WO2024087004A1 - Separate paging resources for reduced capabilities - Google Patents

Separate paging resources for reduced capabilities Download PDF

Info

Publication number
WO2024087004A1
WO2024087004A1 PCT/CN2022/127204 CN2022127204W WO2024087004A1 WO 2024087004 A1 WO2024087004 A1 WO 2024087004A1 CN 2022127204 W CN2022127204 W CN 2022127204W WO 2024087004 A1 WO2024087004 A1 WO 2024087004A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
paging
resources
subgroup
aspects
Prior art date
Application number
PCT/CN2022/127204
Other languages
French (fr)
Inventor
Ruiming Zheng
Linhai He
Jing LEI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/127204 priority Critical patent/WO2024087004A1/en
Publication of WO2024087004A1 publication Critical patent/WO2024087004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for using separate paging resources for reduced capabilities.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the method may include receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE.
  • the method may include receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the method may include monitoring for paging messages in paging occasions (POs) based at least in part on the configuration.
  • POs paging occasions
  • the method may include transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE.
  • the method may include transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the method may include transmitting paging messages in POs based at least in part on the configuration.
  • the method may include receiving a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the method may include monitoring for paging messages in POs based at least in part on a subgroup ID of the UE.
  • the method may include transmitting network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the method may include transmitting paging messages in POs based at least in part on a subgroup ID of a UE.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE.
  • the one or more processors may be configured to receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the one or more processors may be configured to monitor for paging messages in POs based at least in part on the configuration.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE.
  • the one or more processors may be configured to transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the one or more processors may be configured to transmit paging messages in POs based at least in part on the configuration.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the one or more processors may be configured to monitor for paging messages in POs based at least in part on a subgroup ID of the UE.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the one or more processors may be configured to transmit paging messages in POs based at least in part on a subgroup ID of a UE.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to monitor for paging messages in POs based at least in part on the configuration.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a network entity.
  • the set of instructions when executed by one or more processors of the network entity, may cause the network entity to transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE.
  • the set of instructions when executed by one or more processors of the network entity, may cause the network entity to transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the set of instructions when executed by one or more processors of the network entity, may cause the network entity to transmit paging messages in POs based at least in part on the configuration.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to monitor for paging messages in POs based at least in part on a subgroup ID of the UE.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a network entity.
  • the set of instructions when executed by one or more processors of the network entity, may cause the network entity to transmit network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the set of instructions when executed by one or more processors of the network entity, may cause the network entity to transmit paging messages in POs based at least in part on a subgroup ID of a UE.
  • the apparatus may include means for receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE.
  • the apparatus may include means for receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the apparatus may include means for monitoring for paging messages in POs based at least in part on the configuration.
  • the apparatus may include means for transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE.
  • the apparatus may include means for transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the apparatus may include means for transmitting paging messages in POs based at least in part on the configuration.
  • the apparatus may include means for receiving a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the apparatus may include means for monitoring for paging messages in POs based at least in part on a subgroup ID of the UE.
  • the apparatus may include means for transmitting a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the apparatus may include means for transmitting paging messages in POs based at least in part on a subgroup ID of a UE.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, UE, base station, network entity, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of a disaggregated base station, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of capabilities for different types of UEs, in accordance with the present disclosure.
  • Fig. 5 is a diagram illustrating examples of paging resources, in accordance with the present disclosure.
  • Fig. 6 is a diagram illustrating an example of configuring separate paging resources, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example of using separate paging resources by subgroup, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
  • Fig. 9 is a diagram illustrating an example process performed, for example, by a network entity, in accordance with the present disclosure.
  • Fig. 10 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
  • Fig. 11 is a diagram illustrating an example process performed, for example, by a network entity, in accordance with the present disclosure.
  • Fig. 12 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • Fig. 13 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • base station e.g., the base station 110 or “network entity” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, and/or one or more components thereof.
  • base station or “network entity” may refer to a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof.
  • the terms “base station” or “network entity” may refer to one device configured to perform one or more functions, such as those described herein in connection with the base station 110.
  • the terms “base station” or “network entity” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a number of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the terms “base station” or “network entity” may refer to any one or more of those different devices.
  • base station or “network entity” may refer to one or more virtual base stations and/or one or more virtual base station functions.
  • two or more base station functions may be instantiated on a single device.
  • the terms “base station” or “network entity” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a network entity (e.g., base station 110) , another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • UEs may be of different categories for different capabilities.
  • a network entity may serve a first category of UEs that have a less advanced capability (e.g., a lower capability and/or a reduced capability) and a second category of UEs that have a more advanced capability (e.g., a higher capability) .
  • a UE of the first category may have a reduced feature set compared to UEs of the second category, and may be referred to as a reduced capability (RedCap) UE, a low tier UE, NR-Light UE, and/or an NR-Lite UE, among other examples.
  • RedCap reduced capability
  • a UE of the first category may be, for example, industrial wireless sensors, low-end smartphones, health monitors, video surveillance, high-end wearables, MTC devices, and/or high-end logistic trackers.
  • UEs of the first category may be associated with 3GPP Release 17.
  • a UE of the second category may have an advanced feature set compared to UEs of the first category, and may be referred to as a baseline UE, a high tier UE, an NR UE, and/or a premium UE, among other examples.
  • a UE of the second category may include enhanced mobile broadband (eMBB) devices, ultra-reliable low latency communication (URLLC) devices, extended reality (XR) devices, laptops, robots, industrial machines, and/or high-end smartphones.
  • UEs of the second category may be associated with 3GPP Release 15 and onwards.
  • a UE of the first category has capabilities that satisfy requirements of a first (earlier) wireless communication standard but not a second (later) wireless communication standard
  • a UE of the second category has capabilities that satisfy requirements of the second (later) wireless communication standard (and also the first wireless communication standard, in some cases) .
  • UEs of the first category may support a lower maximum modulation and coding scheme (MCS) than UEs of the second category (e.g., quadrature phase shift keying (QPSK) or the like as compared to 256-quadrature amplitude modulation (QAM) or the like) , may support a lower maximum transmit power than UEs of the second category, may have a less advanced beamforming capability than UEs of the second category (e.g., may not be capable of forming as many beams as UEs of the second category) , may require a longer processing time than UEs of the second category, may include less hardware than UEs of the second category (e.g., fewer antennas, fewer transmit antennas, and/or fewer receive antennas) , and/or may not be capable of communicating on as wide of a maximum bandwidth part as UEs of the second category, among other examples.
  • MCS modulation and coding scheme
  • QPSK quadrature phase shift keying
  • QAM quadrat
  • UEs of the second category may be capable of communicating using a shortened transmission time interval (TTI) (e.g., a slot length of 1 ms or less, 0.5 ms, 0.25 ms, 0.125 ms, 0.0625 ms, or the like, depending on a sub-carrier spacing) , and UEs of the first category may not be capable of communicating using the shortened TTI.
  • TTI transmission time interval
  • eRedCap enhanced RedCap
  • NR-Superlight devices may include eMTC devices, and/or NB-IoT devices in associated with 3GPP Release 18 and/or massive IoT.
  • UEs of the third category may include, for example, low-end industrial sensors, parking sensors, agricultural sensors, utility meters, low-end wearables, and/or low-end asset trackers.
  • UE capabilities of the first category differ from UE capabilities of the second category.
  • UE capabilities of the third category may differ from UE capabilities of the first category and the second category.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE.
  • the communication manager 140 may receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the communication manager 140 may monitor for paging messages in paging occasions (POs) based at least in part on the configuration.
  • POs paging occasions
  • the communication manager 140 may receive a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the communication manager 140 may monitor for paging messages in POs based at least in part on a subgroup ID of the UE. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
  • a network entity may include a communication manager 150.
  • the communication manager 150 may transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE.
  • the communication manager 150 may transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the communication manager 150 may transmit paging messages in POs based at least in part on the configuration.
  • the communication manager 150 may transmit a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the communication manager 150 may transmit paging messages in POs based at least in part on a subgroup ID of a UE. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more MCSs for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS(s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-13) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-13) .
  • the controller/processor 240 of a network entity e.g., base station 110
  • the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with using paging resources for reduced capabilities, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE (e.g., UE 120) includes means for receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE; means for receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and/or means for monitoring for paging messages in POs based at least in part on the configuration.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • a network entity (e.g., base station 110) includes means for transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE; means for transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and/or means for transmitting paging messages in POs based at least in part on the configuration.
  • the means for the network entity to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • the UE includes means for receiving a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and/or means for monitoring for paging messages in POs based at least in part on a subgroup ID of the UE.
  • the network entity includes means for transmitting network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and/or means for transmitting paging messages in POs based at least in part on a subgroup ID of a UE.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example of a disaggregated base station 300, in accordance with the present disclosure.
  • a network node such as a Node B, evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a TRP, or a cell, etc.
  • a BS such as a Node B, evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a TRP, or a cell, etc.
  • eNB evolved NB
  • AP access point
  • TRP Transmission Retention Protocol
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
  • a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) .
  • a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU, and RU also can be implemented as virtual units (e.g., a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) ) .
  • VCU virtual central unit
  • VDU virtual distributed unit
  • VRU virtual radio unit
  • Base station-type operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) .
  • O-RAN open radio access network
  • vRAN virtualized radio access network
  • C-RAN cloud radio access network
  • Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
  • the disaggregated base station 300 architecture may include one or more CUs 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated base station units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) .
  • a CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as an F1 interface.
  • the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links.
  • the fronthaul link, the midhaul link, and the backhaul link may be generally referred to as “communication links.
  • the RUs 340 may communicate with respective UEs 120 via one or more RF access links. In some aspects, the UE 120 may be simultaneously served by multiple RUs 340.
  • the DUs 330 and the RUs 340 may also be referred to as “O-RAN DUs (O-DUs” ) and “O-RAN RUs (O-RUs) ” , respectively.
  • a network entity may include a CU, a DU, an RU, or any combination of CUs, DUs, and RUs.
  • a network entity may include a disaggregated base station or one or more components of the disaggregated base station, such as a CU, a DU, an RU, or any combination of CUs, DUs, and RUs.
  • a network entity may also include one or more of a TRP, a relay station, a passive device, an intelligent reflective surface (IRS) , or other components that may provide a network interface for or serve a UE, mobile station, sensor/actuator, or other wireless device.
  • TRP Transmission Control Protocol
  • RATS intelligent reflective surface
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • the CU 310 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310.
  • the CU 310 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof.
  • the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 310 can be implemented to communicate with the DU 330, as necessary, for network control and signaling.
  • the DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340.
  • the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3GPP.
  • the DU 330 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
  • Lower-layer functionality can be implemented by one or more RUs 340.
  • an RU 340 controlled by a DU 330, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 340 can be implemented to handle over the air (OTA) communication with one or more UEs 120.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330.
  • this configuration can enable the DU (s) 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) 390
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340 and Near-RT RICs 325.
  • the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with one or more RUs 340 via an O1 interface.
  • the SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
  • the Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325.
  • the Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325.
  • the Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
  • the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • SMO Framework 305 such as reconfiguration via O1
  • A1 policies such as A1 policies
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of capabilities for different types of UEs, in accordance with the present disclosure.
