WO2024085488A1 - Method for purifying 6fda with high purity - Google Patents

Method for purifying 6fda with high purity Download PDF

Info

Publication number
WO2024085488A1
WO2024085488A1 PCT/KR2023/014585 KR2023014585W WO2024085488A1 WO 2024085488 A1 WO2024085488 A1 WO 2024085488A1 KR 2023014585 W KR2023014585 W KR 2023014585W WO 2024085488 A1 WO2024085488 A1 WO 2024085488A1
Authority
WO
WIPO (PCT)
Prior art keywords
6fda
activated carbon
weight
parts
purification method
Prior art date
Application number
PCT/KR2023/014585
Other languages
French (fr)
Korean (ko)
Inventor
김봉석
우병원
정진아
마니쉬포크렐
최가람
홍덕기
Original Assignee
(주)후성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230126941A external-priority patent/KR20240055639A/en
Application filed by (주)후성 filed Critical (주)후성
Publication of WO2024085488A1 publication Critical patent/WO2024085488A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/04Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3

Definitions

  • the present invention relates to a method for purifying 6FDA, and more specifically, to a method for purifying 6FDA with high purity.
  • 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride is a high-performance polymer used in electronic materials such as fuel cells and displays, especially fluorinated polyimide. It is a useful compound used as a manufacturing raw material. This 6FDA can be polymerized with aromatic diamine to produce fluorinated polyimide. The fluorinated polyimide is soluble in various organic solvents, making it easy to produce and process, and has a very low water absorption rate, making it suitable for electronic materials in special optical applications.
  • JP2002-364998 publication includes the steps of dissolving the prepared 6FDA in a mixed solvent of ketone and acetic acid; Processing the dissolved 6FDA solution with activated carbon, cation exchange resin, chelating resin, etc.; Cooling the treated solution to produce 6FDA crystals; and obtaining purified 6FDA by separating the produced 6FDA crystals into solid and liquid by filtration or the like.
  • this purification method does not remove heavy metal impurities, requires an additional process to remove heavy metals, and has the problem of significantly lowering the yield in this heavy metal removal process.
  • the technical object of the present invention is to provide a high-purity purification method for unrefined 6FDA.
  • the present invention provides a high purity purification method for 6FDA.
  • the high-purity purification method of 6FDA includes a solution preparation step of preparing a mixed solution by dissolving unrefined 6FDA and an organic solvent at room temperature; A purification step of adding activated carbon and an aqueous phosphoric acid solution to the mixed solution, stirring, and filtering to obtain a purified product containing purified 6FDA; and a drying step of evaporating the organic solvent from the purified product and drying the remaining solid to obtain highly purified 6FDA.
  • the phosphoric acid aqueous solution may be contained in an amount of more than 0 parts by weight and less than 1.5 parts by weight based on 100 parts by weight of the unrefined 6FDA.
  • the surface of the activated carbon may contain phosphoric acid (H 3 PO 4 ).
  • the content of phosphorus (P) on the surface of the activated carbon may be more than 0 parts by weight and less than 4.29 parts by weight based on 100 parts by weight of the total element content.
  • the organic solvent is acetone, tetrahydrofuran (THF), acetonitrile (ACN), toluene, dimethylformamide (DMF), N-methyl-2-pyrrolidone ( It may be one selected from NMP, N-methyl-2-pyrrolidone) and xylene.
  • the total heavy metal content of the highly purified 6FDA may be less than 1 ppm.
  • the cobalt content of the highly purified 6FDA may be less than 50 ppb.
  • the YI (Yellow index) value of the highly purified 6FDA may be less than 1.
  • a filtration step of filtering the purified product by putting it into a metal ion purifier may be additionally performed.
  • the high-purity purification method of 6FDA of the present invention uses activated carbon and phosphoric acid together to remove heavy metal ion impurities contained in 6FDA in a single process, while maintaining excellent yield and producing high-quality and high-purity 6FDA.
  • Figure 1 is a graph showing the results of 31 P NMR analysis of a material having the chemical formulas H 3 PO 3 and H 3 PO 4 as a standard material for 31 P NMR.
  • Figure 2 is a graph showing the results of 31 P NMR analysis of activated carbon (AC.4179) used in the purification method according to an embodiment of the present invention.
  • Figure 3 is a graph showing the results of 31 P NMR analysis of activated carbon (AC.4180) used in the purification method according to an embodiment of the present invention.
  • Figure 4 is a graph showing the results of 31 P NMR analysis of activated carbon (AC.4181) used in the purification method according to an embodiment of the present invention.
  • Figure 5 shows the results of confirming the color of purified 6FDA according to the amount of phosphoric acid added in the purification method according to an embodiment of the present invention.
  • high purity purification or “refined to high purity” means purification of 99.3% or more, which is a quality that can be used as an electronic material raw material, and a total heavy metal content of less than 1 ppm.
  • the general manufacturing method of 6FDA is to react hexafluoroacetone (HFA) and ortho-xylene (o-xylene) under a hydrogen fluoride catalyst to produce 4,4'-(hexafluoroisopropylidene)bis(o-xylene).
  • 6FDA produced by this method contains heavy metals, by-products, unreacted raw materials or intermediate materials caused by the catalyst, and is usually purified before use.
  • a general purification method for 6FDA can be a cleaning method in which an acidic solvent, for example, a mixed solvent of acetic acid and acetic anhydride, is washed and dehydrated to perform an anhydration reaction. Meanwhile, in another general method, the unrefined 6FDA is heated in a mixed solvent, for example, heated to 50 to 80 °C, completely dissolved, treated with activated carbon, cation exchange resin, chelating resin, or zeta potential adsorption filter, and then the solution is cooled. A recrystallization method may also be used.
  • the purification of 6FDA is a series of processes that include a recrystallization process in which the anhydride ring is broken when dissolved in an organic solvent in the form of dianhydride, forming dicarboxylic acid, which is then dehydrated and dried. It can mean.
  • impurity metal ions can be purified or removed. Therefore, in the present invention, the purification method of 6FDA can be referred to in the same sense as the recrystallization method of 6FDA.
  • 6FDA When 6FDA is used as a raw material for electronic materials, specifically fluorinated polyimide films in the display field, it must be of fairly high quality, specifically a purity of 99.3% or more, a total heavy metal content of 1 ppm or less, and a YI (Yellow index) value of less than 1.
  • a high-quality 6FDA containing physical properties is required.
  • conventional general methods have limitations that make it difficult to remove even trace amounts of heavy metal ion impurities.
  • the yield is significantly reduced due to the addition of a process to remove trace amounts of heavy metals.
  • the high-purity purification method of 6FDA of the present invention has the feature of maintaining excellent yield while removing trace amounts of heavy metal ion impurities in a single process.
  • the high-purity purification method of 6FDA of the present invention may first include a solution preparation step of preparing a mixed solution by dissolving unrefined 6FDA and an organic solvent at room temperature.
  • the crude 6FDA may be in the form of dianhydride and may contain impurity metals and/or impurity metal ions.
  • the impurity metal may include at least one selected from alkali metals, alkaline earth metals, transition metals, post-transition metals, and combinations thereof.
  • the ion of the impurity metal is at least one cation selected from alkali metal, alkaline earth metal, transition metal, post-transition metal, and combinations thereof, and includes metal cations derived from at least some catalysts used in the 6FDA synthesis reaction. can do.
  • the metal cation specifically includes alkali metals such as lithium (Li), sodium (Na), and potassium (K); Alkaline earth metals such as magnesium (Mg), calcium (Ca), and barium (Ba); Transition metals such as chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), and zinc (Zn); and post-transition metals such as aluminum (Al), indium (In), and lead (Pb); and may include at least one selected from cations.
  • alkali metals such as lithium (Li), sodium (Na), and potassium (K)
  • Alkaline earth metals such as magnesium (Mg), calcium (Ca), and barium (Ba)
  • Transition metals such as chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), and zinc (Zn
  • post-transition metals such as aluminum (Al), indium (In
  • the organic solvent may be a non-polar to low polarity solvent that can dissolve 6FDA, and since solvents such as alcohols, amines, and amides are reactive with 6FDA, they can be used as organic solvents that are not reactive with 6FDA.
  • the organic solvent is acetone, tetrahydrofuran (THF), acetonitrile (ACN), toluene, dimethylformamide (DMF), N-methyl-2- It may be one selected from pyrrolidone (NMP, N-methyl-2-pyrrolidone) and xylene, and specifically acetone may be used, but is not limited thereto.
  • the organic solvent can be used as a single solvent, and has the advantage of shortening the purification process because fewer types of solvents are used compared to using a general mixed solvent of acetic acid and ketone.
  • the step of dissolving the crude 6FDA and the organic solvent can be performed at room temperature.
  • the room temperature may specifically mean 15 to 35°C, and more specifically 20 to 30°C.
  • the crude 6FDA can be mostly, for example, completely dissolved in the organic solvent without heating.
  • a purification step may be performed in which activated carbon and an aqueous phosphoric acid solution are added to the mixed solution, stirred, and filtered to obtain a purified product.
  • the activated carbon is a porous carbon material with fine pores with a diameter of 10,000 to 100,000 ⁇ and a large specific surface area, and can serve to remove impurity metal ions using an excellent adsorption phenomenon.
  • the impurity metals and/or metal ions can be easily adsorbed through chemical bonds with the adsorbent through functional groups such as carboxyl and lactone groups present on the surface of activated carbon. As the amount of the functional group increases, the amount of metal ion adsorption may increase.
  • the activated carbon may be subjected to surface modification, such as coating the carbon surface with a metal oxide that does not attract ⁇ electrons, in order to increase the adsorption of metal ions.
  • the specific surface area of the activated carbon can be measured through a specific surface area analyzer (BET), and its value may be 500 to 2500 m 2 /g, more specifically 700 to 2000 m 2 /g, one embodiment It may be 1000 to 1700 m 2 /g, but is not limited thereto.
  • BET specific surface area analyzer
  • the total pore volume of the activated carbon may be specifically 0.001 to 1.5 cm 2 /g, more specifically 0.01 to 1.3 cm 2 /g, and in one embodiment, 0.1 to 1.1 cm 2 /g. , but is not limited to this.
  • the average pore size of the activated carbon may be specifically 15 to 70 ⁇ , more specifically 20 to 60 ⁇ , and in one embodiment, 25 to 55 ⁇ , but is limited thereto. It doesn't work.
  • the activated carbon used in the present invention may contain phosphoric acid on its surface and inside.
  • the phosphoric acid is an acidic substance with the chemical formula H 3 PO 4 and can be physically coated or chemically bonded to the surface of activated carbon.
  • ions derived from the phosphoric acid (H 3 PO 4 ) for example, phosphate ions (PO 4 3- ), dihydrogen phosphate ions (H 2 PO 4 - ), or hydrogen phosphate ions (HPO 4 2- ).
  • the functional group may be bound to the surface of activated carbon.
  • the content of phosphorus (P) on the surface of the activated carbon is specifically 0 to 15 parts by weight based on 100 parts by weight of the total element content, more specifically, more than 0 parts by weight and less than 10 parts by weight, and more than 0 parts by weight and 5 parts by weight. It may be less than, and in one embodiment, may be more than 0 parts by weight and less than 4.29 parts by weight, but is not limited thereto.
  • the metal removal ability is not excellent, while the phosphorus (P) content on the surface of the activated carbon is 4.29 parts by weight or more.
  • the metal removal ability is reduced due to the addition of phosphoric acid (H 3 PO 4 ), which will be described later. can be effectively improved.
  • the amount of phosphoric acid (H 3 PO 4 ) to be added increases, so there is a possibility that yellowing may occur.
  • the surface of the activated carbon contains a trace amount of phosphorus (P), specifically less than 1 part by weight, more specifically 0.08 part by weight, the addition of a small amount of phosphoric acid (H 3 PO 4 ) does not cause yellowing. It can exhibit excellent metal removal ability.
  • P trace amount of phosphorus
  • H 3 PO 4 phosphoric acid
  • the phosphoric acid (H 3 PO 4 ) aqueous solution added together with activated carbon in the mixed solution may be a commercially available phosphoric acid aqueous solution with a concentration of 85 wt%.
  • the amount of phosphoric acid (H 3 PO 4 ) aqueous solution added may be more than 0 parts by weight and less than 10 parts by weight, and specifically, it may be more than 0 parts by weight and less than 1.5 parts by weight, based on 100 parts by weight of the unrefined 6FDA. If there is no amount of phosphoric acid aqueous solution added, the metal removal ability cannot be effectively demonstrated. On the other hand, if it is added in an amount of 1.5 parts by weight or more, the amount of phosphorus (P) that causes yellowing phenomenon in the mixed solution increases, resulting in the final product. Yellowing may occur in purified 6FDA.
  • an additional step of filtering the purified product by putting it into a metal ion purifier may be performed.
  • the metal ion purification filter may be a porous filter used to remove metals and/or metal ions as impurities in a mixed solution containing 6FDA.
  • the impurity metals and/or metal ions that can be removed through the metal ion purification filter are at least one selected from alkali metals, alkaline earth metals, transition metals, post-transition metals, and combinations thereof, and are mainly derived from catalysts of chemical reactions.
  • Cations specifically alkali metals such as lithium (Li), sodium (Na), and potassium (K); Alkaline earth metals such as magnesium (Mg), calcium (Ca), and barium (Ba); Transition metals such as chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), and zinc (Zn); and post-transition metals such as aluminum (Al), indium (In), and lead (Pb); and may include at least one selected from cations.
  • alkali metals such as lithium (Li), sodium (Na), and potassium (K
  • Alkaline earth metals such as magnesium (Mg), calcium (Ca), and barium (Ba)
  • Transition metals such as chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), and zinc (Zn)
  • post-transition metals such as aluminum (Al), indium (In), and lead (
  • an ion exchange resin having a functional group that can bind to the cation of the metal for example, a strongly acidic cation exchange resin or a chelate ion exchange resin, may be included in a polymer matrix, for example, a polyethylene matrix.
  • the purification step may be a single process in which the filtration step of the mixed solution is performed once.
  • a drying step may be performed in which the organic solvent is evaporated from the purified product and the remaining solid is dried.
  • Evaporation of the organic solvent may be performed using a rotary evaporation concentrator, specifically for evaporating acetone.
  • the drying step may be performed at a high temperature compared to room temperature, specifically 50 to 100°C, more specifically 70 to 90°C, but is not limited thereto.
  • the total heavy metal content in highly purified 6FDA which is the final product of the present invention, may be less than 1 ppm, specifically less than 900 ppb, more specifically less than 800 ppb, and even more specifically less than 500 ppb.
  • the cobalt content in the highly purified 6FDA may be less than 50 ppb, specifically less than 40 ppb, and more specifically less than 30 ppb.
  • the YI (Yellow index) value of the highly purified 6FDA may be less than 1.
  • Crude 6FDA is used with a purity of approximately 99.23% and a Co content of approximately 195 ppm.
  • a mixed solution was prepared by adding 700 g of electronic-grade acetone to 100 g of the unrefined 6FDA. AC in powder form in the mixed solution. 10 g of 4181 activated carbon (Shinki Chemical Industry Co., Ltd.) was added and stirred for one hour. Afterwards, activated carbon was removed through a reduced pressure filter to obtain a first purified product. The first purified product was filtered through a metal ion purifier (MIP) filter to obtain a second purified product. Then, the second purified solution was evaporated to remove acetone using a rotary evaporator to obtain a solid, which was vacuum dried at 80°C to obtain purified 6FDA. HPLC and ICP-OES analysis were performed using this.
  • MIP metal ion purifier
  • Comparative Example 2 AC without MIP filter. 4181 6FDA purified using activated carbon only
  • acetone was evaporated from the first purified product solution using a rotary evaporator to obtain a solid, which was vacuum dried at 80° C. to obtain purified 6FDA.
  • Purified 6FDA was obtained using the same method as Comparative Example 2, except that activated carbon (AC. 4180) was used instead of activated carbon (AC. 4181).
  • Purified 6FDA was obtained using the same method as Comparative Example 2, except that activated carbon (AC. 4179) was used instead of activated carbon (AC. 4181).
  • Purified 6FDA was obtained using the same method as Comparative Example 1, except that a Zeta filter was used instead of the MIP filter.
  • Examples 1 to 7 AC. 4179 6FDA purification by adding phosphoric acid aqueous solution to activated carbon
  • the unrefined 6FDA has a purity of about 99.23% and a Co content of about 195 ppm.
  • a mixed solution was prepared by adding 700 g of acetone of electronic purity to 100 g of the unrefined 6FDA. AC in powder form in the mixed solution. 4179 0.5 parts by weight (Example 1), 1 part by weight (Example 2), 1.5 parts by weight (Example 3), 2 parts by weight (Example 4), relative to the weight of 10 g of activated carbon and the crude 6FDA. 3 parts by weight (Example 5), 5 parts by weight (Example 6), and 10 parts by weight (Example 7) of phosphoric acid (H 3 PO 4 ) aqueous solution were added and stirred for one hour.
  • H 3 PO 4 phosphoric acid
  • the phosphoric acid (H 3 PO 4 ) aqueous solution used at this time was a phosphoric acid aqueous solution with a concentration of 85 wt%.
  • activated carbon was removed through a reduced pressure filter to obtain a purified product.
  • the purified solution was evaporated to remove acetone using a rotary evaporator to obtain a solid, which was vacuum dried at 80°C to obtain purified 6FDA.
  • HPLC and ICP-OES analysis were performed on 6FDA purified according to the purification method of the above-mentioned comparative examples and examples, and quantitative analysis was performed on activated carbon by SEM-EDS (Scanning electron microscopy-energy dispersive X-ray spectroscopy). As a result, are shown in Tables 1 to 7 and Figures 1 to 5 below.
  • Table 1 shows the results of HPLC and ICP-OES analysis of 6FDA purified according to the purification method according to a comparative example of the present invention.
  • Table 2 is a table comparing characteristics according to the type of activated carbon according to an embodiment of the present invention.
  • the types of activated carbon are AC.4180 (used in Comparative Example 3) and AC.
  • the specific surface area (BET) and total pore volume are AC. Although 4179 is large, the average pore size is AC. You can see that 4180 is large. AC.
  • 4181 used in Comparative Examples 1 and 2), the specific surface area, total pore volume, and average pore size all showed the lowest values.
  • Table 3 is a table showing the results of HPLC and ICP-OES analysis of purified 6FDA according to the type of activated carbon according to an embodiment of the present invention.
  • Comparative Example 3 showed the best metal removal ability, but it was confirmed that 6FDA purified through Comparative Example 3 was brown and showed yellowing when observed with the naked eye.
  • 1 to 4 are graphs showing the results of 31 P NMR analysis of activated carbon used in the purification method according to an embodiment of the present invention.
  • Figure 1 shows the 31 P NMR analysis results of materials having the chemical formulas H 3 PO 3 and H 3 PO 4 , compared to activated carbon AC.
  • 4180 used in Comparative Example 3
  • 4180 contains phosphorous acid.
  • the 31 P NMR peak does not exist.
  • AC contains a trace amount of phosphorus (P) on the surface.
  • Table 4 shows the HPLC analysis results of recrystallized 6FDA with the addition of phosphoric acid according to an embodiment of the present invention.
  • a solution is prepared by adding 50 ml of electronic grade acetic anhydride to 20 g of solid 6FDA, and phosphoric acid (H 3 PO 4 ) is added to the solution and stirred for one hour.
  • the amount of phosphoric acid (H 3 PO 4 ) added is 1, 5, and 10 parts by weight based on 100 parts by weight of 6FDA.
  • the phosphoric acid (H 3 PO 4 ) used was an aqueous phosphoric acid solution with a concentration of 85 wt%. After stirring is completed, it is left in the freezer for 12 hours and filtered through a Buchner funnel to obtain purified 6FDA.
  • Activated carbon type Element content on the surface of activated carbon (average value, unit: parts by weight) C O Al Si P S Cl Ca AC. 4181 91.49 3.67 1.04 1.89 0.00 2.59 0.00 0.11 AC. 4180 85.30 9.65 0.00 0.45 4.29 0.32 0.00 0.00 AC. 4179 90.90 7.07 0.23 1.15 0.08 0.03 0.54 0.00
  • Table 5 shows the results of SEM-EDS (Scanning electron microscopy-energy dispersive X-ray spectroscopy) quantitative analysis measured on the surface of activated carbon according to the type of activated carbon according to an embodiment of the present invention.
  • activated carbon AC The highest phosphorus (P) content was detected in the surface chemical composition of 4180, specifically activated carbon AC. 4180 and AC. It can be confirmed that 4179 contains 4.29 parts by weight and 0.08 parts by weight of phosphorus (P), respectively, based on 100 parts by weight of the total element content. Therefore, AC. It can be inferred that 4179 contains a trace amount of phosphoric acid (H 3 PO 4 ).
  • Table 6 shows the ICP-OES results of purified 6FDA according to the amount of phosphoric acid aqueous solution added according to an embodiment of the present invention.
  • Figure 5 shows the results of confirming the color of purified 6FDA according to the amount of phosphoric acid added according to an embodiment of the present invention.
  • Table 7 shows the purification method according to an example and a comparative example of the present invention, when activated carbon alone (Comparative Example 4), phosphoric acid alone (Comparative Examples 7 and 8), and activated carbon and phosphoric acid were used together (Example 1, This is the ICP-OES result of the purified 6FDA in 2).
  • activated carbon and phosphoric acid (H 3 PO 4 ) aqueous solution should be used together to achieve excellent metal removal ability in the purification method of 6-FDA according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for purifying 6FDA with high purity. According to the present invention, the use of activated carbon and phosphoric acid together in the purification process makes it possible to remove heavy metal ion impurities contained in 6FDA in a single process while maintaining an excellent yield, thereby enabling the production of high-quality and high-purity 6FDA.

