WO2024088070A1 - 一种通信控制方法及设备 - Google Patents

一种通信控制方法及设备 Download PDF

Info

Publication number
WO2024088070A1
WO2024088070A1 PCT/CN2023/124203 CN2023124203W WO2024088070A1 WO 2024088070 A1 WO2024088070 A1 WO 2024088070A1 CN 2023124203 W CN2023124203 W CN 2023124203W WO 2024088070 A1 WO2024088070 A1 WO 2024088070A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
target
time interval
coverage area
target time
Prior art date
Application number
PCT/CN2023/124203
Other languages
English (en)
French (fr)
Inventor
金涛
李先驰
付霞
杨兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024088070A1 publication Critical patent/WO2024088070A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18586Arrangements for data transporting, e.g. for an end to end data transport or check

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication control method and device.
  • satellite mobile communication systems Compared with terrestrial mobile communication systems, satellite mobile communication systems have significant advantages in terms of wide coverage and freedom from terrain restrictions. At the same time, in order to provide service quality similar to that of terrestrial mobile communication systems, satellite mobile communication systems are required to have telecommunications-grade high reliability.
  • Low-orbit and medium-orbit satellite communications usually use inclined orbits.
  • the orbital inclination is not 90° (i.e., non-polar orbits)
  • the ascending and descending satellites will intersect.
  • the coverage areas of their beams will overlap, and interference will occur when different satellites communicate with terminals in the overlapping area, reducing the signal quality of satellite communications.
  • the present application provides a communication control method and device for reducing interference between signals of different satellites and improving the signal quality of satellite communications.
  • the present application provides a communication control method, comprising: a control node acquires ephemeris information of multiple satellites; the control node predicts overlapping information based on the ephemeris information, the overlapping information indicating that the coverage area of a first beam of a first satellite and the coverage area of a second beam of a second satellite will overlap in a target time interval, and the first satellite and the second satellite are different satellites among the multiple satellites; the control node sends a target control signal to a target satellite based on the overlapping information, the target control signal is used to instruct the target satellite to adjust the target transmission resource used by the target satellite to transmit data in the target time interval, so as to reduce the interference between the signal (referred to as the first signal) of the first satellite transmitting data in the target time interval and the signal (referred to as the second signal) of the second satellite transmitting data in the target time interval.
  • the target satellite includes the first satellite and/or the second satellite.
  • the target satellite only needs to adjust the target transmission resources within the target time interval according to the control signal, the interference between the first signal and the second signal can be reduced or even avoided. Therefore, in other time intervals outside the target time interval, the first satellite and the second satellite can fully use the transmission resources to transmit data, which is conducive to improving the utilization rate of the transmission resources of the first satellite and the second satellite.
  • the target transmission resource includes a target coverage area of the target beam in the target time interval, and/or a target time resource used by the target beam in the target time interval, and/or a target frequency resource used by the target beam in the target time interval, and the target beam is a beam of the target satellite.
  • the overlapping information further indicates a position of an overlapping area in the target coverage area, and the overlapping area is an area where the coverage area of the first beam and the coverage area of the second beam overlap in a target time interval.
  • the target control signal is used to instruct the target satellite to adjust the target coverage area to reduce or remove the overlapping area.
  • the interference between the first signal and the second signal can be reduced without reducing the frequency resources available to a single satellite, thereby improving the utilization rate of the satellite on the frequency resources.
  • the target control signal is used to instruct the target satellite to adjust the order in which it schedules the target frequency resources, so that the order in which the first satellite schedules its frequency resources is different from the order in which the second satellite schedules its frequency resources in the target time interval, which is conducive to avoiding the first satellite and the second satellite from using the same frequency point or frequency band to transmit data in the target time interval.
  • the interference between the first signal and the second signal can be reduced, thereby improving the utilization rate of the satellite on the frequency resources.
  • the present application provides a communication control method, including: a first satellite obtains ephemeris information of at least one satellite; the first satellite predicts overlapping information based on its own ephemeris information and the acquired ephemeris information, the overlapping information indicating that a coverage area of a first beam of the first satellite and a coverage area of a second beam of the first satellite will overlap in a target time interval, and the second beam is a beam of a second satellite among the at least one satellite; the first satellite adjusts a first transmission resource used to transmit data in the target time interval according to the overlapping information.
  • the first transmission resource includes a first coverage area of the first beam in the target time interval, and/or a first time resource used by the first beam in the target time interval, and/or a first time resource used by the first beam in the target time interval.
  • the overlapping information further indicates a position of an overlapping area in the first coverage area, and the overlapping area is an area where the coverage area of the first beam and the coverage area of the second beam overlap in the target time interval.
  • the first satellite adjusts the target transmission resources used to transmit data in the target time interval according to the overlapping information, including: the first satellite adjusts the first coverage area to reduce or remove the overlapping area.
  • the first satellite adjusts the target transmission resources used to transmit data in the target time interval according to the overlapping information, including: the first satellite adjusts the order of scheduling the first frequency resources, and the adjusted order is different from the order in which the second satellite schedules its frequency resources.
  • the present application provides a control device, which includes: an acquisition module for acquiring ephemeris information of multiple satellites; a determination module for predicting overlapping information based on the ephemeris information, wherein the overlapping information indicates that a coverage area of a first beam of a first satellite and a coverage area of a second beam of a second satellite will overlap in a target time interval, and the first satellite and the second satellite are different satellites among the multiple satellites; a sending module for sending a target control signal to a target satellite based on the overlapping information, wherein the target control signal is used to instruct the target satellite to adjust a target transmission resource used to transmit data in the target time interval, and the target satellite includes the first satellite and/or the second satellite.
  • the target transmission resources include the target coverage area of the target beam in the target time interval, and/or the target time resources used by the target beam in the target time interval, and/or the target frequency resources used by the target beam in the target time interval, and the target beam is the beam of the target satellite.
  • the overlapping information further indicates a position of an overlapping area in the target coverage area, and the overlapping area is an area where the coverage area of the first beam and the coverage area of the second beam overlap in a target time interval.
  • the target control signal is used to instruct the target satellite to adjust the target coverage area to reduce or remove the overlapping area.
  • the target control signal is used to instruct the target satellite to adjust the order of scheduling the target frequency resources so that in the target time interval, the order in which the first satellite schedules its frequency resources is different from the order in which the second satellite schedules its frequency resources.
  • the present application provides a communication device, which may be a satellite or deployed on a satellite.
  • the communication device may include: an acquisition module, used to acquire ephemeris information of at least one satellite; a prediction module, used to predict overlapping information based on its own ephemeris information and the acquired ephemeris information, wherein the overlapping information indicates that the coverage area of the first beam of the first satellite and the coverage area of the second beam will overlap in a target time interval, and the second beam is a beam of a second satellite in the at least one satellite; and an adjustment module, used to adjust the first transmission resource used to transmit data in the target time interval according to the overlapping information.
  • the first transmission resource includes a first coverage area of the first beam in the target time interval, and/or a first time resource used by the first beam in the target time interval, and/or a first frequency resource used by the first beam in the target time interval.
  • the overlapping information further indicates a position of an overlapping area in the first coverage area, and the overlapping area is an area where the coverage area of the first beam and the coverage area of the second beam overlap in the target time interval.
  • the adjustment module is specifically configured to adjust the first coverage area to reduce or remove the overlapping area.
  • the first satellite is specifically used to adjust the order of scheduling the first frequency resources, and the adjusted order is different from the order in which the second satellite schedules its frequency resources.
  • a fifth aspect provides a computing device, comprising a memory and a processor, wherein the memory stores code, and the processor is configured to execute the code.
  • the computing device executes a method as in the first aspect or any possible implementation of the first aspect, or executes a method as in the second aspect or any possible implementation of the second aspect.
  • the sixth aspect provides a computer storage medium, which stores a computer program.
  • the computer executes a method as in the first aspect or any possible implementation of the first aspect, or executes a method as in the second aspect or any possible implementation of the second aspect.
  • the seventh aspect provides a computer program product, which stores instructions, and when the instructions are executed by a computer, the computer executes the method in the first aspect or any possible implementation of the first aspect, or executes the method in the second aspect or any possible implementation of the second aspect.
  • FIG1 schematically shows the structure of a communication system to which the present application is applicable
  • FIG2 schematically shows the coverage areas of the beams of satellite 1 and satellite 2;
  • FIG3 schematically shows the orbits of satellite 1 and satellite 2;
  • FIG4-1 schematically shows a possible process of the communication control method provided by the present application
  • FIG4-2 and FIG4-3 schematically illustrate the adjusted target coverage area respectively
  • FIG5 schematically shows another possible process of the communication control method provided by the present application.
  • FIG6 schematically shows a possible structure of a control device provided by the present application
  • FIG7 schematically shows a possible structure of a communication device provided in the present application
  • FIG8 schematically illustrates a possible result of the computing device provided by the present application.
  • FIG1 schematically shows a communication system.
  • the communication system includes a satellite and a terminal.
  • the communication system may include multiple satellites.
  • FIG1 takes four satellites as an example, and the communication system may include more or fewer satellites. Different satellites may exchange information or transmit data through intersatellite links.
  • the communication system may include one or more terminals.
  • FIG1 takes one terminal as an example.
  • the satellite is used to provide communication services to the terminal.
  • FIG1 only schematically shows the connection between satellite 1 and the terminal.
  • 3GPP the satellite can support two working modes: "transparent transmission" or "regeneration". Among them, for the transparent transmission mode, the wireless access point is deployed on the ground; for the regeneration mode, the wireless access point is deployed on the satellite.
  • the communication system shown in FIG1 may also include a gateway station and a core network.
  • the gateway station is also called a signal gateway station, which is used for switching between the core network and the satellite communication network.
  • the wireless access point can be deployed at the gateway station.
  • This application refers to the link between the satellite and the gateway station as a feeder link.
  • FIG1 only schematically shows the feeder link between the satellite 2 and the gateway station.
  • the communication system shown in Figure 1 may also include a measurement and control station.
  • Measurement and control is the abbreviation of measurement and control, "measurement” includes the measurement and telemetry of the satellite's flight trajectory, and “control” includes the remote control of the satellite.
  • the main tasks of the measurement and control station include: tracking and measuring the satellite's orbit, attitude measurement, and remote control of the orbit and attitude to ensure that it operates in a normal attitude and predetermined orbit, as well as telemetering and remote control of the satellite and its payload and various instruments to complete the prescribed operations and realize the prescribed functions.
  • This application refers to the link between the satellite and the measurement and control station as a measurement and control link.
  • Figure 1 only schematically shows the measurement and control link between the satellite 2 and the measurement and control station.
  • the satellite transmits data to the terminal in the coverage area of the beam through the beam.
  • the satellite sends data to the terminal in the coverage area of the transmit beam through the transmit beam.
  • the satellite receives data from the terminal in the coverage area of the receive beam through the receive beam.
  • the beam mentioned below may refer to the transmit beam or the receive beam.
  • FIG2 schematically shows the coverage area (referred to as coverage area 1) of the beam of satellite 1 (referred to as beam 1) and the coverage area (referred to as coverage area 2) of the beam of satellite 2 (referred to as beam 2).
  • the coverage area of the beam mentioned in the present application can be an area in a two-dimensional plane (such as the area inside the circle shown in FIG2), or an area in a three-dimensional space (such as the area inside the cone shown in FIG2).
  • Data can be transmitted between satellite 1 and a terminal located in coverage area 1 by receiving a signal or transmitting a signal (referred to as signal 1), and data can be transmitted between satellite 1 and a terminal located in coverage area 2 by receiving a signal or transmitting a signal (referred to as signal 2).
