WO2024090082A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2024090082A1
WO2024090082A1 PCT/JP2023/034281 JP2023034281W WO2024090082A1 WO 2024090082 A1 WO2024090082 A1 WO 2024090082A1 JP 2023034281 W JP2023034281 W JP 2023034281W WO 2024090082 A1 WO2024090082 A1 WO 2024090082A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
brush
cleaning
arm
unit
Prior art date
Application number
PCT/JP2023/034281
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 安武
道明 石川
拓也 大野
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2024090082A1 publication Critical patent/WO2024090082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and substrate processing apparatus that uses a brush to perform a cleaning process on substrates such as semiconductor substrates, substrates for FPDs (Flat Panel Displays) such as liquid crystal displays and organic EL (Electroluminescence) display devices, glass substrates for photomasks, and substrates for optical disks.
  • substrates such as semiconductor substrates, substrates for FPDs (Flat Panel Displays) such as liquid crystal displays and organic EL (Electroluminescence) display devices, glass substrates for photomasks, and substrates for optical disks.
  • this type of device includes a rotating support part, a brush, a cleaning arm, and a control unit (see, for example, Patent Document 1).
  • the rotating support part rotates the substrate while supporting the edge of the substrate.
  • the cleaning arm has a rotating brush at its tip. The cleaning arm swings the brush from the center to the periphery of the substrate.
  • the control unit controls the pressing pressure to be smaller than when the brush is located in the center of the substrate.
  • the control unit therefore adjusts the pressure according to the position of the brush as described above. This makes it possible to make the pressure per unit area constant in the radial direction of the substrate. In other words, it is possible to make constant the degree to which the brush acts in the radial direction of the substrate. This makes it possible to make the degree of cleaning uniform in the radial direction of the substrate.
  • the conventional example having such a configuration has the following problems. That is, the curvature and warpage of the substrate generally differ from one substrate to another. Therefore, even if the control unit uniformly controls the pressure to be small depending on the brush position, the pressure per unit area in the radial direction of the substrate may not be constant. Therefore, the degree of cleaning in the radial direction of the substrate may not be uniform.
  • the present invention has been made in consideration of these circumstances, and aims to provide a substrate processing method and substrate processing apparatus that can reliably achieve a uniform degree of cleaning in the radial direction of the substrate by measuring the inclination of the substrate in advance.
  • the present invention has the following configuration. That is, the invention described in claim 1 is a substrate processing method for performing a cleaning process by applying a brush to a substrate, which comprises a tilt measurement process for measuring the tilt of the peripheral portion of the substrate relative to the center of the substrate, and a cleaning process for applying a pressing pressure to a brush provided at the tip of a cleaning arm and moving the cleaning arm at a moving speed to cause the brush to act on the substrate while moving from the center to the peripheral portion of the substrate, in that order, and during the cleaning process, at least one of the parameters of the pressing pressure and the moving speed is adjusted in accordance with the tilt.
  • the inclination of the peripheral part relative to the center of the substrate is measured.
  • at least one of the parameters of the brush pressure and the cleaning arm movement speed is adjusted according to the measured inclination. Therefore, since the parameters are adjusted according to the inclination of each substrate, it is possible to ensure a uniform degree of cleaning in the radial direction of the substrate. Furthermore, even if the brush pressure cannot be adjusted, this can be accommodated by adjusting the cleaning arm movement speed. Furthermore, by adjusting the cleaning arm movement speed in addition to the brush pressure, the amount that cannot be adjusted by the brush pressure alone can be compensated for by the cleaning arm movement speed.
  • the peripheral portion of the substrate is inclined with respect to the center, so the force per unit area of the brush at the peripheral portion increases and the area on which the brush acts per unit time decreases. Therefore, the parameters are decreased at the peripheral portion.
  • the pressing force is decreased, the pressure per unit area acting on the top surface of the substrate at the peripheral portion is reduced. This makes it possible to make the pressure per unit area uniform in the radial direction of the substrate.
  • the moving speed is decreased, the time that the brush acts on the top surface of the substrate at the peripheral portion increases, and the area on which the brush acts per unit time increases. This makes it possible to make the area on which the brush acts per unit time uniform in the radial direction of the substrate.
  • the tilt measurement process is performed by moving the cleaning arm with a measuring device attached to a position on the cleaning arm adjacent to the brush and away from the base end by the same distance as the distance between the base end of the cleaning arm and the brush (Claim 3).
  • the inclination of the board at the same position as the brush movement trajectory can be measured by a measuring device. Therefore, the inclination at the position required for parameter adjustment can be accurately measured.
  • the tilt measurement process is performed immediately before the cleaning process while the substrate is held on the rotating holder (Claim 4).
  • the inclination is measured while the substrate is held on the rotating holder, so the inclination of the substrate, which affects the adjustment of parameters during the cleaning process, can be accurately measured. Also, the inclination may change when the substrate is subjected to some kind of processing, but since the measurement is performed immediately before the cleaning process, the inclination of the substrate can be accurately measured. Therefore, the parameters can be accurately adjusted to the inclination of the substrate being processed during the cleaning process.
  • the invention described in claim 5 is a substrate processing apparatus that performs a cleaning process by applying a brush to a substrate, the apparatus comprising: a rotating holder that holds the substrate in a horizontal position and rotates the substrate; a brush that acts on the upper surface of the substrate held by the rotating holder; a cleaning arm having the brush at its tip; an arm drive unit that drives the cleaning arm so that the brush moves in the radial direction of the substrate between the center of rotation and the peripheral portion of the substrate held by the rotating holder; a pressing mechanism that applies a pressing force to the brush toward the substrate; and a control unit that adjusts at least one of the parameters of the pressing force and the moving speed in accordance with the inclination of the peripheral portion relative to the substrate center, by controlling at least one of the pressing mechanism and the arm drive unit, based on a previously obtained inclination of the peripheral portion relative to the substrate center, when performing a cleaning process of the substrate while moving the brush from the center to the peripheral portion of the substrate while applying a pressing force to the brush.
  • the control unit adjusts at least one of the parameters of the pressing pressure and the movement speed according to the inclination of the peripheral portion relative to the center of the substrate, which has been previously obtained, by controlling the pressing mechanism and/or the arm drive unit. Therefore, since the parameters are adjusted according to the inclination of each substrate, it is possible to ensure a uniform degree of cleaning in the radial direction of the substrate. Furthermore, even if the pressing pressure of the brush cannot be adjusted, this can be addressed by adjusting the movement speed of the cleaning arm. Furthermore, by adjusting the movement speed of the cleaning arm in addition to the pressing pressure of the brush, the amount that cannot be adjusted by the pressing pressure of the brush alone can be compensated for by the movement speed of the cleaning arm.
  • the inclination of the peripheral portion of the substrate relative to the center is measured in the inclination measurement process.
  • at least one of the parameters of the brush pressure and the cleaning arm movement speed is adjusted according to the measured inclination. Therefore, since the parameters are adjusted according to the inclination of each substrate, it is possible to ensure a uniform degree of cleaning in the radial direction of the substrate. Even if the brush pressure cannot be adjusted, this can be accommodated by adjusting the cleaning arm movement speed. Furthermore, by adjusting the cleaning arm movement speed in addition to the brush pressure, the amount that cannot be adjusted by the brush pressure alone can be compensated for by the cleaning arm movement speed.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment
  • 2 is a view of the substrate processing apparatus of FIG. 1 as seen from the rear X.
  • FIG. 2 is a plan view showing a schematic configuration of a back surface cleaning unit according to an embodiment.
  • FIG. 2 is a side view showing a schematic configuration of a back surface cleaning unit.
  • FIG. 2 is a vertical cross-sectional view of the cleaning arm.
  • FIG. 4 is a block diagram showing a control system of the back surface cleaning unit.
  • 10A and 10B are schematic diagrams illustrating the action of a brush on the central portion and peripheral portion of a warped substrate. 1 is a graph showing the relationship between radial position and tilt of a substrate.
  • 13 is a graph showing the relationship between the radial position of the substrate and the moving speed. 13 is a graph showing the relationship between the radial position of the substrate and the pressing pressure. 13 is a flowchart showing a pre-processing performed in advance. Graph (a) shows the relationship between the opening of the electro-pneumatic regulator and the load of the electronic balance, graph (b) shows the relationship between the secondary pressure of the electro-pneumatic regulator and the opening, and graph (c) shows the relationship between the load of the pressing actuator and the secondary pressure of the electro-pneumatic regulator. 13 is a flowchart showing a cleaning process.
  • FIG. 1 is a plan view showing the overall configuration of a substrate processing apparatus according to an embodiment of the present invention
  • Fig. 2 is a view of the substrate processing apparatus of Fig. 1 as seen from the rear X.
  • the substrate processing apparatus 1 includes a loading/unloading block 3, an indexer block 5, and a processing block 7.
  • the substrate processing apparatus 1 processes substrates W.
  • the substrate processing apparatus 1 performs, for example, a cleaning process on the substrates W.
  • the substrate processing apparatus 1 processes substrates W in a single-wafer manner in a processing block 7. In the single-wafer manner, a single substrate W is processed one by one in a horizontal position.
  • the direction in which the load/unload block 3, indexer block 5, and processing block 7 are lined up is referred to as the "front-to-back direction X.”
  • the front-to-back direction X is horizontal.
  • the direction from the processing block 7 toward the load/unload block 3 is referred to as the "front.”
  • the direction opposite to the front is referred to as the "rear.”
  • the horizontal direction perpendicular to the front-to-back direction X is referred to as the "width direction Y.”
  • One direction in the "width direction Y" is referred to as the "right” as appropriate.
  • the direction opposite to the right is referred to as the "left.”
  • the direction perpendicular to the horizontal direction is referred to as the "vertical direction Z.” In each figure, for reference, front, back, right, left, top, and bottom are indicated as appropriate.
  • the loading/unloading block 3 includes an input section 9 and an unloading section 11.
  • the input section 9 and the unloading section 11 are arranged in the width direction Y.
  • a plurality of substrates W (e.g., 25 substrates) are stored in a single carrier C in a horizontal position, stacked at regular intervals.
  • the carrier C storing unprocessed substrates W is placed on the input section 9.
  • the input section 9 includes, for example, two mounting tables 13 on which the carriers C are placed.
  • the carrier C has a plurality of grooves (not shown) formed therein, which separate the surfaces of the substrates W from each other and store the substrates W one by one.
  • the carrier C stores the substrates W, for example, with their surfaces facing upward.
  • An example of the carrier C is a front opening unify pod (FOUP).
  • a FOUP is a sealed container.
  • the carrier C may be an open container, and any type of carrier C may be used.
  • the unloading unit 11 is disposed on the opposite side of the input unit 9 across the center of the width direction Y of the substrate processing apparatus 1.
  • the unloading unit 11 is located to the left Y of the input unit 9.
  • the unloading unit 11 stores processed substrates W in carriers C and unloads the carriers C.
  • the unloading unit 11, which functions in this manner, is equipped with, like the input unit 9, for example, two mounting tables 13 for placing the carriers C.
  • the input unit 9 and the unloading unit 11 are also called load ports.
  • the indexer block 5 is disposed adjacent to the rear X of the loading/unloading block 3 in the substrate processing apparatus 1.
  • the indexer block 5 includes an indexer robot IR and a transfer section 15.
  • the indexer robot IR is configured to be rotatable around the vertical direction Z.
  • the indexer robot IR is configured to be movable in the width direction Y.
  • the indexer robot IR has a first hand 19 and a second hand 21.
  • the first hand 19 and the second hand 21 each hold one substrate W.
  • the first hand 19 and the second hand 21 are configured to be able to advance and retreat independently in the forward and backward directions X.
  • the indexer robot IR moves in the width direction Y and rotates around the vertical direction Z, and advances and retreats the first hand 19 and the second hand 21 to transfer substrates W between each cassette C. In a similar manner, the indexer robot IR transfers substrates W between the transfer section 15.
  • the transfer section 15 is disposed on the boundary between the indexer block 5 and the processing block 7.
  • the transfer section 15 is disposed, for example, in the center in the width direction Y. As shown in FIG. 2, the transfer section 15 is formed long in the vertical direction Z.
  • the transfer section 15 includes, from bottom to top in the vertical direction Z, a first reversing unit 23, a path section 25, a path section 27, and a second reversing unit 29.
  • the first inversion unit 23 inverts the top and bottom of the substrate W received from the indexer block 5.
  • the first inversion unit 23 inverts the horizontal orientation of the substrate W. Specifically, the first inversion unit 23 converts a substrate W with its front surface facing up into an orientation in which its front surface faces down. In other words, it converts the orientation of the substrate W so that its back surface faces up.
  • the second inversion unit 29 performs the reverse operation. That is, the second inversion unit 29 inverts the top and bottom of the substrate W received from the processing block 7.
  • the second inversion unit 29 converts the substrate W with its front surface facing down into a position in which its front surface faces up. In other words, it converts the position of the substrate W so that its back surface faces down.
  • the inversion directions of the first inversion unit 23 and the second inversion unit 29 may be opposite to each other.
  • the first inversion unit 23 changes the orientation of the substrate W so that the front surface faces upward.
  • the second inversion unit 29 changes the orientation of the substrate W so that the back surface faces upward.
  • the path sections 25 and 27 are used to transfer substrates W between the indexer block 5 and the processing block 7.
  • the path section 25 is used, for example, to transport substrates W from the processing block 7 to the indexer block 5.
  • the path section 27 is used, for example, to transport substrates W from the indexer block 5 to the processing block 7. Note that the transport directions of substrates W in the path sections 25 and 27 may be opposite to each other.
  • the processing block 7 performs, for example, a cleaning process on the substrate W.
  • the cleaning process is, for example, a process that uses a brush in addition to a processing liquid.
  • the processing block 7 is, for example, divided into a first row R1, a second row R2, and a third row R3 in the width direction Y.
  • the first row R1 is disposed on the left side Y.
  • the second row R2 is disposed in the center of the width direction Y. In other words, the second row R2 is disposed to the right side Y of the first row R1.
  • the third row R3 is disposed to the right side Y of the second row R2.
  • the first row R1 of the processing block 7 includes a plurality of processing units 31.
  • the first row R1 includes, for example, four processing units 31.
  • the first row R1 has four processing units 31 stacked in the vertical direction Z. Details of each processing unit 31 will be described later.
  • Each processing unit 31 is, for example, a cleaning unit.
  • the cleaning unit cleans the substrate W.
  • the cleaning units include a front surface cleaning unit that cleans the front surface of the substrate W, and a back surface cleaning unit that cleans the back surface of the substrate W.
  • the back surface cleaning unit SSR will be used as an example of the processing unit 31.
  • the second row R2 of the processing block 7 is equipped with a center robot CR.
  • the center robot CR is configured to be rotatable around the vertical direction Z.
  • the center robot CR is configured to be able to rise and fall in the vertical direction Z.
  • the center robot CR is equipped with, for example, a first hand 33 and a second hand 35.
  • the first hand 33 and the second hand 35 each hold one substrate W.
  • the first hand 33 and the second hand 35 are configured to be able to move independently forward and backward in the forward and backward direction X and the width direction Y.
  • the third row R3 of the processing block 7 has the same configuration as the first row R1. That is, the third row R3 has a plurality of processing units 31.
  • the third row R3 has, for example, four processing units 31.
  • the third row R3 has four processing units 31 stacked in the vertical direction Z.
  • Each processing unit 31 in the first row R1 and each processing unit 31 in the third row R3 are arranged opposite each other in the width direction Y. This allows the center robot CR to access each of the opposing processing units 31 in the first row R1 and the third row R3 at the same height in the vertical direction Z.
  • the processing block 7 is configured as described above.
  • the center robot CR receives the substrate W, for example, from the first reversal unit 23.
  • the center robot CR transports the substrate W to either the back surface cleaning unit SSR in the first row R1 or the third row R3 to perform cleaning processing on the back surface of the substrate W.
  • the center robot CR receives the substrate W that has been cleaned in either the back surface cleaning unit SSR in the first row R1 or the third row R.
  • the center robot CR transports the substrate W to the second reversal unit 29.
  • FIG. 3 is a plan view showing the schematic configuration of the back surface cleaning unit in the embodiment.
  • Figure 4 is a side view showing the schematic configuration of the back surface cleaning unit.
  • Figure 5 is a vertical cross-sectional view of the cleaning arm.
  • the back surface cleaning unit SSR in the first row R1 will be used as an example.
  • the back surface cleaning unit SSR in the third row R3 has a configuration in which the arrangement in the width direction Y is swapped.
  • the back surface cleaning unit SSR includes a rotating holder 37, a guard 39, a first processing liquid arm 41, a second processing liquid arm 43, a cleaning arm 45, and a waiting pot 47.
  • the rotary holder 37 is disposed at approximately the center of the back surface cleaning unit SSR in a plan view.
  • the rotary holder 37 rotates the substrate W in a horizontal plane while holding the substrate W in a horizontal position.
  • the rotary holder 37 includes an electric motor 49, a rotating shaft 51, a spin chuck 53, and support pins 55.
  • the electric motor 49 is disposed with the rotating shaft 51 facing the vertical direction Z.
  • a spin chuck 53 is attached to the upper end of the rotating shaft 51.
  • the spin chuck 53 has a diameter slightly larger than the diameter of the substrate W.
  • the spin chuck 53 is a circular plate-like member.
  • the spin chuck 53 has a plurality of support pins 55. In this embodiment, for example, six support pins 55 are provided.
  • the six support pins 55 abut against the outer periphery of the substrate W to support the substrate W in a horizontal position.
  • the number of support pins 55 is not limited to six as long as the plurality of support pins 55 can stably support the substrate W in a horizontal position.
  • each support pin 55 is configured to be rotatable around the vertical direction Z. A detailed description of the configuration for performing this operation will be omitted.
  • the electric motor 49 rotates, the rotating holder 37 rotates the spin chuck 53 around the rotation center P1.
  • the rotation center P1 is in the vertical direction Z.
  • the guard 39 is arranged to surround the rotating holding portion 37 in a plan view.
  • the guard 39 has a cylindrical body portion 57 and an inclined portion 59.
  • the guard 39 is configured to be able to rise and fall in the vertical direction Z.
  • the guard 39 can be raised and lowered to a lowered standby position and a processing position above the standby position. A description of the specific configuration for raising and lowering the guard 39 will be omitted.
  • the body 57 of the guard 39 is cylindrical.
  • the inner peripheral surface of the body 57 is disposed at a distance outward from the outer peripheral side of the rotating holder 37.
  • the inclined portion 59 is tapered from the upper portion of the body 57 toward the rotating shaft 51.
  • the inclined portion 59 has an opening 61 at the upper portion.
  • the opening 61 is formed in the center of the inclined portion 59.
  • the opening 61 is larger than the diameter of the substrate W.
  • the opening 61 is larger than the diameter of the spin chuck 53.
  • the inclined portion 59 of the guard 39 is located near the height of the substrate W held by the spin chuck 53.
  • the inclined inner peripheral surface of the inclined portion 59 guides the processing liquid and the like that has been scattered from the substrate W to the lower portion of the guard 39.
  • the first processing liquid arm 41 is disposed at the rear X of the rotating holder 37 in a plan view.
  • the first processing liquid arm 41 is provided with an electric motor 42 on the base end side.
  • the first processing liquid arm 41 is swung around the rotation center P2 on the base end side by the electric motor 42.
  • the rotation center P2 is in the vertical direction Z.
  • the first processing liquid arm 41 is provided with one nozzle 63.
  • the nozzle 63 has an outlet on the downward side.
  • the nozzle 63 spits processing liquid.
  • the first processing liquid arm 41 is configured so that the tip of the nozzle 63 can swing between a standby position shown in FIG. 3 and a supply position near the rotation center P1.
  • the first processing liquid arm 41 When the first processing liquid arm 41 supplies processing liquid to the substrate W, the tip of the nozzle 63 is moved to the supply position. When the first processing liquid arm 41 does not supply processing liquid to the substrate W, the tip of the nozzle 63 is moved to the standby position.
  • the first processing liquid arm 41 may be configured to swing and move the nozzle 63 above the substrate W so as not to interfere with the cleaning arm 45 when supplying processing liquid to the substrate W.
  • the processing liquid discharged from the nozzle 63 may be, for example, a rinse liquid.
  • the rinse liquid include pure water, carbonated water, electrolytic ion water, hydrogen water, and ozone water.
  • the second processing liquid arm 43 is disposed to the left Y of the rotating holder 37 in a plan view.
  • the second processing liquid arm 41 is provided with an electric motor 44 on the base end side.
  • the second processing liquid arm is swung around the rotation center P3 on the base end side by the electric motor 44.
  • the rotation center P3 is in the vertical direction Z.
  • the second processing liquid arm 43 is provided with three nozzles 65, 67, 69. Each nozzle 65, 67, 69 has an outlet on the lower side.
  • the nozzles 65, 67, 69 discharge processing liquid.
  • the second processing liquid arm 43 is configured so that the tips of the nozzles 65, 67, 69 can swing between a standby position shown in FIG. 3 and a supply position near the rotation center P1.
  • the tips of the nozzles 65, 67, 69 are moved to the supply position.
  • the tips of the nozzles 65, 67, 69 are moved to standby positions.
  • the nozzles 65, 67, 69 may be moved in a swinging manner above the substrate W so as not to interfere with the cleaning arm 45.
  • the processing liquid discharged from the nozzles 65, 67, and 69 may be, for example, a chemical liquid.
  • the chemical liquid may be, for example, a chemical liquid containing at least one of sulfuric acid, nitric acid, acetic acid, hydrochloric acid, hydrofluoric acid, ammonia water, and hydrogen peroxide water.
  • SC-1 is a mixture of ammonia water and hydrogen peroxide water.
  • the cleaning arm 45 is configured as follows:
  • the cleaning arm 45 includes a rotating and lifting mechanism 71, a support 73, a housing 75, and a cleaning section 77.
  • the rotary lifting mechanism 71 is configured to be able to raise and lower the support 73, the housing 75, and the cleaning unit 77 in the vertical direction Z.
  • the rotary lifting mechanism 71 is configured to be able to swing the support 73, the housing 75, and the cleaning unit 77 around the rotation center P4.
  • the rotary lifting mechanism 71 is configured, for example, by combining an electric motor and an air cylinder.
  • the rotary lifting mechanism 71 raises the cleaning unit 77 in the vertical direction Z from the standby pot 47 at the standby position.
  • the rotary lifting mechanism 71 swings (moves) the cleaning unit 77 in a horizontal plane so that the cleaning unit 77 passes near the rotation center P1.
  • the support pillar 73 has a cylindrical shape.