  • Example 400 shows a comparison of UE communication features for an NB-IOT device, an eMTC device, a Release 16 NR eMBB device, a Release 17 NR RedCap (NR Light) device, and a Release 18 NR Superlight device, which may be referred to as an “enhanced RedCap UE” or “eRedCap UE. ”
  • Such features include a UE bandwidth (BW) , a duplex capability, a quantity of antennas, MIMO layers, peak data rates, a maximum coupling loss (MCL) , channel coding, a modulation order, and/or other features.
  • a first type of UE such as an eRedCap UE, may have a first level of reduced capabilities for such features that is different than a second level of reduced capabilities for a second type of UE, such as an eMBB UE, a RedCap UE, or another type of non-eRedCap UE.
  • the first type of UE may have a bandwidth capability reduction, a reduced quantity of receive branches, a maximum quantity of downlink MIMO layers, a maximum modulation order, an enhanced discontinuous reception (eDRX) parameter, and/or a radio resource management (RRM) relaxation that is different than for the second type of UE.
  • RRM radio resource management
  • an eRedCap UE may operate with a bandwidth limitation, such as 5 MHz with 25 physical resource blocks (PRBs) and a 15 kilohertz (KHz) subcarrier spacing (SCS) for FR1.
  • the smaller bandwidth may help with devices, such as low-tier IoT devices.
  • the bandwidth limitation of 5 MHz may be for a physical downlink shared channel (PDSCH) (for both unicast and broadcast) and a physical uplink shared channel (PUSCH) .
  • the RF bandwidth of an eRedCap UE may still be 20 MHz.
  • An eRedCap UE may have a UE peak data rate reduction, such as for relaxation of a constraint value to 1 instead of 4.
  • SSB synchronization signal block
  • PBCH physical broadcast channel
  • CORESET control resource set #0 with a 15 KHz SCS.
  • 24 PRBs with a 15 KHz SCS can be reused for CORESET#0.
  • a single downlink control information is able to schedule multiple PDSCH communications or multiple PUSCH communications with different transport blocks (TBs) .
  • DCI downlink control information
  • TBs transport blocks
  • Each PDSCH or PUSCH may have its own TB and duration, confined within a slot.
  • Each TB may have its own hybrid automatic repeat request (HARQ) process ID, redundancy version ID (RVID) , new data indicator (NDI) , time domain resource allocation (TDRA) , and/or frequency domain resource allocation (FDRA) .
  • HARQ hybrid automatic repeat request
  • RVID redundancy version ID
  • NDI new data indicator
  • TDRA time domain resource allocation
  • FDRA frequency domain resource allocation
  • a UE when receiving a PDSCH communication (data) scheduled by DCI, a UE may be configured for slot aggregation, where a TB can be repeated over multiple slots (or mini-slots) .
  • the quantity of allocated symbols, or the start and length indicator (SLIV) for all the consecutive slots may be the same as the first slot.
  • the transmitter may sequentially read the coded bits from the data buffer based on a specified RV order.
  • the PDSCH may be limited to a single layer.
  • a control channel element (CCE) aggregation level (AL) for physical downlink control channel (PDCCH) frequency diversity may be between 1 and 16 for 6 to 96 PRBs in one OFDM symbol if the SCS is 15 kHz.
  • An NR UE CORESET may be in a maximum of 3 symbols in the time domain and a multiple of 6 resource blocks (RBs) in the frequency domain.
  • a resource element group (REG) may be 1 symbol ⁇ 1 RB, and a control channel element (resource element (RE) for control information) may be equal to 6 REGs.
  • RE control channel element
  • An eRedcap UE CORESET for 5 MHz with a 15 or 30 KHz SCS may have up to 12 or 6 CCEs in a CORESET (with 3 OFDM symbols) .
  • An AL 16 with 15 KHz and an AL 8 for 30 KHz SCS may not be allowed.
  • a PDCCH configuration may include parameters for a CORESET. Such parameters may include frequency domain resources within a bandwidth part (BWP) that are assigned to the UE and a duration (e.g., quantity of symbols) of the CORESET.
  • the PDCCH configuration may also include parameters for a search space. Such parameters may include a CORESET ID, a PDCCH monitoring periodicity and offset, and/or symbols for PDCCH monitoring in slots configured for PDCCH monitoring.
  • Some UEs may use multi-slot aggregation (e.g., multiple slot repetition in the time domain with an aggregation factor for PDSCH of 2, 4, or 8 consecutive slots) but not downlink frequency hopping.
  • multi-slot aggregation e.g., multiple slot repetition in the time domain with an aggregation factor for PDSCH of 2, 4, or 8 consecutive slots
  • an eRedcap UE may have a limited maximum bandwidth of 5 MHz, while a RedCap UE or a regular UE may have a much higher maximum bandwidth.
  • the baseband bandwidth for the eRedCap UE may be limited to 5 MHz (for reducing the UE peak data rate and buffer size) .
  • Fig. 4 provides some examples. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating examples 500 and 502 of paging resources, in accordance with the present disclosure.
  • Paging resources may include resources and parameters for paging frames (PFs) and for POs.
  • a PF may be a radio frame that contains one or more POs.
  • a UE may have a discontinuous reception (DRX) cycle that spans multiple radio frames. Certain radio frames within the DRX cycle may include a PF.
  • the network may configure N PFs per paging cycle and a start offset for the start location of the PF within one paging cycle.
  • the UE may have a periodicity (or paging cycle) T for monitoring paging.
  • the UE may derive T based on a cell’s default paging cycle, a UE-specific DRX cycle, or an eDRX configuration.
  • SFN a number of the radio frame (system frame number)
  • PF_offset is a start offset for the PF
  • UE_ID is an ID of the UE (e.g., serving temporary mobile subscriber identity (S-TMSI) ) .
  • Example 500 shows a PF with multiple POs, such as POs 504 in which the UE monitors for a paging message and POs 506 in which the UE does not monitor for a paging message.
  • the UE may wake up periodically in a PO to receive a PDCCH or a paging message in a PDSCH. By not monitoring for paging messages in every PO, the UE may conserve power.
  • a PO is a set of PDCCH monitoring occasions (MOs) where a paging message for the UE may be received.
  • the PO may include multiple time slots.
  • Each UE may be assigned to one PO within each paging cycle.
  • Example 502 shows that a PO may include multiple paging MOs, where each paging MO may be an opportunity to monitor for a single paging message.
  • the paging message may include temporary identifiers and/or other information for establishing future communications.
  • the paging message may be scheduled by DCI.
  • the time and power consumed by the UE when waking up in each cycle for paging MOs may depend on how deep the UE has been sleeping.
  • Paging messages for UEs sharing the same PO may be multiplexed in a single PDSCH communication.
  • the network may indicate how many POs are in a PF for a type of UE and how many PFs are allocated for the type of UE.
  • a UE may determine a PO using a PF as a reference or starting frame.
  • the UE may determine the PF based at least in part on the UE_ID.
  • a quantity of paging MOs for the PO may be determined based at least in part on a size of a DRX cycle and/or an interval between adjacent PFs. For example, a PO for a DRX cycle of 320 milliseconds (ms) , an inter-PF interval of 80 ms, a quantity of 4 PFs, and an offset of 6 frames may form a PO with 32 paging MOs.
  • the maximum bandwidth of a RedCap UE may be 20 MHz in FR1, which is the same as the non-RedCap UE for paging messages, paging PDCCH, and paging early indication (PEI) receiving. That is, there is no issue for a 20 MHz paging message to carry paging records for a RedCap UE or a non-RedCap UE.
  • the maximum bandwidth for receiving a paging PDCCH message or a PEI may be 20 MHz. However, the bandwidth for paging messages may be reduced to 5 MHz.
  • a 20 MHz paging message cannot be received by an eRedCap UE as the eRedCap UE expects to receive the paging message in a 5 MHz bandwidth. Therefore, the eRedCap UE may miss the paging message any information included in the paging message.
  • the eRedCap UEs communications may be disrupted, latency may increase, and power, processing resources, and signaling resources may be wasted.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 of configuring separate paging resources, in accordance with various aspects of the present disclosure.
  • a network entity 610 e.g., base station 110
  • a UE 620 e.g., a UE 120
  • the UE 620 may be an eRedCap UE or a UE with reduced capabilities at a different level than other UEs.
  • the network entity 610 may configure a first type of UE (e.g., eRedCap UE) with separate (different) paging resources (e.g., PF and PO resources) than a second type of UE (e.g., RedCap UE, non-RedCap UE) . If separate groups of PF and PO resources are configured, the eRedCap UE is expected to monitor eRedCap specific PFs and POs for paging messages that are within a 5 MHz bandwidth range.
  • a first type of UE e.g., eRedCap UE
  • separate (different) paging resources e.g., PF and PO resources
  • RedCap UE e.g., RedCap UE, non-RedCap UE
  • an eRedCap UE may receive paging messages when limited to a bandwidth of 5 MHz, while allowing other types of UEs to use 20 MHz. Because UEs are able to receive paging messages with appropriate bandwidths, the UEs will receive the information in paging messages and communications will not degrade and power, processing resources, and signaling resources will not be wasted.
  • Example 600 shows an example of using separate paging resources.
  • the network entity 610 may configure the UE 620 with paging resources 602 for the first type of UE, which may include paging parameter values 604 for the first type of UE.
  • the paging resources 602 for the first type of UE may be appropriate for a 5 MHz bandwidth and different than paging resources 606 for the second type of UE (e.g., for 20 MHz bandwidth) .
  • the paging resources 606 for the second type of UE may include paging parameter values 608 that may be different than the paging parameter values 604 for the first type of UE.
  • the paging parameters may include a start offset for a PF, a quantity of POs within a PF allocated for the first type of UE, a quantity of PFs per paging cycle, location information for POs within a PF, a quantity of PFs allocated for the first type of UE, and/or a quantity of POs within a PF allocated for the first type of UE.
  • the different paging resources may also involve different physical control channel resources.
  • the network entity 610 may transmit a network configuration associated with supporting paging resources, for the first type of UE with reduced capabilities, that are separate from paging resources for the second type of UE having a level of reduced capabilities that is different than the level of reduced capabilities of the first type of UE.
  • the network configuration may include system information (e.g., a common configuration signaling to all served UEs in the serving cell) and/or RRC dedicated signaling specific to one particular UE.
  • the reduced capabilities associated with the first type of UE may be enhanced (e.g., further reduced) with respect to the second type of UE. This may be the case for eRedCap UEs.
  • the network configuration may indicate that separate paging resources will be available.
  • the UE 620 may receive the network configuration transmitted by the network entity 610.
  • the network entity 610 may transmit, and the UE 620 may receive, a configuration with separate paging parameter values based at least in part on the network configuration.
  • the configuration may indicate one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. That is, the UE 620 may be configured with specific indices or a set of subgroups of PFs and/or POs for the first type of UE, if more than one PF is allocated with a paging cycle and/or more than one PO is configured in the allocated PF.
  • the PF and/or PO resources may be configured in one RRC information element (IE) . The resource separation may be performed using indicated indices for the PF and/or the POs.
  • IE RRC information element
  • the configuration may indicate a subgroup of PO resources and/or a subgroup of PF resources.
  • the UE 620 may select an index of a PF from the subgroup of PFs within a paging cycle based at least in part on the UE_ID and a quantity of PFs allocated for the first type of UE.
  • the UE 620 may select an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE.
  • M the quantity of PFs allocated to eRedCap UE
  • the UE 620 may monitor for paging messages in POs based at least in part on the configuration, including POs by determined indices.
  • the network entity 610 may transmit paging messages in POs based at least in part on the configuration. This may include using PF and PO resources determined by the UE 620 (the network entity 610 knows the same rule as the UE_ID) .
  • the UE 620 may receive paging messages in the determined POs and use the information accordingly.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example 700 of using separate paging resources by subgroup, in accordance with various aspects of the present disclosure.
  • the network entity 610 may configure eRedCap UEs with a separate paging subgroup ID (subgroup 702) , such that eRedCap UEs of a first subgroup ID share PF and PO resources (paging resources 602) that are different than paging resources (paging resources 606) of other types of UEs of a second subgroup ID (subgroup 704) .
  • a separate paging subgroup ID can reduce the false alarm rate for eRedCap UEs and also provide for UEs of different types and bandwidths to receive paging messages.
  • Partitioning paging resources by subgroup may be applicable when PO resources are shared by UEs of different types. UEs sharing the same PO may be divided into multiple paging subgroups.
  • the core network (CN) or the network entity 610 may assign UEs a subgroup ID via non-access stratum (NAS) signaling.
  • the UE 620 may hash its UE-ID to derive its subgroup ID.
  • the CN is aware of UE types and can ensure eRedCap UEs and non-eRedCap UEs do not share the same PO subgroup.
  • the UE 620 may be assigned a subgroup ID and a subgroup space (e.g., subgroupsNumforeRedCapUE) set aside for eRedCap UEs.
  • a subgroup space e.g., subgroupsNumforeRedCapUE
  • the network entity 610 may indicate the space and a subgrouping ID space dedicated for eRedCap UEs.
  • the subgroupsNumPerPO may still be used for the total quantity of subgroups for both CN-assigned subgrouping (if any) and UE_ID based subgrouping (if any and for Release 17 Redcap) in a PO, which is broadcast in system information.
  • the subgroupsNumForUEID may be the quantity of subgroups (if any and for Release 17 Redcap UEs) for UE_ID based subgrouping in a PO, which is broadcast in system information.
  • Example 700 shows use of separate paging subgroup IDs for separate paging resources.
  • the network entity 610 may transmit the network configuration indicating the use of separate paging resources.
  • the network configuration may include information for determining a subgroup ID.
  • the network configuration may include an indication of the subgroup ID for the UE, an indication of a quantity of PFs in a paging cycle and a quantity of POs in a PF, and/or an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
  • the UE 620 may receive the network configuration transmitted by the network entity 610.
  • the UE 620 may monitor for paging messages in POs based at least in part on a subgroup ID of the UE 620.
  • the UE 620 may use its UE_ID to determine the subgroup ID. If the subgroup ID is for the first type of UE (e.g., eRedCap UE) , the UE may monitor paging resources 602 (e.g., PFs and POs) for the first type of UE.
  • paging resources 602 e.g., PFs and POs
  • the network entity 610 may transmit paging messages in POs based at least in part on the subgroup ID for the UE 620.
  • the subgroup ID may be explicit or may be determined by the UE 620 from the UE_ID and the network configuration.
  • the UE 620 may receive paging messages in the determined POs and use the information accordingly.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 800 is an example where the UE (e.g., UE 120, UE 620) performs operations associated with using separate paging resources for type of UEs with reduced capabilities.
  • the UE e.g., UE 120, UE 620
  • process 800 may include receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE (block 810) .
  • the UE e.g., using communication manager 1208 and/or reception component 1202 depicted in Fig. 12
  • process 800 may include receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE (block 820) .
  • the UE e.g., using communication manager 1208 and/or reception component 1202 depicted in Fig. 12
  • process 800 may include monitoring for paging messages in POs based at least in part on the configuration (block 830) .
  • the UE e.g., using communication manager 1208 and/or monitoring component 1210 depicted in Fig. 12
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first type of UE is associated with reduced capabilities enhanced with respect to the second type of UE.
  • the first type of UE is associated with a paging message bandwidth that is less than a paging message bandwidth for the second type of UE.
  • the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as paging resources for the first type of UE, and the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
  • the one or more paging parameter values for the first type of UE include a start offset for a PF.
  • the one or more paging parameter values for the first type of UE include a quantity of POs within a PF allocated for the first type of UE.