  • the satellite may be a low-orbit satellite or a medium-orbit satellite.
  • FIG3 schematically shows orbit 1 of satellite 1 orbiting the earth and orbit 2 of satellite 2 orbiting the earth.
  • FIG3 uses a dotted line to indicate the orbit on the back of the earth and a solid line to indicate the orbit on the front of the earth.
  • orbit 1 and orbit 2 are both inclined orbits.
  • An inclined orbit refers to an orbit in which the angle between the orbital plane of the satellite and the equatorial plane is not 0°.
  • FIG3 uses arrows to represent the direction in which the satellite is moving in orbit.
  • the portion of the satellite's orbit that is located from south to north is referred to as an ascending orbit or ascending orbit
  • the portion of the satellite's orbit that is located from north to south is referred to as a descending orbit or descending orbit.
  • satellite 1 that is moving to an ascending orbit and satellite 2 that is moving to a descending orbit may approach each other at the target position, at which time, coverage area 1 and coverage area 2 may overlap.
  • the overlapping area is shown in, for example, FIG2 .
  • the overlapping area may refer to an area on a two-dimensional plane or to an area in a three-dimensional space.
  • This application refers to the time interval when the two coverage areas overlap as the target time interval.
  • satellite 1 can transmit data with the terminal located in the overlapping area through signal 1
  • satellite 2 can transmit data with the terminal located in the overlapping area through signal 2.
  • Signal 1 and signal 2 are prone to co-frequency interference.
  • satellites that move to an ascending orbit are referred to as ascending satellites
  • satellites that move to a descending orbit are referred to as descending satellites.
  • Signal 1 and Signal 2 have co-channel interference.
  • the orbit-raising satellite and the orbit-descending satellite can respectively schedule half of the spectrum resources to reduce co-channel interference.
  • the spectrum resources scheduled by the orbit-raising satellite are (0, 50] MHz
  • the spectrum resources scheduled by the orbit-descending satellite are (50, 100] MHz.
  • the interference between Signal 1 and Signal 2 can be reduced because the spectrum range used by Satellite 1 to transmit Signal 1 is different from the spectrum range used by Satellite 2 to transmit Signal 2.
  • the utilization rate of spectrum resources by a single satellite will be greatly reduced.
  • the present application proposes to predict the target time interval when the satellite coverage areas overlap based on the satellite ephemeris information, and adjust the satellite transmission resources within the target time interval to reduce communication interference between different satellites.
  • Fig. 4-1 schematically shows a possible flow of the communication control method provided by the present application.
  • the method can be applied to the communication system shown in Fig. 1. Referring to Fig. 4-1, the method includes S401 to S403.
  • control node obtains ephemeris information of multiple satellites
  • the control node is other equipment other than the satellite.
  • the present application does not limit the specific type of the control node, for example, the control node may be a measurement and control station or a gateway station as shown in FIG1 or equipment in a core network.
  • the control node can obtain the ephemeris information of multiple satellites.
  • the present application does not limit the number of satellites.
  • the multiple satellites include at least a first satellite and a second satellite.
  • the first satellite and the second satellite can be understood by referring to the satellite 1 and the satellite 2 introduced above, respectively.
  • the ephemeris information of multiple satellites may indicate the ephemeris of each satellite in the multiple satellites.
  • Ephemeris refers to the precise position or trajectory table of a celestial body moving over time, which is a function of time.
  • the ephemeris of a satellite is an expression used to describe the position and velocity of a satellite.
  • the ephemeris of a satellite determines various parameters such as the time, coordinates, orientation, and velocity of the satellite using the mathematical relationship between the six orbital parameters of Kepler's law. Unless otherwise specified in this article, the ephemeris mentioned refers to the ephemeris of a satellite.
  • the present application does not limit the measurement method of the ephemeris information.
  • the satellite or the tracking and control station can measure the ephemeris information.
  • the present application does not limit the method of the control node to obtain the ephemeris information.
  • the control node can directly or indirectly obtain the ephemeris information from the satellite or the tracking and control station through the link shown in Figure 1.
  • Figure 4-1 takes the example of the control node obtaining the ephemeris information of the first satellite from the first satellite and obtaining the ephemeris information of the second satellite from the second satellite.
  • control node predicts overlapping information according to the ephemeris information
  • control node After the control node obtains the ephemeris information of multiple satellites, it can predict the overlapping information based on the ephemeris information.
  • the overlapping information may indicate which satellites among the multiple satellites have overlapping coverage areas of their beams and the overlapping time interval.
  • the overlapping information indicates that the coverage area of a first satellite's beam (referred to as the first beam) and the coverage area of a second satellite's beam (referred to as the second beam) will overlap in a target time interval.
  • the overlap information also indicates the position of the overlap area between the coverage area of the first beam and the coverage area of the second beam, which may be the position of the overlap area relative to the coverage area of the first beam and/or the position of the overlap area relative to the coverage area of the first beam.
  • the overlap information also indicates the position of the first satellite and/or the second satellite in their own orbits when the overlap occurs.
  • the overlap information indicates that the first satellite is operating in an ascending orbit and the second satellite is operating in a descending orbit when the overlap occurs.
  • control node sends a target control signal to the target satellite according to the overlapping information
  • the present application refers to the signal transmitted by the first satellite in the target time interval as the first signal, and the signal transmitted by the second satellite in the target time interval as the second signal.
  • the control node After the control node predicts the overlapping information, it can send a target control signal to the target satellite according to the overlapping information.
  • the target control signal includes a first control signal sent by the control node to the first satellite.
  • the target control signal includes a second control signal sent by the control node to the second satellite.
  • the target control signal includes a first control signal sent by the control node to the first satellite and a second control signal sent by the control node to the second satellite.
  • Figure 4-1 takes the example that the target control signal includes the first control signal and the second control signal.
  • the target control signal is used to instruct the target satellite to adjust the target transmission resources used to transmit data in the target time interval to reduce interference between the signal of the first satellite transmitting data in the target time interval (referred to as the first signal) and the signal of the second satellite transmitting data in the target time interval (referred to as the second signal).
  • the target satellite includes a first satellite
  • the target control signal includes a first control signal
  • the target transmission resource includes a first transmission resource.
  • S403 includes S4031.
  • the control node sends a first control signal to the first satellite according to the overlapping information
  • the control node After the control node predicts and obtains the overlapping information, it can send a first control signal to the first satellite according to the overlapping information.
  • the signal is used to instruct the first satellite to adjust the first transmission resource.
  • the first transmission resource specifically refers to the transmission resource used by the first satellite to transmit data in the target time interval.
  • the first transmission resource includes a coverage area of the first beam in the target time interval (referred to as a first coverage area).
  • the overlap information also indicates the position of the overlap area in the first coverage area, where the overlap area is an area where the coverage area of the first beam and the coverage area of the second beam overlap in the target time interval.
  • the overlap information indicates the relative position of the overlap area shown in FIG. 2 in coverage area 1.
  • the first control signal is used to instruct the first satellite to adjust the first coverage area to reduce or remove the overlapping area.
  • the area of the overlapping area between the adjusted first coverage area and the second coverage area becomes smaller, or the adjusted first coverage area and the second coverage area no longer overlap.
  • the first coverage area before adjustment is coverage area 1 as shown in Figure 2
  • the first coverage area after adjustment is coverage area 1 as shown in Figure 4-2 (a plane area filled with oblique lines or a three-dimensional area with the plane area as the base).
  • the first transmission resource includes a time resource (referred to as a first time resource) used by the first beam in the target time interval.
  • the time resource of the first beam may include a duration in the target time interval that can be used by the first beam to transmit data.
  • the first control signal is used to instruct the first satellite to adjust the first time resource so that the time interval for the first satellite to transmit the first signal is different from the time interval for the second satellite to transmit the second signal.
  • the first control signal instructs the first satellite not to transmit the first signal in the target time interval.
  • the first transmission resource includes a frequency resource used by the first beam in the target time interval (referred to as the first frequency resource).
  • the frequency resource of the first beam may include one or more frequency points in the spectrum that can be scheduled by the first beam to transmit data, and the multiple frequency points may be continuous or discrete.
  • the first control signal is used to instruct the first satellite to adjust the first frequency resource so that the frequency point at which the first satellite transmits the first signal is different from the frequency point at which the second satellite transmits the second signal.
  • this application refers to the order in which the first satellite schedules the first frequency resources as the first order, the frequency resources used by the second beam of the second satellite in the target time interval as the second frequency resources, and the order in which the second satellite schedules the second frequency resources as the second order.
  • the first order is the order in which the frequency points or frequency bands in the first frequency resource are scheduled.
  • the first order is the order of priority of the frequency points or frequency bands in the first frequency resource from high to low, and the first satellite first schedules the frequency points with higher priority to transmit data, and then schedules the frequency points with lower priority to transmit data.
  • This application does not limit the first order to be consistent with the order of frequency points or frequency bands in the first frequency resource from high to low, or the first order to be consistent with the order of frequency points or frequency bands in the first frequency resource from low to high.
  • the second order indicates the order in which the frequencies in the second frequency resource are scheduled.
  • the second frequency resource is the frequency resource used by the second beam in the target time interval.
  • the second order indicates the order of priority of the frequencies in the second frequency resource from high to low.
  • the present application does not limit the first order to be consistent with the order of frequencies or frequency bands in the first frequency resource from high to low, or the first order to be consistent with the order of frequencies or frequency bands in the first frequency resource from low to high.
  • the first control signal is used to instruct the first satellite to adjust the first order so that the adjusted first order is different from the second order.
  • the first frequency resource and the second frequency band resource both include a first frequency point and a second frequency point
  • the first order and the second order before the adjustment both indicate that the first frequency point is scheduled before the second frequency point
  • the adjusted first order indicates that the second frequency point is scheduled before the first frequency point.
  • the present application does not limit the first order to indicate the frequency from high to low and the second order to indicate the frequency from low to high, or, conversely, the first order to indicate the frequency from low to high and the second order to indicate the frequency from high to low.
  • the adjusted first order is more conducive to avoiding the first satellite and the second satellite from using the same frequency point or frequency band to transmit data in the target time interval compared with the first order before the adjustment.
  • the first transmission resource includes at least two transmission resources of a first coverage area, a first time resource, and a first frequency resource
  • the first control signal is used to instruct the first satellite to adjust the corresponding transmission resources respectively.
  • step S4031 the method shown in FIG4-1 also includes S4041.
  • the first satellite adjusts the first transmission resource according to the first control signal
  • the first satellite may adjust the first transmission resource indicated by the first control signal.
  • the present application does not limit the specific manner in which the first satellite adjusts the first transmission resource.
  • the target satellite includes a second satellite
  • the target control signal includes a second control signal
  • the target transmission resource includes a second transmission resource.
  • S403 includes S4032.
  • the control node sends a second control signal to the second satellite according to the overlapping information
  • the control node After the control node predicts the overlap information, it can send a second control signal to the second satellite according to the overlap information.
  • the second control signal is used to instruct the second satellite to adjust the second transmission resource.
  • the second transmission resource specifically refers to the transmission resource used by the second satellite to transmit data in the target time interval.
  • the second control signal and the second transmission resource can be understood by referring to the content about the first control signal and the first transmission resource in S4031, and it is only necessary to replace "first" with “second” and “second” with “first”.
  • the second transmission resource includes the coverage area of the second beam in the target time interval (referred to as the second coverage area), and/or, includes the time resource used by the second beam in the target time interval (referred to as the second time resource), and/or, includes the frequency resource used by the second beam in the target time interval (referred to as the second frequency resource).
  • step S4032 the method shown in FIG4-1 also includes S4042.
  • the second satellite adjusts the second transmission resource according to the second control signal
  • the second satellite may adjust the second transmission resource indicated by the second control signal.