  • the lower part of the support pillar 73 is connected to the rotary lifting mechanism 71.
  • the upper part of the support pillar 73 is connected to one lower part of the housing 75.
  • the housing 75 has a long axis in a horizontal plane.
  • the housing 75 has a cleaning unit 77 at the other lower part.
  • the cleaning unit 77 rotates around a rotation center P5.
  • the rotation center P5 is in the vertical direction Z.
  • the housing 75 comprises a lower housing 75a and an upper housing 75b.
  • the lower housing 75a constitutes the lower part of the housing 75.
  • the upper housing 75b constitutes the upper part of the housing 75.
  • the upper housing 75b and the lower housing 75a are connected to each other.
  • the housing 75 includes a pressing mechanism 81 and a rotating mechanism 83.
  • the lower housing 75a includes the pressing mechanism 81 and the rotating mechanism 83.
  • the pressing mechanism 81 includes a fulcrum member 85, a seesaw member 87, a pressing actuator 89, and a support mechanism 91.
  • the fulcrum member 85 is attached to the upper surface of the lower housing 75a.
  • the fulcrum member 85 is erected at approximately the center of the lower housing 75a in the front-to-rear direction X.
  • the fulcrum member 85 has a swing shaft 85a at its upper part.
  • the swing shaft 85a is rotatable around the width direction Y.
  • the seesaw member 87 is attached to the fulcrum member 85 via the swing shaft 85a at its central part 87c so as to be swingable.
  • the seesaw member 87 can alternately move up and down at both ends, one side 87l (point of action) and the other side 87r (point of force), in the vertical direction Z.
  • the swing shaft 85a serves as the fulcrum of the seesaw member 87.
  • the pressing actuator 89 has an operating piece 89a arranged in the vertical direction Z.
  • the pressing actuator 89 raises one side 87l of the seesaw member 87 by extending the operating shaft 89a.
  • the pressing actuator 89 is preferably, for example, an air bearing actuator.
  • the working shaft 89a In an air bearing actuator, the working shaft 89a is supported by air with a small gap between them so that it can move back and forth. Therefore, in theory, the sliding resistance of the working shaft 89a is zero and no friction occurs. Therefore, compared to a normal air cylinder, an air bearing actuator can move the working shaft 89a back and forth with even a small amount of air pressure. Therefore, it is possible to move the working shaft 89a back and forth linearly according to the air pressure.
  • a normal air cylinder can also be used as the pressure actuator 89.
  • a support mechanism 91 is provided on the opposite side of the pressing actuator 89 across the fulcrum member 85.
  • the support mechanism 91 supports the cleaning unit 77.
  • the support mechanism 91 supports the cleaning unit 77 by suspending it below the housing 75.
  • the support mechanism 91 includes a holding member 93, a biasing portion 95, and a guide portion 97.
  • the support mechanism 91 supports the cleaning unit 77 in a suspended manner.
  • the cleaning unit 77 includes a brush 99 and a brush holder 101.
  • the brush 99 acts on the substrate W to clean it.
  • the brush holder 101 holds the brush 99.
  • the brush holder 101 holds the brush 99 in a removable manner.
  • a rotating shaft 103 is attached to the center of the brush holder 101 in a plan view. The rotating shaft 103 extends from the brush holder 101 in the vertical direction Z.
  • the brush 99 is held by the cleaning arm 45 and moves in a horizontal plane so as to pass near the rotation center P1 of the substrate W.
  • the holding member 93 holds the rotating shaft 103 so that it can rotate freely.
  • the rotating shaft 103 is, for example, a spline shaft.
  • the rotating shaft 103 is attached to the holding member 93 via a spline nut 103a.
  • the rotating shaft 103 can move in the vertical direction Z relative to the spline nut 103a.
  • the holding member 93 holds the spline nut 103a in a state in which it can rotate around the vertical direction Z.
  • the spline nut 103a is attached to the holding member 93 via a bearing (not shown).
  • the rotating shaft 103 can rotate around a rotation center P5.
  • a pulley 105 is attached to the spline nut 103a that protrudes from the upper part of the holding member 93.
  • the pulley 105 is fixed to the outer circumferential surface of the spline nut 103a.
  • the biasing portion 95 is disposed on the upper portion of the pulley 105.
  • the biasing portion 95 includes an upper holding portion 107, a lower holding portion 109, and a coil spring 111.
  • the upper holding portion 107 is attached to the upper side of the rotating shaft 103 via a bearing (not shown). In other words, the upper holding portion 107 remains stationary even when the rotating shaft 103 rotates.
  • the lower holding portion 109 is disposed away from the upper holding portion 107.
  • the lower holding portion 109 is disposed below the upper holding portion 107 and above the pulley 105.
  • the lower holding portion 109 is disposed with its inner peripheral surface spaced away from the outer peripheral surface of the rotating shaft 103. Therefore, the lower holding portion 109 remains stationary even when the rotating shaft 103 rotates.
  • the lower holding portion 109 is also attached to the upper surface of the pulley 105 via a bearing. Therefore, the lower holding portion 109 is not affected by the rotation of the pulley 105.
  • the coil spring 111 is attached to the upper holding portion 107 and the lower holding portion 109.
  • the upper end of the coil spring 111 is fixed to the upper holding portion 107.
  • the lower end of the coil spring 111 is fixed to the lower holding portion 109.
  • the coil spring 111 has, for example, a cylindrical shape.
  • the coil spring 111 is a compression coil spring. Therefore, the upper holding portion 107 is biased upward from the upper surface of the pulley 105 and the lower holding portion 109. As a result, the rotating shaft 103 is biased upward in the vertical direction Z. Therefore, in the normal state where the pressing actuator 89 is not operating, the brush 99 is maintained at a constant height from the lower surface of the lower housing 75a. In other words, in the normal state, the load by the brush 99 is zero.
  • the support mechanism 91 supports the rotating shaft 103 that moves up and down in the vertical direction Z.
  • the support mechanism 91 includes a linear guide 113 and a shaft holding portion 115.
  • the linear guide 113 is disposed adjacent to the holding member 93.
  • the linear guide 113 is erected in the vertical direction Z.
  • the linear guide 113 includes a rail 113a and a carriage 113b.
  • the rail 113a is disposed with its longitudinal direction in the vertical direction Z.
  • the carriage 113b is attached to the rail 113a so that it can move in the vertical direction Z.
  • the carriage 113b is disposed below the other side 87r of the seesaw member 87.
  • the carriage 113b is disposed in a position that abuts against the other side 87r of the seesaw member 87 when it descends.
  • the shaft holder 115 holds the upper part of the rotating shaft 103.
  • the shaft holder 115 holds the rotating shaft 103 in a state where it is allowed to rotate.
  • the shaft holder 115 holds the rotating shaft 103, for example, via a bearing (not shown).
  • the carriage 113b is connected to the shaft holder 115.
  • the rotation mechanism 83 is disposed adjacent to the support mechanism 91.
  • the rotation mechanism 83 is disposed on the fulcrum member 85 side.
  • the rotation mechanism 83 includes an attachment member 117 and an electric motor 119.
  • the attachment member 117 positions the electric motor 119 at a distance above the bottom surface of the lower housing 75a.
  • the electric motor 119 is disposed with its rotation shaft facing downward in the vertical direction Z.
  • the electric motor 119 rotates its rotation shaft around a rotation center P6.
  • the rotation center P6 is approximately parallel to the rotation center P5 in the vertical direction Z.
  • the electric motor 119 has a pulley 121 attached to its rotation shaft.
  • a timing belt 123 is stretched between the pulley 121 and the pulley 105.
  • the rotation shaft 103 rotates around the rotation center P5 via the timing belt 123, the pulleys 105 and 121, and the spline nut 103a. Even when the rotating shaft 103 is rotated in this manner, the rotating shaft 103 can be raised and lowered in the vertical direction Z.
  • the cleaning arm 45 is configured as described above. That is, the action of the pressing actuator 89 is imparted to one side 87r (point of action) of the seesaw member 87 via one side 87l (point of force). Therefore, by providing the seesaw member 87, the degree of freedom in the arrangement of the pressing actuator 89 is increased. This makes it possible to reduce the height of the substrate processing apparatus 1. As a result, an arrangement in which the substrate processing apparatus 1 are stacked in multiple tiers can be easily realized.
  • the seesaw member 87 described above is swung by a pressing actuator 89.
  • the pressing actuator 89 is operated according to a target load, as described below. This operation moves the brush 99 in the vertical direction Z. Specifically, the brush 99 is raised and lowered to the following heights:
  • No-load height H1 This is the height in the vertical direction Z at which the brush 99 does not act on the substrate W. This no-load height H1 is higher than the other heights described below. During normal times, except when cleaning, the brush 99 is positioned at this no-load height H1.
  • Working height H2 This is the height in the vertical direction Z at which the brush 99 acts on the substrate W with a predetermined load. This height is lower than the no-load height H1. When performing a cleaning process on the substrate W, the brush 99 is lowered to this working height H2. However, this position is the height at which a predetermined load is applied to the brush 99 and the reaction force from the substrate W is balanced with the load.
  • Maximum pushing height H3 A height lower than the action height H2. This is the lowest position to which the brush 99 has moved in the vertical direction Z. This maximum pushing height H3 is a position determined by the structure of the pressing mechanism 81. The brush 99 cannot move below this maximum pushing height H3.
  • This displacement meter 401 does not need to be fixedly installed in the back surface cleaning unit SSR. In other words, it may be a device that is attached only when necessary. However, this does not exclude the displacement meter 401 being fixedly installed in the cleaning arm 45 of each back surface cleaning unit SSR. If the displacement meter 401 is fixedly installed, it is preferable to automatically measure the radial inclination of the loaded substrate W prior to the cleaning process. This makes it possible to improve throughput while measuring the radial inclination of the substrate W. Note that in this embodiment, the displacement meter 401 will be described as being installed in the cleaning arm 45.
  • the displacement meter 401 measures the degree to which the surface of the substrate W is warped in the radial direction.
  • the displacement meter 401 measures the inclination of the surface of the substrate W.
  • the displacement meter 401 measures the radial inclination of the peripheral portion up to the edge face, with the center of the substrate W as the reference.
  • the displacement meter 401 measures the distance from the reference at the peripheral portion up to the edge face, with the center of the substrate W as the reference.
  • the displacement meter 401 is preferably, for example, a laser displacement meter.
  • a laser displacement meter is capable of precise measurement in the ⁇ m unit without contact.
  • a laser displacement meter is small and lightweight. Therefore, it is suitable for attaching to the cleaning arm 45 to measure the inclination of the substrate W.
  • the displacement meter 401 has a measurement point 401a, which is the location to be measured in a planar view.
  • the displacement meter 401 measures the distance from the measurement point 401a to the position where the substrate W overlaps in a planar view.
  • the brush 99 is provided at a distance d1 from the center of rotation P4 in the width direction Y.
  • the displacement meter 401 is attached to the cleaning arm 45 so that the measurement point 401a is at a distance d2 from the center of rotation P4 in the width direction Y.
  • the displacement meter 405 is attached, for example, to the rear X side of the cleaning arm 45.
  • the displacement meter 401 preferably has a data output terminal. The displacement meter 401 outputs the measured distance to the top surface of the substrate W from the data output terminal.
  • the displacement meter 401 Since the displacement meter 401 is attached to the cleaning arm 45 as described above, it can follow the same trajectory as the trajectory that the brush 99 moves along during the cleaning process. Therefore, the displacement meter 401 can measure the distance to the same position on the surface of the substrate W where the brush 99 acts. As a result, the inclination required for adjusting the parameters described below can be accurately measured.
  • the displacement meter 401 described above corresponds to the "measuring instrument" in this invention.
  • Figure 6 is a block diagram showing the control system of the back surface cleaning unit.
  • One end of a pipe 125 is connected to the nozzle 63 described above.
  • the other end of the pipe 125 is connected to a rinse liquid supply source 127.
  • the rinse liquid supply source 127 supplies the rinse liquid described above.
  • the pipe 125 is equipped with a flow control valve 129.
  • the flow control valve 129 controls the flow rate of the rinse liquid in the pipe 125.
  • One end of the pipe 131 is connected to the nozzle 65 described above.
  • the other end of the pipe 131 is connected to a processing liquid supply source 133.
  • the processing liquid supply source 133 supplies any one of the various chemical liquids described above.
  • the pipe 131 is equipped with a flow control valve 135.
  • the flow control valve 135 controls the flow rate of the chemical liquid in the pipe 131.
  • One end of the pipe 137 is connected to the nozzle 67 described above.
  • the other end of the pipe 137 is connected to a processing liquid supply source 139.
  • the processing liquid supply source 139 supplies any one of the various chemical liquids described above.
  • the pipe 137 is equipped with a flow control valve 141.
  • the flow control valve 141 controls the flow rate of the chemical liquid in the pipe 139.
  • One end of the pipe 143 is connected to the nozzle 69 described above.
  • the other end of the pipe 143 is connected to a processing liquid supply source 145.
  • the processing liquid supply source 145 supplies any one of the various chemical liquids described above.
  • the pipe 143 is equipped with a flow control valve 147.
  • the flow control valve 147 controls the flow rate of the chemical liquid in the pipe 143.
  • the air supply pipe 149 is connected to the above-mentioned pressing actuator 89.
  • the pressing actuator 89 is supplied with air to support the operating shaft 89a with a small gap, but this piping is omitted.
  • the other end of the air supply pipe 149 is connected to an air supply source 151.
  • the air supply source 151 supplies, for example, air.
  • the air is preferably dry air.
  • the air supply source 151 is also connected to other devices.
  • the supply pressure of the air supply source 151 is affected by the operating state of the other devices. In other words, the supply pressure may decrease when the operating rate of the other devices increases.
  • the air supply pipe 149 is equipped with an opening/closing valve 153, a primary side pressure gauge 155, an electropneumatic regulator 157, and a secondary side pressure gauge 159, in that order from the air supply source 151 side.
  • the on-off valve 153 allows or blocks the flow of air in the air supply pipe 149.
  • the primary pressure gauge 155 measures the air pressure upstream of the electro-pneumatic regulator 157.
  • the electro-pneumatic regulator 157 adjusts the opening of a built-in valve in response to an input signal. In this way, the electro-pneumatic regulator 157 adjusts the air pressure in the air supply pipe 149.
  • the electro-pneumatic regulator 157 adjusts the valve opening in response to a given input signal to reduce the primary pressure to become the secondary pressure in the air supply pipe 149.
  • the electro-pneumatic regulator 157 cannot adjust the secondary pressure to be higher than the primary pressure in the air supply pipe 149.
  • the electro-pneumatic regulator 157 adjusts the secondary pressure to be equal to or lower than the primary pressure of the air supply pipe 149.
  • the electro-pneumatic regulator 157 can adjust the secondary pressure to be equal to or lower than a predetermined value. In other words, if the primary pressure is below a predetermined value, the electropneumatic regulator 157 may not be able to accurately adjust the secondary pressure to a constant value or higher.
  • the control unit 161 comprehensively controls each of the above-mentioned units. Specifically, the control unit 161 controls the transport operation in the input unit 9 and the discharge unit 11, the transport operation of the indexer robot IR, the reversing operation of the first reversing unit 23 and the second reversing unit 29, the transport operation of the center robot CR, etc.
  • the control unit 161 controls the rotation control of the electric motor 49 in the back surface cleaning unit SSR (processing unit 31), the lifting and lowering operation of the guard 39, the opening and closing operation of the support pin 55 in the spin chuck 53, the swinging operation of the electric motors 42 and 44, the opening and closing operation of the flow control valves 129, 135, 141, and 147, the swinging and lifting operation of the rotary lifting mechanism 71, the rotation operation of the electric motor 119, the opening and closing operation of the on-off valve 153, and the opening degree operation of the electro-pneumatic regulator 157.
  • the control unit 161 is equipped with a CPU and a memory, not shown.
  • the control unit 161 is connected to an instruction unit 163.
  • the instruction unit 163 is operated by an operator of the substrate processing apparatus 1.
  • the instruction unit 163 is used by the operator to instruct a recipe that specifies the contents of processing of the substrate W, and to start and stop processing.
  • the control unit 161 is connected to a notification unit 165.
  • the notification unit 165 When a problem occurs in the substrate processing apparatus 1, the notification unit 165 generates an alarm to notify the operator of the problem.
  • the notification unit 165 is, for example, a display device, a lamp, a buzzer, a speaker, etc. It is preferable that the notification unit 165 can confirm the type of problem that has occurred.
  • the control unit 161 is equipped with an input port IP.
  • the input port IP receives data from various electronic devices. The data input from the input port IP is processed and stored by the control unit 161.
  • the control unit 161 is connected to a tilt memory 403.
  • the control unit 161 moves the cleaning arm 45 from the center of the substrate W towards the periphery in the same manner as in the cleaning process.
  • the control unit 161 receives a signal relating to the distance of each position in the radial direction of the substrate W output from the displacement meter 401 from the input port IP.
  • the control unit 161 associates the radial position of the substrate W with the distance and stores it in the tilt memory 403. By associating the radial position of the substrate W with the distance, it is possible to obtain a distribution relating to the radial distance of the substrate W, that is, the tilt of the substrate W in the radial direction.
  • the control unit 161 refers to the tilt memory 403 and adjusts at least one of the movement speed of the cleaning arm 45 and the pressure applied to the brush 99 according to the tilt corresponding to the radial position of the brush 99. In other words, during the cleaning process, the control unit 161 operates at least one of the rotation and lifting mechanism 71 and the pressure mechanism 81 according to the radial position of the brush 99.
  • this rotation/lifting mechanism 71 corresponds to the "arm driving unit” of the present invention.
  • this pressing mechanism 81 corresponds to the “pressing mechanism” of the present invention.
  • Figure 7 is a schematic diagram that explains the action of the brush on the center and periphery of a warped substrate.
  • the substrate W When the substrate W is warped, the action of the brush 99 differs between the central portion CP and the peripheral portion PP.
  • the substrate W is assumed to have a peripheral portion PP, which is radially spaced from the central portion CP of the substrate W, that hangs down, for example, as shown in FIG. 7.
  • the peripheral portion PP of the substrate W is warped downward relative to the central portion CP.
  • the area of the underside of the tip 99a of the brush 99 acting on the substrate W is represented by the symbol CA as the equal pressure area (hatched area).
  • the equal pressure area in the case of the central portion CP is designated as CA1.
  • the peripheral portion PP only a portion of the tip 99a of the brush 99 that is closer to the central portion CP acts on the upper surface of the substrate W.
  • the area acting on the upper surface of the substrate W in this case is designated as equal pressure area CA2.
  • the equal pressure areas acting on the top surface of the substrate W are different, and therefore the load per unit area acting on the top surface of the substrate W is different between the center CP and the peripheral portion PP.
  • the force that the brush 99 exerts on the top surface of the substrate W differs in the radial direction of the substrate W.
  • the control unit 161 therefore adjusts at least one of the movement speed of the cleaning arm 45 and the pressure applied to the brush 99 in accordance with the inclination corresponding to the radial position of the brush 99 so that the force acting on the top surface of the substrate W by the brush 99 is the same in the radial direction of the substrate W.
  • the movement speed and pressure are parameters for adjusting the degree of cleaning.
  • Figure 8 is a graph showing the relationship between the radial position of the substrate and the inclination.
  • Figure 9 is a graph showing the relationship between the radial position of the substrate and the moving speed.
  • Figure 10 is a graph showing the relationship between the radial position of the substrate and the pressing force.
  • the substrate W is assumed to have a warp, and as an example, an inclination as shown in FIG. 8.
  • the inclination of the substrate W in the radial direction is the distribution of the distance in the radial direction of the substrate W measured by the displacement meter 401.
  • the radial distance of the substrate W is 0, that is, at the center portion r1, the distance is set to L1.
  • Distance L1 is the reference for the radial distance of the substrate W. This distance L1 is set to 0.
  • the distance L2 is set to a distance lower than the distance L1.
  • the distance L3 is set to a distance lower than the distance L2.
  • the inclination of the substrate W is the distribution of the distances L2 and L3 at the radial positions r2 and r3 of the substrate W, with the distance L1 at the center portion r1 of the substrate W as the reference.
  • control unit 161 adjusts, for example, the movement speed of the cleaning arm 45, which is one of the parameters, as shown in FIG. 9.
  • the control unit 161 moves the substrate W from the center r1 toward the periphery at a moving speed V1. If the substrate W is not warped, this moving speed V1 remains constant up to the periphery.
  • the control unit 161 reduces the moving speed from the moving speed V1 at the center r1 to the periphery r3 according to the inclination of the substrate W in FIG. 8. Specifically, at a radial distance r2 of the substrate W, a moving speed V2 lower than the moving speed V1 is set according to the radial inclination of the substrate W. At a radial distance r3 of the substrate W, a moving speed V3 lower than the moving speed V2 is set according to the radial inclination of the substrate W. These moving speeds V1 to V3 are set so that the degree of cleaning in the radial direction of the substrate W is constant. Specifically, the moving speed is adjusted by the control unit 161 manipulating the rotation speed around the rotation center P4 of the rotary lift mechanism 71.
  • the equal pressure area CA1 at the center of the substrate W is larger than the equal pressure area CA2 at the peripheral portion.
  • the area acting on the substrate W is larger at the center and smaller at the peripheral portion. Therefore, the area on which the brush 99 acts is smaller at the peripheral portion compared to the center. Therefore, by decreasing the movement speed, which is a parameter of the cleaning arm 45 as described above, the time that the brush 99 acts on the top surface of the substrate W at the peripheral portion is increased, and the area that the brush 99 acts on per unit time is increased. Therefore, the area on which the brush 99 acts per unit time in the radial direction of the substrate W can be made uniform.
  • the control unit 161 also adjusts the pressure of the brush 99, which is one of the parameters, as shown in FIG. 10, for example.
  • the control unit 161 moves the substrate W from the center r1 toward the periphery with a pressure F1. If the substrate W is not warped, this pressure F1 remains constant up to the periphery.
  • the control unit 161 reduces the pressure F1 at the center r1 toward the periphery r3 in accordance with the inclination of the substrate W in FIG. 8, based on the pressure F1 at the center r1. Specifically, at a radial distance r2 of the substrate W, a pressure F2 lower than the pressure F1 is set in accordance with the radial inclination of the substrate W.
  • a pressure F3 lower than the pressure F2 is set in accordance with the radial inclination of the substrate W.
  • These pressures F1 to F3 are set so that the degree of cleaning in the radial direction of the substrate W is constant.
  • the control unit 161 adjusts the pressure by adjusting the secondary side by adjusting the opening of the electropneumatic regulator 157.
