WO2024085253A1 - Motive power supply system and electric power generation system - Google Patents

Motive power supply system and electric power generation system Download PDF

Info

Publication number
WO2024085253A1
WO2024085253A1 PCT/JP2023/038061 JP2023038061W WO2024085253A1 WO 2024085253 A1 WO2024085253 A1 WO 2024085253A1 JP 2023038061 W JP2023038061 W JP 2023038061W WO 2024085253 A1 WO2024085253 A1 WO 2024085253A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
type wind
power supply
supply system
drag type
Prior art date
Application number
PCT/JP2023/038061
Other languages
French (fr)
Japanese (ja)
Inventor
満男 荒井
Original Assignee
株式会社デック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デック filed Critical 株式会社デック
Publication of WO2024085253A1 publication Critical patent/WO2024085253A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • F03D9/37Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating
    • F03D9/39Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating by circulation or vortex formation

Definitions

  • This disclosure relates to a power supply system and a power generation system.
  • Patent document 1 discloses a method of circulating air through connected ducts to drive a low-pressure turbine and generate electricity.
  • This power generation method is characterized by the steps of rotating the propeller-type windmill of the low-pressure turbine with the wind from the propeller of the low-pressure turbine, which has been supplemented with the energy of the circulating wind, and converting it into power generation energy; converting the wind, whose pressure and temperature change due to the conversion to power generation energy and the circulation of the wind, into wind of constant pressure and temperature; and dividing the wind of constant pressure and temperature into two in a duct, providing power to rotate a propeller installed in the duct while rotating it with one wind, setting the rotation speed with the amount of power to compensate for part of the wind energy, blowing the wind into a propeller-type windmill installed in the same duct so that the direction of rotation of the wind matches the direction of rotation of the propeller of the low-pressure turbine, providing power to rotate the propeller of the low-pressure turbine while rotating, thereby drawing in and collecting wind from the other
  • the purpose of this disclosure is to provide a power supply system that can supply stable power without being affected by sunlight hours, weather, etc., and a power generation system that can generate inexpensive and stable electricity.
  • the power supply system includes a drag-type wind turbine having multiple blade members, with adjacent blade members forming a flow path whose cross-sectional area gradually decreases from the outside to the center, a casing that houses the drag-type wind turbine and receives the air emitted from the drag-type wind turbine, and a return flow path forming member that extends from the casing to the inlet side of the drag-type wind turbine, and is equipped with a flow path forming section that forms a flow path that uses the air flow emitted from the drag-type wind turbine as a power source for the drag-type wind turbine again, a speed change section that slows down or speeds up the rotation of the drag-type wind turbine and outputs it to the outside, and a drive unit for rotating the stationary drag-type wind turbine, and the return flow path forming member is formed so that the cross-sectional area is smaller on the inlet side of the drag-type wind turbine than on the casing side, and the air flow speed on the outlet side is smaller than on the inlet side
  • the power generation system includes a drag-type wind turbine having multiple blade members, in which adjacent blade members form a flow path whose cross-sectional area gradually decreases from the outside to the center, a casing that houses the drag-type wind turbine and receives air emitted from the drag-type wind turbine, and a return flow path forming member that extends from the casing to the inlet side of the drag-type wind turbine, forming a flow path that uses the air flow emitted from the drag-type wind turbine as a power source for the drag-type wind turbine again, a speed change unit that slows down or speeds up the rotation of the drag-type wind turbine and outputs it to the outside, a drive unit for rotating the stationary drag-type wind turbine, and a generator driven by the speed change unit, and the return flow path forming member is formed so that the cross-sectional area is smaller on the inlet side of the drag-type wind turbine than on the casing side, and the air flow speed on the outlet side is smaller than on the inlet side of the
  • This disclosure provides a power supply system that can supply stable power without being affected by sunlight hours, weather, etc., and a power generation system that can generate inexpensive and stable electricity.
  • FIG. 1 is a front view of a power supply system according to a first embodiment, showing the inside of a casing as seen through;
  • FIG. FIG. 13 is an explanatory side view of the power supply system in which the lower part of the flow passage forming part is installed underground.
  • FIG. 2 is an explanatory diagram showing the arrangement of a discharge pipe for a centrifugal fan provided in the power supply system.
  • FIG. 4 is a diagram showing a recovery static pressure at a wind turbine outlet of the power supply system.
  • FIG. 2 is an explanatory side view of the power supply system, the entirety of which is installed on the ground.
  • FIG. 13 is an explanatory diagram showing a power supply system according to a second embodiment as viewed from the front.
  • FIG. 2 is a plan view illustrating the overall configuration of the power supply system.
  • FIG. 13 is an explanatory side view of the power supply system in which the lower part of the flow passage forming part is installed underground.
  • FIG. 4 is a diagram showing a recovery static pressure at a wind turbine outlet of the power supply system.
  • FIG. 2 is an explanatory side view of the power supply system, the entirety of which is installed on the ground.
  • FIG. 13 is an explanatory side view of a state in which the insides of a first sound absorbing tank device and a second sound absorbing tank device included in a power supply system according to a third embodiment are filled with light water.
  • the power supply system 10 can supply power for driving a generator 12, for example.
  • the power supply system 10 includes a wind turbine 20, a flow path forming section 30, a speed change section 40, a drive device 50, and an air discharge device 60.
  • the wind turbine 20 is a drag-type wind turbine that receives the air flow and rotates around a rotation axis that extends substantially horizontally.
  • the wind turbine 20 is configured so that the air flow speed on the outlet side is slower than on the inlet side, and static pressure recovery occurs on the outlet side, and it can generate the torque and rotation speed required to drive the generator 12.
  • the wind turbine 20 has a circular shape when viewed from the side, and has a shaft 202 , a blade member 204 and a fixed member 206 .
  • the shaft 202 is the rotating shaft of the wind turbine 20, and is provided in the center of the wind turbine 20.
  • the shaft 202 is connected at both ends to shafts 224 via couplings 222, and each shaft 224 is supported by a bearing 226 capable of receiving a predetermined radial load and axial load.
  • the bearing 226 is a rolling bearing.
  • the bearing be a self-aligning roller bearing, since this allows a large tolerance to be set for the deflection and deflection angle of the shaft 224.
  • the blade members 204 are provided at intervals in the rotation direction of the wind turbine 20, and the number of the blade members 204 is, for example, eight as shown in FIG.
  • Each blade member 204 is curved in one direction and extends from a position on the rotation center side to an outer periphery position of the wind turbine 20. Note that this position on the rotation center side is a position spaced a predetermined distance from the shaft 202 in the radial direction. Adjacent blade members 204 form inter-blade flow passages through which air flows. In Fig.
  • inter-blade flow passages FP1a to FP1h are formed in sequence clockwise, and among these, the inter-blade flow passage FP1a and the inter-blade flow passage FP1f are inter-blade flow passages located on the inlet side and the outlet side, respectively.
  • the cross-sectional area of each of the inter-blade flow passages FP1a to FP1h gradually decreases from the inlet on the outside of the wind turbine 20 toward the center.
  • the fixing member 206 is a disk-shaped member to which each of the blade members 204 is fixed.
  • the flow passage forming part 30 is configured to have a predetermined degree of airtightness inside, and forms a circulation flow passage FP2 that uses the air flow leaving the wind turbine 20 again as a power source for the wind turbine 20. Air at a flow rate Q enters the inter-blade flow passage from the flow passage forming part 30.
  • the flow path forming section 30 is composed of a casing 30 a that houses the wind turbine 20 and receives the air emitted from the wind turbine 20 , and a return flow path forming member 30 b that extends from the casing 30 a to the inlet side of the wind turbine 20 .
  • the casing 30a is provided therein with a flow straightening plate 302. The flow straightening plate 302 stabilizes the flow conditions and strengthens the structure.
  • the return flow passage forming member 30b is formed so that the cross-sectional area is smaller on the inlet side of the wind turbine 20 than on the casing 30a side so as to increase the flow speed of air entering the wind turbine 20.
  • the cross-sectional area of the return flow passage forming member 30b becomes smaller from the casing 30a side toward the inlet side of the wind turbine 20.
  • the speed change unit 40 has a gear mechanism made up of gears, and can accelerate or decelerate the rotation of the wind turbine 20 and output it to the outside.
  • the gear mechanism may be a mechanism made up of a gear train, or may be a planetary gear mechanism.
  • the shaft 224 is connected to an input shaft 402 of the transmission unit 40, and an output shaft 404 extends from the opposite side.
  • the output shaft 404 is supported by a bearing 406 and connected to the shaft 122 of the generator 12 via a coupling 408.
  • the transmission unit 40 is provided with a lubricating device 410 for supplying lubricating oil thereto.
  • the driving device 50 can rotate the stationary wind turbine 20.