  • the present application does not limit the specific manner in which the second satellite adjusts the second transmission resource.
  • the target satellite includes a first satellite and a second satellite
  • the target control signal includes a first control signal and a second control signal
  • the target transmission resource includes a first transmission resource and a second transmission resource.
  • S403 includes S4033.
  • the control node sends a first control signal to the first satellite according to the overlapping information, and sends a second control signal to the second satellite;
  • control node After the control node predicts and obtains the overlapping information, it may send a first control signal to the first satellite according to the overlapping information, and send a second control signal to the second satellite.
  • step S4033 can be understood by referring to S4031 and S4032.
  • the first control signal instructs the first satellite to adjust the first coverage area
  • the second control signal instructs the second satellite to adjust the second coverage area to reduce or remove the overlapping area.
  • the first coverage area and the second coverage area before adjustment are respectively coverage area 1 and coverage area 2 as shown in FIG2
  • the first coverage area after adjustment is coverage area 1 as shown in FIG4-3 (a plane area filled with oblique lines or a three-dimensional area with the plane area as the bottom)
  • the second coverage area after adjustment is coverage area 2 as shown in FIG4-3 (a plane area not filled with oblique lines or a three-dimensional area with the plane area as the bottom).
  • the first control signal is used to instruct the first satellite to adjust the first sequence
  • the second control signal instructs the second satellite to adjust the second sequence, so that the adjusted first sequence is different from the adjusted second sequence.
  • step S4033 the method shown in FIG4-1 also includes S4043.
  • the first satellite adjusts the first transmission resource according to the first control signal
  • the second satellite adjusts the second transmission resource according to the second control signal
  • the control node After the control node determines that the coverage area of the first beam and the coverage area of the second beam will overlap in the target time interval, the control node can send a target control signal to the target satellite to instruct the target satellite to adjust the target transmission resources used to transmit data in the target time interval to reduce or avoid interference between the first signal and the second signal. Since the target satellite only needs to adjust the target transmission resources in the target time interval according to the control signal, the interference between the first signal and the second signal can be reduced or even avoided. Therefore, in other time intervals outside the target time interval, the first satellite and the second satellite can fully use the transmission resources to transmit data, which is conducive to improving the utilization rate of the transmission resources of the first satellite and the second satellite.
  • the overlapping information may also indicate that other satellites among the multiple satellites overlap and the time interval of the overlap.
  • the control node may send corresponding control signals to other satellites. The process may refer to step S403 and will not be repeated here.
  • Fig. 5 schematically shows another possible flow of the communication control method provided by the present application.
  • the method can be applied to the communication system shown in Fig. 1. Referring to Fig. 5, the method includes S501 to S503.
  • a first satellite acquires ephemeris information of at least one satellite
  • the first satellite can obtain its own ephemeris information, and in addition, it can also obtain the ephemeris information of at least one satellite other than itself.
  • the at least one satellite includes a second satellite.
  • the ephemeris information of the satellite can be understood by referring to the relevant content in S401.
  • the present application does not limit the way in which the first satellite obtains the ephemeris information of other satellites.
  • the first satellite and the second satellite are respectively satellite 1 and satellite 2 as shown in Figure 1.
  • satellite 1 can obtain the ephemeris information of satellite 2 through the intersatellite link between the two, or obtain the ephemeris information of satellite 2 from the measurement and control link.
  • the control station obtains the ephemeris information of satellite 2.
  • the first satellite predicts overlapping information according to its own ephemeris information and the acquired ephemeris information
  • the overlapping information can be predicted based on its own ephemeris information and the ephemeris information of at least one satellite.
  • the present application refers to the beam of the second satellite as the second beam.
  • the overlapping information indicates that the coverage area of the first beam of the first satellite and the coverage area of the second beam will overlap in the target time interval.
  • the content of the overlapping information can be understood by referring to the relevant content in FIG4-1, and will not be repeated here.
  • the first satellite adjusts the first transmission resource used for transmitting data in the target time interval according to the overlapping information
  • the first satellite After the first satellite predicts the overlapping information, it can adjust the first transmission resource used to transmit data in the target time interval according to the overlapping information to reduce interference between the signal of the first satellite transmitting data in the target time interval (referred to as the first signal) and the signal of the second satellite transmitting data in the target time interval (referred to as the second signal).
  • the first signal the signal of the first satellite transmitting data in the target time interval
  • the second signal the signal of the second satellite transmitting data in the target time interval
  • the first transmission resource can be understood by referring to the relevant content in S4031.
  • the first transmission resource includes the first coverage area of the first beam in the target time interval, and/or the first time resource used by the first beam in the target time interval, and/or the first frequency resource used by the first beam in the target time interval.
  • the overlap information further indicates the position of the overlap area in the first coverage area, where the overlap area is an area where the coverage area of the first beam and the coverage area of the second beam overlap in the target time interval.
  • the overlap information indicates the relative position of the overlap area shown in FIG. 2 in coverage area 1.
  • step S503 includes S5031.
  • the first satellite adjusts the first coverage area
  • the first coverage area can be adjusted according to the overlapping information to reduce or remove the overlapping area.
  • the area of the overlapping area between the adjusted first coverage area and the second coverage area becomes smaller, or the adjusted first coverage area and the second coverage area no longer overlap.
  • the first coverage area before adjustment is the coverage area 1 shown in FIG2
  • the first coverage area after adjustment is the coverage area 1 shown in FIG4-2 (the plane area filled with oblique lines or the three-dimensional area with the plane area as the base).
  • step S503 includes S5032.
  • the first satellite adjusts the order of scheduling the first frequency resources
  • step S5032 can refer to the relevant content in S4031, which will not be repeated here.
  • step S503 includes S5033.
  • the first satellite adjusts the first time resources.
  • the first time resource can be adjusted so that the time interval during which the first satellite transmits the first signal is different from the time interval during which the second satellite transmits the second signal.
  • the first control signal indicates that the first satellite does not transmit the first signal in the target time interval.
  • step S503 includes at least two steps of S5031 to S5033.
  • the first satellite After the first satellite determines that its beam coverage area will overlap with the second satellite in the target time interval, the first satellite can use the adjusted first transmission resource to transmit data in the target time interval to reduce or avoid interference between the first signal and the second signal. Since the first satellite only needs to adjust the first transmission resource in the target time interval according to the overlapping information, the interference between the first signal and the second signal can be reduced or even avoided. Therefore, in other time intervals outside the target time interval, the first satellite can fully use the transmission resources to transmit data, which is conducive to improving the utilization rate of the transmission resources by the first satellite.
  • first satellite and the second satellite in the steps shown in Fig. 5 may be interchanged to obtain a method for the second satellite to adjust the second transmission resource.
  • both the first satellite and the second satellite may adjust their own transmission resources in the target time interval.
  • the above-mentioned overlapping information may also indicate the information of the overlapping object.
  • the overlapping information predicted by the first satellite may indicate the information of the second satellite.
  • the information of the second satellite may include the identifier of the second satellite and/or the orbit of the second satellite or the position of the second satellite in the orbit.
  • the overlap information predicted by the satellite may also indicate the information of the satellite itself.
  • the overlap information predicted by the first satellite may indicate the information of the first satellite.
  • the information of the first satellite may include the identifier of the first satellite and/or the orbit of the first satellite or the information of the first satellite in orbit. The location in the road.
  • the control device may be the control node described above or deployed on a control node.
  • the control device may execute the method executed by the control node in Figure 4-1.
  • the control device 6 may include an acquisition module 601, a determination module 602 and a sending module 603. Among them, the acquisition module 601 is used to execute step S401, the determination module 602 is used to execute step S402, and the sending module 603 is used to execute step S403 or a refined step in S403. Please refer to the relevant description of the corresponding steps for the specific implementation method, which will not be repeated here.
  • the control device may be a hardware circuit, a module in the form of software, or a module implemented by a hardware circuit combined with software.
  • the control device may be a physical device (such as a computer device or a server).
  • the control device may be a virtual device, and the present application does not limit the deployment location of the virtual device.
  • FIG. 7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device may be the first satellite described above or deployed on the first satellite.
  • the communication device may execute the method of FIG. 5 .
  • the communication device 7 may include an acquisition module 701, a determination module 702, and an adjustment module 703. Among them, the acquisition module 701 is used to execute step S501, the determination module 702 is used to execute step S502, and the adjustment module 703 is used to execute step S503 or a refined step in S503.
  • the acquisition module 701 is used to execute step S501
  • the determination module 702 is used to execute step S502
  • the adjustment module 703 is used to execute step S503 or a refined step in S503.
  • the relevant description of the corresponding steps which will not be repeated here.
  • the communication device may be a hardware circuit, a module in the form of software, or a module implemented by a hardware circuit combined with software.
  • the communication device may be a physical device (e.g., a computer device or a server).
  • the communication device may be a virtual device, and the present application does not limit the deployment location of the virtual device.
  • FIG8 schematically shows a possible structure of the computing device.
  • the computing device can be the control device or communication device described above.
  • the computing device 8 includes: a processor 801 and a memory 802, the processor 801 and the memory 802 are connected to each other, and optionally, the processor 801 and the memory 802 can be connected to each other via an internal bus 803.
  • the processor 801 may be composed of one or more general-purpose processors, such as a central processing unit (CPU), or a combination of a CPU and a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • the memory 802 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 802 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory, ROM), a flash memory (flash memory), a hard disk drive (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD); the memory 802 may also include a combination of the above types.
  • volatile memory volatile memory
  • RAM random access memory
  • non-volatile memory such as a read-only memory (read-only memory, ROM), a flash memory (flash memory), a hard disk drive (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD)
  • non-volatile memory such as a read-only memory (read-only memory, ROM), a flash memory (flash memory), a hard disk drive (hard disk drive, HDD) or a solid-state drive (solid
  • Bus 803 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the computer device 8 may include a communication interface 804, and the processor 801 is connected to the communication interface 804.
  • the processor 801 and the communication interface 804 are connected via a bus.
  • the memory 802 stores computer instructions, and the processor 801 executes these computer instructions to execute the method flow shown in Figure 1, Figure 3, or Figure 5.
  • the specific implementation method can refer to the corresponding content above, which will not be repeated here.
  • the communication control method provided in the present application can be specifically executed by a chip in a computing device, and the chip includes: a processing unit and a communication unit.
  • the processing unit can be, for example, a processor, and the communication unit can be, for example, an input/output interface, a pin or a circuit.
  • the processing unit can execute the computer execution instructions stored in the storage unit so that the chip in the computing device executes the above method example.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in the wireless access device end, such as a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, part or all of the steps of any one of the above method embodiments can be implemented.
  • the storage medium can be any available medium that can be accessed by a general or special-purpose computer.
  • the embodiment of the present application also provides a computer program, which includes instructions, and when the computer program is executed by a computer, the computer can perform some or all of the steps of any method embodiment.
  • the aforementioned computer-readable storage medium includes: various non-transitory machine-readable media that can store program codes, such as a USB flash drive, a mobile hard disk, a magnetic disk, an optical disk, a RAM, an SSD, or a non-volatile memory.
  • the present application also provides a communication system, which may include any two devices described above.
  • the communication system includes a first satellite and a terminal, or includes a first satellite and a control node, or includes a first satellite, a second satellite and a control node.
  • the communication system is shown in FIG1.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the scheme of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请公开了一种通信控制方法及设备,用于降低不同卫星的信号之间的干扰,提高卫星通信的频谱利用率。该方法包括:获取多个卫星的星历信息,根据星历信息预测卫星的覆盖区域发生交叠的目标时间区间,在目标时间区间内调整卫星的传输资源,以减少不同卫星之间的通信干扰,有利于提高卫星对传输资源的利用率。