  • the equal pressure area CA1 at the center of the substrate W is larger than the equal pressure area CA2 at the peripheral portion.
  • the area over which the brush 99 acts on the substrate W is larger at the center and smaller at the peripheral portion. Therefore, by reducing the pressing pressure, which is a parameter of the brush 99, the force per unit area applied to the top surface of the substrate W at the peripheral portion is reduced. This makes it possible to make the pressure per unit area uniform in the radial direction of the substrate W.
  • control unit 161 adjusts the two aforementioned parameters, the movement speed and the pressure, according to the inclination of the substrate W.
  • the above-mentioned back surface cleaning unit SSR (processing unit 31) corresponds to the "substrate processing apparatus" in this invention.
  • Figure 11 is a flow chart showing the pre-processing that is performed in advance.
  • Figure 12(a) shows the relationship between the opening of the electro-pneumatic regulator and the load of the electronic balance
  • Figure 12(b) shows the relationship between the secondary pressure of the electro-pneumatic regulator and the opening
  • Figure 12(c) is a graph showing the relationship between the load of the pressing actuator and the secondary pressure of the electro-pneumatic regulator.
  • the operator of the substrate processing apparatus 1 operates the instruction unit 163 to instruct pre-processing for one of the back surface cleaning units SSR.
  • Step S1 An electronic balance is placed. Specifically, an electronic balance (not shown) is placed on the rotating holder 37.
  • the electronic balance is a device that measures load.
  • the electronic balance preferably has a data output terminal.
  • the data output terminal of the electronic balance is connected to the input port IP.
  • the electronic balance outputs a measurement value from the data output terminal.
  • the measurement value is, for example, a load (g).
  • Step S2 The load is measured. Specifically, for example, the control unit 161 varies the input signal to the electropneumatic regulator 157 while the on-off valve 153 is open, and measures the load X (g) of the electronic balance for each input signal at that time. Note that the operator may specify several loads (target loads X (g)) that he or she actually wants to apply with the brush 99 in the process from the specifying unit 163, vary the input signal to the electropneumatic regulator 157 so that the measured value of the electronic balance becomes each target load X (g), and obtain an input signal corresponding to each target load X (g) at that time. At this time, the control unit 161 receives the secondary pressure, which is the measured value of the secondary pressure gauge 159 for each load.
  • Step S3 The control unit 161 obtains, by the measurement in step S2, the relationship between the opening degree (input signal) of the electropneumatic regulator 157 and the load of the electronic balance (target load X (g)) as shown in Figure 10(a), and the relationship between the secondary pressure of the electropneumatic regulator 157 and the opening degree as shown in Figure 10(b).
  • the control unit 161 stores in memory the relationship between the load of the pressing actuator 89 and the secondary pressure of the electropneumatic regulator 157 as shown in Figure 10(c).
  • Step S4 The operator of the substrate processing apparatus 1 issues an instruction to end the pre-processing for one back surface cleaning unit SSR by operating the instruction unit 163.
  • the operator of the substrate processing apparatus 1 removes the electronic balance from the rotation holder 37. If necessary, similar pre-processing is performed for the other back surface cleaning units SSR.
  • FIG. 13 is a flow chart showing the cleaning process. Note that, in the following, the description of the supplying operation of the processing liquid by the first processing liquid arm 41 and the second processing liquid arm 43 will be omitted.
  • Step S11 The operator instructs the start of processing. Specifically, the operator also instructs a recipe including a target load X (g). Then, the substrate W is transported from the indexer block 5 to the transfer part 15, and the orientation of the substrate W is changed in the first reversal unit 23 so that the back surface faces up.
  • Step S12 The substrate W with its back surface facing up is transported to one of the back surface cleaning units SSR by the center robot CR.
  • Step S13 A tilt measurement process is performed. Specifically, while the substrate W is held by the rotating holder 37, the displacement meter 401 is scanned as described above. At this time, the control unit 161 stores the radial tilt of the substrate W in the tilt memory 403.
  • Step S14 The back surface cleaning unit SSR starts the cleaning process.
  • Step S15 The brush 99 is moved to the center of the substrate W. Specifically, the control unit 161 moves the cleaning arm 45 to position the brush 99 at the rotation center P1.
  • Step S16 The controller 161 moves the cleaning arm 45.
  • the controller 161 starts moving the cleaning arm 45, and starts moving the cleaning arm 45 from the center of the substrate W toward the end face beyond the peripheral edge.
  • Step S17 The parameters are adjusted in accordance with the radial position of the substrate W. Specifically, the control unit 161 adjusts the moving speed of the cleaning arm 45 and the pressing pressure of the brush 99. Specifically, as described above, the adjustment is to decrease the parameters in accordance with the inclination.
  • Step S18 The above-mentioned movement of the brush 99 from the center to the edge of the substrate W by the movement of the cleaning arm 45 is counted as one scan, and the process branches depending on whether or not a predetermined number of scans have been completed. If the predetermined number of scans has not been reached, the process returns to step S15, and the cleaning arm 45 is moved to return the brush 99 from the edge to the center of the substrate W while acting on the substrate W. At this time, the parameters are also adjusted depending on the radial position of the substrate W as in step S17. If the predetermined number of scans has been reached, the process proceeds to step S19.
  • Step S19 The process moves to the processing of the next substrate W.
  • the controller 161 controls the center robot CR to unload the processed substrate W.
  • the cleaning process is performed on the next substrate W loaded by the center robot CR. That is, the process returns to step S12.
  • step S13 described above corresponds to the "gradient measurement process” in this invention.
  • Steps S14 to S18 described above correspond to the "cleaning process” in this invention.
  • the control unit 161 adjusts the parameters of the pressing pressure and the moving speed according to the inclination based on the inclination of the peripheral portion of the substrate W relative to the center, which has been acquired in advance. Therefore, since the parameters are adjusted according to the inclination of each substrate W, it is possible to reliably achieve a uniform degree of cleaning in the radial direction of the substrate W. Since the moving speed of the cleaning arm 45 is adjusted in addition to the pressing pressure of the brush 99, the amount that cannot be adjusted using only the pressing pressure of the brush 99 can be compensated for by the moving speed of the cleaning arm 45.
  • a back surface cleaning unit SSR has been used as an example of a substrate processing apparatus.
  • the present invention is not limited to a back surface cleaning unit SSR.
  • the present invention can also be applied to a front surface cleaning unit that cleans the front surface of a substrate with a brush 99.
  • the back surface cleaning unit SSR processing unit 31
  • the apparatus may be configured with only the back surface cleaning unit SSR (processing unit 31).
  • the cleaning arm 45 does not include a mechanism for detecting the load applied to the brush 99.
  • the present invention is not limited to this configuration.
  • a configuration may be used in which the force applied to the carriage 113b is detected by a load cell, and the degree of agreement with the target load is detected.
  • the present invention is not limited to this example. That is, at least one of the pressing pressure and movement speed parameters may be adjusted according to the inclination. As a result, even if the pressing pressure of the brush 99 cannot be adjusted, it can be addressed by adjusting the movement speed of the cleaning arm 45. Furthermore, even if the configuration does not allow the movement speed of the cleaning arm 45 to be adjusted, it can be addressed by adjusting the pressing pressure of the brush 99.
  • the movement speed of the cleaning arm 45 is adjusted to decrease.
  • the movement speed of the cleaning arm 45 may be adjusted to increase.
  • the area on which the brush 99 acts is generally smaller around the periphery, the pressure per unit area is higher. Therefore, depending on the condition of the cleaning surface of the substrate W, shortening the time that the brush 99 acts may result in a more uniform degree of cleaning.
  • the inclination of the substrate W is measured immediately before the substrate W is subjected to a cleaning process.
  • the present invention is not limited to this form.
  • the inclination of multiple substrates W is measured in a separate measurement unit having the same configuration as the rotation holding unit 37 of the back surface cleaning process SSR, and the inclination is stored for each substrate W. Then, when each substrate W is processed in the back surface cleaning process unit SSR, the inclination corresponding to the substrate W is transferred to the inclination memory 403, and the control unit 161 may adjust the parameters by referring to the inclination memory 403. This allows the inclination to be measured efficiently.
  • a configuration in which the displacement meter 401 is attached to the cleaning arm 45 has been described as an example.
  • the present invention is not limited to this configuration.
  • a configuration including a dedicated arm to which the displacement meter 401 is attached may be adopted.
  • the dedicated arm is configured so that the displacement meter 401 can move along the same movement trajectory as the brush 99.
  • a displacement meter has been used as an example of a measuring instrument.
  • the measuring instrument in the present invention is not limited to a displacement meter. In other words, any measuring instrument can be used as long as it can measure the radial tilt of the substrate for each position.
  • the movement of the brush 99 was performed by rotating and driving it with the rotary lift mechanism 71 mounted on the cleaning arm 45.
  • the cleaning arm 45 may be linearly driven by a linear motion mechanism using a ball screw, a linear guide, a motor that rotates the ball screw, etc., and the movement of the brush 99 held by the cleaning arm 45 may be linearly moved.
  • the present invention is suitable for a method and apparatus for performing a cleaning process by applying a brush to a substrate such as a semiconductor substrate.
  • REFERENCE SIGNS LIST 1 ... substrate processing apparatus 3 ... loading/unloading block 5 ... indexer block 7 ... processing block W ... substrate C ... carrier IR ... indexer robot 15 ... transfer section 23 ... first reversal unit 25, 27 ... path section 29 ... second reversal unit 31 ... processing unit SSR ... back surface cleaning unit CR ... center robot 37 ... rotation holding section 39 ... guard 41 ... first processing liquid arm 42 ... electric motor 43 ... second processing liquid arm 45 ... cleaning arm 47 ... standby pot 53 ... spin chuck 71 ... rotation lift mechanism 75 ... housing 77 ... cleaning section 81 ... pressing mechanism 83 ... rotation mechanism 85 ... fulcrum member 87 ... seesaw member 87c ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

In the present invention, on the basis of the inclination of a peripheral portion relative to a central portion of a substrate that is acquired in advance, parameters of a pressing force and a movement speed are adjusted in accordance with the inclination (Step S17). Accordingly, the parameters are adjusted in accordance with the inclination for each substrate, and the degree of cleaning in the radial direction of the substrate can therefore be made uniform in a reliable manner. The pressing force of a brush and the movement speed of a cleaning arm are adjusted, and thus the portion that cannot be adjusted only by the pressing force of the brush is compensated for by the movement speed of the cleaning arm.

Description

基板処理方法及び基板処理装置SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS
 本発明は、半導体基板、液晶表示用や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、フォトマスク用ガラス基板、光ディスク用基板等の基板にブラシを作用させて洗浄処理を行う基板処理方法及び基板処理装置に関する。 The present invention relates to a substrate processing method and substrate processing apparatus that uses a brush to perform a cleaning process on substrates such as semiconductor substrates, substrates for FPDs (Flat Panel Displays) such as liquid crystal displays and organic EL (Electroluminescence) display devices, glass substrates for photomasks, and substrates for optical disks.
 従来、この種の装置として、回転支持部と、ブラシと、洗浄アームと、制御部とを備えたものがある(例えば、特許文献1参照)。回転支持部は、基板の端面を支持しつつ、基板を回転させる。洗浄アームは、自転するブラシを先端側に備える。洗浄アームは、ブラシを基板の中央部から周縁部に揺動する。制御部は、基板の周縁部にブラシが位置している場合には、基板の中心部にブラシが位置している場合に比較して押し圧を小さく制御する。 Conventionally, this type of device includes a rotating support part, a brush, a cleaning arm, and a control unit (see, for example, Patent Document 1). The rotating support part rotates the substrate while supporting the edge of the substrate. The cleaning arm has a rotating brush at its tip. The cleaning arm swings the brush from the center to the periphery of the substrate. When the brush is located on the periphery of the substrate, the control unit controls the pressing pressure to be smaller than when the brush is located in the center of the substrate.
 一般的に、基板が端面で回転支持部に支持されると、基板が自重によって沈み込み、下に凸状の湾曲した状態となる。また、種々のプロセスを経た基板は、周縁部が中央部よりも反ることがある。つまり、ほぼ水平の姿勢となる基板の中央部に対して、基板の周縁部は傾斜した姿勢となる。この基板を処理する際には、基板の全面において一定の押し圧でブラシを作用させると、周縁部においてブラシが作用する面積が中央部より小さくなる。すると、単位面積当たりの押し圧が中央部より周縁部で高くなる。その結果、基板の径方向でブラシが基板に作用する度合いに差異が生じて、基板の径方向において洗浄度合いが不均一になる。 Generally, when a substrate is supported by a rotating support at its end surface, it sinks under its own weight and takes on a downwardly curved, convex shape. Furthermore, substrates that have undergone various processes may have more warping at their periphery than at their center. In other words, compared to the center of the substrate, which is nearly horizontal, the periphery of the substrate is tilted. When processing such a substrate, if a brush is applied with a constant pressure over the entire surface of the substrate, the area on which the brush acts at the periphery will be smaller than that at the center. This results in a higher pressure per unit area at the periphery than at the center. As a result, there is a difference in the degree to which the brush acts on the substrate in the radial direction of the substrate, resulting in uneven cleaning in the radial direction of the substrate.
 そこで、制御部は、上記のようにブラシの位置に応じて押し圧を調整する。これにより、基板の径方向において単位面積当たりの押し圧を一定にできる。つまり、ブラシが基板の径方向で作用する度合いを一定化できる。したがって、基板の径方向における洗浄度合いを均一にできる。 The control unit therefore adjusts the pressure according to the position of the brush as described above. This makes it possible to make the pressure per unit area constant in the radial direction of the substrate. In other words, it is possible to make constant the degree to which the brush acts in the radial direction of the substrate. This makes it possible to make the degree of cleaning uniform in the radial direction of the substrate.
特許第6178019号公報Patent No. 6178019
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、基板の湾曲状態や反り具合は、基板ごとに異なるのが一般的である。そのため、制御部が押し圧をブラシの位置に応じて一律に小さく制御しても、基板の径方向において単位面積当たりの押し圧を一定にできないことがある。そのため、基板の径方向における洗浄度合いを均一にできないことがある。
However, the conventional example having such a configuration has the following problems.
That is, the curvature and warpage of the substrate generally differ from one substrate to another. Therefore, even if the control unit uniformly controls the pressure to be small depending on the brush position, the pressure per unit area in the radial direction of the substrate may not be constant. Therefore, the degree of cleaning in the radial direction of the substrate may not be uniform.
 本発明は、このような事情に鑑みてなされたものであって、基板の傾斜を予め計測することにより、確実に基板の径方向における洗浄度合いを均一にできる基板処理方法及び基板処理装置を提供することを目的とする。 The present invention has been made in consideration of these circumstances, and aims to provide a substrate processing method and substrate processing apparatus that can reliably achieve a uniform degree of cleaning in the radial direction of the substrate by measuring the inclination of the substrate in advance.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、請求項1に記載の発明は、基板に対してブラシを作用させて洗浄処理を行う基板処理方法において、基板の中央部に対する周縁部の傾斜を測定する傾斜測定過程と、洗浄アームの先端側に設けられたブラシに押し圧を付与し、前記洗浄アームを移動速度で移動させて、基板の中央部から周縁部に前記ブラシを移動させつつ基板に作用させる洗浄過程と、をその順に実施するとともに、前記洗浄過程の際に、前記押し圧と、前記移動速度とのパラメータのうち、少なくとも一方を前記傾斜に応じて調整するものである。
In order to achieve the above object, the present invention has the following configuration.
That is, the invention described in claim 1 is a substrate processing method for performing a cleaning process by applying a brush to a substrate, which comprises a tilt measurement process for measuring the tilt of the peripheral portion of the substrate relative to the center of the substrate, and a cleaning process for applying a pressing pressure to a brush provided at the tip of a cleaning arm and moving the cleaning arm at a moving speed to cause the brush to act on the substrate while moving from the center to the peripheral portion of the substrate, in that order, and during the cleaning process, at least one of the parameters of the pressing pressure and the moving speed is adjusted in accordance with the tilt.
 [作用・効果]請求項1に記載の発明によれば、傾斜測定過程では、基板の中央部に対する周縁部の傾斜を測定する。洗浄過程では、ブラシの押し圧と、洗浄アームの移動速度とのパラメータのうち、少なくとも一方を測定した傾斜に応じて調整する。したがって、基板ごとの傾斜に応じてパラメータを調整するので、確実に基板の径方向における洗浄度合いを均一にできる。また、ブラシの押し圧が調整できない場合であっても、洗浄アームの移動速度を調整することで対応できる。さらに、ブラシの押し圧に加え洗浄アームの移動速度を調整することで、ブラシの押し圧だけでは調整しきれない分を洗浄アームの移動速度で補える。 [Function and Effect] According to the invention described in claim 1, in the inclination measurement process, the inclination of the peripheral part relative to the center of the substrate is measured. In the cleaning process, at least one of the parameters of the brush pressure and the cleaning arm movement speed is adjusted according to the measured inclination. Therefore, since the parameters are adjusted according to the inclination of each substrate, it is possible to ensure a uniform degree of cleaning in the radial direction of the substrate. Furthermore, even if the brush pressure cannot be adjusted, this can be accommodated by adjusting the cleaning arm movement speed. Furthermore, by adjusting the cleaning arm movement speed in addition to the brush pressure, the amount that cannot be adjusted by the brush pressure alone can be compensated for by the cleaning arm movement speed.
 また、本発明において、基板の周縁部において中央部よりも前記パラメータを減少させることが好ましい(請求項2)。 In addition, in the present invention, it is preferable to reduce the above parameters at the periphery of the substrate more than at the center (Claim 2).
 基板の周縁部が中央部に対して傾斜していると、周縁部ではブラシが作用する面積が減少するので、周縁部ではブラシの単位面積当たりの力が大きくなり、ブラシの単位時間当たりの作用する面積が減少する。そこで、周縁部ではパラメータを減少させる。押し圧が減少されると、周縁部において基板の上面へ作用する単位面積当たりの圧力が軽減される。そのため、基板の径方向において単位面積当たりの圧力を均一にできる。移動速度が減少されると、周縁部において基板の上面へブラシが作用する時間が増加され、ブラシの単位時間当たりに作用する面積が増加する。そのため、基板の径方向において単位時間当たりにブラシが作用する面積を均一にできる。 If the peripheral portion of the substrate is inclined with respect to the center, the area on which the brush acts at the peripheral portion decreases, so the force per unit area of the brush at the peripheral portion increases and the area on which the brush acts per unit time decreases. Therefore, the parameters are decreased at the peripheral portion. When the pressing force is decreased, the pressure per unit area acting on the top surface of the substrate at the peripheral portion is reduced. This makes it possible to make the pressure per unit area uniform in the radial direction of the substrate. When the moving speed is decreased, the time that the brush acts on the top surface of the substrate at the peripheral portion increases, and the area on which the brush acts per unit time increases. This makes it possible to make the area on which the brush acts per unit time uniform in the radial direction of the substrate.
 また、本発明において、前記傾斜測定過程は、前記洗浄アームのうち、前記ブラシに隣接した位置であって、前記洗浄アームの基端部と前記ブラシとの距離と同じ距離だけ前記基端部から離れた位置に測定器を取り付けた状態で、前記洗浄アームを移動させて実施されることが好ましい(請求項3)。 Furthermore, in the present invention, it is preferable that the tilt measurement process is performed by moving the cleaning arm with a measuring device attached to a position on the cleaning arm adjacent to the brush and away from the base end by the same distance as the distance between the base end of the cleaning arm and the brush (Claim 3).
 ブラシの移動軌跡と同じ位置における基板の傾斜を測定器によって計測できる。したがって、パラメータの調整に必要な位置の傾斜を正確に測定できる。 The inclination of the board at the same position as the brush movement trajectory can be measured by a measuring device. Therefore, the inclination at the position required for parameter adjustment can be accurately measured.
 また、本発明において、前記傾斜測定過程は、回転保持部に基板を保持させた状態で前記洗浄過程の直前に実施されることが好ましい(請求項4)。 In addition, in the present invention, it is preferable that the tilt measurement process is performed immediately before the cleaning process while the substrate is held on the rotating holder (Claim 4).
 基板を回転保持部に保持させた状態で傾斜を測定するので、洗浄過程においてパラメータの調整に影響する基板の傾斜を正確に測定できる。また、何らかの処理を基板に行うことで傾斜が変わることがあるが、洗浄過程の直前に測定するので、基板の傾斜を正確に測定できる。したがって、洗浄過程で処理されている基板の傾斜に正確にパラメータを調整できる。 The inclination is measured while the substrate is held on the rotating holder, so the inclination of the substrate, which affects the adjustment of parameters during the cleaning process, can be accurately measured. Also, the inclination may change when the substrate is subjected to some kind of processing, but since the measurement is performed immediately before the cleaning process, the inclination of the substrate can be accurately measured. Therefore, the parameters can be accurately adjusted to the inclination of the substrate being processed during the cleaning process.
 また、請求項5に記載の発明は、基板に対してブラシを作用させて洗浄処理を行う基板処理装置において、基板を水平姿勢で保持するとともに、基板を回転させる回転保持部と、前記回転保持部に保持された基板の上面に作用するブラシと、前記ブラシを先端部に備える洗浄アームと、前記ブラシが前記回転保持部に保持されている基板の回転中心と周縁部との間で、基板の径方向へ移動するように、前記洗浄アームを駆動するアーム駆動部と、前記ブラシを基板に向けて押し圧で付勢する押し圧機構と、前記ブラシに押し圧を付与しつつ、基板の中央部から周縁部に前記ブラシを移動させながら基板の洗浄処理を行う際に、予め取得された基板の中央部に対する周縁部の傾斜に基づいて、前記押し圧機構と前記アーム駆動部の少なくとも一方を制御することによって、前記押し圧と、前記移動速度とのパラメータのうち、少なくとも一方を前記傾斜に応じて調整する制御部と、を備えていることを特徴とするものである。 The invention described in claim 5 is a substrate processing apparatus that performs a cleaning process by applying a brush to a substrate, the apparatus comprising: a rotating holder that holds the substrate in a horizontal position and rotates the substrate; a brush that acts on the upper surface of the substrate held by the rotating holder; a cleaning arm having the brush at its tip; an arm drive unit that drives the cleaning arm so that the brush moves in the radial direction of the substrate between the center of rotation and the peripheral portion of the substrate held by the rotating holder; a pressing mechanism that applies a pressing force to the brush toward the substrate; and a control unit that adjusts at least one of the parameters of the pressing force and the moving speed in accordance with the inclination of the peripheral portion relative to the substrate center, by controlling at least one of the pressing mechanism and the arm drive unit, based on a previously obtained inclination of the peripheral portion relative to the substrate center, when performing a cleaning process of the substrate while moving the brush from the center to the peripheral portion of the substrate while applying a pressing force to the brush.
