WO2024085235A1 - 環状ペプチドの結晶の製造方法 - Google Patents

環状ペプチドの結晶の製造方法 Download PDF

Info

Publication number
WO2024085235A1
WO2024085235A1 PCT/JP2023/037907 JP2023037907W WO2024085235A1 WO 2024085235 A1 WO2024085235 A1 WO 2024085235A1 JP 2023037907 W JP2023037907 W JP 2023037907W WO 2024085235 A1 WO2024085235 A1 WO 2024085235A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
compound
cyclic peptide
group
mixture
Prior art date
Application number
PCT/JP2023/037907
Other languages
English (en)
French (fr)
Inventor
雅英 青木
智嗣 谷田
彩 佐近
智哉 岩田
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Publication of WO2024085235A1 publication Critical patent/WO2024085235A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • C30B7/04Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent using aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • C30B7/06Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent using non-aqueous solvents

Definitions

  • the present invention relates to a method for producing crystals of cyclic peptides containing N-substituted amino acid residues, and a method for screening such crystals.
  • Non-Patent Document 1 Non-Patent Document 1
  • compounds with a molecular weight of more than 500 g/mol can contribute to the inhibition of protein-protein interactions in proteins that are called tough targets and that have been considered difficult to target with conventional low-molecular-weight compounds.
  • Non-Patent Document 2 medium-molecular-weight compounds (molecular weight 500-2000 g/mol), which are neither the low-molecular-weight compounds with a molecular weight of 500 g/mol or less that have been mainly used as oral drugs, nor the high-molecular-weight compounds with a molecular weight of more than 100,000 g/mol like antibody drugs, and are attracting attention as a new modality that can realize drug discovery for tough targets (Non-Patent Document 2).
  • Non-Patent Documents 3 and 4 Peptides made from natural amino acids, such as insulin used to treat hyperglycemia, have poor metabolic stability, and it has traditionally been considered difficult to develop them as oral drugs. However, it has been found that the metabolic stability and membrane permeability of peptides can be improved by cyclizing the peptides or using non-natural amino acids, such as N-methyl amino acids, in the peptides.
  • Non-Patent Document 5 cyclic peptides containing unnatural amino acids in particular can have metabolic stability and membrane permeability, i.e., can have drug-likeness. It has also been suggested that cyclic peptides containing unnatural amino acids are useful for creating inhibitors of protein-protein interactions (Non-Patent Document 5).
  • the present invention aims to provide a method for producing crystals of cyclic peptides containing N-substituted amino acid residues. In one aspect, the present invention aims to provide a method for screening crystals of cyclic peptides containing N-substituted amino acid residues. In one aspect, the present invention aims to provide a method for screening crystallization methods. In yet another aspect, the present invention aims to provide a method for isolating and purifying a target cyclic peptide, or a salt thereof, or a solvate thereof, as crystals, without relying on column chromatography.
  • the inventors discovered an efficient crystal screening method for obtaining cyclic peptides as crystals by contacting the cyclic peptides with a specific solvent. Furthermore, they completed the present invention as a crystal production method that can be applied to various cyclic peptides.
  • a method for producing a crystal of a cyclic peptide comprising a step of contacting a cyclic peptide with a solvent, wherein the cyclic peptide has the following characteristics (I), (II) and (III):
  • the peptide has a cyclic portion consisting of a total of 8 to 16 amino acid residues, and a total number of amino acid residues is 8 to 20;
  • III a molecular weight (g/mol) of 1,204 or more and 3,000 or less;
  • the method according to [A1], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation, or has polarized light when observed using a polarizing microscope.
  • the solvent is selected from the following (1), (2), and (3): (1) (i) a solvent having a molecular weight of 18 to 170, or (ii) a mixed solvent containing two or more solvents having a molecular weight of 18 to 170; (2) Water containing 0.01 to 30 wt/v % of a surfactant and 5 to 50 v/v % of a water-soluble organic solvent based on the total amount of the solvent; (3) (i) a PEG-based solvent, or (ii) a mixed solvent containing one or more selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water, and a PEG-based solvent; The method according to any one of [A1] to [A1-2], wherein the solvent is any one selected from the group consisting of: [A3]
  • [A4] The method according to [A3], wherein the solvent is selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, ketone-based solvents, aliphatic hydrocarbon-based solvents, and water.
  • the solvent is selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, ketone-based solvents, aliphatic hydrocarbon-based solvents, and water.
  • [A5] The method according to [A3], wherein the solvent is selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, and ketone-based solvents.
  • [A6] The method according to [A3], wherein the solvent is selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, and ester-based solvents.
  • [A9] The method according to any one of [A1] to [A1-2], wherein the solvent is a solvent (A) having a molecular weight of 18 to 170, or a mixed solvent of solvent (A) having a molecular weight of 18 to 170 and solvent (B) having a molecular weight of 18 to 170, wherein the solvent (A) is one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, and ketone-based solvents, and the solvent (B) is one or more selected from the group consisting of aliphatic hydrocarbon-based solvents, ethylene glycol, and water.
  • the solvent is a solvent (A) having a molecular weight of 18 to 170, or a mixed solvent of solvent (A) having a molecular weight of 18 to 1
  • [A10] The method according to any one of [A1] to [A1-2], wherein the solvent is a solvent (A) having a molecular weight of 18 to 170, or a mixed solvent of a solvent (A) having a molecular weight of 18 to 170 and a solvent (B) having a molecular weight of 18 to 170, wherein the solvent (A) is selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, and ketone-based solvents, and the solvent (B) is selected from the group consisting of aliphatic hydrocarbon-based solvents, ethylene glycol, and water.
  • the solvent is a solvent (A) having a molecular weight of 18 to 170, or a mixed solvent of a solvent (A) having a molecular weight of 18 to 1
  • [A14] The method according to [A9] or [A10], wherein the solvent (A) is an amide solvent.
  • the amide solvent is one or more selected from the group consisting of formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
  • [A16] The method according to [A14], wherein the amide solvent is formamide.
  • [A17] The method according to [A9] or [A10], wherein the solvent (A) is a sulfoxide solvent.
  • [A18] The method according to [A17], wherein the sulfoxide solvent is one or more selected from the group consisting of dimethyl sulfoxide, phenyl methyl sulfoxide and diethyl sulfoxide.
  • the sulfoxide solvent is dimethyl sulfoxide.
  • the solvent (A) is an aromatic hydrocarbon solvent.
  • the aromatic hydrocarbon solvent is one or more selected from the group consisting of benzene, toluene, xylene, ethylbenzene, tetralin and cumene.
  • [A22] The method according to [A20], wherein the aromatic hydrocarbon solvent is toluene, tetralin or cumene.
  • [A23] The method according to [A9] or [A10], wherein the solvent (A) is a halogenated solvent.
  • the halogen-based solvent is one or more selected from the group consisting of dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, bromobenzene and carbon tetrachloride.
  • the halogen-based solvent is dichloromethane or chlorobenzene.
  • [A26] The method according to [A9] or [A10], wherein the solvent (A) is an alcohol-based solvent.
  • the alcohol solvent is one or more selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-pentanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methoxyethanol, 2-ethoxyethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, and benzyl alcohol.
  • ether solvent is one or more selected from the group consisting of diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentyl methyl ether, 4-methyltetrahydropyran, 1,3-dioxolane, 1,4-dioxane, 1,2-dimethoxyethane, diisopropyl ether, anisole, and t-butyl methyl ether.
  • the ether solvent is tetrahydrofuran, 1,4-dioxane, diisopropyl ether, anisole or t-butyl methyl ether.
  • [A32] The method according to [A9] or [A10], wherein the solvent (A) is an ester solvent.
  • the ester-based solvent is one or more selected from the group consisting of ethyl formate, methyl acetate, ethyl acetate, methyl propionate, n-butyl acetate, propyl acetate, isopropyl acetate, isobutyl acetate, pentyl acetate, and ⁇ -valerolactone.
  • the ester solvent is ethyl acetate, isopropyl acetate or n-butyl acetate.
  • [A35] The method according to [A9] or [A10], wherein the solvent (A) is a nitrile solvent.
  • the nitrile solvent is one or more selected from the group consisting of acetonitrile, benzonitrile and propionitrile.
  • the nitrile solvent is acetonitrile.
  • the solvent (A) is a ketone solvent.
  • ketone solvent is one or more selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl butyl ketone, cyclohexanone, diethyl ketone, cyclopentanone, and 3-acetylpyridine.
  • the ketone solvent is acetone, methyl ethyl ketone or methyl isobutyl ketone.
  • [A41] The method according to any one of [A9] to [A40], wherein the solvent (B) is one or more solvents selected from the group consisting of aliphatic hydrocarbon solvents, ethylene glycol, and water.
  • the solvent (B) is an aliphatic hydrocarbon solvent, ethylene glycol or water.
  • the solvent (B) is an aliphatic hydrocarbon solvent.
  • [A44] The method according to [A43], wherein the aliphatic hydrocarbon solvent is one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane, and methylcyclohexane.
  • the aliphatic hydrocarbon solvent is n-heptane, cyclohexane or methylcyclohexane.
  • [A46-1] The method according to any one of [A9] to [A40], wherein the solvent (B) is ethylene glycol.
  • [A47] The method according to any one of [A9] to [A46], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:0 to 1:40.
  • [A48] The method according to any one of [A9] to [A46], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:0 to 1:30, 1:0 to 1:20, 1:0 to 1:10, 1:0 to 1:7, or 1:0 to 1:5.
  • [A49] The method according to any one of [A9] to [A46], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:0 to 1:4.
  • [A50] The method according to any one of [A9] to [A46], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 10:1 to 1:40.
  • [A51] The method according to any one of [A9] to [A46], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 5:1 to 1:30, 3:1 to 1:20, 2:1 to 1:10, 1:1 to 1:7, or 1:2 to 1:5.
  • [A52] The method according to any one of [A9] to [A46], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:2 to 1:4.
  • [A52-1] The method according to any one of [A9] to [A52], wherein the solvent (A) has a molecular weight of 18 or more and 160 or less, a molecular weight of 18 or more and 150 or less, a molecular weight of 18 or more and 140 or less, or a molecular weight of 32 or more and 135 or less.
  • [A52-2] The method according to any one of [A9] to [A52], wherein the solvent (A) has a molecular weight of 32 or more and 135 or less.
  • [A52-3] The method according to any one of [A9] to [A52-2], wherein the solvent (B) has a molecular weight of 18 or more and 160 or less, a molecular weight of 18 or more and 135 or less, a molecular weight of 18 or more and 120 or less, or a molecular weight of 18 or more and 105 or less.
  • [A52-4] The method according to any one of [A9] to [A52-2], wherein the solvent (B) is a solvent having a molecular weight of 18 or more and 105 or less.
  • [A53] The method according to any one of [A9] to [A52-4], wherein the melting points of the solvent (A) and the solvent (B) are 25° C. or lower.
  • [A54] The method according to any one of [A1] to [A1-2], wherein the solvent is water containing 0.01 to 30 wt/v % of a surfactant and 5 to 50 v/v % of a water-soluble organic solvent based on the total amount of the solvent.
  • the surfactant is one or more selected from the group consisting of cationic surfactants, anionic surfactants, amphoteric surfactants and nonionic surfactants.
  • the surfactant is one or more selected from the group consisting of primary amine salts, alkyl trimethylammonium salts, alkyl pyridinium salts, alkyl polyoxyethylene amines, fatty acid salts, rosin acid salts, alkyl sulfates, alkyl polyoxyethylene sulfates, alkyl naphthalene sulfates, lignin sulfates, alkyl phosphates, N-alkyl ⁇ -aminopropionic acids, N-alkyl sulfobetaines, N-alkyl hydroxysulfobetaines, lecithin, alkyl polyoxyethylene ethers, alkylaryl polyoxyethylene ethers, polyoxyethylene fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitan fatty acid esters, sucrose fatty acid esters, polyglycerin fatty acid esters, polyglycerin fatty acid esters,
  • the surfactant is one or more selected from the group consisting of alkyl sulfates, alkylaryl polyoxyethylene ethers, polyoxyethylene glycerin fatty acid esters, and polyoxyethylene sorbitan fatty acid esters.
  • the surfactant is an alkyl sulfate, an alkylaryl polyoxyethylene ether, a polyoxyethylene glycerin fatty acid ester, or a polyoxyethylene sorbitan fatty acid ester.
  • [A59] The method according to [A54], wherein the surfactant is sodium lauryl sulfate, 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol, Polyoxyl 35 Hydrogenated Castor Oil, or polyoxyethylene sorbitan monolaurate.
  • the surfactant is Polyoxyl 35 Hydrogenated Castor Oil.
  • the surfactant is an ionic surfactant or a nonionic surfactant.
  • the surfactant is an ionic surfactant.
  • ionic surfactant is one or more selected from the group consisting of cationic surfactants, anionic surfactants and amphoteric surfactants.
  • the ionic surfactant is one or more selected from the group consisting of primary amine salts, alkyl trimethyl ammonium salts, alkyl pyridinium salts, alkyl polyoxyethylene amines, fatty acid salts, rosin acid salts, alkyl sulfates, alkyl polyoxyethylene sulfates, alkyl naphthalene sulfates, lignin sulfates, alkyl phosphates, N-alkyl ⁇ -aminopropionic acids, N-alkyl sulfobetaines, N-alkyl hydroxysulfobetaines, and lecithin.
  • [A68] The method according to [A67], wherein the nonionic surfactant is one or more selected from the group consisting of alkyl polyoxyethylene ethers, alkylaryl polyoxyethylene ethers, polyoxyethylene fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitan fatty acid esters, sucrose fatty acid esters, polyglycerin fatty acid esters and polyoxyethylene sorbitan fatty acid esters.
  • the nonionic surfactant is one or more selected from the group consisting of alkylaryl polyoxyethylene ethers, polyoxyethylene glycerin fatty acid esters, and polyoxyethylene sorbitan fatty acid esters.
  • [A70] The method according to [A67], wherein the nonionic surfactant is one or more selected from the group consisting of 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol, Polyoxyl 35 Hydrogenated Castor Oil, and polyoxyethylene sorbitan monolaurate.
  • the water-soluble organic solvent is an alcohol solvent, an amide solvent, a nitrile solvent or a sulfoxide solvent.
  • the water-soluble organic solvent is an alcohol solvent or a sulfoxide solvent.
  • [A75] The method according to any one of [A54] to [A74], wherein the content of the surfactant is 0.02 to 20 wt/v%, 0.05 to 15 wt/v%, 0.1 to 10 wt/v%, 0.12 to 8 wt/v%, 0.15 to 5 wt/v%, or 0.18 to 3 wt/v%, based on the total amount of the solvent, and the content of the water-soluble organic solvent is 5 to 40 v/v%, 5 to 30 v/v%, 5 to 25 v/v%, 8 to 20 v/v%, or 10 to 15 v/v%, based on the total amount of the solvent.
  • [A76] The method according to any one of [A54] to [A74], wherein the content of the surfactant is 0.1 to 10 wt/v% based on the total amount of the solvent, and the content of the water-soluble organic solvent is 5 to 25 v/v% based on the total amount of the solvent.
  • the solvent is (i) a PEG-based solvent, or (ii) a mixed solvent containing a PEG-based solvent and one or more solvents selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water.
  • [A78] The method according to any one of [A1] to [A1-2], wherein the solvent is a PEG-based solvent.
  • the solvent is a mixed solvent of one or more selected from the group consisting of alcohol solvents, aliphatic hydrocarbon solvents, and water, and a PEG solvent.
  • [A80] The method according to [A78] or [A79], wherein the PEG-based solvent is (i) a solvent represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where n is a natural number between 1 and 10, or (ii) a mixture of solvents represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where the average of n is 3 to 100, wherein R 1 and R 2 are each independently hydrogen, C 1 to C 4 alkyl, or -C( O)R 4 , R 3 is hydrogen or C 1 to C 4 alkyl, and R 4 is C 1 to C 18 alkyl optionally substituted with a hydroxyl group, or C 1 to C 18 alkenyl optionally substituted with a hydroxyl group.
  • the PEG-based solvent is (i) a solvent represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where n is a natural number between 1 and 10, or (ii) a mixture of solvents represented by R 1
  • [A81] The method according to [A78] or [A79], wherein the PEG-based solvent is (i) a solvent represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where n is a natural number of 1, 2, 3 or 4, or (ii) a mixture of solvents represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where the average of n is 3 to 100, wherein R 1 is hydrogen or C 1 to C 4 alkyl, R 2 is hydrogen, C 1 to C 4 alkyl or -C( O)R 4 , R 3 is hydrogen or C 1 to C 4 alkyl, and R 4 is C 10 to C 18 alkyl.
  • R 1 is hydrogen or C 1 to C 4 alkyl
  • R 3 is hydrogen or C 1 to C 4 alkyl
  • R 4 is C 10 to C 18 alkyl.
  • [A83] The method according to [A78] or [A79], wherein the PEG-based solvent is diglyme, triglyme, tetraglyme, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol or a polyethylene glycol mono fatty acid ester.
  • the PEG-based solvent is polyethylene glycol.
  • [A84-2] The method according to [A84], wherein the number average molecular weight of the polyethylene glycol is 150 to 5,000.
  • the polyethylene glycol mono fatty acid ester is polyethylene glycol monostearate or polyethylene glycol monolaurate.
  • [A88] The method according to any one of [A77] or [A79] to [A87], wherein the one or more selected from the group consisting of alcohol solvents, aliphatic hydrocarbon solvents, and water are one or more selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-pentanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methoxyethanol, 2-ethoxyethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, benzyl alcohol, n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane, and water.
  • the one or more selected from the group consisting of alcohol solvents, aliphatic hydrocarbon solvents, and water are one or
  • a method for producing a crystal of a cyclic peptide comprising a step of contacting a cyclic peptide with a solvent, wherein the cyclic peptide has the following characteristics (I) and (II):
  • the peptide has a cyclic portion consisting of a total of 8 to 16 amino acid residues, and a total number of amino acid residues is 8 to 20;
  • the solvent (A) is one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, and ester-based solvents
  • the solvent (B) is one or more selected from the group consisting of aliphatic hydrocarbon-based solvents, ethylene glycol, and water.
  • [B1-1] The method according to [B1], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation, or has polarized light when observed using a polarizing microscope.
  • [B1-2] The method according to [B1], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • [B2] The method according to any one of [B1] to [B1-2], wherein the solvent (A) is one or more selected from the group consisting of amide solvents, sulfoxide solvents, and aromatic hydrocarbon solvents.
  • the solvent (A) is an amide solvent.
  • [B4] The method according to [B3], wherein the amide solvent is one or more selected from the group consisting of formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
  • [B5] The method according to [B3], wherein the amide solvent is formamide.
  • [B6] The method according to any one of [B1] to [B1-2], wherein the solvent (A) is a sulfoxide solvent.
  • the solvent (A) is a halogenated solvent.
  • the halogen-based solvent is one or more selected from the group consisting of dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, bromobenzene and carbon tetrachloride.
  • the halogen-based solvent is dichloromethane or chlorobenzene.
  • [B15] The method according to any one of [B1] to [B1-2], wherein the solvent (A) is an ester-based solvent.
