WO2024085259A1 - Production method for temperature-regulating unit and temperature-regulating unit - Google Patents

Production method for temperature-regulating unit and temperature-regulating unit Download PDF

Info

Publication number
WO2024085259A1
WO2024085259A1 PCT/JP2023/038107 JP2023038107W WO2024085259A1 WO 2024085259 A1 WO2024085259 A1 WO 2024085259A1 JP 2023038107 W JP2023038107 W JP 2023038107W WO 2024085259 A1 WO2024085259 A1 WO 2024085259A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
plate material
adhesive
adjustment unit
temperature adjustment
Prior art date
Application number
PCT/JP2023/038107
Other languages
French (fr)
Japanese (ja)
Inventor
励一 鈴木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2024085259A1 publication Critical patent/WO2024085259A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/14Projection welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • F28F3/14Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation

Definitions

  • the present invention relates to a manufacturing method for a temperature adjustment unit and a temperature adjustment unit, and in particular to a manufacturing method for a temperature adjustment unit for heat exchange using a fluid as a medium and a temperature adjustment unit.
  • a typical conventional temperature adjustment unit 100 is a simple structure (bent pipe type temperature adjustment unit) in which metal pipes 101 are processed into a reciprocating path to form a flow path 115 as shown in FIG. 12, in order to increase the contact area per unit volume of the temperature adjustment unit 100, and thus to allow efficient heat exchange. Also known is a structure (bent pipe type temperature adjustment unit with fins) in which fin-shaped metal plates 102 are welded between metal pipes 101 formed into a reciprocating path, in order to improve heat exchange efficiency and rigidity of the temperature adjustment unit 100, as shown in FIG. 13.
  • Methods for manufacturing such temperature adjustment units include bending a metal pipe into a reciprocating path, or joining U-shaped parts to both ends of a straight pipe. If the metal pipe is only bent, there is almost no risk of fluid leakage, and even if U-shaped parts are joined, high joint quality can be obtained by known welding methods such as arc welding or brazing, so high quality reliability can be obtained. However, these methods have the disadvantage that it is difficult to form a thin, long, complex flow path, and manufacturing costs increase.
  • the temperature adjustment unit with a bonded structure disclosed in Patent Documents 1 and 2 can create a large-area flow path in a short amount of time at low cost, and the cross-sectional shape of the flow path does not need to be a perfect circle, and can be made flat to easily reduce the thickness.
  • the biggest challenge with a bonded temperature adjustment unit is ensuring the quality of the bonding process.
  • Patent Documents 1 and 2 state that any joining method, such as brazing, welding, or adhesive bonding, can be used. However, they do not specifically state the requirements for ensuring joining quality. In other words, if these joining methods are applied alone to a temperature adjustment unit, the following quality issues will arise.
  • (a) Brazing method The most common furnace brazing method is to apply a brazing material 112 having a lower melting point than the metal plate 110 around the protrusions 111 or to the entire flat portion that will be the overlapping surface, as shown in Figures 14(a) and (b) , and then, as shown in Figures 15(a) and (b) , a flat plate 113 or another metal plate 110 on which protrusions 111 have been formed by press working, is inserted into a heating furnace 114 in a state where it is heated to a predetermined temperature, and the brazing material 112 is melted and joined by metallic bonding.
  • the brazing method has the greatest advantage that defects are unlikely to occur during the joining process, and in particular there is no risk of holes being created in the press-formed metal plate 110, so there is very little risk of fluid leakage, and this method has been put into practical use.
  • the disadvantage is that it requires a great deal of effort and time to place the material in the heating furnace 114, heat it up, maintain it, and cool it down.
  • the welding method is a method in which two metal plates 110 and 113 to be bonded are stacked, and then the periphery of a convex protrusion 111 that becomes a flow path 115 is joined by a molten metal part 125 formed linearly by laser welding 120, MIG (Metal Inert Gas) welding or MAG (Metal Active Gas) welding 121, TIG (Tungsten Inert Gas) welding 122, plasma arc welding 123, or the like, to seal the leakage of the fluid.
  • welding material may be added during welding.
  • FSW friction stir welding
  • Welding does not require a heating furnace and can be performed using a Cartesian coordinate or articulated welding robot, making it space-saving and simple in terms of process.
  • it is difficult to eliminate the risk of welding defects that could lead to fluid leaks, and there are concerns about the quality of the flow path.
  • it is difficult to achieve penetration at the beginning and end of the weld bead, making it easy for leak defects to occur.
  • high-temperature heat sources such as laser welding or plasma arc welding over long distances, there is a risk of thermal deformation.
  • high pressure such as FSW, there is the problem that it is difficult to achieve flatness as a temperature adjustment unit due to plastic deformation.
  • the adhesive method is a method of sealing against fluid leakage by applying adhesive 131 in a line shape around the entire circumference of the convex protrusion 111 that becomes the flow path 115 using a dispenser 116 to surround and adhere the protrusion 111.
  • the adhesive 131 is generally in a semi-kneaded state (gel-like), so it reliably blends into the interface (joint surface) when the shape is crushed in the bonding process. Therefore, it has better sealing performance than the welding method.
  • the joint strength is lower than that of the welding method, there are problems such as the inability to withstand high-pressure fluid and the long-term fatigue resistance due to repeated on-off of fluid operation.
  • adhesive hardening methods such as one-component long-term room temperature retention types, or short-term hardening types such as ultraviolet curing types, high temperature curing types, and two-component mixed types.
  • adhesive hardening methods such as one-component long-term room temperature retention types, or short-term hardening types such as ultraviolet curing types, high temperature curing types, and two-component mixed types.
  • any type of adhesive if the metal plates 110, 113 are moved immediately after application, there is a possibility that the metal plates 110, 113 may shift relative to one another, so the adhesive must be held in place until it hardens to a certain extent. This problem is particularly noticeable with the one-component long-term room temperature retention types, which are the easiest to handle and the simplest. Therefore, adhesives have the problem of low efficiency when hardening time is included. Furthermore, even if adhesives have excellent sealing properties, if the pressure applied when overlapping is strong in some areas, the adhesive may be completely expelled from the joint surface, and sealing properties cannot be completely guaranteed.
  • the present invention has been made in consideration of the above-mentioned problems, and its purpose is to provide a manufacturing method for a temperature adjustment unit and a temperature adjustment unit that can reliably prevent fluid leakage, can be installed in a short time, does not require large and expensive equipment such as a heating furnace, and is equipped with a flow path that provides high peel strength and fatigue strength.
  • the above object of the present invention is achieved by the following configuration [1] or [2] relating to the manufacturing method of a temperature adjustment unit.
  • a method for manufacturing a temperature adjustment unit comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material, an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material; a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material; A joining process of joining at least a portion of the first metal plate material and the second metal plate material that are not coated with the adhesive and have not been processed to have the groove by at least one of welding, friction stir welding, and mechanical joining methods; A method for manufacturing a temperature adjustment unit comprising the steps of:
  • a method for manufacturing a temperature adjustment unit comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material, an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material; a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material; a joining process for joining at least a portion of the first metal plate material and the second metal plate material that are overlapped with each other, the portion including at least a portion to which the adhesive is applied and in which the groove is not formed, by at least one of welding, friction stir welding, and mechanical joining methods before the adhesive solidifies;
  • a method for manufacturing a temperature adjustment unit comprising the steps of:
  • a temperature adjustment unit comprising a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and the first metal plate and the second metal plate are joined together, the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
  • a temperature adjustment unit in which at least one of a molten joint and a mechanical joint is formed on the overlapping first metal plate material and the second metal plate material, at least in areas where the adhesive is not applied and where the groove is not formed.
  • a temperature adjustment unit comprising a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and the first metal plate and the second metal plate are joined together, the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
  • a temperature adjustment unit comprising at least a portion of the overlapping first metal plate material and the second metal plate material coated with the adhesive, and at least one of a molten joint and a mechanical joint being formed in a portion where the groove is not formed.
  • the present invention provides a manufacturing method for a temperature control unit and a temperature control unit that can reliably prevent fluid leakage, can be installed in a short time, does not require large and expensive equipment such as a heating furnace, and is equipped with a flow path that has high peel strength and fatigue strength.
  • FIG. 1 is a diagram of a temperature adjustment unit according to a first embodiment of the present invention provided with an attachment, where (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line AA of (a).
  • 2A and 2B are diagrams of a temperature adjustment unit formed by a manufacturing method for a temperature adjustment unit according to the first embodiment of the present invention, in which (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line BB of (a).
  • Figure 3 is a diagram showing a state in which an adhesive is interposed between two metal plate materials, where (a) is a cross-sectional view showing a state in which the applied adhesive is expelled from the joining surface by pressing the two metal plate materials together, and (b) is a cross-sectional view showing a state in which a predetermined gap is maintained between the two metal plate materials by solid matter contained in the adhesive.
  • FIG. 1 is a diagram showing a state in which an adhesive is interposed between two metal plate materials, where (a) is a cross-sectional view showing a state in which the applied adhesive is expelled from the joining surface by pressing the two metal plate materials together, and (b) is a cross-sectional view showing a state in which a predetermined gap is maintained between the two metal plate materials by solid matter contained in the adhesive.
  • FIG. 4 is a diagram showing a process of forming dot-like protrusions by punch striking on the overlapping surface of one of the metal plate materials, where (a) is a cross-sectional view showing the state before the dot-like protrusions are formed on the overlapping surface of one of the metal plate materials by punch striking, and (b) is a cross-sectional view showing the state after the dot-like protrusions have been formed by punch striking.
  • FIG. 5 is a diagram showing a process of joining metal plate materials together by overlapping another metal plate material having dot-like protrusions on a metal plate material coated with an adhesive, where (a) is a cross-sectional view showing the state in which another metal plate material having dot-like protrusions is overlapped on a metal plate material coated with an adhesive, (b) is a cross-sectional view showing the state in which metal plate materials are joined together by resistance spot welding, and (c) is a cross-sectional view showing the state in which the metal plate materials have been joined together.
  • FIG. 6 is a cross-sectional view showing a state in which the vicinity of the center of a large temperature adjustment unit is joined by one-side resistance spot welding.
  • Figure 7 is a diagram of a temperature adjustment unit in which metal plate materials are joined together by a linear molten joint formed by laser welding, where (a) is a plan view of the temperature adjustment unit and (b) is a CC cross-sectional view of (a).
  • 8A and 8B are diagrams showing a temperature adjustment unit formed by a manufacturing method for a temperature adjustment unit according to a second embodiment of the present invention, in which (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line DD of (a).
  • FIG. 9 is a diagram showing the relationship between the size of a molten joint or mechanical joint and the width of the adhesive, where (a) is a cross-sectional view of a joint joined by a molten joint or mechanical joint larger than the width of the adhesive, (b) is a cross-sectional view of a joint joined by a molten joint or mechanical joint smaller than the width of the adhesive, and (c) is a cross-sectional view of a joint joined by a molten joint or mechanical joint larger than the width of the adhesive and shifted to one side of the width of the adhesive.
  • FIG. 10 is a diagram showing a process of joining metal plate materials together by overlapping another metal plate material having dot-like protrusions on a metal plate material coated with adhesive, where (a) is a cross-sectional view showing the state in which the dot-like protrusions of the other metal plate material are aligned and positioned at the position where the adhesive is applied, (b) is a cross-sectional view showing the state in which the adhesive is crushed by the dot-like protrusions while the plates are joined by a resistance spot welding method, and FIG. 10(c) is a cross-sectional view of the joint after joining.
  • FIG. 11 is a plan view of a temperature adjustment unit having complicated branching flow paths.
  • FIG. 12 shows a conventional bent pipe type temperature adjustment unit, where (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line EE of (a).
  • FIG. 13 shows a conventional finned pipe bent type temperature adjustment unit, where (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line FF of (a).
  • FIG. 14 shows a temperature adjustment unit formed by a brazing method, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line GG of (a).
  • FIG. 15 is a cross-sectional view of a temperature adjustment unit formed by inserting a metal plate, the joining surface of which is covered with a brazing material, into a heating furnace and further heating it.
  • FIG. 16 is a diagram of a temperature adjustment unit joined by various welding and friction stir welding, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line HH of (a).
  • 17A and 17B are diagrams of a temperature adjustment unit formed by the bonding method shown in FIG. 16, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along line II of (a).
  • FIG. 16 is a diagram of a temperature adjustment unit joined by various welding and friction stir welding, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along line HH of (a).
  • FIG. 18 is a cross-sectional view showing a state in which an adhesive is applied to one of the metal plates.
  • FIG. 19 is a diagram of a temperature adjustment unit formed by an adhesive method, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line JJ of (a).
  • FIG. 1 is a diagram of a temperature adjustment unit according to a first embodiment of the present invention provided with an attachment, (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view of (a) taken along the line A-A.
  • the temperature adjustment unit 10 of this embodiment is formed by overlapping a first metal plate 11 in which a zigzag continuous groove 13 serving as a flow path 16 is formed by pressing, and a flat second metal plate 12, and the overlapping surfaces 11a, 12a of the first metal plate 11 and the second metal plate 12 are joined together by an adhesive 14 and a fusion joint or mechanical joint 15.
  • the adhesive 14 is formed in a continuous line shape so as to surround the periphery of the groove 13.
  • the fusion joint or mechanical joint 15 is formed in a plurality of dots in the area excluding the groove 13 and the adhesive 14-covered portion.
  • the grooves 13 easily form zigzag flow paths 16 for passing a fluid such as a refrigerant.
  • pipe-shaped attachments 17 are attached to both ends of the flow path 16 to supply a fluid into the flow path 16 or to discharge the fluid flowing through the flow path 16 to the outside.
  • the attachments 17 will be omitted from illustration and explanation in the following embodiments and the conventional example described above.
  • the second metal plate 12 is flat, but is not limited to a flat plate, and may be a metal plate in which another groove is formed corresponding to the groove 13 of the first metal plate 11. Furthermore, the groove shapes of the first metal plate 11 and the second metal plate 12 may be the same or different.
  • a flow path 16 having high sealing performance can be obtained by taking advantage of the properties of the adhesive 14, such as high sealing ability and low distortion.
  • the overlapping surfaces 11a, 12a of the first metal plate material 11 and the second metal plate material 12 with the fusion joint or mechanical joint 15 formed by various welding methods, friction stir welding methods, and various mechanical joining methods, it is possible to impart functions that correspond to the peel strength and fatigue strength, which are the weak points of the adhesive 14.
  • the fusion joint or mechanical joint 15 it is possible to move to the next process before the adhesive 14 solidifies, and it is possible to achieve high shear strength and a high construction speed.
  • even if a weld crack defect occurs which is unavoidable in various welding methods and friction stir welding methods and is difficult to completely eliminate, it is located outside the adhesive part, so it is possible to avoid it becoming a cause of leaks.
  • (Method of manufacturing the temperature adjustment unit) 2A and 2B are diagrams of a temperature adjustment unit formed by a manufacturing method of a temperature adjustment unit according to a first embodiment of the present invention, in which (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line B-B of (a).
  • an adhesive 14 is applied in a continuous line shape to the overlapping surface 11a of a first metal plate 11 having a zigzag groove 13 formed by press working to become a flow path 16, so as to surround the entire circumference of the groove 13 (adhesive application step).
  • a surface modification process such as a flame irradiation process, an aqueous primer process, and an atmospheric plasma irradiation process. This activates the surfaces of the overlapping surfaces 11a, 12a of the first metal plate 11 and the second metal plate 12, improving the adhesion strength of the adhesive 14 to the first metal plate 11 and the second metal plate 12, and improving the sealing performance.
  • the portions of the first metal plate 11 and the second metal plate 12 where the adhesive 14 is not applied and where the grooves 13 are not formed are clamped between a pair of welding electrodes 31, 32, and a voltage is applied while pressure is applied to the first metal plate 11 and the second metal plate 12 to form a molten joint 15 by resistance spot welding 126, thereby joining the first metal plate 11 and the second metal plate 12 (joining process). Then, while changing the joining position, the operation of joining the first metal plate 11 and the second metal plate 12 by the molten joint 15 is repeated.
  • the joining process forms a molten joint or mechanical joint 15 in the portion not covered with adhesive 14, and may be performed before or after adhesive 14 solidifies.
  • problems such as the occurrence of porosity defects, inability to weld due to poor electrical conduction, and poor stirring may occur in arc welding or laser welding before adhesive 14 solidifies, and in all welding methods after adhesive 14 solidifies. For this reason, welding to the portion covered with adhesive 14 must be avoided as much as possible.
  • resistance welding and friction stir welding (FSW), which weld metal plates while applying pressure, can be applied before adhesive 14 solidifies because they do not cause the above-mentioned problems, and this will be described in detail in the second embodiment described later.
  • attachments 17 for supplying or discharging fluid from the outside are attached to both ends of the flow path 16 (attachment attachment process).
  • the attachment 17 is connected to a pump or the like via, for example, a rubber hose or a metal tube.
  • a common method is to drill holes at the inlet and outlet of the flow path 16 when joining, or to pre-drill holes before the joining process and then attach the short pipe-shaped attachment 17 by welding, mechanical crimping, adhesive, or other methods.
  • Welding methods for forming the molten joint 15 include resistance welding (resistance spot welding and resistance seam welding) and friction stir welding (FSW), which join the first metal plate material 11 and the second metal plate material 12 while applying pressure during welding, and laser welding, arc welding (MAG welding, MIG welding, and TIG welding), and plasma arc welding, which join the first metal plate material 11 and the second metal plate material 12 without applying pressure during welding. Any of these joining methods can be applied to the manufacturing method of the temperature adjustment unit according to this embodiment.
  • the joint obtained by friction stir welding (FSW) is also considered to be included in the molten joint.
  • the mechanical joining method for forming the mechanical joint 15 refers to various rivets such as blind rivets and punch rivets, mechanical clinching, SPR (Self-Piercing Rivet), screws, drill screws, bolts and nuts, and the like, all of which have in common that they are point joining and basically room temperature processes involving pressure, and any joining method can be applied.
  • SPR Self-Piercing Rivet
  • screws drill screws, bolts and nuts, and the like, all of which have in common that they are point joining and basically room temperature processes involving pressure, and any joining method can be applied.
  • blind rivets or bolts and nuts it is necessary to make through holes in advance in the first metal plate material 11 and the second metal plate material 12 to be joined.
  • the adhesive 14 applied between the first metal plate 11 and the second metal plate 12 may be pushed out as the gap C between the first metal plate 11 and the second metal plate 12 narrows due to the pressure applied to both metal plates 11, 12, and this may result in thin sections or cuts in the applied adhesive 14, raising concerns about reduced sealing performance.
  • the material of the solid 18 is not particularly limited as long as it has a hardness that can withstand the pressure applied during welding.
  • the size of the solid 18 the larger it is, the more likely it is to clog the adhesive application nozzle.
  • a diameter of about 0.1 to 0.5 mm is preferable in terms of the balance between adhesion, adhesive strength, and sealing properties.
  • the adhesive 14 it is important for the adhesive 14 to have an appropriate thickness in terms of ensuring sealing properties.
  • the adhesive 14 has an appropriate thickness, the first metal plate 11 and the second metal plate 12 will not be in contact, and there is a problem that it is difficult to guarantee the quality of the weld when resistance spot welding is used. That is, when a high-viscosity adhesive is used, or when small-diameter solids are contained in the adhesive, or when one-sided resistance spot welding with a small pressure is used, it may be difficult to bring the first metal plate 11 and the second metal plate 12 into firm contact before the current is passed through, and in the worst case, there is a risk that they will not be in contact and cannot be welded at all.
  • the surface of the first metal plate 11 is struck with a punch 35 to form a protruding portion 19 on the overlapping surface 11a that protrudes toward the second metal plate 12.
  • the first metal plate 11 is overlapped on the second metal plate 12 to which the adhesive 14 is linearly applied, and resistance spot welding is performed with the protruding portion 19 as the target position while the first metal plate 11 (protruding portion 19) and the second metal plate 12 are in secure contact with each other.
  • the height H of the protruding portion 19 shown in Figs. 4(b) and 5(a) is equivalent to the gap h between the plates after welding shown in Fig.
  • a height of about 0.5 to 2.0 mm is preferable.
  • the applied pre-solidified adhesive 14 is crushed and spreads laterally while maintaining a predetermined thickness h, and the first metal sheet 11 and the second metal sheet 12 are firmly joined by the molten joint 15, ensuring sealing properties and welding quality.
  • the punch 35 makes it easy to obtain metal contact only at the weld, making resistance spot welding possible and stabilizing its quality.
  • one-sided resistance spot welding 127 which is a type of spot welding, is suitable for manufacturing large-area temperature adjustment units 10 because it does not require a C-clamp and has a pressure function.
  • one-sided resistance spot welding has some concerns, such as (a) less stability in the diameter of the weld, (b) inability to pass a large current, (c) low pressure, and (d) the length of the current path changes, so the welding position affects the diameter of the weld.
  • this method can be fully applied.
  • Fig. 7 is a diagram of a temperature adjustment unit in which metal plates are joined together by a linear fusion joint formed by laser welding, (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line C-C of (a).
  • the temperature adjustment unit 10 of the modified example of the first embodiment similarly to the manufacturing method of the temperature adjustment unit 10 of the first embodiment shown in Fig.
  • the adhesive 14 is applied linearly without interruption to the overlapping surface 11a of the first metal plate 11 in which the zigzag continuous groove 13 that becomes the flow path 16 is formed by pressing, so as to surround the entire circumference of the groove 13 (adhesive application process).
  • a linear molten joint 15 is formed by laser welding 120 to join the first metal plate 11 and the second metal plate 12 (joining process).
  • the joining process may be performed before or after the adhesive 14 solidifies, and the linear molten joint 15 may be continuous or divided into multiple parts.
  • Figures 7(a) and (b) show an example where the linear molten joint 15 is divided.
  • the linear molten joint 15 may be formed by resistance seam welding 128.
  • attachments 17 (not shown) for supplying or discharging fluid from the outside are attached to both ends of the flow path 16 (attachment process).
  • the other manufacturing methods and functions are the same as those of the temperature adjustment unit of the first embodiment, so detailed explanations are omitted.
  • the metal plate materials are joined using at least one of laser welding, arc welding (MAG, MIG, TIG, plasma arc), resistance welding (resistance spot welding, resistance seam welding), friction stir welding, and mechanical joining.
  • arc welding MAG, MIG, TIG, plasma arc
  • resistance welding resistance spot welding, resistance seam welding
  • friction stir welding and mechanical joining.
  • These joining methods are generally used as metal joining methods, and the joints have high strength and reliability.
  • these joining methods in which the base materials are melted together or physically caulked, exhibit high peel strength. Therefore, by applying these joining methods to a flow path that has sealing performance due to the application of an adhesive, the molten joint or mechanical joint 15 bears the peel stress generated in the flow path, and peeling of the adhesive can be reliably prevented.
  • high-strength adhesives are often highly viscous, and simply overlapping metal sheets together may not easily crush them even before the adhesive solidifies, and the metal sheets may end up just resting on top of the adhesive. Therefore, to ensure reliable welding, pressure must be applied to increase the contact area between the adhesive and the metal sheets. If a joining method with a pressurizing function, such as resistance spot welding, resistance seam welding, friction stir welding, or mechanical joining, is used, there is no need to prepare a separate press machine. On the other hand, if these pressurizing functions are used excessively, not only will the work efficiency decrease, but thermal distortion and plastic distortion will be added, reducing the finishing accuracy (mainly flatness), and the advantages of the adhesive may not be fully utilized. Therefore, it is desirable to limit the number of joining processes using these welding or mechanical joining processes to the minimum necessary depending on the size of the temperature adjustment unit and the shape of the flow path.
  • a pressurizing function such as resistance spot welding, resistance seam welding, friction stir welding, or mechanical joining
  • the grooves 13 of a complex shape can be formed easily and in a short time by pressing, and the shape of the flow path 16 is not restricted.
  • the manufacturing method of the temperature adjustment unit according to the second embodiment differs from the manufacturing method of the temperature adjustment unit according to the first embodiment in that the fusion joint or mechanical joint is formed before the adhesive solidifies, and includes a part of the adhesive-coated portion.
  • the joining process must be selected from resistance spot welding, resistance seam welding, friction stir welding, and mechanical joints, which have a pressurizing function for metal plates.
  • laser welding and arc welding MAG welding, MIG welding, TIG welding, plasma arc welding
  • FIG. 8A and 8B are diagrams of a temperature adjustment unit formed by a manufacturing method of a temperature adjustment unit according to a second embodiment of the present invention, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line D-D of (a).
  • a is a plan view of the temperature adjustment unit
  • b is a cross-sectional view taken along the line D-D of (a).
  • adhesive 14 is applied in a continuous line shape without interruption to the overlapping surface 12a of the second metal plate material 12 so that the entire circumference of the groove 13 is surrounded by adhesive 14 (adhesive application process).
  • first metal plate 11 and the second metal plate 12 are overlapped while aligning the first metal plate 11 and the adhesive 14 applied to the second metal plate 12 (overlapping process, see Figures 8(b) and 10(a)).
  • the surface of the first metal plate 11 may be struck with a punch 35 to form a convex portion 19 on the mating surface 11a that protrudes toward the second metal plate 12.
  • Figures 10(a) to (c) show a case in which a convex portion 19 is formed on the first metal plate 11, but it goes without saying that the second embodiment is not limited to the form in which the surface of the first metal plate 11 is struck with a punch 35 to form a convex portion 19 on the mating surface 11a that protrudes toward the second metal plate 12, as in the first embodiment.
  • resistance spot welding instead of one-sided resistance spot welding, general resistance spot welding, resistance seam welding, friction stir welding, or mechanical joining can also be used (joining process).
  • mechanical joining methods bolts, nuts, and some rivets require through holes in advance, and adhesive can leak from the through holes, which can deteriorate workability and product quality, so it is preferable to choose a method that does not create through holes, such as SPR or mechanical clinching. Friction stir welding and mechanical joining, which do not pass electricity, do not have the effect of creating a protrusion.
  • the first metal plate 11 and the second metal plate 12 are pressed in the thickness direction, so that the first metal plate 11 penetrates into the unsolidified adhesive 14 applied to the second metal plate 12 and pushes the adhesive 14 out laterally, so that the first metal plate 11 reliably contacts the mating surface 12a of the second metal plate 12 (see FIG. 10(b)).
  • the diameter D of the fusion joint or mechanical joint 15 is larger than the line width (width of the bonded portion) W of the adhesive 14 and the fusion joint or mechanical joint 15 is formed so as to cross the entire width of the line width W, the sealing performance of the adhesive 14 may be lost, which may cause fluid leakage.
  • the mechanical joining methods for forming the mechanical joint 15 are all point joining and basically room temperature processes (i.e., cold processes) involving pressure, so there is no problem with forming a mechanical joint that includes a portion coated with adhesive, as in the second embodiment.
  • the grooves 13 of a complex shape can be formed easily and in a short time by pressing, and the shape of the flow path 16 is not restricted.
  • a manufacturing method for a temperature adjustment unit according to a first embodiment of the present invention and its variations, and a manufacturing method for a temperature adjustment unit according to a second embodiment of the present invention is not limited to the above-described embodiments, and suitable modifications, improvements, etc. are possible.
  • the temperature adjustment unit described above can be used, for example, in temperature adjustment panels for EV battery cases, floor heating systems, freezers and refrigerators, cooling devices for large computers, and temperature regulators for fish tanks in aquariums, etc.
  • a method for manufacturing a temperature adjustment unit comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material, an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material; a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material; A joining process of joining at least a portion of the first metal plate material and the second metal plate material that are not coated with the adhesive and have not been processed to have the groove by at least one of welding, friction stir welding, and mechanical joining;
  • a method for manufacturing a temperature adjustment unit comprising the steps of: With this configuration, the high sealing performance of the adhesive can reliably prevent fluid leakage, and furthermore, the high peel strength and fatigue strength of at least one of welding, friction stir welding, and mechanical welding makes it possible to
  • a convex portion protruding in a direction toward the overlapping surface is formed on at least one of the overlapping surface of the first metal plate with the second metal plate and the overlapping surface of the second metal plate with the first metal plate by press working or punch striking work,
  • an attachment for supplying or discharging a fluid to or from the flow path can be provided.
  • a method for manufacturing a temperature adjustment unit comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material, an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material; a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material; a joining step of joining at least a portion of the first metal plate material and the second metal plate material that are overlapped with each other, the portion including at least a portion to which the adhesive is applied and in which the groove is not formed, by at least one of welding, friction stir welding, and mechanical joining before the adhesive solidifies;
  • a method for manufacturing a temperature adjustment unit comprising the steps of: According to this configuration, by joining before the adhesive solidifies, the first metal plate material and the second metal plate material can be joined
  • the manufacturing method of the temperature adjustment unit described in 9) or (10) further includes a surface modification process of performing a surface modification treatment of any one of a flame irradiation treatment, a primer treatment, and a plasma irradiation treatment on the overlapping surfaces of the first metal plate material and the second metal plate material. According to this configuration, the adhesion strength between the metal plate and the adhesive is improved, and the sealing performance is improved.
  • an attachment for supplying or discharging a fluid to or from the flow path can be provided.
  • a temperature adjustment unit including a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and which is formed by joining the first metal plate and the second metal plate, the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
  • a temperature adjustment unit in which a molten joint or a mechanical joint is formed on at least the overlapping first metal plate material and the second metal plate material in areas where the adhesive is not applied and where the groove is not formed.
  • a temperature adjustment unit including a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and which is formed by joining the first metal plate and the second metal plate, the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
  • a temperature adjustment unit comprising the first metal plate material and the second metal plate material which are overlapped with each other, the temperature adjustment unit including at least a portion where the adhesive is applied, and a molten joint or a mechanical joint being formed in a portion where the groove is not formed. According to this configuration, leakage of fluid can be reliably prevented, and further, a temperature adjustment unit having a flow path with high peel strength and fatigue strength can be formed.
  • Temperature adjustment unit 11 First metal plate 11a, 12a Laminated surface 12 Second metal plate 13 Groove 14 Adhesive 15 Melted joint or mechanical joint 16 Flow path 17 Attachment 18 Solid 19 Convex 120 Laser welding 121 MIG, MAG welding (arc welding) 122 TIG welding (arc welding) 123 Plasma arc welding (arc welding) 124 Friction Stir Welding (FSW) 126 Resistance spot welding 127 One-sided resistance spot welding 128 Resistance seam welding D Diameter of fusion joint or mechanical joint h Inter-plate gap (predetermined distance between first metal plate material and second metal plate material) W: Width of the adherend (adhesive line width)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Connection Of Plates (AREA)