 [作用・効果]請求項5に記載の発明によれば、制御部は、押し圧機構とアーム駆動部の少なくとも一方を制御することによって、予め取得された基板の中央部に対する周縁部の傾斜に基づいて、押し圧と、移動速度とのパラメータのうち、少なくとも一方を傾斜に応じて調整する。したがって、基板ごとの傾斜に応じてパラメータを調整するので、確実に基板の径方向における洗浄度合いを均一にできる。また、ブラシの押し圧が調整できない場合であっても、洗浄アームの移動速度を調整することで対応できる。さらに、ブラシの押し圧に加え洗浄アームの移動速度を調整することで、ブラシの押し圧だけでは調整しきれない分を洗浄アームの移動速度で補える。 [Actions and Effects] According to the invention described in claim 5, the control unit adjusts at least one of the parameters of the pressing pressure and the movement speed according to the inclination of the peripheral portion relative to the center of the substrate, which has been previously obtained, by controlling the pressing mechanism and/or the arm drive unit. Therefore, since the parameters are adjusted according to the inclination of each substrate, it is possible to ensure a uniform degree of cleaning in the radial direction of the substrate. Furthermore, even if the pressing pressure of the brush cannot be adjusted, this can be addressed by adjusting the movement speed of the cleaning arm. Furthermore, by adjusting the movement speed of the cleaning arm in addition to the pressing pressure of the brush, the amount that cannot be adjusted by the pressing pressure of the brush alone can be compensated for by the movement speed of the cleaning arm.
 本発明に係る基板処理方法によれば、傾斜測定過程では、基板の中央部に対する周縁部の傾斜を測定する。洗浄過程では、ブラシの押し圧と、洗浄アームの移動速度とのパラメータのうち、少なくとも一方を測定した傾斜に応じて調整する。したがって、基板ごとの傾斜に応じてパラメータを調整するので、確実に基板の径方向における洗浄度合いを均一にできる。また、ブラシの押し圧が調整できない場合であっても、洗浄アームの移動速度を調整することで対応できる。さらに、ブラシの押し圧に加え洗浄アームの移動速度を調整することで、ブラシの押し圧だけでは調整しきれない分を洗浄アームの移動速度で補える。 In the substrate processing method according to the present invention, the inclination of the peripheral portion of the substrate relative to the center is measured in the inclination measurement process. In the cleaning process, at least one of the parameters of the brush pressure and the cleaning arm movement speed is adjusted according to the measured inclination. Therefore, since the parameters are adjusted according to the inclination of each substrate, it is possible to ensure a uniform degree of cleaning in the radial direction of the substrate. Even if the brush pressure cannot be adjusted, this can be accommodated by adjusting the cleaning arm movement speed. Furthermore, by adjusting the cleaning arm movement speed in addition to the brush pressure, the amount that cannot be adjusted by the brush pressure alone can be compensated for by the cleaning arm movement speed.
実施例に係る基板処理装置の全体構成を示す平面図である。1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment; 図1の基板処理装置を後方Xから見た図である。2 is a view of the substrate processing apparatus of FIG. 1 as seen from the rear X. 実施例に係る裏面洗浄ユニットの概略構成を示す平面図である。FIG. 2 is a plan view showing a schematic configuration of a back surface cleaning unit according to an embodiment. 裏面洗浄ユニットの概略構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of a back surface cleaning unit. 洗浄アームの縦断面図である。FIG. 2 is a vertical cross-sectional view of the cleaning arm. 裏面洗浄ユニットの制御系を示すブロック図である。FIG. 4 is a block diagram showing a control system of the back surface cleaning unit. 反った基板の中央部と周縁部とにおけるブラシの作用状態を説明する模式図である。10A and 10B are schematic diagrams illustrating the action of a brush on the central portion and peripheral portion of a warped substrate. 基板の径方向の位置と傾斜との関係を示すグラフである。1 is a graph showing the relationship between radial position and tilt of a substrate. 基板の径方向の位置と移動速度との関係を示すグラフである。13 is a graph showing the relationship between the radial position of the substrate and the moving speed. 基板の径方向の位置と押し圧との関係を示すグラフである。13 is a graph showing the relationship between the radial position of the substrate and the pressing pressure. 予め行う前処理を示すフローチャートである。13 is a flowchart showing a pre-processing performed in advance. (a)は、電空レギュレータの開度と電子天秤の荷重の関係を示し、(b)は、電空レギュレータの二次側圧力と開度の関係を示し、(c)は、押し圧用アクチュエータの荷重と電空レギュレータの二次側圧力との関係を示すグラフである。Graph (a) shows the relationship between the opening of the electro-pneumatic regulator and the load of the electronic balance, graph (b) shows the relationship between the secondary pressure of the electro-pneumatic regulator and the opening, and graph (c) shows the relationship between the load of the pressing actuator and the secondary pressure of the electro-pneumatic regulator. 洗浄処理を示すフローチャートである。13 is a flowchart showing a cleaning process.
 以下、図面を参照して本発明の実施例について説明する。
 図1は、実施例に係る基板処理装置の全体構成を示す平面図である。図2は、図1の基板処理装置を後方Xから見た図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig. 1 is a plan view showing the overall configuration of a substrate processing apparatus according to an embodiment of the present invention, Fig. 2 is a view of the substrate processing apparatus of Fig. 1 as seen from the rear X.
 <1.全体構成> <1. Overall structure>
 基板処理装置1は、搬入出ブロック3と、インデクサブロック5と、処理ブロック7とを備えている。 The substrate processing apparatus 1 includes a loading/unloading block 3, an indexer block 5, and a processing block 7.
 基板処理装置1は、基板Wを処理する。基板処理装置1は、例えば、基板Wに対して洗浄処理を行う。基板処理装置1は、処理ブロック7において枚葉式で基板Wを処理する。枚葉式は、一枚の基板Wを水平姿勢の状態で一枚ずつ処理する。 The substrate processing apparatus 1 processes substrates W. The substrate processing apparatus 1 performs, for example, a cleaning process on the substrates W. The substrate processing apparatus 1 processes substrates W in a single-wafer manner in a processing block 7. In the single-wafer manner, a single substrate W is processed one by one in a horizontal position.
 本明細書では、便宜上、搬入出ブロック3と、インデクサブロック5と、処理ブロック7とが並ぶ方向を、「前後方向X」と呼ぶ。前後方向Xは水平である。前後方向Xのうち、処理ブロック7から搬入出ブロック3に向かう方向を「前方」と呼ぶ。前方と反対の方向を「後方」と呼ぶ。前後方向Xと直交する水平方向を、「幅方向Y」と呼ぶ。「幅方向Y」の一方向を適宜に「右方」と呼ぶ。右方とは反対の方向を「左方」と呼ぶ。水平方向に対して垂直な方向を「鉛直方向Z」と呼ぶ。各図では、参考として、前、後、右、左、上、下を適宜に示す。 For convenience, in this specification, the direction in which the load/unload block 3, indexer block 5, and processing block 7 are lined up is referred to as the "front-to-back direction X." The front-to-back direction X is horizontal. Within the front-to-back direction X, the direction from the processing block 7 toward the load/unload block 3 is referred to as the "front." The direction opposite to the front is referred to as the "rear." The horizontal direction perpendicular to the front-to-back direction X is referred to as the "width direction Y." One direction in the "width direction Y" is referred to as the "right" as appropriate. The direction opposite to the right is referred to as the "left." The direction perpendicular to the horizontal direction is referred to as the "vertical direction Z." In each figure, for reference, front, back, right, left, top, and bottom are indicated as appropriate.
 <2.搬入出ブロック> <2. Loading/unloading block>
 搬入出ブロック3は、投入部9と払出部11とを備えている。投入部9と払出部11は、幅方向Yに配置されている。基板Wは、複数枚(例えば、25枚)が一つのキャリアC内に水平姿勢で一定の間隔をおいて積層収納されている。未処理の基板Wを収納したキャリアCは、投入部9に載置される。投入部9は、例えば、キャリアCが載置される載置台13を二つ備えている。キャリアCは、基板Wの面同士を離間して、基板Wを一枚ずつ収容する溝(図示省略)が複数個形成されている。キャリアCは、例えば、基板Wの表面を上に向けた姿勢で収容する。キャリアCとしては、例えば、FOUP(Front Opening Unify Pod)がある。FOUPは、密閉型容器である。キャリアCは、開放型容器でもよく、種類を問わない。 The loading/unloading block 3 includes an input section 9 and an unloading section 11. The input section 9 and the unloading section 11 are arranged in the width direction Y. A plurality of substrates W (e.g., 25 substrates) are stored in a single carrier C in a horizontal position, stacked at regular intervals. The carrier C storing unprocessed substrates W is placed on the input section 9. The input section 9 includes, for example, two mounting tables 13 on which the carriers C are placed. The carrier C has a plurality of grooves (not shown) formed therein, which separate the surfaces of the substrates W from each other and store the substrates W one by one. The carrier C stores the substrates W, for example, with their surfaces facing upward. An example of the carrier C is a front opening unify pod (FOUP). A FOUP is a sealed container. The carrier C may be an open container, and any type of carrier C may be used.
 払出部11は、基板処理装置1における幅方向Yの中央部を挟んだ投入部9の反対側に配備されている。払出部11は、投入部9の左方Yに配置されている。払出部11は、処理済みの基板WをキャリアCに収納してキャリアCごと払い出す。このように機能する払出部11は、投入部9と同様に、例えば、キャリアCを載置するための二つの載置台13を備えている。投入部9と払出部11とは、ロードポートとも呼ばれる。 The unloading unit 11 is disposed on the opposite side of the input unit 9 across the center of the width direction Y of the substrate processing apparatus 1. The unloading unit 11 is located to the left Y of the input unit 9. The unloading unit 11 stores processed substrates W in carriers C and unloads the carriers C. The unloading unit 11, which functions in this manner, is equipped with, like the input unit 9, for example, two mounting tables 13 for placing the carriers C. The input unit 9 and the unloading unit 11 are also called load ports.
 <3.インデクサブロック> <3. Indexer block>
 インデクサブロック5は、基板処理装置1における搬入出ブロック3の後方Xに隣接して配置されている。インデクサブロック5は、インデクサロボットIRと、受渡部15とを備えている。 The indexer block 5 is disposed adjacent to the rear X of the loading/unloading block 3 in the substrate processing apparatus 1. The indexer block 5 includes an indexer robot IR and a transfer section 15.
 インデクサロボットIRは、鉛直方向Z周りに回転可能に構成されている。インデクサロボットIRは、幅方向Yに移動可能に構成されている。インデクサロボットIRは、第1のハンド19と、第2のハンド21とを備えている。図1では、図示の関係上、一つのハンドのみを示す。第1のハンド19と、第2のハンド21とは、それぞれ1枚の基板Wを保持する。第1のハンド19と第2のハンド21とは、独立して前後方向Xに進退可能に構成されている。インデクサロボットIRは、幅方向Yに移動するとともに鉛直方向Z周りに回転し、第1のハンド19や第2のハンド21を進退させて各カセットCとの間で基板Wを受け渡す。同様にして、インデクサロボットIRは、受渡部15との間で基板Wを受け渡す。 The indexer robot IR is configured to be rotatable around the vertical direction Z. The indexer robot IR is configured to be movable in the width direction Y. The indexer robot IR has a first hand 19 and a second hand 21. For illustrative purposes, only one hand is shown in FIG. 1. The first hand 19 and the second hand 21 each hold one substrate W. The first hand 19 and the second hand 21 are configured to be able to advance and retreat independently in the forward and backward directions X. The indexer robot IR moves in the width direction Y and rotates around the vertical direction Z, and advances and retreats the first hand 19 and the second hand 21 to transfer substrates W between each cassette C. In a similar manner, the indexer robot IR transfers substrates W between the transfer section 15.
 受渡部15は、インデクサブロック5のうち、処理ブロック7との境界に配置されている。受渡部15は、例えば、幅方向Yの中央部に配置されている。図2に示すように、受渡部15は、鉛直方向Zに長く形成されている。 The transfer section 15 is disposed on the boundary between the indexer block 5 and the processing block 7. The transfer section 15 is disposed, for example, in the center in the width direction Y. As shown in FIG. 2, the transfer section 15 is formed long in the vertical direction Z.
 受渡部15は、鉛直方向Zの下方から上方に向かって、第1反転ユニット23と、パス部25と、パス部27と、第2反転ユニット29とを備えている。 The transfer section 15 includes, from bottom to top in the vertical direction Z, a first reversing unit 23, a path section 25, a path section 27, and a second reversing unit 29.
 第1反転ユニット23は、インデクサブロック5から受け取った基板Wの上下を反転させる。第1反転ユニット23は、基板Wの水平姿勢を反転させる。具体的には、第1反転ユニット23は、表面が上に向けられた基板Wを、表面が下に向けられた姿勢に変換する。換言すると、裏面が上に向いた姿勢となるように基板Wの姿勢を変換する。 The first inversion unit 23 inverts the top and bottom of the substrate W received from the indexer block 5. The first inversion unit 23 inverts the horizontal orientation of the substrate W. Specifically, the first inversion unit 23 converts a substrate W with its front surface facing up into an orientation in which its front surface faces down. In other words, it converts the orientation of the substrate W so that its back surface faces up.
 第2反転ユニット29は、その逆の動作を行う。つまり、第2反転ユニット29は、処理ブロック7から受け取った基板Wの上下を反転させる。第2反転ユニット29は、表面が下に向けられた基板Wを、表面が上に向けられた姿勢に変換する。換言すると、裏面が下に向いた姿勢となるように基板Wの姿勢を変換する。 The second inversion unit 29 performs the reverse operation. That is, the second inversion unit 29 inverts the top and bottom of the substrate W received from the processing block 7. The second inversion unit 29 converts the substrate W with its front surface facing down into a position in which its front surface faces up. In other words, it converts the position of the substrate W so that its back surface faces down.
 上記の第1反転ユニット23と第2反転ユニット29の反転方向は、互いに逆であってもよい。つまり、第1反転ユニット23は、表面が上に向いた姿勢となるように基板Wの姿勢を変換する。第2の反転ユニット29は、裏面が上に向いた姿勢となるように基板Wの姿勢を変換する。 The inversion directions of the first inversion unit 23 and the second inversion unit 29 may be opposite to each other. In other words, the first inversion unit 23 changes the orientation of the substrate W so that the front surface faces upward. The second inversion unit 29 changes the orientation of the substrate W so that the back surface faces upward.
 パス部25,27は、インデクサロブロック5と処理ブロック7との間で基板Wの受け渡しを行うために利用される。パス部25は、例えば、処理ブロック7からインデクサブロック5に基板Wを搬送するために用いられる。パス部27は、例えば、インデクサブロック5から処理ブロック7に基板Wを搬送するために用いられる。なお、パス部25,27における基板Wの搬送方向は、互いに逆方向であってもよい。 The path sections 25 and 27 are used to transfer substrates W between the indexer block 5 and the processing block 7. The path section 25 is used, for example, to transport substrates W from the processing block 7 to the indexer block 5. The path section 27 is used, for example, to transport substrates W from the indexer block 5 to the processing block 7. Note that the transport directions of substrates W in the path sections 25 and 27 may be opposite to each other.
 <4.処理ブロック> <4. Processing block>
 処理ブロック7は、例えば、基板Wに対して洗浄処理を行う。洗浄処理は、例えば、処理液に加えてブラシを用いた処理である。処理ブロック7は、図1に示すように、例えば、幅方向Yにおいて、第1列R1と、第2列R2と、第3列R3に分けられる。詳細には、第1列R1は、左方Yに配置されている。第2列R2は、幅方向Yの中央部に配置されている。換言すると、第2列R2は、第1列R1の右方Yに配置されている。第3列R3は、第2列R2の右方Yに配置されている。 The processing block 7 performs, for example, a cleaning process on the substrate W. The cleaning process is, for example, a process that uses a brush in addition to a processing liquid. As shown in FIG. 1, the processing block 7 is, for example, divided into a first row R1, a second row R2, and a third row R3 in the width direction Y. In detail, the first row R1 is disposed on the left side Y. The second row R2 is disposed in the center of the width direction Y. In other words, the second row R2 is disposed to the right side Y of the first row R1. The third row R3 is disposed to the right side Y of the second row R2.
 <4-1.第1列>  <4-1. 1st column>
 処理ブロック7の第1列R1は、複数個の処理ユニット31を備えている。第1列R1は、例えば、4個の処理ユニット31を備えている。第1列R1は、4個の処理ユニット31を鉛直方向Zに積層して配置されている。各処理ユニット31については、詳細を後述する。各処理ユニット31は、例えば、洗浄ユニットである。洗浄ユニットは、基板Wを洗浄処理する。洗浄ユニットとしては、基板Wの表面を洗浄処理する表面洗浄ユニットと、基板Wの裏面を洗浄処理する裏面洗浄ユニットとがある。本実施例では、処理ユニット31として裏面洗浄ユニットSSRを例にとって説明する。 The first row R1 of the processing block 7 includes a plurality of processing units 31. The first row R1 includes, for example, four processing units 31. The first row R1 has four processing units 31 stacked in the vertical direction Z. Details of each processing unit 31 will be described later. Each processing unit 31 is, for example, a cleaning unit. The cleaning unit cleans the substrate W. The cleaning units include a front surface cleaning unit that cleans the front surface of the substrate W, and a back surface cleaning unit that cleans the back surface of the substrate W. In this embodiment, the back surface cleaning unit SSR will be used as an example of the processing unit 31.
 <4-2.第2列>  <4-2. Column 2>
 処理ブロック7の第2列R2は、センターロボットCRを備えている。センターロボットCRは、鉛直方向Z周りに回転可能に構成されている。センターロボットCRは、鉛直方向Zに昇降可能に構成されている。センターロボットCRは、例えば、第1のハンド33と第2のハンド35とを備えている。第1のハンド33と第2のハンド35とは、それぞれ1枚の基板Wを保持する。第1のハンド33と第2のハンド35とは、独立して前後方向X及び幅方向Yに進退可能に構成されている。 The second row R2 of the processing block 7 is equipped with a center robot CR. The center robot CR is configured to be rotatable around the vertical direction Z. The center robot CR is configured to be able to rise and fall in the vertical direction Z. The center robot CR is equipped with, for example, a first hand 33 and a second hand 35. The first hand 33 and the second hand 35 each hold one substrate W. The first hand 33 and the second hand 35 are configured to be able to move independently forward and backward in the forward and backward direction X and the width direction Y.
 <4-3.第3列>  <4-3. Column 3>
 処理ブロック7の第3列R3は、第1列R1と同様の構成である。つまり、第3列R3は、複数個の処理ユニット31を備えている。第3列R3は、例えば、4個の処理ユニット31を備えている。第3列R3は、4個の処理ユニット31を鉛直方向Zに積層して配置されている。第1列R1の各処理ユニット31と第3列R3の各処理ユニット31とは、幅方向Yにおいて対向して配置されている。これにより、センターロボットCRが鉛直方向Zの同じ高さにおいて第1列R1と第3列R3との対向する各処理ユニット31にアクセスできる。 The third row R3 of the processing block 7 has the same configuration as the first row R1. That is, the third row R3 has a plurality of processing units 31. The third row R3 has, for example, four processing units 31. The third row R3 has four processing units 31 stacked in the vertical direction Z. Each processing unit 31 in the first row R1 and each processing unit 31 in the third row R3 are arranged opposite each other in the width direction Y. This allows the center robot CR to access each of the opposing processing units 31 in the first row R1 and the third row R3 at the same height in the vertical direction Z.
 処理ブロック7は、上述したように構成されている。ここで、センターロボットCRの動作例を簡単に説明する。センターロボットCRは、例えば、第1反転ユニット23から基板Wを受け取る。センターロボットCRは、第1列R1及び第3列R3のいずれかの裏面洗浄ユニットSSRに基板Wを搬送して基板Wの裏面に洗浄処理を行わせる。センターロボットCRは、第1列R1及び第3列Rのいずれかの裏面洗浄ユニットSSRで洗浄処理が行われた基板Wを受け取る。センターロボットCRは、第2反転ユニット29に基板Wを搬送する。 The processing block 7 is configured as described above. Here, an example of the operation of the center robot CR will be briefly described. The center robot CR receives the substrate W, for example, from the first reversal unit 23. The center robot CR transports the substrate W to either the back surface cleaning unit SSR in the first row R1 or the third row R3 to perform cleaning processing on the back surface of the substrate W. The center robot CR receives the substrate W that has been cleaned in either the back surface cleaning unit SSR in the first row R1 or the third row R. The center robot CR transports the substrate W to the second reversal unit 29.
 <4-4.処理ユニット> <4-4. Processing unit>
 ここで、図3~図5を参照して、裏面洗浄ユニットSSR(処理ユニット31)について説明する。図3は、実施例に係る裏面洗浄ユニットの概略構成を示す平面図である。図4は、裏面洗浄ユニットの概略構成を示す側面図である。図5は、洗浄アームの縦断面図である。 The back surface cleaning unit SSR (processing unit 31) will now be described with reference to Figures 3 to 5. Figure 3 is a plan view showing the schematic configuration of the back surface cleaning unit in the embodiment. Figure 4 is a side view showing the schematic configuration of the back surface cleaning unit. Figure 5 is a vertical cross-sectional view of the cleaning arm.
 なお、ここでは、第1列R1が備えている裏面洗浄ユニットSSRを例にとって説明する。第3列R3の裏面洗浄ユニットSSRは、幅方向Yにおける配置を入れ換えたような構成となる。 Here, the back surface cleaning unit SSR in the first row R1 will be used as an example. The back surface cleaning unit SSR in the third row R3 has a configuration in which the arrangement in the width direction Y is swapped.
 裏面洗浄ユニットSSRは、回転保持部37と、ガード39と、第1の処理液アーム41と、第2の処理液アーム43と、洗浄アーム45と、待機ポット47とを備えている。 The back surface cleaning unit SSR includes a rotating holder 37, a guard 39, a first processing liquid arm 41, a second processing liquid arm 43, a cleaning arm 45, and a waiting pot 47.