Description

一种通信控制方法及设备
本申请要求于2022年10月27日提交中国国家知识产权局、申请号为202211330221.6、申请名称为“一种通信控制方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信控制方法及设备。
背景技术
与地面移动通信***相比,卫星移动通信***具有覆盖范围广和不受地形条件限制的显著优势。同时,为提供与地面移动通信***相似的服务质量,需要卫星移动通信***具备电信级高可靠性。
低轨及中轨卫星通信通常采用倾斜轨道,当轨道倾角不为90°(即非极轨道)时,升轨卫星和降轨卫星将出现交叉的场景。当升轨卫星和降轨卫星靠近时,二者的波束的覆盖区域将出现交叠区域,不同卫星与该交叠区域里的终端通信时将发生干扰,降低了卫星通信的信号质量。
发明内容
本申请提供一种通信控制方法及设备,用于降低不同卫星的信号之间的干扰,提高卫星通信的信号质量。
第一方面,本申请提供一种通信控制方法,包括:控制节点获取多个卫星的星历信息;所述控制节点根据所述星历信息预测交叠信息,所述交叠信息指示第一卫星的第一波束的覆盖区域和第二卫星的第二波束的覆盖区域将在目标时间区间存在交叠,所述第一卫星和所述第二卫星为所述多个卫星中的不同卫星;所述控制节点根据所述交叠信息向目标卫星发送目标控制信号,所述目标控制信号用于指示所述目标卫星调整其在所述目标时间区间传输数据所使用的目标传输资源,以减少第一卫星在目标时间区间传输数据的信号(称作第一信号)和第二卫星在目标时间区间传输数据的信号(称作第二信号)之间的干扰。其中,所述目标卫星包括所述第一卫星和/或所述第二卫星。
由于目标卫星只需根据控制信号调整目标时间区间内的目标传输资源,便可以减少甚至避免第一信号和第二信号之间的干扰,因此,在目标时间区间以外的其他时间区间,第一卫星和第二卫星均可以充分使用传输资源来传输数据,有利于提高第一卫星和第二卫星对传输资源的利用率。
可选的,所述目标传输资源包括目标波束在所述目标时间区间的目标覆盖区域,和/或,所述目标波束在所述目标时间区间所使用的目标时间资源,和/或,所述目标波束在所述目标时间区间所使用的目标频率资源,所述目标波束为所述目标卫星的波束。通过调整多种类型的传输资源,有利于进一步减少甚至避免同频干扰。
可选的,所述交叠信息还指示交叠区域在所述目标覆盖区域中的位置,所述交叠区域为在目标时间区间所述第一波束的覆盖区域和所述第二波束的覆盖区域存在交叠的区域。
可选的,所述目标控制信号用于指示所述目标卫星调整所述目标覆盖区域,以缩小或去除所述交叠区域。这样,无需降低单个卫星可用的频率资源,便可以减少第一信号和第二信号之间的干扰,提高卫星对频率资源的利用率。
可选的,所述目标控制信号用于指示所述目标卫星调整其调度所述目标频率资源的顺序,以使在所述目标时间区间所述第一卫星调度其频率资源的顺序与所述第二卫星调度其频率资源的顺序不同,有利于避免第一卫星和第二卫星在目标时间区间使用相同的频点或频段传输数据。这样,无需降低单个卫星可用的频率资源,便可以减少第一信号和第二信号之间的干扰,提高卫星对频率资源的利用率。
第二方面,本申请提供一种通信控制方法,包括:第一卫星获取至少一个卫星的星历信息;所述第一卫星根据自身的星历信息和获取到的星历信息预测交叠信息,所述交叠信息指示所述第一卫星的第一波束的覆盖区域和第二波束的覆盖区域将在目标时间区间存在交叠,所述第二波束为所述至少一个卫星中第二卫星的波束;所述第一卫星根据所述交叠信息调整其在所述目标时间区间传输数据所使用的第一传输资源。
可选的,所述第一传输资源包括所述第一波束在所述目标时间区间的第一覆盖区域,和/或,所述第一波束在所述目标时间区间所使用的第一时间资源,和/或,所述第一波束在所述目标时间区间所使 用的第一频率资源。
可选的,所述交叠信息还指示交叠区域在所述第一覆盖区域中的位置,所述交叠区域为在所述目标时间区间所述第一波束的覆盖区域和所述第二波束的覆盖区域存在交叠的区域。
可选的,所述第一卫星根据所述交叠信息调整其在所述目标时间区间传输数据所使用的目标传输资源,包括:所述第一卫星调整所述第一覆盖区域,以缩小或去除所述交叠区域。
可选的,所述第一卫星根据所述交叠信息调整其在所述目标时间区间传输数据所使用的目标传输资源,包括:所述第一卫星调整调度所述第一频率资源的顺序,调整后的顺序与所述第二卫星调度其频率资源的顺序不同。
第三方面,本申请提供一种控制装置,控制装置包括:获取模块,用于获取多个卫星的星历信息;确定模块,用于根据所述星历信息预测交叠信息,所述交叠信息指示第一卫星的第一波束的覆盖区域和第二卫星的第二波束的覆盖区域将在目标时间区间存在交叠,所述第一卫星和所述第二卫星为所述多个卫星中的不同卫星;发送模块,用于根据所述交叠信息向目标卫星发送目标控制信号,所述目标控制信号用于指示所述目标卫星调整其在所述目标时间区间传输数据所使用的目标传输资源,所述目标卫星包括所述第一卫星和/或所述第二卫星。
可选的,所述目标传输资源包括目标波束在所述目标时间区间的目标覆盖区域,和/或,所述目标波束在所述目标时间区间所使用的目标时间资源,和/或,所述目标波束在所述目标时间区间所使用的目标频率资源,所述目标波束为所述目标卫星的波束。
可选的,所述交叠信息还指示交叠区域在所述目标覆盖区域中的位置,所述交叠区域为在目标时间区间所述第一波束的覆盖区域和所述第二波束的覆盖区域存在交叠的区域。
可选的,所述目标控制信号用于指示所述目标卫星调整所述目标覆盖区域,以缩小或去除所述交叠区域。
可选的,所述目标控制信号用于指示所述目标卫星调整调度所述目标频率资源的顺序,以使在所述目标时间区间所述第一卫星调度其频率资源的顺序与所述第二卫星调度其频率资源的顺序不同。
第四方面,本申请提供一种通信装置,该通信装置可以为卫星或部署在卫星上。通信装置可以包括:获取模块,用于获取至少一个卫星的星历信息;预测模块,用于根据自身的星历信息和获取到的星历信息预测交叠信息,所述交叠信息指示所述第一卫星的第一波束的覆盖区域和第二波束的覆盖区域将在目标时间区间存在交叠,所述第二波束为所述至少一个卫星中第二卫星的波束;调整模块,用于根据所述交叠信息调整其在所述目标时间区间传输数据所使用的第一传输资源。
可选的,所述第一传输资源包括所述第一波束在所述目标时间区间的第一覆盖区域,和/或,所述第一波束在所述目标时间区间所使用的第一时间资源,和/或,所述第一波束在所述目标时间区间所使用的第一频率资源。
可选的,所述交叠信息还指示交叠区域在所述第一覆盖区域中的位置,所述交叠区域为在所述目标时间区间所述第一波束的覆盖区域和所述第二波束的覆盖区域存在交叠的区域。
可选的,所述调整模块具体用于,调整所述第一覆盖区域,以缩小或去除所述交叠区域。
可选的,所述第一卫星具体用于,调整调度所述第一频率资源的顺序,调整后的顺序与所述第二卫星调度其频率资源的顺序不同。
第五方面提供一种计算设备,包括存储器和处理器,所述存储器存储有代码,所述处理器被配置为执行所述代码,当所述代码被执行时,所述计算设备执行如第一方面或第一方面中任一种可能的实现方式中的方法,或者,执行如第二方面或第二方面中任一种可能的实现方式中的方法。
第六方面提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,该程序由计算机执行时,使得所述计算机执行如第一方面或第一方面中任一种可能的实现方式中的方法,或者,执行如第二方面或第二方面中任一种可能的实现方式中的方法。
第七方面提供一种计算机程序产品,所述计算机程序产品存储有指令,所述指令在由计算机执行时,使得所述计算机执行如第一方面或第一方面中任一种可能的实现方式中的方法,或者,执行如第二方面或第二方面中任一种可能的实现方式中的方法。
由于本申请提供的各装置可用于执行前述对应的方法,因此本申请各装置所能获得到的技术效果可 参考前述对应的方法所获得的技术效果,此处不再赘述。
附图说明
图1示意性示出本申请适用的通信***的结构;
图2示意性示出卫星1和卫星2的波束的覆盖区域;
图3示意性示出卫星1和卫星2的轨道;
图4-1示意性示出本申请提供的通信控制方法一种可能的流程;
图4-2和图4-3分别示意性示出调整后的目标覆盖区域;
图5示意性示出本申请提供的通信控制方法另一种可能的流程;
图6示意性示出本申请提供的控制装置一种可能的结构;
图7示意性示出本申请提供的通信装置一种可能的结构;
图8示意性示出本申请提供的计算设备一种可能的结果。
具体实施方式
图1示意性示出一种通信***。参考图1,该通信***包括卫星和终端。通信***可以包括多个卫星,图1以4颗卫星为例,该通信***可以包括更多或更少卫星。不同卫星之间可以通过星间链路交互信息或传输数据。通信***可以包括一个或多个终端,图1以1个终端为例。卫星用于对终端提供通信业务。出于画面简洁的考虑,图1仅示意性示出卫星1与终端之间的连接。根据第三代合作伙伴计划(3rd generation partnership project,3GPP)定义,卫星可以支持“透传”或“再生”两种工作模式。其中,对于透传模式,无线接入点部署在地面;对于再生模式,无线接入点部署在卫星上。
可选的,图1所示的通信***还可以包括关口站和核心网。其中,关口站也称信关站,用于核心网与卫星通信网之间的转接。在前文介绍的透传模式下,无线接入点可以部署在关口站。本申请将卫星与关口站之间的链路称作馈电链路。出于画面简洁的考虑,图1仅示意性示出卫星2与关口站之间的馈电链路。
可选的,图1所示的通信***还可以包括测控站。测控是测量与控制的简称,“测量”包括对卫星飞行轨迹的测量和遥测,“控制”包括对卫星进行遥控。测控站的主要任务包括:对卫星进行跟踪测轨、姿态测量,并进行轨道和姿态的遥控,确保其按正常姿态和预定轨道运行,以及,对卫星及其有效载荷、各种仪器进行遥测和遥控,使其完成规定的操作和实现规定的功能。本申请将卫星与测控站之间的链路称作测控链路。同样的,出于画面简洁的考虑,图1仅示意性示出卫星2与测控站之间的测控链路。
卫星通过波束与波束的覆盖区域中的终端传输数据。例如,卫星通过发射波束,向发射波束的覆盖区域中的终端发送数据。例如,卫星通过接收波束,接收来自接收波束的覆盖区域中的终端的数据。后文提到的波束可以指发射波束或接收波束。
图2示意性示出卫星1的波束(称作波束1)的覆盖区域(称作覆盖区域1)和卫星2的波束(称作波束2)的覆盖区域(称作覆盖区域2)。本申请提到的波束的覆盖区域可以为二维平面中的区域(例如图2所示的圆形内部的区域),也可以为三维空间中的区域(例如图2所示的圆锥体内部的区域)。卫星1和位于覆盖区域1中的终端之间可以通过接收信号或发射信号(称作信号1)来传输数据,卫星1和位于覆盖区域2中的终端之间可以通过接收信号或发射信号(称作信号2)来传输数据。