Abstract

Provided are: a production method for a temperature-regulating unit that makes it possible to reliably prevent fluid leakage, enables production in a short time, requires no large-scale and expensive facility such as a temperature rising furnace, and is equipped with a flow path capable of achieving high release strength and fatigue strength; and said temperature-regulating unit. This production method for a temperature-regulating unit comprises: an adhesive attachment step for attaching an adhesive (14) so as to surround a groove (13) formed in a first metallic plate material (11) and/or in a second metallic plate material (12); a superposition step for superposing the first metallic plate material (11) and the second metallic plate material (12) so as to have the adhesive (14) interposed between the first metallic plate material (11) and the second metallic plate material (12); and a joining step for joining, by means of at least one of welding, friction stir joining, and mechanical joining, a portion of the superposed first metallic plate material (11) and second metallic plate material (12) at which at least no adhesive (14) is attached and no groove (13) is formed.

Description

温度調整ユニットの製造方法及び温度調整ユニットTemperature control unit manufacturing method and temperature control unit
 本発明は、温度調整ユニットの製造方法及び温度調整ユニットに関し、特に、流体を媒体として熱交換するための温度調整ユニットの製造方法及び温度調整ユニットに関する。 The present invention relates to a manufacturing method for a temperature adjustment unit and a temperature adjustment unit, and in particular to a manufacturing method for a temperature adjustment unit for heat exchange using a fluid as a medium and a temperature adjustment unit.
 従来の代表的な温度調整ユニット100としては、温度調整ユニット100の単位体積当たりの接触面積を増やすべく、図12に示すように、金属パイプ101を往復経路状に加工して流路115を形成し、効率よく熱交換するようにしたシンプルな構造体(パイプ屈曲型温度調整ユニット)が知られている。また、図13に示すように、往復経路状に形成された金属パイプ101間にフィン状の金属板102を溶接して、熱交換効率の向上と、温度調整ユニット100の剛性向上を図った構造体(フィン付きパイプ屈曲型温度調整ユニット)も知られている。 A typical conventional temperature adjustment unit 100 is a simple structure (bent pipe type temperature adjustment unit) in which metal pipes 101 are processed into a reciprocating path to form a flow path 115 as shown in FIG. 12, in order to increase the contact area per unit volume of the temperature adjustment unit 100, and thus to allow efficient heat exchange. Also known is a structure (bent pipe type temperature adjustment unit with fins) in which fin-shaped metal plates 102 are welded between metal pipes 101 formed into a reciprocating path, in order to improve heat exchange efficiency and rigidity of the temperature adjustment unit 100, as shown in FIG. 13.
 このような温度調整ユニットの製造手段としては、金属パイプを往復経路状に曲げ加工する手段や、直線状パイプの両端にU字形部品を接合する手段がある。金属パイプの曲げ加工だけであれば、流体が漏れるおそれがほとんどなく、また、U字形部品を接合する方式であっても、アーク溶接又はろう付け等の公知の溶接手段により高い接合品質を得ることができるため、品質的に高い信頼性が得られる。しかし、これらの方式では、薄く、長大で、複雑な流路を形成するのが難しく、製造コストが増大するという短所がある。これらの問題から、金属パイプではなく金属板に凸状の突起をプレス加工により形成し、平板又は同じく凸状の突起を有するプレス板と貼り合わせることで流路を形成する構造が提案されている(例えば、特許文献1又は2参照)。 Methods for manufacturing such temperature adjustment units include bending a metal pipe into a reciprocating path, or joining U-shaped parts to both ends of a straight pipe. If the metal pipe is only bent, there is almost no risk of fluid leakage, and even if U-shaped parts are joined, high joint quality can be obtained by known welding methods such as arc welding or brazing, so high quality reliability can be obtained. However, these methods have the disadvantage that it is difficult to form a thin, long, complex flow path, and manufacturing costs increase. Due to these problems, a structure has been proposed in which convex protrusions are formed on a metal plate, rather than a metal pipe, by pressing, and then the metal plate is bonded to a flat plate or a press plate having similar convex protrusions to form a flow path (see, for example, Patent Documents 1 and 2).
 特許文献1又は2で開示される貼り合わせ構造の温度調整ユニットは、大面積の流路を短時間で安価に作ることができ、また流路の断面形状も真円である必要がなく、扁平形状とすることで薄厚化が容易である。一方、貼り合わせ構造の温度調整ユニットにおける最大の課題は、貼り合わせのための接合品質の確保にある。 The temperature adjustment unit with a bonded structure disclosed in Patent Documents 1 and 2 can create a large-area flow path in a short amount of time at low cost, and the cross-sectional shape of the flow path does not need to be a perfect circle, and can be made flat to easily reduce the thickness. On the other hand, the biggest challenge with a bonded temperature adjustment unit is ensuring the quality of the bonding process.
日本国特開2015-64132号公報Japanese Patent Publication No. 2015-64132 日本国特開2014-52147号公報Japanese Patent Publication No. 2014-52147
 特許文献1又は2では、ろう付け、溶接、接着など、あらゆる接合方法が適用可能と記載されている。しかしながら、接合品質確保のための要件が具体的に記載されていない。すなわち、これらの接合方法を単独で温度調整ユニットに適用した場合には、以下に示す品質上の課題がある。 Patent Documents 1 and 2 state that any joining method, such as brazing, welding, or adhesive bonding, can be used. However, they do not specifically state the requirements for ensuring joining quality. In other words, if these joining methods are applied alone to a temperature adjustment unit, the following quality issues will arise.
 (a)ろう付け法
 最も一般的な、炉内ろう付け法は、図14(a)及び(b)に示すように、プレス加工により凸状の突起111を形成した金属板110に、突起111の周囲、あるいは重ね合わせ面となる平坦部全体に金属板110よりも融点の低いろう材112を塗布し(図14(b)参照)、更に、図15(a)及び(b)に示すように、平板113、又はプレス加工により突起111が形成された他の金属板110を重ねた状態で、昇温炉114に挿入し、所定温度まで昇温させて、ろう材112を溶融させて金属結合により接合するものである。
(a) Brazing method The most common furnace brazing method is to apply a brazing material 112 having a lower melting point than the metal plate 110 around the protrusions 111 or to the entire flat portion that will be the overlapping surface, as shown in Figures 14(a) and (b) , and then, as shown in Figures 15(a) and (b) , a flat plate 113 or another metal plate 110 on which protrusions 111 have been formed by press working, is inserted into a heating furnace 114 in a state where it is heated to a predetermined temperature, and the brazing material 112 is melted and joined by metallic bonding.
 ろう付け法は、接合工程での欠陥が生じ難く、特にプレス成形された金属板110に穴があく危険性がないため、流体漏れの心配が極めて小さいのが最大の長所であり、実用化もされている。一方、昇温炉114に入れて、昇温、維持及び降温させる手間と時間の負担が非常に大きいのが短所である。また、昇温炉114には、バッチ式とベルトコンベアを用いた連続式があるが、どちらにしても設備負担が大きいという課題がある。 The brazing method has the greatest advantage that defects are unlikely to occur during the joining process, and in particular there is no risk of holes being created in the press-formed metal plate 110, so there is very little risk of fluid leakage, and this method has been put into practical use. On the other hand, the disadvantage is that it requires a great deal of effort and time to place the material in the heating furnace 114, heat it up, maintain it, and cool it down. In addition, there are two types of heating furnaces 114: batch type and continuous type using a belt conveyor, but either method poses the problem of a large burden on the equipment.
 (b)溶接法
 溶接法は、図16(a)及び(b)並びに図17(a)及び(b)に示すように、貼り合わせる2枚の金属板110、113を重ねた後、流路115となる凸状の突起111の周囲を、レーザ溶接120、MIG(Metal Inert Gas)溶接又はMAG(Metal ActiveGas)溶接121、TIG(Tungsten Inert Gas)溶接122、プラズマアーク溶接123等で線状に形成した溶融金属部125によって接合して、流体の漏れをシールする方法である。なお、溶接に際し、溶接材料(フィラーワイヤ)を加えることもある。また、摩擦撹拌接合法(FSW)124を用いて、融点以下の温度で接合する方法もある。
(b) Welding method As shown in Figs. 16(a) and (b) and Figs. 17(a) and (b), the welding method is a method in which two metal plates 110 and 113 to be bonded are stacked, and then the periphery of a convex protrusion 111 that becomes a flow path 115 is joined by a molten metal part 125 formed linearly by laser welding 120, MIG (Metal Inert Gas) welding or MAG (Metal Active Gas) welding 121, TIG (Tungsten Inert Gas) welding 122, plasma arc welding 123, or the like, to seal the leakage of the fluid. Note that welding material (filler wire) may be added during welding. There is also a method in which the plates are joined at a temperature below the melting point using friction stir welding (FSW) 124.
 溶接法は、昇温炉が不要であり、直交座標型又は多関節型の溶接ロボットを用いて施工でき、省スペースで工程的にシンプルである。しかし、流体リーク箇所となりうる溶接欠陥発生のリスクをゼロにすることは難しく、流路としての品質に懸念がある。特に、溶接ビードの始端や終端部分には溶込みが得られ難く、リーク欠陥が発生し易い。さらに、長い距離に対してレーザ溶接やプラズマアーク溶接のような高温熱源を使う場合は、熱変形が生じるおそれがある。また、FSWのような高圧を用いる場合は、塑性変形により温度調整ユニットとしての平面性が得られ難い問題もある。 Welding does not require a heating furnace and can be performed using a Cartesian coordinate or articulated welding robot, making it space-saving and simple in terms of process. However, it is difficult to eliminate the risk of welding defects that could lead to fluid leaks, and there are concerns about the quality of the flow path. In particular, it is difficult to achieve penetration at the beginning and end of the weld bead, making it easy for leak defects to occur. Furthermore, when using high-temperature heat sources such as laser welding or plasma arc welding over long distances, there is a risk of thermal deformation. Also, when using high pressure such as FSW, there is the problem that it is difficult to achieve flatness as a temperature adjustment unit due to plastic deformation.
 (c)接着法
 接着法は、図18並びに図19(a)及び(b)に示すように、ディスペンサ116を用いて流路115となる凸状の突起111を囲むように、全周に亘って接着剤131を線状に塗布して接着させることで、流体が漏れるのをシールする方法である。接着剤131は、一般的に半練り状態(ジェル状)のため、貼り合わせの工程で形状が潰れる際に、確実に界面(接合面)に馴染む。そのため、溶接法よりもシール性能に優れている。一方、溶接法に比べて接合強度が低いため、高圧の流体に耐えられないという課題や、流体稼働のオンオフの繰返しに伴う耐長期疲労性に課題がある。
(c) Adhesive Method As shown in FIG. 18 and FIG. 19(a) and (b), the adhesive method is a method of sealing against fluid leakage by applying adhesive 131 in a line shape around the entire circumference of the convex protrusion 111 that becomes the flow path 115 using a dispenser 116 to surround and adhere the protrusion 111. The adhesive 131 is generally in a semi-kneaded state (gel-like), so it reliably blends into the interface (joint surface) when the shape is crushed in the bonding process. Therefore, it has better sealing performance than the welding method. On the other hand, since the joint strength is lower than that of the welding method, there are problems such as the inability to withstand high-pressure fluid and the long-term fatigue resistance due to repeated on-off of fluid operation.
 また、接着剤の固化手段には、1液型の長時間室温保持型、又は短時間固化が可能な紫外線硬化型、高温硬化型、二液混合型などのタイプがあるが、いずれの接着剤も、塗布後すぐに金属板110、113を動かすと、金属板110、113が相対的に位置ずれする可能性があることから、ある程度の固化まではその場に保持しておかなければならない。なお、最も扱いやすく、シンプルな1液型の長時間室温保持型ではこの問題が顕著である。したがって、接着剤は硬化時間を含めると能率が悪いという課題がある。さらには、接着剤はシール性に優れるといっても、重ね合わせ時の圧力が部分的に強いと、接着剤が接合面から完全に排出されてしまい、シール性が完全に保証されないという課題もある。 Also, there are various types of adhesive hardening methods, such as one-component long-term room temperature retention types, or short-term hardening types such as ultraviolet curing types, high temperature curing types, and two-component mixed types. However, with any type of adhesive, if the metal plates 110, 113 are moved immediately after application, there is a possibility that the metal plates 110, 113 may shift relative to one another, so the adhesive must be held in place until it hardens to a certain extent. This problem is particularly noticeable with the one-component long-term room temperature retention types, which are the easiest to handle and the simplest. Therefore, adhesives have the problem of low efficiency when hardening time is included. Furthermore, even if adhesives have excellent sealing properties, if the pressure applied when overlapping is strong in some areas, the adhesive may be completely expelled from the joint surface, and sealing properties cannot be completely guaranteed.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、確実に流体の漏れを防ぐことができ、短時間での施工が可能であり、さらに昇温炉のような大型で高価な設備が不要であり、かつ高い剥離強度、疲労強度が得られる流路を備える、温度調整ユニットの製造方法及び温度調整ユニットを提供することにある。 The present invention has been made in consideration of the above-mentioned problems, and its purpose is to provide a manufacturing method for a temperature adjustment unit and a temperature adjustment unit that can reliably prevent fluid leakage, can be installed in a short time, does not require large and expensive equipment such as a heating furnace, and is equipped with a flow path that provides high peel strength and fatigue strength.
 本発明の上記目的は、温度調整ユニットの製造方法に係る下記[1]又は[2]の構成により達成される。 The above object of the present invention is achieved by the following configuration [1] or [2] relating to the manufacturing method of a temperature adjustment unit.
[1] 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットの製造方法であって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤を被着させる接着剤被着工程と、
 前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とを重ね合わせる重ね合わせ工程と、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着されておらず、かつ、前記溝が成形加工されていない部分を、溶接、摩擦撹拌接合及び機械的接合法のうち少なくとも一つにより接合する接合工程と、
 を有する、温度調整ユニットの製造方法。
[1] A method for manufacturing a temperature adjustment unit, comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material,
an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material;
a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material;
A joining process of joining at least a portion of the first metal plate material and the second metal plate material that are not coated with the adhesive and have not been processed to have the groove by at least one of welding, friction stir welding, and mechanical joining methods;
A method for manufacturing a temperature adjustment unit comprising the steps of:
[2] 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットの製造方法であって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤を被着させる接着剤被着工程と、
 前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とを重ね合わせる重ね合わせ工程と、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、前記接着剤が固化する前に、少なくとも、前記接着剤が被着された部分を一部含み、かつ、前記溝が成形加工されていない部分を、溶接、摩擦撹拌接合及び機械的接合法のうち少なくとも一つにより接合する接合工程と、
 を有する、温度調整ユニットの製造方法。
[2] A method for manufacturing a temperature adjustment unit, comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material,
an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material;
a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material;
a joining process for joining at least a portion of the first metal plate material and the second metal plate material that are overlapped with each other, the portion including at least a portion to which the adhesive is applied and in which the groove is not formed, by at least one of welding, friction stir welding, and mechanical joining methods before the adhesive solidifies;
A method for manufacturing a temperature adjustment unit comprising the steps of:
 また、本発明の上記目的は、温度調整ユニットに係る下記[3]又は[4]の構成により達成される。 The above object of the present invention is also achieved by the following configuration [3] or [4] for the temperature adjustment unit.
[3] 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットであって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤が被着された状態で、かつ、前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とが重ね合わせられており、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着されておらず、かつ、前記溝が成形加工されていない部分において溶融接合部及び機械的接合部のうち少なくとも一つが形成されている、温度調整ユニット。
[3] A temperature adjustment unit comprising a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and the first metal plate and the second metal plate are joined together,
the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
A temperature adjustment unit in which at least one of a molten joint and a mechanical joint is formed on the overlapping first metal plate material and the second metal plate material, at least in areas where the adhesive is not applied and where the groove is not formed.
[4] 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットであって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤が被着された状態で、かつ、前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とが重ね合わせられており、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着された部分を一部含み、かつ、前記溝が成形加工されていない部分において溶融接合部及び機械的接合部のうち少なくとも一つが形成されている、温度調整ユニット。
[4] A temperature adjustment unit comprising a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and the first metal plate and the second metal plate are joined together,