  • the operating forces, such as the input torque and initial rotation speed, required to rotate the stationary wind turbine 20 are determined by the weight, moment of inertia, dynamic friction coefficient of the bearings, and inner diameter of the bearings of the wind turbine 20.
  • the input torque and initial rotation speed are smaller than the rated torque and rated rotation speed of the generator 12, respectively.
  • the drive unit 50 includes a centrifugal fan 502 and a centrifugal fan discharge pipe 504 .
  • the centrifugal fan 502 is driven by a motor 510 and can discharge air drawn in from an air inlet 512.
  • a control panel 514 and a power source 516 for control are connected to the motor 510.
  • the centrifugal fan discharge pipe 504 is a pipe for discharging the air discharged from the centrifugal fan 502 to the blade member 204 of the wind turbine 20 .
  • the direction of air release is set to be tangent to the outer periphery of the wind turbine 20 so that the air released into the inter-blade flow passage flows smoothly, since the blade member 204 has a curved shape when viewed from the side.
  • the air release position is not limited to a position lower than the height position of the shaft 202 of the wind turbine 20 (lower position A shown in Figure 3), but may be a position higher than the shaft 202 (middle position B and upper position C, respectively, shown by dashed lines in Figure 3).
  • the air discharge device 60 is, for example, a damper that adjusts the volume of air, and can discharge an air volume Q1 from the inside of the flow path forming part 30 to the outside.
  • the air discharge device 60 discharges a portion of the air flowing through the circulation flow path FP2, thereby adjusting the flow rate and internal pressure of the air flowing inside the flow path forming part 30.
  • the centrifugal fan 502 of the drive unit 50 rotates, and air is discharged from the centrifugal fan discharge pipe 504.
  • the discharged air generates torque for rotating the wind turbine 20, and flows through the inter-blade flow passages (e.g., the flow passage from the inter-blade flow passage FP1a to the inter-blade flow passage FP1f), and is discharged into the inside of the casing 30a. That is, the air discharged from the centrifugal fan discharge pipe 504 flows down the inter-blade flow passage having a predetermined flow passage area, and is discharged inside the casing 30a having a flow passage area larger than that of the inter-blade flow passage.
  • the air volume Fb is pressurized downstream due to the upstream-downstream pressure difference with respect to the initial air volume Fa discharged from the centrifugal fan discharge pipe 504.
  • the pressurized air volume Fb returns to the wind turbine 20, merges with the initial air volume Fa, and flows down the inter-blade flow passage, generating a recovery static pressure P2 , which pressurizes and sends the air volume Fc.
  • the compressed air amount Fc returns to the wind turbine 20, merges with the initial air amount Fa, and flows down the inter-blade flow passages, generating a recovery static pressure P3 , which compresses and feeds an air amount Fd.
  • the compressed air amount Fd returns to the wind turbine 20, merges with the initial air amount Fa, and flows down the inter-blade flow passages, generating a recovery static pressure P4 , which compresses and feeds the air amount Fe.
  • the power supply system 10 is stopped when the air discharge device 60 discharges air to the outside and the operator operates the control panel 514 to stop the rotation of the motor 510.
  • the operation may be stopped by automatic control.
  • the power supply system 10 may be installed with the lower part of the flow path forming section 30 underground (below the ground surface GL) as shown in Figure 2, or may be installed above ground (above the ground surface GL) as shown in Figure 5.
  • the power supply system 10a differs from the power supply system 10 according to the first embodiment in the configuration of the drive device, and further includes an air supply device 62 as shown in FIG.
  • the driving device 50a is capable of rotating the wind turbine 20 when it is stationary. As shown in FIGS. 6 and 7 , the driving device 50 a is provided on the opposite side of the wind turbine 20 to the generator 12 , and has a hydraulic motor 551 that drives the shaft 202 of the wind turbine 20 , and a speed changer 552 .
  • the hydraulic motor 551 is adjacent to a hydraulic system unit 550 that is composed of a hydraulic pump and the like and generates hydraulic pressure, and is connected to this hydraulic system unit 550 to generate operating force for the wind turbine 20.
  • the hydraulic motor 551 may also be connected via hydraulic circuit piping 557 to the hydraulic system unit 550 that is installed at a remote position, as shown in Fig. 8 . 6 and 7, the speed change unit 552 has a gear mechanism formed by gears 555, and can reduce the rotation of the hydraulic motor 551 and increase the output torque Tm of the hydraulic motor 551 to transmit it to the wind turbine 20.
  • the gears 555 are lubricated by lubricating oil stored in a lubricating oil pit 553.
  • the gear mechanism may be a mechanism formed by a gear train, or may be a planetary gear mechanism.
  • the speed change unit 552 is connected to an end of the shaft 202 of the wind turbine 20 opposite to the end to which the speed change unit 40 is connected.
  • a gear 555 constituting the speed change unit 552 is connected to the shaft of the hydraulic motor 551 and the shaft 202 of the wind turbine 20 via a shaft 556 supported by a bearing 554.
  • the torque required to rotate the stationary wind turbine 20 is determined by the weight of the wind turbine 20, the moment of inertia, the dynamic friction coefficient of the bearings, and the inner diameter of the bearings, and is a value smaller than the rated value. Therefore, by setting a large gear ratio between the input side rotation speed and the output side rotation speed via the transmission section 552 and increasing the rotation speed of the hydraulic motor 551, the output torque Tm of the hydraulic motor 551 can be reduced by a combination of the displacement volume and input pressure of the hydraulic motor 551, and the hydraulic system unit 550 can also be made smaller.
  • the drive unit 50a has a hydraulic motor 551 instead of a centrifugal fan 502. Therefore, when rotating the stationary wind turbine 20, no air flow is generated by the drive unit 50a. However, air movement does occur due to a wave effect caused by the air being pushed out as the wind turbine 20 rotates due to the input torque from the hydraulic motor 551.
  • the air supply device 62 can supply air at an air amount Q2 to the circulation flow path FP2 formed by the flow path forming portion 30. Therefore, the air supply device 62 adjusts the flow rate and internal pressure of the air flowing through the flow passage forming portion 30 that have changed due to the air discharge device 60 excessively discharging air.
  • the hydraulic motor 551 of the drive unit 50a rotates, thereby rotating the wind turbine 20.
  • the air that has flowed in from the circulation path FP2 flows through the inter-blade flow passage (for example, the flow passage from the inter-blade flow passage FP1a to the inter-blade flow passage FP1f) and is released into the inside of the casing 30a.
  • the air that has flowed down an inter-blade passage having a predetermined flow area (e.g., air that has flowed down from the inter-blade passage FP1a to the inter-blade passage FP1f) is released inside the casing 30a, which has a flow area larger than the flow area of the inter-blade passage on the downstream side (e.g., the inter-blade passage FP1f).
  • the air supply device 62 supplies air to the circulation flow path FP2.
  • the supplied air flows into the inter-blade flow paths together with the air that was in the circulation flow path FP2.
  • the air that flows into the inter-blade flow paths is released inside the casing 30a, and as shown in FIG. 9, recovery static pressures P2 , P3 , P4 , ... are generated in sequence.
  • the power supply system 10a may be installed so that the lower part of the flow path forming section 30 is underground (below the ground surface GL) as shown in FIG. 8, or it may be installed above ground (above the ground surface GL) as shown in FIG. 10.
  • the power supply system 10b according to the third embodiment is provided with a first sound-absorbing tank device 63a and a second sound-absorbing tank device 63b for reducing and quieting the noise generated by the rotation of the wind turbine 20 over the entire casing 30a, including the upper portion and the side portion of the flow path.
  • the first sound absorbing tank device (an example of a noise reduction device) 63a is provided to cover the side of the casing 30a in which the wind turbine 20 is housed
  • the second sound absorbing tank device (an example of a noise reduction device) 63b is provided to cover the portion of the casing 30a downstream of the wind turbine that is not covered by the first sound absorbing tank device 63a.
  • the first sound absorbing tank device 63a and the second sound absorbing tank device 63b are connected, and a cylindrical observation joint tank 63c that is open at the top is provided at the boundary between them.
  • a lid is provided on the opening of the observation joint tank 63c.
  • the first sound-absorbing tank device 63a and the second sound-absorbing tank device 63b are filled with a medium such as liquid (light water), and their free water surfaces are located inside the observation joint tank 63c, isolating them from the noise source of the wind turbine 20 in the air. That is, the noise reduction effect of the first sound-absorbing tank device 63a and the second sound-absorbing tank device 63b utilizes the property that, due to the large difference in specific acoustic resistance (density, speed of sound, etc.) between air and liquid, sound is mostly reflected at the contact surface and does not escape into the air.
  • the first sound absorbing tank device 63a and the second sound absorbing tank device 63b are not limited to such sound absorbing tank devices.
  • the sound absorbing tank device may be maintained in a low or medium vacuum state inside with the medium that transmits noise removed and the observation joint tank 63c installed so as to be sealed.
  • the power supply systems 10, 10a, and 10b can supply stable power. Furthermore, a power generation system including these power supply systems 10, 10a, and 10b can generate stable electric power at low cost.
  • Coupling 222 and coupling 408 are not limited thereto, and may each be, for example, a flange joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