Description

6FDA의 고순도 정제방법6FDA’s high purity purification method
본 발명은 6FDA의 정제방법에 관한 것으로, 더욱 상세하게는 6FDA의 고순도 정제방법에 관한 것이다.The present invention relates to a method for purifying 6FDA, and more specifically, to a method for purifying 6FDA with high purity.
4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(6FDA, 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride)는 연료전지, 디스플레이 등의 전자재료에 쓰이는 고기능성 고분자, 특히 플루오르화 폴리이미드의 제조원료로 사용되는 유용한 화합물이다. 이러한 6FDA는 방향족 디아민(diamine)과 중합하여 플루오르화 폴리이미드를 제조할 수 있다. 상기 플루오르화 폴리이미드는 다양한 유기용매에 용해가 가능하여 생산 및 가공이 용이하며, 물 흡수율이 매우 낮아 특수 광학 응용 분야의 전자재료에 적합한 장점이 있다. 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA, 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) is a high-performance polymer used in electronic materials such as fuel cells and displays, especially fluorinated polyimide. It is a useful compound used as a manufacturing raw material. This 6FDA can be polymerized with aromatic diamine to produce fluorinated polyimide. The fluorinated polyimide is soluble in various organic solvents, making it easy to produce and process, and has a very low water absorption rate, making it suitable for electronic materials in special optical applications.
그런데, 전자재료에 쓰이는 폴리이미드 원료로서 6FDA를 사용할 경우, 상기 6FDA는 순도 99.3% 이상, 중금속 총 함유량 1ppm 미만, 구체적으로는 900 ppb 미만으로 정제하는 것이 바람직하다.However, when using 6FDA as a polyimide raw material used in electronic materials, it is desirable to purify the 6FDA to a purity of 99.3% or more and a total heavy metal content of less than 1 ppm, specifically less than 900 ppb.
종래 6FDA의 정제방법에 있어서, JP2002-364998호 공보에서는 조제된 6FDA를 케톤과 초산과의 혼합용매에 용해시키는 단계; 용해된 6FDA 용액을 활성탄, 양이온 교환수지, 킬레이트 수지 등에서 처리하는 단계; 처리된 용액을 냉각해서 6FDA 결정을 생성시키는 단계; 및 생성된 6FDA 결정을 여과 등으로 고액분리함으로써 정제된 6FDA를 얻는 단계를 포함하는 6FDA의 정제방법을 개시하였다. 그러나, 이러한 정제방법은 중금속 불순물을 제거하지 못하며, 중금속을 제거하는 공정을 추가하여야 하며, 이러한 중금속 제거 공정에서 수율이 현저히 저하되는 문제점이 있었다.In the conventional purification method of 6FDA, JP2002-364998 publication includes the steps of dissolving the prepared 6FDA in a mixed solvent of ketone and acetic acid; Processing the dissolved 6FDA solution with activated carbon, cation exchange resin, chelating resin, etc.; Cooling the treated solution to produce 6FDA crystals; and obtaining purified 6FDA by separating the produced 6FDA crystals into solid and liquid by filtration or the like. However, this purification method does not remove heavy metal impurities, requires an additional process to remove heavy metals, and has the problem of significantly lowering the yield in this heavy metal removal process.
이에 정제방법의 단계를 간소화하면서도 중금속 불순물을 제거하고 높은 수율을 갖는 6FDA의 고순도 정제방법이 여전히 요구되는 실정이다.Accordingly, a high-purity purification method of 6FDA that simplifies the purification method steps, removes heavy metal impurities, and has high yield is still required.
본 발명의 기술적 과제는 미정제된 6FDA의 고순도 정제방법을 제공하는 것이다.The technical object of the present invention is to provide a high-purity purification method for unrefined 6FDA.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기 과제를 해결하기 위하여, 본 발명은 6FDA의 고순도 정제방법을 제공한다. 상기 6FDA의 고순도 정제방법은 미정제된 6FDA와 유기용매를 실온에서 용해하여 혼합용액을 준비하는 용액 제조 단계; 상기 혼합용액에 활성탄 및 인산 수용액을 첨가하여 교반하고 여과하여, 정제된 6FDA을 포함하는 정제물을 수득하는 정제단계; 및 상기 정제물에서 유기용매를 증발시키고 남은 고체를 건조하여 고순도로 정제된 6FDA를 수득하는 건조단계;를 포함한다.In order to solve the above problems, the present invention provides a high purity purification method for 6FDA. The high-purity purification method of 6FDA includes a solution preparation step of preparing a mixed solution by dissolving unrefined 6FDA and an organic solvent at room temperature; A purification step of adding activated carbon and an aqueous phosphoric acid solution to the mixed solution, stirring, and filtering to obtain a purified product containing purified 6FDA; and a drying step of evaporating the organic solvent from the purified product and drying the remaining solid to obtain highly purified 6FDA.
상기 인산 수용액은 상기 미정제된 6FDA 100 중량부에 대하여 0 중량부 초과 1.5 중량부 미만으로 포함되는 것일 수 있다.The phosphoric acid aqueous solution may be contained in an amount of more than 0 parts by weight and less than 1.5 parts by weight based on 100 parts by weight of the unrefined 6FDA.
상기 활성탄의 표면에 인산(H3PO4)을 포함할 수 있다.The surface of the activated carbon may contain phosphoric acid (H 3 PO 4 ).
상기 활성탄의 표면에서 인(P)의 함량은 원소 함량의 총합 100 중량부에 대하여 0 중량부 초과 4.29 중량부 미만일 수 있다.The content of phosphorus (P) on the surface of the activated carbon may be more than 0 parts by weight and less than 4.29 parts by weight based on 100 parts by weight of the total element content.
상기 유기용매는 아세톤(Acetone), 테트라하이드로퓨란(THF, Tetrahydrofuran), 아세토니트릴(ACN, Acetonitrile), 톨루엔(Toluene), 디메틸포름아미드(DMF, Dimethylformamide), N-메틸-2-피롤리돈(NMP, N-methyl-2-pyrrolidone) 및 자일렌(xylene) 중 선택되는 1종일 수 있다.The organic solvent is acetone, tetrahydrofuran (THF), acetonitrile (ACN), toluene, dimethylformamide (DMF), N-methyl-2-pyrrolidone ( It may be one selected from NMP, N-methyl-2-pyrrolidone) and xylene.
상기 고순도로 정제된 6FDA의 총 중금속 함유량은 1 ppm 미만일 수 있다.The total heavy metal content of the highly purified 6FDA may be less than 1 ppm.
상기 고순도로 정제된 6FDA의 코발트 함유량은 50 ppb 미만일 수 있다.The cobalt content of the highly purified 6FDA may be less than 50 ppb.
상기 고순도로 정제된 6FDA의 YI(Yellow index) 값은 1 미만일 수 있다.The YI (Yellow index) value of the highly purified 6FDA may be less than 1.
상기 정제단계 이후 건조단계 이전에, 상기 정제물을 금속 이온 정제 필터(Metal Ion Purifier)에 투입하여 여과하는 여과단계가 추가적으로 수행될 수 있다.After the purification step and before the drying step, a filtration step of filtering the purified product by putting it into a metal ion purifier may be additionally performed.
본 발명의 6FDA의 고순도 정제방법은 활성탄과 인산을 함께 사용함으로써, 6FDA 내에 포함된 중금속 이온 불순물을 단일 공정으로 제거하면서도 우수한 수율을 유지하면서 고품질 및 고순도의 6FDA를 제조할 수 있다. The high-purity purification method of 6FDA of the present invention uses activated carbon and phosphoric acid together to remove heavy metal ion impurities contained in 6FDA in a single process, while maintaining excellent yield and producing high-quality and high-purity 6FDA.
도 1은 31P NMR 상 표준(standard) 물질로서, 화학식 H3PO3 및 H3PO4를 갖는 물질의 31P NMR 분석 결과를 나타낸 그래프이다.Figure 1 is a graph showing the results of 31 P NMR analysis of a material having the chemical formulas H 3 PO 3 and H 3 PO 4 as a standard material for 31 P NMR.
도 2는 본 발명의 일 실시예에 따른 정제방법에 사용된 활성탄(AC.4179)의 31P NMR 분석 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of 31 P NMR analysis of activated carbon (AC.4179) used in the purification method according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 정제방법에 사용된 활성탄(AC.4180)의 31P NMR 분석 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of 31 P NMR analysis of activated carbon (AC.4180) used in the purification method according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 정제방법에 사용된 활성탄(AC.4181)의 31P NMR 분석 결과를 나타낸 그래프이다.Figure 4 is a graph showing the results of 31 P NMR analysis of activated carbon (AC.4181) used in the purification method according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 정제방법에 있어서, 인산 첨가량에 따른 정제된 6FDA의 색상을 확인한 결과이다.Figure 5 shows the results of confirming the color of purified 6FDA according to the amount of phosphoric acid added in the purification method according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can be subject to various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification of the present application, when a part “includes” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에서 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.The terms "about", "substantially", etc. used throughout the specification herein are used to mean at or close to that value when a material tolerance is given in the stated sense, and are used accurately or closely to aid understanding of the present application. Absolute values are used to prevent unscrupulous infringers from taking unfair advantage of the stated disclosure.
본원 명세서 전체에서 "고순도 정제" 또는 "고순도로 정제된"은 전자재료 원료로 사용될 수 있는 품질인 순도 99.3% 이상, 중금속 총 함유량 1 ppm 미만으로 정제된 것을 의미한다.Throughout the specification herein, “high purity purification” or “refined to high purity” means purification of 99.3% or more, which is a quality that can be used as an electronic material raw material, and a total heavy metal content of less than 1 ppm.
6FDA의 고순도 정제방법6FDA’s high purity purification method
6FDA의 일반적인 제조방법은 헥사플루오로아세톤(HFA, Hexafluoroacetone)과 오르토자일렌(o-xylene)을 불화수소 촉매 하에서 반응하여 4,4'-(헥사플루오로이소프로필리덴)비스(o-자일렌)(6FXP, 4,4'-(Hexafluoroisopropylidene)bis(o-xylene))을 합성하고, 이것을 과망간산칼륨으로 산화하여 4,4'-(헥사플루오로이소프로필리덴)디프탈산(6FTA, 4,4'-(Hexafluoroisopropylidene)diphthalic acid)을 제조하고, 이를 탈수 반응하여 이무수물(dianhydride) 형태의 6FDA를 제조할 수 있다. The general manufacturing method of 6FDA is to react hexafluoroacetone (HFA) and ortho-xylene (o-xylene) under a hydrogen fluoride catalyst to produce 4,4'-(hexafluoroisopropylidene)bis(o-xylene). )(6FXP, 4,4'-(Hexafluoroisopropylidene)bis(o-xylene)) was synthesized and oxidized with potassium permanganate to produce 4,4'-(hexafluoroisopropylidene)diphthalic acid (6FTA, 4,4 '-(Hexafluoroisopropylidene)diphthalic acid) can be manufactured and then dehydrated to produce 6FDA in the form of dianhydride.
이러한 방법으로 제조된 6FDA는 촉매에 의한 중금속, 부생성물, 미반응 원료 또는 중간체 물질 등을 함유하고 있으므로 통상은 정제하여 사용한다. 일반적인 6FDA의 정제방법으로는 산성 용매, 예를 들어 초산 및 초산무수물의 혼합용매로 세정하고 탈수하여 무수화 반응을 수행하는 세정 방법을 사용할 수 있다. 한편, 일반적인 다른 방법으로 미정제된 6FDA를 혼합용매에 가열하며, 예컨대 50 내지 80 ℃로 가열하며 완전히 용해시키고 활성탄, 양이온 교환 수지, 킬레이트 수지 또는 제타 전위 흡착 필터 등으로 처리하고 이후 용액을 냉각하는 재결정 방법을 사용할 수도 있다. 6FDA produced by this method contains heavy metals, by-products, unreacted raw materials or intermediate materials caused by the catalyst, and is usually purified before use. A general purification method for 6FDA can be a cleaning method in which an acidic solvent, for example, a mixed solvent of acetic acid and acetic anhydride, is washed and dehydrated to perform an anhydration reaction. Meanwhile, in another general method, the unrefined 6FDA is heated in a mixed solvent, for example, heated to 50 to 80 ℃, completely dissolved, treated with activated carbon, cation exchange resin, chelating resin, or zeta potential adsorption filter, and then the solution is cooled. A recrystallization method may also be used.