  • the one or more paging parameter values for the first type of UE include a quantity of PFs per paging cycle.
  • the one or more paging parameter values for the first type of UE include location information for POs within a PF.
  • the one or more paging parameter values for the first type of UE include a quantity of PFs allocated for the first type of UE.
  • the one or more paging parameter values for the first type of UE include a quantity of POs within a PF allocated for the first type of UE.
  • the configuration indicates one or more of a subgroup of PO resources or a subgroup of PF resources for the first type of UE.
  • the UE is the first type of UE
  • process 800 includes selecting an index of a PF from the subgroup of PFs within a paging cycle based at least in part on an ID of the UE and a quantity of PFs allocated for the first type of UE, and selecting an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a network entity, in accordance with the present disclosure.
  • Example process 900 is an example where the network entity (e.g., base station 110, network entity 610) performs operations associated with configuring separate paging resources for different types of UEs of different levels of reduced capabilities.
  • the network entity e.g., base station 110, network entity 610 performs operations associated with configuring separate paging resources for different types of UEs of different levels of reduced capabilities.
  • process 900 may include transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE (block 910) .
  • the network entity e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13
  • process 900 may include transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE (block 920) .
  • the network entity e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13
  • process 900 may include transmitting paging messages in POs based at least in part on the configuration (block 930) .
  • the network entity e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as the paging resources for the first type of UE, and the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
  • the configuration indicates one or more of a subgroup of PO resources or a subgroup of PF resources.
  • the one or more paging parameter values for the first type of UE include a quantity of PFs allocated for the first type of UE.
  • the one or more paging parameter values for the first type of UE include a quantity of POs within a PF allocated for the first type of UE.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 1000 is an example where the UE (e.g., UE 120, UE 620) performs operations associated with using separate paging resources based on subgroup ID.
  • the UE e.g., UE 120, UE 620
  • process 1000 may include receiving a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID (block 1010) .
  • the UE e.g., using communication manager 1208 and/or reception component 1202 depicted in Fig. 12
  • process 1000 may include monitoring for paging messages in POs based at least in part on a subgroup ID of the UE (block 1020) .
  • the UE e.g., using communication manager 1208 and/or monitoring component 1210 depicted in Fig. 12
  • Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first type of UE is associated with reduced capabilities with respect to the second type of UE.
  • process 1000 includes receiving an indication of the subgroup ID for the UE.
  • process 1000 includes receiving an indication of a quantity of subgroups assigned to the first type of UE.
  • process 1000 includes determining whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of PFs in a paging cycle, and a quantity of POs in a PF.
  • determining whether the UE is associated with the subgroup ID for the first type of UE includes determining whether the UE is associated with the subgroup ID for the first type of UE further based at least in part on one or more of a quantity of subgroups for the first type of UE, a quantity of subgroups per PO, or a quantity of subgroups assigned to the second type of UE.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a network entity, in accordance with the present disclosure.
  • Example process 1100 is an example where the network entity (e.g., base station 110, network entity 610) performs operations associated with indicating separate paging resources based on a subgroup ID.
  • the network entity e.g., base station 110, network entity 610 performs operations associated with indicating separate paging resources based on a subgroup ID.
  • process 1100 may include transmitting a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID (block 1110) .
  • the network entity e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13
  • process 1100 may include transmitting paging messages in POs based at least in part on a subgroup ID of a UE (block 1120) .
  • the network entity e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13
  • Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first type of UE is associated with enhanced reduced capabilities with respect to the second type of UE.
  • process 1100 includes transmitting an indication of the subgroup ID for the UE.
  • process 1100 includes transmitting an indication of a quantity of PFs in a paging cycle and a quantity of POs in a PF.
  • process 1100 includes transmitting an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
  • process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
  • Fig. 12 is a diagram of an example apparatus 1200 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1200 may be a UE (e.g., UE 120, UE 620) , or a UE may include the apparatus 1200.
  • the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204.
  • the apparatus 1200 may include the communication manager 1208.
  • the communication manager 1208 may control and/or otherwise manage one or more operations of the reception component 1202 and/or the transmission component 1204.
  • the communication manager 1208 may include one or more antennas, a modem, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the communication manager 1208 may be, or be similar to, the communication manager 140 depicted in Figs. 1 and 2.
  • the communication manager 1208 may be configured to perform one or more of the functions described as being performed by the communication manager 140.
  • the communication manager 1208 may include the reception component 1202 and/or the transmission component 1204.
  • the communication manager 1208 may include a monitoring component 1210, among other examples.
  • the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 1-7. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, process 1000 of Fig. 10, or a combination thereof.
  • the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206.
  • the reception component 1202 may provide received communications to one or more other components of the apparatus 1200.
  • the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200.
  • the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206.
  • one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206.
  • the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206.
  • the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
  • the reception component 1202 may receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE.
  • the reception component 1202 may receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the monitoring component 1210 may monitor for paging messages in POs based at least in part on the configuration.
  • the reception component 1202 may receive a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the monitoring component 1210 may monitor for paging messages in POs based at least in part on a subgroup ID of the UE.
  • the reception component 1202 may receive an indication of the subgroup ID for the UE.
  • the reception component 1202 may receive an indication of a quantity of subgroups assigned to the first type of UE.
  • the monitoring component 1210 may determine whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of PFs in a paging cycle, and a quantity of POs in a PF.
  • Fig. 12 The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
  • Fig. 13 is a diagram of an example apparatus 1300 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1300 may be a network entity (e.g., base station 110, network entity 610) , or a network entity may include the apparatus 1300.
  • the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304.
  • the apparatus 1300 may include the communication manager 1308.
  • the communication manager 1308 may control and/or otherwise manage one or more operations of the reception component 1302 and/or the transmission component 1304.
  • the communication manager 1308 may include one or more antennas, a modem, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2.
  • the communication manager 1308 may be, or be similar to, the communication manager 150 depicted in Figs. 1 and 2.
  • the communication manager 1308 may be configured to perform one or more of the functions described as being performed by the communication manager 150.
  • the communication manager 1308 may include the reception component 1302 and/or the transmission component 1304.
  • the communication manager 1308 may include a paging resource component 1310, among other examples.
  • the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 1-7. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, process 1100 of Fig. 11, or a combination thereof.
  • the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the network entity described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306.
  • the reception component 1302 may provide received communications to one or more other components of the apparatus 1300.
  • the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1300.
  • the reception component 1302 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2.
  • the transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306.
  • one or more other components of the apparatus 1300 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306.
  • the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306.
  • the transmission component 1304 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2. In some aspects, the transmission component 1304 may be co-located with the reception component 1302 in a transceiver.
  • the transmission component 1304 may transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE.
  • the transmission component 1304 may transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE.
  • the paging resource component 1310 may generate the network configuration and the configuration based at least in part on a UE capability, a UE type, traffic conditions, and/or channel conditions.
  • the transmission component 1304 may transmit paging messages in POs based at least in part on the configuration.
  • the transmission component 1304 may transmit a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID.
  • the paging resource component 1310 may generate the network configuration based at least in part on a UE capability, a UE type, traffic conditions, and/or channel conditions.
  • the transmission component 1304 may transmit paging messages in POs based at least in part on a subgroup ID of a UE.
  • the transmission component 1304 may transmit an indication of the subgroup ID for the UE.
  • the transmission component 1304 may transmit an indication of a quantity of PFs in a paging cycle and a quantity of POs in a PF.
  • the transmission component 1304 may transmit an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
  • Fig. 13 The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE; receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and monitoring for paging messages in paging occasions (POs) based at least in part on the configuration.
  • POs paging occasions
  • Aspect 2 The method of Aspect 1, wherein the first type of UE is associated with reduced capabilities enhanced with respect to the second type of UE.
  • Aspect 3 The method of Aspect 1 or 2, wherein the first type of UE is associated with a paging message bandwidth that is less than a paging message bandwidth for the second type of UE.
  • Aspect 4 The method of any of Aspects 1-3, wherein the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as paging resources for the first type of UE, and wherein the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
  • Aspect 5 The method of any of Aspects 1-4, wherein the one or more paging parameter values for the first type of UE include a start offset for a paging frame.
  • Aspect 6 The method of any of Aspects 1-5, wherein the one or more paging parameter values for the first type of UE include a quantity of POs within a paging frame allocated for the first type of UE.
  • Aspect 7 The method of any of Aspects 1-6, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames per paging cycle.
  • Aspect 8 The method of any of Aspects 1-7, wherein the one or more paging parameter values for the first type of UE include location information for POs within a paging frame.
  • Aspect 9 The method of any of Aspects 1-8, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames allocated for the first type of UE.
  • Aspect 10 The method of any of Aspects 1-9, wherein the one or more paging parameter values for the first type of UE include specific POs within a paging frame allocated for the first type of UE.
  • Aspect 11 The method of any of Aspects 1-10, wherein the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources for the first type of UE.
  • the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources for the first type of UE.
  • PF paging frame
  • Aspect 12 The method of Aspect 11, wherein the UE is the first type of UE, and wherein the method includes: selecting an index of a PF from the subgroup of PFs within a paging cycle based at least in part on an identifier (ID) of the UE and a quantity of PFs allocated for the first type of UE; and selecting an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE.
  • ID identifier
  • a method of wireless communication performed by a network entity comprising: transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE; transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and transmitting paging messages in paging occasions (POs) based at least in part on the configuration.
  • POs paging occasions
  • Aspect 14 The method of Aspect 13, wherein the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as the paging resources for the first type of UE, and wherein the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
  • Aspect 15 The method of Aspect 13 or 14, wherein the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources.
  • PF paging frame
  • Aspect 16 The method of any of Aspects 13-15, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames allocated for the first type of UE.
  • Aspect 17 The method of any of Aspects 13-16, wherein the one or more paging parameter values for the first type of UE include a quantity of POs within a paging frame allocated for the first type of UE.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and monitoring for paging messages in paging occasions (POs) based at least in part on a subgroup ID of the UE.
  • ID subgroup identifier
  • POs paging occasions
  • Aspect 19 The method of Aspect 18, wherein the first type of UE is associated with reduced capabilities with respect to the second type of UE.
  • Aspect 20 The method of Aspect 18 or 19, further comprising receiving an indication of the subgroup ID for the UE.
  • Aspect 21 The method of any of Aspects 18-20, further comprising receiving an indication of a quantity of subgroups assigned to the first type of UE.
  • Aspect 22 The method of any of Aspects 18-21, further comprising determining whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of paging frames (PFs) in a paging cycle, and a quantity of POs in a PF.
  • PFs paging frames
  • Aspect 23 The method of Aspect 22, wherein determining whether the UE is associated with the subgroup ID for the first type of UE includes determining whether the UE is associated with the subgroup ID for the first type of UE further based at least in part on one or more of a quantity of subgroups for the first type of UE, a quantity of subgroups per PO, or a quantity of subgroups assigned to the second type of UE.
  • a method of wireless communication performed by a network entity comprising: transmitting a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of user equipment (UE) that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and transmitting paging messages in paging occasions (POs) based at least in part on a subgroup ID of a UE.
  • ID subgroup identifier
  • POs paging occasions
  • Aspect 25 The method of Aspect 24, wherein the first type of UE is associated with enhanced reduced capabilities with respect to the second type of UE.
  • Aspect 26 The method of Aspect 24 or 25, further comprising transmitting an indication of the subgroup ID for the UE.
  • Aspect 27 The method of any of Aspects 24-26, further comprising transmitting an indication of a quantity of paging frames (PFs) in a paging cycle and a quantity of paging occasions in a PF.
  • PFs paging frames
  • Aspect 28 The method of any of Aspects 24-27, further comprising transmitting an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
  • Aspect 29 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-28.
  • Aspect 30 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-28.
  • Aspect 31 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-28.
  • Aspect 32 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-28.
  • Aspect 33 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-28.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The UE may receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The UE may monitor for paging messages in paging occasions based at least in part on the configuration. Numerous other aspects are described.