[Problem] To provide a motive power supply system that can supply stable motive power and an electric power generation system that can generate stable electricity at low cost, without being affected by hours of sunlight, weather, etc. [Solution] A motive power supply system 10 comprises: a drag-type wind turbine 20 having a plurality of blade members; a flow channel forming part 30 that forms a flow channel by which a flow of air that exited the drag-type wind turbine 20 is used again as a motive power source for the drag-type wind turbine 20; a transmission part 40 that decreases or increases the speed of rotation of the drag-type wind turbine 20 to output the same to the outside; and a drive device 50 for rotating the drag-type wind turbine 20 that is standing still.

Description

動力供給システム及び発電システムPower supply system and power generation system
 本開示は、動力供給システム及び発電システムに関する。 This disclosure relates to a power supply system and a power generation system.
 特許文献1には、連結した管路で空気を循環させ低圧タービンを駆動し発電する方法が開示されている。この発電方法は、循環する風のエネルギーを補填した低圧タービンのプロペラからの風で、低圧タービンのプロペラ型風車を回転させ発電エネルギーへ転換する工程と、発電エネルギーへの転換と風の循環で圧力と温度が変化する風を一定の圧力と温度の風にする工程と、一定の圧力と温度の風を管路で二つに分け、一方の風で管路に配備したプロペラを回転させながら回転用の動力を与え、動力量で回転数を設定し風のエネルギーの一部を補填、同じ管路に配備したプロペラ型風車で風の回転方向を低圧タービンのプロペラの回転方向に合わせ吹込み、低圧タービンのプロペラを回転させながら回転用の動力を与え回転させ、これによりもう一方の管路からの風を吸引し集約、集約した風が常時同じエネルギー量で低圧タービンのプロペラ型風車を回転させるように、低圧タービンのプロペラに与える回転用の動力量で回転数を設定し、風のエネルギー量を補填する工程よりなることを特徴としている。 Patent document 1 discloses a method of circulating air through connected ducts to drive a low-pressure turbine and generate electricity. This power generation method is characterized by the steps of rotating the propeller-type windmill of the low-pressure turbine with the wind from the propeller of the low-pressure turbine, which has been supplemented with the energy of the circulating wind, and converting it into power generation energy; converting the wind, whose pressure and temperature change due to the conversion to power generation energy and the circulation of the wind, into wind of constant pressure and temperature; and dividing the wind of constant pressure and temperature into two in a duct, providing power to rotate a propeller installed in the duct while rotating it with one wind, setting the rotation speed with the amount of power to compensate for part of the wind energy, blowing the wind into a propeller-type windmill installed in the same duct so that the direction of rotation of the wind matches the direction of rotation of the propeller of the low-pressure turbine, providing power to rotate the propeller of the low-pressure turbine while rotating, thereby drawing in and collecting wind from the other duct, and setting the rotation speed with the amount of power to provide to the propeller of the low-pressure turbine so that the collected wind always rotates the propeller-type windmill of the low-pressure turbine with the same amount of energy, thereby compensating for the amount of wind energy.
特開2010-106826号公報JP 2010-106826 A
 本開示は、日照時間や気象等の影響を受けることなく、安定した動力を供給できる動力供給システム及び廉価で安定した電力を発生できる発電システムを提供することを目的とする。 The purpose of this disclosure is to provide a power supply system that can supply stable power without being affected by sunlight hours, weather, etc., and a power generation system that can generate inexpensive and stable electricity.
 本開示の一態様に係る動力供給システムは、複数の羽根部材を有し、隣接する前記羽根部材によって外側から中心部へと向かって断面積が徐々に小さくなる流路が形成された抗力型風車と、前記抗力型風車を収めるとともに該抗力型風車から出た空気を受けるケーシング及び前記ケーシングから前記抗力型風車の入口側へと延びる戻り流路形成部材を有し、前記抗力型風車から出た空気の流れを再び該抗力型風車の動力源とする流路を形成する流路形成部と、前記抗力型風車の回転を減速又は増速して外部に出力する変速部と、静止した前記抗力型風車を回転させるための駆動装置を備え、前記戻り流路形成部材が、前記ケーシングの側よりも前記抗力型風車の入口側の方が、断面積が小さくなるように形成され、前記抗力型風車の入口側よりも出口側の空気の流速の方が小さく、該出口側にて静圧回復を生じさせる。 The power supply system according to one embodiment of the present disclosure includes a drag-type wind turbine having multiple blade members, with adjacent blade members forming a flow path whose cross-sectional area gradually decreases from the outside to the center, a casing that houses the drag-type wind turbine and receives the air emitted from the drag-type wind turbine, and a return flow path forming member that extends from the casing to the inlet side of the drag-type wind turbine, and is equipped with a flow path forming section that forms a flow path that uses the air flow emitted from the drag-type wind turbine as a power source for the drag-type wind turbine again, a speed change section that slows down or speeds up the rotation of the drag-type wind turbine and outputs it to the outside, and a drive unit for rotating the stationary drag-type wind turbine, and the return flow path forming member is formed so that the cross-sectional area is smaller on the inlet side of the drag-type wind turbine than on the casing side, and the air flow speed on the outlet side is smaller than on the inlet side of the drag-type wind turbine, causing static pressure recovery on the outlet side.
 本開示の一態様に係る発電システムは、複数の羽根部材を有し、隣接する前記羽根部材によって外側から中心部へと向かって断面積が徐々に小さくなる流路が形成された抗力型風車と、前記抗力型風車を収めるとともに該抗力型風車から出た空気を受けるケーシング及び前記ケーシングから前記抗力型風車の入口側へと延びる戻り流路形成部材を有し、前記抗力型風車から出た空気の流れを再び該抗力型風車の動力源とする流路を形成する流路形成部と、前記抗力型風車の回転を減速又は増速して外部に出力する変速部と、静止した前記抗力型風車を回転させるための駆動装置と、前記変速部によって駆動される発電機を備え、前記戻り流路形成部材が、前記ケーシングの側よりも前記抗力型風車の入口側の方が、断面積が小さくなるように形成され、前記抗力型風車の入口側よりも出口側の空気の流速の方が小さく、該出口側にて静圧回復を生じさせる。 The power generation system according to one aspect of the present disclosure includes a drag-type wind turbine having multiple blade members, in which adjacent blade members form a flow path whose cross-sectional area gradually decreases from the outside to the center, a casing that houses the drag-type wind turbine and receives air emitted from the drag-type wind turbine, and a return flow path forming member that extends from the casing to the inlet side of the drag-type wind turbine, forming a flow path that uses the air flow emitted from the drag-type wind turbine as a power source for the drag-type wind turbine again, a speed change unit that slows down or speeds up the rotation of the drag-type wind turbine and outputs it to the outside, a drive unit for rotating the stationary drag-type wind turbine, and a generator driven by the speed change unit, and the return flow path forming member is formed so that the cross-sectional area is smaller on the inlet side of the drag-type wind turbine than on the casing side, and the air flow speed on the outlet side is smaller than on the inlet side of the drag-type wind turbine, causing static pressure recovery on the outlet side.
 本開示によれば、日照時間や気象等の影響を受けることなく、安定した動力を供給できる動力供給システム及び廉価で安定した電力を発生できる発電システムを提供できる。 This disclosure provides a power supply system that can supply stable power without being affected by sunlight hours, weather, etc., and a power generation system that can generate inexpensive and stable electricity.