  • the ester-based solvent is one or more selected from the group consisting of ethyl formate, methyl acetate, ethyl acetate, methyl propionate, n-butyl acetate, propyl acetate, isopropyl acetate, isobutyl acetate, pentyl acetate, and ⁇ -valerolactone.
  • [B17] The method according to [B15], wherein the ester solvent is ethyl acetate, isopropyl acetate or n-butyl acetate.
  • the solvent (B) is an aliphatic hydrocarbon solvent.
  • the aliphatic hydrocarbon solvent is one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane, and methylcyclohexane.
  • [B23] The method according to any one of [B1] to [B21], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:0 to 1:30, 1:0 to 1:20, 1:0 to 1:10, 1:0 to 1:7, or 1:0 to 1:5.
  • [B24] The method according to any one of [B1] to [B21], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:0 to 1:4.
  • [B25] The method according to any one of [B1] to [B21], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 10:1 to 1:40.
  • [B26] The method according to any one of [B1] to [B21], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 5:1 to 1:30, 3:1 to 1:20, 2:1 to 1:10, 1:1 to 1:7, or 1:2 to 1:5.
  • [B27] The method according to any one of [B1] to [B21], wherein the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is 1:2 to 1:4.
  • [B28] The method according to any one of [B1] to [B27], wherein the melting points of the solvent (A) and the solvent (B) are 25° C. or lower.
  • a method for producing a crystal of a cyclic peptide comprising a step of contacting a cyclic peptide with a solvent, wherein the cyclic peptide has the following characteristics (I) and (II):
  • the peptide has a cyclic portion consisting of a total of 8 to 16 amino acid residues, and a total number of amino acid residues is 8 to 20;
  • the surfactant is one or more selected from the group consisting of cationic surfactants, anionic surfactants, amphoteric surfactants, and nonionic surfactants.
  • [B31] The method according to any one of [B29] to [B29-2], wherein the surfactant is one or more selected from the group consisting of primary amine salts, alkyl trimethylammonium salts, alkyl pyridinium salts, alkyl polyoxyethylene amines, fatty acid salts, rosin acid salts, alkyl sulfates, alkyl polyoxyethylene sulfates, alkyl naphthalene sulfates, lignin sulfates, alkyl phosphates, N-alkyl ⁇ -aminopropionic acids, N-alkyl sulfobetaines, N-alkyl hydroxysulfobetaines, lecithin, alkyl polyoxyethylene ethers, alkylaryl polyoxyethylene ethers, polyoxyethylene fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitan fatty acid esters, sucrose fatty acid esters
  • the surfactant is an alkyl sulfate, an alkylaryl polyoxyethylene ether, a polyoxyethylene glycerin fatty acid ester, or a polyoxyethylene sorbitan fatty acid ester.
  • [B34] The method according to any one of [B29] to [B29-2], wherein the surfactant is sodium lauryl sulfate, 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol, Polyoxyl 35 Hydrogenated Castor Oil, or polyoxyethylene sorbitan monolaurate.
  • the surfactant is an ionic surfactant or a nonionic surfactant.
  • the surfactant is an ionic surfactant.
  • ionic surfactant is one or more selected from the group consisting of cationic surfactants, anionic surfactants and amphoteric surfactants.
  • the ionic surfactant is one or more selected from the group consisting of primary amine salts, alkyl trimethyl ammonium salts, alkyl pyridinium salts, alkyl polyoxyethylene amines, fatty acid salts, rosin acid salts, alkyl sulfates, alkyl polyoxyethylene sulfates, alkyl naphthalene sulfates, lignin sulfates, alkyl phosphates, N-alkyl ⁇ -aminopropionic acids, N-alkyl sulfobetaines, N-alkyl hydroxysulfobetaines, and lecithin.
  • nonionic surfactant is one or more selected from the group consisting of alkyl polyoxyethylene ethers, alkylaryl polyoxyethylene ethers, polyoxyethylene fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitan fatty acid esters, sucrose fatty acid esters, polyglycerin fatty acid esters and polyoxyethylene sorbitan fatty acid esters.
  • nonionic surfactant is one or more selected from the group consisting of alkylaryl polyoxyethylene ethers, polyoxyethylene glycerin fatty acid esters, and polyoxyethylene sorbitan fatty acid esters.
  • [B45] The method according to [B42], wherein the nonionic surfactant is one or more selected from the group consisting of 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol, Polyoxyl 35 Hydrogenated Castor Oil, and polyoxyethylene sorbitan monolaurate.
  • the water-soluble organic solvent is an alcohol solvent, an amide solvent, a nitrile solvent or a sulfoxide solvent.
  • the water-soluble organic solvent is an alcohol solvent or a sulfoxide solvent.
  • [B50] The method according to any one of [B29] to [B49], wherein the content of the surfactant is 0.02 to 20 wt/v%, 0.05 to 15 wt/v%, 0.1 to 10 wt/v%, 0.12 to 8 wt/v%, 0.15 to 5 wt/v%, or 0.18 to 3 wt/v%, based on the total amount of the solvent, and the content of the water-soluble organic solvent is 5 to 40 v/v%, 5 to 30 v/v%, 5 to 25 v/v%, 8 to 20 v/v%, or 10 to 15 v/v%, based on the total amount of the solvent.
  • a method for producing a crystal of a cyclic peptide comprising a step of contacting a cyclic peptide with a solvent, wherein the cyclic peptide has the following characteristics (I) and (II): (I) The peptide has a cyclic portion consisting of a total of 8 to 16 amino acid residues, and a total number of amino acid residues is 8 to 20; (II) containing at least two N-substituted amino acid residues; and the solvent is (i) a PEG-based solvent, or (ii) a mixed solvent containing one or more selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water, and a PEG-based solvent.
  • [B54] The method according to any one of [B52] to [B52-2], wherein the solvent is a mixed solvent of one or more selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water, and a PEG-based solvent.
  • the solvent is a mixed solvent of one or more selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water, and a PEG-based solvent.
  • the PEG-based solvent is (i) a solvent represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where n is a natural number between 1 and 10, or (ii) a mixture of solvents represented by R
  • [B56] The method according to [B53] or [B54], wherein the PEG-based solvent is (i) a solvent represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where n is a natural number of 1, 2, 3 or 4, or (ii) a mixture of solvents represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where the average of n is 3 to 100, wherein R 1 is hydrogen or C 1 to C 4 alkyl, R 2 is hydrogen, C 1 to C 4 alkyl or -C( O)R 4 , R 3 is hydrogen or C 1 to C 4 alkyl, and R 4 is C 10 to C 18 alkyl.
  • the PEG-based solvent is (i) a solvent represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where n is a natural number of 1, 2, 3 or 4, or (ii) a mixture of solvents represented by R 1 (OCHR 3 CH 2 ) n OR 2 , where the average of n is
  • [B58] The method according to [B53] or [B54], wherein the PEG-based solvent is diglyme, triglyme, tetraglyme, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol or a polyethylene glycol mono fatty acid ester.
  • the PEG-based solvent is polyethylene glycol.
  • the number average molecular weight of the polyethylene glycol is 150 to 5,000.
  • the polyethylene glycol mono fatty acid ester is polyethylene glycol monostearate or polyethylene glycol monolaurate.
  • [B64] The method according to any one of [B52] to [B52-2] or [B54] to [B62], wherein the one or more selected from the group consisting of alcohol solvents, aliphatic hydrocarbon solvents, and water are one or more selected from the group consisting of 2-propanol, n-heptane, and water.
  • [C1] The method according to any one of [A1] to [A89] or [B1] to [B64], wherein in the step of contacting the cyclic peptide with a solvent, the concentration of the cyclic peptide is 1 mg to 2000 mg/mL.
  • [C2] The method according to any one of [A1] to [A89] or [B1] to [B64], wherein in the step of contacting the cyclic peptide with a solvent, the concentration of the cyclic peptide is 5 mg to 1500 mg/mL, 10 mg to 1000 mg/mL, 10 mg to 500 mg/mL, 10 mg to 100 mg/mL, 10 mg to 50 mg/mL, 100 mg to 400 mg/mL, 100 mg to 200 mg/mL or 500 mg to 1000 mg/mL.
  • [C3] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C2], wherein the cyclic peptide used in the step of contacting the cyclic peptide with a solvent is a freeze-dried product.
  • [C4] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C2], wherein the cyclic peptide used in the step of contacting the cyclic peptide with a solvent is a freeze-dried product from a dimethyl sulfoxide solution.
  • [C5] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C4], wherein the amount of the cyclic peptide used in the step of contacting the cyclic peptide with a solvent is 0.5 mg to 200 kg.
  • [C6] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C4], wherein the amount of the cyclic peptide used in the step of contacting the cyclic peptide with a solvent is 1 mg to 1 g.
  • [C7] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C4], wherein the amount of the cyclic peptide used in the step of contacting the cyclic peptide with a solvent is 0 g to 200 kg, 100 g to 100 kg, 0.5 mg to 10 g, 1 mg to 1 g, 1 mg to 100 mg, 1 mg to 10 mg, or 1 mg to 5 mg.
  • [C8] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C7], wherein the step of contacting the cyclic peptide with a solvent does not include adding seed crystals.
  • [C9] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C7], comprising adding a seed crystal in the step of contacting the cyclic peptide with a solvent.
  • [C10] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C9], further comprising a filtration step after the step of contacting the cyclic peptide with a solvent.
  • [C12] The method according to any one of [A1] to [A89], [B1] to [B64], and [C1] to [C10], wherein the step of contacting the cyclic peptide with a solvent is carried out at a constant temperature of 0°C to 110°C, 10°C to 100°C, 15°C to 90°C, or 20°C to 80°C, or the step of heating and cooling is repeated 10 or more, 20 or more, or 30 or more, 1000 or less, 500 or less, or 100 or less, between a lower limit temperature of 10°C, 20°C, 30°C, 40°C, 45°C, 50°C, or 55°C and an upper limit temperature of 100°C, 90°C, 85°C, 80°C, 75°C, 70°C, or 60°C, for 1 hour to 6 weeks, 2 hours to 4 weeks, 4 hours to 2 weeks, or 6 hours to 7 days.
  • [C13] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C10], wherein the step of contacting the cyclic peptide with a solvent is carried out at a constant temperature of 20°C to 90°C for 12 hours to 7 days.
  • [C14] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C10], wherein the step of contacting the cyclic peptide with a solvent is performed by repeatedly heating and cooling 30 times or more and 100 times or less between a lower limit temperature of 50°C and an upper limit temperature of 90°C for 12 hours to 7 days.
  • [D1] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C14], wherein the cyclic peptide comprises a cyclic portion consisting of a total of 7 to 15, 8 to 14, 9 to 13, 10 to 13, 11 to 13, 11 to 12, or 11 amino acid residues, and the total number of amino acids is 9 to 18, 10 to 16, 10 to 14, 11 to 14, 11 to 13, 11 to 12, or 11 residues.
  • [D2] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C14], wherein the cyclic peptide comprises a cyclic portion consisting of a total of 11 to 13 amino acid residues, and the total number of amino acid residues is 11 to 14.
  • [D2-1] The method according to any one of [A1] to [A89], [B1] to [B64], or [C1] to [C14], wherein the cyclic peptide comprises a cyclic portion consisting of a total of 11 amino acid residues, and the total number of amino acid residues is 11.
  • [D3] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D2], wherein the cyclic peptide contains at least 3, 4 or 5 N-substituted amino acid residues.
  • [D3-1] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D3], wherein the cyclic peptide contains at least 1, 2 or 3 N-unsubstituted amino acid residues.
  • [D4] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D2], wherein the cyclic peptide contains at least 5 N-substituted amino acid residues.
  • [D4-1] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D4], wherein the cyclic peptide contains at least three N-unsubstituted amino acid residues.
  • [D4-2] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D4-1], wherein the N-substituted amino acid is an N-alkyl amino acid.
  • [D4-3] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D4-1], wherein the N-substituted amino acid is an N-methyl amino acid or an N-ethyl amino acid.
  • [D4-4] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D4-1], wherein the N-substituted amino acid is an N-methyl amino acid.
  • [D5] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D4-4], wherein the cyclic peptide contains at least one ⁇ -amino acid backbone.
  • [D6] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D4-4], wherein the cyclic portion of the cyclic peptide contains at least one ⁇ -amino acid backbone.
  • [D7] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D6], wherein the cyclic peptide contains a cyclic portion consisting of a 28-55, 28-49, 31-46, 34-43, 34-40, 34-37 or 34-membered ring.
  • [D8] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D6], wherein the cyclic peptide contains a cyclic portion consisting of a 34 to 40-membered ring.
  • [D8-1] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D6], wherein the cyclic peptide contains a cyclic portion consisting of a 34-membered ring.
  • [D8-2] The method according to [D8-1], wherein the 34-membered ring cyclic portion is a cyclic peptide consisting of a total of 11 amino acid residues, including 10 ⁇ -amino acid residues and 1 amino acid residue having a ⁇ -amino acid backbone, and has the following cyclic structure: [D8-3] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D6], wherein the cyclic peptide has the following structure: [wherein P 1 , P 3 , P 5 , P 6 , P 10 and P 11 are C 1 -C 6 alkyl; P 4 is C 1 -C 6 alkyl; or P 4 forms a 4- to 7-membered saturated heterocycle together with the nitrogen atom to which P 4 is bonded, R 4 and the carbon atom to which R 4 is bonded; P 8 is C 1 -C 6 al
  • [D8-4] The method according to [D8-3], wherein P 1 , P 3 , P 5 , P 6 , P 10 and P 11 are methyl or ethyl.
  • [D8-5] The method according to [D8-3] or [D8-4], wherein P 4 is methyl, or forms a 4-membered saturated heterocycle together with the nitrogen atom to which P 4 is bonded, R 4 , and the carbon atom to which R 4 is bonded.
  • [D8-6] The method according to any one of [D8-3] to [D8-5], wherein P8 forms a 5-membered saturated heterocycle together with the nitrogen atom to which P8 is bonded, R8 , and the carbon atom to which R8 is bonded, and the 5-membered saturated heterocycle is optionally substituted by C1 - C6 alkoxy.
  • [D8-7] The method according to any one of [D8-3] to [D8-6], wherein R 1 and R 2 are C 1 to C 6 alkyl, R 3 is a hydrogen atom or C 1 to C 6 alkyl, R 4 is a hydrogen atom except when R 4 and P 4 form a 4- to 7-membered saturated heterocycle, R 5 is a C 3 to C 6 cycloalkyl or benzyl which may have a substituent, R 7 is a phenylethyl which may have a substituent, R 9 forms a 5-membered saturated carbocycle together with Q 9 and the carbon atom to which R 9 and Q 9 are bonded, R 10 is a C 1 to C 6 alkyl or C 3 to C 6 cycloalkyl, and R 11 is methyl, diC 1 to C 6 alkylaminocarbonyl, or 6-membered cyclic aminocarbonyl.
  • [D9] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D8-7], wherein the molecular weight (g/mol) of the cyclic peptide is 1205 or more, 1206 or more, 1207 or more, 1208 or more, 1210 or more, 1220 or more, 1230 or more, 1250 or more, or 1300 or more, and 2800 or less, 2500 or less, 2000 or less, 1900 or less, 1800 or less, 1700 or less, or 1600 or less.
  • the molecular weight (g/mol) of the cyclic peptide is 1205 or more, 1206 or more, 1207 or more, 1208 or more, 1210 or more, 1220 or more, 1230 or more, 1250 or more, or 1300 or more, and 2800 or less, 2500 or less, 2000 or less, 1900 or less, 1800 or less, 1700 or less, or 1600 or less.
  • [D10] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D8-7], wherein the molecular weight (g/mol) of the cyclic peptide is 1,300 or more and 1,600 or less.
  • [D11] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D10], wherein the ClogP of the cyclic peptide is 4 or more and 25 or less.
  • [D12] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D10], wherein the ClogP of the cyclic peptide is 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more, and 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, or 18 or less.
  • [D13] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D10], wherein the ClogP of the cyclic peptide is 9 or more and 18 or less.
  • [D14] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D10], wherein the ClogP of the cyclic peptide is larger than the ClogP of cyclosporine A.
  • [D14-1] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D14], wherein the ClogP/number of amino acid residues of the cyclic peptide is 0.3 to 2.3, 0.5 to 1.9, 0.7 to 1.8, or 0.8 to 1.6.
  • [D14-2] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D14], wherein the ClogP/number of amino acid residues of the cyclic peptide is 0.8 or more and 1.6 or less.
  • [D14-3] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D14-2], wherein the solubility of the cyclic peptide in 50 mM phosphate buffer (pH 6.5) is 1200 mg/mL or less, 800 mg/mL or less, 600 mg/mL or less, 300 mg/mL or less, 200 mg/mL or less, 100 mg/mL or less, 50 mg/mL or less, 25 mg/mL or less, 10 mg/mL or less, 5.0 mg/mL or less, or 2.6 mg/mL or less.
  • 50 mM phosphate buffer pH 6.5
  • [D14-4] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D14-2], wherein the solubility of the cyclic peptide in 50 mM phosphate buffer (pH 6.5) is 0.8 mg/mL or more.
  • [D14-5] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D14-2], wherein the solubility of the cyclic peptide in 50 mM phosphate buffer (pH 6.5) is 0.9 mg/mL or more, 1.0 mg/mL or more, or 1.1 mg/mL or more.
  • [D14-6] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D14-2], wherein the solubility of the cyclic peptide in 50 mM phosphate buffer (pH 6.5) is 1.1 mg/mL or more.
  • [D14-7] A method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D14-2], which has two or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • [D14-8] A method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D14-2], which has three or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • [D15] The method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D14-4], wherein the cyclic peptide is a cyclic peptide other than cyclosporine A.
  • the cyclic peptide is (3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-cyclopentyl-3-[2-[3,5-difluoro-4-(trifluoromethyl)phenyl]ethyl]-10-ethyl-23-isobutyl-N,N,7,17,18,24,28,31-octamethyl-20-[(1s)-1-methylpropyl]-2,5,8,11,16,19,22,25,29,32,35-undecaoxo-9-(p-tolylmethyl)spiro[1,4,7,10,15,18,21,24,28,31,34-undecazatricyclo[34.3.0.0 12,15
  • the method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] and [D1] to [D15], wherein the cyclic peptide is
  • [E1] A method for screening crystals of a cyclic peptide, comprising the following steps (a) and (b): (a) producing a crystal of a cyclic peptide by any one of the methods described in [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D16]; (b) analyzing the crystals by powder X-ray crystal diffraction; A method comprising: [E2] The method according to [E1], wherein the crystals to be screened include crystals produced using a solvent containing formamide.
  • crystals to be screened include crystals produced using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil, crystals produced using a solvent containing polyethylene glycol mono fatty acid ester, and crystals produced using a solvent containing formamide.
  • [F1] A method for screening a crystallization method for a cyclic peptide, comprising the following steps (a) and (b): (a) producing a crystal of a cyclic peptide by any one of the methods described in [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D16]; (b) analyzing the crystals by powder X-ray crystal diffraction; A method comprising: [F2] The method according to [F1], wherein the crystallization method to be screened includes a crystallization method using a solvent containing formamide.