Description

SEPARATE PAGING RESOURCES FOR REDUCED CAPABILITIES
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for using separate paging resources for reduced capabilities.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using  orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by a user equipment (UE) . The method may include receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The method may include receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The method may include monitoring for paging messages in paging occasions (POs) based at least in part on the configuration.
Some aspects described herein relate to a method of wireless communication performed by a network entity. The method may include transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE. The method may include transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The method may include transmitting paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to a method of wireless communication performed by a UE. The method may include receiving a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is  different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The method may include monitoring for paging messages in POs based at least in part on a subgroup ID of the UE.
Some aspects described herein relate to a method of wireless communication performed by a network entity. The method may include transmitting network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The method may include transmitting paging messages in POs based at least in part on a subgroup ID of a UE.
Some aspects described herein relate to an apparatus of a UE for wireless communication. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The one or more processors may be configured to receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The one or more processors may be configured to monitor for paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to an apparatus of a network entity for wireless communication. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE. The one or more processors may be configured to transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The one or more processors may be configured to transmit paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to an apparatus of a UE for wireless communication. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The one or more processors may be configured to monitor for paging messages in POs based at least in part on a subgroup ID of the UE.
Some aspects described herein relate to an apparatus of a network entity for wireless communication. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The one or more processors may be configured to transmit paging messages in POs based at least in part on a subgroup ID of a UE.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to monitor for paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a network entity. The set of instructions, when executed by one or more processors of the network entity, may cause the network entity to transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are  separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE. The set of instructions, when executed by one or more processors of the network entity, may cause the network entity to transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The set of instructions, when executed by one or more processors of the network entity, may cause the network entity to transmit paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The set of instructions, when executed by one or more processors of the UE, may cause the UE to monitor for paging messages in POs based at least in part on a subgroup ID of the UE.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a network entity. The set of instructions, when executed by one or more processors of the network entity, may cause the network entity to transmit network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The set of instructions, when executed by one or more processors of the network entity, may cause the network entity to transmit paging messages in POs based at least in part on a subgroup ID of a UE.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The apparatus may include means for receiving, based at least in part on the network configuration, a configuration that indicates one or  more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The apparatus may include means for monitoring for paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE. The apparatus may include means for transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The apparatus may include means for transmitting paging messages in POs based at least in part on the configuration.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The apparatus may include means for monitoring for paging messages in POs based at least in part on a subgroup ID of the UE.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The apparatus may include means for transmitting paging messages in POs based at least in part on a subgroup ID of a UE.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, UE, base station, network entity, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be  described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this  disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of a disaggregated base station, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example of capabilities for different types of UEs, in accordance with the present disclosure.
Fig. 5 is a diagram illustrating examples of paging resources, in accordance with the present disclosure.
Fig. 6 is a diagram illustrating an example of configuring separate paging resources, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example of using separate paging resources by subgroup, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
Fig. 9 is a diagram illustrating an example process performed, for example, by a network entity, in accordance with the present disclosure.
Fig. 10 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
Fig. 11 is a diagram illustrating an example process performed, for example, by a network entity, in accordance with the present disclosure.
Fig. 12 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
Fig. 13 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE  120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
In some aspects, the terms “base station” (e.g., the base station 110) or “network entity” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, and/or one or more components thereof. For example, in some aspects, “base station” or “network entity”  may refer to a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof. In some aspects, the terms “base station” or “network entity” may refer to one device configured to perform one or more functions, such as those described herein in connection with the base station 110. In some aspects, the terms “base station” or “network entity” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a number of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the terms “base station” or “network entity” may refer to any one or more of those different devices. In some aspects, the terms “base station” or “network entity” may refer to one or more virtual base stations and/or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device. In some aspects, the terms “base station” or “network entity” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a network entity (e.g., base station 110) , another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In some aspects, UEs may be of different categories for different capabilities. For example, a network entity may serve a first category of UEs that have a less  advanced capability (e.g., a lower capability and/or a reduced capability) and a second category of UEs that have a more advanced capability (e.g., a higher capability) . A UE of the first category may have a reduced feature set compared to UEs of the second category, and may be referred to as a reduced capability (RedCap) UE, a low tier UE, NR-Light UE, and/or an NR-Lite UE, among other examples. A UE of the first category may be, for example, industrial wireless sensors, low-end smartphones, health monitors, video surveillance, high-end wearables, MTC devices, and/or high-end logistic trackers. UEs of the first category may be associated with 3GPP Release 17.
A UE of the second category may have an advanced feature set compared to UEs of the first category, and may be referred to as a baseline UE, a high tier UE, an NR UE, and/or a premium UE, among other examples. A UE of the second category may include enhanced mobile broadband (eMBB) devices, ultra-reliable low latency communication (URLLC) devices, extended reality (XR) devices, laptops, robots, industrial machines, and/or high-end smartphones. UEs of the second category may be associated with 3GPP Release 15 and onwards. In some aspects, a UE of the first category has capabilities that satisfy requirements of a first (earlier) wireless communication standard but not a second (later) wireless communication standard, while a UE of the second category has capabilities that satisfy requirements of the second (later) wireless communication standard (and also the first wireless communication standard, in some cases) .
For example, UEs of the first category may support a lower maximum modulation and coding scheme (MCS) than UEs of the second category (e.g., quadrature phase shift keying (QPSK) or the like as compared to 256-quadrature amplitude modulation (QAM) or the like) , may support a lower maximum transmit power than UEs of the second category, may have a less advanced beamforming capability than UEs of the second category (e.g., may not be capable of forming as many beams as UEs of the second category) , may require a longer processing time than UEs of the second category, may include less hardware than UEs of the second category (e.g., fewer antennas, fewer transmit antennas, and/or fewer receive antennas) , and/or may not be capable of communicating on as wide of a maximum bandwidth part as UEs of the second category, among other examples. Additionally, or alternatively, UEs of the second category may be capable of communicating using a shortened transmission time interval (TTI) (e.g., a slot length of 1 ms or less, 0.5 ms, 0.25 ms, 0.125 ms, 0.0625  ms, or the like, depending on a sub-carrier spacing) , and UEs of the first category may not be capable of communicating using the shortened TTI.
There may be a third category of devices that may be referred to as enhanced RedCap (eRedCap) devices or NR-Superlight devices. Such devices may include eMTC devices, and/or NB-IoT devices in associated with 3GPP Release 18 and/or massive IoT. UEs of the third category may include, for example, low-end industrial sensors, parking sensors, agricultural sensors, utility meters, low-end wearables, and/or low-end asset trackers. Just as UE capabilities of the first category differ from UE capabilities of the second category. UE capabilities of the third category may differ from UE capabilities of the first category and the second category.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to  (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, the UE 120 may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The communication manager 140 may receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more  paging parameter values for the second type of UE. The communication manager 140 may monitor for paging messages in paging occasions (POs) based at least in part on the configuration.
In some aspects, the communication manager 140 may receive a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The communication manager 140 may monitor for paging messages in POs based at least in part on a subgroup ID of the UE. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, a network entity (e.g., base station 110) may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE. The communication manager 150 may transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The communication manager 150 may transmit paging messages in POs based at least in part on the configuration.
In some aspects, the communication manager 150 may transmit a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The communication manager 150 may transmit paging messages in POs based at least in part on a subgroup ID of a UE. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a  through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more MCSs for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS(s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to  condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the  modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-13) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 4-13) .
The controller/processor 240 of a network entity (e.g., base station 110) , the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with using paging resources for reduced capabilities, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a  non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., UE 120) includes means for receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE; means for receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and/or means for monitoring for paging messages in POs based at least in part on the configuration. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, a network entity (e.g., base station 110) includes means for transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE; means for transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and/or means for transmitting paging messages in POs based at least in part on the configuration. In some aspects, the means for the network entity to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234,  MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
In some aspects, the UE includes means for receiving a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and/or means for monitoring for paging messages in POs based at least in part on a subgroup ID of the UE.
In some aspects, the network entity includes means for transmitting network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and/or means for transmitting paging messages in POs based at least in part on a subgroup ID of a UE.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example of a disaggregated base station 300, in accordance with the present disclosure.
Deployment of communication systems, such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station, or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture. For example, a BS (such as a Node B, evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a TRP, or a cell, etc. ) may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node. A disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) . In some aspects, a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU, and RU also can be implemented as virtual units (e.g., a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) ) .
Base station-type operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) . Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station, or disaggregated RAN architecture, can be configured for wired or wireless communication with at least one other unit.
The disaggregated base station 300 architecture may include one or more CUs 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated base station units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) . A CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as an F1 interface. The DUs 330 may communicate with one or more RUs 340 via respective fronthaul links. The fronthaul link, the midhaul link, and the backhaul link may be generally referred to as “communication links. ” The RUs 340 may communicate with respective UEs 120 via one or more RF access links. In some aspects, the UE 120 may be simultaneously served by multiple RUs 340. The DUs 330 and the RUs 340 may also be referred to as “O-RAN DUs (O-DUs” ) and “O-RAN RUs (O-RUs) ” , respectively. A network entity may include a CU, a DU, an RU, or any combination of CUs, DUs, and RUs. A network entity may include a disaggregated base station or one  or more components of the disaggregated base station, such as a CU, a DU, an RU, or any combination of CUs, DUs, and RUs. A network entity may also include one or more of a TRP, a relay station, a passive device, an intelligent reflective surface (IRS) , or other components that may provide a network interface for or serve a UE, mobile station, sensor/actuator, or other wireless device.
Each of the units (e.g., the CUs 310, the DUs 330, the RUs 340, as well as the Near-RT RICs 325, the Non-RT RICs 315 and the SMO Framework 305) may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units. Additionally, the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 310 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310. The CU 310 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 310 can be implemented to communicate with the DU 330, as necessary, for network control and signaling.
The DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340. In some aspects, the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for  forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3GPP. In some aspects, the DU 330 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
Lower-layer functionality can be implemented by one or more RUs 340. In some deployments, an RU 340, controlled by a DU 330, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 340 can be implemented to handle over the air (OTA) communication with one or more UEs 120. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330. In some scenarios, this configuration can enable the DU (s) 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340 and Near-RT RICs 325. In some implementations, the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with one or more RUs 340 via an O1 interface. The SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
The Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325. The Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325. The Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 325, the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of capabilities for different types of UEs, in accordance with the present disclosure.
Example 400 shows a comparison of UE communication features for an NB-IOT device, an eMTC device, a Release 16 NR eMBB device, a Release 17 NR RedCap (NR Light) device, and a Release 18 NR Superlight device, which may be referred to as an “enhanced RedCap UE” or “eRedCap UE. ” Such features include a UE bandwidth (BW) , a duplex capability, a quantity of antennas, MIMO layers, peak data rates, a maximum coupling loss (MCL) , channel coding, a modulation order, and/or other features. A first type of UE, such as an eRedCap UE, may have a first level of reduced capabilities for such features that is different than a second level of reduced capabilities for a second type of UE, such as an eMBB UE, a RedCap UE, or another type of non-eRedCap UE. For example, the first type of UE may have a bandwidth capability  reduction, a reduced quantity of receive branches, a maximum quantity of downlink MIMO layers, a maximum modulation order, an enhanced discontinuous reception (eDRX) parameter, and/or a radio resource management (RRM) relaxation that is different than for the second type of UE.