第1の実施の形態に係る動力供給システムを正面視し、ケーシングの内部を透視して示した説明図である。1 is a front view of a power supply system according to a first embodiment, showing the inside of a casing as seen through; FIG. 流路形成部の下部が地下に設置された同動力供給システムを側面視した説明図である。FIG. 13 is an explanatory side view of the power supply system in which the lower part of the flow passage forming part is installed underground. 同動力供給システムが備える遠心ファン用放出管の配置を示す説明図である。FIG. 2 is an explanatory diagram showing the arrangement of a discharge pipe for a centrifugal fan provided in the power supply system. 同動力供給システムが備える風車出口における回復静圧を示す図である。FIG. 4 is a diagram showing a recovery static pressure at a wind turbine outlet of the power supply system. 全体が地上に設置された同動力供給システムを側面視した説明図である。FIG. 2 is an explanatory side view of the power supply system, the entirety of which is installed on the ground. 第2の実施の形態に係る動力供給システムを正面視した説明図である。FIG. 13 is an explanatory diagram showing a power supply system according to a second embodiment as viewed from the front. 同動力供給システムの全体構成を平面視した説明図である。FIG. 2 is a plan view illustrating the overall configuration of the power supply system. 流路形成部の下部が地下に設置された同動力供給システムを側面視した説明図である。FIG. 13 is an explanatory side view of the power supply system in which the lower part of the flow passage forming part is installed underground. 同動力供給システムが備える風車出口における回復静圧を示す図である。FIG. 4 is a diagram showing a recovery static pressure at a wind turbine outlet of the power supply system. 全体が地上に設置された同動力供給システムを側面視した説明図である。FIG. 2 is an explanatory side view of the power supply system, the entirety of which is installed on the ground. 第3の実施の形態に係る動力供給システムが備える第1の吸音槽装置及び第2の吸音槽装置の内部が軽水で満たされた状態を側面視した説明図である。FIG. 13 is an explanatory side view of a state in which the insides of a first sound absorbing tank device and a second sound absorbing tank device included in a power supply system according to a third embodiment are filled with light water.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、図において、説明に関連しない部分は図示を省略する場合がある。 Next, with reference to the attached drawings, a concrete embodiment of the present invention will be explained to facilitate understanding of the present invention. Note that parts not relevant to the explanation may be omitted from the drawings.
〔第1の実施の形態〕
 第1の実施の形態に係る動力供給システム10は、図1に示すように、例えば、発電機12を駆動するための動力を供給できる。
 動力供給システム10は、図1及び図2に示すように、風車20、流路形成部30、変速部40、駆動装置50及び空気放出装置60を備えている。
First Embodiment
As shown in FIG. 1, the power supply system 10 according to the first embodiment can supply power for driving a generator 12, for example.
As shown in FIGS. 1 and 2 , the power supply system 10 includes a wind turbine 20, a flow path forming section 30, a speed change section 40, a drive device 50, and an air discharge device 60.
 風車20は、空気の流れを受けることにより、実質的に水平方向に延びる回転軸回りに回転する抗力型風車である。風車20は、風の入口側よりも出口側の空気の流速の方が小さく、出口側にて静圧回復を生じさせるように構成され、発電機12を駆動するために必要なトルク及び回転数を発生できる。 The wind turbine 20 is a drag-type wind turbine that receives the air flow and rotates around a rotation axis that extends substantially horizontally. The wind turbine 20 is configured so that the air flow speed on the outlet side is slower than on the inlet side, and static pressure recovery occurs on the outlet side, and it can generate the torque and rotation speed required to drive the generator 12.
 風車20は、側面視して円形状であり、シャフト202、羽根部材204及び固定部材206を有している。
 シャフト202は、風車20の回転軸であり、風車20の中央部に設けられている。シャフト202は、両端部分にて、それぞれ、カップリング222を介してシャフト224に連結され、各シャフト224は、所定のラジアル荷重及びアキシャル荷重を受けることができる軸受226により支持されている。軸受226は、転がり軸受である。ただし、シャフト224の撓み及び撓み角に対する許容値を大きく設定できることから、自動調心ころ軸受であることが好ましい。
 羽根部材204は、風車20の回転方向に間隔を空けて複数設けられており、羽根部材204の枚数は、例えば図2に示すように、8枚である。
 各羽根部材204は、一方向に湾曲しており、風車20の回転中心側の位置から外周位置まで延びている。なお、この回転中心側の位置は、シャフト202から半径方向に予め決められた寸法だけ離れた位置である。
 互いに隣接する羽根部材204は、空気が流れる羽根間流路を形成している。図2においては、時計回りに8つの羽根間流路FP1a~FP1h(羽根間流路FP1a、FP1f以外は不図示)が順に形成されており、このうち羽根間流路FP1a及び羽根間流路FP1fは、それぞれ、入口側及び出口側に位置する羽根間流路である。各羽根間流路FP1a~FP1hは、風車20の外側の入口から中心部へと向かうに従って断面積が徐々に小さくなっている。
 固定部材206は、各羽根部材204が固定される円板状の部材である。
The wind turbine 20 has a circular shape when viewed from the side, and has a shaft 202 , a blade member 204 and a fixed member 206 .
The shaft 202 is the rotating shaft of the wind turbine 20, and is provided in the center of the wind turbine 20. The shaft 202 is connected at both ends to shafts 224 via couplings 222, and each shaft 224 is supported by a bearing 226 capable of receiving a predetermined radial load and axial load. The bearing 226 is a rolling bearing. However, it is preferable that the bearing be a self-aligning roller bearing, since this allows a large tolerance to be set for the deflection and deflection angle of the shaft 224.
The blade members 204 are provided at intervals in the rotation direction of the wind turbine 20, and the number of the blade members 204 is, for example, eight as shown in FIG.
Each blade member 204 is curved in one direction and extends from a position on the rotation center side to an outer periphery position of the wind turbine 20. Note that this position on the rotation center side is a position spaced a predetermined distance from the shaft 202 in the radial direction.
Adjacent blade members 204 form inter-blade flow passages through which air flows. In Fig. 2, eight inter-blade flow passages FP1a to FP1h (inter-blade flow passages FP1a and FP1f not shown) are formed in sequence clockwise, and among these, the inter-blade flow passage FP1a and the inter-blade flow passage FP1f are inter-blade flow passages located on the inlet side and the outlet side, respectively. The cross-sectional area of each of the inter-blade flow passages FP1a to FP1h gradually decreases from the inlet on the outside of the wind turbine 20 toward the center.
The fixing member 206 is a disk-shaped member to which each of the blade members 204 is fixed.
 流路形成部30は、内部の気密性の程度が予め決められた大きさとなるように構成され、風車20から出た空気の流れを再び風車20の動力源とする循環流路FP2を形成する。流路形成部30から羽根間流路へは、流量Qの空気が進入する。
 流路形成部30は、風車20を収めるとともに風車20から出た空気を受けるケーシング30aと、ケーシング30aから風車20の入口側へと延びる戻り流路形成部材30bと、により構成されている。
 ケーシング30aには、内部に整流板302が設けられている。整流板302により、流況の安定化とともに構造の強化が図られる。
 戻り流路形成部材30bは、風車20に入る空気の流速が増大するように、ケーシング30aの側よりも風車20の入口側の方が、断面積が小さくなるように形成されている。詳細には、戻り流路形成部材30bは、ケーシング30aの側から風車20の入口側へと向かうに従って、断面積が小さくなっている。
The flow passage forming part 30 is configured to have a predetermined degree of airtightness inside, and forms a circulation flow passage FP2 that uses the air flow leaving the wind turbine 20 again as a power source for the wind turbine 20. Air at a flow rate Q enters the inter-blade flow passage from the flow passage forming part 30.
The flow path forming section 30 is composed of a casing 30 a that houses the wind turbine 20 and receives the air emitted from the wind turbine 20 , and a return flow path forming member 30 b that extends from the casing 30 a to the inlet side of the wind turbine 20 .
