 확인할 수 있다. 즉, 소재의 딱딱한 정도를 나타내는 모듈러스 값은 300 MPa 수준으로 큰 변화가 없어 케이블 절연소재로서의 유연성 측면에서 큰 영향을 받지 않으면서도, 인장강도와 파괴연신율이 증가함으로써 외부 충격에 의한 기계적 강인함이 더욱 증가한 결과를 보여주고 있다. 또한, 절연저항 및 절연강도가 향상됨으로 인하여, 케이블 운용시 인가된 전압에 의해 발생할 수 있는 절연파괴에 대한 안정성이 더욱 향상됨을 확인할 수 있다. 이러한 특징은 도 2(a)에서와 같이 20 nm 수준의 미세한 실리카 나노입자가 도 2(b)에서 보는 바와 같이 열가소성 탄성체 내에 응집없이 잘 분산되어있고, 또한 이러한 실리카 나노입자가 전기음성도가 크고 공간전하의 트랩핑 효과가 크면서도 소수성 특성이 있는 불소기로 표면개질됨으로 인해서 효과적으로 달성될 수 있는 것이다. Referring to Table 1, it can be seen that the thermoplastic elastomer nanocomposite (F-silica) specimen using silica nanoparticles surface-modified with fluorine groups shows the best mechanical properties and insulation performance. In other words, the modulus value, which indicates the hardness of the material, does not change significantly at the level of 300 MPa, so the flexibility as a cable insulation material is not greatly affected, but the mechanical strength due to external shock is further increased by increasing the tensile strength and elongation at break. It shows the results. In addition, it can be confirmed that due to the improvement in insulation resistance and insulation strength, the stability against insulation breakdown that may occur due to the voltage applied during cable operation is further improved. This characteristic is that, as shown in Figure 2(a), fine silica nanoparticles of the order of 20 nm are well dispersed within the thermoplastic elastomer without agglomeration as shown in Figure 2(b), and these silica nanoparticles have high electronegativity. This can be effectively achieved by surface modification with a fluorine group that has a large space charge trapping effect and has hydrophobic properties.
따라서, 이러한 특징에 의하여 상기 열가소성 탄성체 나노복합재는 고압직류 케이블 절연소재 뿐만 아니라 각종 다양한 산업분야에 있어서 절연소재로 활발히 활용될 수 있을 것으로 기대된다. Therefore, due to these characteristics, the thermoplastic elastomer nanocomposite is expected to be actively used not only as an insulating material for high-voltage direct current cables but also as an insulating material in various industrial fields.
이상의 설명은 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다. 본 발명의 보호범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and those skilled in the art will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these examples. The scope of protection of the present invention should be interpreted in accordance with the scope of the patent claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of the present invention.

Claims (5)