  • the method according to [F1], wherein the crystallization methods to be screened include crystallization methods using a solvent containing formamide and a solvent containing dimethyl sulfoxide.
  • the crystallization methods to be screened include crystallization methods using a solvent containing formamide, a solvent containing dimethyl sulfoxide, a solvent containing toluene, and a solvent containing dichloromethane.
  • the crystallization method to be screened includes a crystallization method using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil.
  • the method according to [F1], wherein the crystallization method to be screened includes a crystallization method using a solvent containing a polyethylene glycol mono fatty acid ester.
  • the method according to [F1], wherein the crystallization method to be screened includes a crystallization method using a solvent containing polyethylene glycol.
  • the crystallization methods to be screened include crystallization methods using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil, a solvent containing a polyethylene glycol mono fatty acid ester, and a solvent containing polyethylene glycol.
  • [F9] The method according to [F1], wherein the crystallization methods to be screened include crystallization methods using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil, a solvent containing a polyethylene glycol mono fatty acid ester, and a solvent containing formamide.
  • [F10] The method according to any one of [E1] to [E9] or [F1] to [F9], wherein in the step of contacting the cyclic peptide with a solvent, 0.5 mg to 10 mg of the cyclic peptide is used per condition.
  • [F11] The method according to any one of [E1] to [E9] or [F1] to [F10], wherein the number of crystals or crystallization methods to be screened is 2 or more, 5 or more, 10 or more, 15 or more, or 20 or more.
  • [F12] The method according to any one of [E1] to [E9] or [F1] to [F11], wherein the step of contacting the cyclic peptide with a solvent does not include adding seed crystals.
  • [G1] A method for increasing the probability of producing crystals of a cyclic peptide, the method comprising a step of producing crystals of a cyclic peptide by any one of the methods described in [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D16].
  • [H1] Use of any solvent selected from the group consisting of amide solvents, sulfoxide solvents, aromatic hydrocarbon solvents, halogenated solvents, polyoxyethylene glycerin fatty acid esters, and polyethylene glycol mono fatty acid esters in the production of cyclic peptide crystals.
  • [H2] Use of amide solvents in the preparation of cyclic peptide crystals.
  • [H10] Use of polyethylene glycol in producing crystals of cyclic peptides.
  • [H11] The use according to any one of [H1] to [H10], wherein the crystal of the cyclic peptide is produced by a method according to any one of [D1] to [D16].
  • [I1] A method for purifying a cyclic peptide, comprising the steps of producing crystals of a cyclic peptide by a method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14], or [D1] to [D16], and collecting the crystals by solid-liquid separation.
  • [J1] A screening kit for producing a crystal of a cyclic peptide, which produces a crystal of a cyclic peptide by using the method according to any one of [H1] to [H11].
  • [K1] A method for producing a cyclic peptide, comprising a step of producing a crystal of a cyclic peptide containing formamide.
  • [K2] A method for producing a cyclic peptide, comprising a step of producing a crystal of a cyclic peptide containing dimethyl sulfoxide.
  • [K3] A method for producing a cyclic peptide, comprising a step of producing a crystal of a cyclic peptide containing an aromatic hydrocarbon solvent.
  • [K4] A method for producing a cyclic peptide, comprising a step of producing a crystal of a cyclic peptide containing toluene, tetralin or cumene.
  • [K5] A method for producing a cyclic peptide, comprising the step of producing a crystal of a cyclic peptide containing Polyoxyl 35 Hydrogenated Castor Oil.
  • [K6] A method for producing a cyclic peptide, comprising a step of producing a crystal of a cyclic peptide containing a polyethylene glycol mono fatty acid ester.
  • [K7] A method for producing a cyclic peptide, comprising the step of producing a crystal of a cyclic peptide containing polyethylene glycol.
  • [K8] A method according to any one of [K1] to [K7], for producing a crystal of a cyclic peptide by a method according to any one of [A1] to [A89], [B1] to [B64], [C1] to [C14] or [D1] to [D16].
  • [L2] The method according to [L1], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation, or has polarized light when observed using a polarizing microscope.
  • [L3] The method according to [L1], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • [L4] The method according to any one of [L1] to [L3], wherein the solvent is toluene.
  • [L5] The method according to any one of [L1] to [L3], wherein the solvent is dimethyl sulfoxide.
  • [L6] The method according to any one of [L1] to [L3], wherein the solvent is a mixed solvent of ethanol and water.
  • [L7] The method according to any one of [L1] to [L3], wherein the solvent is a mixed solvent of acetonitrile and water.
  • [L8] The method according to any one of [L1] to [L3], wherein the solvent is cumene.
  • [L9] The method according to any one of [L1] to [L3], wherein the solvent is tetralin.
  • [L10] The method according to any one of [L1] to [L3], wherein the solvent is formamide.
  • [L14] The method according to [L13], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation, or has polarized light when observed using a polarizing microscope.
  • [L15] The method according to [L13], wherein the crystal has one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • the surfactant is one or more selected from the group consisting of cationic surfactants, anionic surfactants, amphoteric surfactants, and nonionic surfactants.
  • [L20] The method according to any one of [L13] to [L15], wherein the surfactant is Polyoxyl 35 Hydrogenated Castor Oil, and the water-soluble organic solvent is dimethyl sulfoxide.
  • the surfactant is polyoxyethylene sorbitan monolaurate (Tween 80) and the water-soluble organic solvent is ethanol.
  • the surfactant is polyoxyethylene sorbitan monolaurate and the water-soluble organic solvent is dimethyl sulfoxide.
  • [L30] The method according to any one of [L13] to [L15], wherein the solvent is triglyme.
  • [L31] The method according to any one of [L13] to [L15], wherein the solvent is ethylene glycol.
  • [L32] The method according to any one of [L13] to [L15], wherein the solvent is PEG400.
  • [M1] A crystal produced by any one of the methods described in [A1] to [A89], [B1] to [B64], [C1] to [C14], [D1] to [D16], [K1] to [K7] or [L32] to [L32].
  • [M2] A pharmaceutical composition comprising a crystal produced by any one of the methods described in [A1] to [A89], [B1] to [B64], [C1] to [C14], [D1] to [D16], [K1] to [K7] or [L32] to [L32].
  • the present invention provides a method for producing crystals of a cyclic peptide containing N-substituted amino acid residues.
  • the present invention also provides a method for screening crystals of a cyclic peptide containing N-substituted amino acid residues.
  • the present invention also provides a method for screening crystallization methods.
  • the present invention also provides a method for isolating and purifying a target cyclic peptide, or a salt thereof, or a solvate thereof, as crystals without relying on column chromatography.
  • Example 2-1-2 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-1-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-2-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-2-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-2-3 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-2-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-3-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-4-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-4-2 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-4-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-5-3 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-5 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-5-6 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-6 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-7 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-5-8 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 1 shows the results of powder X-ray diffraction measurement of the crystals obtained in Example 2-5-9.
  • the vertical axis represents the diffraction intensity
  • the horizontal axis represents the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-6-1 are shown.
  • the vertical axis is the diffraction intensity
  • the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-1 are shown.
  • the vertical axis is the diffraction intensity
  • the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-2 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-8 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-8 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-9 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-10 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-12 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-12 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-14 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-15 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-16 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-16 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-17 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-18 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-19 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-19 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-20 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-21 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-22 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-22 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-23 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-24 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-25 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-25 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-26 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-29 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-31 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-31 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-32 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-33 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-7-34 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-7-34 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-5 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-5 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-6 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-10 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-13 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-13 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-14 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-15 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-16 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-16 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-17 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-19 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-20 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-20 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-21 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-22 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-23 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-23 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-24 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-25 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-26 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-26 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-28 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-30 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-31 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-31 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-32 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-33 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-34 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-34 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-35 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-36 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-37 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-37 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-38 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-39 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-40 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-40 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-41 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-42 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 2-8-43 The results of powder X-ray diffraction measurement of the crystal obtained in Example 2-8-43 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystals obtained in Example 2-8-44 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystals obtained in Example 2-8-45 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-1-1 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-1-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-4-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-2 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-5 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-5 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-6 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-7 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-8 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-8 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-9 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-10 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-11 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-11 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-12 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-13 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-14 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-14 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-15 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-16 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-17 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-17 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-18 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-19 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-20 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-20 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-21 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-22 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-23 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-23 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-24 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-25 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-26 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-26 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-27 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-28 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-5-29 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-29 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-5-30 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-7-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-8-1 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-8-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-8-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-8-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 3-8-4 The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-8-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-8-5 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 3-8-6 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 4-1-1 The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-1-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-3-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-4-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 4-4-2 The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-4-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-4-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-4-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • Example 4-4-5 The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-4-5 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-4-6 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°). In addition to the 19.2° and 24.4° derived from PEG2000, multiple diffraction peaks are observed. These are the diffraction peaks of the crystal of CP04.
  • D The results of powder X-ray diffraction measurement of PEG2000 are shown.
  • the vertical axis is the diffraction intensity
  • the horizontal axis is the diffraction angle 2 ⁇ (°). It has characteristic peaks at 19.2° and 24.4°.
  • the vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystals obtained in Example 4-4-10 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-5-1 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-5-2 are shown.
  • the vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-5-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-5-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-5-5 are shown.
  • the vertical axis is the diffraction intensity
  • the horizontal axis is the diffraction angle 2 ⁇ (°).
  • 1 shows the results of powder X-ray diffraction measurement of the crystals obtained in Example 4-5-6.
  • the vertical axis represents the diffraction intensity
  • the horizontal axis represents the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-7-1 are shown.
  • the vertical axis is the diffraction intensity
  • the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-7-2 are shown.
  • the vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-7-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-7-4 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • E The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-8-1 are shown.
  • the vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-8-2 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • B The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-8-3 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • C The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-8-4 are shown.
  • the vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • D The results of powder X-ray diffraction measurement of the crystal obtained in Example 4-8-5 are shown. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
  • A Crystal structure of the compound CP01 obtained in Example 2-1-1 by single crystal X-ray structure analysis.
  • room temperature means a temperature between about 20°C and about 25°C.
  • one or more means one or more than one.
  • the term means a number from one to the maximum number of substituents permitted by that group. Specific examples of "one or more” include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and/or more.
  • the range “ ⁇ ” includes both ends of the range.
  • a ⁇ B means a range that is equal to or greater than A and equal to or less than B.
  • the meaning of the term “and/or” includes any combination of “and” and “or” as appropriate.
  • “A, B, and/or C” includes the following seven variations: (i) A, (ii) B, (iii) C, (iv) A and B, (v) A and C, (vi) B and C, (vii) A, B, and C.
  • v/v% stands for volume% and “wt/v%” stands for weight/volume%.
  • peptide as used herein means two or more amino acids linked together by amide bonds. Peptides that have an ester bond in part of the main chain, such as depsipeptides, are also included in the term “peptide” as used herein.
  • a "cyclic peptide” is a peptide having a cyclic structure composed of four or more amino acid residues.
  • the cyclization of a cyclic peptide may be in any form, such as cyclization through a carbon-nitrogen bond such as an amide bond, cyclization through a carbon-oxygen bond such as an ester bond or an ether bond, cyclization through a carbon-sulfur bond such as a thioether bond, cyclization through a carbon-carbon bond, or cyclization through a heterocyclic ring structure.
  • cyclization through a covalent bond such as an amide bond, a carbon-sulfur bond, or a carbon-carbon bond is preferred.
  • Cyclization through an amide bond is more preferred, and the position of the carboxyl group or amino group used for cyclization may be on the main chain or on the side chain. Most preferred is cyclization through an amide bond between a carboxyl group in the side chain and an amino group in the main chain at the N-terminus.
  • heterocycle means a non-aromatic heterocycle containing preferably 1 to 5, more preferably 1 to 3 heteroatoms in the atoms constituting the ring.
  • the heterocycle may have double and/or triple bonds in the ring, the carbon atoms in the ring may be oxidized to form a carbonyl, and may be a monocyclic, condensed, or spiro ring.
  • the number of atoms constituting the ring of the heterocycle is preferably 3 to 12 (3- to 12-membered heterocycle), more preferably 4 to 10 (4- to 10-membered heterocycle).
  • heterocyclic ring examples include an azetidine ring, an oxetane ring, a tetrahydrofuran ring, a tetrahydropyran ring, a morpholine ring, a thiomorpholine ring, a pyrrolidine ring, a 4-oxopyrrolidine ring, a piperidine ring, a 4-oxopiperidine ring, a piperazine ring, a pyrazolidine ring, an imidazolidine ring, an oxazolidine ring, an isoxazolidine ring, a thiazolidine ring, an isothiazolidine ring, a thiadiazolidine ring, an oxazolidone ring, a diphenyl ...
  • Examples include an oxolane ring, a dioxane ring, a thietane ring, an octahydroindole ring, a 6,7-dihydro-pyrrolo[1,2-a]imidazole ring, an azocane ring, a 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine ring, an azepane ring, a dioxepane ring, a 5,9-dioxaspiro[3.5]nonane ring, or a ring in which one or more single bonds in these saturated heterocycles are replaced with a double bond or a triple bond.
  • cyclization of a peptide means the formation of a cyclic portion containing 4 or more amino acid residues.
  • the number of amino acids contained in the cyclic portion of the cyclic peptide in this specification is not particularly limited as long as it is 4 or more, but examples thereof include 4 to 20 residues, 5 to 15 residues, 6 to 13 residues, 9 to 13 residues, and 11 residues, and is preferably 5 to 15 residues, more preferably 9 to 13 residues, and most preferably 11 residues.
  • a method for converting a linear peptide into a cyclic peptide can be carried out by carrying out a bond formation reaction within a molecule according to the method described in Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 3rd Edition (by R. C. Larock) or March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition, (by M. B. Smith, J. March), etc. After the bond formation reaction, a functional group conversion reaction can also be carried out.
  • Examples of CC bonds formed by coupling reactions using transition metals as catalysts such as the Suzuki reaction, the Heck reaction, and the Sonogashira reaction.
  • Examples of functional group conversion reactions that are further carried out after the bond formation reaction include oxidation reactions and reduction reactions. Specifically, examples include a reaction in which a sulfur atom is oxidized to convert to a sulfoxide group or a sulfone group.
  • examples include a reduction reaction in which a triple bond or a double bond among carbon-carbon bonds is reduced to convert to a double bond or a single bond.
  • Two amino acids may be linked together at the backbone of the amino acid to form a closed ring structure through a peptide bond, or a covalent bond between the two amino acids may be formed by bonding the side chains of the two amino acids together, or between the side chain and the backbone, etc.
  • cyclic portion of a cyclic peptide means a ring-shaped portion formed by linking four or more amino acid residues.
  • crystal of a cyclic peptide is understood to mean (i) a crystal of a free cyclic peptide, (ii) a crystal of a solvate of a cyclic peptide, and (iii) a mixture thereof, and may be any of them.
  • solvate refers to a compound and a solvent that form a molecular group, and is not particularly limited as long as the solvate is formed with a solvent that is acceptable for ingestion accompanying the administration of a medicine.
  • examples include solvates with a single solvent such as hydrates, alcohol solvates (ethanol solvates, methanol solvates, 1-propanol solvates, 2-propanol solvates, etc.), formamide, and dimethyl sulfoxide, as well as solvates formed with multiple solvents per molecule of a compound, or solvates formed with multiple types of solvents per molecule of a compound.
  • solvates are distinguished from cocrystals.
  • a cocrystal is defined as a crystal composed of a compound and a component that is solid at 25°C.
  • crystals of cyclic peptides include (i) crystals of free cyclic peptides, (ii) crystals of solvates of cyclic peptides, and (iii) mixtures thereof, but do not include cocrystals containing cyclic peptides, or mixtures of cocrystals containing cyclic peptides with any of the above crystals (i) to (iii).
  • amino acid includes natural amino acids and non-natural amino acids.
  • amino acid may mean an amino acid residue.
  • natural amino acid refers to Gly, Ala, Ser, Thr, Val, Leu, Ile, Phe, Tyr, Trp, His, Glu, Asp, Gln, Asn, Cys, Met, Lys, Arg, and Pro.
  • Non-natural amino acids are not particularly limited, but examples thereof include ⁇ -amino acids, D-amino acids, N-substituted amino acids, ⁇ , ⁇ -disubstituted amino acids, amino acids whose side chains are different from those of natural amino acids, and hydroxycarboxylic acids.
  • amino acids are allowed to have any stereochemical configuration.
  • the side chain of the amino acid can be freely selected from, in addition to a hydrogen atom, for example, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, a heteroarylalkyl group, a cycloalkyl group, and a spiro-linked cycloalkyl group.
  • substituents are not limited, and may be independently selected from any substituents including halogen atoms, O atoms, S atoms, N atoms, B atoms, Si atoms, or P atoms. That is, examples include an optionally substituted alkyl group, alkoxy group, alkoxyalkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aralkyl group, cycloalkyl group, etc., or oxo, aminocarbonyl, halogen atoms, etc.
  • the amino acid in this specification may be a compound having a carboxyl group and an amino group in the same molecule.
  • compounds in which the nitrogen atom of the amino group and any atom of the side chain are joined together to form a ring are also included in the amino acid in this specification.
  • substituents are not limited, and may be independently selected from any substituents including, for example, a halogen atom, an oxygen atom, a sulfur atom, a nitrogen atom, a boron atom, a silicon atom, or a phosphorus atom.
  • substituents examples include alkyl, alkoxy, fluoroalkyl, fluoroalkoxy, oxo, aminocarbonyl, alkylsulfonyl, alkylsulfonylamino, cycloalkyl, aryl, heteroaryl, heterocyclyl, arylalkyl, heteroarylalkyl, halogen, nitro, amino, monoalkylamino, dialkylamino, cyano, carboxyl, alkoxycarbonyl, formyl, etc.
  • halogen examples include F, Cl, Br, and I.
  • alkyl refers to a monovalent group derived from an aliphatic hydrocarbon by removing any one hydrogen atom, and does not contain heteroatoms (atoms other than carbon and hydrogen atoms) or unsaturated carbon-carbon bonds in the skeleton, and has a subset of hydrocarbyl or hydrocarbon group structures containing hydrogen and carbon atoms. Alkyl includes not only linear but also branched chain alkyls.
  • the alkyl is preferably an alkyl having 1 to 20 carbon atoms (C 1 -C 20 , hereinafter "C p -C q " means that the number of carbon atoms is p to q), preferably a C 1 -C 10 alkyl, more preferably a C 1 -C 6 alkyl.
  • alkyl examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, isobutyl (2-methylpropyl), n-pentyl, s-pentyl (1-methylbutyl), t-pentyl (1,1-dimethylpropyl), neopentyl (2,2-dimethylpropyl), isopentyl (3-methylbutyl), 3-pentyl (1-ethylpropyl), 1,2-dimethylpropyl, 2-methylbutyl, n-hexyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1,1,2,2-tetramethylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylmethylprop
  • alkynyl refers to a monovalent group having at least one triple bond (two adjacent SP carbon atoms). Alkynyl includes not only straight chain but also branched chain. Preferred examples of alkynyl include C 2 -C 10 alkynyl, and more preferably C 2 -C 6 alkynyl.