The casing 30a is provided therein with a flow straightening plate 302. The flow straightening plate 302 stabilizes the flow conditions and strengthens the structure.
The return flow passage forming member 30b is formed so that the cross-sectional area is smaller on the inlet side of the wind turbine 20 than on the casing 30a side so as to increase the flow speed of air entering the wind turbine 20. In detail, the cross-sectional area of the return flow passage forming member 30b becomes smaller from the casing 30a side toward the inlet side of the wind turbine 20.
 変速部40は、歯車によって構成された歯車機構を有し、風車20の回転を減速又は増速して外部に出力できる。歯車機構は、歯車列により構成された機構であってもよいし、遊星歯車機構であってもよい。
 変速部40の入力側シャフト402には、シャフト224が連結され、出力側シャフト404が反対側から延びている。出力側シャフト404は、軸受406によって支持され、カップリング408を介して発電機12のシャフト122に連結されている。
 なお、変速部40には、内部に潤滑油を送出するための潤滑装置410が設けられている。
The speed change unit 40 has a gear mechanism made up of gears, and can accelerate or decelerate the rotation of the wind turbine 20 and output it to the outside. The gear mechanism may be a mechanism made up of a gear train, or may be a planetary gear mechanism.
The shaft 224 is connected to an input shaft 402 of the transmission unit 40, and an output shaft 404 extends from the opposite side. The output shaft 404 is supported by a bearing 406 and connected to the shaft 122 of the generator 12 via a coupling 408.
The transmission unit 40 is provided with a lubricating device 410 for supplying lubricating oil thereto.
 駆動装置50は、静止した状態にある風車20を回転させることができる。なお、静止した状態にある風車20を回転させるために必要な入力トルク及び初動回転数等の動作力は、風車20の重量、慣性モーメント、軸受の動摩擦係数及び軸受の内径によって決まる。入力トルク及び初動回転数は、それぞれ、発電機12の定格トルク及び定格回転数に比べて小さな値となる。
 駆動装置50は、遠心ファン502及び遠心ファン用放出管504を有している。
 遠心ファン502は、モータ510によって駆動され、空気吸込口512から吸い込んだ空気を吐出できる。モータ510には、制御用の制御盤514及び電源516が接続されている。
 遠心ファン用放出管504は、風車20の羽根部材204に対して、遠心ファン502から吐出された空気を放出するための管である。
 空気の放出方向は、羽根部材204の形状が側面視して曲線形状であるため、羽根間流路に放出された空気が円滑に流入するように、風車20の外周の接線方向となるように設定されている。
 空気の放出位置は、風車20のシャフト202の高さ位置よりも低い位置(図3に示す下段位置A)に限定されるものではなく、シャフト202のよりも高い位置(それぞれ同図3の破線にて示す中段位置B及び上段位置C)であってもよい。
The driving device 50 can rotate the stationary wind turbine 20. The operating forces, such as the input torque and initial rotation speed, required to rotate the stationary wind turbine 20 are determined by the weight, moment of inertia, dynamic friction coefficient of the bearings, and inner diameter of the bearings of the wind turbine 20. The input torque and initial rotation speed are smaller than the rated torque and rated rotation speed of the generator 12, respectively.
The drive unit 50 includes a centrifugal fan 502 and a centrifugal fan discharge pipe 504 .
The centrifugal fan 502 is driven by a motor 510 and can discharge air drawn in from an air inlet 512. A control panel 514 and a power source 516 for control are connected to the motor 510.
The centrifugal fan discharge pipe 504 is a pipe for discharging the air discharged from the centrifugal fan 502 to the blade member 204 of the wind turbine 20 .
The direction of air release is set to be tangent to the outer periphery of the wind turbine 20 so that the air released into the inter-blade flow passage flows smoothly, since the blade member 204 has a curved shape when viewed from the side.
The air release position is not limited to a position lower than the height position of the shaft 202 of the wind turbine 20 (lower position A shown in Figure 3), but may be a position higher than the shaft 202 (middle position B and upper position C, respectively, shown by dashed lines in Figure 3).
 空気放出装置60は、例えば空気の風量を調整するダンパーであり、流路形成部30の内部から外部へ空気量Qの空気を放出できる。空気放出装置60が、循環流路FP2を流れる空気の一部を放出することで、流路形成部30の内部を流れる空気の流量や内圧が調整される。 The air discharge device 60 is, for example, a damper that adjusts the volume of air, and can discharge an air volume Q1 from the inside of the flow path forming part 30 to the outside. The air discharge device 60 discharges a portion of the air flowing through the circulation flow path FP2, thereby adjusting the flow rate and internal pressure of the air flowing inside the flow path forming part 30.
 次に、動力供給システム10の動作について説明する。
 風車20が静止した状態において、駆動装置50の遠心ファン502が回転し、遠心ファン用放出管504から空気が放出される。放出された空気は、風車20を回転させるためのトルクを発生する一方、羽根間流路(例えば羽根間流路FP1aから羽根間流路FP1fへ至る流路)を流れ、ケーシング30aの内部へと放出される。
 すなわち、遠心ファン用放出管504から放出された空気は、所定の流路面積を有する羽根間流路を流下し、羽根間流路よりも広い流路面積を有するケーシング30aの内部にて放出される。
Next, the operation of the power supply system 10 will be described.
When the wind turbine 20 is stationary, the centrifugal fan 502 of the drive unit 50 rotates, and air is discharged from the centrifugal fan discharge pipe 504. The discharged air generates torque for rotating the wind turbine 20, and flows through the inter-blade flow passages (e.g., the flow passage from the inter-blade flow passage FP1a to the inter-blade flow passage FP1f), and is discharged into the inside of the casing 30a.
That is, the air discharged from the centrifugal fan discharge pipe 504 flows down the inter-blade flow passage having a predetermined flow passage area, and is discharged inside the casing 30a having a flow passage area larger than that of the inter-blade flow passage.
 その際、流体の力学的特性により、流路断面の拡大に伴い動圧(速度圧)が減少することにより、次式(1)にて表されるエネルギー保存則に基づいて、流路出口に図4に示す回復静圧(静圧上昇)Pが発生する。 At that time, due to the mechanical characteristics of the fluid, the dynamic pressure (velocity pressure) decreases as the cross section of the flow passage expands, and a recovery static pressure (static pressure increase) P1 shown in FIG. 4 is generated at the outlet of the flow passage based on the law of conservation of energy expressed by the following equation (1).
 全圧 = 静圧 + 速度圧 = 一定   式(1) Total pressure = static pressure + velocity pressure = constant Equation (1)
 羽根間流路FP1fの出口における回復静圧により、遠心ファン用放出管504から放出される初期空気量Faに対し、上下流の圧力差で空気量Fbの空気が下流へ圧送される。圧送された空気量Fbの空気は、風車20へと戻り、初期空気量Faと合流して羽根間流路を流下することで回復静圧Pが発生し、空気量Fcの空気を圧送する。
 圧送された空気量Fcの空気は、風車20へと戻り、初期空気量Faと合流して羽根間流路を流下することで回復静圧Pが発生し、空気量Fdの空気を圧送する。
 圧送された空気量Fdの空気は、風車20へと戻り、初期空気量Faと合流して羽根間流路を流下することで回復静圧Pが発生し、空気量Feの空気を圧送する。
Due to the recovery static pressure at the outlet of the inter-blade flow passage FP1f, the air volume Fb is pressurized downstream due to the upstream-downstream pressure difference with respect to the initial air volume Fa discharged from the centrifugal fan discharge pipe 504. The pressurized air volume Fb returns to the wind turbine 20, merges with the initial air volume Fa, and flows down the inter-blade flow passage, generating a recovery static pressure P2 , which pressurizes and sends the air volume Fc.
The compressed air amount Fc returns to the wind turbine 20, merges with the initial air amount Fa, and flows down the inter-blade flow passages, generating a recovery static pressure P3 , which compresses and feeds an air amount Fd.
The compressed air amount Fd returns to the wind turbine 20, merges with the initial air amount Fa, and flows down the inter-blade flow passages, generating a recovery static pressure P4 , which compresses and feeds the air amount Fe.