the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
A temperature adjustment unit comprising at least a portion of the overlapping first metal plate material and the second metal plate material coated with the adhesive, and at least one of a molten joint and a mechanical joint being formed in a portion where the groove is not formed.
 本発明によれば、確実に流体の漏れを防ぐことができ、短時間での施工が可能であり、さらに昇温炉のような大型で高価な設備が不要であり、かつ高い剥離強度、疲労強度を有する流路を備える、温度調整ユニットの製造方法及び温度調整ユニットを提供することができる。 The present invention provides a manufacturing method for a temperature control unit and a temperature control unit that can reliably prevent fluid leakage, can be installed in a short time, does not require large and expensive equipment such as a heating furnace, and is equipped with a flow path that has high peel strength and fatigue strength.
図1は、アタッチメントが設けられた本発明の第1実施形態に係る温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のA-A断面図である。FIG. 1 is a diagram of a temperature adjustment unit according to a first embodiment of the present invention provided with an attachment, where (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line AA of (a). 図2は、本発明の第1実施形態に係る温度調整ユニットの製造方法により形成される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のB-B断面図である。2A and 2B are diagrams of a temperature adjustment unit formed by a manufacturing method for a temperature adjustment unit according to the first embodiment of the present invention, in which (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line BB of (a). 図3は、2枚の金属板材間に接着剤が介在した状態を示す図であって、(a)は、2枚の金属板材の加圧により被着された接着剤が接合面から排除される状態を示す断面図、(b)は、接着剤に含有する固形物により2枚の金属板材間に所定の間隔が確保される状態を示す断面図である。Figure 3 is a diagram showing a state in which an adhesive is interposed between two metal plate materials, where (a) is a cross-sectional view showing a state in which the applied adhesive is expelled from the joining surface by pressing the two metal plate materials together, and (b) is a cross-sectional view showing a state in which a predetermined gap is maintained between the two metal plate materials by solid matter contained in the adhesive. 図4は、一方の金属板材の重ね合わせ面にポンチ打撃によって点状突起を形成する工程を示す図であって、(a)は、一方の金属板材の重ね合わせ面にポンチ打撃によって点状突起を形成する前の状態を示す断面図、(b)は、ポンチ打撃により点状突起を形成した後の状態を示す断面図である。FIG. 4 is a diagram showing a process of forming dot-like protrusions by punch striking on the overlapping surface of one of the metal plate materials, where (a) is a cross-sectional view showing the state before the dot-like protrusions are formed on the overlapping surface of one of the metal plate materials by punch striking, and (b) is a cross-sectional view showing the state after the dot-like protrusions have been formed by punch striking. 図5は、接着剤が被着された金属板材に点状突起を有する他の金属板材を重ね合わせて金属板材同士を接合する工程を示す図であって、(a)は、接着剤が被着された金属板材に点状突起を有する他の金属板材を重ね合わせる状態を示す断面図、(b)は、抵抗スポット溶接法により金属板材同士を接合する状態を示す断面図、(c)は、金属板材同士が接合された状態を示す断面図である。FIG. 5 is a diagram showing a process of joining metal plate materials together by overlapping another metal plate material having dot-like protrusions on a metal plate material coated with an adhesive, where (a) is a cross-sectional view showing the state in which another metal plate material having dot-like protrusions is overlapped on a metal plate material coated with an adhesive, (b) is a cross-sectional view showing the state in which metal plate materials are joined together by resistance spot welding, and (c) is a cross-sectional view showing the state in which the metal plate materials have been joined together. 図6は、大型の温度調整ユニットの中央部付近を片側抵抗スポット溶接法により接合する状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the vicinity of the center of a large temperature adjustment unit is joined by one-side resistance spot welding. 図7は、レーザ溶接により形成された線状の溶融接合部により金属板材同士が接合された温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のC-C断面図である。Figure 7 is a diagram of a temperature adjustment unit in which metal plate materials are joined together by a linear molten joint formed by laser welding, where (a) is a plan view of the temperature adjustment unit and (b) is a CC cross-sectional view of (a). 図8は、本発明の第2実施形態に係る温度調整ユニットの製造方法により形成される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のD-D断面図である。8A and 8B are diagrams showing a temperature adjustment unit formed by a manufacturing method for a temperature adjustment unit according to a second embodiment of the present invention, in which (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line DD of (a). 図9は、溶融接合部もしくは機械的接合部のサイズと接着剤の幅との関係を示す図であって、(a)は、接着剤の幅より大きい溶融接合部もしくは機械的接合部により接合された接合部の断面図、(b)は、接着剤の幅より小さい溶融接合部もしくは機械的接合部により接合された接合部の断面図、(c)は、接着剤の幅より大きい溶融接合部もしくは機械的接合部が接着剤の幅の片側に寄せられて接合された接合部の断面図である。FIG. 9 is a diagram showing the relationship between the size of a molten joint or mechanical joint and the width of the adhesive, where (a) is a cross-sectional view of a joint joined by a molten joint or mechanical joint larger than the width of the adhesive, (b) is a cross-sectional view of a joint joined by a molten joint or mechanical joint smaller than the width of the adhesive, and (c) is a cross-sectional view of a joint joined by a molten joint or mechanical joint larger than the width of the adhesive and shifted to one side of the width of the adhesive. 図10は、接着剤が被着された金属板材に点状突起を有する他の金属板材を重ね合わせて金属板材同士を接合する工程を示す図であって、(a)は、接着剤の被着位置に他の金属板材の点状突起を合わせて位置決めする状態を示す断面図、(b)は、点状突起により接着剤を圧し潰しながら抵抗スポット溶接法により接合する状態を示す断面図、図10(c)は、接合後の接合部の断面図である。FIG. 10 is a diagram showing a process of joining metal plate materials together by overlapping another metal plate material having dot-like protrusions on a metal plate material coated with adhesive, where (a) is a cross-sectional view showing the state in which the dot-like protrusions of the other metal plate material are aligned and positioned at the position where the adhesive is applied, (b) is a cross-sectional view showing the state in which the adhesive is crushed by the dot-like protrusions while the plates are joined by a resistance spot welding method, and FIG. 10(c) is a cross-sectional view of the joint after joining. 図11は、分岐する複雑な流路を有する温度調整ユニットの平面図である。FIG. 11 is a plan view of a temperature adjustment unit having complicated branching flow paths. 図12は、従来のパイプ屈曲型温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のE-E断面図である。FIG. 12 shows a conventional bent pipe type temperature adjustment unit, where (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line EE of (a). 図13は、従来のフィン付きパイプ屈曲型温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のF-F断面図である。FIG. 13 shows a conventional finned pipe bent type temperature adjustment unit, where (a) is a plan view of the temperature adjustment unit and (b) is a cross-sectional view taken along the line FF of (a). 図14は、ろう付け法で形成される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のG-G断面図である。FIG. 14 shows a temperature adjustment unit formed by a brazing method, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line GG of (a). 図15は、接合面にろう材が被着された金属板を昇温炉内に挿入し、更に加熱して形成される温度調整ユニットの断面図である。FIG. 15 is a cross-sectional view of a temperature adjustment unit formed by inserting a metal plate, the joining surface of which is covered with a brazing material, into a heating furnace and further heating it. 図16は、各種溶接及び摩擦撹拌接合により接合される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のH-H断面図である。FIG. 16 is a diagram of a temperature adjustment unit joined by various welding and friction stir welding, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line HH of (a). 図17は、図16に示す接合法により形成された温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のI-I断面図である。17A and 17B are diagrams of a temperature adjustment unit formed by the bonding method shown in FIG. 16, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along line II of (a). 図18は、一方の金属板材に接着剤が被着される状態を示す断面図である。FIG. 18 is a cross-sectional view showing a state in which an adhesive is applied to one of the metal plates. 図19は、接着法により形成される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のJ-J断面図である。FIG. 19 is a diagram of a temperature adjustment unit formed by an adhesive method, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line JJ of (a).
 以下、本発明に係る温度調整ユニットの概略構造及び温度調整ユニットの製造方法に係る各実施形態について、図面に基づいて詳細に説明する。 Below, the schematic structure of the temperature adjustment unit according to the present invention and each embodiment of the manufacturing method for the temperature adjustment unit will be described in detail with reference to the drawings.
 まず、本発明の一実施形態に係る温度調整ユニットの概略構造について、図1(a)及び(b)を参照して説明する。 First, the general structure of a temperature adjustment unit according to one embodiment of the present invention will be described with reference to Figures 1(a) and (b).
<温度調整ユニットの概略構造>
 図1は、アタッチメントが設けられた本発明の第1実施形態に係る温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のA-A断面図である。図1(a)及び(b)に示すように、本実施形態の温度調整ユニット10は、流路16となるジグザグ状の連続した溝13がプレス加工により形成された第1の金属板材11と、平板状の第2の金属板材12が重ね合わされ、該第1の金属板材11と第2の金属板材12の重ね合わせ面11a、12a同士が、接着剤14、並びに、溶融接合部もしくは機械的接合部15により接合されて形成されている。なお、接着剤14は、溝13の周囲を囲むように連続して線状に形成されている。また、溶融接合部もしくは機械的接合部15は、溝13及び接着剤14の被着部を除いた部位に複数点在して形成されている。
<Overall structure of temperature adjustment unit>
FIG. 1 is a diagram of a temperature adjustment unit according to a first embodiment of the present invention provided with an attachment, (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view of (a) taken along the line A-A. As shown in FIGS. 1(a) and (b), the temperature adjustment unit 10 of this embodiment is formed by overlapping a first metal plate 11 in which a zigzag continuous groove 13 serving as a flow path 16 is formed by pressing, and a flat second metal plate 12, and the overlapping surfaces 11a, 12a of the first metal plate 11 and the second metal plate 12 are joined together by an adhesive 14 and a fusion joint or mechanical joint 15. The adhesive 14 is formed in a continuous line shape so as to surround the periphery of the groove 13. The fusion joint or mechanical joint 15 is formed in a plurality of dots in the area excluding the groove 13 and the adhesive 14-covered portion.
 上記したように、第1の金属板材11と第2の金属板材12の重ね合わせ面11a、12a部同士を接合することで、溝13によって、冷媒などの流体を通すためのジグザグ状の流路16が容易に形成される。また、第1の金属板材11と第2の金属板材12が接合された後、流路16の両端において、流路16内に流体を供給するための、又は流路16を流れる流体を外部に排出するためのパイプ状のアタッチメント17が取り付けられる。なお、説明の都合上、以下の各実施形態及び前述した従来例においては、アタッチメント17の図示及び説明を省略するものとする。 As described above, by joining the overlapping surfaces 11a, 12a of the first metal plate 11 and the second metal plate 12, the grooves 13 easily form zigzag flow paths 16 for passing a fluid such as a refrigerant. After the first metal plate 11 and the second metal plate 12 are joined, pipe-shaped attachments 17 are attached to both ends of the flow path 16 to supply a fluid into the flow path 16 or to discharge the fluid flowing through the flow path 16 to the outside. For convenience of explanation, the attachments 17 will be omitted from illustration and explanation in the following embodiments and the conventional example described above.
 また、上記の実施形態では、第2の金属板材12は平板状としたが、平板状板に限定されず、第1の金属板材11の溝13に対応して他の溝が形成された金属板材とすることもできる。さらに、第1の金属板材11と第2の金属板材12の溝形状は同じであってもよく、異なる形状であってもよい。 In addition, in the above embodiment, the second metal plate 12 is flat, but is not limited to a flat plate, and may be a metal plate in which another groove is formed corresponding to the groove 13 of the first metal plate 11. Furthermore, the groove shapes of the first metal plate 11 and the second metal plate 12 may be the same or different.
 このように、接着剤14を溝13の周囲を囲むように連続して形成することで、接着剤14の持つ高いシール性、低歪み性などの特性を生かして高いシール性能を有する流路16が得られる。また、各種溶接法、摩擦撹拌接合法、各種機械的接合法で形成する、溶融接合部もしくは機械的接合部15により、第1の金属板材11と第2の金属板材12の重ね合わせ面11a、12a同士を接合することで、接着剤14の弱点である剥離強度、疲労強度に対応する機能を付与することができる。また、溶融接合部もしくは機械的接合部15で接合することで、接着剤14が固化する前に次の工程に移動させることができ、高いせん断強度と共に、早い施工速度の実現が可能となる。さらに、各種溶接法、摩擦攪拌接合法で不可避的に発生し、完全排除が困難な溶接割れ欠陥が発生したとしても、接着部の外側に位置するので、リーク原因となることを避けることができる。 In this way, by continuously forming the adhesive 14 so as to surround the periphery of the groove 13, a flow path 16 having high sealing performance can be obtained by taking advantage of the properties of the adhesive 14, such as high sealing ability and low distortion. In addition, by joining the overlapping surfaces 11a, 12a of the first metal plate material 11 and the second metal plate material 12 with the fusion joint or mechanical joint 15 formed by various welding methods, friction stir welding methods, and various mechanical joining methods, it is possible to impart functions that correspond to the peel strength and fatigue strength, which are the weak points of the adhesive 14. In addition, by joining with the fusion joint or mechanical joint 15, it is possible to move to the next process before the adhesive 14 solidifies, and it is possible to achieve high shear strength and a high construction speed. Furthermore, even if a weld crack defect occurs, which is unavoidable in various welding methods and friction stir welding methods and is difficult to completely eliminate, it is located outside the adhesive part, so it is possible to avoid it becoming a cause of leaks.
<第1実施形態>
 続いて、本発明の第1実施形態に係る温度調整ユニットの製造方法について、図2~図7を参照して説明する。
First Embodiment
Next, a method for manufacturing the temperature adjustment unit according to the first embodiment of the present invention will be described with reference to FIGS.
(温度調整ユニットの製造方法)
 図2は、本発明の第1実施形態に係る温度調整ユニットの製造方法により形成される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のB-B断面図である。本実施形態に係る温度調整ユニット10の製造方法は、図2(a)及び(b)に示すように、プレス加工により流路16となるジグザグ状の溝13が形成された第1の金属板材11の重ね合わせ面11aに、溝13の全周を囲うように、接着剤14を切れ目なく線状に被着させる(接着剤被着工程)。
(Method of manufacturing the temperature adjustment unit)
2A and 2B are diagrams of a temperature adjustment unit formed by a manufacturing method of a temperature adjustment unit according to a first embodiment of the present invention, in which (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line B-B of (a). In the manufacturing method of the temperature adjustment unit 10 according to this embodiment, as shown in (a) and (b) of FIG. 2A, an adhesive 14 is applied in a continuous line shape to the overlapping surface 11a of a first metal plate 11 having a zigzag groove 13 formed by press working to become a flow path 16, so as to surround the entire circumference of the groove 13 (adhesive application step).
 なお、接着剤被着工程の前には、第1の金属板材11と第2の金属板材12の重ね合わせ面11a、12aにおける接着剤14の被着部付近に付着する埃や油分、水分の除去は当然のことながら、更に、火炎照射処理、水性プライマー処理及び大気圧プラズマ照射処理などの表面改質処理(表面改質処理工程)を施しておくことが望ましい。これにより、第1の金属板材11と第2の金属板材12の重ね合わせ面11a、12aの表面が活性化し、接着剤14と第1の金属板材11及び第2の金属板材12の被着強度が向上してシール性能が向上する。 Before the adhesive application process, it is of course necessary to remove dust, oil, and moisture adhering to the areas of the overlapping surfaces 11a, 12a of the first metal plate 11 and the second metal plate 12 near where the adhesive 14 is applied. It is also desirable to further apply a surface modification process (surface modification process) such as a flame irradiation process, an aqueous primer process, and an atmospheric plasma irradiation process. This activates the surfaces of the overlapping surfaces 11a, 12a of the first metal plate 11 and the second metal plate 12, improving the adhesion strength of the adhesive 14 to the first metal plate 11 and the second metal plate 12, and improving the sealing performance.
 次いで、別途用意した平板状の第2の金属板材12を、接着剤14が第1の金属板材11と第2の金属板材12の間に介在するようにして第1の金属板材11に重ね合わせる(重ね合わせ工程)。 Next, a separately prepared flat second metal plate material 12 is superimposed on the first metal plate material 11 so that the adhesive 14 is interposed between the first metal plate material 11 and the second metal plate material 12 (superimposing process).