  • Specific examples include ethynyl, 1-propynyl, propargyl, 3-butynyl, pentynyl, hexynyl, 3-phenyl-2-propynyl, 3-(2'-fluorophenyl)-2-propynyl, 2-hydroxy-2-propynyl, 3-(3-fluorophenyl)-2-propynyl, and 3-methyl-(5-phenyl)-4-pentynyl.
  • alkenyl refers to a monovalent group having at least one double bond (two adjacent SP2 carbon atoms). Depending on the arrangement of the double bond and the substituents (if any), the geometry of the double bond can be in an Entadel (E) or Entumble (Z), cis or trans configuration. Alkenyl includes not only straight chain but also branched chain. Alkenyl is preferably C 2 -C 10 alkenyl, more preferably C 2 -C 6 alkenyl.
  • Specific examples include vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl (including cis and trans), 3-butenyl, pentenyl, 3-methyl-2-butenyl, hexenyl, and the like.
  • aryl refers to a monovalent aromatic hydrocarbon ring or aromatic hydrocarbon ring group. Preferred examples of aryl include C 6 -C 10 aryl. Specific examples of aryl include phenyl and naphthyl (e.g., 1-naphthyl, 2-naphthyl), etc.
  • heteroaryl refers to an aromatic cyclic monovalent group and an aromatic heterocyclic group that contain from 1 to 5 heteroatoms in addition to carbon atoms.
  • the ring may be a single ring or a condensed ring with other rings, and may be partially saturated.
  • the number of atoms constituting the heteroaryl ring is preferably 5 to 10 (5- to 10-membered heteroaryl), and more preferably 5 to 7 (5- to 7-membered heteroaryl).
  • heteroaryl examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzothienyl, benzothiadiazolyl, benzothiazolyl, benzoxazolyl, benzoxadiazolyl, benzimidazolyl, benzotriazolyl, indolyl, isoindolyl, indazolyl, azaindolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, benzodioxolyl,
  • aralkyl refers to a group in which at least one hydrogen atom of an "alkyl” as defined above is substituted with an "aryl” as defined above.
  • aralkyl a C 7 -C 14 aralkyl is preferred, and a C 7 -C 10 aralkyl is more preferred.
  • Specific examples of the aralkyl include benzyl, phenethyl, and 3-phenylpropyl.
  • heteroarylalkyl refers to a group in which at least one hydrogen atom of an "alkyl” as defined above is substituted with a “heteroaryl” as defined above.
  • a 5- to 10-membered heteroaryl C 1 -C 6 alkyl is preferred, and a 5- to 10-membered heteroaryl C 1 -C 2 alkyl is more preferred.
  • heteroarylalkyl examples include 3-thienylmethyl, 4-thiazolylmethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, 2-(2-pyridyl)ethyl, 2-(3-pyridyl)ethyl, 2-(4-pyridyl)ethyl, 2-(6-quinolyl)ethyl, 2-(7-quinolyl)ethyl, 2-(6-indolyl)ethyl, 2-(5-indolyl)ethyl, and 2-(5-benzofuranyl)ethyl.
  • cycloalkyl refers to a saturated or partially saturated cyclic monovalent aliphatic hydrocarbon group, including a monocyclic ring, a bicyclic ring, and a spirocyclic ring.
  • Preferred examples of cycloalkyl include C 3 -C 8 cycloalkyl. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo[2.2.1]heptyl, and spiro[3.3]heptyl.
  • alkoxy refers to an oxy group bonded to an "alkyl” as defined above.
  • Preferred examples of alkoxy include C 1 -C 6 alkoxy.
  • Specific examples of alkoxy include methoxy, ethoxy, 1-propoxy, 2-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, and 3-methylbutoxy.
  • alkoxyalkyl refers to a group in which one or more hydrogen atoms of an "alkyl” as defined above are substituted with an "alkoxy” as defined above.
  • alkoxyalkyl C 1 -C 6 alkoxy C 1 -C 6 alkyl is preferred, and C 1 -C 6 alkoxy C 1 -C 2 alkyl is more preferred.
  • alkoxyalkyl examples include methoxymethyl, ethoxymethyl, 1-propoxymethyl, 2-propoxymethyl, n-butoxymethyl, i-butoxymethyl, s-butoxymethyl, t-butoxymethyl, pentyloxymethyl, 3-methylbutoxymethyl, 1-methoxyethyl, 2-methoxyethyl, 2-ethoxyethyl, and the like.
  • amino means -NH2 in a narrow sense, and -NRR' in a broad sense, where R and R' are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, or R and R' form a ring together with the nitrogen atom to which they are attached.
  • Preferred examples of amino include -NH2 , mono C1 - C6 alkylamino, di C1 - C6 alkylamino, 4- to 8-membered cyclic amino, etc.
  • monoalkylamino refers to a group in which R is hydrogen and R' is an "alkyl” as defined above, among the “amino” groups defined above.
  • Preferred examples of monoalkylamino include mono-C1-C6 alkylamino.
  • Specific examples of monoalkylamino include methylamino, ethylamino, n-propylamino, i-propylamino, n-butylamino, s-butylamino, and t-butylamino.
  • dialkylamino refers to a group in which R and R' are independently “alkyl” as defined above, among “amino” as defined above. Dialkylamino is preferably diC 1 -C 6 alkylamino. Specific examples of dialkylamino include dimethylamino and diethylamino.
  • alkylsulfonylamino refers to a group in which a sulfonyl group is bonded to the "amino" defined above.
  • Preferred examples include C 1 -C 6 alkylsulfonyl-NH-, (C 1 -C 6 alkylsulfonyl-) 2 -N-, and the like.
  • Specific examples of aminoalkylsulfonyl include methylsulfonylamino, ethylsulfonylamino, bis(methylsulfonyl)amino, bis(ethylsulfonyl)amino, and the like.
  • aminocarbonyl refers to a carbonyl group bonded to the previously defined “amino”.
  • aminocarbonyl include -CONH 2 , mono C 1 -C 6 alkylaminocarbonyl, di C 1 -C 6 alkylaminocarbonyl, and 4- to 8-membered cyclic aminocarbonyl.
  • aminocarbonyl examples include -CONH 2 , dimethylaminocarbonyl, 1-azetidinylcarbonyl, 1-pyrrolidinylcarbonyl, 1-piperidinylcarbonyl, 1-piperazinylcarbonyl, 4-morpholinylcarbonyl, 3-oxazolidinylcarbonyl, 1,1-dioxidethiomorpholinyl-4-ylcarbonyl, and 3-oxa-8-azabicyclo[3.2.1]octan-8-ylcarbonyl.
  • amino acid residues that make up a peptide are sometimes simply referred to as "amino acids.”
  • side chain of an amino acid means, in the case of an ⁇ -amino acid, an atomic group other than an amino group and a carboxyl group that is bonded to the carbon ( ⁇ -carbon) to which the amino group and the carboxyl group are bonded.
  • the methyl group of Ala is the side chain of an amino acid.
  • an atomic group bonded to the ⁇ -carbon and/or the ⁇ -carbon other than the amino group bonded to the ⁇ -carbon and the carboxyl group bonded to the ⁇ -carbon can be the side chain of an amino acid.
  • an atomic group bonded to the ⁇ -carbon, the ⁇ -carbon, and/or the ⁇ -carbon other than the amino group bonded to the ⁇ -carbon and the carboxyl group bonded to the ⁇ -carbon can be the side chain of an amino acid.
  • main chain of amino acid means, in the case of ⁇ -amino acids, the chain portion composed of amino group, ⁇ -carbon, and carboxyl group; in the case of ⁇ -amino acids, the chain portion composed of amino group, ⁇ -carbon, ⁇ -carbon, and carboxyl group; and in the case of ⁇ -amino acids, the chain portion composed of amino group, ⁇ -carbon, ⁇ -carbon, and carboxyl group.
  • ⁇ -amino acid backbone means the chain portion composed of amino group, ⁇ -carbon, and carboxyl group
  • ⁇ -amino acid backbone means the chain portion composed of amino group, ⁇ -carbon, ⁇ -carbon, and carboxyl group
  • ⁇ -amino acid backbone means the chain portion composed of amino group, ⁇ -carbon, ⁇ -carbon, and carboxyl group.
  • amino acids having a “ ⁇ -amino acid backbone” as an entire or partial structure may be referred to as "amino acids having a ⁇ -amino acid backbone".
  • aspartic acid is an "amino acid with a ⁇ -amino acid skeleton" because it has a chain portion ( ⁇ -amino acid skeleton) composed of an amino group, a ⁇ -carbon, an ⁇ -carbon, and a carboxyl group.
  • main chain of a peptide refers to a structure in which multiple amino acids are linked by amide bonds.
  • main chain of a cyclic peptide and the “main chain of a cyclic portion” refer to a structure in which multiple amino acids contained in the cyclic portion of a cyclic peptide are linked by amide bonds.
  • the "main chain of a peptide", the “main chain of a cyclic peptide” and the “main chain of a cyclic portion” may contain other bonds such as ester bonds instead of amide bonds.
  • main chain of a cyclic peptide and the “main chain of a cyclic portion” may contain bonds exemplified in this specification as bonds at the cyclization site of a cyclic peptide, or bonds formed by a cyclization reaction of a peptide.
  • N-substituted amino acid means an amino acid in which an amino group contained therein is substituted, that is, an amino acid represented by -NHR (R represents an alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, or cycloalkyl group which may have a substituent, and one or two non-adjacent methylene groups in these groups may be substituted with an oxygen atom, a carbonyl group (-CO-), or a sulfonyl group (-SO 2 -), and the carbon chain bonded to the N atom and the carbon atom at the ⁇ -position may form a ring as in proline).
  • R represents an alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, or cycloalkyl group which may have a substituent, and one or two non-adjacent methylene groups in these groups may be substituted with an oxygen atom, a
  • N-substituted amino acid may be an N-alkyl amino acid, preferably an N-C 1 -C 6 alkyl amino acid, more preferably an N-C 1 -C 4 alkyl amino acid, and most preferably an N-ethyl amino acid or an N-methyl amino acid, but is not limited thereto.
  • N-substituted amino acid as used herein is preferably an N-substituted amino acid in which an amino group contained in the "main chain of the amino acid" is substituted.
  • N-unsubstituted amino acid refers to an amino acid in which the amino group contained therein is not substituted, i.e., an amino acid represented as -NH2 .
  • N-unsubstituted amino acid is preferably exemplified by an N-unsubstituted amino acid in which the amino group contained in the "main chain of the amino acid" is not substituted.
  • the amino acid constituting the cyclic peptide is aspartic acid, or an amino acid in which one or more of the hydrogens on the ⁇ -carbon and the ⁇ -carbon of aspartic acid have been substituted, or an amino acid in which the amino group in the "main chain of the amino acid” has been substituted, the carboxy group bonded to the ⁇ -carbon in the "main chain of the amino acid” may be included in the "main chain of the cyclic peptide".
  • the carboxy group bonded to the ⁇ -carbon in the "side chain of the amino acid” may be included in the "main chain of the cyclic peptide", in which case the " ⁇ -amino acid skeleton" is included in the "main chain of the cyclic peptide”.
  • the "number of amino acids” and “number of amino acid residues” refer to the number of amino acid residues (amino acid units) that make up a peptide, and refer to the number of amino acid units that are generated when the amide bonds, ester bonds, and cyclized bonds that link the amino acids are cleaved.
  • the number of amino acids and the number of amino acid residues in a cyclic peptide consisting of 10 amino acid residues in the cyclic portion and 1 amino acid residue in the linear portion are 11.
  • containing an amino acid in the cyclic portion of the cyclic peptide means that the main chain of the cyclic portion of the cyclic peptide contains an amino acid as a partial structure.
  • saturated heterocycle means a non-aromatic heterocycle that contains 1 to 5 heteroatoms in addition to carbon atoms and does not contain double bonds and/or triple bonds in the ring.
  • the saturated heterocycle may be a monocycle or may form a condensed ring with another ring, for example, an aromatic ring such as a benzene ring.
  • Preferred examples of saturated heterocycles include 4- to 10-membered saturated heterocycles.
  • saturated heterocyclic rings include an azetidine ring, an oxoazetidine ring, an oxetane ring, a tetrahydrofuran ring, a tetrahydropyran ring, a morpholine ring, a thiomorpholine ring, a pyrrolidine ring, a 2-oxopyrrolidine ring, a 4-oxopyrrolidine ring, a piperidine ring, a 4-oxopiperidine ring, a piperazine ring, a pyrazolidine ring, an imidazolidine ring, an oxazolidine ring, an isoxazolidine ring, a thiazolidine ring, an isothiazolidine ring, a thiadiazolidine ring, an oxazolidone ring, a dioxolane ring, a dioxane ring, a thietane
  • the molecular weight of a cyclic peptide or a solvent is expressed in g/mol unless otherwise specified. Furthermore, whether the cyclic peptide crystal is a crystal of the free form of the cyclic peptide, a crystal of a solvate of the cyclic peptide, or a mixture thereof, the "molecular weight of the cyclic peptide" is based on the molecular weight of the free form of the cyclic peptide.
  • the molecular weight (g/mol) of the cyclic peptide according to one embodiment of the present invention may be 1205 or more, 1206 or more, 1207 or more, 1208 or more, 1210 or more, 1220 or more, 1230 or more, 1250 or more, or 1300 or more, and may be 2800 or less, 2500 or less, 2000 or less, 1900 or less, 1800 or less, 1700 or less, or 1600 or less.
  • the molecular weight (g/mol) of the cyclic peptide according to the present invention is preferably 1204 or more and 3000 or less, more preferably 1300 or more and 1600 or less, and most preferably 1400 or more and 1500 or less.
  • the cyclic peptide according to one embodiment of the present invention may include a cyclic portion consisting of 8 to 16 amino acid residues in total, and may have a total of 8 to 20 amino acid residues.
  • the cyclic peptide according to one embodiment of the present invention may include a cyclic portion consisting of 7 to 15 amino acid residues, 8 to 14 amino acid residues, 9 to 13 amino acid residues, 10 to 13 amino acid residues, 11 to 13 amino acid residues, 11 to 12 amino acid residues, or 11 amino acid residues in total, and may have a total of 9 to 18 amino acid residues, 10 to 16 amino acid residues, 10 to 14 amino acid residues, 11 to 14 amino acid residues, 11 to 13 amino acid residues, 11 to 12 amino acid residues, or 11 amino acid residues in total.
  • the cyclic peptide according to the present invention preferably includes a cyclic portion consisting of 8 to 16 amino acid residues, a total of 8 to 20 amino acid residues, more preferably includes a cyclic portion consisting of 11 to 13 amino acid residues, a total of 11 to 14 amino acid residues, and most preferably includes a cyclic portion consisting of 11 amino acid residues in total, and a total of 11 amino acid residues.
  • the cyclic peptide according to one embodiment of the present invention may contain at least 3, 4 or 5 N-substituted amino acid residues, and in another embodiment, may contain at least 5 N-substituted amino acid residues.
  • the cyclic peptide according to one embodiment of the present invention may contain at least 1, 2 or 3 N-unsubstituted amino acid residues, and in another embodiment, may contain at least 3 N-unsubstituted amino acid residues.
  • the cyclic peptide of the present invention preferably contains at least 3 N-substituted amino acid residues, more preferably contains at least 5 N-substituted amino acid residues, and most preferably contains at least 7 N-substituted amino acid residues.
  • the N-substituted amino acid contained in the cyclic peptide according to one embodiment of the present invention may be an N-alkyl amino acid, and in another embodiment, may be an N-methyl amino acid or an N-ethyl amino acid, and in another embodiment, may be an N-methyl amino acid.
  • the N-substituted amino acid contained in the cyclic peptide according to the present invention is preferably an N-alkyl amino acid, more preferably an N-methyl amino acid or an N-ethyl amino acid, and most preferably an N-methyl amino acid.
  • the cyclic peptide according to one embodiment of the present invention has the following characteristics (I), (II) and (III): (I) The peptide has a cyclic portion consisting of a total of 8 to 16 amino acid residues, and a total number of amino acid residues is 8 to 20; (II) containing at least two N-substituted amino acid residues; (III) a molecular weight (g/mol) of 1,204 or more and 3,000 or less; The peptide may be a cyclic peptide having the formula:
  • the cyclic peptide according to one embodiment of the present invention has the following characteristics (I) and (II): (I) The peptide has a cyclic portion consisting of a total of 8 to 16 amino acid residues, and a total number of amino acid residues is 8 to 20; (II) containing at least two N-substituted amino acid residues;
  • the peptide may be a cyclic peptide having the formula:
  • the cyclic peptide according to one embodiment of the present invention may contain at least one ⁇ -amino acid backbone.
  • the cyclic peptide according to one embodiment of the present invention may also contain at least one ⁇ -amino acid backbone in the cyclic portion.
  • a cyclic peptide according to one embodiment of the present invention may include a cyclic portion consisting of a 28-55, 28-49, 31-46, 34-43, 34-40, 34-37, or 34-membered ring.
  • a cyclic peptide according to one embodiment of the present invention may include a cyclic portion consisting of a 34-40-membered ring, and a cyclic peptide according to another embodiment may include a cyclic portion consisting of a 34-membered ring.
  • a cyclic peptide according to one embodiment of the present invention includes a cyclic portion consisting of a 34-membered ring
  • the cyclic portion consisting of the 34-membered ring may be a cyclic peptide consisting of a total of 11 amino acid residues, including 10 ⁇ -amino acid residues and 1 amino acid residue having a ⁇ -amino acid backbone.
  • a cyclic peptide according to one embodiment of the present invention may have the following structure: [wherein P 1 , P 3 , P 5 , P 6 , P 10 and P 11 are C 1 -C 6 alkyl; P 4 is C 1 -C 6 alkyl; or P 4 forms a 4- to 7-membered saturated heterocycle together with the nitrogen atom to which P 4 is bonded, R 4 and the carbon atom to which R 4 is bonded; P 8 is C 1 -C 6 alkyl; or P 8 forms a 4- to 7-membered saturated heterocycle together with the nitrogen atom to which P 8 is bonded, R 8 and the carbon atom to which R 8 is bonded, which 4- to 7-membered saturated heterocycle may be substituted by C 1 -C 6 alkoxy; R 1 , R 2 , R 3 , R 5 , R 7 and R 10 are a hydrogen atom, a C 1 -C 6 alkyl, a C 3 -C 6 cycloalkyl or an
  • P 1 , P 3 , P 5 , P 6 , P 10 and P 11 may be methyl or ethyl.
  • P 4 may be methyl, or may form a 4-membered saturated heterocycle together with the nitrogen atom to which P 4 is bonded, R 4 and the carbon atom to which R 4 is bonded.
  • P 8 may form a 5-membered saturated heterocycle together with the nitrogen atom to which P 8 is bonded, R 8 and the carbon atom to which R 8 is bonded, and the 5-membered saturated heterocycle may be substituted by C 1 -C 6 alkoxy.
  • R 1 and R 2 are C 1 -C 6 alkyl
  • R 3 is a hydrogen atom or C 1 -C 6 alkyl
  • R 4 is a hydrogen atom except when R 4 and P 4 form a 4-7 membered saturated heterocycle
  • R 5 is a C 3 -C 6 cycloalkyl or benzyl which may have a substituent
  • R 7 is a phenylethyl which may have a substituent
  • R 9 forms a 5 membered saturated carbocycle together with Q 9 and the carbon atom to which R 9 and Q 9 are bonded
  • R 10 is a C 1 -C 6 alkyl or C 3 -C 6 cycloalkyl
  • R 11 may be methyl, diC 1 -C 6 alkylaminocarbonyl or 6 membered cyclic aminocarbonyl.