 以降、流路形成部30の内部を空気が循環しながら、回復静圧とこれに伴う空気の圧送とが繰り返され、安定した動力により発電機12が駆動される。
 動力供給システム10は、空気放出装置60が外部へと空気を放出するとともに、オペレータが制御盤514を操作してモータ510の回転を停止することによって、運転が停止される。運転の停止は、自動制御によりなされてもよい。
Thereafter, while air circulates inside the flow passage forming portion 30, the restoration static pressure and the associated compressed air are repeated, and the generator 12 is driven by a stable power.
The power supply system 10 is stopped when the air discharge device 60 discharges air to the outside and the operator operates the control panel 514 to stop the rotation of the motor 510. The operation may be stopped by automatic control.
 動力供給システム10は、設置場所の地形、地質及び環境に応じて、図2に示すように、流路形成部30の下部が地下(地表面GLの下)に設置されてもよいし、図5に示すように、地上(地表面GLの上)に設置されてもよい。 Depending on the topography, geology, and environment of the installation location, the power supply system 10 may be installed with the lower part of the flow path forming section 30 underground (below the ground surface GL) as shown in Figure 2, or may be installed above ground (above the ground surface GL) as shown in Figure 5.
〔第2の実施の形態〕
 続いて、第2の実施の形態に係る動力供給システム10aについて説明する。第1の実施の形態に係る動力供給システム10と同一の構成要素については、同じ符号を付して詳しい説明を省略する。
 動力供給システム10aは、第1の実施の形態に係る動力供給システム10とは、駆動装置の構成が相違し、図8に示すように、空気補給装置62を更に備えている。
Second Embodiment
Next, a power supply system 10a according to a second embodiment will be described. The same components as those in the power supply system 10 according to the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
The power supply system 10a differs from the power supply system 10 according to the first embodiment in the configuration of the drive device, and further includes an air supply device 62 as shown in FIG.
 駆動装置50aは、静止した状態にある風車20を回転させることができる。
 駆動装置50aは、図6及び図7に示すように、風車20を挟んで発電機12とは反対の側に設けられており、風車20のシャフト202を駆動する油圧モータ551及び変速部552を有している。
The driving device 50a is capable of rotating the wind turbine 20 when it is stationary.
As shown in FIGS. 6 and 7 , the driving device 50 a is provided on the opposite side of the wind turbine 20 to the generator 12 , and has a hydraulic motor 551 that drives the shaft 202 of the wind turbine 20 , and a speed changer 552 .
 油圧モータ551は、油圧ポンプ等から構成され油圧を発生する油圧システムユニット550に隣接し、この油圧システムユニット550に接続されることによって、風車20の動作力を発生できる。ただし、油圧モータ551は、図8に示すように、離れた位置に設置された油圧システムユニット550に油圧回路配管557を介して接続されてもよい。
 変速部552は、図6及び図7に示すように、歯車555によって構成された歯車機構を有し、油圧モータ551の回転を減速し、油圧モータ551の出力トルクTmを増加して風車20に伝達できる。歯車555は、潤滑油ピット553に溜められた潤滑油によって潤滑される。歯車機構は、歯車列により構成された機構であってもよいし、遊星歯車機構であってもよい。
 変速部552は、変速部40が連結された風車20のシャフト202の端部とは反対側の端部に連結されている。変速部552を構成する歯車555は、軸受554によって支持されたシャフト556を介して油圧モータ551のシャフト及び風車20のシャフト202に連結されている。
The hydraulic motor 551 is adjacent to a hydraulic system unit 550 that is composed of a hydraulic pump and the like and generates hydraulic pressure, and is connected to this hydraulic system unit 550 to generate operating force for the wind turbine 20. However, the hydraulic motor 551 may also be connected via hydraulic circuit piping 557 to the hydraulic system unit 550 that is installed at a remote position, as shown in Fig. 8 .
6 and 7, the speed change unit 552 has a gear mechanism formed by gears 555, and can reduce the rotation of the hydraulic motor 551 and increase the output torque Tm of the hydraulic motor 551 to transmit it to the wind turbine 20. The gears 555 are lubricated by lubricating oil stored in a lubricating oil pit 553. The gear mechanism may be a mechanism formed by a gear train, or may be a planetary gear mechanism.
The speed change unit 552 is connected to an end of the shaft 202 of the wind turbine 20 opposite to the end to which the speed change unit 40 is connected. A gear 555 constituting the speed change unit 552 is connected to the shaft of the hydraulic motor 551 and the shaft 202 of the wind turbine 20 via a shaft 556 supported by a bearing 554.
 なお、静止した状態にある風車20を回転させるために必要なトルクは、風車20の重量、慣性モーメント、軸受の動摩擦係数及び軸受の内径によって決まり、定格値に比べて小さな値となる。
 従って、変速部552を介して、入力側回転数と出力側回転数の変速比を大きく設定し、油圧モータ551の回転数を大きくすることにより、油圧モータ551の押しのけ容積と入力圧力の組み合わせによって、油圧モータ551の出力トルクTmを小さくでき、併せて油圧システムユニット550の小型化が図られる。
The torque required to rotate the stationary wind turbine 20 is determined by the weight of the wind turbine 20, the moment of inertia, the dynamic friction coefficient of the bearings, and the inner diameter of the bearings, and is a value smaller than the rated value.
Therefore, by setting a large gear ratio between the input side rotation speed and the output side rotation speed via the transmission section 552 and increasing the rotation speed of the hydraulic motor 551, the output torque Tm of the hydraulic motor 551 can be reduced by a combination of the displacement volume and input pressure of the hydraulic motor 551, and the hydraulic system unit 550 can also be made smaller.
 駆動装置50aは、前述の通り、第1の実施の形態に係る駆動装置50と異なり、遠心ファン502ではなく油圧モータ551を有している。従って、静止した状態にある風車20を回転させる際に、駆動装置50aに起因する空気流は発生しない。しかしながら、油圧モータ551からの入力トルクによって風車20が回転することに伴って生じる空気の押し出による波動効果により、空気の移動が存在する。 As described above, unlike the drive unit 50 of the first embodiment, the drive unit 50a has a hydraulic motor 551 instead of a centrifugal fan 502. Therefore, when rotating the stationary wind turbine 20, no air flow is generated by the drive unit 50a. However, air movement does occur due to a wave effect caused by the air being pushed out as the wind turbine 20 rotates due to the input torque from the hydraulic motor 551.
 空気補給装置62は、図8に示すように、流路形成部30が形成する循環流路FP2に対し、空気量Qの空気を供給できる。
 従って、空気補給装置62によって、空気放出装置60が空気を過放出することに伴って変動した流路形成部30を流れる空気の流量や内圧が調整される。
As shown in FIG. 8, the air supply device 62 can supply air at an air amount Q2 to the circulation flow path FP2 formed by the flow path forming portion 30.
Therefore, the air supply device 62 adjusts the flow rate and internal pressure of the air flowing through the flow passage forming portion 30 that have changed due to the air discharge device 60 excessively discharging air.
 次に、動力供給システム10aの動作について説明する。
 風車20が静止した状態において、駆動装置50aの油圧モータ551が回転することにより、風車20が回転する。風車20の回転に伴い、循環経路FP2から流れ込んだ空気は、羽根間流路(例えば羽根間流路FP1aから羽根間流路FP1fへ至る流路)を流れ、ケーシング30aの内部へと放出される。
 すなわち、所定の流路面積を有する羽根間流路を流下した空気(例えば羽根間流路FP1aから羽根間流路FP1fへ向かって流下した空気)は、下流側となる羽根間流路(例えば羽根間流路FP1f)の流路面積に対しより広い流路面積を有するケーシング30aの内部にて放出される。
Next, the operation of the power supply system 10a will be described.
When the wind turbine 20 is stationary, the hydraulic motor 551 of the drive unit 50a rotates, thereby rotating the wind turbine 20. As the wind turbine 20 rotates, the air that has flowed in from the circulation path FP2 flows through the inter-blade flow passage (for example, the flow passage from the inter-blade flow passage FP1a to the inter-blade flow passage FP1f) and is released into the inside of the casing 30a.