6FDA의 정제는 디안하이드라이드(dianhydride)의 형태로 유기용매에 용해할 시 무수물 고리가 끊어지며 디카르복실산(dicarboxylic acid)를 형성하며, 이를 다시 탈수하고 건조하는 재결정 과정을 포함하는 일련의 과정을 의미할 수 있다. 상기 재결정 과정에서 불순물 금속 이온을 정제 또는 제거할 수 있다. 따라서, 본 발명에서 6FDA의 정제방법이라 함은 6FDA의 재결정 방법과 같은 의미로 일컬어 질 수 있다. The purification of 6FDA is a series of processes that include a recrystallization process in which the anhydride ring is broken when dissolved in an organic solvent in the form of dianhydride, forming dicarboxylic acid, which is then dehydrated and dried. It can mean. In the recrystallization process, impurity metal ions can be purified or removed. Therefore, in the present invention, the purification method of 6FDA can be referred to in the same sense as the recrystallization method of 6FDA.
6FDA를 특히 전자재료의 원료, 구체적으로 디스플레이 분야의 플루오르화 폴리이미드 필름의 원료로 사용할 경우, 상당히 높은 품질, 구체적으로 순도 99.3 % 이상, 중금속 총 함유량 1 ppm 이하 및 YI(Yellow index) 값 1 미만의 물성을 포함하는 고품질의 6FDA가 요구된다. 그러나, 종래 일반적인 방법들로는 미량의 중금속 이온 불순물까지 제거가 어려운 한계점이 있다. 또한, 이와 더불어 극미량의 중금속을 제거하는 공정이 추가됨으로 인해 수율이 현저히 저하되는 문제점이 있다. When 6FDA is used as a raw material for electronic materials, specifically fluorinated polyimide films in the display field, it must be of fairly high quality, specifically a purity of 99.3% or more, a total heavy metal content of 1 ppm or less, and a YI (Yellow index) value of less than 1. A high-quality 6FDA containing physical properties is required. However, conventional general methods have limitations that make it difficult to remove even trace amounts of heavy metal ion impurities. In addition, there is a problem in that the yield is significantly reduced due to the addition of a process to remove trace amounts of heavy metals.
본 발명의 6FDA의 고순도 정제방법은 극미량의 중금속 이온 불순물을 단일 공정으로 제거하면서도 우수한 수율을 유지하는 특징이 있다. The high-purity purification method of 6FDA of the present invention has the feature of maintaining excellent yield while removing trace amounts of heavy metal ion impurities in a single process.
본 발명의 6FDA의 고순도 정제방법은 먼저, 미정제된 6FDA와 유기용매를 실온에서 용해하여 혼합용액을 준비하는 용액 제조 단계가 수행될 수 있다.The high-purity purification method of 6FDA of the present invention may first include a solution preparation step of preparing a mixed solution by dissolving unrefined 6FDA and an organic solvent at room temperature.
상기 미정제된 6FDA는 이무수물(dianhydride) 형태일 수 있고, 불순물 금속 및/또는 불순물 금속 이온을 포함할 수 있다. 상기 불순물 금속은 알칼리금속, 알칼리토금속, 전이금속, 전이후금속 및 이들의 조합 중 선택되는 적어도 하나 이상을 포함할 수 있다. 또한, 상기 불순물 금속의 이온은 알칼리금속, 알칼리토금속, 전이금속, 전이후금속 및 이들의 조합 중 선택되는 적어도 하나 이상의 양이온으로서 6FDA 합성 반응에 사용된 적어도 일부의 촉매로부터 유래되는 금속의 양이온을 포함할 수 있다. 상기 금속 양이온은 구체적으로, 리튬(Li), 나트륨(Na), 칼륨(K) 등의 알칼리금속; 마그네슘(Mg), 칼슘(Ca), 바륨(Ba) 등의 알칼리토금속; 크롬(Cr), 망간(Mn), 철(Fe), 니켈(Ni), 코발트(Co), 구리(Cu), 아연(Zn) 등의 전이금속; 및 알루미늄(Al), 인듐(In), 납(Pb) 등의 전이후금속;의 양이온들 중 선택되는 적어도 하나 이상을 포함할 수 있다.The crude 6FDA may be in the form of dianhydride and may contain impurity metals and/or impurity metal ions. The impurity metal may include at least one selected from alkali metals, alkaline earth metals, transition metals, post-transition metals, and combinations thereof. In addition, the ion of the impurity metal is at least one cation selected from alkali metal, alkaline earth metal, transition metal, post-transition metal, and combinations thereof, and includes metal cations derived from at least some catalysts used in the 6FDA synthesis reaction. can do. The metal cation specifically includes alkali metals such as lithium (Li), sodium (Na), and potassium (K); Alkaline earth metals such as magnesium (Mg), calcium (Ca), and barium (Ba); Transition metals such as chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), and zinc (Zn); and post-transition metals such as aluminum (Al), indium (In), and lead (Pb); and may include at least one selected from cations.
상기 유기용매는 6FDA를 용해할 수 있으면서 비극성 내지 낮은 극성을 갖는 용매일 수 있고, 또한 알코올, 아민, 아미드 등의 용매는 6FDA와 반응성이 있으므로 이들을 제외한 6FDA와 반응성이 없는 유기용매로 사용 가능하다. 예를 들어, 상기 유기용매는 아세톤(Acetone), 테트라하이드로퓨란(THF, Tetrahydrofuran), 아세토니트릴(ACN, Acetonitrile), 톨루엔(Toluene), 디메틸포름아미드(DMF, Dimethylformamide), N-메틸-2-피롤리돈(NMP, N-methyl-2-pyrrolidone) 및 자일렌(xylene) 중 선택되는 1종일 수 있고, 구체적으로 아세톤을 사용할 수 있으나, 이에 제한되는 것은 아니다. The organic solvent may be a non-polar to low polarity solvent that can dissolve 6FDA, and since solvents such as alcohols, amines, and amides are reactive with 6FDA, they can be used as organic solvents that are not reactive with 6FDA. For example, the organic solvent is acetone, tetrahydrofuran (THF), acetonitrile (ACN), toluene, dimethylformamide (DMF), N-methyl-2- It may be one selected from pyrrolidone (NMP, N-methyl-2-pyrrolidone) and xylene, and specifically acetone may be used, but is not limited thereto.
특히, 상기 유기용매는 1종의 단일 용매로 사용될 수 있으며, 일반적인 초산 및 케톤의 혼합용매를 사용하는 것에 대비하여 사용되는 용매의 종류가 적으므로, 정제 공정을 단축시키는 장점이 있다.In particular, the organic solvent can be used as a single solvent, and has the advantage of shortening the purification process because fewer types of solvents are used compared to using a general mixed solvent of acetic acid and ketone.
미정제된 6FDA와 유기용매를 용해하는 단계는 실온에서 수행될 수 있다. 상기 실온이라 함은, 구체적으로 15 내지 35 ℃, 더욱 구체적으로 20 내지 30 ℃을 의미할 수 있다. 상기 용해 단계를 통해 가열하지 않고도 미정제된 6FDA가 유기용매 내로 대부분, 예컨대 완전히 용해될 수 있다. The step of dissolving the crude 6FDA and the organic solvent can be performed at room temperature. The room temperature may specifically mean 15 to 35°C, and more specifically 20 to 30°C. Through the above dissolution step, the crude 6FDA can be mostly, for example, completely dissolved in the organic solvent without heating.
이후, 상기 혼합용액에 활성탄 및 인산 수용액을 첨가하여 교반하고 여과하여 정제물을 수득하는 정제단계가 수행될 수 있다. Thereafter, a purification step may be performed in which activated carbon and an aqueous phosphoric acid solution are added to the mixed solution, stirred, and filtered to obtain a purified product.
상기 활성탄은 1 내지 10만 Å 직경의 미세한 구멍이 있어 비표면적이 큰 다공성의 탄소재로서, 우수한 흡착 현상을 이용하여 불순물 금속 이온을 제거하는 역할을 할 수 있다. 상기 불순물 금속 및/또는 금속 이온들은 활성탄의 표면에 존재하는 카르복시기(carboxyl), 락톤기(lactone) 등의 작용기들이 피흡착질과 화학적 결합으로 잘 흡착할 수 있다. 상기 작용기의 양이 많아질수록 금속 이온의 흡착양은 증가할 수 있다. 또한, 상기 활성탄은 금속 이온의 흡착성을 높이기 위해 π 전자를 흡인하지 않는 금속산화물 등을 탄소표면에 입히는 등의 표면 개질이 수행될 수도 있다.The activated carbon is a porous carbon material with fine pores with a diameter of 10,000 to 100,000 Å and a large specific surface area, and can serve to remove impurity metal ions using an excellent adsorption phenomenon. The impurity metals and/or metal ions can be easily adsorbed through chemical bonds with the adsorbent through functional groups such as carboxyl and lactone groups present on the surface of activated carbon. As the amount of the functional group increases, the amount of metal ion adsorption may increase. In addition, the activated carbon may be subjected to surface modification, such as coating the carbon surface with a metal oxide that does not attract π electrons, in order to increase the adsorption of metal ions.
구체적으로, 상기 활성탄의 비표면적은 비표면적 분석기(BET)를 통해 측정할 수 있고, 이의 값은 500 내지 2500 m2/g일 수 있고, 더욱 구체적으로 700 내지 2000 m2/g, 일 구체예에서 1000 내지 1700 m2/g일 수 있으나, 이에 제한되는 것은 아니다. Specifically, the specific surface area of the activated carbon can be measured through a specific surface area analyzer (BET), and its value may be 500 to 2500 m 2 /g, more specifically 700 to 2000 m 2 /g, one embodiment It may be 1000 to 1700 m 2 /g, but is not limited thereto.
또한, 상기 활성탄의 총 기공 부피(Total pore volume)는, 구체적으로 0.001 내지 1.5 cm2/g, 보다 구체적으로 0.01 내지 1.3 cm2/g, 일 구체예에서 0.1 내지 1.1 cm2/g일 수 있으나, 이에 제한되는 것은 아니다.In addition, the total pore volume of the activated carbon may be specifically 0.001 to 1.5 cm 2 /g, more specifically 0.01 to 1.3 cm 2 /g, and in one embodiment, 0.1 to 1.1 cm 2 /g. , but is not limited to this.
나아가, 상기 활성탄의 평균 기공 크기(Average pore size)는, 구체적으로 15 내지 70 Å일 수 있고, 보다 구체적으로 20 내지 60 Å일 수 있고, 일 구체예에서 25 내지 55 Å일 수 있으나, 이에 제한되는 것은 아니다. Furthermore, the average pore size of the activated carbon may be specifically 15 to 70 Å, more specifically 20 to 60 Å, and in one embodiment, 25 to 55 Å, but is limited thereto. It doesn't work.
특히, 본 발명에 사용된 활성탄은 이의 표면 및 내부에 인산(phosphoric acid)을 포함하는 것일 수 있다. 상기 인산(phosphoric acid)은 화학식 H3PO4를 갖는 산성의 물질로서 활성탄의 표면에 물리적으로 코팅 또는 화학적으로 결합될 수 있다. 혹은 상기 인산(H3PO4)에 유래된 이온, 예를 들어 포스페이트 이온(PO4 3-), 인산이수소 이온(H2PO4 -) 또는 인산수소 이온(HPO4 2-)을 포함하는 작용기가 활성탄의 표면에 결합된 것일 수도 있다. In particular, the activated carbon used in the present invention may contain phosphoric acid on its surface and inside. The phosphoric acid is an acidic substance with the chemical formula H 3 PO 4 and can be physically coated or chemically bonded to the surface of activated carbon. Or ions derived from the phosphoric acid (H 3 PO 4 ), for example, phosphate ions (PO 4 3- ), dihydrogen phosphate ions (H 2 PO 4 - ), or hydrogen phosphate ions (HPO 4 2- ). The functional group may be bound to the surface of activated carbon.
상기 활성탄의 표면에서 인(P)의 함량은 구체적으로 원소 함량의 총합 100 중량부에 대하여 0 중량부 내지 15 중량부, 보다 구체적으로 0 중량부 초과 10 중량부 이하, 0 중량부 초과 5 중량부 이하일 수 있고, 일 구체예에서 0 중량부 초과 4.29 중량부 미만일 수 있으나, 이에 제한되는 것은 아니다. 상기 활성탄의 표면에서 인(P)의 함량이 없는 경우, 후술하는 실험예 2에 나타난 바와 같이, 금속 제거능이 우수하지 못하며, 반면 상기 활성탄의 표면에서 인(P)의 함량이 4.29 중량부 이상으로 포함되는 경우 금속 제거능이 우수한 장점은 있으나 정제된 6FDA에서 황변 현상이 발생하는 문제가 있으며, 이는 전자재료의 요구 물성치에 적합하지 않은 YI(Yellow index, b*) 값을 나타낼 수 있으므로 적합하지 못하다. 따라서, 상기 활성탄의 표면에서 인(P)의 함량을 상기 범위 내로 함유될 시 황변 현상이 없으면서도 우수한 금속제거능을 확보할 수 있다. The content of phosphorus (P) on the surface of the activated carbon is specifically 0 to 15 parts by weight based on 100 parts by weight of the total element content, more specifically, more than 0 parts by weight and less than 10 parts by weight, and more than 0 parts by weight and 5 parts by weight. It may be less than, and in one embodiment, may be more than 0 parts by weight and less than 4.29 parts by weight, but is not limited thereto. When there is no phosphorus (P) content on the surface of the activated carbon, as shown in Experimental Example 2 described later, the metal removal ability is not excellent, while the phosphorus (P) content on the surface of the activated carbon is 4.29 parts by weight or more. When included, it has the advantage of excellent metal removal ability, but there is a problem of yellowing occurring in the purified 6FDA, which is not suitable because it may indicate a YI (Yellow index, b*) value that is not suitable for the required physical properties of electronic materials. Therefore, when the content of phosphorus (P) on the surface of the activated carbon is contained within the above range, excellent metal removal ability can be secured without yellowing phenomenon.