 <4-4-1.回転保持部>
 回転保持部37は、平面視において裏面洗浄ユニットSSRのほぼ中央に配置されている。回転保持部37は、基板Wを水平姿勢に保持した状態で、基板Wを水平面内で回転させる。回転保持部37は、電動モータ49と、回転軸51と、スピンチャック53と、支持ピン55とを備えている。
<4-4-1. Rotation holding part>
The rotary holder 37 is disposed at approximately the center of the back surface cleaning unit SSR in a plan view. The rotary holder 37 rotates the substrate W in a horizontal plane while holding the substrate W in a horizontal position. The rotary holder 37 includes an electric motor 49, a rotating shaft 51, a spin chuck 53, and support pins 55.
 電動モータ49は、回転軸51が鉛直方向Zに向けられた姿勢で配置されている。回転軸51は、上端にスピンチャック53が取り付けられている。スピンチャック53は、基板Wの直径よりやや大きな直径を有する。スピンチャック53は、円形状の板状部材である。スピンチャック53は、複数個の支持ピン55を備えている。この実施例では、例えば、6個の支持ピン55を備えている。6個の支持ピン55は、基板Wの外周縁に当接して基板Wを水平姿勢で支持する。複数個の支持ピン55は、基板Wを水平姿勢で安定して支持できれば、支持ピン55の個数は6個に限定されない。6個の支持ピン55は、スピンチャック53における基板Wの外周縁付近に立設されている。6個の支持ピン55は、基板Wをスピンチャック53に搬入する際と、基板Wをスピンチャック53から搬出する際には、基板Wの周縁の保持を解除する。そのため、各支持ピン55は、鉛直方向Z周りに回転可能に構成されている。その動作を行うための具体的な構成の説明については省略する。回転保持部37は、電動モータ49を回転すると、回転中心P1周りにスピンチャック53を回転する。回転中心P1は、鉛直方向Zである。 The electric motor 49 is disposed with the rotating shaft 51 facing the vertical direction Z. A spin chuck 53 is attached to the upper end of the rotating shaft 51. The spin chuck 53 has a diameter slightly larger than the diameter of the substrate W. The spin chuck 53 is a circular plate-like member. The spin chuck 53 has a plurality of support pins 55. In this embodiment, for example, six support pins 55 are provided. The six support pins 55 abut against the outer periphery of the substrate W to support the substrate W in a horizontal position. The number of support pins 55 is not limited to six as long as the plurality of support pins 55 can stably support the substrate W in a horizontal position. The six support pins 55 are erected near the outer periphery of the substrate W in the spin chuck 53. The six support pins 55 release their hold on the periphery of the substrate W when the substrate W is loaded into the spin chuck 53 and when the substrate W is unloaded from the spin chuck 53. Therefore, each support pin 55 is configured to be rotatable around the vertical direction Z. A detailed description of the configuration for performing this operation will be omitted. When the electric motor 49 rotates, the rotating holder 37 rotates the spin chuck 53 around the rotation center P1. The rotation center P1 is in the vertical direction Z.
 <4-4-2.ガード>  <4-4-2. Guard>
 ガード39は、平面視にて回転保持部37を囲うように配置されている。詳細には、ガード39は、円筒状の胴部57と、傾斜部59とを備える。ガード39は、鉛直方向Zに昇降可能に構成されている。ガード39は、下降した待機位置と、待機位置より上方の処理位置とに昇降可能である。ガード39を昇降する具体的な構成の説明については省略する。 The guard 39 is arranged to surround the rotating holding portion 37 in a plan view. In detail, the guard 39 has a cylindrical body portion 57 and an inclined portion 59. The guard 39 is configured to be able to rise and fall in the vertical direction Z. The guard 39 can be raised and lowered to a lowered standby position and a processing position above the standby position. A description of the specific configuration for raising and lowering the guard 39 will be omitted.
 ガード39の胴部57は、筒状を呈する。胴部57は、内周面が回転保持部37の外周側から外方に離間して配置されている。傾斜部59は、胴部57の上部から回転軸51側に近づくように絞り込まれている。傾斜部59は、上部に開口部61を有する。開口部61は、傾斜部59の中央部に形成されている。開口部61は、基板Wの直径より大きい。開口部61は、スピンチャック53の直径より大きい。基板Wの搬入出の際には、ガード39は、鉛直方向Zにおいて、スピンチャック53が開口部61から上方へ突出する位置にまで下降される。基板Wの洗浄処理の際には、ガード39は、スピンチャック53に保持された基板Wの高さ付近に傾斜部59が位置する。傾斜部59は、傾斜した内周面にて基板Wから周囲に飛散した処理液などをガード39の下方へ案内する。 The body 57 of the guard 39 is cylindrical. The inner peripheral surface of the body 57 is disposed at a distance outward from the outer peripheral side of the rotating holder 37. The inclined portion 59 is tapered from the upper portion of the body 57 toward the rotating shaft 51. The inclined portion 59 has an opening 61 at the upper portion. The opening 61 is formed in the center of the inclined portion 59. The opening 61 is larger than the diameter of the substrate W. The opening 61 is larger than the diameter of the spin chuck 53. When the substrate W is loaded or unloaded, the guard 39 is lowered in the vertical direction Z to a position where the spin chuck 53 protrudes upward from the opening 61. When the substrate W is cleaned, the inclined portion 59 of the guard 39 is located near the height of the substrate W held by the spin chuck 53. The inclined inner peripheral surface of the inclined portion 59 guides the processing liquid and the like that has been scattered from the substrate W to the lower portion of the guard 39.
 <4-4-3.第1の処理液アーム> <4-4-3. First processing liquid arm>
 第1の処理液アーム41は、平面視で回転保持部37の後方Xに配置されている。第1の処理アーム41は、基端部側に電動モータ42を備えている。第1の処理液アーム41は、電動モータ42によって基端部側の回転中心P2周りに揺動される。回転中心P2は、鉛直方向Zである。第1の処理液アーム41は、1本のノズル63を備えている。ノズル63は、下方に吐出口を備えている。ノズル63は、処理液を吐出する。第1の処理液アーム41は、ノズル63の先端部が図3に示す待機位置と、回転中心P1付近の供給位置とにわたって揺動可能に構成されている。第1の処理液アーム41は、処理液を基板Wに供給する際には、ノズル63の先端部が供給位置に移動される。第1の処理液アーム41は、処理液を基板Wに供給しない場合には、ノズル63の先端部が待機位置に移動される。第1の処理液アーム41は、処理液を基板Wに供給する際に、洗浄アーム45と干渉しないように、ノズル63を基板Wの上方で揺動移動するようにしてもよい。 The first processing liquid arm 41 is disposed at the rear X of the rotating holder 37 in a plan view. The first processing liquid arm 41 is provided with an electric motor 42 on the base end side. The first processing liquid arm 41 is swung around the rotation center P2 on the base end side by the electric motor 42. The rotation center P2 is in the vertical direction Z. The first processing liquid arm 41 is provided with one nozzle 63. The nozzle 63 has an outlet on the downward side. The nozzle 63 spits processing liquid. The first processing liquid arm 41 is configured so that the tip of the nozzle 63 can swing between a standby position shown in FIG. 3 and a supply position near the rotation center P1. When the first processing liquid arm 41 supplies processing liquid to the substrate W, the tip of the nozzle 63 is moved to the supply position. When the first processing liquid arm 41 does not supply processing liquid to the substrate W, the tip of the nozzle 63 is moved to the standby position. The first processing liquid arm 41 may be configured to swing and move the nozzle 63 above the substrate W so as not to interfere with the cleaning arm 45 when supplying processing liquid to the substrate W.
 ノズル63から吐出する処理液としては、例えば、リンス液が挙げられる。リンス液としては、例えば、純水、炭酸水、電解イオン水、水素水、オゾン水などが挙げられる。 The processing liquid discharged from the nozzle 63 may be, for example, a rinse liquid. Examples of the rinse liquid include pure water, carbonated water, electrolytic ion water, hydrogen water, and ozone water.
 <4-4-4.第2の処理液アーム> <4-4-4. Second processing liquid arm>
 第2の処理液アーム43は、平面視で回転保持部37の左方Yに配置されている。第2の処理液アーム41は、基端部側に電動モータ44を備えている。第2の処理液アームは、電動モータ44によって基端部側の回転中心P3周りに揺動される。回転中心P3は、鉛直方向Zである。第2の処理液アーム43は、3本のノズル65,67,69を備えている。各ノズル65,67,69は、下方に吐出口を備えている。ノズル65,67,69は、処理液を吐出する。第2の処理液アーム43は、ノズル65,67,69の先端部が図3に示す待機位置と、回転中心P1付近の供給位置とにわたって揺動可能に構成されている。第2の処理液アーム43は、処理液を基板Wに供給する際には、ノズル65,67,69の先端部が供給位置に移動される。第2の処理液アーム43は、処理液を基板Wに供給しない場合には、ノズル65,67,69の先端部が待機位置に移動される。第2の処理液アーム43は、処理液を基板Wに供給する際に、洗浄アーム45と干渉しないように、ノズル65,67,69を基板Wの上方で揺動移動するようにしてもよい。 The second processing liquid arm 43 is disposed to the left Y of the rotating holder 37 in a plan view. The second processing liquid arm 41 is provided with an electric motor 44 on the base end side. The second processing liquid arm is swung around the rotation center P3 on the base end side by the electric motor 44. The rotation center P3 is in the vertical direction Z. The second processing liquid arm 43 is provided with three nozzles 65, 67, 69. Each nozzle 65, 67, 69 has an outlet on the lower side. The nozzles 65, 67, 69 discharge processing liquid. The second processing liquid arm 43 is configured so that the tips of the nozzles 65, 67, 69 can swing between a standby position shown in FIG. 3 and a supply position near the rotation center P1. When the second processing liquid arm 43 supplies processing liquid to the substrate W, the tips of the nozzles 65, 67, 69 are moved to the supply position. When the second processing liquid arm 43 is not supplying the processing liquid to the substrate W, the tips of the nozzles 65, 67, 69 are moved to standby positions. When the second processing liquid arm 43 is supplying the processing liquid to the substrate W, the nozzles 65, 67, 69 may be moved in a swinging manner above the substrate W so as not to interfere with the cleaning arm 45.
 ノズル65,67,69から吐出する処理液としては、例えば、薬液が挙げられる。薬液としては、例えば、硫酸、硝酸、酢酸、塩酸、フッ化水素酸、アンモニア水、過酸化水素水のうち少なくとも1つを含む薬液である。より具体的な薬液としては、例えば、アンモニア水と過酸化水素水との混合液であるSC-1などを用いることができる。 The processing liquid discharged from the nozzles 65, 67, and 69 may be, for example, a chemical liquid. The chemical liquid may be, for example, a chemical liquid containing at least one of sulfuric acid, nitric acid, acetic acid, hydrochloric acid, hydrofluoric acid, ammonia water, and hydrogen peroxide water. A more specific example of the chemical liquid that can be used is SC-1, which is a mixture of ammonia water and hydrogen peroxide water.
 <4-4-5.洗浄アーム> <4-4-5. Cleaning arm>
 洗浄アーム45は、次のように構成されている。 The cleaning arm 45 is configured as follows:
 洗浄アーム45は、回転昇降機構71と、支柱73と、筐体75と、洗浄部77とを備えている。 The cleaning arm 45 includes a rotating and lifting mechanism 71, a support 73, a housing 75, and a cleaning section 77.
 回転昇降機構71は、支柱73と、筐体75と、洗浄部77とを鉛直方向Zに昇降可能に構成されている。回転昇降機構71は、支柱73と、筐体75と、洗浄部77とを回転中心P4周りに揺動可能に構成されている。具体的には、回転昇降機構71は、例えば、電動モータとエアシリンダとを組み合わせて構成されている。回転昇降機構71は、待機位置において洗浄部77を待機ポット47から鉛直方向Zに上昇させる。回転昇降機構71は、洗浄部77が回転中心P1付近を通るように水平面内で洗浄部77を揺動(移動)させる。 The rotary lifting mechanism 71 is configured to be able to raise and lower the support 73, the housing 75, and the cleaning unit 77 in the vertical direction Z. The rotary lifting mechanism 71 is configured to be able to swing the support 73, the housing 75, and the cleaning unit 77 around the rotation center P4. Specifically, the rotary lifting mechanism 71 is configured, for example, by combining an electric motor and an air cylinder. The rotary lifting mechanism 71 raises the cleaning unit 77 in the vertical direction Z from the standby pot 47 at the standby position. The rotary lifting mechanism 71 swings (moves) the cleaning unit 77 in a horizontal plane so that the cleaning unit 77 passes near the rotation center P1.
 支柱73は、円柱状を呈する。支柱73は、回転昇降機構71に下部が連結されている。支柱73は、上部が筐体75の一方の下部に連結されている。筐体75は、水平面内に長軸を有する。筐体75は、他方の下部に洗浄部77を備えている。洗浄部77は、回転中心P5周りに回転される。回転中心P5は、鉛直方向Zである。 The support pillar 73 has a cylindrical shape. The lower part of the support pillar 73 is connected to the rotary lifting mechanism 71. The upper part of the support pillar 73 is connected to one lower part of the housing 75. The housing 75 has a long axis in a horizontal plane. The housing 75 has a cleaning unit 77 at the other lower part. The cleaning unit 77 rotates around a rotation center P5. The rotation center P5 is in the vertical direction Z.
 筐体75は、下部筐体75aと、上部筐体75bとを備えている。下部筐体75aは、筐体75の下部を構成する。上部筐体75bは、筐体75の上部を構成する。上部筐体75bと下部筐体75aとは、互いに連結されている。 The housing 75 comprises a lower housing 75a and an upper housing 75b. The lower housing 75a constitutes the lower part of the housing 75. The upper housing 75b constitutes the upper part of the housing 75. The upper housing 75b and the lower housing 75a are connected to each other.
 筐体75は、押し圧機構81と、回転機構83とを備えている。具体的には、下部筐体75aは、押し圧機構81と、回転機構83とを搭載している。 The housing 75 includes a pressing mechanism 81 and a rotating mechanism 83. Specifically, the lower housing 75a includes the pressing mechanism 81 and the rotating mechanism 83.
 押し圧機構81は、支点部材85と、シーソー部材87と、押し圧用アクチュエータ89と、支持機構91とを備えている。 The pressing mechanism 81 includes a fulcrum member 85, a seesaw member 87, a pressing actuator 89, and a support mechanism 91.
 支点部材85は、下部筐体75aの上面に取り付けられている。支点部材85は、下部筐体75aの前後方向Xにおけるほぼ中央部に立設されている。支点部材85は、上部に揺動軸85aを備えている。揺動軸85aは、幅方向Y周りに回転可能である。シーソー部材87は、中央部87cが揺動軸85aを介して支点部材85に揺動可能に取り付けられている。シーソー部材87は、一方側87l(作用点部)と他方側87r(力点部)の両端が鉛直方向Zに交互に昇降可能である。シーソー部材87は、揺動軸85aが支点となる。 The fulcrum member 85 is attached to the upper surface of the lower housing 75a. The fulcrum member 85 is erected at approximately the center of the lower housing 75a in the front-to-rear direction X. The fulcrum member 85 has a swing shaft 85a at its upper part. The swing shaft 85a is rotatable around the width direction Y. The seesaw member 87 is attached to the fulcrum member 85 via the swing shaft 85a at its central part 87c so as to be swingable. The seesaw member 87 can alternately move up and down at both ends, one side 87l (point of action) and the other side 87r (point of force), in the vertical direction Z. The swing shaft 85a serves as the fulcrum of the seesaw member 87.
 押し圧用アクチュエータ89は、作動片89aが鉛直方向Zに向けて配置されている。押し圧用アクチュエータ89は、作動軸89aを伸長させることでシーソー部材87の一方側87lを上昇させる。押し圧用アクチュエータ89は、例えば、エアベアリングアクチュエータが好ましい。 The pressing actuator 89 has an operating piece 89a arranged in the vertical direction Z. The pressing actuator 89 raises one side 87l of the seesaw member 87 by extending the operating shaft 89a. The pressing actuator 89 is preferably, for example, an air bearing actuator.
 エアベアリングアクチュエータは、作動軸89aが空気により微小隙間をおいて進退可能に支持されている。そのため、理論上は、作動軸89aの摺動抵抗がゼロになり摩擦が生じない。そのため、エアベアリングアクチュエータは、通常のエアシリンダに比較して、微小な空気圧でも作動軸89aを進退させることができる。したがって、空気圧に応じてリニアに進退させることが可能である。但し、押し圧用アクチュエータ89として、通常のエアシリンダを使用することもできる。 In an air bearing actuator, the working shaft 89a is supported by air with a small gap between them so that it can move back and forth. Therefore, in theory, the sliding resistance of the working shaft 89a is zero and no friction occurs. Therefore, compared to a normal air cylinder, an air bearing actuator can move the working shaft 89a back and forth with even a small amount of air pressure. Therefore, it is possible to move the working shaft 89a back and forth linearly according to the air pressure. However, a normal air cylinder can also be used as the pressure actuator 89.
 前後方向Xにおいて、支点部材85を挟んだ押し圧用アクチュエータ89の反対側には、支持機構91が設けられている。支持機構91は、洗浄部77を支持する。支持機構91は、筐体75の下方に洗浄部77を懸垂支持する。 In the front-rear direction X, a support mechanism 91 is provided on the opposite side of the pressing actuator 89 across the fulcrum member 85. The support mechanism 91 supports the cleaning unit 77. The support mechanism 91 supports the cleaning unit 77 by suspending it below the housing 75.
 支持機構91は、保持部材93と、付勢部95と、ガイド部97とを備えている。 The support mechanism 91 includes a holding member 93, a biasing portion 95, and a guide portion 97.
 支持機構91は、洗浄部77を懸垂支持する。洗浄部77は、ブラシ99と、ブラシホルダ101とを備えている。ブラシ99は、基板Wに作用して洗浄を行う。ブラシホルダ101は、ブラシ99を保持する。ブラシホルダ101は、ブラシ99を着脱自在に保持する。ブラシホルダ101は、平面視における中心部に回転軸103が取り付けられている。回転軸103は、ブラシホルダ101から鉛直方向Zに延出されている。ブラシ99は、洗浄アーム45に保持されて、基板Wの回転中心P1付近を通るように水平面内で移動する。 The support mechanism 91 supports the cleaning unit 77 in a suspended manner. The cleaning unit 77 includes a brush 99 and a brush holder 101. The brush 99 acts on the substrate W to clean it. The brush holder 101 holds the brush 99. The brush holder 101 holds the brush 99 in a removable manner. A rotating shaft 103 is attached to the center of the brush holder 101 in a plan view. The rotating shaft 103 extends from the brush holder 101 in the vertical direction Z. The brush 99 is held by the cleaning arm 45 and moves in a horizontal plane so as to pass near the rotation center P1 of the substrate W.
 保持部材93は、回転軸103を回転自在に保持する。回転軸103は、例えば、スプライン軸で構成されている。回転軸103は、スプラインナット103aを介して保持部材93に取り付けられている。回転軸103は、スプラインナット103aに対して鉛直方向Zに移動可能である。保持部材93は、鉛直方向Z周りに回転可能な状態でスプラインナット103aを保持する。スプラインナット103aは、図示しないベアリングを介して保持部材93に取り付けられている。回転軸103は、回転中心P5周りに回転可能である。保持部材93の上部に突出したスプラインナット103aには、プーリ105が取り付けられている。プーリ105は、スプラインナット103aの外周面に固定されている。プーリ105が回転すると、スプラインナット103aが回転し、これとともに回転軸103も同じ方向に回転する。 The holding member 93 holds the rotating shaft 103 so that it can rotate freely. The rotating shaft 103 is, for example, a spline shaft. The rotating shaft 103 is attached to the holding member 93 via a spline nut 103a. The rotating shaft 103 can move in the vertical direction Z relative to the spline nut 103a. The holding member 93 holds the spline nut 103a in a state in which it can rotate around the vertical direction Z. The spline nut 103a is attached to the holding member 93 via a bearing (not shown). The rotating shaft 103 can rotate around a rotation center P5. A pulley 105 is attached to the spline nut 103a that protrudes from the upper part of the holding member 93. The pulley 105 is fixed to the outer circumferential surface of the spline nut 103a. When the pulley 105 rotates, the spline nut 103a rotates, and the rotating shaft 103 rotates in the same direction.
 プーリ105の上部には、付勢部95が配置されている。付勢部95は、上部保持部107と、下部保持部109と、コイルバネ111とを備えている。上部保持部107は、回転軸103の上部側にベアリング(不図示)を介して取り付けられている。換言すると、上部保持部107は、回転軸103が回転しても静止したままである。下部保持部109は、上部保持部107から離間して配置されている。下部保持部109は、上部保持部107の下方であって、プーリ105の上部に配置されている。下部保持部109は、内周面が回転軸103の外周面から離間して配置されている。したがって、下部保持部109は、回転軸103が回転しても静止したままである。また、下部保持部109は、プーリ105の上面にベアリングを介して取り付けられている。したがって、下部保持部109は、プーリ105の回転に影響を受けない。 The biasing portion 95 is disposed on the upper portion of the pulley 105. The biasing portion 95 includes an upper holding portion 107, a lower holding portion 109, and a coil spring 111. The upper holding portion 107 is attached to the upper side of the rotating shaft 103 via a bearing (not shown). In other words, the upper holding portion 107 remains stationary even when the rotating shaft 103 rotates. The lower holding portion 109 is disposed away from the upper holding portion 107. The lower holding portion 109 is disposed below the upper holding portion 107 and above the pulley 105. The lower holding portion 109 is disposed with its inner peripheral surface spaced away from the outer peripheral surface of the rotating shaft 103. Therefore, the lower holding portion 109 remains stationary even when the rotating shaft 103 rotates. The lower holding portion 109 is also attached to the upper surface of the pulley 105 via a bearing. Therefore, the lower holding portion 109 is not affected by the rotation of the pulley 105.
 コイルバネ111は、上部保持部107と下部保持部109とに取り付けられている。コイルバネ111は、上部保持部107に上端が固定されている。コイルバネ111は、下部保持部109に下端が固定されている。コイルバネ111は、例えば、円筒形状を呈する。コイルバネ111は、圧縮コイルバネである。したがって、プーリ105の上面及び下部保持部109から上方に上部保持部107が付勢される。その結果、回転軸103が鉛直方向Zの上方へ付勢される。そのため、押し圧用アクチュエータ89が作動していない通常状態においては、ブラシ99は、下部筐体75aの下面から一定の高さに維持される。換言すると、通常状態においては、ブラシ99による荷重はゼロである。 The coil spring 111 is attached to the upper holding portion 107 and the lower holding portion 109. The upper end of the coil spring 111 is fixed to the upper holding portion 107. The lower end of the coil spring 111 is fixed to the lower holding portion 109. The coil spring 111 has, for example, a cylindrical shape. The coil spring 111 is a compression coil spring. Therefore, the upper holding portion 107 is biased upward from the upper surface of the pulley 105 and the lower holding portion 109. As a result, the rotating shaft 103 is biased upward in the vertical direction Z. Therefore, in the normal state where the pressing actuator 89 is not operating, the brush 99 is maintained at a constant height from the lower surface of the lower housing 75a. In other words, in the normal state, the load by the brush 99 is zero.