 そして、第1の金属板材11と第2の金属板材12の接着剤14が被着されておらず、かつ、溝13が成形加工されていない部分を、一例として、一対の溶接電極31、32で挟持し、第1の金属板材11と第2の金属板材12を加圧しながら電圧を印加して、抵抗スポット溶接126により溶融接合部15を形成して、第1の金属板材11と第2の金属板材12とを接合する(接合工程)。そして、接合位置を変えながら、溶融接合部15により、第1の金属板材11と第2の金属板材12とを接合する操作を繰り返し行う。 Then, as an example, the portions of the first metal plate 11 and the second metal plate 12 where the adhesive 14 is not applied and where the grooves 13 are not formed are clamped between a pair of welding electrodes 31, 32, and a voltage is applied while pressure is applied to the first metal plate 11 and the second metal plate 12 to form a molten joint 15 by resistance spot welding 126, thereby joining the first metal plate 11 and the second metal plate 12 (joining process). Then, while changing the joining position, the operation of joining the first metal plate 11 and the second metal plate 12 by the molten joint 15 is repeated.
 なお、本実施形態における接合工程は、接着剤14が被着されていない部分に溶融接合部もしくは機械的接合部15を形成するので、接着剤14が固化する前であってもよく、また固化後であってよい。これに対し、接着剤14が被着された部分において、溶接により溶融接合部15を形成しようとすると、接着剤14が固化前であればアーク溶接やレーザ溶接において、また接着剤14が固化後では全ての溶接法において、気孔欠陥の発生、通電不良による溶接不能、撹拌不良といった問題が発生するおそれがある。このため、接着剤14の被着部への溶接は極力避ける必要がある。ただし、金属板材を加圧しながら溶接する抵抗溶接及び摩擦撹拌接合(FSW)は、接着剤14の固化前であれば、上記した問題が発生しないため適用可能であることから、これに関しては後述する第2実施形態で詳述する。 In the present embodiment, the joining process forms a molten joint or mechanical joint 15 in the portion not covered with adhesive 14, and may be performed before or after adhesive 14 solidifies. In contrast, if an attempt is made to form a molten joint 15 by welding in the portion covered with adhesive 14, problems such as the occurrence of porosity defects, inability to weld due to poor electrical conduction, and poor stirring may occur in arc welding or laser welding before adhesive 14 solidifies, and in all welding methods after adhesive 14 solidifies. For this reason, welding to the portion covered with adhesive 14 must be avoided as much as possible. However, resistance welding and friction stir welding (FSW), which weld metal plates while applying pressure, can be applied before adhesive 14 solidifies because they do not cause the above-mentioned problems, and this will be described in detail in the second embodiment described later.
 このように、第1の金属板材11と第2の金属板材12とを接合して水密の流路16を形成した後、流路16の両端部に、外部から流体を供給又は排出するためのアタッチメント17(図1参照)を取り付ける(アタッチメント取付け工程)。 After joining the first metal plate 11 and the second metal plate 12 to form a watertight flow path 16 in this manner, attachments 17 (see FIG. 1) for supplying or discharging fluid from the outside are attached to both ends of the flow path 16 (attachment attachment process).
 アタッチメント17は、例えば、ゴムホースや金属管などを介してポンプなどに接続される。アタッチメント17の取り付け方法は特に問わないが、一般的な方法としては、接合時において流路16の入口及び出口に穴をあける、又は、接合工程の前に予め穴をあけておき、短尺のパイプ状アタッチメント17を、溶接、機械的かしめ、接着などの方法で取り付ける方法がある。 The attachment 17 is connected to a pump or the like via, for example, a rubber hose or a metal tube. There is no particular limit to the method of attaching the attachment 17, but a common method is to drill holes at the inlet and outlet of the flow path 16 when joining, or to pre-drill holes before the joining process and then attach the short pipe-shaped attachment 17 by welding, mechanical crimping, adhesive, or other methods.
 溶融接合部15を形成する溶接方法としては、溶接時に第1の金属板材11と第2の金属板材12を加圧しながら接合する抵抗溶接(抵抗スポット溶接及び抵抗シーム溶接)及び摩擦撹拌接合(FSW)と、溶接時に第1の金属板材11と第2の金属板材12を加圧せずに接合するレーザ溶接、アーク溶接(MAG溶接、MIG溶接及びTIG溶接)及びプラズマアーク溶接があるが、本実施形態に係る温度調整ユニットの製造方法は、いずれの接合方法も適用可能である。なお、本明細書において、摩擦撹拌接合(FSW)により得られる接合部もまた、溶融接合部に含まれるものとする。 Welding methods for forming the molten joint 15 include resistance welding (resistance spot welding and resistance seam welding) and friction stir welding (FSW), which join the first metal plate material 11 and the second metal plate material 12 while applying pressure during welding, and laser welding, arc welding (MAG welding, MIG welding, and TIG welding), and plasma arc welding, which join the first metal plate material 11 and the second metal plate material 12 without applying pressure during welding. Any of these joining methods can be applied to the manufacturing method of the temperature adjustment unit according to this embodiment. In this specification, the joint obtained by friction stir welding (FSW) is also considered to be included in the molten joint.
 また、機械的接合部15を形成する機械的接合法としては、ブラインドリベットやパンチリベットなどの各種リベット、メカニカルクリンチ、SPR(Self-Piercing Rivet)、ネジ、ドリルネジ、ボルト・ナットといった手段を指し、いずれも点接合かつ基本的に加圧を伴う室温プロセスであることが共通であって、いずれの接合方法も適用可能である。なお、上記のうち、ブラインドリベットやボルト・ナットを用いる場合、接合対象である第1の金属板材11及び第2の金属板材12に対し、事前に貫通穴を設けておく必要がある。 The mechanical joining method for forming the mechanical joint 15 refers to various rivets such as blind rivets and punch rivets, mechanical clinching, SPR (Self-Piercing Rivet), screws, drill screws, bolts and nuts, and the like, all of which have in common that they are point joining and basically room temperature processes involving pressure, and any joining method can be applied. Of the above, when using blind rivets or bolts and nuts, it is necessary to make through holes in advance in the first metal plate material 11 and the second metal plate material 12 to be joined.
 ここで、第1の金属板材11と第2の金属板材12を加圧しながら溶接する抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合の場合、図3(a)に示すように、第1の金属板材11と第2の金属板材12の間に被着された接着剤14が、両金属板材11、12の加圧により、第1の金属板材11と第2の金属板材12間の隙間Cが狭くなることで押し出され、被着された接着剤14に薄肉部や切れ目が生じる可能性があり、シール性能の低下が懸念される。 In the case of resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining, in which the first metal plate 11 and the second metal plate 12 are welded while pressure is applied, as shown in FIG. 3(a), the adhesive 14 applied between the first metal plate 11 and the second metal plate 12 may be pushed out as the gap C between the first metal plate 11 and the second metal plate 12 narrows due to the pressure applied to both metal plates 11, 12, and this may result in thin sections or cuts in the applied adhesive 14, raising concerns about reduced sealing performance.
 しかし、図3(b)に示すように、被着される接着剤14にガラス、セラミック、金属、樹脂など小径の固形物18を含有させることで、第1の金属板材11と第2の金属板材12との間に所定の間隔h、すなわち、適度な厚さの接着剤14を確保することができ、良好なシール性が確保できる。 However, as shown in FIG. 3(b), by incorporating small-diameter solids 18 such as glass, ceramic, metal, or resin into the applied adhesive 14, a predetermined distance h can be ensured between the first metal plate 11 and the second metal plate 12, i.e., an appropriate thickness of adhesive 14 can be ensured, ensuring good sealing properties.
 固形物18の材質としては、溶接時の加圧に耐える硬度があれば特に限定されない。また、固形物18のサイズについては、大きくなるほど接着剤塗布ノズルへの詰まりが顕著になる。具体的には、直径0.1~0.5mm程度が、被着性、接着強度及びシール性の確保のバランスから好適である。 The material of the solid 18 is not particularly limited as long as it has a hardness that can withstand the pressure applied during welding. As for the size of the solid 18, the larger it is, the more likely it is to clog the adhesive application nozzle. Specifically, a diameter of about 0.1 to 0.5 mm is preferable in terms of the balance between adhesion, adhesive strength, and sealing properties.
 上記したように、接着剤14が適度な厚さを有することはシール性確保の観点から重要である。しかし、接着剤14に適度な厚さを持たせると、第1の金属板材11と第2の金属板材12が接触しておらず、抵抗スポット溶接を用いる場合に、溶接の品質を保証し難いという課題がある。すなわち、高粘度の接着剤、さらには接着剤中に小径の固形物を含有させた場合、また加圧力の小さい片側抵抗スポット溶接を用いると、通電前に第1の金属板材11と第2の金属板材12がしっかりと接触した状態にするのが難しい場合があり、最悪の場合、未接触となって全く溶接できないおそれがある。 As mentioned above, it is important for the adhesive 14 to have an appropriate thickness in terms of ensuring sealing properties. However, if the adhesive 14 has an appropriate thickness, the first metal plate 11 and the second metal plate 12 will not be in contact, and there is a problem that it is difficult to guarantee the quality of the weld when resistance spot welding is used. That is, when a high-viscosity adhesive is used, or when small-diameter solids are contained in the adhesive, or when one-sided resistance spot welding with a small pressure is used, it may be difficult to bring the first metal plate 11 and the second metal plate 12 into firm contact before the current is passed through, and in the worst case, there is a risk that they will not be in contact and cannot be welded at all.
 そこで、図4(a)及び(b)に示すように、第1の金属板材11の表面をポンチ35で打撃して、重ね合わせ面11aに第2の金属板材12に向かって突出する凸部19を形成しておく。そして、図5(a)及び(b)に示すように、接着剤14が線状に被着された第2の金属板材12に第1の金属板材11を重ね合わせて、第1の金属板材11(凸部19)と第2の金属板材12を確実に接触させた状態で、凸部19を狙い位置として抵抗スポット溶接を行う。なお、図4(b)や図5(a)で示す凸部19の高さHは、図5(c)で示す溶接後の板間隙間h、すなわち、接着剤固化時の厚さと等価であるが、これより高すぎても溶接時に凸部19が溶融して容易に潰れるので問題は無い。具体的には、0.5~2.0mm程度の高さが好適である。 Then, as shown in Figs. 4(a) and (b), the surface of the first metal plate 11 is struck with a punch 35 to form a protruding portion 19 on the overlapping surface 11a that protrudes toward the second metal plate 12. Then, as shown in Figs. 5(a) and (b), the first metal plate 11 is overlapped on the second metal plate 12 to which the adhesive 14 is linearly applied, and resistance spot welding is performed with the protruding portion 19 as the target position while the first metal plate 11 (protruding portion 19) and the second metal plate 12 are in secure contact with each other. The height H of the protruding portion 19 shown in Figs. 4(b) and 5(a) is equivalent to the gap h between the plates after welding shown in Fig. 5(c), i.e., the thickness when the adhesive solidifies, but if it is higher than this, the protruding portion 19 melts and is easily crushed during welding, so there is no problem. Specifically, a height of about 0.5 to 2.0 mm is preferable.
 このように抵抗スポット溶接することで、被着された固化前の接着剤14が、押し潰されて所定の厚さhを維持しながら横に広がると共に、第1の金属板材11と第2の金属板材12は、溶融接合部15により強固に接合されて、シール性と共に溶接品質が確保される。一方、固化後に抵抗スポット溶接する場合でも、固化接着剤厚さにほぼ等しい板間ギャップが形成されることがほぼ必然となるが、ポンチ35の存在によって溶接部だけは金属接触を容易に得ることができ、抵抗スポット溶接が可能、かつその品質を安定させることができる。 By performing resistance spot welding in this manner, the applied pre-solidified adhesive 14 is crushed and spreads laterally while maintaining a predetermined thickness h, and the first metal sheet 11 and the second metal sheet 12 are firmly joined by the molten joint 15, ensuring sealing properties and welding quality. On the other hand, even when resistance spot welding is performed after solidification, it is almost inevitable that a gap between the sheets approximately equal to the thickness of the solidified adhesive will be formed, but the presence of the punch 35 makes it easy to obtain metal contact only at the weld, making resistance spot welding possible and stabilizing its quality.
 また、図6に示すように、面積が大きい温度調整ユニット10を、抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより、点状の溶融接合部もしくは機械的接合部15を形成して接合する場合、温度調整ユニット10中央部の接合個所へアクセスさせるために、C型クランプのサイズが巨大化し、扱いづらい、設備コストが増大する、C型クランプを搭載するロボットが大型になるなどの問題がある。 Also, as shown in FIG. 6, when a temperature adjustment unit 10 having a large surface area is joined by forming a point-like fused joint or mechanical joint 15 by at least one of resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining, problems arise such as the size of the C-clamp required to access the joining point in the center of the temperature adjustment unit 10 becoming huge and difficult to handle, increasing equipment costs, and requiring a large robot to carry the C-clamp.
 一方、アーク溶接やレーザ溶接は、C型クランプが不要であり大面積の温度調整ユニット10に容易に対応できる利点を有するが、溶接時の加圧機能を有しないことから、接着工程後の貼り合わせのためのプレス機能を有していない。これらの観点から、スポット溶接の一種である片側抵抗スポット溶接127は、C型クランプを必要とせず、かつ加圧機能を有するため、面積が大きい温度調整ユニット10を製造するのに好適である。 On the other hand, arc welding and laser welding have the advantage that they do not require a C-clamp and can easily accommodate large-area temperature adjustment units 10, but they do not have a pressure function during welding and therefore do not have a pressing function for bonding after the bonding process. From these perspectives, one-sided resistance spot welding 127, which is a type of spot welding, is suitable for manufacturing large-area temperature adjustment units 10 because it does not require a C-clamp and has a pressure function.
 なお、片側抵抗スポット溶接は、一般的なC型クランプを用いるスポット溶接法と比べると、(a)溶接部径の安定性が劣ること、(b)大電流が流せないこと、(c)加圧力が低いこと、(d)通電経路の長さが変わることから、溶接位置が溶接部径に影響を及ぼすといったことが懸念される。しかし、本実施形態において溶接を行う目的は、接着剤の補剛であって、接合部には主体的な品質保証が要求されないので、十分適用することができる。 Compared to the spot welding method using a general C-clamp, one-sided resistance spot welding has some concerns, such as (a) less stability in the diameter of the weld, (b) inability to pass a large current, (c) low pressure, and (d) the length of the current path changes, so the welding position affects the diameter of the weld. However, since the purpose of welding in this embodiment is to stiffen the adhesive, and no subjective quality assurance is required for the joint, this method can be fully applied.
(変形例)
 続いて、第1実施形態に係る温度調整ユニットの製造方法の変形例について説明する。図7は、レーザ溶接により形成された線状の溶融接合部により金属板材同士が接合された温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のC-C断面図である。第1実施形態の変形例の温度調整ユニット10は、図2に示す第1実施形態の温度調整ユニット10の製造方法と同様に、プレス加工により流路16となるジグザグ状の連続した溝13が形成された第1の金属板材11の重ね合わせ面11aに、溝13の全周を囲うように、接着剤14を切れ目なく線状に被着させる(接着剤被着工程)。
(Modification)
Next, a modified example of the manufacturing method of the temperature adjustment unit according to the first embodiment will be described. Fig. 7 is a diagram of a temperature adjustment unit in which metal plates are joined together by a linear fusion joint formed by laser welding, (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line C-C of (a). In the temperature adjustment unit 10 of the modified example of the first embodiment, similarly to the manufacturing method of the temperature adjustment unit 10 of the first embodiment shown in Fig. 2, the adhesive 14 is applied linearly without interruption to the overlapping surface 11a of the first metal plate 11 in which the zigzag continuous groove 13 that becomes the flow path 16 is formed by pressing, so as to surround the entire circumference of the groove 13 (adhesive application process).
 次いで、別途用意した平板状の第2の金属板材12を、接着剤14が第1の金属板材11と第2の金属板材12の間に介在するようにして第1の金属板材11に重ね合わせる(重ね合わせ工程)。 Next, a separately prepared flat second metal plate material 12 is superimposed on the first metal plate material 11 so that the adhesive 14 is interposed between the first metal plate material 11 and the second metal plate material 12 (superimposing process).
 そして、第1の金属板材11と第2の金属板材12の接着剤14が被着されておらず、かつ、溝13が成形加工されていない部分を、一例として、レーザ溶接120により線状の溶融接合部15を形成して第1の金属板材11と第2の金属板材12とを接合する(接合工程)。接合工程は、接着剤14が固化する前であっても、固化後であってよく、また、線状の溶融接合部15は、連続していても、複数に分割形成されてもよい。なお、図7(a)及び(b)は、分割形成された例を示している。また、線状の溶融接合部15は、レーザ溶接120以外に、抵抗シーム溶接128によって形成してもよい。 Then, in the portions of the first metal plate 11 and the second metal plate 12 where the adhesive 14 is not applied and the grooves 13 are not formed, a linear molten joint 15 is formed by laser welding 120 to join the first metal plate 11 and the second metal plate 12 (joining process). The joining process may be performed before or after the adhesive 14 solidifies, and the linear molten joint 15 may be continuous or divided into multiple parts. Note that Figures 7(a) and (b) show an example where the linear molten joint 15 is divided. In addition to laser welding 120, the linear molten joint 15 may be formed by resistance seam welding 128.
 第1の金属板材11と第2の金属板材12とを接合した後、流路16の両端部に、外部から流体を供給又は排出するための図示しないアタッチメント17を取り付ける(取付け工程)。その他の製造方法及び作用は、第1実施形態の温度調整ユニットの製造方法と同様であるため、詳細な説明を省略する。 After joining the first metal plate 11 and the second metal plate 12, attachments 17 (not shown) for supplying or discharging fluid from the outside are attached to both ends of the flow path 16 (attachment process). The other manufacturing methods and functions are the same as those of the temperature adjustment unit of the first embodiment, so detailed explanations are omitted.
(第1実施形態の作用効果)
 以上説明したように、第1実施形態の温度調整ユニットの製造方法において、レーザ溶接、アーク溶接(MAG,MIG,TIG,プラズマアーク)、抵抗溶接(抵抗スポット溶接、抵抗シーム溶接)、摩擦撹拌接合及び機械的接合のうち少なくとも一つを用いて金属板材を接合している。これらの接合法は、金属の接合法として一般的に用いられており、その接合部は高い強度と信頼性を持つ。特に、接着剤やろう付け法といった母材を溶かさない接合法に対して、母材同士が溶け込む、もしくは物理的にかしめるといった、これらの接合法は高い剥離強度を発揮する。そこで、これらの接合法を、接着剤の被着によりシール性能を持たせた流路に適用することで、流路に発生する剥離応力を溶融接合部もしくは機械的接合部15が受け持つことで、接着剤の剥離を確実に防止することができる。
(Functions and Effects of the First Embodiment)