만일, 상기 활성탄의 표면에서 인(P)의 함량이 없거나 극미량, 구체적으로 1 중량부 미만, 더욱 구체적으로 0.08 중량부로 포함되어 있는 경우, 후술하는 인산(H3PO4)의 첨가로 인해 금속제거능을 효과적으로 향상시킬 수 있다. 다만, 상기 활성탄의 표면에서 인(P)의 함량이 없는 경우, 첨가해야 할 인산(H3PO4)의 양이 많아지게 되므로 황변 현상이 나타나게 될 가능성이 있다. 따라서, 상기 활성탄의 표면에 인(P)의 함량이 극미량, 구체적으로 1 중량부 미만, 더욱 구체적으로 0.08 중량부로 포함되는 경우, 적은 양의 인산(H3PO4)의 첨가만으로도 황변 현상이 없으면서 우수한 금속제거능을 나타낼 수 있다. If there is no content of phosphorus (P) on the surface of the activated carbon or it is contained in a very small amount, specifically less than 1 part by weight, more specifically 0.08 part by weight, the metal removal ability is reduced due to the addition of phosphoric acid (H 3 PO 4 ), which will be described later. can be effectively improved. However, if there is no phosphorus (P) content on the surface of the activated carbon, the amount of phosphoric acid (H 3 PO 4 ) to be added increases, so there is a possibility that yellowing may occur. Therefore, when the surface of the activated carbon contains a trace amount of phosphorus (P), specifically less than 1 part by weight, more specifically 0.08 part by weight, the addition of a small amount of phosphoric acid (H 3 PO 4 ) does not cause yellowing. It can exhibit excellent metal removal ability.
상기 혼합용액 중으로 활성탄과 함께 첨가되는 인산(H3PO4) 수용액은 시판되는 85 wt% 농도의 인산 수용액을 사용할 수 있다. 첨가되는 인산(H3PO4) 수용액의 양은 상기 미정제된 6FDA 100 중량부에 대하여 0 중량부 초과 10 중량부 이하일 수 있고, 구체적으로 0 중량부 초과 1.5 중량부 미만일 수 있다. 첨가되는 인산 수용액의 양이 없는 경우 금속 제거능이 효과적으로 발휘될 수 없고, 반면 1.5 중량부 이상으로 첨가되는 경우, 혼합용액 내로 황변 현상의 원인이 되는 인(P)의 양이 많아지게 되어 최종 생성물인 정제된 6FDA에서 황변 현상이 나타날 수 있다. The phosphoric acid (H 3 PO 4 ) aqueous solution added together with activated carbon in the mixed solution may be a commercially available phosphoric acid aqueous solution with a concentration of 85 wt%. The amount of phosphoric acid (H 3 PO 4 ) aqueous solution added may be more than 0 parts by weight and less than 10 parts by weight, and specifically, it may be more than 0 parts by weight and less than 1.5 parts by weight, based on 100 parts by weight of the unrefined 6FDA. If there is no amount of phosphoric acid aqueous solution added, the metal removal ability cannot be effectively demonstrated. On the other hand, if it is added in an amount of 1.5 parts by weight or more, the amount of phosphorus (P) that causes yellowing phenomenon in the mixed solution increases, resulting in the final product. Yellowing may occur in purified 6FDA.
상기 정제단계 이후 건조단계 이전에, 상기 정제물을 금속 이온 정제 필터(Metal Ion Purifier)에 투입하여 여과하는 단계가 추가적으로 수행될 수도 있다.After the purification step and before the drying step, an additional step of filtering the purified product by putting it into a metal ion purifier may be performed.
상기 금속 이온 정제 필터(MIP filter)는 6FDA를 포함하는 혼합용액 중의 불순물로서 금속 및/또는 금속 이온을 제거하기 위해 사용되는 다공성 필터일 수 있다. 상기 금속 이온 정제 필터를 통해 제거 가능한 불순물 금속 및/또는 금속 이온은 알칼리금속, 알칼리토금속, 전이금속, 전이후금속 및 이들의 조합 중 선택되는 적어도 하나 이상으로 주로 화학반응의 촉매로부터 유래되는 금속의 양이온, 구체적으로 리튬(Li), 나트륨(Na), 칼륨(K) 등의 알칼리금속; 마그네슘(Mg), 칼슘(Ca), 바륨(Ba) 등의 알칼리토금속; 크롬(Cr), 망간(Mn), 철(Fe), 니켈(Ni), 코발트(Co), 구리(Cu), 아연(Zn) 등의 전이금속; 및 알루미늄(Al), 인듐(In), 납(Pb) 등의 전이후금속;의 양이온들 중 선택되는 적어도 하나 이상을 포함할 수 있다. 특히, 상기 금속의 양이온과 결합할 수 있는 작용기를 갖는 이온 교환 수지, 예를 들어 강산성 양이온 교환 수지 혹은 킬레이트 이온 교환 수지가 고분자 매트릭스, 일 예로 폴리에틸렌 매트릭스에 포함된 것일 수 있다.The metal ion purification filter (MIP filter) may be a porous filter used to remove metals and/or metal ions as impurities in a mixed solution containing 6FDA. The impurity metals and/or metal ions that can be removed through the metal ion purification filter are at least one selected from alkali metals, alkaline earth metals, transition metals, post-transition metals, and combinations thereof, and are mainly derived from catalysts of chemical reactions. Cations, specifically alkali metals such as lithium (Li), sodium (Na), and potassium (K); Alkaline earth metals such as magnesium (Mg), calcium (Ca), and barium (Ba); Transition metals such as chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), and zinc (Zn); and post-transition metals such as aluminum (Al), indium (In), and lead (Pb); and may include at least one selected from cations. In particular, an ion exchange resin having a functional group that can bind to the cation of the metal, for example, a strongly acidic cation exchange resin or a chelate ion exchange resin, may be included in a polymer matrix, for example, a polyethylene matrix.
상기 정제단계는, 혼합용액의 여과 단계가 한 번 수행되는 단일공정일 수 있다. The purification step may be a single process in which the filtration step of the mixed solution is performed once.
그 다음, 상기 정제물에서 유기용매를 증발시키고 남은 고체를 건조하는 건조단계가 수행될 수 있다.Next, a drying step may be performed in which the organic solvent is evaporated from the purified product and the remaining solid is dried.
상기 유기용매의 증발은 회전 증발 농축기를 이용하여 수행되는 것으로, 구체적으로 아세톤을 증발하기 위한 것일 수 있다.Evaporation of the organic solvent may be performed using a rotary evaporation concentrator, specifically for evaporating acetone.
상기 건조단계는 상온 대비 고온, 구체적으로 50 내지 100 ℃, 보다 구체적으로 70 내지 90 ℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. The drying step may be performed at a high temperature compared to room temperature, specifically 50 to 100°C, more specifically 70 to 90°C, but is not limited thereto.
본 발명의 최종 생성물인 고순도로 정제된 6FDA 내의 총 중금속 함유량은 1 ppm 미만, 구체적으로 900 ppb 미만, 더 구체적으로 800 ppb 미만, 더욱 구체적으로 500 ppb 미만일 수 있다. 특히, 상기 고순도로 정제된 6FDA 내의 코발트 함유량은 50 ppb 미만, 구체적으로 40 ppb 미만, 더욱 구체적으로 30 ppb 미만일 수 있다. 상기 고순도로 정제된 6FDA의 YI(Yellow index) 값은 1 미만일 수 있다.The total heavy metal content in highly purified 6FDA, which is the final product of the present invention, may be less than 1 ppm, specifically less than 900 ppb, more specifically less than 800 ppb, and even more specifically less than 500 ppb. In particular, the cobalt content in the highly purified 6FDA may be less than 50 ppb, specifically less than 40 ppb, and more specifically less than 30 ppb. The YI (Yellow index) value of the highly purified 6FDA may be less than 1.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예 및 실험예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예 및 실험예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, in order to explain the present invention in more detail, preferred embodiments and experimental examples according to the present invention will be described in more detail with reference to the attached drawings. However, the present invention is not limited to the embodiments and experimental examples described herein and may be embodied in other forms.
비교예 1: 활성탄 및 MIP 필터를 사용하여 6FDA 정제Comparative Example 1: 6FDA purification using activated carbon and MIP filter
미정제 6FDA는 순도 약 99.23 %이며, Co 함유량이 약 195 ppm인 것을 사용한다. 상기 미정제된 6FDA 100 g에 전자급 순도의 아세톤 700 g을 첨가하여 혼합용액을 제조하였다. 상기 혼합용액에 분말형의 AC. 4181 활성탄(신기화학공업㈜) 10 g을 첨가하여 한시간 동안 교반하였다. 이후, 감압필터를 진행하여 활성탄을 제거하여 1차 정제물을 수득하였다. 상기 1차 정제물을 금속 이온 정제 필터(MIP(Metal Ion Purifier) filter)에 투입하여 여과하여 2차 정제물을 수득하였다. 그 다음 상기 2차 정제물 용액을 회전증발농축기를 이용하여 아세톤을 증발 제거하여 고체를 얻고, 이를 80 ℃ 진공 건조하여 정제된 6FDA를 수득하였다. 이를 이용하여 HPLC 및 ICP-OES 분석을 실시하였다. Crude 6FDA is used with a purity of approximately 99.23% and a Co content of approximately 195 ppm. A mixed solution was prepared by adding 700 g of electronic-grade acetone to 100 g of the unrefined 6FDA. AC in powder form in the mixed solution. 10 g of 4181 activated carbon (Shinki Chemical Industry Co., Ltd.) was added and stirred for one hour. Afterwards, activated carbon was removed through a reduced pressure filter to obtain a first purified product. The first purified product was filtered through a metal ion purifier (MIP) filter to obtain a second purified product. Then, the second purified solution was evaporated to remove acetone using a rotary evaporator to obtain a solid, which was vacuum dried at 80°C to obtain purified 6FDA. HPLC and ICP-OES analysis were performed using this.
비교예 2: MIP필터 없이 AC. 4181 활성탄만을 사용하여 6FDA 정제Comparative Example 2: AC without MIP filter. 4181 6FDA purified using activated carbon only
1차 정제물을 수득한 이후 상기 1차 정제물 용액을 회전증발농축기를 이용하여 아세톤을 증발 제거하여 고체를 얻고, 이를 80 ℃ 진공 건조하여 정제된 6FDA를 수득하였다. After obtaining the first purified product, acetone was evaporated from the first purified product solution using a rotary evaporator to obtain a solid, which was vacuum dried at 80° C. to obtain purified 6FDA.
비교예 3: AC. 4180 활성탄을 사용하여 6FDA 정제Comparative Example 3: AC. 6FDA Purification Using 4180 Activated Carbon
활성탄(AC. 4181)을 사용한 것 대신에 활성탄(AC. 4180)을 사용한 것을 제외하고는 비교예 2과 동일한 방법을 사용하여 정제된 6FDA를 수득하였다. Purified 6FDA was obtained using the same method as Comparative Example 2, except that activated carbon (AC. 4180) was used instead of activated carbon (AC. 4181).
비교예 4: AC. 4179 활성탄을 사용하여 6FDA 정제Comparative Example 4: AC. 4179 6FDA Purification Using Activated Carbon
활성탄(AC. 4181)을 사용한 것 대신에 활성탄(AC. 4179)을 사용한 것을 제외하고는 비교예 2과 동일한 방법을 사용하여 정제된 6FDA를 수득하였다. Purified 6FDA was obtained using the same method as Comparative Example 2, except that activated carbon (AC. 4179) was used instead of activated carbon (AC. 4181).
비교예 5: 제타 필터(Zeta filter)를 사용하여 6FDA 정제Comparative Example 5: 6FDA purification using Zeta filter
MIP 필터 대신에 Zeta 필터를 사용한 것을 제외하고는 비교예 1과 동일한 방법을 사용하여 정제된 6FDA를 수득하였다.Purified 6FDA was obtained using the same method as Comparative Example 1, except that a Zeta filter was used instead of the MIP filter.
비교예 6: 그래뉼형(granule type) 활성탄을 사용하여 6FDA 정제Comparative Example 6: 6FDA purification using granule type activated carbon
비교예 1의 분말형의 AC. 4181 활성탄 10g을 사용한 대신에 그래뉼형(granule type) 활성탄 50 g을 사용한 것을 제외하고는 비교예 1과 동일한 방법을 사용하여 정제된 6FDA를 수득하였다.AC in powder form of Comparative Example 1. 4181 Purified 6FDA was obtained using the same method as Comparative Example 1, except that 50 g of granule type activated carbon was used instead of 10 g of activated carbon.
비교예 7-8: 인산을 사용하여 6FDA 정제Comparative Example 7-8: 6FDA purification using phosphoric acid
활성탄(AC. 4181)을 사용한 것 대신에 85 wt% 농도의 인산 수용액을 미정제 6FDA의 중량에 대비하여 0.5 중량부(비교예 7) 또는 1.0 중량부(비교예 8)를 사용한 것을 제외하고는 비교예 2과 동일한 방법을 사용하여 정제된 6FDA를 수득하였다. Except that instead of using activated carbon (AC. 4181), 0.5 parts by weight (Comparative Example 7) or 1.0 parts by weight (Comparative Example 8) of 85 wt% aqueous solution of phosphoric acid was used based on the weight of crude 6FDA. Purified 6FDA was obtained using the same method as Comparative Example 2.
실시예 1 내지 7: AC. 4179 활성탄에 인산 수용액을 첨가하여 6FDA 정제Examples 1 to 7: AC. 4179 6FDA purification by adding phosphoric acid aqueous solution to activated carbon