可选的,卫星可以为低轨卫星或中轨卫星。图3示意性示出卫星1绕地球运行的轨道1和卫星2绕地球运行的轨道2。图3用虚线表示地球背面的轨道,用实线标识地球正面的轨道。参考图3,轨道1和轨道2均为倾斜轨道。其中,倾斜轨道是指卫星运行的轨道平面和赤道平面夹角不为0°轨道。图3通过箭头代表卫星在轨道中运行的方向。本申请将卫星的轨道中位于从南向北的部分轨道称作上升轨道或升轨,将卫星的轨道中位于从北向南的部分轨道称作下降轨道或降轨。参考图3,运行至上升轨道的卫星1和运行至下降轨道的卫星2可能在目标位置相互接近,此时,覆盖区域1和覆盖区域2可能发生交叠。该交叠区域例如图2所示。该交叠区域可以指二维平面上的区域,也可以指三维空间中的区域。
本申请将这两个覆盖区域发生交叠的时间区间称作目标时间区间。在目标时间区间,卫星1可以和位于该交叠区域的终端通过信号1传输数据,卫星2可以和位于该交叠区域的终端通过信号2传输数据,信号1和信号2容易发生同频干扰。
本申请将运行至上升轨道的卫星称作升轨卫星,将运行至下降轨道的卫星称作降轨卫星。为了避免 信号1和信号2发生同频干扰,在一种可能的实现方式中,升轨卫星和降轨卫星可以分别调度频谱资源中的一半频谱资源,以减少同频干扰。例如,升轨卫星调度的频谱资源为(0,50]MHz,降轨卫星调度的频谱资源为(50,100]MHz。这样,当卫星1和卫星2接近时,由于卫星1传输信号1所使用的频谱范围与卫星2传输信号2所使用的频谱范围不同,可以减少信号1和信号2之间的干扰。但是,由于单个卫星在任一时刻最多只能调度一半频谱资源,将大幅减少单个卫星对频谱资源的利用率。
为了提高卫星对传输资源的利用率,本申请提出,根据卫星的星历信息预测卫星的覆盖区域发生交叠的目标时间区间,在目标时间区间内调整卫星的传输资源,以减少不同卫星之间的通信干扰。
图4-1示意性示出本申请提供的通信控制方法一种可能的流程。可选的,该方法可以应用于图1所示的通信***。参考图4-1,该方法包括S401~S403。
S401、控制节点获取多个卫星的星历信息;
控制节点为卫星以外的其他设备。本申请不限定控制节点的具体类型,例如,控制节点可以为图1所示的测控站或关口站或核心网中的设备。
控制节点可以获取多个卫星的星历信息。本申请不限定卫星的数目,以下,假设多个卫星至少包括第一卫星和第二卫星。其中,第一卫星和第二卫星可以分别参考前文介绍的卫星1和卫星2进行理解。
多个卫星的星历信息可以指示多个卫星中每个卫星的星历。星历是指天体运行随时间而变的精确位置或轨迹表,它是时间的函数。卫星的星历是用于描述卫星位置和速度的表达式,例如,卫的星星历以开普勒定律的6个轨道参数之间的数学关系确定卫星的时间、坐标、方位、速度等各项参数。本文中若无特殊说明,所提及的星历均指卫星的星历。
本申请不限定星历信息的测量方式,可选的,卫星或测控站可以测量星历信息。本申请不限定控制节点获取星历信息的方式,例如,控制节点可以通过图1所示的链路从卫星或测控站直接或间接获取星历信息。图4-1以控制节点从第一卫星获取第一卫星的星历信息并且从第二卫星获取第二卫星的星历信息为例。
S402、控制节点根据星历信息预测交叠信息;
控制节点获取多个卫星的星历信息后,可以根据星历信息预测交叠信息。
其中,交叠信息可以指示,多个卫星中哪些卫星的波束的覆盖区域将发生交叠,以及,发生交叠的时间区间。例如,交叠信息指示第一卫星的波束(称作第一波束)的覆盖区域和第二卫星的波束(称作第二波束)的覆盖区域将在目标时间区间存在交叠。
可选的,交叠信息还指示第一波束的覆盖区域和第二波束的覆盖区域的交叠区域的位置,该位置可以是交叠区域相对于第一波束的覆盖区域的位置,和/或,交叠区域相对于第一波束的覆盖区域的位置。
可选的,交叠信息还指示发生交叠时第一卫星和/或第二卫星在自身轨道中的位置,例如,交叠信息指示发生交叠时第一卫星运行在上升轨道,第二卫星运行在下降轨道。
S403、控制节点根据交叠信息向目标卫星发送目标控制信号;
为了便于描述,本申请将第一卫星在目标时间区间传输数据的信号称作第一信号,将第二卫星在目标时间区间传输数据的信号称作第二信号。
控制节点预测得到交叠信息后,可以根据交叠信息向目标卫星发送目标控制信号。当目标卫星包括第一卫星时,目标控制信号包括控制节点向第一卫星发送的第一控制信号。当目标卫星包括第二卫星时,目标控制信号包括控制节点向第二卫星发送的第二控制信号。当目标卫星包括第一卫星和第二卫星时,目标控制信号包括控制节点向第一卫星发送的第一控制信号和控制节点向第二卫星发送的第二控制信号。图4-1以目标控制信号包括第一控制信号和第二控制信号为例。
目标控制信号用于指示目标卫星调整其在目标时间区间传输数据所使用的目标传输资源,以减少第一卫星在目标时间区间传输数据的信号(称作第一信号)和第二卫星在目标时间区间传输数据的信号(称作第二信号)之间的干扰。
可选的,目标卫星包括第一卫星,目标控制信号包括第一控制信号,目标传输资源包括第一传输资源。相应的,S403包括S4031。
S4031、控制节点根据交叠信息向第一卫星发送第一控制信号;
控制节点预测得到交叠信息后,可以根据交叠信息向第一卫星发送第一控制信号。其中,第一控制 信号用于指示第一卫星调整第一传输资源。第一传输资源特指第一卫星在目标时间区间传输数据所使用的传输资源。
可选的,第一传输资源包括第一波束在目标时间区间的覆盖区域(称作第一覆盖区域)。
可选的,交叠信息还指示交叠区域在第一覆盖区域中的位置,交叠区域为在目标时间区间第一波束的覆盖区域和第二波束的覆盖区域存在交叠的区域。例如,交叠信息指示图2所示的交叠区域)在覆盖区域1中的相对位置。
可选的,第一控制信号用于指示第一卫星调整第一覆盖区域,以缩小或去除交叠区域。或者说,调整后的第一覆盖区域与第二覆盖区域之间的交叠区域的面积变小,或,调整后的第一覆盖区域与第二覆盖区域之间不再交叠。例如,调整前的第一覆盖区域如图2所示的覆盖区域1,调整后的第一覆盖区域如图4-2所示的覆盖区域1(填充斜线的平面区域或以该平面区域为底的三维区域)。
或者,可选的,第一传输资源包括第一波束在目标时间区间所使用的时间资源(称作第一时间资源)。第一波束的时间资源可以包括目标时间区间中能够被第一波束用来传输数据的时长。
可选的,第一控制信号用于指示第一卫星调整第一时间资源,以使第一卫星传输第一信号的时间区间与第二卫星传输第二信号的时间区间不同。例如,第一控制信号指示第一卫星在目标时间区间不传输第一信号。
或者,可选的,第一传输资源包括第一波束在目标时间区间所使用的频率资源(称作第一频率资源)。第一波束的频率资源可以包括频谱中能够被第一波束调度传输数据的一个或多个频点,该多个频点可以为连续的或离散的。
可选的,第一控制信号用于指示第一卫星调整第一频率资源,以使第一卫星传输第一信号的频点与第二卫星传输第二信号的频点不同。
为了便于描述,本申请将第一卫星调度第一频率资源的顺序称作第一顺序,将第二卫星的第二波束在目标时间区间所使用的频率资源称作第二频率资源,将第二卫星调度第二频率资源的顺序称作第二顺序。
需要说明的是,第一顺序为第一频率资源中频点或频段被调度的先后顺序。或者,第一顺序为第一频率资源中频点或频段的优先级从高至低的顺序,第一卫星先调度优先级较高的频点传输数据,之后调度优先级较低的频点传输数据。本申请不限定第一顺序与第一频率资源中频点或频段从高到低的顺序一致,或,第一顺序与第一频率资源中频点或频段从低到高的顺序一致。
类似的,第二顺序指示第二频率资源中各频点被调度的先后顺序。第二频率资源为第二波束在目标时间区间所使用的频率资源。或者,第二顺序指示第二频率资源中各频点的优先级从高至低的顺序。本申请不限定第一顺序与第一频率资源中频点或频段从高到低的顺序一致,或,第一顺序与第一频率资源中频点或频段从低到高的顺序一致。
可选的,第一控制信号用于指示第一卫星调整第一顺序,以使调整后的第一顺序与第二顺序不同。例如,假设第一频率资源和第二频段资源均包括第一频点和第二频点,调整前的第一顺序和第二顺序均指示第一频点先于第二频点被调度,而调整后的第一顺序指示第二频点先于第一频点被调度。
本申请不限定第一顺序指示频率由高到低,第二顺序指示频率由低到高,或者,相反的,第一顺序指示频率由低到高,第二顺序指示频率由高到低。只要和调整前的第一顺序相比,调整后的第一顺序更有利于避免第一卫星和第二卫星在目标时间区间使用相同的频点或频段传输数据即可。
或者,可选的,第一传输资源包括第一覆盖区域、第一时间资源和第一频率资源中至少两种传输资源,第一控制信号用于指示第一卫星分别调整相应传输资源。通过调整多种类型的传输资源,有利于进一步减少甚至避免同频干扰。例如,通过调整第一覆盖区域(即空分避让)结合调整第一顺序,有利于降低覆盖边缘的干扰。
可选的,在步骤S4031之后,图4-1所示的方法还包括S4041。
S4041、第一卫星根据第一控制信号调整第一传输资源;
第一卫星接收到第一控制信号后,可以调整第一控制信号所指示的第一传输资源。本申请不限定第一卫星调整第一传输资源所采用的具体方式。
可选的,目标卫星包括第二卫星,目标控制信号包括第二控制信号,目标传输资源包括第二传输资 源。相应的,S403包括S4032。
S4032、控制节点根据交叠信息向第二卫星发送第二控制信号;
控制节点预测得到交叠信息后,可以根据交叠信息向第二卫星发送第二控制信号。其中,第二控制信号用于指示第二卫星调整第二传输资源。第二传输资源特指第二卫星在目标时间区间传输数据所使用的传输资源。
关于第二控制信号和第二传输资源可以参考S4031中关于第一控制信号和第一传输资源的内容进行理解,只需将“第一”更换为“第二”,将“第二”更换为“第一”即可。例如,第二传输资源包括第二波束在目标时间区间的覆盖区域(称作第二覆盖区域),和/或,包括第二波束在目标时间区间所使用的时间资源(称作第二时间资源),和/或,包括第二波束在目标时间区间所使用的频率资源(称作第二频率资源)。
可选的,在步骤S4032之后,图4-1所示的方法还包括S4042。
S4042、第二卫星根据第二控制信号调整第二传输资源;
第二卫星接收到第二控制信号后,可以调整第二控制信号所指示的第二传输资源。本申请不限定第二卫星调整第二传输资源所采用的具体方式。
可选的,目标卫星包括第一卫星和第二卫星,目标控制信号包括第一控制信号和第二控制信号,目标传输资源包括第一传输资源和第二传输资源。相应的,S403包括S4033。
S4033、控制节点根据交叠信息向第一卫星发送第一控制信号,并且,向第二卫星发送第二控制信号;
控制节点预测得到交叠信息后,可以根据交叠信息向第一卫星发送第一控制信号,并且,向第二卫星发送第二控制信号。
步骤S4033的内容可以参考S4031和S4032进行理解。
例如,第一控制信号指示第一卫星调整第一覆盖区域,第二控制信号指示第二卫星调整第二覆盖区域,以缩小或去除交叠区域。例如,调整前的第一覆盖区域和第二覆盖区域分别如图2所示的覆盖区域1和覆盖区域2,调整后的第一覆盖区域如图4-3所示的覆盖区域1(填充斜线的平面区域或以该平面区域为底的三维区域),调整后的第二覆盖区域如图4-3所示的覆盖区域2(未填充斜线的平面区域或以该平面区域为底的三维区域)。