As described above, in the manufacturing method of the temperature adjustment unit of the first embodiment, the metal plate materials are joined using at least one of laser welding, arc welding (MAG, MIG, TIG, plasma arc), resistance welding (resistance spot welding, resistance seam welding), friction stir welding, and mechanical joining. These joining methods are generally used as metal joining methods, and the joints have high strength and reliability. In particular, compared to joining methods that do not melt the base materials, such as adhesives and brazing methods, these joining methods, in which the base materials are melted together or physically caulked, exhibit high peel strength. Therefore, by applying these joining methods to a flow path that has sealing performance due to the application of an adhesive, the molten joint or mechanical joint 15 bears the peel stress generated in the flow path, and peeling of the adhesive can be reliably prevented.
 また、接着剤が固化するまでの間に金属板材を物理的に動かすと、容易に金属板材が相対的に位置ずれを起こしてしまう問題に対しても、溶接法、摩擦撹拌接合法あるいは機械的接合法により、金属板材の位置を固定することで解決できる。 In addition, if the metal plate is physically moved while the adhesive is still hardening, the metal plate can easily become misaligned relative to the other plate. This problem can be solved by fixing the position of the metal plate using welding, friction stir welding, or mechanical joining.
 さらには、高強度な接着剤は粘性が高いことが多く、単に金属板材同士を重ね合わせるだけでは、接着剤の固化前であっても容易には潰れず、接着剤の上に金属板材が乗っているだけの状態になってしまう可能性がある。したがって、確実な溶接を行うためには、接着剤と金属板材の接触面積を増やすために加圧する必要がある。抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合、機械的接合といった加圧機能を有する接合方法であれば、別途プレス機を用意する必要がない。一方、これらの加圧機能を過度に作用させると、作業能率が低下するだけでなく、熱歪や塑性歪が加わって仕上げ精度(主に平坦性)が低下して、接着剤の持つ長所を生かせなくなるおそれがある。したがって、これらの溶接あるいは機械的接合による接合工程は、温度調整ユニットの大きさや流路形状に応じて必要最低限とするのが望ましい。 Furthermore, high-strength adhesives are often highly viscous, and simply overlapping metal sheets together may not easily crush them even before the adhesive solidifies, and the metal sheets may end up just resting on top of the adhesive. Therefore, to ensure reliable welding, pressure must be applied to increase the contact area between the adhesive and the metal sheets. If a joining method with a pressurizing function, such as resistance spot welding, resistance seam welding, friction stir welding, or mechanical joining, is used, there is no need to prepare a separate press machine. On the other hand, if these pressurizing functions are used excessively, not only will the work efficiency decrease, but thermal distortion and plastic distortion will be added, reducing the finishing accuracy (mainly flatness), and the advantages of the adhesive may not be fully utilized. Therefore, it is desirable to limit the number of joining processes using these welding or mechanical joining processes to the minimum necessary depending on the size of the temperature adjustment unit and the shape of the flow path.
 また、接着剤が被着されておらず、かつ溝以外の部分において、溶融接合部で接合する溶接法あるいは機械的接合部で接合する機械的接合法を接着剤と併用することで、流路の確実なシール性能が確保され、かつ金属板材の位置確定と共に必要な剥離強度を担保することができる。 In addition, by using a welding method that joins at fused joints or a mechanical joining method that joins at mechanical joints in combination with adhesive in areas other than the grooves where no adhesive is applied, reliable sealing performance of the flow path is ensured, and the necessary peel strength can be guaranteed while the position of the metal plate material is determined.
 また、本実施形態の温度調整ユニットの製造方法によれば、図11に示すように、流路16の途中で分岐や合流する複雑な流路16を有する温度調整ユニット10であっても、複雑な形状の溝13をプレス加工により形成することで、容易、かつ短時間で形成でき、流路16の形状が制約されることがない。 In addition, according to the manufacturing method of the temperature adjustment unit of this embodiment, even if the temperature adjustment unit 10 has a complex flow path 16 that branches and merges midway, as shown in FIG. 11, the grooves 13 of a complex shape can be formed easily and in a short time by pressing, and the shape of the flow path 16 is not restricted.
<第2実施形態>
 次に、本発明の第2実施形態に係る温度調整ユニットの製造方法について図8~図10を参照して説明する。
Second Embodiment
Next, a method for manufacturing a temperature adjustment unit according to the second embodiment of the present invention will be described with reference to FIGS.
(温度調整ユニットの製造方法)
 第2実施形態に係る温度調整ユニットの製造方法は、溶融接合部あるいは機械的接合部の形成が接着剤の固化前であり、かつ、接着剤が被着された部分を一部含んで溶融接合部あるいは機械的接合部が形成される点において、第1実施形態に係る温度調整ユニットの製造方法と異なる。また、接合工程は、金属板材の加圧機能を有する抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合部のうちから選択される必要がある。すなわち、加圧機能を有しないレーザ溶接、アーク溶接(MAG溶接,MIG溶接,TIG溶接,プラズマアーク溶接)は、適用できない。
(Method of manufacturing the temperature adjustment unit)
The manufacturing method of the temperature adjustment unit according to the second embodiment differs from the manufacturing method of the temperature adjustment unit according to the first embodiment in that the fusion joint or mechanical joint is formed before the adhesive solidifies, and includes a part of the adhesive-coated portion. The joining process must be selected from resistance spot welding, resistance seam welding, friction stir welding, and mechanical joints, which have a pressurizing function for metal plates. In other words, laser welding and arc welding (MAG welding, MIG welding, TIG welding, plasma arc welding) which do not have a pressurizing function cannot be applied.
 なお、以下の説明では、第1実施形態と同一部分には同一符号又は相当符号を付して説明を簡略化又は省略するものとする。 In the following explanation, parts that are the same as those in the first embodiment are given the same or equivalent reference symbols, and explanations will be simplified or omitted.
 図8は、本発明の第2実施形態に係る温度調整ユニットの製造方法により形成される温度調整ユニットの図であって、(a)は、該温度調整ユニットの平面図、(b)は、(a)のD-D断面図である。本実施形態の温度調整ユニットの製造方法は、まず、図8(a)に示すように、プレス加工により流路16となるジグザグ状の連続した溝13が形成された第1の金属板材11の重ね合わせ面11aに、第1の金属板材11と第2の金属板材12とを重ね合わせたとき、溝13の全周が接着剤14で囲われるように、接着剤14を第2の金属板材12の重ね合わせ面12aに切れ目なく線状に被着させる(接着剤被着工程)。 8A and 8B are diagrams of a temperature adjustment unit formed by a manufacturing method of a temperature adjustment unit according to a second embodiment of the present invention, where (a) is a plan view of the temperature adjustment unit, and (b) is a cross-sectional view taken along the line D-D of (a). In the manufacturing method of the temperature adjustment unit according to this embodiment, first, as shown in FIG. 8A, when the first metal plate material 11 and the second metal plate material 12 are overlapped on the overlapping surface 11a of the first metal plate material 11, on which a continuous zigzag groove 13 that becomes the flow path 16 is formed by pressing, adhesive 14 is applied in a continuous line shape without interruption to the overlapping surface 12a of the second metal plate material 12 so that the entire circumference of the groove 13 is surrounded by adhesive 14 (adhesive application process).
 次いで、第1の金属板材11と、第2の金属板材12に被着された接着剤14とを位置合わせをしながら、第1の金属板材11と第2の金属板材12を重ね合わせる(重ね合わせ工程、図8(b)及び図10(a)参照)。 Then, the first metal plate 11 and the second metal plate 12 are overlapped while aligning the first metal plate 11 and the adhesive 14 applied to the second metal plate 12 (overlapping process, see Figures 8(b) and 10(a)).
 そして、図8(b)及び図10(b)に示すように、接着剤14の固化前、すなわち接着剤14が液状又はジェル状の間に、接着剤14が被着された部分、かつ、溝13が成形加工されていない部分を、溶接電極31で押圧しながら電圧を印加して、一例として、片側抵抗スポット溶接により溶融接合部15を形成し、第1の金属板材11と第2の金属板材12とを接合する。 Then, as shown in Figures 8(b) and 10(b), before the adhesive 14 solidifies, i.e., while the adhesive 14 is in a liquid or gel state, the portion coated with the adhesive 14 and the portion where the groove 13 has not been formed are pressed with a welding electrode 31 while a voltage is applied, and as an example, a molten joint 15 is formed by one-sided resistance spot welding, and the first metal plate material 11 and the second metal plate material 12 are joined.
 ここで、本実施形態においても、上記第1実施形態(図4(a)及び(b)参照)で示したのと同様、第1の金属板材11の表面をポンチ35で打撃して、重ね合わせ面11aに第2の金属板材12に向かって突出する凸部19を形成しておくのであってもよい。なお、図10(a)~(c)では、第1の金属板材11に凸部19が形成された場合のケースを示しているが、第2実施形態もまた第1実施形態と同様、第1の金属板材11の表面をポンチ35で打撃して、重ね合わせ面11aに第2の金属板材12に向かって突出する凸部19を形成しておく形態に限定されないことは言うまでもない。 In this embodiment, as in the first embodiment (see Figures 4(a) and (b)), the surface of the first metal plate 11 may be struck with a punch 35 to form a convex portion 19 on the mating surface 11a that protrudes toward the second metal plate 12. Note that Figures 10(a) to (c) show a case in which a convex portion 19 is formed on the first metal plate 11, but it goes without saying that the second embodiment is not limited to the form in which the surface of the first metal plate 11 is struck with a punch 35 to form a convex portion 19 on the mating surface 11a that protrudes toward the second metal plate 12, as in the first embodiment.
 なお、片側抵抗スポット溶接の代わりに一般的な抵抗スポット溶接、抵抗シーム溶接、摩擦攪拌接合、機械的接合としても良い(接合工程)。機械的接合法の中では、貫通穴が事前に必要となるボルト・ナットや一部のリベットはその貫通穴から接着剤が漏れ出て作業性や製品品質を悪化させることがあるので、SPRやメカニカルクリンチといった貫通穴があかない工法を選択することが望ましい。通電しない摩擦攪拌接合や機械的接合では凸部を設ける効果はない。 Instead of one-sided resistance spot welding, general resistance spot welding, resistance seam welding, friction stir welding, or mechanical joining can also be used (joining process). Among mechanical joining methods, bolts, nuts, and some rivets require through holes in advance, and adhesive can leak from the through holes, which can deteriorate workability and product quality, so it is preferable to choose a method that does not create through holes, such as SPR or mechanical clinching. Friction stir welding and mechanical joining, which do not pass electricity, do not have the effect of creating a protrusion.
 一例として抵抗スポット溶接を用いた接合工程においては、第1の金属板材11及び第2の金属板材12が、板厚方向に加圧されるので、第1の金属板材11が、第2の金属板材12に被着された固化前の接着剤14内に侵入して接着剤14を横方向に押し出すことで、第1の金属板材11が第2の金属板材12の重ね合わせ面12aに確実に接触する(図10(b)参照)。 As an example, in a joining process using resistance spot welding, the first metal plate 11 and the second metal plate 12 are pressed in the thickness direction, so that the first metal plate 11 penetrates into the unsolidified adhesive 14 applied to the second metal plate 12 and pushes the adhesive 14 out laterally, so that the first metal plate 11 reliably contacts the mating surface 12a of the second metal plate 12 (see FIG. 10(b)).
 そして、第1の金属板材11と第2の金属板材12との間に電圧を印加して溶融接合部15を形成し、第1の金属板材11と第2の金属板材12とを接合する(図10(c)参照)。 Then, a voltage is applied between the first metal plate 11 and the second metal plate 12 to form a molten joint 15, and the first metal plate 11 and the second metal plate 12 are joined together (see FIG. 10(c)).
 その後、接合位置を変えながら、接着剤14の被着部を一部含む部分に溶融接合部15を形成して第1の金属板材11と第2の金属板材12とを接合する操作を繰り返し行う。 Then, while changing the joining position, the operation of forming a molten joint 15 in the portion that includes the portion coated with the adhesive 14 to join the first metal plate material 11 and the second metal plate material 12 is repeated.
(第2実施形態の作用効果)
 本実施形態の温度調整ユニットの製造方法によれば、金属板材11、12の加圧機能を有する抵抗スポット溶接、抵抗シーム溶接及び摩擦撹拌接合、機械的接合が適用され、接合部における固化前の接着剤14を押し出して接合するので、接着剤14の被着部にも溶融接合部あるいは機械的接合部15を形成して接合できる。
(Functions and Effects of the Second Embodiment)
According to the manufacturing method of the temperature adjustment unit of this embodiment, resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining with a pressurizing function for the metal plate materials 11, 12 are applied, and the adhesive 14 before solidifying at the joint is extruded and joined, so that a molten joint or mechanical joint 15 can be formed on the part coated with the adhesive 14 to join them.
 しかし、図9(a)に示すように、溶融接合部あるいは機械的接合部15の径Dが、接着剤14の線幅(被着部の幅)Wより大きく、かつ溶融接合部あるいは機械的接合部15が線幅Wの全幅を横断するように形成されると、接着剤14のシール性能が消失して流体がリークする原因となり得る。このため、溶融接合部あるいは機械的接合部15の径Dは、図9(b)に示すように、接着剤14の線幅Wより小さくするか、図9(c)に示すように、溶融接合部あるいは機械的接合部15が、線幅Wの一部に掛かり、被着部が残るように溶融接合部あるいは機械的接合部15の形成位置を調整することが好ましい。すなわち、接合工程において、形成される溶融接合部あるいは機械的接合部15によって接着剤14の線幅Wのすべてが消失しないように、溶融接合部あるいは機械的接合部15の径D及び溶融接合部あるいは機械的接合部15の位置の少なくとも一方を決定する必要がある。 However, as shown in FIG. 9(a), if the diameter D of the fusion joint or mechanical joint 15 is larger than the line width (width of the bonded portion) W of the adhesive 14 and the fusion joint or mechanical joint 15 is formed so as to cross the entire width of the line width W, the sealing performance of the adhesive 14 may be lost, which may cause fluid leakage. For this reason, it is preferable to either make the diameter D of the fusion joint or mechanical joint 15 smaller than the line width W of the adhesive 14 as shown in FIG. 9(b), or to adjust the position of the fusion joint or mechanical joint 15 so that the fusion joint or mechanical joint 15 covers part of the line width W and the bonded portion remains as shown in FIG. 9(c). In other words, in the bonding process, it is necessary to determine at least one of the diameter D of the fusion joint or mechanical joint 15 and the position of the fusion joint or mechanical joint 15 so that the entire line width W of the adhesive 14 is not lost by the fusion joint or mechanical joint 15 formed.
 その他の製造方法及び作用は、第1実施形態の温度調整ユニットの製造方法と同様であるため説明を省略する。
 なお、第1実施形態で説明したように、機械的接合部15を形成する機械的接合法は、いずれも点接合かつ基本的に加圧を伴う室温プロセス(すなわち、冷間プロセス)であることから、第2実施形態のような、接着剤が被着された部分を一部含んで機械的接合部が形成されることに支障はない。
The other manufacturing methods and functions are similar to those of the temperature adjustment unit of the first embodiment, and therefore the description thereof will be omitted.
As described in the first embodiment, the mechanical joining methods for forming the mechanical joint 15 are all point joining and basically room temperature processes (i.e., cold processes) involving pressure, so there is no problem with forming a mechanical joint that includes a portion coated with adhesive, as in the second embodiment.
 また、本実施形態の温度調整ユニットの製造方法によれば、図11に示すように、流路16の途中で分岐や合流する複雑な流路16を有する温度調整ユニット10であっても、複雑な形状の溝13をプレス加工により形成することで、容易、かつ短時間で形成でき、流路16の形状が制約されることがない。 In addition, according to the manufacturing method of the temperature adjustment unit of this embodiment, even if the temperature adjustment unit 10 has a complex flow path 16 that branches and merges midway, as shown in FIG. 11, the grooves 13 of a complex shape can be formed easily and in a short time by pressing, and the shape of the flow path 16 is not restricted.
 なお、本発明の一実施形態に係る温度調整ユニットの概略構造、本発明の第1実施形態に係る温度調整ユニットの製造方法及びその変形例、並びに、本発明の第2実施形態に係る温度調整ユニットの製造方法について説明してきたが、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。  Although we have described the general structure of a temperature adjustment unit according to one embodiment of the present invention, a manufacturing method for a temperature adjustment unit according to a first embodiment of the present invention and its variations, and a manufacturing method for a temperature adjustment unit according to a second embodiment of the present invention, the present invention is not limited to the above-described embodiments, and suitable modifications, improvements, etc. are possible.
 上記で説明した温度調整ユニットは、例えば、EV用バッテリーケースの温度調整パネル、床暖房システム、冷凍・冷蔵庫、大型コンピュータの冷却装置、水族館等での水槽の温度調整器などに適用できる。 The temperature adjustment unit described above can be used, for example, in temperature adjustment panels for EV battery cases, floor heating systems, freezers and refrigerators, cooling devices for large computers, and temperature regulators for fish tanks in aquariums, etc.
 以上のとおり、本明細書には次の事項が開示されている。 As described above, this specification discloses the following:
(1) 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットの製造方法であって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤を被着させる接着剤被着工程と、
 前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とを重ね合わせる重ね合わせ工程と、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着されておらず、かつ、前記溝が成形加工されていない部分を、溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより接合する接合工程と、
 を有する、温度調整ユニットの製造方法。
 この構成によれば、接着剤の有する高いシール性能により確実に流体の漏れを防ぐことができ、さらに溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つの有する高い剥離強度、疲労強度により信頼性の高い流路を備える温度調整ユニットの製造が可能となる。
(1) A method for manufacturing a temperature adjustment unit, comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material,