미정제된 6FDA는 순도 약 99.23 %이며, Co 함유량이 약 195 ppm인 것을 사용한다. 상기 미정제된 6FDA 100 g에 전자급 순도의 아세톤 700 g을 첨가하여 혼합용액을 제조하였다. 상기 혼합용액에 분말형의 AC. 4179 활성탄 10 g과 상기 미정제 6FDA의 중량에 대비하여 0.5 중량부(실시예 1), 1 중량부(실시예 2), 1.5 중량부(실시예 3), 2 중량부(실시예 4), 3 중량부(실시예 5), 5 중량부(실시예 6), 및 10 중량부(실시예 7)의 인산(H3PO4) 수용액을 첨가하여 한시간 동안 교반하였다. 이때 사용한 인산(H3PO4) 수용액은 85 wt% 농도의 인산 수용액이다. 이후, 감압필터를 진행하여 활성탄을 제거하여 정제물을 수득하였다. 그 다음 상기 정제물 용액을 회전증발농축기를 이용하여 아세톤을 증발 제거하여 고체를 얻고, 이를 80 ℃ 진공 건조하여 정제된 6FDA를 수득하였다.The unrefined 6FDA has a purity of about 99.23% and a Co content of about 195 ppm. A mixed solution was prepared by adding 700 g of acetone of electronic purity to 100 g of the unrefined 6FDA. AC in powder form in the mixed solution. 4179 0.5 parts by weight (Example 1), 1 part by weight (Example 2), 1.5 parts by weight (Example 3), 2 parts by weight (Example 4), relative to the weight of 10 g of activated carbon and the crude 6FDA. 3 parts by weight (Example 5), 5 parts by weight (Example 6), and 10 parts by weight (Example 7) of phosphoric acid (H 3 PO 4 ) aqueous solution were added and stirred for one hour. The phosphoric acid (H 3 PO 4 ) aqueous solution used at this time was a phosphoric acid aqueous solution with a concentration of 85 wt%. Afterwards, activated carbon was removed through a reduced pressure filter to obtain a purified product. Then, the purified solution was evaporated to remove acetone using a rotary evaporator to obtain a solid, which was vacuum dried at 80°C to obtain purified 6FDA.
실험예Experiment example
전술한 비교예 및 실시예의 정제방법에 따라 정제된 6FDA에 대하여 HPLC 및 ICP-OES 분석을 실시하고, 활성탄에 대하여는 SEM-EDS(Scanning electron microscopy-energy dispersive X-ray spectroscopy) 정량 분석하여, 그 결과를 하기 표 1 내지 표 7, 도 1 내지 도 5에 나타내었다.HPLC and ICP-OES analysis were performed on 6FDA purified according to the purification method of the above-mentioned comparative examples and examples, and quantitative analysis was performed on activated carbon by SEM-EDS (Scanning electron microscopy-energy dispersive X-ray spectroscopy). As a result, are shown in Tables 1 to 7 and Figures 1 to 5 below.
6-FDA 정제6-FDA Tablets 미정제
6-FDA
(ppb)
unrefined
6-FDA
(ppb)
비교예 1
AC.4181+MIP
(ppb)
Comparative Example 1
AC.4181+MIP
(ppb)
비교예 2
AC.4181
(ppb)
Comparative Example 2
AC.4181
(ppb)
비교예 5
AC.4181+Zeta filter
(ppb)
Comparative Example 5
AC.4181+Zeta filter
(ppb)
HPLCHPLC 99.23%99.23% 99.85%99.85% 99.61%99.61% 99.93%99.93%
ICP-OESICP-OES LiLi 5656 -- -- 105105
NaNa 4,1674,167 3535 7272 6868
MgMg 1818 1One 3535 1212
AlAl 849849 -- -- --
KK 849849 116116 5555 5050
CaCa 234234 4444 182182 120120
CrCr 1,9161,916 -- 489489 --
MnMn 158,500158,500 44 598598 200200
FeFe -- 4646 164164 8080
NiNi 2,6882,688 -- -- --
CoCo 195,400195,400 4444 855855 385385
CuCu 396396 -- -- --
ZnZn 125125 -- 6565 --
CdCD -- -- -- --
InIn 452452 -- -- --
BaBa 2121 -- -- --
PbPb 265265 -- -- --
tot.tot. 365,936365,936 290290 2,5152,515 1,0201,020
표 1은 본 발명의 일 비교예에 따른 정제방법에 따른 정제된 6FDA의 HPLC 및 ICP-OES 분석 결과이다.Table 1 shows the results of HPLC and ICP-OES analysis of 6FDA purified according to the purification method according to a comparative example of the present invention.
표 1을 참조하면, 6FDA 정제방법으로 활성탄 및 MIP 필터를 적용(비교예 1), 활성탄을 적용(비교예 2), 활성탄 및 zeta 필터를 적용(비교예 5)하여 정제를 실시한 경우와 미정제된 6FDA를 비교한 결과를 나타낸다. 그 결과, 활성탄 및 MIP filter를 적용(비교예 1)한 경우에서 불순물 금속 이온의 총 함량이 가장 적고, 특히 Co 함량은 44 ppb 로서 가장 적었다. 한편, 활성탄 처리만을 수행한 경우(비교예 2) 및 활성탄 처리와 병용하여 MIP 필터 대신에 제타 전위 필터(zeta filter)를 사용한 경우(비교예 5), 불순물 금속 이온의 제거가 어느 정도 수행되지만 효과는 부족하며, 결과적으로 총 금속 이온 함량이 각각 2515 ppb 및 1020 ppb로서 목표하는 물성치를 상회하는 결과를 나타내는 것을 알 수 있다. Referring to Table 1, the case where purification was performed by applying activated carbon and MIP filter using the 6FDA purification method (Comparative Example 1), applying activated carbon (Comparative Example 2), and applying activated carbon and zeta filter (Comparative Example 5) and unpurified It shows the results of comparing the 6FDA. As a result, in the case where activated carbon and MIP filter were applied (Comparative Example 1), the total content of impurity metal ions was the lowest, and in particular, the Co content was the lowest at 44 ppb. On the other hand, when only activated carbon treatment was performed (Comparative Example 2) and when a zeta potential filter was used instead of the MIP filter in combination with activated carbon treatment (Comparative Example 5), removal of impurity metal ions was performed to some extent, but the effect was is insufficient, and as a result, it can be seen that the total metal ion content is 2515 ppb and 1020 ppb, respectively, which exceeds the target physical properties.
분석 항목analysis item 단위unit AC. 4181AC. 4181 AC. 4180AC. 4180 AC. 4179AC. 4179
비표면적(BET)Specific surface area (BET) m2/g m2 /g 1036.461036.46 1525.121525.12 1561.141561.14
Total pore volume (desorption)Total pore volume (desorption) cm2/g cm2 /g 0.170.17 0.810.81 1.031.03
Average pore size(desorption)Average pore size (desorption) Å 28.7828.78 50.8350.83 41.8841.88
표 2는 본 발명의 일 실시예에 따른 활성탄의 종류에 따라 특징을 비교한 표이다.Table 2 is a table comparing characteristics according to the type of activated carbon according to an embodiment of the present invention.
표 2를 참조하면, 활성탄의 종류로서 AC.4180(비교예 3에 사용)과 AC. 4179(비교예 4에 사용)를 비교할 경우, 비표면적(BET) 및 총 기공 부피는 AC. 4179가 크지만, 평균 기공 크기는 AC. 4180이 큰 것을 알 수 있다. AC. 4181(비교예 1 및 2에 사용)의 경우 비표면적, 총 기공 부피 및 평균 기공 크기 모두 가장 낮은 수치를 나타냈다.Referring to Table 2, the types of activated carbon are AC.4180 (used in Comparative Example 3) and AC. When comparing 4179 (used in Comparative Example 4), the specific surface area (BET) and total pore volume are AC. Although 4179 is large, the average pore size is AC. You can see that 4180 is large. AC. In the case of 4181 (used in Comparative Examples 1 and 2), the specific surface area, total pore volume, and average pore size all showed the lowest values.
6-FDA6-FDA 미정제
6-FDA
(ppb)
unrefined
6-FDA
(ppb)
비교예 2
AC. 4181
(ppb)
Comparative Example 2
AC. 4181
(ppb)
비교예 3
AC. 4180
(ppb)
Comparative Example 3
AC. 4180
(ppb)
비교예 4
AC. 4179
(ppb)
Comparative Example 4
AC. 4179
(ppb)
비교예 6
그래뉼형
(ppb)
Comparative Example 6
Granular type
(ppb)
HPLC (순도)HPLC (purity) 99.23%99.23% 99.61%99.61% 99.48%99.48% 99.39%99.39% 99.27%99.27%
ICP-OESICP-OES LiLi 5656 -- -- -- --
NaNa 4,1674,167 7272 -- -- --
MgMg 1818 3535 99 2525 7272
AlAl 849849 -- -- -- --
KK 849849 5555 215215 3,6733,673 284284
CaCa 234234 182182 2222 9292 599599
CrCr 1,9161,916 489489 3939 195195 1,0511,051
MnMn 158,500158,500 598598 123123 4646 64,83064,830
FeFe -- 164164 -- 4040 611611
NiNi 2,6882,688 -- -- -- 1,0181,018
CoCo 195,400195,400 855855 7373 233233 70,79070,790
CuCu 396396 -- -- -- 4141
ZnZn 125125 6565 3333 227227 135135
CdCD -- -- -- -- --
InIn 452452 -- -- -- ----
BaBa 2121 -- -- -- 1414
PbPb 265265 -- -- -- 4242
tot.tot. 365,936365,936 2,5152,515 514514 4,5314,531 139,487139,487
표 3은 본 발명의 일 실시예에 따른 활성탄의 종류에 따른 정제된 6FDA의 HPLC 및 ICP-OES 분석 결과를 나타낸 표이다.Table 3 is a table showing the results of HPLC and ICP-OES analysis of purified 6FDA according to the type of activated carbon according to an embodiment of the present invention.
표 3을 참조하면, AC. 4180 활성탄으로 정제과정을 거친 비교예 3의 정제된 6FDA의 금속 이온 함유량이 가장 낮게 측정된 것을 알 수 있다. 이로써 활성탄의 종류에 따라서도 6FDA의 정제 시 불순물 금속 이온의 정제 결과가 다르게 도출되는 것을 알 수 있다. 한편, 비교예 2 내지 4에 사용된 활성탄은 분말형 제품을 사용하고, 비교예 6에 사용된 활성탄은 입자가 큰 그래뉼형 제품을 사용하여 정제를 실시한 결과, 분말형 활성탄을 사용한 결과가 더 우수한 것을 알 수 있다. Referring to Table 3, AC. It can be seen that the metal ion content of the purified 6FDA of Comparative Example 3, which was purified with 4180 activated carbon, was measured to be the lowest. From this, it can be seen that the purification results of impurity metal ions are different depending on the type of activated carbon when purifying 6FDA. On the other hand, the activated carbon used in Comparative Examples 2 to 4 was a powdered product, and the activated carbon used in Comparative Example 6 was purified using a granular product with large particles. As a result, the results using the powdered activated carbon were superior. You can see that
한편, 비교예 3의 결과에서 가장 좋은 금속 제거능을 나타내나, 비교예 3을 통해 정제된 6FDA는 육안으로 관찰할 시 갈색을 띄며 황변 현상이 나타남을 확인하였다. Meanwhile, the results of Comparative Example 3 showed the best metal removal ability, but it was confirmed that 6FDA purified through Comparative Example 3 was brown and showed yellowing when observed with the naked eye.
도 1 내지 4는 본 발명의 일 실시예에 따른 정제 방법에 사용된 활성탄의 31P NMR 분석 결과를 나타낸 그래프이다.1 to 4 are graphs showing the results of 31 P NMR analysis of activated carbon used in the purification method according to an embodiment of the present invention.
도 1 내지 4를 참조하면, 도 1은 화학식 H3PO3 및 H3PO4를 갖는 물질의 31P NMR 분석 결과이며, 이와 비교하여 활성탄 AC. 4180(비교예 3에 사용)의 경우 0 ppm 위치에서 31P NMR 피크가 나타남을 확인하였다. 이로써 활성탄 AC. 4180에는 인산(phosphorous acid)이 포함됨을 확인할 수 있다. 반면, 비교예 2 및 4에 사용된 활성탄들의 경우 31P NMR 피크는 존재하지 않는 것을 확인할 수 있다. 그러나, 후술하는 SEM-EDS 분석에서 표면에 인(P)의 함량이 극미량으로 포함되는 AC. 4179(비교예 4에 사용)의 경우 낮은 함량으로 인해 피크가 노이즈로 인식될 가능성을 염두할 수 있다. 이를 통해 금속 이온 제거능이 인산의 유무 및 함량에 의해 차이가 있는지 후술하는 분석으로 확인할 수 있다. Referring to Figures 1 to 4, Figure 1 shows the 31 P NMR analysis results of materials having the chemical formulas H 3 PO 3 and H 3 PO 4 , compared to activated carbon AC. In the case of 4180 (used in Comparative Example 3), it was confirmed that a 31 P NMR peak appeared at the 0 ppm position. Thereby, activated carbon AC. It can be confirmed that 4180 contains phosphorous acid. On the other hand, it can be seen that in the case of the activated carbons used in Comparative Examples 2 and 4, the 31 P NMR peak does not exist. However, in the SEM-EDS analysis described later, AC contains a trace amount of phosphorus (P) on the surface. In the case of 4179 (used in Comparative Example 4), there is a possibility that the peak may be recognized as noise due to the low content. Through this, it can be confirmed through the analysis described later whether the metal ion removal ability varies depending on the presence or absence and content of phosphoric acid.
구분division Retention time(RT)Retention time(RT) 면적(%)area(%)
CrudeCrude 4.6 분4.6 minutes 98.74998.749
인산 수용액
1 중량부 첨가
Phosphoric acid aqueous solution
Add 1 part by weight
99.19399.193
인산 수용액5 중량부 첨가 Add 5 parts by weight of phosphoric acid aqueous solution 99.22799.227
인산 수용액10 중량부 첨가 Add 10 parts by weight of phosphoric acid aqueous solution 99.41099.410
활성탄(AC. 4180)Activated carbon (AC. 4180) 99.18899.188
표 4는 본 발명의 일 실시예에 따른 인산(phosphoric acid)을 첨가한 재결정 6FDA의 HPLC 분석 결과이다.Table 4 shows the HPLC analysis results of recrystallized 6FDA with the addition of phosphoric acid according to an embodiment of the present invention.