例如,第一控制信号用于指示第一卫星调整第一顺序,第二控制信号指示第二卫星调整第二顺序,以使调整后的第一顺序与调整后的第二顺序不同。
可选的,在步骤S4033之后,图4-1所示的方法还包括S4043。
S4043、第一卫星根据第一控制信号调整第一传输资源,第二卫星根据第二控制信号调整第二传输资源。
控制节点确定第一波束的覆盖区域和第二波束的覆盖区域将在目标时间区间发生交叠后,可以向目标卫星发送目标控制信号,指示目标卫星调整其在目标时间区间传输数据所使用的目标传输资源,以减少或避免第一信号和第二信号之间的干扰。由于目标卫星只需根据控制信号调整目标时间区间内的目标传输资源,便可以减少甚至避免第一信号和第二信号之间的干扰,因此,在目标时间区间以外的其他时间区间,第一卫星和第二卫星均可以充分使用传输资源来传输数据,有利于提高第一卫星和第二卫星对传输资源的利用率。
可选的,重叠信息还可以指示多个卫星中的其他卫星发生交叠以及发生交叠的时间区间,控制节点可以向其他卫星发送相应的控制信号,该过程可以参考S403的步骤,此处不再赘述。
图5示意性示出本申请提供的通信控制方法另一种可能的流程。可选的,该方法可以应用于图1所示的通信***。参考图5,该方法包括S501~S503。
S501、第一卫星获取至少一个卫星的星历信息;
第一卫星可以获取自身的星历信息,此外,还可以获取除自身以外的至少一个卫星的星历信息。假设,至少一个卫星包括第二卫星。卫星的星历信息可以参考S401中的相关内容进行理解。本申请不限定第一卫星获取其他卫星的星历信息的方式。假设第一卫星和第二卫星分别为图1所示的卫星1和卫星2,作为举例,卫星1可以通过二者之间的星间链路获取卫星2的星历信息,或者,通过测控链路从测 控站获取卫星2的星历信息。
S502、第一卫星根据自身的星历信息和获取到的星历信息预测交叠信息;
第一卫星获取至少一个卫星的星历信息之后,可以根据自身的星历信息和至少一个卫星的星历信息预测交叠信息。参考图4-1对应的内容,本申请将第二卫星的波束称作第二波束。交叠信息指示第一卫星的第一波束的覆盖区域和第二波束的覆盖区域将在目标时间区间存在交叠。交叠信息的内容可以参考图4-1中的相关内容进行理解,此处不再赘述。
S503、第一卫星根据交叠信息调整其在目标时间区间传输数据所使用的第一传输资源;
第一卫星预测得到交叠信息后,可以根据交叠信息调整其在目标时间区间传输数据所使用的第一传输资源,以减少第一卫星在目标时间区间传输数据的信号(称作第一信号)和第二卫星在目标时间区间传输数据的信号(称作第二信号)之间的干扰。
第一传输资源可以参考S4031中的相关内容进行理解。例如,第一传输资源包括第一波束在目标时间区间的第一覆盖区域,和/或,第一波束在目标时间区间所使用的第一时间资源,和/或,第一波束在目标时间区间所使用的第一频率资源。
可选的,交叠信息还指示交叠区域在第一覆盖区域中的位置,交叠区域为在目标时间区间第一波束的覆盖区域和第二波束的覆盖区域存在交叠的区域。例如,交叠信息指示图2所示的交叠区域在覆盖区域1中的相对位置。
可选的,步骤S503包括S5031。
S5031、第一卫星调整第一覆盖区域;
第一卫星预测得到交叠信息后,可以根据交叠信息调整第一覆盖区域,以缩小或去除交叠区域。或者说,调整后的第一覆盖区域与第二覆盖区域之间的交叠区域的面积变小,或,调整后的第一覆盖区域与第二覆盖区域之间不再交叠。例如,调整前的第一覆盖区域如图2所示的覆盖区域1,调整后的第一覆盖区域如图4-2所示的覆盖区域1(填充斜线的平面区域或以该平面区域为底的三维区域)。
可选的,步骤S503包括S5032。
S5032、第一卫星调整调度第一频率资源的顺序;
第一卫星预测得到交叠信息后,可以调整调度第一频率资源的顺序,调整后的顺序与第二卫星调度其频率资源的顺序不同。步骤S5032的内容可以参考S4031中的相关内容,此处不再赘述。
可选的,步骤S503包括S5033。
S5033、第一卫星调整第一时间资源。
第一卫星预测得到交叠信息后,可以调整第一时间资源,以使第一卫星传输第一信号的时间区间与第二卫星传输第二信号的时间区间不同。例如,第一控制信号指示第一卫星在目标时间区间不传输第一信号。
可选的,步骤S503包括S5031~S5033中至少两个步骤。
第一卫星确定自身的波束覆盖区域将在目标时间区间与第二卫星发生交叠后,第一卫星在目标时间区间可以使用调整后的第一传输资源传输数据,以减少或避免第一信号和第二信号之间的干扰。由于第一卫星只需根据重叠信息调整目标时间区间内的第一传输资源,便可以减少甚至避免第一信号和第二信号之间的干扰,因此,在目标时间区间以外的其他时间区间,第一卫星可以充分使用传输资源来传输数据,有利于提高第一卫星对传输资源的利用率。
可选的,可以将图5所示的步骤中的第一卫星和第二卫星互换,得到第二卫星调整第二传输资源的方法。可选的,第一卫星和第二卫星均可以调整自身在目标时间区间的传输资源。
为了便于第一卫星和第二卫星分别调整传输资源后能够进一步减少第一信号和第二信号之间的干扰,可选的,上述交叠信息还可以指示交叠对象的信息。例如,第一卫星预测的交叠信息可以指示第二卫星的信息。第二卫星的信息可以包括第二卫星的标识和/或第二卫星的轨道或第二卫星在轨道中的位置。
为了便于第一卫星和第二卫星分别调整传输资源后能够进一步减少第一信号和第二信号之间的干扰,可选的,卫星预测的交叠信息还可以指示该卫星自身的信息。例如,第一卫星预测的交叠信息可以指示第一卫星的信息。第一卫星的信息可以包括第一卫星的标识和/或第一卫星的轨道或第一卫星在轨 道中的位置。
为了更好的实施本申请上述方案,下面还提供用于实施上述方案的相关设备。
参见图6,图6是本申请实施例提供的一种控制装置的结构示意图。该控制装置可以是前文介绍的控制节点或部署在控制节点上。该控制装置可以执行图4-1中控制节点所执行的方法。控制装置6可以包括获取模块601、确定模块602和发送模块603。其中,获取模块601用于执行步骤S401,确定模块602用于执行步骤S402,发送模块603用于执行步骤S403或S403中的细化步骤。具体实现方式请参考相应步骤的相关描述,此处不再赘述。
该控制装置可以是硬件电路,也可以是以软件形式存在的模块,也可以是硬件电路结合软件实现的模块。可选的,控制装置可以为物理装置(例如计算机设备或服务器)。或者,可选的,控制装置可以为虚拟装置,本申请不限定该虚拟装置的部署位置。
参见图7,图7是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是前文介绍的第一卫星或部署在第一卫星上。该通信装置可以执行图5的方法。通信装置7可以包括获取模块701、确定模块702和调整模块703。其中,获取模块701用于执行步骤S501,确定模块702用于执行步骤S502,调整模块703用于执行步骤S503或S503中的细化步骤。具体实现方式请参考相应步骤的相关描述,此处不再赘述。
该通信装置可以是硬件电路,也可以是以软件形式存在的模块,也可以是硬件电路结合软件实现的模块。可选的,通信装置可以为物理装置(例如计算机设备或服务器)。或者,可选的,通信装置可以为虚拟装置,本申请不限定该虚拟装置的部署位置。
本申请还提供一种计算设备,图8示意性示出该计算设备一种可能的结构。该计算机设备可以为前文介绍的控制装置或通信装置。如图8所示,该计算机设备8包括:处理器801和存储器802,处理器801和存储器802相互连接,可选的,处理器801和存储器802可以通过内部总线803相互连接。
处理器801可以由一个或者多个通用处理器构成,例如中央处理器(central processing unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC)、可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器802可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器802也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM)、快闪存储器(flash memory)、硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器802还可以包括上述种类的组合。
总线803可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。
可选的,计算机设备8可以包括通信接口804,处理器801和通信接口804相连,例如图8所示,处理器801和通信接口804通过总线相连。
存储器802中存储了计算机指令,处理器801通过执行这些计算机指令,可以执行图1或图3或图5所示的方法流程。具体实施方式可以参考前文相应内容,此处不再赘述。
本申请提供的通信控制方法具体可以由计算设备中的芯片来执行,该芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使计算设备内的芯片执行上述方法示例。可选的,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是无线接入设备端内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
本申请还提供一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机程序,当该计算机程序被处理器执行时,可以实现上述方法实施例中记载的任意一种的部分或全部步骤。计算机可读存 储介质可以是通用或专用计算机能够存取的任何可用介质。本申请实施例还提供一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行任意一种方法实施例的部分或全部步骤。本领域普通技术人员可以理解,前述的计算机可读存储介质包括:U盘、移动硬盘、磁碟、光盘、RAM、SSD或者非易失性存储器(non-volatile memory)等各种可以存储程序代码的非短暂性的(non-transitory)机器可读介质。
本申请还提供一种通信***,该通信***可以包括前文介绍的任意两种设备。例如,该通信***包括第一卫星和终端,或者,包括第一卫星和控制节点,或者,包括第一卫星、第二卫星和控制节。可选的,该通信***如图1所示。
本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、***、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。本申请实施例中出现的术语“多个”指两个或两个以上。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (15)