  • the ClogP of a cyclic peptide according to one embodiment of the present invention can be calculated in accordance with the principles set out in the CLOGP Reference Manual Daylight Version 4.9 (Release Date: August 1, 2011, https://www.daylight.com/dayhtml/doc/clogp/).
  • a method for calculating ClogP the ClogP of Daylight Chemical Information Systems, Inc.
  • One example is the calculation using Daylight Version 4.95 (release date: August 1, 2011, ClogP algorithm version 5.4, database version 28, https://www.daylight.com/dayhtml/doc/release_notes/index.html).
  • the ClogP of the cyclic peptide according to one embodiment of the present invention may be 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more, and may be 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, or 18 or less.
  • Examples of the range of ClogP of the cyclic peptide according to one embodiment of the present invention include 5 or more and 23 or less, 6 or more and 21 or less, 7 or more and 20 or less, 8 or more and 19 or less, 9 or more and 18 or less, 10 or more and 17 or less, 11 or more and 16.5 or less, and 11.2 or more and 16.1 or less.
  • the ClogP of the cyclic peptide according to one embodiment of the present invention may be 4 or more and 25 or less, and the ClogP of the cyclic peptide according to another embodiment of the present invention may be 9 or more and 18 or less.
  • the ClogP of the cyclic peptide according to one embodiment of the present invention may be greater than the ClogP of cyclosporine A (ClogP: 14.36).
  • the ClogP of the cyclic peptide of the present invention is preferably 5 or more and 23 or less, more preferably 9 or more and 18 or less, and most preferably 11.2 or more and 16.1 or less.
  • the cyclic peptide according to one embodiment of the present invention preferably has a ClogP/number of amino acid residues of 1.0 or more.
  • the ClogP/number of amino acid residues is a value calculated by dividing the ClogP of a cyclic peptide by the number of amino acid residues contained in the cyclic peptide. For example, when the ClogP of a cyclic peptide is 14.0 and the number of amino acid residues contained in the cyclic peptide is 7, the ClogP/number of amino acid residues of the cyclic peptide is calculated to be 2.0.
  • the ClogP/number of amino acid residues of the cyclic peptide according to one embodiment of the present invention is preferably 0.3 or more, more preferably 0.5 or more, and most preferably 0.8 or more.
  • the upper limit of the ClogP/number of amino acid residues of the cyclic peptide according to one embodiment of the present invention is preferably 2.3 or less, more preferably 1.9 or less, and most preferably 1.6 or less.
  • Examples of the range of the ClogP/number of amino acid residues of the cyclic peptide according to one embodiment of the present invention include 0.3 to 2.3, 0.4 to 2.3, 0.5 to 1.9, 0.7 to 1.8, and 0.8 to 1.6.
  • the ClogP/number of amino acid residues of the cyclic peptide according to one embodiment of the present invention may be 0.8 to 1.6.
  • the solubility of a cyclic peptide according to one embodiment of the present invention in 50 mM phosphate buffer (pH 6.5) can be measured by a general method. For example, 50 mM phosphate buffer (PPB, pH 6.5) is added to a freeze-dried compound powder, and after shaking (1800 rpm, 22-24 hours), the mixture is filtered and the compound concentration of the filtrate is measured by LC/MS/MS. The solubility ( ⁇ g/mL) can be calculated from the measured compound concentration. Note that "solubility" refers to the solubility under conditions of 25°C and 1 atmosphere.
  • the solubility of the cyclic peptide according to one embodiment of the present invention in 50 mM phosphate buffer (pH 6.5) may be 1200 mg/mL or less, 800 mg/mL or less, 600 mg/mL or less, 300 mg/mL or less, 200 mg/mL or less, 100 mg/mL or less, 50 mg/mL or less, 25 mg/mL or less, 10 mg/mL or less, 5.0 mg/mL or less, or 2.6 mg/mL or less, and may be 0.8 mg/mL or more, 0.9 mg/mL or more, 1.0 mg/mL or more, or 1.1 mg/mL or more.
  • the solubility of the cyclic peptide according to one embodiment in 50 mM phosphate buffer (pH 6.5) may be 0.8 mg/mL or more, and in another embodiment, may be 1.1 mg/mL or more.
  • a specific example of a cyclic peptide having a solubility of 10 mg/mL or less in 50 mM phosphate buffer (pH 6.5) according to one embodiment of the present invention is cyclosporine A.
  • the crystal of the cyclic peptide according to one embodiment of the present invention may have one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • the crystal of the cyclic peptide according to another embodiment of the present invention may have two or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • the crystal of the cyclic peptide according to another embodiment of the present invention may have three or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation.
  • Powder X-ray diffraction using CuK ⁇ radiation can be measured, for example, under the following conditions: Specific examples include a powder X-ray diffraction apparatus such as D8 Discover or 2D V ⁇ NTEC-500 solid state detector (manufactured by Bruker), CuK ⁇ as the radiation source, a tube voltage/current of 40 kV/40 mA or 50 kV/1000 ⁇ A, a measurement range of 5 to 31°, and an exposure time of 40 to 600 seconds.
  • a powder X-ray diffraction apparatus such as D8 Discover or 2D V ⁇ NTEC-500 solid state detector (manufactured by Bruker)
  • CuK ⁇ as the radiation source
  • a tube voltage/current of 40 kV/40 mA or 50 kV/1000 ⁇ A a measurement range of 5 to 31°
  • an exposure time 40 to 600 seconds.
  • the crystal of the cyclic peptide according to one embodiment of the present invention may be a crystal having one or more diffraction peaks in powder X-ray diffraction using CuK ⁇ radiation, or having polarized light when observed using a polarizing microscope.
  • the cyclic peptide according to one embodiment of the present invention may be a cyclic peptide other than cyclosporine A, and the cyclic peptide according to another embodiment is (3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-cyclopentyl-3-[2-[3,5-difluoro-4-(trifluoromethyl)phenyl]ethyl]-10-ethyl-23-isobutyl-N,N,7,17,18,24,28,31-octamethyl-20-[(1s)-1-methylpropyl]-2,5,8,11,16,19,22,25,29,32,35-undecaoxo-9-(p-tolylmethyl)spiro[1,4,7,10,15,18,21,24,28,31,34-undecazatricyclo[34.3.0.0 12,15 ]nonatriacontane-33,1'-cycl
  • cyclic peptide of the present invention is (3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-cyclopentyl-3-[2-[3,5-difluoro-4-(trifluoromethyl)phenyl]ethyl]-10-ethyl-23-isobutyl-N,N,7,17,18,24,28,31-octamethyl-20-[(1s)-1-methylpropyl]-2,5,8,11,16,19,22,25,29,32,35-undecaoxo-9-(p-tolylmethyl)spiro[1,4,7,10,15,18,21,24,28,31,34-undecazatricyclo[34.3.0.0 12,15 ]nonatriacontane-33,1'-cyclopentane]-27-carboxamide.
  • amide solvent refers to a solvent containing an amide bond in the molecule.
  • Examples of “amide solvent” or “amide solvent having a molecular weight of 18 to 170" in this specification include formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
  • the "amide solvent” or "amide solvent having a molecular weight of 18 to 170" may be one or more selected from the group consisting of formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone, and is preferably formamide, N-methylformamide, N,N-dimethylformamide, 2-pyrrolidone, or N-methylpyrrolidone, more preferably formamide or N,N-dimethylformamide, and most preferably formamide.
  • sulfoxide solvent means a solvent that corresponds to sulfoxide.
  • sulfoxide solvent or “sulfoxide solvent having a molecular weight of 18 to 170” can include, for example, dimethyl sulfoxide, phenylmethyl sulfoxide, and diethyl sulfoxide.
  • the "sulfoxide solvent” or “sulfoxide solvent having a molecular weight of 18 to 170" can be one or more selected from the group consisting of dimethyl sulfoxide and diethyl sulfoxide, and is preferably dimethyl sulfoxide, phenylmethyl sulfoxide, or diethyl sulfoxide, more preferably dimethyl sulfoxide or diethyl sulfoxide, and most preferably dimethyl sulfoxide.
  • hydrocarbon solvent means a solvent consisting only of carbon and hydrogen atoms.
  • aromatic hydrocarbon solvent means a hydrocarbon solvent having one or more aromatic rings in the molecule.
  • aromatic hydrocarbon solvent as used herein is preferably a solvent having one or more benzene rings in the molecule, more preferably a solvent having one benzene ring in the molecule.
  • aromatic hydrocarbon solvent or “aromatic hydrocarbon solvent having a molecular weight of 18 or more and 170 or less” as used herein include benzene, toluene, xylene, ethylbenzene, tetralin, and cumene.
  • the "aromatic hydrocarbon solvent” or “aromatic hydrocarbon solvent having a molecular weight of 170 or less” may be one or more selected from the group consisting of benzene, toluene, xylene, ethylbenzene, tetralin, and cumene, preferably one or more selected from the group consisting of toluene, xylene, ethylbenzene, tetralin, and cumene, more preferably toluene, xylene, tetralin, or cumene, and most preferably toluene, tetralin, or cumene.
  • halogenated solvent refers to a solvent having one or more halogen atoms in the molecule.
  • halogenated solvent is preferably a solvent having one or more chlorine atoms and/or bromine atoms in the molecule, and more preferably a solvent having one or more chlorine atoms in the molecule.
  • Examples of “halogenated solvent” or “halogenated solvent with a molecular weight of 18 or more and 170 or less” in this specification include dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, bromobenzene, and carbon tetrachloride.
  • the "halogen-based solvent” or “halogen-based solvent having a molecular weight of 170 or less” may be one or more selected from the group consisting of dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, bromobenzene, and carbon tetrachloride, preferably one or more selected from the group consisting of dichloromethane, chloroform, 1,2-dichloroethane, and chlorobenzene, more preferably dichloromethane, chloroform, 1,2-dichloroethane, or chlorobenzene, and most preferably dichloromethane or chlorobenzene.
  • alcohol-based solvent refers to a solvent that has one or more hydroxyl groups bonded to a carbon atom in the molecule.
  • examples of “alcohol-based solvents” or “alcohol-based solvents with a molecular weight of 18 to 170" in this specification include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-pentanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methoxyethanol, 2-ethoxyethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, and benzyl alcohol.
  • the "alcohol-based solvent” or “alcohol-based solvent having a molecular weight of 18 to 170” may be one or more selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-pentanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methoxyethanol, 2-ethoxyethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, and benzyl alcohol, preferably one or more selected from the group consisting of methanol, ethanol, 1-propanol, isopropanol, and n-butanol, more preferably methanol, ethanol, 1-propanol, isopropanol, or n-butanol, and most preferably ethanol.
  • ether-based solvent refers to a solvent having one or more ether bonds in the molecule.
  • ether-based solvents or “ether-based solvents having a molecular weight of 18 to 170" in this specification include diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentyl methyl ether, 4-methyltetrahydropyran, 1,3-dioxolane, 1,4-dioxane, 1,2-dimethoxyethane, diisopropyl ether, anisole, and t-butyl methyl ether.
  • the "ether-based solvent” or “ether-based solvent having a molecular weight of 18 to 170" may be one or more selected from the group consisting of diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentyl methyl ether, 4-methyltetrahydropyran, 1,3-dioxolane, 1,4-dioxane, 1,2-dimethoxyethane, diisopropyl ether, anisole, and t-butyl methyl ether, preferably one or more selected from the group consisting of tetrahydrofuran, 1,4-dioxane, diisopropyl ether, anisole, and t-butyl methyl ether, more preferably tetrahydrofuran, 1,4-dioxane, diisopropyl ether, anisole, or t-butyl methyl ether, and most preferably 1,4-
  • ester solvent refers to a solvent having one or more ester bonds in the molecule.
  • ester solvent or “ester solvent having a molecular weight of 18 to 170” in this specification include ethyl formate, methyl acetate, ethyl acetate, methyl propionate, n-butyl acetate, propyl acetate, isopropyl acetate, isobutyl acetate, pentyl acetate, and ⁇ -valerolactone.
  • ester solvent or “ester solvent having a molecular weight of 18 to 170” may be one or more selected from the group consisting of ethyl formate, methyl acetate, ethyl acetate, methyl propionate, n-butyl acetate, propyl acetate, isopropyl acetate, isobutyl acetate, pentyl acetate, and ⁇ -valerolactone, preferably one or more selected from the group consisting of ethyl acetate, isopropyl acetate, and n-butyl acetate, more preferably ethyl acetate, isopropyl acetate, or n-butyl acetate, and most preferably ethyl acetate or n-butyl acetate.
  • nitrile solvent means a solvent having one or more cyano groups bonded to a carbon atom in the molecule.
  • examples of “nitrile solvent” or “nitrile solvent having a molecular weight of 18 to 170" in this specification include acetonitrile, benzonitrile, and propionitrile.
  • the "nitrile solvent” or “nitrile solvent having a molecular weight of 18 to 170" may be one or more types selected from the group consisting of acetonitrile and propionitrile, preferably one or more types selected from the group consisting of acetonitrile, benzonitrile, and propionitrile, more preferably acetonitrile, benzonitrile, or propionitrile, and most preferably acetonitrile.
  • ketone solvent refers to a solvent represented by R 1 -C( ⁇ O)-R 2 , in which R 1 and R 2 are each independently an alkyl group, an aryl group, or a heteroaryl group, or R 1 and R 2 together form an alkylene group.
  • examples of the "ketone solvent” or “ketone solvent having a molecular weight of 18 or more and 170 or less” in this specification include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl butyl ketone, cyclohexanone, diethyl ketone, cyclopentanone, 3-acetylpyridine, and the like.
  • the "ketone solvent” or the “ketone solvent having a molecular weight of 18 or more and 170 or less” may be one or more selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl butyl ketone, cyclohexanone, diethyl ketone, cyclopentanone, and 3-acetylpyridine, preferably one or more selected from the group consisting of acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, and 3-acetylpyridine, more preferably acetone, methyl ethyl ketone, cyclohexanone, or methyl isobutyl ketone, and most preferably acetone or methyl ethyl ketone.
  • aliphatic hydrocarbon solvent means a hydrocarbon solvent that does not have an aromatic ring in the molecule.
  • aliphatic hydrocarbon solvent or “aliphatic hydrocarbon solvent having a molecular weight of 18 to 170” can include n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane, and methylcyclohexane.
  • aliphatic hydrocarbon solvent or "aliphatic hydrocarbon solvent having a molecular weight of 18 to 170” may be one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane, and methylcyclohexane, preferably one or more selected from the group consisting of n-heptane, cyclohexane, and methylcyclohexane, more preferably n-heptane, cyclohexane, or methylcyclohexane, and most preferably n-heptane or cyclohexane.
  • water-soluble organic solvent means an organic solvent that is miscible with water in any ratio.
  • examples of the "water-soluble organic solvent” as used herein include alcohol-based solvents, amide-based solvents, nitrile-based solvents, and sulfoxide-based solvents.
  • the "water-soluble organic solvent” in one embodiment of the present invention may be an alcohol-based solvent, an amide-based solvent, a nitrile-based solvent, or a sulfoxide-based solvent, preferably an alcohol-based solvent or a sulfoxide-based solvent, more preferably methanol, ethanol, 1-propanol, 2-propanol, or dimethyl sulfoxide, and most preferably ethanol or dimethyl sulfoxide.
  • the "PEG-based solvent” may be diglyme, triglyme, tetraglyme, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, or polyethylene glycol mono fatty acid ester.
  • the "PEG-based solvent” may be polyethylene glycol, in which case the number average molecular weight of the polyethylene glycol may be 150 to 5000, preferably 360 to 440, 540 to 660, 900 to 1100, or 1800 to 2200, and the polyethylene glycol may be PEG 400, PEG 600, PEG 1000, or PEG 2000.
  • the "PEG-based solvent” may be polyethylene glycol mono-fatty acid ester, in which case the polyethylene glycol mono-fatty acid ester may be polyethylene glycol monostearate or polyethylene glycol monolaurate.
  • the "PEG-based solvent” in the present invention is preferably diglyme, triglyme, tetraglyme, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, or polyethylene glycol mono-fatty acid ester, more preferably polyethylene glycol or polyethylene glycol mono-fatty acid ester, and most preferably polyethylene glycol mono-fatty acid ester.
  • One aspect of the present disclosure is a method for producing crystals of a cyclic peptide, comprising the step of contacting the cyclic peptide with a solvent.
  • the solvent in the production method is the following (1), (2), or (3): (1) (i) a solvent having a molecular weight of 18 to 170, or (ii) a mixed solvent containing two or more solvents having a molecular weight of 18 to 170; (2) Water containing 0.01 to 30 wt/v % of a surfactant and 5 to 50 v/v % of a water-soluble organic solvent based on the total amount of the solvent; (3) (i) a PEG-based solvent, or (ii) a mixed solvent containing one or more selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water, and a PEG-based solvent;
  • the solvent may be any solvent selected from the group consisting of:
  • the solvent in the manufacturing method according to one aspect of the present disclosure may be (i) a solvent having a molecular weight of 18 to 170 or (ii) a mixed solvent containing two or more solvents having a molecular weight of 18 to 170.
  • the solvent when the solvent is (i) a solvent having a molecular weight of 18 to 170 or (ii) a mixed solvent containing two or more solvents having a molecular weight of 18 to 170, the solvent may be selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, ketone-based solvents, aliphatic hydrocarbon-based solvents, ethylene glycol, and water, or may be selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, and ketone-based solvents, preferably selected from the group consisting of
  • the solvent in the manufacturing method of one aspect of the present disclosure may be a solvent (A) having a molecular weight of 18 to 170, or a mixed solvent of a solvent (A) having a molecular weight of 18 to 170 and a solvent (B) having a molecular weight of 18 to 170, or in another embodiment, may be solvent (A) or a mixed solvent containing solvent (A) and solvent (B).
  • the solvent (A) may be one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, alcohol-based solvents, ether-based solvents, ester-based solvents, nitrile-based solvents, and ketone-based solvents
  • the solvent (B) may be one or more selected from the group consisting of aliphatic hydrocarbon-based solvents, ethylene glycol, and water.
  • the solvent (A) may be selected from the group consisting of amide solvents, sulfoxide solvents, aromatic hydrocarbon solvents, halogen solvents, alcohol solvents, ether solvents, ester solvents, nitrile solvents, and ketone solvents
  • the solvent (B) may be selected from the group consisting of aliphatic hydrocarbon solvents, ethylene glycol, and water.
  • the solvent (A) may be, for example, one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, and ester-based solvents, may be one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, and halogen-based solvents, may be one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, and halogen-based solvents, may be an amide-based solvent, may be a sulfoxide-based solvent, may be an aromatic hydrocarbon-based solvent, may be a halogen-based solvent, may be an alcohol-based solvent, may be an ether-based solvent, may be an ester-based solvent, may be a nitrile-based solvent, or may be a ketone-based solvent.