HPLC 분석 방법은 고체 6FDA 20 g에 전자급 무수 아세트산 50 ml를 첨가하여 용액을 제조하고, 상기 용액에 인산(H3PO4)을 첨가하여 한시간 동안 교반한다. 첨가한 인산(H3PO4)의 양은 상기 6FDA 100 중량부를 기준으로 1, 5 및 10 중량부이다. 사용한 인산(H3PO4)은 85 wt% 농도의 인산 수용액이다. 교반이 완료된 이후, 냉동실에 12시간 방치하고 뷰흐너 깔때기를 통해 여과하여 정제된 6FDA를 수득한다. For the HPLC analysis method, a solution is prepared by adding 50 ml of electronic grade acetic anhydride to 20 g of solid 6FDA, and phosphoric acid (H 3 PO 4 ) is added to the solution and stirred for one hour. The amount of phosphoric acid (H 3 PO 4 ) added is 1, 5, and 10 parts by weight based on 100 parts by weight of 6FDA. The phosphoric acid (H 3 PO 4 ) used was an aqueous phosphoric acid solution with a concentration of 85 wt%. After stirring is completed, it is left in the freezer for 12 hours and filtered through a Buchner funnel to obtain purified 6FDA.
표 4를 참조하면, 활성탄을 사용한 경우와 대비하여 다양한 농도의 인산 수용액을 사용하여 6FDA 재결정을 실시한 결과, 인산(H3PO4)의 농도가 높아질수록 면적이 증가하는 것을 통해 HPLC 순도가 증가하는 것을 알 수 있다. 이와 비교하여 활성탄 AC. 4180을 사용한 경우에도 인산(H3PO4)을 첨가하여 재결정을 실시한 결과와 유사하게 높은 HPLC 순도를 나타내는 것을 알 수 있다. 따라서, 활성탄 AC. 4180은 인산(H3PO4)을 함유하고 있는 것을 유추할 수 있다. Referring to Table 4, as a result of performing 6FDA recrystallization using phosphoric acid aqueous solutions of various concentrations compared to the case of using activated carbon, the HPLC purity increases as the area increases as the concentration of phosphoric acid (H 3 PO 4 ) increases. You can see that In comparison, activated carbon AC. It can be seen that even when 4180 was used, high HPLC purity was shown, similar to the results of recrystallization by adding phosphoric acid (H 3 PO 4 ). Therefore, activated carbon AC. It can be inferred that 4180 contains phosphoric acid (H 3 PO 4 ).
활성탄 종류Activated carbon type 활성탄 표면의 원소 함량 (평균치, 단위: 중량부)Element content on the surface of activated carbon (average value, unit: parts by weight)
CC OO AlAl SiSi PP SS ClCl CaCa
AC. 4181AC. 4181 91.4991.49 3.673.67 1.041.04 1.891.89 0.000.00 2.592.59 0.000.00 0.110.11
AC. 4180AC. 4180 85.3085.30 9.659.65 0.000.00 0.450.45 4.294.29 0.320.32 0.000.00 0.000.00
AC. 4179AC. 4179 90.9090.90 7.077.07 0.230.23 1.151.15 0.080.08 0.030.03 0.540.54 0.000.00
표 5는 본 발명의 일 실시예에 따른 활성탄의 종류에 따라 활성탄 표면에서 측정한 SEM-EDS(Scanning electron microscopy-energy dispersive X-ray spectroscopy) 정량 분석 결과이다.Table 5 shows the results of SEM-EDS (Scanning electron microscopy-energy dispersive X-ray spectroscopy) quantitative analysis measured on the surface of activated carbon according to the type of activated carbon according to an embodiment of the present invention.
표 5를 참조하면, 활성탄 AC. 4180의 표면 화학 조성에서 인(P)의 함량이 가장 높게 검출되었으며, 구체적으로 활성탄 AC. 4180 및 AC. 4179은 인(P)의 조성이 원소 함량의 총합 100 중량부에 대하여 각각 4.29 중량부 및 0.08 중량부 함유하고 있는 것을 확인할 수 있다. 따라서, AC. 4179에서는 인산(H3PO4)이 미량 함유되는 것을 유추할 수 있다. Referring to Table 5, activated carbon AC. The highest phosphorus (P) content was detected in the surface chemical composition of 4180, specifically activated carbon AC. 4180 and AC. It can be confirmed that 4179 contains 4.29 parts by weight and 0.08 parts by weight of phosphorus (P), respectively, based on 100 parts by weight of the total element content. Therefore, AC. It can be inferred that 4179 contains a trace amount of phosphoric acid (H 3 PO 4 ).
6-FDA6-FDA 비교예 4
(ppb)
Comparative Example 4
(ppb)
실시예 1
(ppb)
Example 1
(ppb)
실시예 2
(ppb)
Example 2
(ppb)
실시예 3
(ppb)
Example 3
(ppb)
실시예 4
(ppb)
Example 4
(ppb)
실시예 5
(ppb)
Example 5
(ppb)
실시예 6
(ppb)
Example 6
(ppb)
실시예 7
(ppb)
Example 7
(ppb)
인산 첨가량Phosphoric acid addition amount 00 0.5 중량부0.5 parts by weight 1 중량부1 part by weight 1.5 중량부1.5 parts by weight 2 중량부2 parts by weight 3 중량부3 parts by weight 5 중량부5 parts by weight 10 중량부10 parts by weight
ICP-OESICP-OES LiLi -- 1 One 00 1515 1111 2323 77 55
NaNa -- 00 00 00 00 00 -- --
MgMg 2525 3131 2929 00 00 22 -- --
AlAl -- 2424 3636 00 00 00 -- --
KK 3,6733,673 279279 5757 596596 341341 536536 471471 408408
CaCa 9292 3737 2323 00 00 5050 33 1919
CrCr 195195 5252 4646 2626 00 1414 3232 22
MnMn 4646 6161 1919 1One 44 99 66 1313
FeFe 4040 3636 5555 6060 1919 3131 1414 2323
NiNi -- 126126 117117 5252 9999 5555 3131 8181
CoCo 233233 77 66 3434 5656 3333 3131 4848
CuCu -- 00 1919 00 00 00 22 33
ZnZn 227227 5858 00 00 00 55 -- --
CdCD -- 1414 1One 00 00 00 -- --
InIn -- 00 00 00 00 00 -- --
BaBa -- 99 66 1515 00 5959 5353 --
PbPb -- 00 00 00 00 00 -- --
tot.tot. 4,5314,531 735735 414414 799799 530530 822822 650650 602602
표 6은 본 발명의 일 실시예에 따른 인산 수용액 첨가량에 따른 정제된 6FDA의 ICP-OES 결과이다.Table 6 shows the ICP-OES results of purified 6FDA according to the amount of phosphoric acid aqueous solution added according to an embodiment of the present invention.
표 6을 참조하면, 표면 화학 조성에 인(P)을 미량 함유하는 활성탄 AC. 4179를 사용하고 인산(H3PO4) 수용액의 첨가량을 변화하여 6FDA를 정제한 결과, 인산(H3PO4) 수용액이 첨가되지 않은 비교예 4를 제외하고, 인산(H3PO4) 수용액이 첨가된 실시예 1 내지 7에서 인산의 함유량에 상관없이 모두 향상된 금속 제거능이 유지되는 결과를 나타냈다. 그 중, 인산(H3PO4) 수용액이 1 중량부 함유된 실시예 2에서 가장 우수한 금속 제거능을 확인할 수 있다. Referring to Table 6, activated carbon AC containing a trace amount of phosphorus (P) in its surface chemical composition. As a result of purifying 6FDA using 4179 and changing the amount of phosphoric acid (H 3 PO 4 ) aqueous solution added, except for Comparative Example 4 in which phosphoric acid (H 3 PO 4 ) aqueous solution was not added, phosphoric acid (H 3 PO 4 ) aqueous solution was obtained. In Examples 1 to 7, the improved metal removal ability was maintained regardless of the phosphoric acid content. Among them, the best metal removal ability was confirmed in Example 2, which contained 1 part by weight of phosphoric acid (H 3 PO 4 ) aqueous solution.
도 5는 본 발명의 일 실시예에 따른 인산 첨가량에 따른 정제된 6FDA의 색깔을 확인한 결과이다.Figure 5 shows the results of confirming the color of purified 6FDA according to the amount of phosphoric acid added according to an embodiment of the present invention.
표 6 및 도 5를 동시에 참조하면, 인산(H3PO4) 수용액이 0.5 내지 10 중량부 첨가된 실시예 1 내지 7에서 인산의 함유량에 상관없이 모두 향상된 금속 제거능을 확인할 수 있지만, 인산(H3PO4) 수용액이 1.5 내지 10 중량부 첨가된 실시예 3 내지 7의 결과에서는 육안으로 구별 가능할 정도의 황변 현상이 나타나는 것을 확인할 수 있다. 이는 디스플레이 분야에서 투명기판으로 쓰이는 플루오르화 폴리이미드 필름의 원재료로 사용되기에 불충분한 높은 YI(Yellow Index) 값을 제공할 수 있다. 따라서, 인산(H3PO4) 수용액이 1.5 중량부 이상으로 첨가되는 경우 높은 YI 값을 나타내는 문제가 있으며, 인산(H3PO4) 수용액이 0 중량부 초과 1.5 중량부 미만으로 첨가되는 경우에 우수한 금속 제거능을 가지면서 동시에 낮은 YI 값을 갖는 우수한 효과가 있다. Referring to Table 6 and FIG. 5, it can be seen that the metal removal ability was improved regardless of the content of phosphoric acid in Examples 1 to 7 in which 0.5 to 10 parts by weight of phosphoric acid (H 3 PO 4 ) aqueous solution was added. However, phosphoric acid (H In the results of Examples 3 to 7 in which 1.5 to 10 parts by weight of 3 PO 4 ) aqueous solution was added, it can be seen that a yellowing phenomenon that can be distinguished with the naked eye appears. This can provide a high YI (Yellow Index) value that is insufficient to be used as a raw material for fluorinated polyimide films used as transparent substrates in the display field. Therefore, when the phosphoric acid (H 3 PO 4 ) aqueous solution is added in an amount of 1.5 parts by weight or more, there is a problem of showing a high YI value, and when the phosphoric acid (H 3 PO 4 ) aqueous solution is added in an amount exceeding 0 parts by weight and less than 1.5 parts by weight. It has excellent metal removal ability and at the same time has an excellent effect of having a low YI value.
6-FDA6-FDA 비교예 4
(ppb)
Comparative Example 4
(ppb)
비교예 7
(ppb)
Comparative Example 7
(ppb)
비교예 8
(ppb)
Comparative Example 8
(ppb)
실시예 1
(ppb)
Example 1
(ppb)
실시예 2
(ppb)
Example 2
(ppb)
활성탄activated carbon AC. 4179 AC. 4179 -- -- AC. 4179AC. 4179 AC. 4179AC. 4179
인산 첨가량Phosphoric acid addition amount 00 0.5 중량부0.5 parts by weight 1 중량부1 part by weight 0.5 중량부0.5 parts by weight 1 중량부1 part by weight
ICP-OESICP-OES LiLi -- 00 1One 1One 00
NaNa -- 00 00 00 00
MgMg 2525 266266 3131 3131 2929
AlAl -- 404404 240240 2424 3636
KK 3,6733,673 628628 483483 279279 5757
CaCa 9292 14531453 504504 3737 2323
CrCr 195195 661661 366366 5252 4646
MnMn 4646 1257012570 1022010220 6161 1919
FeFe 4040 353353 376376 3636 5555
NiNi -- 13401340 13121312 126126 117117
CoCo 233233 4001040010 2246022460 77 66
CuCu -- 1414 1414 00 1919
ZnZn 227227 271271 181181 5858 00
CdCD -- 00 00 1414 1One
InIn -- 00 00 00 00
BaBa -- 00 00 99 66
PbPb -- 460460 292292 00 00
tot.tot. 4,5314,531 5843058430 3648036480 735735 414414
표 7은 본 발명의 일 실시예 및 일 비교예에 따른 정제방법에 있어서, 활성탄 단독(비교예 4), 인산 단독(비교예 7, 8) 및 활성탄과 인산을 함께 사용한 경우(실시예 1, 2)의 정제된 6FDA의 ICP-OES 결과이다.Table 7 shows the purification method according to an example and a comparative example of the present invention, when activated carbon alone (Comparative Example 4), phosphoric acid alone (Comparative Examples 7 and 8), and activated carbon and phosphoric acid were used together (Example 1, This is the ICP-OES result of the purified 6FDA in 2).
표 7을 참조하면, 활성탄 AC. 4179 단독(비교예 4) 또는 인산 단독(비교예 7, 8)으로 정제한 경우에는 불순물 금속 이온의 제거 효과가 부족하여, 중금속인 망간 및 코발트 이온을 비롯한 여러 금속 이온들이 제거되지 않은 채로 목표하는 물성치를 상회하는 결과를 나타내었으나, 활성탄과 인산(H3PO4) 수용액이 함께 첨가된 실시예 1 및 2에서는 인산의 함유량에 상관없이 모두 향상된 금속 제거능이 유지되는 결과를 나타냈다. 그 중, 인산(H3PO4) 수용액이 1 중량부 함유된 실시예 2에서 가장 우수한 금속 제거능을 확인할 수 있다. Referring to Table 7, activated carbon AC. In the case of purification with 4179 alone (Comparative Example 4) or phosphoric acid alone (Comparative Examples 7 and 8), the effect of removing impurity metal ions is insufficient, and various metal ions, including heavy metal manganese and cobalt ions, are not removed and the target product is purified. Although the results exceeded the physical properties, Examples 1 and 2, in which activated carbon and phosphoric acid (H 3 PO 4 ) aqueous solution were added together, showed that the improved metal removal ability was maintained regardless of the phosphoric acid content. Among them, the best metal removal ability was confirmed in Example 2, which contained 1 part by weight of phosphoric acid (H 3 PO 4 ) aqueous solution.
따라서, 본 발명에 따른 6-FDA의 정제방법에서 우수한 금속 제거능 효과를 달성하기 위하여 활성탄과 인산(H3PO4) 수용액이 함께 사용되어야 함을 확인하였다.Therefore, it was confirmed that activated carbon and phosphoric acid (H 3 PO 4 ) aqueous solution should be used together to achieve excellent metal removal ability in the purification method of 6-FDA according to the present invention.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.Meanwhile, the embodiments of the present invention disclosed in the specification and drawings are merely provided as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art that in addition to the embodiments disclosed herein, other modifications based on the technical idea of the present invention can be implemented.