  1. 一种通信控制方法,其特征在于,包括:
    控制节点获取多个卫星的星历信息;
    所述控制节点根据所述星历信息预测交叠信息,所述交叠信息指示第一卫星的第一波束的覆盖区域和第二卫星的第二波束的覆盖区域将在目标时间区间存在交叠,所述第一卫星和所述第二卫星为所述多个卫星中的不同卫星;
    所述控制节点根据所述交叠信息向目标卫星发送目标控制信号,所述目标控制信号用于指示所述目标卫星调整其在所述目标时间区间传输数据所使用的目标传输资源,所述目标卫星包括所述第一卫星和/或所述第二卫星。
  2. 根据权利要求1所述的方法,其特征在于,所述目标传输资源包括目标波束在所述目标时间区间的目标覆盖区域,和/或,所述目标波束在所述目标时间区间所使用的目标时间资源,和/或,所述目标波束在所述目标时间区间所使用的目标频率资源,所述目标波束为所述目标卫星的波束。
  3. 根据权利要求2所述的方法,其特征在于,所述交叠信息还指示交叠区域在所述目标覆盖区域中的位置,所述交叠区域为在目标时间区间所述第一波束的覆盖区域和所述第二波束的覆盖区域存在交叠的区域。
  4. 根据权利要求3所述的方法,其特征在于,所述目标控制信号用于指示所述目标卫星调整所述目标覆盖区域,以缩小或去除所述交叠区域。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述目标控制信号用于指示所述目标卫星调整其调度所述目标频率资源的顺序,以使在所述目标时间区间所述第一卫星调度其频率资源的顺序与所述第二卫星调度其频率资源的顺序不同。
  6. 一种通信控制方法,其特征在于,包括:
    第一卫星获取至少一个卫星的星历信息;
    所述第一卫星根据自身的星历信息和获取到的星历信息预测交叠信息,所述交叠信息指示所述第一卫星的第一波束的覆盖区域和第二波束的覆盖区域将在目标时间区间存在交叠,所述第二波束为所述至少一个卫星中第二卫星的波束;
    所述第一卫星根据所述交叠信息调整其在所述目标时间区间传输数据所使用的第一传输资源。
  7. 根据权利要求6所述的方法,其特征在于,所述第一传输资源包括所述第一波束在所述目标时间区间的第一覆盖区域,和/或,所述第一波束在所述目标时间区间所使用的第一时间资源,和/或,所述第一波束在所述目标时间区间所使用的第一频率资源。
  8. 根据权利要求7所述的方法,其特征在于,所述交叠信息还指示交叠区域在所述第一覆盖区域中的位置,所述交叠区域为在所述目标时间区间所述第一波束的覆盖区域和所述第二波束的覆盖区域存在交叠的区域。
  9. 根据权利要求8所述的方法,其特征在于,所述第一卫星根据所述交叠信息调整其在所述目标时间区间传输数据所使用的目标传输资源,包括:
    所述第一卫星调整所述第一覆盖区域,以缩小或去除所述交叠区域。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述第一卫星根据所述交叠信息调整其在所述目标时间区间传输数据所使用的目标传输资源,包括:
    所述第一卫星调整调度所述第一频率资源的顺序,调整后的顺序与所述第二卫星调度其频率资源的顺序不同。
  11. 一种计算设备,其特征在于,包括存储器和处理器,所述存储器存储有代码,所述处理器被配置为执行所述代码,当所述代码被执行时,所述计算设备执行如权利要求1至10中任一项所述的方法。
  12. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,该程序由计算机执行时,使得所述计算机实施权利要求1至10中任一项所述的方法。
  13. 一种通信装置,其特征在于,包括用于执行如权利要求1至10中任一项所述的方法的单元。
  14. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行 时,使得如权利要求1至10中任一项所述的方法被实现。
  15. 一种通信***,包括第一卫星和控制节点,所述控制节点用于执行如权利要求1至5中任一项所述的方法,所述第一卫星用于执行如权利要求6至10中任一项所述的方法。
PCT/CN2023/124203 2022-10-27 2023-10-12 一种通信控制方法及设备 WO2024088070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211330221.6 2022-10-27
CN202211330221.6A CN117955542A (zh) 2022-10-27 2022-10-27 一种通信控制方法及设备