 支持機構91は、鉛直方向Zへ昇降する回転軸103を支持する。支持機構91は、リニアガイド113と、軸保持部115とを備えている。リニアガイド113は、保持部材93に隣接して配置されている。リニアガイド113は、鉛直方向Zに立設されている。リニアガイド113は、レール113aとキャリッジ113bとを備えている。レール113aは、鉛直方向Zに長手方向が配置されている。レール113aは、キャリッジ113bが鉛直方向Zへ移動可能に取り付けられている。キャリッジ113bは、シーソー部材87の他方側87rの下方に配置されている。キャリッジ113bは、シーソー部材87の他方側87rが下降した際に当接する位置に配置されている。 The support mechanism 91 supports the rotating shaft 103 that moves up and down in the vertical direction Z. The support mechanism 91 includes a linear guide 113 and a shaft holding portion 115. The linear guide 113 is disposed adjacent to the holding member 93. The linear guide 113 is erected in the vertical direction Z. The linear guide 113 includes a rail 113a and a carriage 113b. The rail 113a is disposed with its longitudinal direction in the vertical direction Z. The carriage 113b is attached to the rail 113a so that it can move in the vertical direction Z. The carriage 113b is disposed below the other side 87r of the seesaw member 87. The carriage 113b is disposed in a position that abuts against the other side 87r of the seesaw member 87 when it descends.
 軸保持部115は、回転軸103の上部を保持する。軸保持部115は、回転軸103が回転することを許容した状態で保持する。軸保持部115は、例えば、図示しないベアリングを介して回転軸103を保持する。キャリッジ113bは、軸保持部115に連結されている。コイルバネ111の付勢力より強い駆動力で押し圧用アクチュエータ89が作動軸89aを上昇させると、一方側87l(作用点部)が上昇する。一方側87lが上昇すると、他方側87r(力点部)が下降する。このとき、他方側87rがキャリッジ113bを軸保持部115とともに下降させる。すると、回転軸103が下降し、ブラシ99が所定位置から下方へ移動する。このようにして押し圧用アクチュエータ89を駆動すると、押し圧用アクチュエータ89の駆動力に応じた押し圧がブラシ99に付与される。 The shaft holder 115 holds the upper part of the rotating shaft 103. The shaft holder 115 holds the rotating shaft 103 in a state where it is allowed to rotate. The shaft holder 115 holds the rotating shaft 103, for example, via a bearing (not shown). The carriage 113b is connected to the shaft holder 115. When the pressing actuator 89 raises the operating shaft 89a with a driving force stronger than the biasing force of the coil spring 111, one side 87l (point of action) rises. When the one side 87l rises, the other side 87r (point of force) descends. At this time, the other side 87r lowers the carriage 113b together with the shaft holder 115. Then, the rotating shaft 103 descends, and the brush 99 moves downward from a predetermined position. When the pressing actuator 89 is driven in this way, a pressing force corresponding to the driving force of the pressing actuator 89 is applied to the brush 99.
 支持機構91に隣接して回転機構83が配置されている。回転機構83は、支点部材85側に配置されている。回転機構83は、取付部材117と、電動モータ119とを備えている。取付部材117は、下部筐体75aの底面から電動モータ119を上方に離間して配置する。電動モータ119は、回転軸が鉛直方向Zの下方に向けて配置されている。電動モータ119は、回転中心P6周りに回転軸を回転する。回転中心P6は、鉛直方向Zにおいて回転中心P5とほぼ平行である。電動モータ119は、回転軸にプーリ121が取り付けられている。プーリ121とプーリ105とには、タイミングベルト123が架け渡されている。したがって、電動モータ119が回転されると、タイミングベルト123と、プーリ105,121と、スプラインナット103aとを介して回転軸103が回転中心P5周りに回転される。このように回転軸103が回転されても、回転軸103は鉛直方向Zに昇降可能である。 The rotation mechanism 83 is disposed adjacent to the support mechanism 91. The rotation mechanism 83 is disposed on the fulcrum member 85 side. The rotation mechanism 83 includes an attachment member 117 and an electric motor 119. The attachment member 117 positions the electric motor 119 at a distance above the bottom surface of the lower housing 75a. The electric motor 119 is disposed with its rotation shaft facing downward in the vertical direction Z. The electric motor 119 rotates its rotation shaft around a rotation center P6. The rotation center P6 is approximately parallel to the rotation center P5 in the vertical direction Z. The electric motor 119 has a pulley 121 attached to its rotation shaft. A timing belt 123 is stretched between the pulley 121 and the pulley 105. Therefore, when the electric motor 119 rotates, the rotation shaft 103 rotates around the rotation center P5 via the timing belt 123, the pulleys 105 and 121, and the spline nut 103a. Even when the rotating shaft 103 is rotated in this manner, the rotating shaft 103 can be raised and lowered in the vertical direction Z.
 上述したように洗浄アーム45が構成されている。つまり、押し圧用アクチュエータ89の動作がシーソー部材87の一方側87l(力点部)を介して他方側87r(作用点部)に付与される。したがって、シーソー部材87を備えることにより、押し圧用アクチュエータ89の配置の自由度が高められる。したがって、基板処理装置1の高さを抑制できる。その結果、基板処理装置1を多段に積層する配置を容易に実現できる。 The cleaning arm 45 is configured as described above. That is, the action of the pressing actuator 89 is imparted to one side 87r (point of action) of the seesaw member 87 via one side 87l (point of force). Therefore, by providing the seesaw member 87, the degree of freedom in the arrangement of the pressing actuator 89 is increased. This makes it possible to reduce the height of the substrate processing apparatus 1. As a result, an arrangement in which the substrate processing apparatus 1 are stacked in multiple tiers can be easily realized.
 ここで、ブラシ99が昇降する高さについて説明する。 Here, we will explain the height to which the brush 99 can be raised and lowered.
 上述したシーソー部材87は、押し圧用アクチュエータ89によって揺動される。例えば、押し圧用アクチュエータ89は、後述するように目標荷重に応じて操作される。この操作により、ブラシ99が鉛直方向Zに移動される。具体的には、ブラシ99は、次のような高さに昇降される。 The seesaw member 87 described above is swung by a pressing actuator 89. For example, the pressing actuator 89 is operated according to a target load, as described below. This operation moves the brush 99 in the vertical direction Z. Specifically, the brush 99 is raised and lowered to the following heights:
 (1)無荷重高さH1:ブラシ99が基板Wに作用しない鉛直方向Zの高さである。この無荷重高さH1は、以下の他の高さよりも高い。洗浄時を除いた通常時は、この無荷重高さH1にブラシ99が位置している。 (1) No-load height H1: This is the height in the vertical direction Z at which the brush 99 does not act on the substrate W. This no-load height H1 is higher than the other heights described below. During normal times, except when cleaning, the brush 99 is positioned at this no-load height H1.
 (2)作用高さH2:ブラシ99を所定の荷重で基板Wに作用させるための鉛直方向Zの高さである。無荷重高さH1より低い高さである。基板Wに対して洗浄処理を行う際には、この作用高さH2にブラシ99を下降させる。但し、この位置は、ブラシ99に所定の荷重を付与し、基板Wからの反力と荷重とが釣り合った際の高さである。 (2) Working height H2: This is the height in the vertical direction Z at which the brush 99 acts on the substrate W with a predetermined load. This height is lower than the no-load height H1. When performing a cleaning process on the substrate W, the brush 99 is lowered to this working height H2. However, this position is the height at which a predetermined load is applied to the brush 99 and the reaction force from the substrate W is balanced with the load.
 (3)最大押し込み高さH3:作用高さH2よりも低い高さである。ブラシ99が鉛直方向Zにおいて最も低く移動した位置である。この最大押し込み高さH3は、押し圧機構81の構造により決まる位置である。ブラシ99は、この最大押し込み高さH3より下方に移動できない。 (3) Maximum pushing height H3: A height lower than the action height H2. This is the lowest position to which the brush 99 has moved in the vertical direction Z. This maximum pushing height H3 is a position determined by the structure of the pressing mechanism 81. The brush 99 cannot move below this maximum pushing height H3.
 <4-4-6.変位計> <4-4-6. Displacement meter>
 ここで、図3を参照して、変位計401について説明する。この変位計401は、裏面洗浄ユニットSSRに固定的に備えられる必要はない。つまり、必要なときだけ取り付けられる機器であってもよい。但し、各裏面洗浄ユニットSSRの洗浄アーム45に固定的に取り付けておくことを排除しない。変位計401を固定的に取り付けておく場合には、搬入されてきた基板Wに対して、洗浄処理に先立って自動的に径方向の傾斜を測定することが好ましい。これにより基板Wの径方向の傾斜を測定しつつもスループットを向上できる。なお、本実施例では、変位計401が洗浄アーム45に備えられているものとして、説明する。 Now, with reference to FIG. 3, the displacement meter 401 will be described. This displacement meter 401 does not need to be fixedly installed in the back surface cleaning unit SSR. In other words, it may be a device that is attached only when necessary. However, this does not exclude the displacement meter 401 being fixedly installed in the cleaning arm 45 of each back surface cleaning unit SSR. If the displacement meter 401 is fixedly installed, it is preferable to automatically measure the radial inclination of the loaded substrate W prior to the cleaning process. This makes it possible to improve throughput while measuring the radial inclination of the substrate W. Note that in this embodiment, the displacement meter 401 will be described as being installed in the cleaning arm 45.
 変位計401は、基板Wの面が径方向においてどの程度反っているかを測定する。変位計401は、基板Wの面における傾斜を測定する。変位計401は、基板Wの中央部を基準として端面までの周縁部における径方向の傾斜を測定する。変位計401は、基板Wの中央部を基準とした、端面までの周縁部における基準に対する距離を測定する。 The displacement meter 401 measures the degree to which the surface of the substrate W is warped in the radial direction. The displacement meter 401 measures the inclination of the surface of the substrate W. The displacement meter 401 measures the radial inclination of the peripheral portion up to the edge face, with the center of the substrate W as the reference. The displacement meter 401 measures the distance from the reference at the peripheral portion up to the edge face, with the center of the substrate W as the reference.
 変位計401は、例えば、レーザ変位計であることが好ましい。レーザ変位計は、非接触でμm単位での精密な測定が可能である。レーザ変位計は、小型軽量である。したがって、洗浄アーム45に取り付けて基板Wの傾斜を測定するのに好適である。 The displacement meter 401 is preferably, for example, a laser displacement meter. A laser displacement meter is capable of precise measurement in the μm unit without contact. A laser displacement meter is small and lightweight. Therefore, it is suitable for attaching to the cleaning arm 45 to measure the inclination of the substrate W.
 変位計401は、平面視にて測定する箇所である計測点401aを有する。変位計401は、計測点401aと基板Wが平面視において重なる位置までの距離を測定する。ブラシ99は、回転中心P4から幅方向Yにおける距離d1の位置に設けられている。変位計401は、計測点401aが回転中心P4から幅方向Yにおける距離d2の位置となるように洗浄アーム45に取り付けられている。変位計405は、例えば、洗浄アーム45の後方Xの側面に取り付けられている。変位計401は、データ出力端子を備えていることが好ましい。変位計401は、測定した基板Wの上面まで距離をデータ出力端子から出力する。 The displacement meter 401 has a measurement point 401a, which is the location to be measured in a planar view. The displacement meter 401 measures the distance from the measurement point 401a to the position where the substrate W overlaps in a planar view. The brush 99 is provided at a distance d1 from the center of rotation P4 in the width direction Y. The displacement meter 401 is attached to the cleaning arm 45 so that the measurement point 401a is at a distance d2 from the center of rotation P4 in the width direction Y. The displacement meter 405 is attached, for example, to the rear X side of the cleaning arm 45. The displacement meter 401 preferably has a data output terminal. The displacement meter 401 outputs the measured distance to the top surface of the substrate W from the data output terminal.
 変位計401が上記のように洗浄アーム45に取り付けられているので、洗浄処理の際にブラシ99が移動する軌跡と同じ軌跡をたどることができる。したがって、ブラシ99が作用する基板Wの面と同じ位置の距離を変位計401で計測できる。その結果、後述するパラメータの調整に必要な傾斜を正確に測定できる。 Since the displacement meter 401 is attached to the cleaning arm 45 as described above, it can follow the same trajectory as the trajectory that the brush 99 moves along during the cleaning process. Therefore, the displacement meter 401 can measure the distance to the same position on the surface of the substrate W where the brush 99 acts. As a result, the inclination required for adjusting the parameters described below can be accurately measured.
 なお、上述した変位計401が本発明における「測定器」に相当する。 The displacement meter 401 described above corresponds to the "measuring instrument" in this invention.
 <4-5.制御系> <4-5. Control system>
 ここで図6を参照する。図6は、裏面洗浄ユニットの制御系を示すブロック図である。 Now, let us refer to Figure 6. Figure 6 is a block diagram showing the control system of the back surface cleaning unit.
 上述したノズル63には、配管125の一端側が連通接続されている。配管125の他端側には、リンス液供給源127に連通接続されている。リンス液供給源127は、上述したリンス液を供給する。配管125は、流量制御弁129を備えている。流量制御弁129は、配管125におけるリンス液の流量を制御する。 One end of a pipe 125 is connected to the nozzle 63 described above. The other end of the pipe 125 is connected to a rinse liquid supply source 127. The rinse liquid supply source 127 supplies the rinse liquid described above. The pipe 125 is equipped with a flow control valve 129. The flow control valve 129 controls the flow rate of the rinse liquid in the pipe 125.
 上述したノズル65には、配管131の一端側が連通接続されている。配管131の他端側には、処理液供給源133に連通接続されている。処理液供給源133は、上述した各種薬液のいずれかを供給する。配管131は、流量制御弁135を備えている。流量制御弁135は、配管131における薬液の流量を制御する。 One end of the pipe 131 is connected to the nozzle 65 described above. The other end of the pipe 131 is connected to a processing liquid supply source 133. The processing liquid supply source 133 supplies any one of the various chemical liquids described above. The pipe 131 is equipped with a flow control valve 135. The flow control valve 135 controls the flow rate of the chemical liquid in the pipe 131.
 上述したノズル67には、配管137の一端側が連通接続されている。配管137の他端側には、処理液供給源139に連通接続されている。処理液供給源139は、上述した各種薬液のいずれかを供給する。配管137は、流量制御弁141を備えている。流量制御弁141は、配管139における薬液の流量を制御する。 One end of the pipe 137 is connected to the nozzle 67 described above. The other end of the pipe 137 is connected to a processing liquid supply source 139. The processing liquid supply source 139 supplies any one of the various chemical liquids described above. The pipe 137 is equipped with a flow control valve 141. The flow control valve 141 controls the flow rate of the chemical liquid in the pipe 139.
 上述したノズル69には、配管143の一端側が連通接続されている。配管143の他端側には、処理液供給源145に連通接続されている。処理液供給源145は、上述した各種薬液のいずれかを供給する。配管143は、流量制御弁147を備えている。流量制御弁147は、配管143における薬液の流量を制御する。 One end of the pipe 143 is connected to the nozzle 69 described above. The other end of the pipe 143 is connected to a processing liquid supply source 145. The processing liquid supply source 145 supplies any one of the various chemical liquids described above. The pipe 143 is equipped with a flow control valve 147. The flow control valve 147 controls the flow rate of the chemical liquid in the pipe 143.
 上述した押し圧用アクチュエータ89には、エア供給管149の一端側が連通接続されている。なお、押し圧用アクチュエータ89には、作動軸89aを微小な隙間で支持するためのエアが供給されるが、この配管等については省略する。エア供給管149の他端側には、エア供給源151が連通接続されている。エア供給源151は、例えば、エアを供給する。エアは、好ましくはドライエアである。エア供給源151は、他の装置にも連通接続されている。エア供給源151の供給圧力は、他の装置の稼動状態の影響を受ける。つまり、他の装置の稼働率が高くなると供給圧力が低下することがある。エア供給管149は、エア供給源151側から順に、開閉弁153と、一次側圧力計155と、電空レギュレータ157と、二次側圧力計159とを備えている。 One end of the air supply pipe 149 is connected to the above-mentioned pressing actuator 89. The pressing actuator 89 is supplied with air to support the operating shaft 89a with a small gap, but this piping is omitted. The other end of the air supply pipe 149 is connected to an air supply source 151. The air supply source 151 supplies, for example, air. The air is preferably dry air. The air supply source 151 is also connected to other devices. The supply pressure of the air supply source 151 is affected by the operating state of the other devices. In other words, the supply pressure may decrease when the operating rate of the other devices increases. The air supply pipe 149 is equipped with an opening/closing valve 153, a primary side pressure gauge 155, an electropneumatic regulator 157, and a secondary side pressure gauge 159, in that order from the air supply source 151 side.
 開閉弁153は、エア供給管149におけるエアの流通を許容または遮断する。一次側圧力計155は、電空レギュレータ157の上流側におけるエアの圧力を測定する。電空レギュレータ157は、入力信号に応じて内蔵する弁の開度を調整する。これにより、電空レギュレータ157は、エア供給管149におけるエアの圧力を調整する。詳細には、電空レギュレータ157は、与えられた入力信号に応じて弁開度を調整して一次側圧力を減じ、エア供給管149における二次側圧力とする。電空レギュレータ157は、エア供給管149における一次側圧力より高い二次側圧力に調整することはできない。電空レギュレータ157は、エア供給管149の一次側圧力以下に二次側圧力を調整する。電空レギュレータ157は、一次側圧力が所定値を越えている場合に、二次側圧力を所定値以下の範囲で調整できる。換言すると、電空レギュレータ157は、一次側圧力が所定値以下である場合には、二次側圧力を一定値以上に正確に調整できない事態が生じ得る。 The on-off valve 153 allows or blocks the flow of air in the air supply pipe 149. The primary pressure gauge 155 measures the air pressure upstream of the electro-pneumatic regulator 157. The electro-pneumatic regulator 157 adjusts the opening of a built-in valve in response to an input signal. In this way, the electro-pneumatic regulator 157 adjusts the air pressure in the air supply pipe 149. In detail, the electro-pneumatic regulator 157 adjusts the valve opening in response to a given input signal to reduce the primary pressure to become the secondary pressure in the air supply pipe 149. The electro-pneumatic regulator 157 cannot adjust the secondary pressure to be higher than the primary pressure in the air supply pipe 149. The electro-pneumatic regulator 157 adjusts the secondary pressure to be equal to or lower than the primary pressure of the air supply pipe 149. When the primary pressure exceeds a predetermined value, the electro-pneumatic regulator 157 can adjust the secondary pressure to be equal to or lower than a predetermined value. In other words, if the primary pressure is below a predetermined value, the electropneumatic regulator 157 may not be able to accurately adjust the secondary pressure to a constant value or higher.
 制御部161は、上述した各部を統括的に制御する。具体的には、制御部161は、投入部9及び払出部11における搬送動作、インデクサロボットIRの搬送動作、第1反転ユニット23及び第2反転ユニット29の反転動作、センターロボットCRの搬送動作などを制御する。制御部161は、裏面洗浄ユニットSSR(処理ユニット31)における電動モータ49の回転制御、ガード39の昇降動作、スピンチャック53における支持ピン55の開閉動作、電動モータ42,44の揺動動作、流量制御弁129,135,141,147の開閉動作、回転昇降機構71の揺動及び昇降動作、電動モータ119の回転動作、開閉弁153の開閉動作、電空レギュレータ157の開度動作を制御対象として操作を行う。 The control unit 161 comprehensively controls each of the above-mentioned units. Specifically, the control unit 161 controls the transport operation in the input unit 9 and the discharge unit 11, the transport operation of the indexer robot IR, the reversing operation of the first reversing unit 23 and the second reversing unit 29, the transport operation of the center robot CR, etc. The control unit 161 controls the rotation control of the electric motor 49 in the back surface cleaning unit SSR (processing unit 31), the lifting and lowering operation of the guard 39, the opening and closing operation of the support pin 55 in the spin chuck 53, the swinging operation of the electric motors 42 and 44, the opening and closing operation of the flow control valves 129, 135, 141, and 147, the swinging and lifting operation of the rotary lifting mechanism 71, the rotation operation of the electric motor 119, the opening and closing operation of the on-off valve 153, and the opening degree operation of the electro-pneumatic regulator 157.
 制御部161は、図示しないCPU及びメモリを備えている。制御部161には、指示部163が接続されている。指示部163は、基板処理装置1のオペレータによって操作される。指示部163は、基板Wの処理の内容等を規定したレシピや、処理の開始や停止などをオペレータが指示するために用いられる。制御部161には、報知部165が接続されている。報知部165は、基板処理装置1に問題が生じた際にアラームを発生して、オペレータに問題の発生を報知する。報知部165は、例えば、表示装置、ランプ、ブザー、スピーカなどである。報知部165は、発生した問題の種別を確認できることが好ましい。制御部161は、入力ポートIPを備えている。入力ポートIPは、各種電子機器のデータを入力される。入力ポートIPから入力されたデータは、制御部161で処理されたり、記憶されたりする。 The control unit 161 is equipped with a CPU and a memory, not shown. The control unit 161 is connected to an instruction unit 163. The instruction unit 163 is operated by an operator of the substrate processing apparatus 1. The instruction unit 163 is used by the operator to instruct a recipe that specifies the contents of processing of the substrate W, and to start and stop processing. The control unit 161 is connected to a notification unit 165. When a problem occurs in the substrate processing apparatus 1, the notification unit 165 generates an alarm to notify the operator of the problem. The notification unit 165 is, for example, a display device, a lamp, a buzzer, a speaker, etc. It is preferable that the notification unit 165 can confirm the type of problem that has occurred. The control unit 161 is equipped with an input port IP. The input port IP receives data from various electronic devices. The data input from the input port IP is processed and stored by the control unit 161.