  1. 알콕시 실란이 포함된 용매에 물과 촉매를 투입하고, 졸겔반응으로 실리카 나노입자 분산액을 합성하는 단계;Adding water and a catalyst to a solvent containing alkoxy silane and synthesizing a silica nanoparticle dispersion through a sol-gel reaction;
    상기 실리카 나노입자 분산액을 표면개질용 작용기를 갖는 알콕시 실란과 반응시켜 상기 작용기로 표면개질된 실리카 나노입자 분말을 제조하는 단계;reacting the silica nanoparticle dispersion with an alkoxy silane having a functional group for surface modification to produce silica nanoparticle powder surface-modified with the functional group;
    상기 표면개질된 실리카 나노입자 분말과 폴리올레핀계 열가소성 탄성체 수지를 용융 혼합하여 유무기 복합 절연 조성물을 제조하는 단계;를 포함하여 이루어지고, It includes manufacturing an organic-inorganic composite insulation composition by melting and mixing the surface-modified silica nanoparticle powder and the polyolefin-based thermoplastic elastomer resin,
    상기 표면개질용 작용기는 메틸(methyl)기, 에틸(ethyl)기, 비닐(vinyl)기, 티올(thiol)기, 아민(amine)기 및 불소(fluorine)기로 이루어진 군으로부터 선택되는 1종 이상이고, The functional group for surface modification is at least one selected from the group consisting of methyl group, ethyl group, vinyl group, thiol group, amine group, and fluorine group. ,
    상기 유무기 복합 절연 조성물은, 상기 실리카 나노입자 표면의 작용기에 의해 고전압 직류 전압 인가시 발생하는 공간전하를 트랩핑(trapping)하여 공간전하의 축적을 억제하는 것을 특징으로 하는,The organic-inorganic composite insulating composition is characterized in that it suppresses the accumulation of space charges by trapping space charges generated when high voltage direct current voltage is applied by functional groups on the surface of the silica nanoparticles.
    고전압 직류케이블용 유무기 복합 절연 조성물 제조방법.Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cable.
  2. 제1 항에 있어서,According to claim 1,
    상기 표면개질된 실리카 나노입자 분말을 제조하는 단계는,The step of manufacturing the surface-modified silica nanoparticle powder is,
    상기 실리카 나노입자 분산액에 상기 표면개질용 작용기를 갖는 알콕시 실란을 투입하고 표면개질한 후 용매를 제거하여 1차 표면개질된 실리카 나노입자 분말을 제조하는 단계;Preparing primary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification to the silica nanoparticle dispersion, performing surface modification, and then removing the solvent;
    상기 1차 표면개질된 실리카 나노입자 분말에 상기 표면개질용 작용기를 갖는 알콕시 실란과 용매를 함께 투입하여 2차 표면개질된 실리카 나노입자 분말을 제조하는 단계;를 포함하는 것을 특징으로 하는,A step of preparing a secondary surface-modified silica nanoparticle powder by adding an alkoxy silane having the functional group for surface modification and a solvent to the primary surface-modified silica nanoparticle powder.
    고전압 직류케이블용 유무기 복합 절연 조성물 제조방법.Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cable.
  3. 제1 항에 있어서,According to claim 1,
    상기 폴리올레핀계 열가소성 탄성체 수지는 폴리프로필렌 수지, 폴리올레핀 탄성체 및 분산 개질제를 포함하는 것을 특징으로 하는,The polyolefin-based thermoplastic elastomer resin is characterized in that it includes a polypropylene resin, a polyolefin elastomer, and a dispersion modifier.
    고전압 직류케이블용 유무기 복합 절연 조성물 제조방법.Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cable.
  4. 제1 항에 있어서,According to claim 1,
    상기 표면개질된 실리카 나노입자 분말이 0.1 ~ 5.0 중량% 혼합된 것을 특징으로 하는,Characterized in that 0.1 to 5.0% by weight of the surface-modified silica nanoparticle powder is mixed,
    고전압 직류케이블용 유무기 복합 절연 조성물 제조방법.Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cable.
  5. 제1 항 내지 제4 항 중 어느 한 항에 따라 제조되는 것을 특징으로 하는, 고전압 직류케이블용 유무기 복합 절연 조성물.An organic-inorganic composite insulation composition for a high-voltage direct current cable, characterized in that it is manufactured according to any one of claims 1 to 4.
PCT/KR2022/016875 2022-10-26 2022-11-01 Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cables and organic-inorganic composite insulation composition for high-voltage direct current cables, manufactured thereby WO2024090637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220138970A KR20240058336A (en) 2022-10-26 2022-10-26 Method for manufacturing of organic-inorganic insulation composition for high voltage DC cable and organic-inorganic insulation composition for high voltage DC cable manufactured thereby
KR10-2022-0138970 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090637A1 true WO2024090637A1 (en) 2024-05-02

Family

ID=90831048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016875 WO2024090637A1 (en) 2022-10-26 2022-11-01 Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cables and organic-inorganic composite insulation composition for high-voltage direct current cables, manufactured thereby

Country Status (2)