That is, the air that has flowed down an inter-blade passage having a predetermined flow area (e.g., air that has flowed down from the inter-blade passage FP1a to the inter-blade passage FP1f) is released inside the casing 30a, which has a flow area larger than the flow area of the inter-blade passage on the downstream side (e.g., the inter-blade passage FP1f).
 その際、流体の力学的特性により、流路断面の拡大に伴い動圧(速度圧)が減少することにより、前述の式(1)で表されるエネルギー保存則に基づいて、羽根間流路FP1fの出口に回復静圧(静圧上昇)Pが発生する。 At this time, due to the mechanical characteristics of the fluid, the dynamic pressure (velocity pressure) decreases with the expansion of the flow passage cross section, and a recovery static pressure (static pressure increase) P1 is generated at the outlet of the inter-blade flow passage FP1f based on the law of conservation of energy expressed by the above-mentioned equation (1).
 一方、空気補給装置62が、循環流路FP2に空気を供給する。供給された空気は、循環流路FP2の内部にあった空気とともに羽根間流路へ流入する。羽根間流路へ流入した空気は、ケーシング30aの内部にて放出され、図9に示すように、順次、回復静圧P、P、P・・・が発生する。 Meanwhile, the air supply device 62 supplies air to the circulation flow path FP2. The supplied air flows into the inter-blade flow paths together with the air that was in the circulation flow path FP2. The air that flows into the inter-blade flow paths is released inside the casing 30a, and as shown in FIG. 9, recovery static pressures P2 , P3 , P4 , ... are generated in sequence.
 以降、流路形成部30の内部を空気が循環しながら、回復静圧とこれに伴う空気の圧送とが繰り返される。
 その結果、風車20の回転が維持され、動力が供給される。
 なお、動力供給システム10aは、エネルギー保存則に基づき、外部からのエネルギー供給源である油圧モータ551の動作が停止することによって流路形成部30の内圧が低下し、運転が停止される。
Thereafter, while air circulates inside the flow passage forming portion 30, the restoration static pressure and the associated air pressure transfer are repeated.
As a result, the rotation of the wind turbine 20 is maintained and power is supplied.
In addition, in accordance with the law of conservation of energy, when the hydraulic motor 551, which is an external energy supply source, stops operating, the internal pressure of the flow passage forming section 30 decreases and the power supply system 10a stops operating.
 動力供給システム10aは、設置場所の地形、地質及び環境に応じて、図8に示すように、流路形成部30の下部が地下(地表面GLの下)となるように設置されてもよいし、図10に示すように、地上(地表面GLの上)に設置されてもよい。 Depending on the topography, geology, and environment of the installation location, the power supply system 10a may be installed so that the lower part of the flow path forming section 30 is underground (below the ground surface GL) as shown in FIG. 8, or it may be installed above ground (above the ground surface GL) as shown in FIG. 10.
〔第3の実施の形態〕
 続いて、第3の実施の形態に係る動力供給システム10bについて説明する。第1の実施の形態に係る動力供給システム10と同一の構成要素については、同じ符号を付して詳しい説明を省略する。
 第3の実施の形態に係る動力供給システム10bは、図11に示すように、ケーシング30aの上部及び流路側面部を含む全体に、風車20の回転によって発生する騒音を低減し、静音化するための第1の吸音槽装置63a及び第2の吸音槽装置63bを備えている。
Third embodiment
Next, a power supply system 10b according to a third embodiment will be described. The same components as those in the power supply system 10 according to the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
As shown in FIG. 11, the power supply system 10b according to the third embodiment is provided with a first sound-absorbing tank device 63a and a second sound-absorbing tank device 63b for reducing and quieting the noise generated by the rotation of the wind turbine 20 over the entire casing 30a, including the upper portion and the side portion of the flow path.
 第1の吸音槽装置(騒音低減装置の一例)63aは、ケーシング30aの風車20が収まっている側を覆うように設けられ、第2の吸音槽装置(騒音低減装置の一例)63bは、ケーシング30aのうち、第1の吸音槽装置63aで覆われていない風車の下流側の部分を覆うように設けられている。第1の吸音槽装置63a及び第2の吸音槽装置63bは繋がっており、その境界部分には、上側が開口した筒状の観測接合槽63cが設けられている。観測接合槽63cの開口部には蓋が設けられている。 The first sound absorbing tank device (an example of a noise reduction device) 63a is provided to cover the side of the casing 30a in which the wind turbine 20 is housed, and the second sound absorbing tank device (an example of a noise reduction device) 63b is provided to cover the portion of the casing 30a downstream of the wind turbine that is not covered by the first sound absorbing tank device 63a. The first sound absorbing tank device 63a and the second sound absorbing tank device 63b are connected, and a cylindrical observation joint tank 63c that is open at the top is provided at the boundary between them. A lid is provided on the opening of the observation joint tank 63c.
 第1の吸音槽装置63a及び第2の吸音槽装置63bは、内部が液体(軽水)等の媒体で満たされ、その自由水面が、観測接合槽63cの内部に位置しており、空気中における風車20の騒音源と分断されている。
 すなわち、第1の吸音槽装置63a及び第2の吸音槽装置63bの騒音低減効果は、空気と液体との固有音響抵抗(密度及び音速等)の差が大きいため、音はその接触面においてほとんど反射されてしまい、空気中に出てこない性質を利用している。
 ただし、第1の吸音槽装置63a及び第2の吸音槽装置63bは、それぞれこのような吸音槽装置に限定されるものではない。吸音槽装置は、騒音を伝達する媒体が取り除かれ、観測接合槽63cが密閉されるように設置された状態で、内部が低真空又は中真空に維持されていてもよい。
The first sound-absorbing tank device 63a and the second sound-absorbing tank device 63b are filled with a medium such as liquid (light water), and their free water surfaces are located inside the observation joint tank 63c, isolating them from the noise source of the wind turbine 20 in the air.
That is, the noise reduction effect of the first sound-absorbing tank device 63a and the second sound-absorbing tank device 63b utilizes the property that, due to the large difference in specific acoustic resistance (density, speed of sound, etc.) between air and liquid, sound is mostly reflected at the contact surface and does not escape into the air.
However, the first sound absorbing tank device 63a and the second sound absorbing tank device 63b are not limited to such sound absorbing tank devices. The sound absorbing tank device may be maintained in a low or medium vacuum state inside with the medium that transmits noise removed and the observation joint tank 63c installed so as to be sealed.
 以上説明したように、前述の実施の形態に係る動力供給システム10、10a、10bによれば、安定した動力を供給できる。
 また、これらの動力供給システム10、10a、10bを備えた発電システムによれば、廉価で安定した電力を発生できる。
As described above, the power supply systems 10, 10a, and 10b according to the above-described embodiments can supply stable power.
Furthermore, a power generation system including these power supply systems 10, 10a, and 10b can generate stable electric power at low cost.
 以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
 カップリング222及びカップリング408は、これらに限定されるものではなく、それぞれ例えば、フランジ継手であってもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned embodiment, and all changes in conditions that do not depart from the gist of the present invention are within the scope of application of the present invention.
Coupling 222 and coupling 408 are not limited thereto, and may each be, for example, a flange joint.
10、10a、10b 動力供給システム
12 発電機
20 風車
30 流路形成部
30a ケーシング
30b 戻り流路形成部材
40 変速部
50、50a 駆動装置
60 空気放出装置
62 空気補給装置
63a 第1の吸音槽装置
63b 第2の吸音槽装置
63c 観測接合槽
122 シャフト
202 シャフト
204 羽根部材
206 固定部材
222 カップリング
224 シャフト
226 軸受
302 整流板
402 入力側シャフト
404 出力側シャフト
406 軸受
408 カップリング
410 潤滑装置
502 遠心ファン
504 遠心ファン用放出管
510 モータ
512 空気吸込口
514 制御盤
516 電源
550 油圧システムユニット
551 油圧モータ
552 変速部
553 潤滑油ピット
554 軸受
555 歯車
556 シャフト
557 油圧回路配管
FP1a~FP1h 羽根間流路
FP2 循環流路
GL 地表面
 