Claims (9)

  1. 미정제된 6FDA와 유기용매를 실온에서 용해하여 혼합용액을 준비하는 용액 제조 단계; A solution preparation step of preparing a mixed solution by dissolving unrefined 6FDA and an organic solvent at room temperature;
    상기 혼합용액에 활성탄 및 인산 수용액을 첨가하여 교반하고 여과하여, 정제된 6FDA을 포함하는 정제물을 수득하는 정제단계; 및 A purification step of adding activated carbon and an aqueous phosphoric acid solution to the mixed solution, stirring, and filtering to obtain a purified product containing purified 6FDA; and
    상기 정제물에서 유기용매를 증발시키고 남은 고체를 건조하여 고순도로 정제된 6FDA를 수득하는 건조단계;를 포함하는,A drying step of evaporating the organic solvent from the purified product and drying the remaining solid to obtain highly purified 6FDA.
    6FDA의 고순도 정제방법.6FDA’s high purity purification method.
  2. 제1항에 있어서,According to paragraph 1,
    상기 인산 수용액은 상기 미정제 100 중량부에 대하여 0 중량부 초과 1.5 중량부 미만으로 포함되는 것을 특징으로 하는, 6FDA의 고순도 정제방법.The high purity purification method of 6FDA, characterized in that the phosphoric acid aqueous solution is contained in an amount of more than 0 parts by weight and less than 1.5 parts by weight based on 100 parts by weight of the crude product.
  3. 제1항에 있어서,According to paragraph 1,
    상기 활성탄의 표면에 인산(H3PO4)을 포함하는 것을 특징으로 하는, 6FDA의 고순도 정제방법.A high-purity purification method of 6FDA, characterized in that phosphoric acid (H 3 PO 4 ) is included on the surface of the activated carbon.
  4. 제3항에 있어서,According to paragraph 3,
    상기 활성탄의 표면에서 인(P)의 함량은 원소 함량의 총합 100 중량부에 대하여 0 중량부 초과 4.29 중량부 미만인 것을 특징으로 하는, 6FDA의 고순도 정제방법.The high purity purification method of 6FDA, characterized in that the content of phosphorus (P) on the surface of the activated carbon is more than 0 parts by weight and less than 4.29 parts by weight based on 100 parts by weight of the total element content.
  5. 제1항에 있어서,According to paragraph 1,
    상기 유기용매는 아세톤(Acetone), 테트라하이드로퓨란(THF, Tetrahydrofuran), 아세토니트릴(ACN, Acetonitrile), 톨루엔(Toluene), 디메틸포름아미드(DMF, Dimethylformamide), N-메틸-2-피롤리돈(NMP, N-methyl-2-pyrrolidone) 및 자일렌(xylene) 중 선택되는 1종인 것을 특징으로 하는, 6FDA의 고순도 정제방법.The organic solvent is acetone, tetrahydrofuran (THF), acetonitrile (ACN), toluene, dimethylformamide (DMF), N-methyl-2-pyrrolidone ( A high purity purification method of 6FDA, characterized in that it is selected from NMP, N-methyl-2-pyrrolidone) and xylene.
  6. 제1항에 있어서, According to paragraph 1,
    상기 고순도로 정제된 6FDA의 총 중금속 함유량은 1 ppm 미만인 것을 특징으로 하는, 6FDA의 고순도 정제방법.A high-purity purification method of 6FDA, characterized in that the total heavy metal content of the highly purified 6FDA is less than 1 ppm.
  7. 제1항에 있어서,According to paragraph 1,
    상기 고순도로 정제된 6FDA의 코발트 함유량은 50 ppb 미만인 것을 특징으로 하는, 6FDA의 고순도 정제방법.A high-purity purification method of 6FDA, characterized in that the cobalt content of the highly purified 6FDA is less than 50 ppb.
  8. 제1항에 있어서, According to paragraph 1,
    상기 고순도로 정제된 6FDA의 YI(Yellow index) 값은 1 미만인 것을 특징으로 하는, 6FDA의 고순도 정제방법.A high-purity purification method of 6FDA, characterized in that the YI (Yellow index) value of the highly purified 6FDA is less than 1.
  9. 제1항에 있어서,According to paragraph 1,
    상기 정제 단계 이후 건조 단계 이전에, 상기 정제물을 금속 이온 정제 필터(Metal Ion Purifier)에 투입하여 여과하는 여과단계가 추가적으로 수행되는 것을 특징으로 하는, 6FDA의 고순도 정제방법.A high-purity purification method of 6FDA, characterized in that, after the purification step and before the drying step, a filtration step of filtering the purified product by putting it into a metal ion purifier is additionally performed.
PCT/KR2023/014585 2022-10-20 2023-09-25 Method for purifying 6fda with high purity WO2024085488A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220135477 2022-10-20
KR10-2022-0135477 2022-10-20
KR1020230126941A KR20240055639A (en) 2022-10-20 2023-09-22 High purity refining method of 6FDA
KR10-2023-0126941 2023-09-22