In some scenarios, an eRedCap UE may operate with a bandwidth limitation, such as 5 MHz with 25 physical resource blocks (PRBs) and a 15 kilohertz (KHz) subcarrier spacing (SCS) for FR1. The smaller bandwidth may help with devices, such as low-tier IoT devices. In some scenarios, the bandwidth limitation of 5 MHz may be for a physical downlink shared channel (PDSCH) (for both unicast and broadcast) and a physical uplink shared channel (PUSCH) . The RF bandwidth of an eRedCap UE may still be 20 MHz. An eRedCap UE may have a UE peak data rate reduction, such as for relaxation of a constraint value to 1 instead of 4. There may be limited reuse of the 5 MHz bandwidth for a synchronization signal block (SSB) . For example, there may be limited reuse of synchronization signals, a physical broadcast channel (PBCH) , and control resource set (CORESET) #0 with a 15 KHz SCS. 24 PRBs with a 15 KHz SCS can be reused for CORESET#0.
In higher frequency bands for NR, such as FR2 or higher, a single downlink control information (DCI) is able to schedule multiple PDSCH communications or multiple PUSCH communications with different transport blocks (TBs) . Each PDSCH or PUSCH may have its own TB and duration, confined within a slot. Each TB may have its own hybrid automatic repeat request (HARQ) process ID, redundancy version ID (RVID) , new data indicator (NDI) , time domain resource allocation (TDRA) , and/or frequency domain resource allocation (FDRA) .
In some scenarios, when receiving a PDSCH communication (data) scheduled by DCI, a UE may be configured for slot aggregation, where a TB can be repeated over multiple slots (or mini-slots) . A redundancy version (RV) may be applied on the nth transmission occasion of the TB, where n = 0, 1, … (PDSCH aggregation factor -1) . The quantity of allocated symbols, or the start and length indicator (SLIV) , for all the consecutive slots may be the same as the first slot. The transmitter may sequentially read the coded bits from the data buffer based on a specified RV order. The PDSCH may be limited to a single layer.
A control channel element (CCE) aggregation level (AL) for physical downlink control channel (PDCCH) frequency diversity may be between 1 and 16 for 6 to 96 PRBs in one OFDM symbol if the SCS is 15 kHz. An NR UE CORESET may be  in a maximum of 3 symbols in the time domain and a multiple of 6 resource blocks (RBs) in the frequency domain. A resource element group (REG) may be 1 symbol × 1 RB, and a control channel element (resource element (RE) for control information) may be equal to 6 REGs. For 20 MHz with 15/30 KHz SCS, there may be up to 48 or 24 CCEs in a CORESET (with 3 OFDM symbols) . An eRedcap UE CORESET for 5 MHz with a 15 or 30 KHz SCS may have up to 12 or 6 CCEs in a CORESET (with 3 OFDM symbols) . An AL 16 with 15 KHz and an AL 8 for 30 KHz SCS may not be allowed.
A PDCCH configuration may include parameters for a CORESET. Such parameters may include frequency domain resources within a bandwidth part (BWP) that are assigned to the UE and a duration (e.g., quantity of symbols) of the CORESET. The PDCCH configuration may also include parameters for a search space. Such parameters may include a CORESET ID, a PDCCH monitoring periodicity and offset, and/or symbols for PDCCH monitoring in slots configured for PDCCH monitoring.
Some UEs, such as 3GPP Release 15 NR UEs or Release 16 NR UEs, may use multi-slot aggregation (e.g., multiple slot repetition in the time domain with an aggregation factor for PDSCH of 2, 4, or 8 consecutive slots) but not downlink frequency hopping. However, an eRedcap UE may have a limited maximum bandwidth of 5 MHz, while a RedCap UE or a regular UE may have a much higher maximum bandwidth. The baseband bandwidth for the eRedCap UE may be limited to 5 MHz (for reducing the UE peak data rate and buffer size) .
As indicated above, Fig. 4 provides some examples. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating examples 500 and 502 of paging resources, in accordance with the present disclosure.
Paging resources may include resources and parameters for paging frames (PFs) and for POs. A PF may be a radio frame that contains one or more POs. A UE may have a discontinuous reception (DRX) cycle that spans multiple radio frames. Certain radio frames within the DRX cycle may include a PF. The network may configure N PFs per paging cycle and a start offset for the start location of the PF within one paging cycle. The UE may have a periodicity (or paging cycle) T for monitoring paging. The UE may derive T based on a cell’s default paging cycle, a UE-specific DRX cycle, or an eDRX configuration. Typical values of T may be 640 milliseconds (ms) , 1280 ms, 2560 ms, 5120 ms, and so forth. Therefore, a radio frame may be a PF if the radio frame satisfies the following equation: (SFN + PF_offset) mod T = (T div N)  × (UE_ID mod N) , where SFN is a number of the radio frame (system frame number) , PF_offset is a start offset for the PF, and UE_ID is an ID of the UE (e.g., serving temporary mobile subscriber identity (S-TMSI) ) . Example 500 shows a PF with multiple POs, such as POs 504 in which the UE monitors for a paging message and POs 506 in which the UE does not monitor for a paging message. The UE may wake up periodically in a PO to receive a PDCCH or a paging message in a PDSCH. By not monitoring for paging messages in every PO, the UE may conserve power.
A PO is a set of PDCCH monitoring occasions (MOs) where a paging message for the UE may be received. The PO may include multiple time slots. Each UE may be assigned to one PO within each paging cycle. Within each PF, a UE may be randomly assigned to a PO by hashing its UE_ID, such as i_s= floor (UE_ID/N) mod N s, where i_s is index of a PO within a PF and N s is the quantity of POs within a PF. Example 502 shows that a PO may include multiple paging MOs, where each paging MO may be an opportunity to monitor for a single paging message. The paging message may include temporary identifiers and/or other information for establishing future communications. The paging message may be scheduled by DCI. The time and power consumed by the UE when waking up in each cycle for paging MOs may depend on how deep the UE has been sleeping. Paging messages for UEs sharing the same PO may be multiplexed in a single PDSCH communication. In some aspects, the network may indicate how many POs are in a PF for a type of UE and how many PFs are allocated for the type of UE.
In some aspects, a UE may determine a PO using a PF as a reference or starting frame. The UE may determine the PF based at least in part on the UE_ID. A quantity of paging MOs for the PO may be determined based at least in part on a size of a DRX cycle and/or an interval between adjacent PFs. For example, a PO for a DRX cycle of 320 milliseconds (ms) , an inter-PF interval of 80 ms, a quantity of 4 PFs, and an offset of 6 frames may form a PO with 32 paging MOs.
The maximum bandwidth of a RedCap UE (Release 17) may be 20 MHz in FR1, which is the same as the non-RedCap UE for paging messages, paging PDCCH, and paging early indication (PEI) receiving. That is, there is no issue for a 20 MHz paging message to carry paging records for a RedCap UE or a non-RedCap UE. For an eRedCap (Release 18) , the maximum bandwidth for receiving a paging PDCCH message or a PEI may be 20 MHz. However, the bandwidth for paging messages may be reduced to 5 MHz. As a result, a 20 MHz paging message cannot be received by an eRedCap UE as the eRedCap UE expects to receive the paging message in a 5 MHz  bandwidth. Therefore, the eRedCap UE may miss the paging message any information included in the paging message. The eRedCap UEs communications may be disrupted, latency may increase, and power, processing resources, and signaling resources may be wasted.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 of configuring separate paging resources, in accordance with various aspects of the present disclosure. A network entity 610 (e.g., base station 110) and a UE 620 (e.g., a UE 120) may communicate with each other over a wireless network (e.g., wireless network 100) . The UE 620 may be an eRedCap UE or a UE with reduced capabilities at a different level than other UEs.
According to various aspects described herein, the network entity 610 may configure a first type of UE (e.g., eRedCap UE) with separate (different) paging resources (e.g., PF and PO resources) than a second type of UE (e.g., RedCap UE, non-RedCap UE) . If separate groups of PF and PO resources are configured, the eRedCap UE is expected to monitor eRedCap specific PFs and POs for paging messages that are within a 5 MHz bandwidth range. By partitioning paging resources between eRedCap UEs and other UEs, an eRedCap UE may receive paging messages when limited to a bandwidth of 5 MHz, while allowing other types of UEs to use 20 MHz. Because UEs are able to receive paging messages with appropriate bandwidths, the UEs will receive the information in paging messages and communications will not degrade and power, processing resources, and signaling resources will not be wasted.
Example 600 shows an example of using separate paging resources. For example, the network entity 610 may configure the UE 620 with paging resources 602 for the first type of UE, which may include paging parameter values 604 for the first type of UE. The paging resources 602 for the first type of UE may be appropriate for a 5 MHz bandwidth and different than paging resources 606 for the second type of UE (e.g., for 20 MHz bandwidth) . The paging resources 606 for the second type of UE may include paging parameter values 608 that may be different than the paging parameter values 604 for the first type of UE. The paging parameters may include a start offset for a PF, a quantity of POs within a PF allocated for the first type of UE, a quantity of PFs per paging cycle, location information for POs within a PF, a quantity of PFs allocated for the first type of UE, and/or a quantity of POs within a PF allocated for the first type  of UE. The different paging resources may also involve different physical control channel resources.
As shown by reference number 625, the network entity 610 may transmit a network configuration associated with supporting paging resources, for the first type of UE with reduced capabilities, that are separate from paging resources for the second type of UE having a level of reduced capabilities that is different than the level of reduced capabilities of the first type of UE. The network configuration may include system information (e.g., a common configuration signaling to all served UEs in the serving cell) and/or RRC dedicated signaling specific to one particular UE. The reduced capabilities associated with the first type of UE may be enhanced (e.g., further reduced) with respect to the second type of UE. This may be the case for eRedCap UEs. The network configuration may indicate that separate paging resources will be available. The UE 620 may receive the network configuration transmitted by the network entity 610.
As shown by reference number 630, the network entity 610 may transmit, and the UE 620 may receive, a configuration with separate paging parameter values based at least in part on the network configuration. The configuration may indicate one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. That is, the UE 620 may be configured with specific indices or a set of subgroups of PFs and/or POs for the first type of UE, if more than one PF is allocated with a paging cycle and/or more than one PO is configured in the allocated PF. The PF and/or PO resources may be configured in one RRC information element (IE) . The resource separation may be performed using indicated indices for the PF and/or the POs.
In some aspects, the configuration may indicate a subgroup of PO resources and/or a subgroup of PF resources. If the UE 620 is of the first type of UE (e.g., eRedCap UE) , the UE 620 may select an index of a PF from the subgroup of PFs within a paging cycle based at least in part on the UE_ID and a quantity of PFs allocated for the first type of UE. The UE 620 may select an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE. For example, the network entity 610 may hash all eRedCap UEs into M groups, wherein M is the quantity of PFs allocated to eRedCap UE. If M = 2 and if the network entity 610 allocates PF 1 &3 for eRedCap UEs among a total 4 PFs in one paging cycle, the UE 620 may use UE_ID mod M = i_PF, where  i_PF is one of PF indices advertised by the network entity 610 for eRedCap UEs. The UE 620 may then select an eligible PO within the PF that is allocated (i_PF) . The network entity 610 may transmit an indication that M s POs are configured in the allocated PF. The UE 620 may determine a PO index i_s= floor (UE_ID/M) mod M s, where i_s is one of the PO indices assigned for the eRedCap UE.
As shown by reference number 635, the UE 620 may monitor for paging messages in POs based at least in part on the configuration, including POs by determined indices. As shown by reference number 640, the network entity 610 may transmit paging messages in POs based at least in part on the configuration. This may include using PF and PO resources determined by the UE 620 (the network entity 610 knows the same rule as the UE_ID) . The UE 620 may receive paging messages in the determined POs and use the information accordingly.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example 700 of using separate paging resources by subgroup, in accordance with various aspects of the present disclosure.
In some aspects, the network entity 610 may configure eRedCap UEs with a separate paging subgroup ID (subgroup 702) , such that eRedCap UEs of a first subgroup ID share PF and PO resources (paging resources 602) that are different than paging resources (paging resources 606) of other types of UEs of a second subgroup ID (subgroup 704) . Using separate paging subgroup IDs can reduce the false alarm rate for eRedCap UEs and also provide for UEs of different types and bandwidths to receive paging messages.
Partitioning paging resources by subgroup may be applicable when PO resources are shared by UEs of different types. UEs sharing the same PO may be divided into multiple paging subgroups. The core network (CN) or the network entity 610 may assign UEs a subgroup ID via non-access stratum (NAS) signaling. The UE 620 may hash its UE-ID to derive its subgroup ID. When assigning subgroups, the CN is aware of UE types and can ensure eRedCap UEs and non-eRedCap UEs do not share the same PO subgroup. In some aspects, the UE 620 may be assigned a subgroup ID and a subgroup space (e.g., subgroupsNumforeRedCapUE) set aside for eRedCap UEs. In addition to the quantity of subgroups per PO (e.g., subgroupsNumPerPO) and the quantity of subgroups allocated for a UE type (e.g., subgroupsNumForUEID) , the network entity 610 may indicate the space and a subgrouping ID space dedicated for  eRedCap UEs. The subgroupsNumPerPO may still be used for the total quantity of subgroups for both CN-assigned subgrouping (if any) and UE_ID based subgrouping (if any and for Release 17 Redcap) in a PO, which is broadcast in system information. The subgroupsNumForUEID may be the quantity of subgroups (if any and for Release 17 Redcap UEs) for UE_ID based subgrouping in a PO, which is broadcast in system information. The subgroup ID of a Release 18 eRedCap UE may be determined by the formula: subgroup ID = (floor (UE_ID/ (N×N s) ) mod subgroupsNumforeRedCapUE) +subgroupsNumPerPO, where N is the quantity of total PFs in the paging cycle and N s is the quantity of POs for a PF.
Example 700 shows use of separate paging subgroup IDs for separate paging resources. As shown by reference number 705, the network entity 610 may transmit the network configuration indicating the use of separate paging resources. The network configuration may include information for determining a subgroup ID. The network configuration may include an indication of the subgroup ID for the UE, an indication of a quantity of PFs in a paging cycle and a quantity of POs in a PF, and/or an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO. The UE 620 may receive the network configuration transmitted by the network entity 610.
As shown by reference number 710, the UE 620 may monitor for paging messages in POs based at least in part on a subgroup ID of the UE 620. The UE 620 may use its UE_ID to determine the subgroup ID. If the subgroup ID is for the first type of UE (e.g., eRedCap UE) , the UE may monitor paging resources 602 (e.g., PFs and POs) for the first type of UE.
As shown by reference number 715, the network entity 610 may transmit paging messages in POs based at least in part on the subgroup ID for the UE 620. The subgroup ID may be explicit or may be determined by the UE 620 from the UE_ID and the network configuration. The UE 620 may receive paging messages in the determined POs and use the information accordingly.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with the present disclosure. Example process 800 is an example where the UE (e.g., UE 120, UE 620) performs operations associated with using separate paging resources for type of UEs with reduced capabilities.
As shown in Fig. 8, in some aspects, process 800 may include receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE (block 810) . For example, the UE (e.g., using communication manager 1208 and/or reception component 1202 depicted in Fig. 12) may receive network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE (block 820) . For example, the UE (e.g., using communication manager 1208 and/or reception component 1202 depicted in Fig. 12) may receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include monitoring for paging messages in POs based at least in part on the configuration (block 830) . For example, the UE (e.g., using communication manager 1208 and/or monitoring component 1210 depicted in Fig. 12) may monitor for paging messages in POs based at least in part on the configuration, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the first type of UE is associated with reduced capabilities enhanced with respect to the second type of UE.
In a second aspect, alone or in combination with the first aspect, the first type of UE is associated with a paging message bandwidth that is less than a paging message bandwidth for the second type of UE.