 制御部161には、傾斜メモリ403が接続されている。制御部161は、後述する傾斜測定の際に、洗浄アーム45を基板Wの中央部から周縁部に向かって洗浄処理と同様に移動させる。制御部161は、変位計401から出力される基板Wの径方向における各位置の距離に係る信号を入力ポートIPから受信する。制御部161は、基板Wの径方向の位置と距離とを関連づけて傾斜メモリ403に記憶する。基板Wの径方向の位置と距離との関連づけにより、基板Wの径方向における距離に係る分布、つまり、基板Wの径方向における傾斜を得ることができる。 The control unit 161 is connected to a tilt memory 403. When measuring the tilt, which will be described later, the control unit 161 moves the cleaning arm 45 from the center of the substrate W towards the periphery in the same manner as in the cleaning process. The control unit 161 receives a signal relating to the distance of each position in the radial direction of the substrate W output from the displacement meter 401 from the input port IP. The control unit 161 associates the radial position of the substrate W with the distance and stores it in the tilt memory 403. By associating the radial position of the substrate W with the distance, it is possible to obtain a distribution relating to the radial distance of the substrate W, that is, the tilt of the substrate W in the radial direction.
 制御部161は、洗浄処理の際には、傾斜メモリ403を参照し、ブラシ99の径方向における位置に対応する傾斜に応じて、洗浄アーム45の移動速度と、ブラシ99に付与する押し圧との少なくとも一方を調整する。換言すると、制御部161は、洗浄処理の際に、ブラシ99の径方向の位置に応じて回転昇降機構71と、押し圧機構81との少なくとも一方を操作する。 During the cleaning process, the control unit 161 refers to the tilt memory 403 and adjusts at least one of the movement speed of the cleaning arm 45 and the pressure applied to the brush 99 according to the tilt corresponding to the radial position of the brush 99. In other words, during the cleaning process, the control unit 161 operates at least one of the rotation and lifting mechanism 71 and the pressure mechanism 81 according to the radial position of the brush 99.
 なお、この回転昇降機構71が、本発明の「アーム駆動部」に相当する。また、この押し圧機構81が、本発明の「押し圧機構」に相当する。 Note that this rotation/lifting mechanism 71 corresponds to the "arm driving unit" of the present invention. Also, this pressing mechanism 81 corresponds to the "pressing mechanism" of the present invention.
 ここで、図7を参照する。図7は、反った基板の中央部と周縁部とにおけるブラシの作用状態を説明する模式図である。 Now, let us refer to Figure 7, which is a schematic diagram that explains the action of the brush on the center and periphery of a warped substrate.
 基板Wが反っていると、中央部CPと周縁部PPとでは、ブラシ99の作用状態に差異が生じる。ここでは、基板Wは、例えば、図7に示すように、基板Wの中央部CPに対して、基板Wの径方向に離れた周縁部PPが下方に垂れ下がっているものとする。換言すると、基板Wは、周縁部PPが中央部CPに対して下方に反っている。 When the substrate W is warped, the action of the brush 99 differs between the central portion CP and the peripheral portion PP. Here, the substrate W is assumed to have a peripheral portion PP, which is radially spaced from the central portion CP of the substrate W, that hangs down, for example, as shown in FIG. 7. In other words, the peripheral portion PP of the substrate W is warped downward relative to the central portion CP.
 このような反りの基板Wに対して洗浄処理を行う場合、ブラシ99の先端部99aは、中央部CPでは下面のほぼ全面が基板Wの上面に作用する。つまり、目標荷重がブラシ99に付与されている場合、先端部99aのほぼ全面で目標荷重に応じた反力を受ける。換言すると、先端部99aのほぼ全面が同程度の圧力を受ける。 When performing cleaning processing on such a warped substrate W, almost the entire lower surface of the tip 99a of the brush 99 at the center CP acts on the upper surface of the substrate W. In other words, when a target load is applied to the brush 99, almost the entire surface of the tip 99a receives a reaction force corresponding to the target load. In other words, almost the entire surface of the tip 99a receives the same degree of pressure.
 ここで、図7中に、基板Wに作用するブラシ99の先端部99aにおける下面の面積を同圧面積として符号CAで表す(ハッチング領域)。中央部CPの場合を同圧面積CA1とする。一方、周縁部PPでは、ブラシ99の先端部99aのうち、中央部CP寄りの一部だけが基板Wの上面に作用する。つまり、目標荷重がブラシ99に付与されている場合、先端部99aの一部だけで目標荷重に応じた反力を受ける。換言すると、先端部99aの一部だけが同じ圧力を受ける。この場合における基板Wの上面に作用する面積を同圧面積CA2とする。この例では、同圧面積CA1>同圧面積CA2となる。 Here, in FIG. 7, the area of the underside of the tip 99a of the brush 99 acting on the substrate W is represented by the symbol CA as the equal pressure area (hatched area). The equal pressure area in the case of the central portion CP is designated as CA1. On the other hand, at the peripheral portion PP, only a portion of the tip 99a of the brush 99 that is closer to the central portion CP acts on the upper surface of the substrate W. In other words, when a target load is applied to the brush 99, only a portion of the tip 99a receives a reaction force corresponding to the target load. In other words, only a portion of the tip 99a receives the same pressure. The area acting on the upper surface of the substrate W in this case is designated as equal pressure area CA2. In this example, equal pressure area CA1>equal pressure area CA2.
 ブラシ99に対して中央部CPと周縁部PPとで同じ目標荷重が付与された状態であると、基板Wの上面に作用している同圧面積が異なるので、基板Wの上面に作用する単位面積当たりの荷重が中央部CPと周縁部PPとで異なることになる。つまり、基板Wの径方向においてブラシ99が基板Wの上面に作用する力が異なる。 When the same target load is applied to the brush 99 at the center CP and the peripheral portion PP, the equal pressure areas acting on the top surface of the substrate W are different, and therefore the load per unit area acting on the top surface of the substrate W is different between the center CP and the peripheral portion PP. In other words, the force that the brush 99 exerts on the top surface of the substrate W differs in the radial direction of the substrate W.
 そこで、制御部161は、基板Wの径方向においてブラシ99が基板Wの上面に作用する力が同じになるように、ブラシ99の径方向における位置に対応する傾斜に応じて、洗浄アーム45の移動速度と、ブラシ99に付与する押し圧との少なくとも一方を調整する。移動速度と押し圧とは、洗浄度合いを調整するためのパラメータである。 The control unit 161 therefore adjusts at least one of the movement speed of the cleaning arm 45 and the pressure applied to the brush 99 in accordance with the inclination corresponding to the radial position of the brush 99 so that the force acting on the top surface of the substrate W by the brush 99 is the same in the radial direction of the substrate W. The movement speed and pressure are parameters for adjusting the degree of cleaning.
 ここで、図8~図10を参照する。図8は、基板の径方向の位置と傾斜との関係を示すグラフである。図9は、基板の径方向の位置と移動速度との関係を示すグラフである。図10は、基板の径方向の位置と押し圧との関係を示すグラフである。 Here, reference is made to Figures 8 to 10. Figure 8 is a graph showing the relationship between the radial position of the substrate and the inclination. Figure 9 is a graph showing the relationship between the radial position of the substrate and the moving speed. Figure 10 is a graph showing the relationship between the radial position of the substrate and the pressing force.
 ここでは、基板Wが反りを有するものであって、一例として、図8に示すような傾斜を有するものであるとする。換言すると、基板Wは、周縁部が中央部に対して下方に反っている。この基板Wの径方向における傾斜は、変位計401で測定された基板Wの径方向における距離の分布である。具体的には、基板Wの径方向の距離が0、つまり中央部r1では、距離L1とする。距離L1は、基板Wの径方向の距離の基準となる。この距離L1を0とおく。基板Wの径方向の距離r2では、例えば、距離L1より下方に離れた距離L2とする。基板Wの径方向の距離r3では、例えば、距離L2より下方に離れた距離L3とする。このように基板Wの傾斜は、基板Wの中央部r1の距離L1を基準とし、基板Wの径方向の位置r2,r3における距離L2,L3の分布である。 Here, the substrate W is assumed to have a warp, and as an example, an inclination as shown in FIG. 8. In other words, the peripheral portion of the substrate W is warped downward with respect to the center portion. The inclination of the substrate W in the radial direction is the distribution of the distance in the radial direction of the substrate W measured by the displacement meter 401. Specifically, the radial distance of the substrate W is 0, that is, at the center portion r1, the distance is set to L1. Distance L1 is the reference for the radial distance of the substrate W. This distance L1 is set to 0. At the radial distance r2 of the substrate W, for example, the distance L2 is set to a distance lower than the distance L1. At the radial distance r3 of the substrate W, for example, the distance L3 is set to a distance lower than the distance L2. In this way, the inclination of the substrate W is the distribution of the distances L2 and L3 at the radial positions r2 and r3 of the substrate W, with the distance L1 at the center portion r1 of the substrate W as the reference.
 基板Wの傾斜が図8に示すようなものである場合には、制御部161は、例えば、図9に示すようにパラメータの一つである洗浄アーム45の移動速度を調整する。 When the inclination of the substrate W is as shown in FIG. 8, the control unit 161 adjusts, for example, the movement speed of the cleaning arm 45, which is one of the parameters, as shown in FIG. 9.
 制御部161は、中央部r1から周縁部に向かって移動速度V1で移動させる。この移動速度V1は、基板Wに反りがない場合には、周縁部までこのまま一定である。制御部161は、中央部r1の移動速度V1を基準として周縁部r3に向かって、図8の基板Wの傾斜に応じて移動速度を低下させる。具体的には、基板Wの径方向の距離r2では、基板Wの径方向の傾斜に応じて移動速度V1より低い移動速度V2とする。基板Wの径方向の距離r3では、基板Wの径方向の傾斜に応じて移動速度V2より低い移動速度V3とする。これらの移動速度V1~V3は、基板Wの径方向における洗浄度合いが一定となるように設定される。具体的な移動速度の調整は、制御部161が回転昇降機構71の回転中心P4周りの回転速度を操作することによって行われる。 The control unit 161 moves the substrate W from the center r1 toward the periphery at a moving speed V1. If the substrate W is not warped, this moving speed V1 remains constant up to the periphery. The control unit 161 reduces the moving speed from the moving speed V1 at the center r1 to the periphery r3 according to the inclination of the substrate W in FIG. 8. Specifically, at a radial distance r2 of the substrate W, a moving speed V2 lower than the moving speed V1 is set according to the radial inclination of the substrate W. At a radial distance r3 of the substrate W, a moving speed V3 lower than the moving speed V2 is set according to the radial inclination of the substrate W. These moving speeds V1 to V3 are set so that the degree of cleaning in the radial direction of the substrate W is constant. Specifically, the moving speed is adjusted by the control unit 161 manipulating the rotation speed around the rotation center P4 of the rotary lift mechanism 71.
 上述したように、基板Wの中央部では同圧面積CA1が周縁部の同圧面積CA2より大きい。つまり、基板Wに作用する面積は、中央部が大きく、周縁部は小さい。したがって、周縁部は、中央部に比較してブラシ99が作用する面積が小さくなる。そこで、上記のように洗浄アーム45のパラメータである移動速度を減少させると、周縁部において基板Wの上面へブラシ99が作用する時間が増加され、ブラシ99の単位時間当たりに作用する面積が増加される。そのため、基板Wの径方向において単位時間当たりにブラシ99が作用する面積を均一にできる。 As described above, the equal pressure area CA1 at the center of the substrate W is larger than the equal pressure area CA2 at the peripheral portion. In other words, the area acting on the substrate W is larger at the center and smaller at the peripheral portion. Therefore, the area on which the brush 99 acts is smaller at the peripheral portion compared to the center. Therefore, by decreasing the movement speed, which is a parameter of the cleaning arm 45 as described above, the time that the brush 99 acts on the top surface of the substrate W at the peripheral portion is increased, and the area that the brush 99 acts on per unit time is increased. Therefore, the area on which the brush 99 acts per unit time in the radial direction of the substrate W can be made uniform.
 また、制御部161は、例えば、図10に示すようにパラメータの一つであるブラシ99の押し圧を調整する。 The control unit 161 also adjusts the pressure of the brush 99, which is one of the parameters, as shown in FIG. 10, for example.
 制御部161は、中央部r1から周縁部に向かって押し圧F1で移動させる。この押し圧F1は、基板Wに反りがない場合には、周縁部までこのまま一定である。制御部161は、中央部r1の押し圧F1を基準として、周縁部r3に向かって、図8の基板Wの傾斜に応じて押し圧を低下させる。具体的には、基板Wの径方向の距離r2では、基板Wの径方向の傾斜に応じて押し圧F1より低い押し圧F2とする。基板Wの径方向の距離r3では、基板Wの径方向の傾斜に応じて押し圧F2より低い押し圧F3とする。これらの押し圧F1~F3は、基板Wの径方向における洗浄度合いが一定となるように設定される。具体的な押し圧の調整は、制御部161が電空レギュレータ157の開度を操作して、二次側を調整することによって行われる。 The control unit 161 moves the substrate W from the center r1 toward the periphery with a pressure F1. If the substrate W is not warped, this pressure F1 remains constant up to the periphery. The control unit 161 reduces the pressure F1 at the center r1 toward the periphery r3 in accordance with the inclination of the substrate W in FIG. 8, based on the pressure F1 at the center r1. Specifically, at a radial distance r2 of the substrate W, a pressure F2 lower than the pressure F1 is set in accordance with the radial inclination of the substrate W. At a radial distance r3 of the substrate W, a pressure F3 lower than the pressure F2 is set in accordance with the radial inclination of the substrate W. These pressures F1 to F3 are set so that the degree of cleaning in the radial direction of the substrate W is constant. The control unit 161 adjusts the pressure by adjusting the secondary side by adjusting the opening of the electropneumatic regulator 157.
 上述したように、基板Wの中央部では同圧面積CA1が周縁部の同圧面積CA2より大きい。つまり、ブラシ99が基板Wに作用する面積は、中央部が大きく、周縁部は小さい。そこで、ブラシ99のパラメータである押し圧を減少させると、周縁部において基板Wの上面へ付与される単位面積当たりの力が軽減される。そのため、基板Wの径方向において単位面積当たりの圧力を均一にできる。 As described above, the equal pressure area CA1 at the center of the substrate W is larger than the equal pressure area CA2 at the peripheral portion. In other words, the area over which the brush 99 acts on the substrate W is larger at the center and smaller at the peripheral portion. Therefore, by reducing the pressing pressure, which is a parameter of the brush 99, the force per unit area applied to the top surface of the substrate W at the peripheral portion is reduced. This makes it possible to make the pressure per unit area uniform in the radial direction of the substrate W.
 本実施例では、制御部161は、上述したパラメータである移動速度と押し圧との二つのパラメータを基板Wの傾斜に応じて調整する。 In this embodiment, the control unit 161 adjusts the two aforementioned parameters, the movement speed and the pressure, according to the inclination of the substrate W.
 なお、上述した裏面洗浄ユニットSSR(処理ユニット31)が本発明における「基板処理装置」に相当する。 The above-mentioned back surface cleaning unit SSR (processing unit 31) corresponds to the "substrate processing apparatus" in this invention.
 <5.処理ユニットにおける前処理> <5. Pretreatment in the processing unit>
 図11及び図12を参照して、上述した裏面洗浄装置SSRにおける前処理について説明する。図11は、予め行う前処理を示すフローチャートである。図12(a)は、電空レギュレータの開度と電子天秤の荷重の関係を示し、図12(b)は、電空レギュレータの二次側圧力と開度の関係を示し、図12(c)は、押し圧用アクチュエータの荷重と電空レギュレータの二次側圧力との関係を示すグラフである。 The pre-processing in the above-mentioned back surface cleaning device SSR will be described with reference to Figures 11 and 12. Figure 11 is a flow chart showing the pre-processing that is performed in advance. Figure 12(a) shows the relationship between the opening of the electro-pneumatic regulator and the load of the electronic balance, Figure 12(b) shows the relationship between the secondary pressure of the electro-pneumatic regulator and the opening, and Figure 12(c) is a graph showing the relationship between the load of the pressing actuator and the secondary pressure of the electro-pneumatic regulator.
 基板処理装置1のオペレータは、指示部163を操作して、一つの裏面洗浄ユニットSSRについて前処理を指示する。 The operator of the substrate processing apparatus 1 operates the instruction unit 163 to instruct pre-processing for one of the back surface cleaning units SSR.
 ステップS1
 電子天秤を配置する。具体的には、図示しない電子天秤を回転保持部37に配置する。電子天秤は、荷重を測定する装置である。電子天秤は、データ出力端子を備えていることが好ましい。電子天秤は、データ出力端子が入力ポートIPに接続される。電子天秤は、データ出力端子から測定値を出力する。測定値は、例えば、荷重(g)である。
Step S1
An electronic balance is placed. Specifically, an electronic balance (not shown) is placed on the rotating holder 37. The electronic balance is a device that measures load. The electronic balance preferably has a data output terminal. The data output terminal of the electronic balance is connected to the input port IP. The electronic balance outputs a measurement value from the data output terminal. The measurement value is, for example, a load (g).
 ステップS2
 荷重を測定する。具体的には、例えば、制御部161は、開閉弁153を開放した状態において、電空レギュレータ157への入力信号を可変し、そのときの入力信号ごとに電子天秤の荷重X(g)を測定する。なお、オペレータが実際に処理においてブラシ99で付与したいいくつかの荷重(目標荷重X(g))を指示部163から指示し、電子天秤の測定値が各目標荷重X(g)となるように電空レギュレータ157への入力信号を可変し、その際の各目標荷重X(g)に対応する入力信号を得るようにしてもよい。このとき、制御部161は、荷重ごとの二次側圧力計159の測定値である二次側圧力を受信する。
Step S2
The load is measured. Specifically, for example, the control unit 161 varies the input signal to the electropneumatic regulator 157 while the on-off valve 153 is open, and measures the load X (g) of the electronic balance for each input signal at that time. Note that the operator may specify several loads (target loads X (g)) that he or she actually wants to apply with the brush 99 in the process from the specifying unit 163, vary the input signal to the electropneumatic regulator 157 so that the measured value of the electronic balance becomes each target load X (g), and obtain an input signal corresponding to each target load X (g) at that time. At this time, the control unit 161 receives the secondary pressure, which is the measured value of the secondary pressure gauge 159 for each load.
 ステップS3
 実測荷重の対応関係を記憶する.制御部161は、ステップS2の測定により、図10(a)のような電空レギュレータ157の開度(入力信号)と電子天秤の荷重(目標荷重X(g))の関係と、図10(b)のような電空レギュレータ157の二次側圧力と開度の関係を得る。制御部161は、上記の関係とともに、図10(c)のような押し圧用アクチュエータ89の荷重と電空レギュレータ157の二次側圧力との関係をメモリに記憶する。
Step S3
The control unit 161 obtains, by the measurement in step S2, the relationship between the opening degree (input signal) of the electropneumatic regulator 157 and the load of the electronic balance (target load X (g)) as shown in Figure 10(a), and the relationship between the secondary pressure of the electropneumatic regulator 157 and the opening degree as shown in Figure 10(b). In addition to the above relationships, the control unit 161 stores in memory the relationship between the load of the pressing actuator 89 and the secondary pressure of the electropneumatic regulator 157 as shown in Figure 10(c).
 ステップS4
 基板処理装置1のオペレータは、指示部163を操作して、一つの裏面洗浄ユニットSSRについて前処理の終了を指示する。基板処理装置1のオペレータは、電子天秤を回転保持部37から片付ける。必要に応じて、他の裏面洗浄ユニットSSRについても同様の前処理を行う。
Step S4
The operator of the substrate processing apparatus 1 issues an instruction to end the pre-processing for one back surface cleaning unit SSR by operating the instruction unit 163. The operator of the substrate processing apparatus 1 removes the electronic balance from the rotation holder 37. If necessary, similar pre-processing is performed for the other back surface cleaning units SSR.
 <6.処理ユニットにおける洗浄処理> <6. Cleaning process in the processing unit>
 次に、図13を参照して、洗浄処理について説明する。図13は、洗浄処理を示すフローチャートである。なお、以下においては、第1の処理液アーム41及び第2の処理液アーム43による処理液の供給動作の説明については省略する。 Next, the cleaning process will be described with reference to FIG. 13. FIG. 13 is a flow chart showing the cleaning process. Note that, in the following, the description of the supplying operation of the processing liquid by the first processing liquid arm 41 and the second processing liquid arm 43 will be omitted.
 ステップS11
 オペレータが処理開始を指示する。具体的には、目標荷重X(g)を含むレシピも指示する。すると、インデクサブロック5から基板Wが受渡部15に搬送され、第1反転ユニット23で裏面が上に向けられるように姿勢が変換される。
Step S11
The operator instructs the start of processing. Specifically, the operator also instructs a recipe including a target load X (g). Then, the substrate W is transported from the indexer block 5 to the transfer part 15, and the orientation of the substrate W is changed in the first reversal unit 23 so that the back surface faces up.
 ステップS12
 裏面が上に向けられた基板Wは、センターロボットCRによって一つの裏面洗浄ユニットSSRに搬送される。
Step S12
The substrate W with its back surface facing up is transported to one of the back surface cleaning units SSR by the center robot CR.
 ステップS13
 傾斜測定処理を行う。具体的には、基板Wが回転保持部37に保持された状態で、上述したようにして変位計401をスキャンする。このとき、制御部161は、基板Wの径方向の傾斜を傾斜メモリ403に記憶する。
Step S13
A tilt measurement process is performed. Specifically, while the substrate W is held by the rotating holder 37, the displacement meter 401 is scanned as described above. At this time, the control unit 161 stores the radial tilt of the substrate W in the tilt memory 403.
 ステップS14
 裏面洗浄ユニットSSRは、洗浄処理を開始する。
Step S14
The back surface cleaning unit SSR starts the cleaning process.
 ステップS15
 ブラシ99を基板Wの中央部に移動する。具体的には、制御部161は、洗浄アーム45を移動させて回転中心P1にブラシ99を位置させる。
Step S15
The brush 99 is moved to the center of the substrate W. Specifically, the control unit 161 moves the cleaning arm 45 to position the brush 99 at the rotation center P1.
 ステップS16
 洗浄アーム45を移動させる。制御部161は、洗浄アーム45を移動させ始め、基板Wの中央部から周縁部を越えた端面に向けて移動を開始させる。
Step S16
The controller 161 moves the cleaning arm 45. The controller 161 starts moving the cleaning arm 45, and starts moving the cleaning arm 45 from the center of the substrate W toward the end face beyond the peripheral edge.
 ステップS17
 基板Wの径方向の位置に応じてパラメータを調整する。具体的には、制御部161は、洗浄アーム45の移動速度と、ブラシ99の押し圧とを調整する。具体的な調整は、上述したように、傾斜に応じてパラメータを減少させる。
Step S17
The parameters are adjusted in accordance with the radial position of the substrate W. Specifically, the control unit 161 adjusts the moving speed of the cleaning arm 45 and the pressing pressure of the brush 99. Specifically, as described above, the adjustment is to decrease the parameters in accordance with the inclination.