10, 10a, 10b Power supply system 12 Generator 20 Windmill 30 Flow passage forming section 30a Casing 30b Return flow passage forming member 40 Speed change section 50, 50a Drive device 60 Air discharge device 62 Air supply device 63a First sound absorbing tank device 63b Second sound absorbing tank device 63c Observation joint tank 122 Shaft 202 Shaft 204 Blade member 206 Fixing member 222 Coupling 224 Shaft 226 Bearing 302 Straightening plate 402 Input side shaft 404 Output side shaft 406 Bearing 408 Coupling 410 Lubrication device 502 Centrifugal fan 504 Centrifugal fan discharge pipe 510 Motor 512 Air suction port 514 Control panel 516 Power source 550 Hydraulic system unit 551 Hydraulic motor 552 Speed change section 553 Lubricating oil pit 554 Bearing 555 Gear 556 Shaft 557 Hydraulic circuit piping FP1a to FP1h Blade passage FP2 Circulation passage GL Ground surface

Claims (10)

  1.  複数の羽根部材を有し、隣接する前記羽根部材によって外側から中心部へと向かって断面積が徐々に小さくなる流路が形成された抗力型風車と、
     前記抗力型風車を収めるとともに該抗力型風車から出た空気を受けるケーシング及び前記ケーシングから前記抗力型風車の入口側へと延びる戻り流路形成部材を有し、前記抗力型風車から出た空気の流れを再び該抗力型風車の動力源とする流路を形成する流路形成部と、
     前記抗力型風車の回転を減速又は増速して外部に出力する変速部と、
     静止した前記抗力型風車を回転させるための駆動装置を備え、
     前記戻り流路形成部材が、前記ケーシングの側よりも前記抗力型風車の入口側の方が、断面積が小さくなるように形成され、
     前記抗力型風車の入口側よりも出口側の空気の流速の方が小さく、該出口側にて静圧回復を生じさせる動力供給システム。
    A drag type wind turbine having a plurality of blade members, the adjacent blade members forming a flow passage whose cross-sectional area gradually decreases from the outside toward the center;
    a flow path forming section that includes a casing that houses the drag type wind turbine and receives the air discharged from the drag type wind turbine, and a return flow path forming member that extends from the casing to the inlet side of the drag type wind turbine, and forms a flow path that uses the air flow discharged from the drag type wind turbine as a power source for the drag type wind turbine again;
    A speed change unit that reduces or increases the rotation speed of the drag type wind turbine and outputs the rotation to the outside.
    A drive device for rotating the stationary drag type wind turbine,
    The return flow passage forming member is formed so that a cross-sectional area is smaller on the inlet side of the drag type wind turbine than on the casing side,
    A power supply system in which the air flow velocity on the outlet side of the drag type wind turbine is smaller than that on the inlet side, and static pressure recovery is generated on the outlet side.
  2.  請求項1記載の動力供給システムにおいて、
     前記ケーシングに、流況の安定化を図るための整流板が設けられている動力供給システム。
    2. The power supply system of claim 1,
    A power supply system in which the casing is provided with a baffle plate for stabilizing flow conditions.
  3.  請求項2記載の動力供給システムにおいて、
     前記駆動装置が、遠心ファンと、
     前記遠心ファンから出た空気を前記抗力型風車に対して放出する遠心ファン用放出管を有する動力供給システム。
    3. The power supply system according to claim 2,
    The driving device includes a centrifugal fan,
    a power supply system having a centrifugal fan discharge pipe for discharging air from said centrifugal fan to said drag type wind turbine;
  4.  請求項3記載の動力供給システムにおいて、
     前記流路に空気を補給する空気補給装置を更に備えた動力供給システム。
    4. The power supply system according to claim 3,
    The power supply system further comprises an air supply device for supplying air to the flow path.
  5.  請求項2記載の動力供給システムにおいて、
     前記駆動装置が、油圧モータと、
     前記油圧モータの回転を減速して前記抗力型風車に伝達する変速部を有する動力供給システム。
    3. The power supply system according to claim 2,
    The drive device comprises a hydraulic motor and
    A power supply system having a speed change unit that reduces the rotation of the hydraulic motor and transmits it to the drag-type wind turbine.
  6.  請求項1~5のいずれか1項に記載の動力供給システムにおいて、
     前記ケーシングを覆い、内部が軽水で満たされ、前記抗力型風車の回転によって発生する騒音を低減する吸音槽装置を更に備えた動力供給システム。
    The power supply system according to any one of claims 1 to 5,
    The power supply system further comprises a sound absorbing tank device which covers the casing, is filled with light water, and reduces noise generated by the rotation of the drag type wind turbine.
  7.  請求項1~5のいずれか1項に記載の動力供給システムにおいて、
     前記ケーシングを覆い、内部が低真空又は中真空に維持され、前記抗力型風車の回転によって発生する騒音を低減する吸音槽装置を更に備えた動力供給システム。
    The power supply system according to any one of claims 1 to 5,
    The power supply system further comprises a sound absorbing tank device which covers the casing, maintains a low or medium vacuum inside, and reduces noise generated by rotation of the drag type wind turbine.
  8.  請求項6記載の動力供給システムにおいて、
     前記抗力型風車が回転軸となるシャフトを有し、
     前記シャフトを支持する自動調心ころ軸受を更に備えた動力供給システム。
    7. The power supply system of claim 6,
    The drag type wind turbine has a shaft that serves as a rotation axis,
    The power supply system further comprising a spherical roller bearing supporting said shaft.
  9.  複数の羽根部材を有し、隣接する前記羽根部材によって外側から中心部へと向かって断面積が徐々に小さくなる流路が形成された抗力型風車と、
     前記抗力型風車を収めるとともに該抗力型風車から出た空気を受けるケーシング及び前記ケーシングから前記抗力型風車の入口側へと延びる戻り流路形成部材を有し、前記抗力型風車から出た空気の流れを再び該抗力型風車の動力源とする流路を形成する流路形成部と、
     前記抗力型風車の回転を減速又は増速して外部に出力する変速部と、
     静止した前記抗力型風車を回転させるための駆動装置と、
     前記変速部によって駆動される発電機を備え、
     前記戻り流路形成部材が、前記ケーシングの側よりも前記抗力型風車の入口側の方が、断面積が小さくなるように形成され、
     前記抗力型風車の入口側よりも出口側の空気の流速の方が小さく、該出口側にて静圧回復を生じさせる発電システム。
    A drag type wind turbine having a plurality of blade members, the adjacent blade members forming a flow passage whose cross-sectional area gradually decreases from the outside toward the center;
    a flow path forming section that includes a casing that houses the drag type wind turbine and receives the air discharged from the drag type wind turbine, and a return flow path forming member that extends from the casing to the inlet side of the drag type wind turbine, and forms a flow path that uses the air flow discharged from the drag type wind turbine as a power source for the drag type wind turbine again;
    A speed change unit that reduces or increases the rotation speed of the drag type wind turbine and outputs the rotation to the outside.
    A drive for rotating the stationary drag wind turbine;
    a generator driven by the transmission,
    The return flow passage forming member is formed so that a cross-sectional area is smaller on the inlet side of the drag type wind turbine than on the casing side,
    A power generation system in which the air flow velocity on the outlet side of the drag type wind turbine is smaller than that on the inlet side, and static pressure recovery is generated on the outlet side.
  10.  請求項9記載の発電システムにおいて、
     前記流路に空気を補給する空気補給装置を更に備え、
     前記ケーシングに、流況の安定化を図るための整流板が設けられている発電システム。
     
    10. The power generation system according to claim 9,
    An air supply device that supplies air to the flow path is further provided,
    A power generation system in which the casing is provided with a baffle plate for stabilizing flow conditions.
PCT/JP2023/038061 2022-10-21 2023-10-20 Motive power supply system and electric power generation system WO2024085253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-169516 2022-10-21
JP2022169516A JP7329117B1 (en) 2022-10-21 2022-10-21 Power supply system and power generation system

Publications (1)

Publication Number Publication Date
WO2024085253A1 true WO2024085253A1 (en) 2024-04-25

Family

ID=87563120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038061 WO2024085253A1 (en) 2022-10-21 2023-10-20 Motive power supply system and electric power generation system

Country Status (2)

Country Link
JP (1) JP7329117B1 (en)
WO (1) WO2024085253A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124337A (en) * 2003-10-17 2005-05-12 Satoru Aritaka Wind power generation system
KR102415571B1 (en) * 2021-02-03 2022-07-01 김정식 High-power wind power generator using closed wind circulating air flow

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034338A1 (en) 2020-08-12 2022-02-17 Mehmet Kurt Closed-loop apparatus for electrical energy generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124337A (en) * 2003-10-17 2005-05-12 Satoru Aritaka Wind power generation system
KR102415571B1 (en) * 2021-02-03 2022-07-01 김정식 High-power wind power generator using closed wind circulating air flow

Also Published As

Publication number Publication date
JP2024061522A (en) 2024-05-07
JP7329117B1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
KR101217948B1 (en) Wind turbine comprising load transmitting components
US10711877B2 (en) Passive lubrication system for gas turbine engine gearbox during wind milling
US4792281A (en) Wind turbine pitch control hub
EP2570663A2 (en) Drivetrain and method for lubricating bearing in wind turbine
US8106527B1 (en) Hydraulic power generator
US9551407B2 (en) Transmission
US20120184404A1 (en) Damping of Plantary Gears with Flex-Pins for Wind Turbines
WO2004079185A2 (en) Electric power generation system
US20130189105A1 (en) Vibration absorbing device for a wind turbine and method of absorbing vibrations in a wind turbine
US4366779A (en) Wind driven heating system
WO2024085253A1 (en) Motive power supply system and electric power generation system
US9447777B2 (en) Continuous-flow power installation
US20190383359A1 (en) Wind turbine with two-stage star compound gear train
TW202419741A (en) Power supply system and power generation system
KR20100047131A (en) Dual rotor type windmill
JP2005180237A (en) Wind power generation device
KR20090086859A (en) Generation system of wind power
US20100071344A1 (en) Closed-circuit hydraulic thruster
CN213869975U (en) Concentric shaft birotor final stage variable speed steam turbine
WO2002023067A1 (en) Geared coupling
JP5917070B2 (en) Wind speed booster with locked train mechanism
CN112682497A (en) Gearbox system, wind turbine and method for operating a gearbox system
WO2022050922A1 (en) High efficiency automatic transmission wond turbine
JP3612423B2 (en) Vertical shaft pump
WO2020245846A1 (en) Energy storage mechanisms for uncontrolled fuel input turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879895

Country of ref document: EP

Kind code of ref document: A1