In a third aspect, alone or in combination with one or more of the first and second aspects, the one or more paging parameter values for the first type of UE  indicate physical control channel resources to be used as paging resources for the first type of UE, and the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the one or more paging parameter values for the first type of UE include a start offset for a PF.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more paging parameter values for the first type of UE include a quantity of POs within a PF allocated for the first type of UE.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the one or more paging parameter values for the first type of UE include a quantity of PFs per paging cycle.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the one or more paging parameter values for the first type of UE include location information for POs within a PF.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the one or more paging parameter values for the first type of UE include a quantity of PFs allocated for the first type of UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the one or more paging parameter values for the first type of UE include a quantity of POs within a PF allocated for the first type of UE.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the configuration indicates one or more of a subgroup of PO resources or a subgroup of PF resources for the first type of UE.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the UE is the first type of UE, and process 800 includes selecting an index of a PF from the subgroup of PFs within a paging cycle based at least in part on an ID of the UE and a quantity of PFs allocated for the first type of UE, and selecting an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently  arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a network entity, in accordance with the present disclosure. Example process 900 is an example where the network entity (e.g., base station 110, network entity 610) performs operations associated with configuring separate paging resources for different types of UEs of different levels of reduced capabilities.
As shown in Fig. 9, in some aspects, process 900 may include transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE (block 910) . For example, the network entity (e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13) may transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE (block 920) . For example, the network entity (e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13) may transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting paging messages in POs based at least in part on the configuration (block 930) . For example, the network entity (e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13) may transmit paging messages in POs based at least in part on the configuration, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as the paging resources for the first type of UE, and the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
In a second aspect, alone or in combination with the first aspect, the configuration indicates one or more of a subgroup of PO resources or a subgroup of PF resources.
In a third aspect, alone or in combination with one or more of the first and second aspects, the one or more paging parameter values for the first type of UE include a quantity of PFs allocated for the first type of UE.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the one or more paging parameter values for the first type of UE include a quantity of POs within a PF allocated for the first type of UE.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a UE, in accordance with the present disclosure. Example process 1000 is an example where the UE (e.g., UE 120, UE 620) performs operations associated with using separate paging resources based on subgroup ID.
As shown in Fig. 10, in some aspects, process 1000 may include receiving a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID (block 1010) . For example, the UE (e.g., using communication manager 1208 and/or reception component 1202 depicted in Fig. 12) may receive a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include monitoring for paging messages in POs based at least in part on a subgroup ID of the  UE (block 1020) . For example, the UE (e.g., using communication manager 1208 and/or monitoring component 1210 depicted in Fig. 12) may monitor for paging messages in POs based at least in part on a subgroup ID of the UE, as described above.
Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the first type of UE is associated with reduced capabilities with respect to the second type of UE.
In a second aspect, alone or in combination with the first aspect, process 1000 includes receiving an indication of the subgroup ID for the UE.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 1000 includes receiving an indication of a quantity of subgroups assigned to the first type of UE.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 1000 includes determining whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of PFs in a paging cycle, and a quantity of POs in a PF.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, determining whether the UE is associated with the subgroup ID for the first type of UE includes determining whether the UE is associated with the subgroup ID for the first type of UE further based at least in part on one or more of a quantity of subgroups for the first type of UE, a quantity of subgroups per PO, or a quantity of subgroups assigned to the second type of UE.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a network entity, in accordance with the present disclosure. Example process 1100 is an example where the network entity (e.g., base station 110, network entity 610) performs operations associated with indicating separate paging resources based on a subgroup ID.
As shown in Fig. 11, in some aspects, process 1100 may include transmitting a network configuration associated with supporting paging resources based at least in part  on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID (block 1110) . For example, the network entity (e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13) may transmit a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID, as described above.
As further shown in Fig. 11, in some aspects, process 1100 may include transmitting paging messages in POs based at least in part on a subgroup ID of a UE (block 1120) . For example, the network entity (e.g., using communication manager 1308 and/or transmission component 1304 depicted in Fig. 13) may transmit paging messages in POs based at least in part on a subgroup ID of a UE, as described above.
Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the first type of UE is associated with enhanced reduced capabilities with respect to the second type of UE.
In a second aspect, alone or in combination with the first aspect, process 1100 includes transmitting an indication of the subgroup ID for the UE.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 1100 includes transmitting an indication of a quantity of PFs in a paging cycle and a quantity of POs in a PF.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 1100 includes transmitting an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
Although Fig. 11 shows example blocks of process 1100, in some aspects, process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
Fig. 12 is a diagram of an example apparatus 1200 for wireless communication, in accordance with the present disclosure. The apparatus 1200 may be a UE (e.g., UE 120, UE 620) , or a UE may include the apparatus 1200. In some aspects, the apparatus 1200 includes a reception component 1202 and a transmission  component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204. As further shown, the apparatus 1200 may include the communication manager 1208. The communication manager 1208 may control and/or otherwise manage one or more operations of the reception component 1202 and/or the transmission component 1204. In some aspects, the communication manager 1208 may include one or more antennas, a modem, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. The communication manager 1208 may be, or be similar to, the communication manager 140 depicted in Figs. 1 and 2. For example, in some aspects, the communication manager 1208 may be configured to perform one or more of the functions described as being performed by the communication manager 140. In some aspects, the communication manager 1208 may include the reception component 1202 and/or the transmission component 1204. The communication manager 1208 may include a monitoring component 1210, among other examples.
In some aspects, the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 1-7. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, process 1000 of Fig. 10, or a combination thereof. In some aspects, the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206. The reception component 1202 may provide received  communications to one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206. In some aspects, one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206. In some aspects, the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206. In some aspects, the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
In some aspects, the reception component 1202 may receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE. The reception component 1202 may receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The monitoring component 1210 may monitor for paging messages in POs based at least in part on the configuration.
In some aspects, the reception component 1202 may receive a network configuration associated with supporting paging resources based at least in part on a  subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The monitoring component 1210 may monitor for paging messages in POs based at least in part on a subgroup ID of the UE.
The reception component 1202 may receive an indication of the subgroup ID for the UE. The reception component 1202 may receive an indication of a quantity of subgroups assigned to the first type of UE. The monitoring component 1210 may determine whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of PFs in a paging cycle, and a quantity of POs in a PF.
The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
Fig. 13 is a diagram of an example apparatus 1300 for wireless communication, in accordance with the present disclosure. The apparatus 1300 may be a network entity (e.g., base station 110, network entity 610) , or a network entity may include the apparatus 1300. In some aspects, the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304. As further shown, the apparatus 1300 may include the communication manager 1308. The communication manager 1308 may control and/or otherwise manage one or more operations of the reception component 1302 and/or the transmission component 1304. In some aspects, the communication manager 1308 may include one or more antennas, a modem, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2. The communication manager 1308 may be, or be similar to, the communication manager 150 depicted in Figs. 1 and 2. For example, in  some aspects, the communication manager 1308 may be configured to perform one or more of the functions described as being performed by the communication manager 150. In some aspects, the communication manager 1308 may include the reception component 1302 and/or the transmission component 1304. The communication manager 1308 may include a paging resource component 1310, among other examples.
In some aspects, the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 1-7. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9, process 1100 of Fig. 11, or a combination thereof. In some aspects, the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the network entity described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306. The reception component 1302 may provide received communications to one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2.
The transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306. In some aspects, one or more other components of the apparatus  1300 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306. In some aspects, the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306. In some aspects, the transmission component 1304 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network entity described in connection with Fig. 2. In some aspects, the transmission component 1304 may be co-located with the reception component 1302 in a transceiver.
In some aspects, the transmission component 1304 may transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE. The transmission component 1304 may transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE. The paging resource component 1310 may generate the network configuration and the configuration based at least in part on a UE capability, a UE type, traffic conditions, and/or channel conditions. The transmission component 1304 may transmit paging messages in POs based at least in part on the configuration.
In some aspects, the transmission component 1304 may transmit a network configuration associated with supporting paging resources based at least in part on a subgroup ID for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID. The paging resource component 1310 may generate the network configuration based at least in part on a UE capability, a UE type, traffic conditions, and/or channel conditions. The transmission component 1304 may transmit paging messages in POs based at least in part on a subgroup ID of a UE.
The transmission component 1304 may transmit an indication of the subgroup ID for the UE. The transmission component 1304 may transmit an indication of a quantity of PFs in a paging cycle and a quantity of POs in a PF. The transmission  component 1304 may transmit an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE; receiving, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and monitoring for paging messages in paging occasions (POs) based at least in part on the configuration.
Aspect 2: The method of Aspect 1, wherein the first type of UE is associated with reduced capabilities enhanced with respect to the second type of UE.
Aspect 3: The method of  Aspect  1 or 2, wherein the first type of UE is associated with a paging message bandwidth that is less than a paging message bandwidth for the second type of UE.
Aspect 4: The method of any of Aspects 1-3, wherein the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as paging resources for the first type of UE, and wherein the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
Aspect 5: The method of any of Aspects 1-4, wherein the one or more paging parameter values for the first type of UE include a start offset for a paging frame.
Aspect 6: The method of any of Aspects 1-5, wherein the one or more paging parameter values for the first type of UE include a quantity of POs within a paging frame allocated for the first type of UE.
Aspect 7: The method of any of Aspects 1-6, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames per paging cycle.
Aspect 8: The method of any of Aspects 1-7, wherein the one or more paging parameter values for the first type of UE include location information for POs within a paging frame.
Aspect 9: The method of any of Aspects 1-8, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames allocated for the first type of UE.
Aspect 10: The method of any of Aspects 1-9, wherein the one or more paging parameter values for the first type of UE include specific POs within a paging frame allocated for the first type of UE.
Aspect 11: The method of any of Aspects 1-10, wherein the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources for the first type of UE.
Aspect 12: The method of Aspect 11, wherein the UE is the first type of UE, and wherein the method includes: selecting an index of a PF from the subgroup of PFs within a paging cycle based at least in part on an identifier (ID) of the UE and a quantity of PFs allocated for the first type of UE; and selecting an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE.
Aspect 13: A method of wireless communication performed by a network entity, comprising: transmitting a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE; transmitting, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and transmitting paging messages in paging occasions (POs) based at least in part on the configuration.
Aspect 14: The method of Aspect 13, wherein the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as the paging resources for the first type of UE, and wherein the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
Aspect 15: The method of Aspect 13 or 14, wherein the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources.
Aspect 16: The method of any of Aspects 13-15, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames allocated for the first type of UE.
Aspect 17: The method of any of Aspects 13-16, wherein the one or more paging parameter values for the first type of UE include a quantity of POs within a paging frame allocated for the first type of UE.
Aspect 18: A method of wireless communication performed by a user equipment (UE) , comprising: receiving a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and monitoring for paging messages in paging occasions (POs) based at least in part on a subgroup ID of the UE.
Aspect 19: The method of Aspect 18, wherein the first type of UE is associated with reduced capabilities with respect to the second type of UE.
Aspect 20: The method of Aspect 18 or 19, further comprising receiving an indication of the subgroup ID for the UE.
Aspect 21: The method of any of Aspects 18-20, further comprising receiving an indication of a quantity of subgroups assigned to the first type of UE.
Aspect 22: The method of any of Aspects 18-21, further comprising determining whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of paging frames (PFs) in a paging cycle, and a quantity of POs in a PF.
Aspect 23: The method of Aspect 22, wherein determining whether the UE is associated with the subgroup ID for the first type of UE includes determining whether  the UE is associated with the subgroup ID for the first type of UE further based at least in part on one or more of a quantity of subgroups for the first type of UE, a quantity of subgroups per PO, or a quantity of subgroups assigned to the second type of UE.
Aspect 24: A method of wireless communication performed by a network entity, comprising: transmitting a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of user equipment (UE) that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and transmitting paging messages in paging occasions (POs) based at least in part on a subgroup ID of a UE.
Aspect 25: The method of Aspect 24, wherein the first type of UE is associated with enhanced reduced capabilities with respect to the second type of UE.
Aspect 26: The method of Aspect 24 or 25, further comprising transmitting an indication of the subgroup ID for the UE.
Aspect 27: The method of any of Aspects 24-26, further comprising transmitting an indication of a quantity of paging frames (PFs) in a paging cycle and a quantity of paging occasions in a PF.
Aspect 28: The method of any of Aspects 24-27, further comprising transmitting an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
Aspect 29: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-28.
Aspect 30: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-28.
Aspect 31: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-28.
Aspect 32: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-28.
Aspect 33: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more  instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-28.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as  any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (27)