an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material;
a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material;
A joining process of joining at least a portion of the first metal plate material and the second metal plate material that are not coated with the adhesive and have not been processed to have the groove by at least one of welding, friction stir welding, and mechanical joining;
A method for manufacturing a temperature adjustment unit comprising the steps of:
With this configuration, the high sealing performance of the adhesive can reliably prevent fluid leakage, and furthermore, the high peel strength and fatigue strength of at least one of welding, friction stir welding, and mechanical welding makes it possible to manufacture a temperature adjustment unit with a highly reliable flow path.
(2) 前記接合工程は、前記接着剤が固化する前に行われる、(1)に記載の温度調整ユニットの製造方法。
 この構成によれば、第1の金属板材と第2の金属板材との間に接着剤を確実に介在させることができ、高いシール性能が得られる。
(2) The method for manufacturing a temperature adjustment unit according to (1), wherein the bonding step is performed before the adhesive hardens.
According to this configuration, the adhesive can be reliably interposed between the first metal plate and the second metal plate, and high sealing performance can be obtained.
(3) 前記接合工程は、レーザ溶接、アーク溶接、抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより行われる、(1)又は(2)に記載の温度調整ユニットの製造方法。
 この構成によれば、従来の各種溶接方法、摩擦撹拌方法、機械的接合方法を用いて、溶接品質の信頼性が高い温度調整ユニットを製造できる。
(3) The method for manufacturing a temperature adjustment unit according to (1) or (2), wherein the joining step is performed by at least one of laser welding, arc welding, resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining.
According to this configuration, a temperature adjustment unit with highly reliable welding quality can be manufactured using various conventional welding methods, friction stir welding methods, and mechanical joining methods.
(4) 前記接着剤は、前記第1の金属板材と前記第2の金属板材との間に所定の間隔を確保する固形物を含有する、(1)又は(2)に記載の温度調整ユニットの製造方法。
 この構成によれば、第1の金属板材と第2の金属板材との間に所定の厚さの接着剤を介在させることができ、高いシール性能が得られる。
(4) The method for manufacturing a temperature adjustment unit according to (1) or (2), wherein the adhesive contains a solid that ensures a predetermined gap between the first metal plate and the second metal plate.
According to this configuration, a predetermined thickness of adhesive can be interposed between the first metal plate and the second metal plate, and high sealing performance can be obtained.
(5) 前記接合工程は、片側抵抗スポット溶接により行われる、(1)又は(2)に記載の温度調整ユニットの製造方法。
 この構成によれば、比較的小型の溶接装置により、大型の温度調整ユニットの中央部も容易に接合できる。
(5) The method for manufacturing a temperature adjustment unit according to (1) or (2), wherein the joining step is performed by one-sided resistance spot welding.
According to this configuration, even the center portion of a large temperature adjustment unit can be easily joined using a relatively small welding device.
(6) 前記接合工程が、抵抗スポット溶接により行われる場合において、
 前記第1の金属板材における前記第2の金属板材との重ね合わせ面及び前記第2の金属板材における前記第1の金属板材との重ね合わせ面のうち少なくとも一方に対し、プレス加工又はポンチ打撃加工により前記重ね合わせ面に向かう方向に突出する凸部が形成され、
 前記凸部を狙い位置として前記抵抗スポット溶接を行う、(1)又は(2)に記載の温度調整ユニットの製造方法。
 この構成によれば、一方の金属板材の凸部と他方の金属板材との間の接触を確保することができ、抵抗スポット溶接により金属板材同士を確実に接合できる。
(6) In the case where the joining step is performed by resistance spot welding,
A convex portion protruding in a direction toward the overlapping surface is formed on at least one of the overlapping surface of the first metal plate with the second metal plate and the overlapping surface of the second metal plate with the first metal plate by press working or punch striking work,
The method for manufacturing a temperature adjustment unit according to (1) or (2), wherein the resistance spot welding is performed with the protrusion as a target position.
According to this configuration, contact between the protrusion of one metal plate and the other metal plate can be ensured, and the metal plates can be reliably joined together by resistance spot welding.
(7) 前記接着剤被着工程の前において、
 前記第1の金属板材と前記第2の金属板材との前記重ね合わせ面に、火炎照射処理、プライマー処理及びプラズマ照射処理のいずれかの表面改質処理を施す表面改質処理工程をさらに備える、(1)又は(2)に記載の温度調整ユニットの製造方法。
 この構成によれば、表面改質処理により金属板材と接着剤の被着強度が向上してシール性能が向上する。
(7) Before the adhesive application step,
The manufacturing method of the temperature adjustment unit described in (1) or (2), further comprising a surface modification process of performing any one of a flame irradiation treatment, a primer treatment, and a plasma irradiation treatment on the overlapping surfaces of the first metal plate material and the second metal plate material.
According to this configuration, the adhesion strength between the metal plate and the adhesive is improved by the surface modification treatment, and the sealing performance is improved.
(8) 前記接合工程の後において、
 前記流路の一部に、外部から前記流体を供給又は排出するためのアタッチメントを取り付ける取付け工程をさらに備える、(1)又は(2)に記載の温度調整ユニットの製造方法。
 この構成によれば、流路に流体を供給又は排出するためのアタッチメントを配設できる。
(8) After the joining step,
The method for manufacturing a temperature adjustment unit according to (1) or (2), further comprising a mounting step of mounting an attachment to a part of the flow path for supplying or discharging the fluid from the outside.
According to this configuration, an attachment for supplying or discharging a fluid to or from the flow path can be provided.
(9) 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットの製造方法であって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤を被着させる接着剤被着工程と、
 前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とを重ね合わせる重ね合わせ工程と、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、前記接着剤が固化する前に、少なくとも、前記接着剤が被着された部分を一部含み、かつ、前記溝が成形加工されていない部分を、溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより接合する接合工程と、
 を有する、温度調整ユニットの製造方法。
 この構成によれば、接着剤が固化する前に接合することで、接着剤が被着された部分であっても、第1の金属板材と第2の金属板材とを溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより接合できる。
(9) A method for manufacturing a temperature adjustment unit, comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material,
an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material;
a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material;
a joining step of joining at least a portion of the first metal plate material and the second metal plate material that are overlapped with each other, the portion including at least a portion to which the adhesive is applied and in which the groove is not formed, by at least one of welding, friction stir welding, and mechanical joining before the adhesive solidifies;
A method for manufacturing a temperature adjustment unit comprising the steps of:
According to this configuration, by joining before the adhesive solidifies, the first metal plate material and the second metal plate material can be joined by at least one of welding, friction stir welding, and mechanical joining, even in the parts coated with adhesive.
(10) 前記接合工程は、抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより行われる、(9)に記載の温度調整ユニットの製造方法。
 この構成によれば、接着剤が被着された部分であっても、抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより第1の金属板材と第2の金属板材とを確実に接合できる。
(10) The method for manufacturing a temperature adjustment unit according to (9), wherein the joining step is performed by at least one of resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining.
With this configuration, even in the areas coated with adhesive, the first metal plate material and the second metal plate material can be reliably joined by at least one of resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining.
(11) 前記接合工程において、形成される溶融接合部もしくは機械的接合部によって、前記接着剤の線幅のすべてが消失しないように、前記溶融接合部もしくは前記機械的接合部の径、並びに、前記溶融接合部もしくは前記機械的接合部の位置の少なくとも一方を決定する、(9)又は(10)に記載の温度調整ユニットの製造方法。
 この構成によれば、第1の金属板材と第2の金属板材との間を接着剤により確実にシールできる。
(11) A method for manufacturing a temperature adjustment unit described in (9) or (10), in which at least one of a diameter of the molten joint or the mechanical joint and a position of the molten joint or the mechanical joint is determined so that the entire line width of the adhesive is not lost by the molten joint or the mechanical joint formed in the joining process.
According to this configuration, the gap between the first metal plate and the second metal plate can be reliably sealed with the adhesive.
(12) 前記接着剤は、前記第1の金属板材と前記第2の金属板材との間に所定の間隔を確保する固形物を含有する、(9)又は(10)に記載の温度調整ユニットの製造方法。
 この構成によれば、第1の金属板材と第2の金属板材との間に所定の厚さの接着剤を介在させることができ、高いシール性能が得られる。
(12) The method for manufacturing a temperature adjustment unit according to (9) or (10), wherein the adhesive contains a solid that ensures a predetermined gap between the first metal plate and the second metal plate.
According to this configuration, a predetermined thickness of adhesive can be interposed between the first metal plate and the second metal plate, and high sealing performance can be obtained.
(13) 前記接合工程は、片側抵抗スポット溶接により行われる、(9)又は(10)に記載の温度調整ユニットの製造方法。
 この構成によれば、比較的小型の溶接装置により、大型の温度調整ユニットの中央部も容易に接合できる。
(13) The method for manufacturing a temperature adjustment unit according to (9) or (10), in which the joining step is performed by one-sided resistance spot welding.
According to this configuration, even the center portion of a large temperature adjustment unit can be easily joined using a relatively small welding device.
(14) 前記接合工程が、抵抗スポット溶接により行われる場合において、
 前記第1の金属板材における前記第2の金属板材との重ね合わせ面及び前記第2の金属板材における前記第1の金属板材との重ね合わせ面のうち少なくとも一方に対し、プレス加工又はポンチ打撃加工により前記重ね合わせ面に向かう方向に突出する凸部が形成され、
 前記凸部を狙い位置として前記抵抗スポット溶接を行う、(9)又は(10)に記載の温度調整ユニットの製造方法。
 この構成によれば、接着剤が被着された部分であっても、一方の金属板材の凸部と他方の金属板材との間の接触を確保することができ、抵抗スポット溶接により金属板材同士を確実に接合できる。
(14) In the case where the joining step is performed by resistance spot welding,
A convex portion protruding in a direction toward the overlapping surface is formed on at least one of the overlapping surface of the first metal plate with the second metal plate and the overlapping surface of the second metal plate with the first metal plate by press working or punch striking work,
The method for manufacturing a temperature adjustment unit according to (9) or (10), wherein the resistance spot welding is performed with the protruding portion as a target position.
With this configuration, contact between the convex portion of one metal plate and the other metal plate can be ensured even in the area where adhesive is applied, and the metal plates can be reliably joined together by resistance spot welding.
(15) 前記接着剤被着工程の前において、
 前記第1の金属板材と前記第2の金属板材との前記重ね合わせ面に、火炎照射処理、プライマー処理及びプラズマ照射処理のいずれかの表面改質処理を施す表面改質処理工程をさらに備える、9)又は(10)に記載の温度調整ユニットの製造方法。
 この構成によれば、金属板材と接着剤の被着強度が向上してシール性能が向上する。
(15) Before the adhesive application step,
The manufacturing method of the temperature adjustment unit described in 9) or (10) further includes a surface modification process of performing a surface modification treatment of any one of a flame irradiation treatment, a primer treatment, and a plasma irradiation treatment on the overlapping surfaces of the first metal plate material and the second metal plate material.
According to this configuration, the adhesion strength between the metal plate and the adhesive is improved, and the sealing performance is improved.
(16) 前記接合工程の後において、
 前記流路の一部に、外部から前記流体を供給又は排出するためのアタッチメントを取り付ける取付け工程をさらに備える、(9)又は(10)に記載の温度調整ユニットの製造方法。
 この構成によれば、流路に流体を供給又は排出するためのアタッチメントを配設できる。
(16) After the joining step,
The method for manufacturing a temperature adjustment unit according to (9) or (10), further comprising a mounting step of mounting an attachment to a part of the flow path for supplying or discharging the fluid from the outside.
According to this configuration, an attachment for supplying or discharging a fluid to or from the flow path can be provided.
(17) 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットであって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤が被着された状態で、かつ、前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とが重ね合わせられており、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着されておらず、かつ、前記溝が成形加工されていない部分において溶融接合部もしくは機械的接合部が形成されている、温度調整ユニット。
 この構成によれば、接着剤の有する高いシール性能により確実に流体の漏れを防ぐことができ、さらに溶接、摩擦撹拌接合及び機械的接合の有する高い剥離強度、疲労強度により信頼性の高い流路を備える温度調整ユニットを形成できる。
(17) A temperature adjustment unit including a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and which is formed by joining the first metal plate and the second metal plate,
the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
A temperature adjustment unit in which a molten joint or a mechanical joint is formed on at least the overlapping first metal plate material and the second metal plate material in areas where the adhesive is not applied and where the groove is not formed.
With this configuration, the high sealing performance of the adhesive can reliably prevent fluid leakage, and furthermore, the high peel strength and fatigue strength of welding, friction stir welding, and mechanical joining can form a temperature adjustment unit with a highly reliable flow path.
(18) 第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットであって、
 前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤が被着された状態で、かつ、前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とが重ね合わせられており、
 重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着された部分を一部含み、かつ、前記溝が成形加工されていない部分において溶融接合部もしくは機械的接合部が形成されている、温度調整ユニット。
 この構成によれば、確実に流体の漏れを防ぐことができ、さらに高い剥離強度、疲労強度を有する流路を備える温度調整ユニットが形成できる。
(18) A temperature adjustment unit including a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and which is formed by joining the first metal plate and the second metal plate,
the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
A temperature adjustment unit comprising the first metal plate material and the second metal plate material which are overlapped with each other, the temperature adjustment unit including at least a portion where the adhesive is applied, and a molten joint or a mechanical joint being formed in a portion where the groove is not formed.
According to this configuration, leakage of fluid can be reliably prevented, and further, a temperature adjustment unit having a flow path with high peel strength and fatigue strength can be formed.
(19) 前記流路の一部に、外部から前記流体を供給又は排出するためのアタッチメントが取り付けられている、(17)又は(18)に記載の温度調整ユニット。
 この構成によれば、流路の外部からアタッチメントを介して温度調整ユニットに流体を供給又は排出することができる。
(19) The temperature adjustment unit according to (17) or (18), wherein an attachment for supplying or discharging the fluid from the outside is attached to a part of the flow path.
According to this configuration, it is possible to supply or discharge a fluid from outside the flow path to the temperature adjustment unit via the attachment.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present invention. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年10月21日出願の日本特許出願(特願2022-169423)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-169423) filed on October 21, 2022, the contents of which are incorporated by reference into this application.
10  温度調整ユニット
11  第1の金属板材
11a、12a        重ね合わせ面
12  第2の金属板材
13  溝
14  接着剤
15  溶融接合部もしくは機械的接合部
16  流路
17  アタッチメント
18  固形物
19  凸部
120 レーザ溶接
121 MIG、MAG溶接(アーク溶接)
122 TIG溶接(アーク溶接)
123 プラズマアーク溶接(アーク溶接)
124 摩擦撹拌接合(FSW)
126 抵抗スポット溶接
127 片側抵抗スポット溶接
128 抵抗シーム溶接
D   溶融接合部もしくは機械的接合部の径
h   板間隙間(第1の金属板材と第2の金属板材間の所定の間隔)
W   被着部幅(接着剤の線幅)
10 Temperature adjustment unit 11 First metal plate 11a, 12a Laminated surface 12 Second metal plate 13 Groove 14 Adhesive 15 Melted joint or mechanical joint 16 Flow path 17 Attachment 18 Solid 19 Convex 120 Laser welding 121 MIG, MAG welding (arc welding)
122 TIG welding (arc welding)
123 Plasma arc welding (arc welding)
124 Friction Stir Welding (FSW)
126 Resistance spot welding 127 One-sided resistance spot welding 128 Resistance seam welding D Diameter of fusion joint or mechanical joint h Inter-plate gap (predetermined distance between first metal plate material and second metal plate material)
W: Width of the adherend (adhesive line width)