  • the solvent (A) is preferably one or more selected from the group consisting of amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, and ester-based solvents, more preferably amide-based solvents, sulfoxide-based solvents, aromatic hydrocarbon-based solvents, or halogen-based solvents, and most preferably amide-based solvents, sulfoxide-based solvents, or aromatic hydrocarbon-based solvents.
  • the solvent (B) may be, for example, one or more solvents selected from the group consisting of aliphatic hydrocarbon solvents, ethylene glycol, and water, or may be an aliphatic hydrocarbon solvent, ethylene glycol, or water, or may be an aliphatic hydrocarbon solvent, or may be water.
  • the solvent (B) is preferably one or more solvents selected from the group consisting of aliphatic hydrocarbon solvents, ethylene glycol, and water, more preferably an aliphatic hydrocarbon solvent, ethylene glycol, or water, and most preferably n-heptane, cyclohexane, or water.
  • the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent may be 1:0 to 1:40, 1:0 to 1:30, 1:0 to 1:20, 1:0 to 1:10, 1:0 to 1:7, or 1:0 to 1:5, 1:0 to 1:4, 10:1 to 1:40, 5:1 to 1:30, 3:1 to 1:20, 2:1 to 1:10, 1:1 to 1:7, or 1:2 to 1:5, or 1:2 to 1:4.
  • the volume ratio (v/v) of the solvent (A) to the solvent (B) in the solvent is preferably 1:0 to 1:4, more preferably 1:1 to 1:4, and most preferably 1:2 to 1:4.
  • the solvent (A) in the solvent according to the manufacturing method of one aspect of the present disclosure may be a solvent having a molecular weight of 18 to 170, and may be a solvent having a molecular weight of 18 to 160, 18 to 150, 18 to 140, or 32 to 135.
  • the solvent (A) preferably has a molecular weight of 18 to 150, more preferably has a molecular weight of 18 to 140, and most preferably has a molecular weight of 32 to 135.
  • the solvent (B) in the solvent according to the manufacturing method of one aspect of the present disclosure may be a solvent having a molecular weight of 18 to 170, and may be a solvent having a molecular weight of 18 to 160, 18 to 135, 18 to 120, or 18 to 105.
  • the solvent (B) is preferably a solvent having a molecular weight of 18 to 135, more preferably a solvent having a molecular weight of 18 to 120, and most preferably a solvent having a molecular weight of 18 to 105.
  • the melting points of the solvent (A) and the solvent (B) in the manufacturing method according to one aspect of the present disclosure may be 25°C or lower.
  • the solvent in the manufacturing method of one aspect of the present disclosure may be water containing 0.01 to 30 wt/v % of a surfactant and 5 to 50 v/v % of a water-soluble organic solvent based on the total amount of the solvent.
  • the surfactant when the solvent is water containing 0.01 to 30 wt/v % of a surfactant and 5 to 50 v/v % of a water-soluble organic solvent based on the total amount of the solvent, the surfactant may be, in one embodiment, one or more selected from the group consisting of cationic surfactants, anionic surfactants, amphoteric surfactants and nonionic surfactants, and in another embodiment, may be one or more selected from the group consisting of primary amine salts, alkyl trimethyl ammonium salts, alkyl pyridinium salts, alkyl polyoxyethylene amines, fatty acid salts, rosin salts, alkyl sulfates, alkyl polyoxyethylene sulfates, alkyl naphthalene sulfates, lignin sulfates, alkyl phosphates, N-alkyl ⁇ -aminopropionic acid, N-alkyl
  • it is sodium lauryl sulfate, 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100 (registered trademark)), Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)), or polyoxyethylene sorbitan monolaurate (Tween (registered trademark)), and most preferably, it is Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)).
  • the surfactant may be an ionic surfactant or a nonionic surfactant in one embodiment, an ionic surfactant in another embodiment, and a nonionic surfactant in yet another embodiment.
  • the ionic surfactant may be one or more selected from the group consisting of cationic surfactants, anionic surfactants, and amphoteric surfactants, and in another embodiment, may be one or more selected from the group consisting of primary amine salts, alkyl trimethylammonium salts, alkyl pyridinium salts, alkyl polyoxyethylene amines, fatty acid salts, rosin acid salts, alkyl sulfates, alkyl polyoxyethylene sulfates, alkyl naphthalene sulfates, lignin sulfates, alkyl phosphates, N-alkyl ⁇ -aminopropionic acids, N-alkyl sulfobetaines, N-alkyl hydroxysulfobetaines, and lecithins, and is preferably an alkyl sulfate, more preferably lauryl sulfate, and most preferably sodium la
  • the nonionic surfactant may be one or more selected from the group consisting of alkyl polyoxyethylene ethers, alkylaryl polyoxyethylene ethers, polyoxyethylene fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitan fatty acid esters, sucrose fatty acid esters, polyglycerin fatty acid esters, and polyoxyethylene sorbitan fatty acid esters, and is preferably selected from the group consisting of alkylaryl polyoxyethylene ethers, polyoxyethylene glycerin fatty acid esters, and polyoxyethylene sorbitan fatty acid esters.
  • It may be one or more selected from the group consisting of 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100 (registered trademark)), Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)) and polyoxyethylene sorbitan monolaurate (Tween (registered trademark)), and is more preferably one or more selected from the group consisting of Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)).
  • the solvent in the manufacturing method of one aspect of the present disclosure is water containing 0.01 to 30 wt/v% of a surfactant and 5 to 50 v/v% of a water-soluble organic solvent based on the total amount of the solvent
  • the content of the surfactant is 0.02 to 20 wt/v%, 0.05 to 15 wt/v%, 0.1 to 10 wt/v%, 0.12 to 8 wt/v%, 0.15 to 5 wt/v%, or 0.18 to 3 wt/v% based on the total amount of the solvent
  • the content of the water-soluble organic solvent is 5 to 40 v/v%, 5 to 30 v/v%, 5 to 25 v/v%, 8 to 20 v/v%, or 10 to 15 v/v% based on the total amount of the solvent.
  • the content of the surfactant is 0.01 to 30 wt/v% based on the total amount of the solvent, and the content of the water-soluble organic solvent is 5 to 40 v/v% based on the total amount of the solvent, more preferably, the content of the surfactant is 0.05 to 15 wt/v% based on the total amount of the solvent, and the content of the water-soluble organic solvent is 5 to 30 v/v% based on the total amount of the solvent, and most preferably, the content of the surfactant is 0.1 to 10 wt/v% based on the total amount of the solvent, and the content of the water-soluble organic solvent is 5 to 25 v/v% based on the total amount of the solvent.
  • the solvent in the manufacturing method according to one aspect of the present disclosure may be (i) a PEG-based solvent, or (ii) a mixed solvent containing a PEG-based solvent and one or more solvents selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water.
  • the solvent in the manufacturing method of one aspect of the present disclosure may be a PEG-based solvent.
  • the solvent in the manufacturing method according to one aspect of the present disclosure may be a mixed solvent of one or more solvents selected from the group consisting of alcohol-based solvents, aliphatic hydrocarbon-based solvents, and water, and a PEG-based solvent.
  • the "one or more selected from the group consisting of alcohol solvents, aliphatic hydrocarbon solvents, and water” may be, for example, one or more selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-pentanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methoxyethanol, 2-ethoxyethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, benzyl alcohol, n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane, and water, and preferably methanol.
  • It is one or more selected from the group consisting of alcohol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-pentanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methoxyethanol, 2-ethoxyethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, benzyl alcohol, n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, methylcycloheptane and water, more preferably one or more selected from the group consisting of 2-propanol, n-heptane and water, and most preferably 2-propanol, n-heptane or water.
  • the manufacturing method according to one aspect of the present disclosure can be carried out, for example, by the following method.
  • the cyclic peptide is dissolved in a solvent, and the solution is brought into contact with the solvent by shaking and stirring for a predetermined period of time under a predetermined temperature condition, thereby producing crystals of the cyclic peptide.
  • the concentration of the cyclic peptide may be 1 mg to 2000 mg/mL, or may be 5 mg to 1500 mg/mL, 10 mg to 1000 mg/mL, 10 mg to 500 mg/mL, 10 mg to 100 mg/mL, 10 mg to 50 mg/mL, 100 mg to 400 mg/mL, 100 mg to 200 mg/mL, or 500 mg to 1000 mg/mL.
  • the cyclic peptide used in the step of contacting the cyclic peptide with a solvent included in the manufacturing method of one aspect of the present disclosure may be a lyophilized product, for example, a product lyophilized from a dimethyl sulfoxide solution.
  • the amount of the cyclic peptide used in the step of contacting the cyclic peptide with a solvent included in the manufacturing method of one aspect of the present disclosure may be 0.5 mg to 200 kg in one embodiment, 1 mg to 1 g in another embodiment, and 0 g to 200 kg, 100 g to 100 kg, 0.5 mg to 10 g, 1 mg to 1 g, 1 mg to 100 mg, 1 mg to 10 mg, or 1 mg to 5 mg in yet another embodiment.
  • the step of contacting the cyclic peptide with the solvent does not include adding a seed crystal.
  • the step of contacting the cyclic peptide with the solvent includes adding a seed crystal.
  • the seed crystal may be a crystal of a cyclic peptide produced by the manufacturing method of one aspect of the present disclosure, or may be a crystal of a cyclic peptide produced by another method.
  • a filtration step is further included after the step of contacting the cyclic peptide with a solvent.
  • the filtration step is a step of filtering the solvent containing the cyclic peptide crystals and collecting the crystals by solid-liquid separation.
  • the filtration step can be performed, for example, by filtering the solvent containing the cyclic peptide crystals with filter paper or the like and collecting the cyclic peptide crystals by filtration.
  • the step of contacting the cyclic peptide with a solvent in one aspect of the manufacturing method of the present disclosure may be carried out at a temperature of -10°C to 120°C for 30 minutes to 12 weeks in one embodiment, and may be carried out at a constant temperature of 20°C to 90°C for 12 hours to 7 days in a preferred embodiment.
  • the step of contacting the cyclic peptide with a solvent according to the manufacturing method of one aspect of the present disclosure may be performed at a constant temperature of 0°C to 110°C, 10°C to 100°C, 15°C to 90°C, or 20°C to 80°C in one embodiment, or may be performed by repeatedly heating and cooling 10 times or more, 20 times or more, or 30 times or more, 1000 times or less, 500 times or less, or 100 times or less, between a lower limit temperature of 10°C, 20°C, 30°C, 40°C, 45°C, 50°C, or 55°C and an upper limit temperature of 100°C, 90°C, 85°C, 80°C, 75°C, 70°C, or 60°C, for 1 hour to 6 weeks, 2 hours to 4 weeks, 4 hours to 2 weeks, or 6 hours to 7 days, and in a preferred embodiment, the step of heating and cooling may be performed 30 times or more, 100 times or less, between a lower limit temperature of 50°C and an upper limit temperature
  • cyclic peptide crystals have been produced by the production method of one aspect of the present disclosure can be confirmed, for example, by the presence of a diffraction peak in powder X-ray diffraction using CuK ⁇ radiation and by observing the polarized light and external shape using a polarizing microscope.
  • the crystals to be screened may include, in one embodiment, crystals produced using a solvent containing formamide, in a preferred embodiment, crystals produced using a solvent containing formamide and a solvent containing dimethyl sulfoxide, and in a more preferred embodiment, crystals produced using a solvent containing formamide, a solvent containing dimethyl sulfoxide, a solvent containing toluene, and a solvent containing dichloromethane.
  • the crystals to be screened may include, in one embodiment, crystals produced using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)), in another embodiment, crystals produced using a solvent containing polyethylene glycol mono fatty acid ester, in yet another embodiment, crystals produced using a solvent containing polyethylene glycol, in a preferred embodiment, crystals produced using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)), a solvent containing polyethylene glycol mono fatty acid ester, and a solvent containing polyethylene glycol, in another preferred embodiment, crystals produced using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)), a solvent containing polyethylene glycol mono fatty acid ester, and a solvent containing formamide.
  • a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (registered trademark))
  • the crystallization method to be screened may, in one embodiment, include a crystallization method using a solvent containing formamide, in a preferred embodiment, include a crystallization method using a solvent containing formamide and a solvent containing dimethyl sulfoxide, and in a more preferred embodiment, include a crystallization method using a solvent containing formamide, a solvent containing dimethyl sulfoxide, a solvent containing toluene, and a solvent containing dichloromethane.
  • the crystallization method to be screened may, in one embodiment, include a crystallization method using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)), in another embodiment, include a crystallization method using a solvent containing polyethylene glycol mono fatty acid ester, and in yet another embodiment, include a crystallization method using a solvent containing polyethylene glycol, in a preferred embodiment, include a crystallization method using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)), a solvent containing polyethylene glycol mono fatty acid ester, and a solvent containing polyethylene glycol, and in another preferred embodiment, include a crystallization method using a solvent containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor E (registered trademark) L), a solvent containing polyethylene glycol mono fatty acid ester, and a solvent containing formamide.
  • Cremophor E registered trademark
  • 0.5 mg to 10 mg of the cyclic peptide may be used per condition.
  • the number of crystals or crystallization methods to be screened in the method for screening crystallization methods for the above-mentioned cyclic peptide may be 2 or more, 5 or more, 10 or more, 15 or more, or 20 or more.
  • the step of contacting the cyclic peptide with a solvent included in the method for screening the crystallization method of the cyclic peptide may not include adding seed crystals.
  • Another aspect of the present disclosure is a method for increasing the probability of generating cyclic peptide crystals, the method including a step of producing cyclic peptide crystals by a method for producing cyclic peptide crystals according to one aspect of the present disclosure.
  • the solvent may be a solvent selected from the group consisting of amide solvents, sulfoxide solvents, aromatic hydrocarbon solvents, halogenated solvents, polyoxyethylene glycerin fatty acid esters, and polyethylene glycol mono fatty acid esters.
  • the solvent may be an amide solvent, and in a preferred embodiment, the solvent may be formamide.
  • the solvent may be a sulfoxide solvent, and in a preferred embodiment, the solvent may be dimethyl sulfoxide.
  • the solvent may be an aromatic hydrocarbon solvent, and in a preferred embodiment, the solvent may be toluene, tetralin, or cumene. In another preferred embodiment, the solvent may be Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL®), and in yet another preferred embodiment, the solvent may be polyethylene glycol mono fatty acid esters, and in yet another preferred embodiment, the solvent may be polyethylene glycol.
  • Another aspect of the present disclosure is a screening kit for producing cyclic peptide crystals, which produces cyclic peptide crystals by using a solvent in the production of cyclic peptide crystals according to one aspect of the present disclosure.
  • Another aspect of the present disclosure is a method for purifying a cyclic peptide, the method including a step of producing a crystal of a cyclic peptide by a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure, and a step of collecting the crystal by solid-liquid separation.
  • the step of collecting the crystal by solid-liquid separation may be, for example, a filtration step.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of the cyclic peptide containing formamide.
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure.
  • the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a crystal of a formamide solvate of the cyclic peptide.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of the cyclic peptide containing dimethyl sulfoxide.
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure.
  • the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a crystal of a dimethyl sulfoxide solvate of the cyclic peptide.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of the cyclic peptide containing an aromatic hydrocarbon solvent.
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure.
  • the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a crystal of an aromatic hydrocarbon solvate of the cyclic peptide.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of a cyclic peptide containing toluene, tetralin, or cumene.
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure.
  • the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a crystal of a toluene solvate, tetralin solvate, or cumene solvate of the cyclic peptide.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of the cyclic peptide containing Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)).
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure. That is, the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a hydrate of the cyclic peptide, or may be a crystal of a Polyoxyl 35 Hydrogenated Castor Oil (Cremophor EL (registered trademark)) solvate of the cyclic peptide.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of a cyclic peptide containing a polyethylene glycol mono fatty acid ester.
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure. That is, the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a hydrate of the cyclic peptide, or may be a crystal of a polyethylene glycol mono fatty acid ester solvate of the cyclic peptide.
  • Another aspect of the present disclosure is a method for producing a cyclic peptide, comprising the step of producing a crystal of the cyclic peptide containing polyethylene glycol.
  • the production method may be a method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure. That is, the crystal produced by the method for producing a crystal of a cyclic peptide according to one aspect of the present disclosure may be a hydrate of the cyclic peptide, or a crystal of a polyethylene glycol solvate of the cyclic peptide.
  • Example 1 Synthesis of cyclic peptides
  • the cyclic peptides CP01 to CP08 shown in Table 1 (also simply referred to as compounds CP01 to CP08) were synthesized in the same manner as described in WO 2013/100132, WO 2018/225864, or WO 2021/90855, and the final product was obtained as a dry product.
  • compound 2118 in WO 2021/90855 corresponds to compound CP01
  • compound 1787 corresponds to compound CP02
  • compound 926 corresponds to compound CP03
  • compound 1147 corresponds to compound CP04
  • compound 1217 corresponds to compound CP05
  • compound 1201 corresponds to compound CP06
  • compound 301 corresponds to compound CP07
  • compound 640 corresponds to compound CP08.
  • Table 1 shows the structural formulas of compounds CP01 to CP08.
  • the molecular weights of compounds CP01 to CP08 are as follows: Compound CP01: 1443.8 Compound CP02: 1454.2 Compound CP03: 1456.2 Compound CP04: 1478.2 Compound CP05: 1437.7 Compound CP06: 1459.7 Compound CP07: 1451.1 Compound CP08: 1463.1
  • Example 2 Production of cyclic peptide crystals using a solvent having a molecular weight of 18 to 170, or a mixed solvent of two or more of these (i) A cyclic peptide crystal was produced by a method including a step of contacting with a solvent having a molecular weight of 18 to 170, or (ii) a mixed solvent containing two or more solvents having a molecular weight of 18 to 170. Note that no seed crystals were used in the step of contacting with the solvent in the following production. In the following examples, % (percent) represents volume % (v/v%).
  • Example 2-1-1 Compound CP01 (136.7 mg) was dissolved in dimethyl sulfoxide (0.684 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A water/isopropanol mixture (water ratio 75%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 5 days to obtain crystals of compound CP01.
  • Example 2-1-2 Compound CP01 (72.5 mg) was dissolved in dimethyl sulfoxide (0.363 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 3 days. A dichloromethane/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP01.
  • Example 2-2-1 Compound CP02 (149.2 mg) was dissolved in dimethyl sulfoxide (0.746 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 3 days. Formamide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP02.
  • Example 2-2-2 Compound CP02 (72.4 mg) was dissolved in dimethyl sulfoxide (0.362 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 3 days. A formamide/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP02.
  • Example 2-2-3 Compound CP02 (72.4 mg) was dissolved in dimethyl sulfoxide (0.362 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 3 days. Dimethyl sulfoxide/t-butyl methyl ether mixture (t-butyl methyl ether ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP02.
  • Example 2-3-1 Compound CP03 (147.4 mg) was dissolved in dimethyl sulfoxide (0.737 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 3 days. Formamide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP03.
  • Example 2-4-1 Compound CP04 (120.2 mg) was dissolved in dimethyl sulfoxide (0.601 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. t-Butyl methyl ether (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP04.