  1. An apparatus of a user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE having a level of reduced capabilities that is different than a level of the reduced capabilities of the first type of UE;
    receive, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and
    monitor for paging messages in paging occasions (POs) based at least in part on the configuration.
  2. The apparatus of claim 1, wherein the first type of UE is associated with reduced capabilities enhanced with respect to the second type of UE.
  3. The apparatus of claim 1 or 2, wherein the first type of UE is associated with a paging message bandwidth that is less than a paging message bandwidth for the second type of UE.
  4. The apparatus of any of claims 1-3, wherein the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as paging resources for the first type of UE, and wherein the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
  5. The apparatus of any of claims 1-4, wherein the one or more paging parameter values for the first type of UE include a start offset for a paging frame.
  6. The apparatus of any of claims 1-5, wherein the one or more paging parameter values for the first type of UE include a quantity of POs within a paging frame allocated for the first type of UE.
  7. The apparatus of any of claims 1-6, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames per paging cycle.
  8. The apparatus of any of claims 1-7, wherein the one or more paging parameter values for the first type of UE include location information for POs within a paging frame.
  9. The apparatus of any of claims 1-8, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames allocated for the first type of UE.
  10. The apparatus of any of claims 1-9, wherein the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources for the first type of UE.
  11. The apparatus of claim 10, wherein the UE is the first type of UE, and wherein the one or more processors are configured to:
    select an index of a PF from the subgroup of PFs within a paging cycle based at least in part on an identifier (ID) of the UE and a quantity of PFs allocated for the first type of UE; and
    select an index of a PO within the PF from the subgroup of POs based at least in part on the ID of the UE and a quantity of POs allocated for the first type of UE.
  12. An apparatus of a network entity for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit a network configuration associated with supporting paging resources, for a first type of UE with reduced capabilities, that are separate from paging resources for a second type of UE with a different level of reduced capabilities than the first type of UE;
    transmit, based at least in part on the network configuration, a configuration that indicates one or more paging parameter values for the first type of UE that are different than one or more paging parameter values for the second type of UE; and
    transmit paging messages in paging occasions (POs) based at least in part on the configuration.
  13. The apparatus of claim 12, wherein the one or more paging parameter values for the first type of UE indicate physical control channel resources to be used as the paging resources for the first type of UE, and wherein the physical control channel resources to be used as the paging resources for the first type of UE are different than physical control channel resources to be used as paging resources for the second type of UE.
  14. The apparatus of claim 12 or 13, wherein the configuration indicates one or more of a subgroup of PO resources or a subgroup of paging frame (PF) resources for the first type of UE.
  15. The apparatus of any of claims 12-14, wherein the one or more paging parameter values for the first type of UE include a quantity of paging frames allocated for the first type of UE.
  16. The apparatus of any of claims 12-15, wherein the one or more paging parameter values for the first type of UE include a quantity of POs within a paging frame allocated for the first type of UE.
  17. An apparatus of a user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of UE that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and
    monitor for paging messages in paging occasions (POs) based at least in part on a subgroup ID of the UE.
  18. The apparatus of claim 17, wherein the first type of UE is associated with reduced capabilities with respect to the second type of UE.
  19. The apparatus of claim 17 or 18, wherein the one or more processors are configured to receive an indication of the subgroup ID for the UE.
  20. The apparatus of any of claims 17-19, wherein the one or more processors are configured to receive an indication of a quantity of subgroups assigned to the first type of UE.
  21. The apparatus of any of claims 17-20, wherein the one or more processors are configured to determine whether the UE is associated with the subgroup ID for the first type of UE based at least in part on an ID of the UE, a quantity of paging frames (PFs) in a paging cycle, and a quantity of POs in a PF.
  22. The apparatus of claim 21, wherein the one or more processors, to determine whether the UE is associated with the subgroup ID for the first type of UE, are configured to determine whether the UE is associated with the subgroup ID for the first type of UE further based at least in part on one or more of a quantity of subgroups for the first type of UE, a quantity of subgroups per PO, or a quantity of subgroups assigned to the second type of UE.
  23. An apparatus of a network entity for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit a network configuration associated with supporting paging resources based at least in part on a subgroup identifier (ID) for a first type of user equipment (UE) that has a level of reduced capabilities that is different than a level of reduced capabilities for a second type of UE with a different subgroup ID; and
    transmit paging messages in paging occasions (POs) based at least in part on a subgroup ID of a UE.
  24. The apparatus of claim 23, wherein the first type of UE is associated with enhanced reduced capabilities with respect to the second type of UE.
  25. The apparatus of claim 23 or 24, wherein the one or more processors are configured to transmit an indication of the subgroup ID for the UE.
  26. The apparatus of any of claims 23-25, wherein the one or more processors are configured to transmit an indication of a quantity of paging frames (PFs) in a paging cycle and a quantity of paging occasions in a PF.
  27. The apparatus of any of claims 23-26, wherein the one or more processors are configured to transmit an indication of one or more of a quantity of subgroups for the first type of UE or a quantity of subgroups per PO.
PCT/CN2022/127204 2022-10-25 2022-10-25 Separate paging resources for reduced capabilities WO2024087004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127204 WO2024087004A1 (en) 2022-10-25 2022-10-25 Separate paging resources for reduced capabilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127204 WO2024087004A1 (en) 2022-10-25 2022-10-25 Separate paging resources for reduced capabilities