Claims (19)

  1.  第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットの製造方法であって、
     前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤を被着させる接着剤被着工程と、
     前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とを重ね合わせる重ね合わせ工程と、
     重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着されておらず、かつ、前記溝が成形加工されていない部分を、溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより接合する接合工程と、
     を有する、温度調整ユニットの製造方法。
    A method for manufacturing a temperature adjustment unit, comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material,
    an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material;
    a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material;
    A joining process of joining at least a portion of the first metal plate material and the second metal plate material that are not coated with the adhesive and have not been processed to have the groove by at least one of welding, friction stir welding, and mechanical joining;
    A method for manufacturing a temperature adjustment unit comprising the steps of:
  2.  前記接合工程は、前記接着剤が固化する前に行われる、請求項1に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 1, wherein the bonding step is performed before the adhesive solidifies.
  3.  前記接合工程は、レーザ溶接、アーク溶接、抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより行われる、請求項1又は2に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 1 or 2, wherein the joining process is performed by at least one of laser welding, arc welding, resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining.
  4.  前記接着剤は、前記第1の金属板材と前記第2の金属板材との間に所定の間隔を確保する固形物を含有する、請求項1又は2に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 1 or 2, wherein the adhesive contains a solid that ensures a predetermined gap between the first metal plate material and the second metal plate material.
  5.  前記接合工程は、片側抵抗スポット溶接により行われる、請求項1又は2に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 1 or 2, wherein the joining step is performed by one-sided resistance spot welding.
  6.  前記接合工程が、抵抗スポット溶接により行われる場合において、
     前記第1の金属板材における前記第2の金属板材との重ね合わせ面及び前記第2の金属板材における前記第1の金属板材との重ね合わせ面のうち少なくとも一方に対し、プレス加工又はポンチ打撃加工により前記重ね合わせ面に向かう方向に突出する凸部が形成され、
     前記凸部を狙い位置として前記抵抗スポット溶接を行う、請求項1又は2に記載の温度調整ユニットの製造方法。
    When the joining step is performed by resistance spot welding,
    A convex portion protruding in a direction toward the overlapping surface is formed on at least one of the overlapping surface of the first metal plate with the second metal plate and the overlapping surface of the second metal plate with the first metal plate by press working or punch striking work,
    The method for manufacturing a temperature adjustment unit according to claim 1 or 2, wherein the resistance spot welding is performed by targeting the protruding portion.
  7.  前記接着剤被着工程の前において、
     前記第1の金属板材と前記第2の金属板材との前記重ね合わせ面に、火炎照射処理、プライマー処理及びプラズマ照射処理のいずれかの表面改質処理を施す表面改質処理工程をさらに備える、請求項1又は2に記載の温度調整ユニットの製造方法。
    Prior to the adhesive application step,
    The manufacturing method of the temperature adjustment unit according to claim 1 or 2, further comprising a surface modification process for performing a surface modification process of any one of a flame irradiation process, a primer process, and a plasma irradiation process on the overlapping surfaces of the first metal plate material and the second metal plate material.
  8.  前記接合工程の後において、
     前記流路の一部に、外部から前記流体を供給又は排出するためのアタッチメントを取り付ける取付け工程をさらに備える、請求項1又は2に記載の温度調整ユニットの製造方法。
    After the bonding step,
    The method for manufacturing a temperature adjustment unit according to claim 1 or 2, further comprising a mounting step of mounting an attachment for supplying or discharging the fluid from outside to a part of the flow path.
  9.  第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットの製造方法であって、
     前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤を被着させる接着剤被着工程と、
     前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とを重ね合わせる重ね合わせ工程と、
     重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、前記接着剤が固化する前に、少なくとも、前記接着剤が被着された部分を一部含み、かつ、前記溝が成形加工されていない部分を、溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより接合する接合工程と、
     を有する、温度調整ユニットの製造方法。
    A method for manufacturing a temperature adjustment unit, comprising forming a groove serving as a flow path for passing a fluid in at least one of a first metal plate material and a second metal plate material, and joining the first metal plate material and the second metal plate material,
    an adhesive application step of applying an adhesive to surround the periphery of the groove provided in at least one of the first metal plate material and the second metal plate material;
    a lamination step of laminating the first metal plate material and the second metal plate material such that the adhesive is interposed between the first metal plate material and the second metal plate material;
    a joining step of joining at least a portion of the first metal plate material and the second metal plate material that are overlapped with each other, the portion including at least a portion to which the adhesive is applied and in which the groove is not formed, by at least one of welding, friction stir welding, and mechanical joining before the adhesive solidifies;
    A method for manufacturing a temperature adjustment unit comprising the steps of:
  10.  前記接合工程は、抵抗スポット溶接、抵抗シーム溶接、摩擦撹拌接合及び機械的接合のうち少なくとも一つにより行われる、請求項9に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 9, wherein the joining process is performed by at least one of resistance spot welding, resistance seam welding, friction stir welding, and mechanical joining.
  11.  前記接合工程において、形成される溶融接合部もしくは機械的接合部によって、前記接着剤の線幅のすべてが消失しないように、前記溶融接合部もしくは前記機械的接合部の径、並びに、前記溶融接合部もしくは前記機械的接合部の位置の少なくとも一方を決定する、請求項9又は10に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 9 or 10, wherein at least one of the diameter of the molten joint or the mechanical joint and the position of the molten joint or the mechanical joint is determined so that the entire line width of the adhesive is not lost by the molten joint or the mechanical joint formed in the joining process.
  12.  前記接着剤は、前記第1の金属板材と前記第2の金属板材との間に所定の間隔を確保する固形物を含有する、請求項9又は10に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 9 or 10, wherein the adhesive contains a solid that ensures a predetermined gap between the first metal plate and the second metal plate.
  13.  前記接合工程は、片側抵抗スポット溶接により行われる、請求項9又は10に記載の温度調整ユニットの製造方法。 The method for manufacturing a temperature adjustment unit according to claim 9 or 10, wherein the joining step is performed by one-sided resistance spot welding.
  14.  前記接合工程が、抵抗スポット溶接により行われる場合において、
     前記第1の金属板材における前記第2の金属板材との重ね合わせ面及び前記第2の金属板材における前記第1の金属板材との重ね合わせ面のうち少なくとも一方に対し、プレス加工又はポンチ打撃加工により前記重ね合わせ面に向かう方向に突出する凸部が形成され、
     前記凸部を狙い位置として前記抵抗スポット溶接を行う、請求項9又は10に記載の温度調整ユニットの製造方法。
    When the joining step is performed by resistance spot welding,
    A convex portion protruding in a direction toward the overlapping surface is formed on at least one of the overlapping surface of the first metal plate with the second metal plate and the overlapping surface of the second metal plate with the first metal plate by press working or punch striking work,
    The method for manufacturing a temperature adjustment unit according to claim 9 or 10, wherein the resistance spot welding is performed with the protruding portion as a target position.
  15.  前記接着剤被着工程の前において、
     前記第1の金属板材と前記第2の金属板材との前記重ね合わせ面に、火炎照射処理、プライマー処理及びプラズマ照射処理のいずれかの表面改質処理を施す表面改質処理工程をさらに備える、請求項9又は10に記載の温度調整ユニットの製造方法。
    Prior to the adhesive application step,
    The manufacturing method of the temperature adjustment unit according to claim 9 or 10, further comprising a surface modification process for performing a surface modification process of any one of a flame irradiation process, a primer process, and a plasma irradiation process on the overlapping surfaces of the first metal plate material and the second metal plate material.
  16.  前記接合工程の後において、
     前記流路の一部に、外部から前記流体を供給又は排出するためのアタッチメントを取り付ける取付け工程をさらに備える、請求項9又は10に記載の温度調整ユニットの製造方法。
    After the bonding step,
    The method for manufacturing a temperature adjustment unit according to claim 9 or 10, further comprising a mounting step of mounting an attachment for supplying or discharging the fluid from outside to a part of the flow path.
  17.  第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットであって、
     前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤が被着された状態で、かつ、前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とが重ね合わせられており、
     重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着されておらず、かつ、前記溝が成形加工されていない部分において溶融接合部もしくは機械的接合部が形成されている、温度調整ユニット。
    A temperature adjustment unit comprising a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and the first metal plate and the second metal plate are joined together,
    the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
    A temperature adjustment unit in which a molten joint or a mechanical joint is formed on at least the overlapping first metal plate material and the second metal plate material in areas where the adhesive is not applied and where the groove is not formed.
  18.  第1の金属板材と第2の金属板材のうち少なくとも一方に流体を通すための流路となる溝が成形加工され、前記第1の金属板材と前記第2の金属板材を接合してなる、温度調整ユニットであって、
     前記第1の金属板材と前記第2の金属板材のうち少なくとも一方に設けられた前記溝の周囲を囲うように、接着剤が被着された状態で、かつ、前記接着剤が前記第1の金属板材と前記第2の金属板材の間に介在するように、前記第1の金属板材と前記第2の金属板材とが重ね合わせられており、
     重ね合わされた前記第1の金属板材及び前記第2の金属板材に対し、少なくとも、前記接着剤が被着された部分を一部含み、かつ、前記溝が成形加工されていない部分において溶融接合部もしくは機械的接合部が形成されている、温度調整ユニット。
    A temperature adjustment unit comprising a first metal plate and a second metal plate, at least one of which is formed with a groove serving as a flow path for passing a fluid, and the first metal plate and the second metal plate are joined together,
    the first metal plate and the second metal plate are overlapped with each other in a state in which an adhesive is applied so as to surround a periphery of the groove provided in at least one of the first metal plate and the second metal plate, and the adhesive is interposed between the first metal plate and the second metal plate;
    A temperature adjustment unit comprising: a first metal plate material and a second metal plate material that are overlapped with each other, the first metal plate material and the second metal plate material each including at least a portion where the adhesive is applied; and a molten joint or a mechanical joint being formed in a portion where the groove is not formed.
  19.  前記流路の一部に、外部から前記流体を供給又は排出するためのアタッチメントが取り付けられている、請求項17又は18に記載の温度調整ユニット。 The temperature adjustment unit according to claim 17 or 18, wherein an attachment for supplying or discharging the fluid from outside is attached to a part of the flow path.
PCT/JP2023/038107 2022-10-21 2023-10-20 Production method for temperature-regulating unit and temperature-regulating unit WO2024085259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-169423 2022-10-21
JP2022169423A JP2024061456A (en) 2022-10-21 2022-10-21 Temperature control unit manufacturing method and temperature control unit