  • Example 2-4-2 Compound CP04 (120.2 mg) was dissolved in dimethyl sulfoxide (0.601 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. Toluene (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain a solid of compound CP04. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-4-3 Compound CP04 (120.2 mg) was dissolved in dimethyl sulfoxide (0.601 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. n-Butyl acetate (0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days, after which n-heptane (0.015 mL) was added. The mixture was shaken and stirred at room temperature for 4 days to obtain a solid of compound CP04. The resulting solid was confirmed to be a polarized needle crystal using a polarizing microscope.
  • Example 2-4-4 Compound CP04 (120.2 mg) was dissolved in dimethyl sulfoxide (0.601 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Cumene (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain a solid of compound CP04. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-4-5 Compound CP04 (50.3 mg) was dissolved in dimethyl sulfoxide (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. An ethyl acetate/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product obtained, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP04. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-4-6 Compound CP04 (50.3 mg) was dissolved in dimethyl sulfoxide (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of n-butyl acetate/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP04. The solid obtained was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-5-1 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Toluene (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-2 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Dimethyl sulfoxide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-3 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. An ethanol/water mixture (75% water ratio, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-4 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Acetonitrile/water mixture (water ratio 75%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-5-5 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Cumene (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-6 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Tetralin (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-7 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Formamide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP05.
  • Example 2-5-8 Compound CP05 (122.3 mg) was dissolved in dimethyl sulfoxide (0.612 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Diisopropyl ether (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP05.
  • Example 2-5-9 Compound CP05 (148.8 mg) was dissolved in dimethyl sulfoxide (0.744 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 3 days. A 3-acetylpyridine/ethylene glycol mixture (3-acetylpyridine ratio 50% by volume, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 11 days. Approximately 10 zirconia beads with a diameter of 1 mm were then added, and the mixture was shaken and stirred for 2 days. The mixture was left to stand for 5 days, and then shaken and stirred for an additional 3 days to obtain crystals of compound CP05.
  • 3-acetylpyridine/ethylene glycol mixture (3-acetylpyridine ratio 50% by volume, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 11 days. Approximately 10 zirconia beads with a diameter
  • Example 2-6-1 Compound CP06 (122.1 mg) was dissolved in dimethyl sulfoxide (0.611 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Formamide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 3 days to obtain crystals of compound CP06.
  • Example 2-7-1 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Acetonitrile (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP07.
  • Example 2-7-2 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Ethyl acetate (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-3 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Acetone (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP07.
  • Example 2-7-4 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Propyl acetate (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP07.
  • Example 2-7-5 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. n-Butyl acetate (0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP07. The resulting solid was confirmed to be a polarized needle crystal using a polarizing microscope.
  • Example 2-7-6 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Methyl ethyl ketone (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-7 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Methyl isobutyl ketone (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-8 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. t-Butyl methyl ether (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP07.
  • Example 2-7-9 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Dimethyl sulfoxide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP07.
  • Example 2-7-10 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A water/acetonitrile mixture (water ratio 75%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP07.
  • Example 2-7-11 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. Tetrahydrofuran (0.015 mL) was added to the resulting freeze-dried product, and after shaking and stirring at room temperature for 6 days, n-heptane (0.015 mL) was further added. After shaking and stirring at room temperature for 14 days, crystals of compound CP07 were obtained. The resulting solid was confirmed to be polarized needle-shaped crystals using a polarizing microscope.
  • Example 2-7-12 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. 1,4-dioxane (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days, after which n-heptane (0.015 mL) was added. Crystals of compound CP07 were obtained by shaking and stirring at room temperature for 14 days.
  • Example 2-7-13 Compound CP07 (75.3 mg) was dissolved in 1,4-dioxane (0.377 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. Toluene (0.015 mL) was added to the resulting freeze-dried product, and after shaking and stirring at room temperature for 6 days, n-heptane (0.015 mL) was further added. After shaking and stirring at room temperature for 14 days, a solid of compound CP07 was obtained. The resulting solid was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-7-15 Compound CP07 (72.6 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 1.452 mL) at 70°C, and this solution (0.06 mL) was freeze-dried at -20°C for 3 days. A 2-propanol/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP07.
  • Example 2-7-16 Compound CP07 (72.6 mg) was dissolved in a dimethyl sulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 1.452 mL) at 70°C, and this solution (0.06 mL) was freeze-dried at -20°C for 3 days. Acetonitrile/t-butyl methyl ether mixture (t-butyl methyl ether ratio 80%, 0.015 mL) was added to the obtained freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP07.
  • Example 2-7-20 Compound CP07 (72.6 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 1.452 mL) at 70°C, and this solution (0.06 mL) was freeze-dried at -20°C for 3 days. Acetonitrile/water mixture (water ratio 80%, 0.015 mL) was added to the obtained freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP07.
  • Example 2-7-21 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. An isopropanol/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-22 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A 1,4-dioxane/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product obtained, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-23 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of ethyl acetate/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-24 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of acetone/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-25 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A tetrahydrofuran/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-26 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A dichloromethane/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-27 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. An anisole/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-28 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of n-butanol/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-29 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A toluene/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product obtained, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP07. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-7-30 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A propyl acetate/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product obtained, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP07. The solid obtained was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-7-31 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of n-butyl acetate/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-32 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A methyl ethyl ketone/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-7-33 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A methyl isobutyl ketone/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product obtained, and the mixture was shaken and stirred at room temperature for 7 days to obtain a solid of compound CP07. The obtained solid was confirmed to be a polarized needle crystal using a polarizing microscope.
  • Example 2-7-314 Compound CP07 (50.3 mg) was dissolved in 1,4-dioxane (0.252 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A chlorobenzene/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP07.
  • Example 2-8-1 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Acetonitrile (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP08.
  • Example 2-8-2 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. Ethyl acetate (0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP08. The resulting solid was confirmed to be a polarized needle crystal using a polarizing microscope.
  • Example 2-8-3 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Acetone (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP08.
  • Example 2-8-4 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. Propyl acetate (0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP08. The resulting solid was confirmed to be a polarized needle-shaped crystal using a polarizing microscope.
  • Example 2-8-5 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. n-Butyl acetate (0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP08. The resulting solid was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-8-6 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Methyl ethyl ketone (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP08.
  • Example 2-8-7 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Methyl isobutyl ketone (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP08. The solid obtained was confirmed to be a needle-shaped crystal with polarized light using a polarizing microscope.
  • Example 2-8-8-8 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. t-Butyl methyl ether (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP08. The solid was confirmed to be a polarized needle crystal using a polarizing microscope.
  • Example 2-8-9 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. Toluene (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain a solid of compound CP08. The solid obtained was confirmed to be a plate-like crystal with polarized light using a polarizing microscope.
  • Example 2-8-10 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. Dimethyl sulfoxide (0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 6 days to obtain crystals of compound CP08.
  • Example 2-8-11 Compound CP08 (75.3 mg) was dissolved in 1,4-dioxane (0.376 mL), and this solution (0.015 mL) was freeze-dried at -20°C for 2 days. 1,4-dioxane (0.015 mL) was added to the resulting freeze-dried product, and after shaking and stirring at room temperature for 6 days, n-heptane (0.015 mL) was further added. After shaking and stirring at room temperature for 14 days, a solid of compound CP08 was obtained. The resulting solid was confirmed to be a polarized needle crystal using a polarizing microscope.
  • Example 2-8-12 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. An ethanol/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain a solid of compound CP08. The resulting solid was confirmed to be a plate-like crystal with polarized light using a polarizing microscope.
  • Example 2-8-14 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. Ethyl acetate/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-15 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. Acetone/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-16 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. A tetrahydrofuran/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-18 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. A formamide/water mixture (water ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain a solid of compound CP08. The resulting solid was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-8-20 Compound CP08 (72.5 mg) was dissolved in a dimethyl sulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. A propyl acetate/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-23 Compound CP08 (72.5 mg) was dissolved in a dimethyl sulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. A methyl isobutyl ketone/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-26 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. A 1,4-dioxane/n-heptane mixture (n-heptane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-27 Compound CP08 (72.5 mg) was dissolved in a dimethyl sulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. Dimethyl sulfoxide/t-butyl methyl ether mixture (t-butyl methyl ether ratio 80%, 0.015 mL) was added to the obtained freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain a solid of compound CP08. The obtained solid was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-8-28 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. An ethanol/water mixture (water ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-29 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. Acetonitrile/water mixture (water ratio 80%, 0.015 mL) was added to the resulting freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain a solid of compound CP08. The resulting solid was confirmed to be polarized microcrystals using a polarizing microscope.
  • Example 2-8-31 Compound CP08 (72.5 mg) was dissolved in a dimethylsulfoxide/1,4-dioxane mixture (1,4-dioxane ratio 50%, 0.726 mL), and this solution (0.03 mL) was freeze-dried at -20°C for 3 days. Acetone/water mixture (water ratio 80%, 0.015 mL) was added to the obtained freeze-dried product, and the mixture was shaken and stirred at room temperature for 8 days to obtain crystals of compound CP08.
  • Example 2-8-32 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of isopropanol/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-33 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A 1,4-dioxane/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-314 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of ethyl acetate/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-35 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of acetone/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-36 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A tetrahydrofuran/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-37 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A dichloromethane/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-38 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. An anisole/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-39 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A butanol/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-40 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A toluene/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-411 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A propyl acetate/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-42 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A mixture of n-butyl acetate/cyclohexane (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-43 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A methyl ethyl ketone/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-414 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A methyl isobutyl ketone/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • Example 2-8-45 Compound CP08 (50.6 mg) was dissolved in 1,4-dioxane (0.253 mL), and the solution (0.015 mL) was freeze-dried at -20°C for 2 days. A chlorobenzene/cyclohexane mixture (cyclohexane ratio 80%, 0.015 mL) was added to the freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain crystals of compound CP08.
  • solvents for crystallizing various cyclic peptides one or more solvents selected from the group consisting of formamide, dimethyl sulfoxide, aromatic hydrocarbon solvents, and halogenated solvents are preferable, and by using at least one of these solvents, all of the eight types of cyclic peptides could be crystallized.
  • Solvents containing formamide or dimethyl sulfoxide are more preferable, and solvents containing formamide were the most preferable.
  • Example 3 Production of cyclic peptide crystals using an aqueous solution containing a surfactant and a water-soluble organic solvent
  • a cyclic peptide crystal was produced by a method including a step of contacting the liquid surfactant with water containing 0.01 to 30 wt/v % of the surfactant and 5 to 50 v/v % of a water-soluble organic solvent based on the total amount of the solvent. Note that no seed crystals were used in the step of contacting the liquid surfactant with the solvent in the following production.
  • Example 3-1-1 Compound CP01 (19.7 mg) was dissolved in ethanol (0.197 mL). Cremophor EL/water mixture (Cremophor EL ratio 5 v/v% (5.25 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP01.
  • Example 3-4-1 Compound CP04 (19.5 mg) was dissolved in ethanol (0.195 mL). Cremophor EL/water mixture (Cremophor EL ratio 5 v/v% (5.25 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP04.
  • Example 3-5-1 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). Cremophor EL/water mixture (Cremophor EL ratio 1 v/v% (1.05 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-2 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). Cremophor EL/water mixture (Cremophor EL ratio 5 v/v% (5.25 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-3 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). Cremophor EL/water mixture (Cremophor EL ratio 1 v/v% (1.05 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-4 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). Cremophor EL/water mixture (Cremophor EL ratio 5 v/v% (5.25 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-5 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A Tween 80/water mixture (Tween 80 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-6 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A Tween 80/water mixture (Tween 80 ratio 3 v/v% (3.24 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-7 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A Tween 80/water mixture (Tween 80 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-8 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A Tween 80/water mixture (Tween 80 ratio 3 v/v% (3.24 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-9 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A Triton X-100/water mixture (Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Triton X-100/water mixture Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL
  • Example 3-5-10 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A Triton X-100/water mixture (Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Triton X-100/water mixture Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL
  • Example 3-5-11 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A Triton X-100/water mixture (Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Triton X-100/water mixture Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL
  • Example 3-5-12 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A Triton X-100/water mixture (Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Triton X-100/water mixture Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL
  • Example 3-5-13 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A sodium lauryl sulfate/water mixture (sodium lauryl sulfate ratio 1 wt/v%, 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-14 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). Sodium lauryl sulfate/water mixture (sodium lauryl sulfate ratio 0.2 wt/v%, 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-15 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A sodium lauryl sulfate/water mixture (sodium lauryl sulfate ratio 1 wt/v%, 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP05.
  • Example 3-5-16 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). Cremophor EL/water mixture (Cremophor EL ratio 1 v/v% (1.05 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-20 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A Tween 80/water mixture (Tween 80 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-21 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A Tween 80/water mixture (Tween 80 ratio 3 v/v% (3.24 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-22 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A Tween 80/water mixture (Tween 80 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-23 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A Tween 80/water mixture (Tween 80 ratio 3 v/v% (3.24 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-26 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). To this solution (0.010 mL), a Triton X-100/water mixture (Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added, and the mixture was stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Triton X-100/water mixture Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL
  • Example 3-5-2-7 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). To this solution (0.010 mL), a Triton X-100/water mixture (Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL) was added, and the mixture was stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Triton X-100/water mixture Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL
  • Example 3-5-28 Compound CP05 (19.1 mg) was dissolved in ethanol (0.191 mL). A sodium lauryl sulfate/water mixture (sodium lauryl sulfate ratio 1 wt/v%, 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-29 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A sodium lauryl sulfate/water mixture (sodium lauryl sulfate ratio 0.2 wt/v%, 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-5-30 Compound CP05 (19.2 mg) was dissolved in dimethyl sulfoxide (0.192 mL). A sodium lauryl sulfate/water mixture (sodium lauryl sulfate ratio 1 wt/v%, 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP05.
  • Example 3-7-1 Compound CP07 (19.3 mg) was dissolved in dimethyl sulfoxide (0.193 mL). A Tween 80/water mixture (Tween 80 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP07.
  • Example 3-8-1 Compound CP08 (19.5 mg) was dissolved in ethanol (0.195 mL). Cremophor EL/water mixture (Cremophor EL ratio 5 v/v% (5.25 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP08.
  • Example 3-8-2 Compound CP08 (19.5 mg) was dissolved in ethanol (0.195 mL). A Triton X-100/water mixture (Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL), and the mixture was stirred for 10 hours while changing the temperature from 50°C to 90°C 36 times to obtain crystals of compound CP08.
  • Triton X-100/water mixture Triton X-100 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL
  • Example 3-8-3 Compound CP08 (19.5 mg) was dissolved in ethanol (0.195 mL). Cremophor EL/water mixture (Cremophor EL ratio 1 v/v% (1.05 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP08.
  • Example 3-8-4 Compound CP08 (19.5 mg) was dissolved in ethanol (0.195 mL). A Tween 80/water mixture (Tween 80 ratio 0.5 v/v% (0.54 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP08.
  • Example 3-8-5 Compound CP08 (19.5 mg) was dissolved in ethanol (0.195 mL). A Tween 80/water mixture (Tween 80 ratio 3 v/v% (3.24 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP08.
  • Example 3-8-6 Compound CP08 (19.5 mg) was dissolved in ethanol (0.195 mL). A Triton X-100/water mixture (Triton X-100 ratio 3 v/v% (3.21 wt/v%), 0.090 mL) was added to this solution (0.010 mL) and stirred at 25°C for 10 hours to obtain crystals of compound CP08.
  • conditions for crystallizing various cyclic peptides conditions using Cremophor EL, Tween 80, or Triton X-100 as a surfactant, varying the temperature, and using ethanol as a water-soluble organic solvent were preferred. More preferred were conditions using Cremophor EL as a surfactant. Furthermore, the most preferred results were obtained when using Cremophor EL as a surfactant, varying the temperature in the range of 50° C. to 90° C., and using ethanol as a water-soluble organic solvent.
  • Example 4 Production of cyclic peptide crystals using a PEG-based solvent or a mixed solvent containing a PEG-based solvent
  • a cyclic peptide crystal was produced by a method including a step of contacting (i) a PEG-based solvent, or (ii) one or more selected from the group consisting of an alcohol-based solvent, an aliphatic hydrocarbon-based solvent, and water with a mixed solvent containing a PEG-based solvent. Note that no seed crystals were used in the step of contacting with the solvent in the following production. In the following examples, % (percent) represents volume % (v/v%).
  • Example 4-1-1 Compound CP01 (4.8 mg) was added with PEG400 (0.015 mL), isopropanol (0.005 mL), and water (0.005 mL) and stirred at 80°C to dissolve. The next day, the temperature was lowered to room temperature, and the mixture was stirred for an additional 3 days, causing crystals of compound CP01 to precipitate.
  • Example 4-4-1 Compound CP04 (6.3 mg) was added with tetraethylene glycol (0.030 mL) and stirred at 80°C for 1 hour. The mixture was cooled to room temperature and further stirred for 1 day to obtain crystals of compound CP04.
  • Example 4-4-2 PEG400 (0.030 mL) was added to compound CP04 (5.5 mg) and stirred at 80°C for 40 minutes to obtain crystals of compound CP04.
  • Example 4-4-3 PEG400 (0.020 mL) was added to compound CP04 (5.6 mg) and stirred at 80°C for 30 minutes to obtain crystals of compound CP04.
  • Example 4-4-5 Compound CP04 (5.6 mg) was heated to 60°C and melted, and PEG600 (0.020 mL) was added, followed by stirring at 60°C for 10 minutes. The mixture was then stirred at 80°C for an additional 16 hours. The mixture was then stirred at room temperature for an additional 3 hours to obtain crystals of compound CP04.
  • Example 4-4-6 Compound CP04 (5.7 mg) was heated to 60°C and melted, and PEG2000 (0.020 mL) was added, followed by stirring at 60°C for 30 minutes. The mixture was heated to 80°C, and PEG2000 (0.080 mL) was added, followed by stirring for 15 hours. The mixture was cooled to room temperature, yielding a mixture of crystals of compound CP04 and crystals of PEG2000.
  • Figure 26(D) shows the X-ray diffraction peaks of PEG2000, which has characteristic peaks at 19.2° and 24.4°.
  • Figure 26(C) shows the X-ray diffraction peaks of the resulting mixture, and several diffraction peaks are observed in addition to those at 19.2° and 24.4°. These are the diffraction peaks of CP04 crystals.
  • Figure 27 (A) shows the X-ray diffraction peaks of the resulting mixture, and several diffraction peaks are observed in addition to those at 21.7° and 24.1°. These are the diffraction peaks of CP04 crystals.
  • Example 4-4-10 Triglyme (0.005 mL) was added to compound CP04 (5.0 mg) and dissolved by stirring at 80°C. When this solution was stirred at 80°C for an additional 18 hours, crystals of compound CP04 were precipitated.
  • Example 4-5-1 Compound CP05 (approximately 5 mg) was dissolved in tetraethylene glycol (0.020 mL) by stirring. This solution was heated to 80°C and stirred for 1 hour, resulting in the precipitation of crystals of compound CP05.
  • Example 4-5-2 PEG400 (0.020 mL) was added to compound CP05 (approximately 5 mg) and dissolved by stirring. When this solution was heated to 80°C and stirred for 1 hour, crystals of compound CP05 were precipitated.
  • Example 4-5-3 Compound CP05 (approximately 5 mg) was dissolved in polypropylene glycol (average molecular weight: 425) (0.020 mL) by stirring. The solution was heated to 80°C and stirred for 1 hour, resulting in the precipitation of crystals of compound CP05.