Publications (1)

Publication Number Publication Date
WO2024087004A1 true WO2024087004A1 (en) 2024-05-02

Family

ID=90829733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127204 WO2024087004A1 (en) 2022-10-25 2022-10-25 Separate paging resources for reduced capabilities

Country Status (1)

Country Link
WO (1) WO2024087004A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133809A (en) * 2017-09-28 2020-05-08 瑞典爱立信有限公司 Configuration for paging transmission of wideband and narrowband UEs in NR
US20210058893A1 (en) * 2018-04-04 2021-02-25 Zte Corporation Paging method, base station, and user equipment
WO2021159244A1 (en) * 2020-02-10 2021-08-19 华为技术有限公司 Paging method and device
WO2022205187A1 (en) * 2021-03-31 2022-10-06 Nokia Shanghai Bell Co., Ltd. Assistance information for paging subgrouping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133809A (en) * 2017-09-28 2020-05-08 瑞典爱立信有限公司 Configuration for paging transmission of wideband and narrowband UEs in NR
US20210058893A1 (en) * 2018-04-04 2021-02-25 Zte Corporation Paging method, base station, and user equipment
WO2021159244A1 (en) * 2020-02-10 2021-08-19 华为技术有限公司 Paging method and device
WO2022205187A1 (en) * 2021-03-31 2022-10-06 Nokia Shanghai Bell Co., Ltd. Assistance information for paging subgrouping

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "(TP for RedCap BL CR 38.473) RedCap paging", 3GPP DRAFT; R3-222360, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20220221 - 20220303, 11 February 2022 (2022-02-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052108146 *

Similar Documents

Publication Publication Date Title
US11889468B2 (en) Paging early indication for paging occasion
WO2023205031A1 (en) Performing a connection setup in musim mimo based on a paging message for a second sim
US20230318785A1 (en) Non-overlapped cross-link interference reference signal transmission and reception windows
US20230254815A1 (en) Default beam for multi-downlink control information based multi-transmit receive point with unified transmission configuration indicator
WO2023081569A1 (en) Paging early indication for paging occasion
WO2024087004A1 (en) Separate paging resources for reduced capabilities
WO2024011437A1 (en) Physical downlink channel repetitions in subbands
US12010063B2 (en) Synchronization signal block less carrier measurements
WO2024045004A1 (en) Enhanced reduced capability system information and control resource set
WO2024026657A1 (en) Group level beam failure detection reference signal activation
WO2023159541A1 (en) Timing advance offset configuration
WO2023184379A1 (en) Configured grant data termination indication
US20230217414A1 (en) Location of tracking reference signal availability information
WO2023168642A1 (en) Antenna panel unavailability indication
US20230163889A1 (en) Hybrid automatic repeat request (harq) codebook configurations indicating harq process identifiers
US20240089724A1 (en) Multiplexing at a forwarding node
US20230254870A1 (en) Default beam for cross-carrier scheduling with unified transmission configuration indicator
US20230362625A1 (en) Updated artificial intelligence or machine learning capabilities reporting
WO2023206326A1 (en) Uplink control multiplexing for multiple transmit receive points
WO2023159552A1 (en) Activation of unified transmission configuration indicator state
WO2024000215A1 (en) Semi-persistent scheduling resource activation for mobile terminated small data transmission
WO2023206434A1 (en) Unified transmission configuration indicator for a single frequency network
WO2024020987A1 (en) Non-active bandwidth parts for candidate cell operations in mobility
US20240089917A1 (en) Paging collision handling
WO2024011445A1 (en) Timing advance signaling for multiple transmit receive points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962992

Country of ref document: EP

Kind code of ref document: A1