Country Link
KR (1) KR20240058336A (en)
WO (1) WO2024090637A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086072A (en) * 2011-01-25 2012-08-02 엘에스전선 주식회사 Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
KR20150050953A (en) * 2013-11-01 2015-05-11 한국전기연구원 Method for manufacturing highly dispersed epoxy-silica nano hybrid resin and epoxy-inorganic nano/micro-hybrid resin using sol-gel technique, and their crosslinked products
KR20170107326A (en) * 2016-03-15 2017-09-25 엘에스전선 주식회사 An insulating composition having low dielectric constant and cable comprising an insulating layer formed from the same
KR20210054135A (en) * 2019-11-05 2021-05-13 한국전기연구원 Method for organic-inorganic nanocomposites using inorganic nanoparticles surface-treated with hydroxy acids and thermoplastic polymers, organic-inorganic nanocomposites manufactured by the same method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102272724B1 (en) 2017-06-22 2021-07-06 엘에스전선 주식회사 Direct current power cable
KR102103087B1 (en) 2018-07-03 2020-04-21 엘에스전선 주식회사 Power cable
KR20210052962A (en) 2019-11-01 2021-05-11 한국전기연구원 Ternary composition for cable insulation layer, a method of manufacturing the same and a cable insulation layer, power cable comprising the same
KR20220012122A (en) 2020-07-22 2022-02-03 한국전력공사 Composition for space charge reduction and producing method using the same for high-voltage dc power cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086072A (en) * 2011-01-25 2012-08-02 엘에스전선 주식회사 Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
KR20150050953A (en) * 2013-11-01 2015-05-11 한국전기연구원 Method for manufacturing highly dispersed epoxy-silica nano hybrid resin and epoxy-inorganic nano/micro-hybrid resin using sol-gel technique, and their crosslinked products
KR20170107326A (en) * 2016-03-15 2017-09-25 엘에스전선 주식회사 An insulating composition having low dielectric constant and cable comprising an insulating layer formed from the same
KR20210054135A (en) * 2019-11-05 2021-05-13 한국전기연구원 Method for organic-inorganic nanocomposites using inorganic nanoparticles surface-treated with hydroxy acids and thermoplastic polymers, organic-inorganic nanocomposites manufactured by the same method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU YAO, HE JINLIANG, HU JUN, DANG BIN: "Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics", JOURNAL OF APPLIED POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 133, no. 1, 5 January 2016 (2016-01-05), US , XP055896996, ISSN: 0021-8995, DOI: 10.1002/app.42863 *

Also Published As

Publication number Publication date
KR20240058336A (en) 2024-05-03

Similar Documents

Publication Publication Date Title
JP4270237B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same
US9183969B2 (en) Insulation composition for DC power cable and DC power cable prepared by using the same
US9595365B2 (en) Thermoplastic, semiconductive compositions
CN106543563B (en) Thermoplastic high-voltage cable insulating material and preparation method thereof
WO2012060662A2 (en) Insulating composition and electric cable comprising same
Yang et al. A mussel-like inspired modification of BaTiO3 nanopartciles using catechol/polyamine co-deposition and silane grafting for high-performance dielectric elastomer composites
WO2017160009A1 (en) Insulation composition having low dielectric constant, and cable including insulation layer formed therefrom
US10121567B2 (en) Insulating composition, insulating article, preparation method and electrical cable accessory thereof
US20160194489A1 (en) Thermoplastic blend formulations for cable insulations
JP2007070602A (en) Non-halogen flame retardant thermoplastic elastomer composition, its production method and electric wire/cable using the same
US11043797B2 (en) Cable fitting for HVDC cables
WO2019143007A1 (en) Polyolefin resin composition for electric wire insulation
US11326082B2 (en) Self-welding high dielectric silicone rubber composition and self-welding high dielectric tape
Cai et al. Enhanced Electromechanical Properties of Three‐Phased Polydimethylsiloxane Nanocomposites via Surface Encapsulation of Barium Titanate and Multiwalled Carbon Nanotube with Polydopamine
CN108203546B (en) Chemically-crosslinked elastomer cable material for new energy automobile high-voltage wire capable of being used at 175 ℃ for long time, preparation method of chemically-crosslinked elastomer cable material and cable
WO2021091104A1 (en) Organic/inorganic nanocomposite preparation method using inorganic nanoparticles surface-treated with hydroxy acid and thermoplastic polymer and organic/inorganic nanocomposite prepared thereby
KR101318457B1 (en) Insulating composition for dc power cable and dc power cable prepared by using the same
WO2024090637A1 (en) Method for manufacturing organic-inorganic composite insulation composition for high-voltage direct current cables and organic-inorganic composite insulation composition for high-voltage direct current cables, manufactured thereby
JP2011080020A (en) Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same
Li et al. Supersmooth semiconductive shielding materials use for XLPE HVDC cables
EP3033390B1 (en) Thermoplastic blend formulations for cable insulations
Hu et al. High-temperature polypropylene nanocomposite with different surface-modified nanoparticles for HVDC cables
WO2023042958A1 (en) Ternary insulation composition comprising organic hardness modifier, preparation method therefor, and insulation material using same
WO2024090644A1 (en) Multi-phase insulator composition using polypropylene
CN108610535B (en) Ultrahigh-voltage-resistant direct-current cross-linked polyethylene composite material and preparation method thereof