 ステップS18
 上述した洗浄アーム45の移動によるブラシ99が、基板Wの中央部から端面に移動するのを1スキャンとして、所定回数のスキャンが完了したか否かに応じて処理を分岐する。所定回数のスキャンに達していない場合には、ステップS15に戻り、洗浄アーム45を移動して、ブラシ99を基板Wに作用させつつ基板Wの端面から中央部に戻す。このときもステップS17のように基板Wの径方向の位置に応じてパラメータを調整する。所定回数のスキャンに達している場合には、ステップS19に移行する。
Step S18
The above-mentioned movement of the brush 99 from the center to the edge of the substrate W by the movement of the cleaning arm 45 is counted as one scan, and the process branches depending on whether or not a predetermined number of scans have been completed. If the predetermined number of scans has not been reached, the process returns to step S15, and the cleaning arm 45 is moved to return the brush 99 from the edge to the center of the substrate W while acting on the substrate W. At this time, the parameters are also adjusted depending on the radial position of the substrate W as in step S17. If the predetermined number of scans has been reached, the process proceeds to step S19.
 ステップS19
 次の基板Wの処理に移る。制御部161は、処理を終えた基板WをセンターロボットCRで搬出させる。次に、センターロボットCRによって搬入された次の基板Wに対して洗浄処理を行う。つまり、上記ステップS12に戻る。
Step S19
The process moves to the processing of the next substrate W. The controller 161 controls the center robot CR to unload the processed substrate W. Next, the cleaning process is performed on the next substrate W loaded by the center robot CR. That is, the process returns to step S12.
 なお、上述したステップS13が本発明における「傾斜測定過程」に相当する。上述したステップSS14からステップS18が本発明における「洗浄過程」に相当する。 Note that step S13 described above corresponds to the "gradient measurement process" in this invention. Steps S14 to S18 described above correspond to the "cleaning process" in this invention.
 本実施例によると、制御部161は、予め取得された基板Wの中央部に対する周縁部の傾斜に基づいて、押し圧と移動速度とのパラメータを傾斜に応じて調整する。したがって、基板Wごとの傾斜に応じてパラメータを調整するので、確実に基板Wの径方向における洗浄度合いを均一にできる。ブラシ99の押し圧に加え洗浄アーム45の移動速度を調整するので、ブラシ99の押し圧だけでは調整しきれない分を洗浄アーム45の移動速度で補える。 According to this embodiment, the control unit 161 adjusts the parameters of the pressing pressure and the moving speed according to the inclination based on the inclination of the peripheral portion of the substrate W relative to the center, which has been acquired in advance. Therefore, since the parameters are adjusted according to the inclination of each substrate W, it is possible to reliably achieve a uniform degree of cleaning in the radial direction of the substrate W. Since the moving speed of the cleaning arm 45 is adjusted in addition to the pressing pressure of the brush 99, the amount that cannot be adjusted using only the pressing pressure of the brush 99 can be compensated for by the moving speed of the cleaning arm 45.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, but can be modified as follows:
 (1)上述した実施例では、基板処理装置として裏面洗浄ユニットSSRを例にとって説明した。しかしながら、本発明は、裏面洗浄ユニットSSRに限定されない。例えば、基板の表面をブラシ99で洗浄する表面洗浄ユニットであっても適用できる。 (1) In the above-described embodiment, a back surface cleaning unit SSR has been used as an example of a substrate processing apparatus. However, the present invention is not limited to a back surface cleaning unit SSR. For example, the present invention can also be applied to a front surface cleaning unit that cleans the front surface of a substrate with a brush 99.
 (2)上述した実施例では、基板処理装置としての裏面洗浄ユニットSSR(処理ユニット31)が搬入出ブロック3やインデクサブロック5などを備えた基板処理装置1に備えられた構成を例にとって説明した。しかしながら、本発明は、このような構成に限定されない。例えば、裏面洗浄ユニットSSR(処理ユニット31)だけで構成されていてもよい。 (2) In the above-described embodiment, a configuration has been described in which the back surface cleaning unit SSR (processing unit 31) as the substrate processing apparatus is provided in the substrate processing apparatus 1 that includes the load/unload block 3 and the indexer block 5. However, the present invention is not limited to such a configuration. For example, the apparatus may be configured with only the back surface cleaning unit SSR (processing unit 31).
 (3)上述した実施例では、洗浄アーム45がブラシ99に加わる荷重を検出する機構を備えていない。しかしながら、本発明は、このような構成に限定されない。例えば、キャリッジ113bに加わる力をロードセルで検出し、目標荷重との一致度合いを検出する構成としてもよい。 (3) In the embodiment described above, the cleaning arm 45 does not include a mechanism for detecting the load applied to the brush 99. However, the present invention is not limited to this configuration. For example, a configuration may be used in which the force applied to the carriage 113b is detected by a load cell, and the degree of agreement with the target load is detected.
 (4)上述した実施例では、押し圧と移動速度とのパラメータを両方とも調整する場合を例にとって説明した。しかしながら、本発明は、このような例に限定されない。すなわち、押し圧と移動速度とのパラメータのうち、少なくとも一方を傾斜に応じて調整するようにしてもよい。これにより、ブラシ99の押し圧が調整できない場合であっても、洗浄アーム45の移動速度を調整することで対応できる。さらに、洗浄アーム45の移動速度を調整できない構成であっても、ブラシ99の押し圧を調整することで対応できる。 (4) In the above embodiment, an example was described in which both the pressing pressure and the movement speed parameters were adjusted. However, the present invention is not limited to this example. That is, at least one of the pressing pressure and movement speed parameters may be adjusted according to the inclination. As a result, even if the pressing pressure of the brush 99 cannot be adjusted, it can be addressed by adjusting the movement speed of the cleaning arm 45. Furthermore, even if the configuration does not allow the movement speed of the cleaning arm 45 to be adjusted, it can be addressed by adjusting the pressing pressure of the brush 99.
 (5)上述した実施例では、洗浄アーム45の移動速度を減少させるように調整している。しかしながら、基板Wの洗浄度合いの不均一性によっては、洗浄アーム45の移動速度を増加させるように調整してもよい。つまり、ブラシ99が作用する面積が周縁部ほぼ小さくなるものの、単位面積当たりの圧力が高くなっている。そのため、基板Wの洗浄面の状態によっては、ブラシ99が作用している時間を短くした方が洗浄度合いを均一にできることがあるからである。 (5) In the above-described embodiment, the movement speed of the cleaning arm 45 is adjusted to decrease. However, depending on the non-uniformity of the degree of cleaning of the substrate W, the movement speed of the cleaning arm 45 may be adjusted to increase. In other words, although the area on which the brush 99 acts is generally smaller around the periphery, the pressure per unit area is higher. Therefore, depending on the condition of the cleaning surface of the substrate W, shortening the time that the brush 99 acts may result in a more uniform degree of cleaning.
 (6)上述した実施例では、基板Wの周縁部が中央部に対して下方に垂れた、上に凸状の状態の反りを例にとって説明した。しかしながら、本発明は、このような基板Wに限定されない。つまり、下に凸状の状態の反りを有する基板Wであっても処理できる。 (6) In the above embodiment, an example was described in which the peripheral portion of the substrate W sags downward relative to the center, resulting in an upwardly convex warp. However, the present invention is not limited to this type of substrate W. In other words, even substrates W having downwardly convex warpage can be processed.
 (7)上述した実施例では、基板Wを洗浄処理する直前に基板Wの傾斜を測定している。しかしながら、本発明は、このような形態に限定されない。例えば、裏面洗浄処理SSRの回転保持部37と同じ構成を有する別の計測ユニットにおいて複数枚の基板Wについて傾斜を測定しておき、基板Wごとに傾斜を記憶させておく。そして、各基板Wを裏面洗浄処理ユニットSSRで処理する際に、基板Wに対応する傾斜を傾斜メモリ403に転送し、制御部161が傾斜メモリ403を参照してパラメータを調整するようにしてもよい。これにより、傾斜の測定を効率的に行うことができる。 (7) In the above-described embodiment, the inclination of the substrate W is measured immediately before the substrate W is subjected to a cleaning process. However, the present invention is not limited to this form. For example, the inclination of multiple substrates W is measured in a separate measurement unit having the same configuration as the rotation holding unit 37 of the back surface cleaning process SSR, and the inclination is stored for each substrate W. Then, when each substrate W is processed in the back surface cleaning process unit SSR, the inclination corresponding to the substrate W is transferred to the inclination memory 403, and the control unit 161 may adjust the parameters by referring to the inclination memory 403. This allows the inclination to be measured efficiently.
 (8)上述した実施例では、洗浄アーム45に変位計401を取り付ける構成を例にとって説明した。しかしながら、本発明は、このような構成に限定されない。例えば、変位計401を取り付けた専用のアームを備える構成を採用してもよい。この場合の専用のアームは、ブラシ99と同じ移動軌跡にそって変位計401を移動できるように構成する。 (8) In the above embodiment, a configuration in which the displacement meter 401 is attached to the cleaning arm 45 has been described as an example. However, the present invention is not limited to this configuration. For example, a configuration including a dedicated arm to which the displacement meter 401 is attached may be adopted. In this case, the dedicated arm is configured so that the displacement meter 401 can move along the same movement trajectory as the brush 99.
 (9)上述した実施例では、測定器として変位計を例にとって説明した。しかしながら、本発明における測定器は変位計に限定されない。つまり、基板の径方向における傾斜を位置ごとに測定できれば、どのような計測器であってもよい。 (9) In the above embodiment, a displacement meter has been used as an example of a measuring instrument. However, the measuring instrument in the present invention is not limited to a displacement meter. In other words, any measuring instrument can be used as long as it can measure the radial tilt of the substrate for each position.
 (10)上述した実施例では、ブラシ99の移動を、洗浄アーム45に搭載された回転昇降機構71によって回転駆動することで行っていた。しかし、このような構成に限られるものではなく、洗浄アーム45をボールねじとリニアガイド、ボールネジを回動させるモータなどを用いた直動機構によって直線駆動させ、洗浄アーム45に保持されたフラシ99の移動を、直動させるようにしてもよい。 (10) In the above-described embodiment, the movement of the brush 99 was performed by rotating and driving it with the rotary lift mechanism 71 mounted on the cleaning arm 45. However, this is not limited to the above configuration. The cleaning arm 45 may be linearly driven by a linear motion mechanism using a ball screw, a linear guide, a motor that rotates the ball screw, etc., and the movement of the brush 99 held by the cleaning arm 45 may be linearly moved.
 以上のように、本発明は、半導体基板等の基板にブラシを作用させて洗浄処理を行う方法及び装置に適している。 As described above, the present invention is suitable for a method and apparatus for performing a cleaning process by applying a brush to a substrate such as a semiconductor substrate.
 1 … 基板処理装置
 3 … 搬入出ブロック
 5 … インデクサブロック
 7 … 処理ブロック
 W … 基板
 C … キャリア
 IR … インデクサロボット
 15 … 受渡部
 23 … 第1反転ユニット
 25,27  … パス部
 29 … 第2反転ユニット
 31 … 処理ユニット
 SSR … 裏面洗浄ユニット
 CR … センターロボット
 37 … 回転保持部
 39 … ガード
 41 … 第1の処理液アーム
 42 … 電動モータ
 43 … 第2の処理液アーム
 45 … 洗浄アーム
 47 … 待機ポット
 53 … スピンチャック
 71 … 回転昇降機構
 75 … 筐体
 77 … 洗浄部
 81 … 押し圧機構
 83 … 回転機構
 85 … 支点部材
 87 … シーソー部材
 87c … 中央部
 87l … 一方側
 87r … 他方側
 89 … 押し圧用アクチュエータ
 91 … 支持機構
 93 … 保持部材
 95 … 付勢部
 97 … ガイド部
 99 … ブラシ
 99a … 先端部
 101 … ブラシホルダ
 103 … 回転軸
 111 … コイルバネ
 113 … リニアガイド
 H1 … 無荷重高さ
 H2 … 作用高さ
 H3 … 最大押し込み高さ
 149 … エア供給管
 151 … エア供給源
 155 … 一次側圧力計
 157 … 電空レギュレータ
 159 … 二次側圧力計
 161 … 制御部
 163 … 指示部
 165 … 報知部
 401 … 変位計
 401a … 計測点
 403 … 傾斜メモリ
 CP … 中央部 
 PP … 周縁部
 CA、CA1、CA2 … 同圧面積
REFERENCE SIGNS LIST 1 ... substrate processing apparatus 3 ... loading/unloading block 5 ... indexer block 7 ... processing block W ... substrate C ... carrier IR ... indexer robot 15 ... transfer section 23 ... first reversal unit 25, 27 ... path section 29 ... second reversal unit 31 ... processing unit SSR ... back surface cleaning unit CR ... center robot 37 ... rotation holding section 39 ... guard 41 ... first processing liquid arm 42 ... electric motor 43 ... second processing liquid arm 45 ... cleaning arm 47 ... standby pot 53 ... spin chuck 71 ... rotation lift mechanism 75 ... housing 77 ... cleaning section 81 ... pressing mechanism 83 ... rotation mechanism 85 ... fulcrum member 87 ... seesaw member 87c ... center section 87l ... one side 87r ... other side 89 ... pressing actuator 91 REFERENCE SIGNS LIST 93 support mechanism 95 biasing portion 97 guide portion 99 brush 99a tip portion 101 brush holder 103 rotating shaft 111 coil spring 113 linear guide H1 no-load height H2 action height H3 maximum pushing height 149 air supply pipe 151 air supply source 155 primary pressure gauge 157 electro-pneumatic regulator 159 secondary pressure gauge 161 control portion 163 indication portion 165 notification portion 401 displacement meter 401a measurement point 403 tilt scale CP center portion
PP: Periphery CA, CA1, CA2: Equal pressure area

Claims (7)

  1.  基板に対してブラシを作用させて洗浄処理を行う基板処理方法において、
     基板の中央部に対する周縁部の傾斜を測定する傾斜測定過程と、
     洗浄アームの先端側に設けられたブラシに押し圧を付与し、前記洗浄アームを移動速度で移動させて、基板の中央部から周縁部に前記ブラシを移動させつつ基板に作用させる洗浄過程と、
     をその順に実施するとともに、
     前記洗浄過程の際に、前記押し圧と、前記移動速度とのパラメータのうち、少なくとも一方を前記傾斜に応じて調整することを特徴とする基板処理方法。
    1. A substrate processing method for performing a cleaning process on a substrate by using a brush, comprising:
    a tilt measuring step for measuring a tilt of a peripheral portion of the substrate relative to a central portion;
    a cleaning process in which a pressing force is applied to a brush provided at the tip side of a cleaning arm, and the cleaning arm is moved at a moving speed to move the brush from the center of the substrate to the peripheral edge of the substrate while applying the brush to the substrate;
    The following will be implemented in that order:
    A substrate processing method comprising the steps of: adjusting, during the cleaning process, at least one of the parameters of the pressing pressure and the moving speed in accordance with the inclination.
  2.  請求項1に記載の基板処理方法において、
     前記調整は、基板の周縁部において中央部よりも前記パラメータを減少させることを特徴とする基板処理方法。
    2. The substrate processing method according to claim 1,
    The method of claim 1, wherein the adjustment comprises decreasing the parameter at a peripheral portion of the substrate more than at a central portion of the substrate.
  3.  請求項1または2に記載の基板処理方法において、
     前記傾斜測定過程は、前記洗浄アームのうち、前記ブラシに隣接した位置であって、前記洗浄アームの基端部と前記ブラシとの距離と同じ距離だけ前記基端部から離れた位置に測定器を取り付けた状態で、前記洗浄アームを移動させて実施されることを特徴とする基板処理方法。
    3. The substrate processing method according to claim 1,
    the tilt measuring process is performed by moving the cleaning arm while a measuring device is attached to a position of the cleaning arm adjacent to the brush and away from the base end by a distance equal to a distance between a base end of the cleaning arm and the brush.
  4.  請求項1または2に記載の基板処理方法において、
     前記傾斜測定過程は、回転保持部に基板を保持させた状態で前記洗浄過程の直前に実施されることを特徴とする基板処理方法。
    3. The substrate processing method according to claim 1,
    The substrate processing method according to claim 1, wherein the tilt measuring step is performed immediately before the cleaning step while the substrate is held on a spin holder.
  5.  基板に対してブラシを作用させて洗浄処理を行う基板処理装置において、
     基板を水平姿勢で保持するとともに、基板を回転させる回転保持部と、
     前記回転保持部に保持された基板の上面に作用するブラシと、
     前記ブラシを先端部に備える洗浄アームと、
     前記ブラシが前記回転保持部に保持されている基板の回転中心と周縁部との間で、基板の径方向へ移動するように、前記洗浄アームを駆動するアーム駆動部と、
     前記ブラシを基板に向けて押し圧で付勢する押し圧機構と、
     前記ブラシに押し圧を付与しつつ、基板の中央部から周縁部に前記ブラシを移動させながら基板の洗浄処理を行う際に、予め取得された基板の中央部に対する周縁部の傾斜に基づいて、前記押し圧機構と前記アーム駆動部の少なくとも一方を制御することによって、前記押し圧と、前記移動速度とのパラメータのうち、少なくとも一方を前記傾斜に応じて調整する制御部と、
     を備えていることを特徴とする基板処理装置。
    In a substrate processing apparatus that performs a cleaning process on a substrate by applying a brush to the substrate,
    a rotation holder that holds the substrate in a horizontal position and rotates the substrate;
    A brush that acts on an upper surface of the substrate held by the rotating holder;
    A cleaning arm having the brush at its tip;
    an arm driving unit that drives the cleaning arm so that the brush moves in a radial direction of the substrate between a rotation center and a peripheral edge of the substrate held by the rotation holding unit;
    a pressing mechanism that applies a pressing force to the brush toward the substrate;
    a control unit that, when performing a cleaning process of a substrate while applying a pressing force to the brush and moving the brush from the central portion to the peripheral portion of the substrate, adjusts at least one of the parameters of the pressing force and the moving speed in accordance with an inclination of the peripheral portion of the substrate relative to the central portion, which is obtained in advance, by controlling at least one of the pressing mechanism and the arm driving unit.
    A substrate processing apparatus comprising:
  6.  請求項5に記載の基板処理装置において、
     前記制御部は、基板の周縁部において中央部よりも前記パラメータを減少させることを特徴とする基板処理装置。
    6. The substrate processing apparatus according to claim 5,
    The substrate processing apparatus, wherein the control unit reduces the parameter at a peripheral portion of the substrate more than at a central portion.
  7.  請求項5または6に記載の基板処理装置において、
     前記傾斜は、前記回転保持部に基板を保持させた状態で、前記洗浄アームの前記ブラシに隣接した位置であって、前記洗浄アームの基端部と前記ブラシとの距離と同じ距離だけ前記基端部から離れた位置に測定器を取り付けた状態で、前記洗浄アームを移動させて測定されることを特徴とする基板処理装置。
    7. The substrate processing apparatus according to claim 5,
    the inclination is measured by moving the cleaning arm while the substrate is held on the rotating holder and a measuring device is attached at a position adjacent to the brush of the cleaning arm and away from the base end by a distance equal to the distance between the base end of the cleaning arm and the brush.
PCT/JP2023/034281 2022-10-27 2023-09-21 Substrate processing method and substrate processing device WO2024090082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022172631A JP2024064210A (en) 2022-10-27 2022-10-27 SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS
JP2022-172631 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090082A1 true WO2024090082A1 (en) 2024-05-02

Family

ID=90830476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034281 WO2024090082A1 (en) 2022-10-27 2023-09-21 Substrate processing method and substrate processing device

Country Status (2)

Country Link
JP (1) JP2024064210A (en)
WO (1) WO2024090082A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260320A (en) * 1996-03-26 1997-10-03 Nippon Steel Corp Cleaner
JP6178019B2 (en) * 2014-10-31 2017-08-09 株式会社荏原製作所 Substrate cleaning apparatus and substrate cleaning method
JP2018056198A (en) * 2016-09-26 2018-04-05 株式会社Screenホールディングス Substrate processing method, substrate processing apparatus, and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260320A (en) * 1996-03-26 1997-10-03 Nippon Steel Corp Cleaner
JP6178019B2 (en) * 2014-10-31 2017-08-09 株式会社荏原製作所 Substrate cleaning apparatus and substrate cleaning method
JP2018056198A (en) * 2016-09-26 2018-04-05 株式会社Screenホールディングス Substrate processing method, substrate processing apparatus, and recording medium

Also Published As

Publication number Publication date
JP2024064210A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
US9978617B2 (en) Substrate cleaning apparatus and substrate processing apparatus
US20170252894A1 (en) Substrate processing apparatus, substrate processing method, substrate holding mechanism, and substrate holding method
JPH0249424A (en) Etching process
CN109037106B (en) Substrate cleaning device
US20090087932A1 (en) Substrate supporting apparatus, substrate supporting method, semiconductor manufacturing apparatus and storage medium
US10861718B2 (en) Substrate processing method and substrate processing apparatus
US9842732B2 (en) Substrate cleaning apparatus and substrate cleaning method
KR101457579B1 (en) Substrate processing appratus
US20030136341A1 (en) Wafer lift pin for manufacturing a semiconductor device
WO2024090082A1 (en) Substrate processing method and substrate processing device
TWI483341B (en) Substrate processing apparatus
KR102149485B1 (en) Unit for supplying chemical, Appratus and Method for treating substrate with the unit
TWI654036B (en) Substrate processing method, substrate processing apparatus, and recording medium
JP2024064209A (en) Brush, substrate processing apparatus equipped with same, and brush pressure control method
JPH01283934A (en) Etching apparatus
JP2024034805A (en) Substrate processing equipment and substrate processing method
TW202418387A (en) Substrate processing method and substrate processing device
KR100964619B1 (en) Lift pin and apparatus for lifting the same
JP2024034806A (en) Substrate processing equipment and brush falling detection method
KR20190089801A (en) Cleaning liquid supplying unit, substrate treating apparatus including the same and substrate treating method
WO2024090060A1 (en) Substrate processing method and substrate processing apparatus
JP2024064212A (en) Brush and substrate processing apparatus equipped with same
JP2024064211A (en) Brush and substrate processing apparatus equipped with same
US20220293399A1 (en) Substrate processing apparatus and method of controlling the same
KR102489739B1 (en) Apparatus for treating substrate and method for supplying treating liquid