Publications (1)

Publication Number Publication Date
WO2024088070A1 true WO2024088070A1 (zh) 2024-05-02

Family

ID=90798909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124203 WO2024088070A1 (zh) 2022-10-27 2023-10-12 一种通信控制方法及设备

Country Status (2)

Country Link
CN (1) CN117955542A (zh)
WO (1) WO2024088070A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882245A (zh) * 2018-07-03 2018-11-23 中国人民解放军陆军工程大学 一种geo与leo认知卫星网络及其动态频率分配方法
CN110072264A (zh) * 2019-05-28 2019-07-30 重庆邮电大学 一种低轨卫星***切换方法
CN112448753A (zh) * 2019-09-05 2021-03-05 华为技术有限公司 一种通信方法及装置
CN113825147A (zh) * 2021-11-23 2021-12-21 中国星网网络创新研究院有限公司 一种卫星波束调整方法、装置、设备及存储介质
US20220240151A1 (en) * 2021-01-25 2022-07-28 Ast & Science, Llc Satellite radio access network (sat ran) beam and gateway seamless handover

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882245A (zh) * 2018-07-03 2018-11-23 中国人民解放军陆军工程大学 一种geo与leo认知卫星网络及其动态频率分配方法
CN110072264A (zh) * 2019-05-28 2019-07-30 重庆邮电大学 一种低轨卫星***切换方法
CN112448753A (zh) * 2019-09-05 2021-03-05 华为技术有限公司 一种通信方法及装置
US20220240151A1 (en) * 2021-01-25 2022-07-28 Ast & Science, Llc Satellite radio access network (sat ran) beam and gateway seamless handover
CN113825147A (zh) * 2021-11-23 2021-12-21 中国星网网络创新研究院有限公司 一种卫星波束调整方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117955542A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US20210242934A1 (en) Communication method, apparatus, and system based on satellite network
JP6795513B2 (ja) Ngso衛星のepfdカバレッジの改善
Taylor et al. Mars reconnaissance orbiter
US11621772B2 (en) Systems for mitigating service interrupts in satellite systems
TW201728205A (zh) 返回鏈路上的基於爭用的資料傳輸
WO2020244563A1 (zh) 用于切换的方法和装置
WO2022016990A1 (zh) 一种卫星***配置信息的指示方法及设备
CN106850040B (zh) 空间信息网络中带宽资源的配置方法和装置
CN115398825A (zh) 卫星5g陆地和非陆地网络干扰禁区
WO2021135735A1 (zh) 一种卫星基站切换的方法、终端、卫星基站及存储介质
WO2021135869A1 (zh) 卫星波束偏置处理方法、设备及介质
WO2020034581A1 (en) Adaptive random access response window
CN115989645A (zh) 通信方法和装置
WO2024088070A1 (zh) 一种通信控制方法及设备
US20230396330A1 (en) Beam selection in non-terrestrial networks
CN114499628A (zh) 一种基于低轨星座的上行干扰规避方法、装置及卫星
KR20240033082A (ko) 비지상 네트워크들에 대한 조건부 핸드오버들
EP4354758A1 (en) User terminal and method for switching routing in low-earth orbit satellite network
CN113228796B (zh) 自适应随机接入响应窗口
WO2022219845A1 (ja) 通信制御装置、通信制御方法、通信制御プログラム
WO2024093733A1 (zh) 一种通信方法、通信设备、计算机可读存储介质及程序产品
US20230413354A1 (en) End-to-End System Design for THz Network
JP7074383B1 (ja) 通信制御装置、通信制御方法、通信制御プログラム、通信制御システム、中継衛星、及び衛星システム
CN114884563A (zh) 时间窗口确定方法及装置
EP4068650A1 (en) Systems and methods for signaling non-terrestrial band identifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881649

Country of ref document: EP

Kind code of ref document: A1