Publications (1)

Publication Number Publication Date
WO2024085488A1 true WO2024085488A1 (en) 2024-04-25

Family

ID=90737933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014585 WO2024085488A1 (en) 2022-10-20 2023-09-25 Method for purifying 6fda with high purity

Country Status (1)

Country Link
WO (1) WO2024085488A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080058497A1 (en) * 2005-12-14 2008-03-06 General Electric Company Methods for purifying 2-aryl-3,3-bis(hydroxyaryl)phthalimidines
KR20150048825A (en) * 2012-08-31 2015-05-07 제이엑스 닛코닛세키에너지주식회사 Polyimide, and alicyclic tetracarboxylic acid dianhydride for use in production of same
KR20190107740A (en) * 2017-01-31 2019-09-20 칼곤 카본 코포레이션 Adsorption device
KR20210032015A (en) * 2010-07-22 2021-03-23 우베 고산 가부시키가이샤 Polyimide precursor, polyimide, and materials to be used in producing same
KR20210094129A (en) * 2016-03-25 2021-07-28 코니카 미놀타 가부시키가이샤 Polyimide film and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080058497A1 (en) * 2005-12-14 2008-03-06 General Electric Company Methods for purifying 2-aryl-3,3-bis(hydroxyaryl)phthalimidines
KR20210032015A (en) * 2010-07-22 2021-03-23 우베 고산 가부시키가이샤 Polyimide precursor, polyimide, and materials to be used in producing same
KR20150048825A (en) * 2012-08-31 2015-05-07 제이엑스 닛코닛세키에너지주식회사 Polyimide, and alicyclic tetracarboxylic acid dianhydride for use in production of same
KR20210094129A (en) * 2016-03-25 2021-07-28 코니카 미놀타 가부시키가이샤 Polyimide film and process for producing same
KR20190107740A (en) * 2017-01-31 2019-09-20 칼곤 카본 코포레이션 Adsorption device

Similar Documents

Publication Publication Date Title
WO2012099445A2 (en) Method for manufacturing an organic-inorganic composite hybrid sorbent by impregnating an oxide into nanopores of activated carbon and method for using the method in water treatment
Moriyama et al. Electrocrystallization and ESR spectra of the single crystal [N (P (C6H5) 3) 2]. C60
WO2012124907A2 (en) I- and ii-type crystals of l-α-glyceryl phosphoryl choline, and method for preparing same
WO2019146987A1 (en) Method for preparing polyaniline complex for antimicrobial action and removal of heavy metals by doping polyaniline conducting polymer with organic acid and metal ions in predetermined order, and polyaniline complex prepared thereby
US7074980B2 (en) Purification process of carbon nanotubes
WO2024085488A1 (en) Method for purifying 6fda with high purity
WO2018008930A1 (en) Magnetic cesium adsorbent, preparation method therefor, and cesium removal method using same
WO2013165148A1 (en) Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method
US4906760A (en) Purification of anhydrides
CN115231532A (en) Preparation method and application of lithium bis (fluorosulfonyl) imide
CN109627180B (en) Preparation method of oseltamivir phosphate
WO2019151666A1 (en) Method for separately preparing iron oxide and alkali earth metal chloride from iron-containing mixed metal chloride aqueous solution
KR102518462B1 (en) Preparation Method for 2,2'-Bis(Trifluoromethyl)-4,4'-Diaminobiphenyl for High Quality Polyimide Resin
WO2020262780A1 (en) Composition for preparing highly expanded graphite, highly expanded graphite, and method for preparing same
KR20240055639A (en) High purity refining method of 6FDA
WO2013015531A2 (en) Porous manganese oxide-based lithium absorbent having a spinel type structure, and method of fabricating same
WO2018155753A1 (en) Renewable water treatment separation membrane and manufacturing method therefor
WO2020105861A1 (en) Method for reusing plastic from and recovering valuable metals from plated waste plastic
WO2014069699A1 (en) Absorbent ball particle for recovering porous lithium by carbonization, and method for preparing same
CN105801516A (en) Purification process of 1,2-benzisothiazolin-3-ketone
CN112707796B (en) Method for synthesizing and refining electronic-grade binaphthol
EP0443524A1 (en) High-density vitreous carbon material and process for producing the same
WO2019198985A2 (en) Method for producing graphene oxide
WO2020222542A1 (en) Oxidation stability-improved silver nano powder prepared by wet process and method for preparing same
WO2023113482A1 (en) Sodium ion adsorbent, preparation method thereof, and method of removing sodium ion