Publications (1)

Publication Number Publication Date
WO2024085259A1 true WO2024085259A1 (en) 2024-04-25

Family

ID=90737728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038107 WO2024085259A1 (en) 2022-10-21 2023-10-20 Production method for temperature-regulating unit and temperature-regulating unit

Country Status (2)

Country Link
JP (1) JP2024061456A (en)
WO (1) WO2024085259A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289915A1 (en) * 1987-05-05 1988-11-09 INDUSTRIE ZANUSSI S.p.A. Channeled plate evaporator for refrigerating apparatus
JP2000311932A (en) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The Jointed metal heat plate and manufacture of the same
WO2003001136A1 (en) * 2001-06-20 2003-01-03 Showa Denko K.K. Cooling plate and method of producing the same
CN1455221A (en) * 2003-06-03 2003-11-12 广州市华德工业有限公司 Plate-type heat exchange tube gill and its manufacturing method and application
JP2007220403A (en) * 2006-02-15 2007-08-30 Nissan Motor Co Ltd Separator for fuel cell, fuel cell stack, and its manufacturing method
US20080292916A1 (en) * 2007-05-24 2008-11-27 Newman Keith E Joining bipolar plates using localized electrical nodes
EP2719460A1 (en) * 2012-10-12 2014-04-16 Sony DADC Austria AG Microfluidic devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289915A1 (en) * 1987-05-05 1988-11-09 INDUSTRIE ZANUSSI S.p.A. Channeled plate evaporator for refrigerating apparatus
JP2000311932A (en) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The Jointed metal heat plate and manufacture of the same
WO2003001136A1 (en) * 2001-06-20 2003-01-03 Showa Denko K.K. Cooling plate and method of producing the same
CN1455221A (en) * 2003-06-03 2003-11-12 广州市华德工业有限公司 Plate-type heat exchange tube gill and its manufacturing method and application
JP2007220403A (en) * 2006-02-15 2007-08-30 Nissan Motor Co Ltd Separator for fuel cell, fuel cell stack, and its manufacturing method
US20080292916A1 (en) * 2007-05-24 2008-11-27 Newman Keith E Joining bipolar plates using localized electrical nodes
EP2719460A1 (en) * 2012-10-12 2014-04-16 Sony DADC Austria AG Microfluidic devices

Also Published As

Publication number Publication date
JP2024061456A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
US11984691B2 (en) Resistance welding fastener, apparatus and methods
EP1882542B1 (en) Method of bonding dissimilar metals materials using a seal material interposed therebetween ; Bonding structure formed by such method
JP5468350B2 (en) Dissimilar metal plate joining method
US7368035B2 (en) Method for brazing and adhesive bonding
JP7426564B2 (en) Welding method
CN102059460A (en) Adhesive jointing and electric arc spot welding combined connection method for metals
WO2018142994A1 (en) Junction structure
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
CN105033421A (en) Arc weld bonding connecting system and method for dissimilar metals
JP4223515B2 (en) Metal plate joint structure
WO2024085259A1 (en) Production method for temperature-regulating unit and temperature-regulating unit
JP7255652B2 (en) Weld bond joint manufacturing method
JP2012187616A (en) Resistance welding apparatus and resistance welding method
CN109317801A (en) A kind of microdot Welding of nickel-clad copper harness and copper sheet
WO2022176962A1 (en) Method for spot welding aluminum members and method for bonding aluminum members
CN115194278B (en) Sealing brazing method and brazing system
JP7479757B2 (en) Spot welding method
JP2006021245A (en) Method for joining platy members
KR20200142183A (en) Spot welding device and method
CN105921901A (en) Resistance point brazing method of steel and aluminum connecting piece