  • Example 4-5-5 Triglyme (0.020 mL) was added to compound CP05 (approximately 5 mg) and dissolved by stirring. When this solution was heated to 80°C and stirred for 1 hour, crystals of compound CP05 were precipitated.
  • Example 4-5-6 Compound CP05 (5.3 mg) was dissolved in a water/ethylene glycol mixture (ethylene glycol ratio 80% by volume, 0.015 mL) by stirring at 100°C. The solution was cooled to room temperature and stirred for 3 days, resulting in the precipitation of crystals of compound CP05.
  • a water/ethylene glycol mixture ethylene glycol ratio 80% by volume, 0.015 mL
  • Example 4-7-1 Triglyme (0.010 mL) was added to compound CP07 (4.8 mg) and dissolved by stirring at room temperature. When this solution was stirred at room temperature for an additional 35 minutes, crystals of compound CP07 were precipitated.
  • Example 4-7-4 PEG400 (0.020 mL) was added to compound CP07 (10.0 mg) and dissolved by stirring at 80°C. When this solution was stirred at 80°C for an additional 18 hours, crystals of compound CP07 were precipitated.
  • Example 4-8-2 PEG400 (0.015 mL) was added to compound CP08 (5.1 mg) and dissolved at 80°C. After stirring at 80°C for 18 hours, the mixture was returned to room temperature and stirred for another day, whereupon crystals of compound CP08 precipitated.
  • Example 4-8-4 Triglyme (0.010 mL) was added to compound CP08 (5.1 mg) and dissolved by stirring at room temperature. When this solution was stirred at room temperature for an additional 15 hours, crystals of compound CP08 were precipitated.
  • Example 4-8-5 PEG400 (0.020 mL) was added to compound CP08 (10.1 mg) and dissolved by stirring at 80°C. When this solution was stirred at 80°C for an additional 5 hours, crystals of compound CP08 were precipitated.
  • the PEG-based solvent was polyethylene glycol monolaurate or PEG400, and the temperature was in the range of room temperature to 80° C. The most preferable results were obtained when using polyethylene glycol monolaurate as the PEG-based solvent at a temperature of 80° C.
  • Example 5 X-ray diffraction measurement of cyclic peptide crystals (Example 5-1) The crystals obtained in Examples 2, 3, and 4 were subjected to powder X-ray diffraction measurement by the following measurement method. The results are shown in Figures 1A to 30D.
  • Measurement device D8 Discover, 2D V ⁇ NTEC-500 solid state detector (manufactured by Bruker) Radiation source: CuK ⁇ Tube voltage/current: 40 kV/40 mA or 50 kV/1000 ⁇ A Measurement range: 5 to 31 degrees Exposure time: 40 to 600 seconds
  • Example 5-2 The crystal obtained in Example 2-1-1 was subjected to single crystal X-ray structure analysis by the following measurement method.
  • Measurement device Rigaku R-AXIS RAPID-II with a VariMax Cu diffractometer (manufactured by Rigaku Corporation) Radiation source: CuK ⁇ Tube voltage/current: 40 kV/30 mA Temperature: -180°C Measurement: Measurements were performed using a strategy and exposure time that was thought to provide sufficient diffraction spots for structural analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

環状ペプチドを特定の溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法が開示される。

Description

環状ペプチドの結晶の製造方法
 本発明は、N-置換アミノ酸残基を含む環状ペプチドの結晶の製造方法、およびそれらの結晶のスクリーニング方法に関する。
 これまで、経口薬として用いる化合物は、リピンスキーの法則として知られているように、分子量が500g/mol以下であることが望ましいとされてきた(非特許文献1)。近年、分子量が500g/molを超える化合物が、タフターゲットと呼ばれている、従来の低分子化合物では標的とすることが困難であるとされてきたタンパクにおける、タンパク-タンパク相互作用阻害等に寄与しうることが知られるようになってきた。これらの分子は、経口薬として主に用いられてきた分子量が500g/mol以下の低分子でもなく、抗体医薬品のように分子量が100000g/molを超える高分子でもない、中分子化合物(分子量500~2000g/mol)と呼ばれ、タフターゲットに対する創薬を実現しうる、新たなモダリティとして注目されている(非特許文献2)。
 高血糖症の治療に用いられているインスリンのように、天然アミノ酸からなるペプチドは、代謝安定性に乏しく、従来はペプチドを経口薬として開発することは困難とされてきた。しかし、ペプチドの環化や、ペプチド中にN-メチルアミノ酸に例示される非天然アミノ酸を用いることにより、ペプチドの代謝安定性や膜透過性が向上することが見出されてきた(非特許文献3、4)。
 非天然アミノ酸を含む環状ペプチドの中でも、特にN-置換アミノ酸を含む環状ペプチドが、代謝安定性や膜透過性を有しうる、すなわちドラッグライクネスを有しうることが知られるようになってきた(特許文献1)。また、非天然型アミノ酸を含む環状ペプチドが、タンパク-タンパク相互作用の阻害剤の創生に有用であることが示唆されている(非特許文献5)。
 中分子化合物としての環状ペプチドに創薬の注目が集まる一方、N-置換アミノ酸を含む環状ペプチドの多くは結晶に関する報告がなされていない。一方、環状ペプチドとして古くから知られるシクロスポリンAに関しては、多様な結晶形態を持つことが報告されている(特許文献2、3,非特許文献6、7、8)。
国際公開第2013/100132号 国際公開第2012/166610号 特開2017-210488号公報
Adv. Drug Del. Rev. 1997, 23, 3-25. Future Med. Chem., 2009, 1, 1289-1310. Acc. Chem. Res., 2008, 41, 1331-1342. Angew. Chem. Int. Ed., 2013, 52, 254-269. Chem. Rev., 2019, 119, 10360-10391. J. Pharm. Sci., 2018, 107, 3070-3079. J. Inclusion Phenomena & Macrocyclic Chem., 2000, 37, 137-153. Zeitschrift fuer Kristallographie, 1996, 211, 313-318.
 医薬品開発における環状ペプチドの結晶化は、個々の環状ペプチドごとに試行錯誤的に最適な結晶化条件を探索し、見つけ出す必要があった。これらの環状ペプチドを結晶として得るための一般的かつ簡便な技術が求められている。本発明は、このような状況に鑑みてなされたものであり、一局面において、本発明は、N-置換アミノ酸残基を含む環状ペプチドの結晶を製造する方法を提供することを課題とする。一局面において、本発明は、N-置換アミノ酸残基を含む環状ペプチドの結晶スクリーニング方法を提供することを課題とする。一局面において、本発明は、結晶化方法のスクリーニング方法を提供することを課題とする。さらに一局面において、本発明は、カラムクロマトグラフィーに依らずに目的の環状ペプチド、もしくはその塩またはそれらの溶媒和物を、結晶として単離、精製する方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、環状ペプチドを特定の溶媒と接触させることにより、環状ペプチドを結晶として得るための効率的な結晶スクリーニング方法を見出した。さらに、種々の環状ペプチドに適用できる結晶製造方法として本発明を完成させた。
 すなわち、本発明は、以下を提供する。
[A1]環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法であって、前記環状ペプチドは、以下の(I)、(II)および(III)の特徴:
(I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
(II)N-置換アミノ酸を少なくとも2残基含む特徴;
(III)分子量(g/mol)が、1204以上3000以下である特徴;
を有する環状ペプチドである、方法。
[A1-1]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[A1]に記載の方法。
[A1-2]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[A1]に記載の方法。
[A2]前記溶媒が、以下の(1)、(2)および(3):
(1)(i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒;
(2)溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水;
(3)(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒を含む混合溶媒;
からなる群より選択されるいずれかの溶媒である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A3]前記溶媒が、(i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A4]前記溶媒が、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される溶媒である、[A3]に記載の方法。
[A5]前記溶媒が、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択される溶媒である、[A3]に記載の方法。
[A6]前記溶媒が、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される溶媒である、[A3]に記載の方法。
[A7]前記溶媒が、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、およびハロゲン系溶媒からなる群より選択される溶媒である、[A3]に記載の方法。
[A8]前記溶媒が、アミド系溶媒、スルホキシド系溶媒および芳香族炭化水素系溶媒からなる群より選択される溶媒である、[A3]に記載の方法。
[A9]前記溶媒が、分子量18以上170以下の溶媒(A)、または分子量18以上170以下の溶媒(A)と分子量18以上170以下の溶媒(B)との混合溶媒であって、前記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択される1種または複数種であり、前記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A10]前記溶媒が、分子量18以上170以下の溶媒(A)、または分子量18以上170以下の溶媒(A)と分子量18以上170以下の溶媒(B)との混合溶媒であって、前記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択され、前記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される、[A1]~[A1-2]のいずれか一つに記載の方法。
[A11]前記溶媒(A)が、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される1種または複数種である、[A9]に記載の方法。
[A12]前記溶媒(A)が、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、およびハロゲン系溶媒からなる群より選択される1種または複数種である、[A9]に記載の方法。
[A13]前記溶媒(A)が、アミド系溶媒、スルホキシド系溶媒および芳香族炭化水素系溶媒からなる群より選択される1種または複数種である、[A9]に記載の方法。
〔A14〕前記溶媒(A)が、アミド系溶媒である、[A9]または[A10]に記載の方法。
[A15]前記アミド系溶媒が、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドンおよびN-メチルピロリドンからなる群より選択される1種または複数種である、[A14]に記載の方法。
[A16]前記アミド系溶媒が、ホルムアミドである、[A14]に記載の方法。
〔A17〕前記溶媒(A)が、スルホキシド系溶媒である、[A9]または[A10]に記載の方法。
[A18]前記スルホキシド系溶媒が、ジメチルスルホキシド、フェニルメチルスルホキシドおよびジエチルスルホキシドからなる群より選択される1種または複数種である、[A17]に記載の方法。
[A19]前記スルホキシド系溶媒が、ジメチルスルホキシドである、[A17]に記載の方法。
[A20]前記溶媒(A)が、芳香族炭化水素系溶媒である、[A9]または[A10]に記載の方法。
[A21]前記芳香族炭化水素系溶媒が、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリンおよびクメンからなる群より選択される1種または複数種である、[A20]に記載の方法。
[A22]前記芳香族炭化水素系溶媒が、トルエン、テトラリンまたはクメンである、[A20]に記載の方法。
[A23]前記溶媒(A)が、ハロゲン系溶媒である、[A9]または[A10]に記載の方法。
〔A24〕前記ハロゲン系溶媒が、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼンおよび四塩化炭素からなる群より選択される1種または複数種である、[A23]に記載の方法。
[A25]前記ハロゲン系溶媒が、ジクロロメタンまたはクロロベンゼンである、[A23]に記載の方法。
[A26]前記溶媒(A)が、アルコール系溶媒である、[A9]または[A10]に記載の方法。
[A27]前記アルコール系溶媒が、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールおよびベンジルアルコールからなる群より選択される1種または複数種である、[A26]に記載の方法。
[A28]前記アルコール系溶媒が、メタノール、エタノール、1-プロパノール、イソプロパノールまたはn-ブタノールである、[A26]に記載の方法。
[A29]前記溶媒(A)が、エーテル系溶媒である、[A9]または[A10]に記載の方法。
[A30]前記エーテル系溶媒が、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、1,3-ジオキソラン、1,4-ジオキサン、1,2-ジメトキシエタン、ジイソプロピルエーテル、アニソールおよびt-ブチルメチルエーテルからなる群より選択される1種または複数種である、[A29]に記載の方法。
[A31]前記エーテル系溶媒が、テトラヒドロフラン、1,4-ジオキサン、ジイソプロピルエーテル、アニソールまたはt-ブチルメチルエーテルである、[A29]に記載の方法。
[A32]前記溶媒(A)が、エステル系溶媒である、[A9]または[A10]に記載の方法。
[A33]前記エステル系溶媒が、ギ酸エチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、n-酢酸ブチル、酢酸プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸ペンチルおよびγ-バレロラクトンからなる群より選択される1種または複数種である、[A32]に記載の方法。
[A34]前記エステル系溶媒が、酢酸エチル、酢酸イソプロピルまたはn-酢酸ブチルである、[A32]に記載の方法。
[A35]前記溶媒(A)が、ニトリル系溶媒である、[A9]または[A10]に記載の方法。
[A36]前記ニトリル系溶媒が、アセトニトリル、ベンゾニトリルおよびプロピオニトリルからなる群より選択される1種または複数種である、[A35]に記載の方法。
[A37]前記ニトリル系溶媒が、アセトニトリルである、[A35]に記載の方法。
[A38]前記溶媒(A)が、ケトン系溶媒である、[A9]または[A10]に記載の方法。
[A39]前記ケトン系溶媒が、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン、シクロヘキサノン、ジエチルケトン、シクロペンタノン、および3-アセチルピリジンからなる群より選択される1種または複数種である、[A38]に記載の方法。
[A40]前記ケトン系溶媒が、アセトン、メチルエチルケトンまたはメチルイソブチルケトンである、[A38]に記載の方法。
[A41]前記溶媒(B)が、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種の溶媒である、[A9]~[A40]のいずれか一つに記載の方法。
[A42]前記溶媒(B)が、脂肪族炭化水素系溶媒、エチレングリコールまたは水である、[A9]~[A40]のいずれか一つに記載の方法。
[A43]前記溶媒(B)が、脂肪族炭化水素系溶媒である、[A9]~[A40]のいずれか一つに記載の方法。
[A44]前記脂肪族炭化水素系溶媒が、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよびメチルシクロヘキサンからなる群より選択される1種または複数種である、[A43]に記載の方法。
[A45]前記脂肪族炭化水素系溶媒が、n-ヘプタン、シクロヘキサンまたはメチルシクロヘキサンである、[A43]に記載の方法。
[A46]前記溶媒(B)が、水である、[A9]~[A40]のいずれか一つに記載の方法。
[A46-1]前記溶媒(B)が、エチレングリコールである、[A9]~[A40]のいずれか一つに記載の方法。
[A47]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:40である、[A9]~[A46]のいずれか一つに記載の方法。
[A48]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:30、1:0~1:20、1:0~1:10、1:0~1:7、または1:0~1:5である、[A9]~[A46]のいずれか一つに記載の方法。
[A49]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:4である、[A9]~[A46]のいずれか一つに記載の方法。
[A50]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が10:1~1:40である、[A9]~[A46]のいずれか一つに記載の方法。
[A51]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が5:1~1:30、3:1~1:20、2:1~1:10、1:1~1:7、または1:2~1:5である、[A9]~[A46]のいずれか一つに記載の方法。
[A52]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:2~1:4である、[A9]~[A46]のいずれか一つに記載の方法。
[A52-1]前記溶媒(A)が、分子量18以上160以下、分子量18以上150以下、分子量18以上140以下、または分子量32以上135以下の溶媒である、[A9]~[A52]のいずれか一つに記載の方法。
[A52-2]前記溶媒(A)が、分子量32以上135以下の溶媒である、[A9]~[A52]のいずれか一つに記載の方法。
[A52-3]前記溶媒(B)が、分子量18以上160以下、分子量18以上135以下、分子量18以上120以下、または分子量18以上105以下の溶媒である、[A9]~[A52-2]のいずれか一つに記載の方法。
[A52-4]前記溶媒(B)が、分子量18以上105以下の溶媒である、[A9]~[A52-2]のいずれか一つに記載の方法。
[A53]前記溶媒(A)および前記溶媒(B)の融点が25℃以下である、[A9]~[A52-4]のいずれか一つに記載の方法。
[A54]前記溶媒が、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A55]前記界面活性剤が、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤および非イオン性界面活性剤からなる群より選択される1種または複数種である、[A54]に記載の方法。
[A56]前記界面活性剤が、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタイン、レシチン、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[A54]に記載の方法。
[A57]前記界面活性剤が、アルキル硫酸塩、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[A54]に記載の方法。
[A58]前記界面活性剤が、アルキル硫酸塩、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルまたはポリオキシエチレンソルビタン脂肪酸エステルである、[A54]に記載の方法。
[A59]前記界面活性剤が、ラウリル硫酸ナトリウム、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール、Polyoxyl 35 Hydrogenated Castor Oilまたはポリオキシエチレンソルビタンモノラウラートである、[A54]に記載の方法。
[A59-1]前記界面活性剤が、Polyoxyl 35 Hydrogenated Castor Oilである、[A54]に記載の方法。
[A60]前記界面活性剤が、イオン性界面活性剤または非イオン性界面活性剤である、[A54]に記載の方法。
[A61]前記界面活性剤が、イオン性界面活性剤である、[A54]に記載の方法。
[A62]前記イオン性界面活性剤が、陽イオン性界面活性剤、陰イオン性界面活性剤および両性界面活性剤からなる群より選択される1種または複数種である、[A61]に記載の方法。
[A63]前記イオン性界面活性剤が、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタインおよびレシチンからなる群より選択される1種または複数種である、[A61]に記載の方法。
[A64]前記イオン性界面活性剤が、アルキル硫酸塩である、[A61]に記載の方法。
[A65]前記イオン性界面活性剤が、ラウリル硫酸塩である、[A61]に記載の方法。
[A66]前記イオン性界面活性剤が、ラウリル硫酸ナトリウムである、[A61]に記載の方法。
[A67]前記界面活性剤が、非イオン性界面活性剤である、[A54]に記載の方法。
[A68]前記非イオン性界面活性剤が、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[A67]に記載の方法。
[A69]前記非イオン性界面活性剤が、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[A67]に記載の方法。
[A70]前記非イオン性界面活性剤が、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール、Polyoxyl 35 Hydrogenated Castor Oilおよびポリオキシエチレンソルビタンモノラウラートからなる群より選択される1種または複数種である、[A67]に記載の方法。
[A71]前記水溶性有機溶媒が、アルコール系溶媒、アミド系溶媒、ニトリル系溶媒またはスルホキシド系溶媒である、[A54]~[A70]のいずれか一つに記載の方法。
[A72]前記水溶性有機溶媒が、アルコール系溶媒またはスルホキシド系溶媒である、[A54]~[A70]のいずれか一つに記載の方法。
[A73]前記水溶性有機溶媒が、メタノール、エタノール、1-プロパノール、2-プロパノールまたはジメチルスルホキシドである、[A54]~[A70]のいずれか一つに記載の方法。
[A74]前記水溶性有機溶媒が、エタノールまたはジメチルスルホキシドである、[A54]~[A70]のいずれか一つに記載の方法。
[A75]前記界面活性剤の含有量が、溶媒全量を基準として0.02~20wt/v%、0.05~15wt/v%、0.1~10wt/v%、0.12~8wt/v%、0.15~5wt/v%または0.18~3wt/v%であり、前記水溶性有機溶媒の含有量が、溶媒全量を基準として5~40v/v%、5~30v/v%、5~25v/v%、8~20v/v%または10~15v/v%である、[A54]~[A74]のいずれか一つに記載の方法。
[A76]前記界面活性剤の含有量が、溶媒全量を基準として0.1~10wt/v%であり、前記水溶性有機溶媒の含有量が、溶媒全量を基準として5~25v/v%である、[A54]~[A74]のいずれか一つに記載の方法。
[A77]前記溶媒が、(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒とを含む混合溶媒である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A78]前記溶媒が、PEG系溶媒である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A79]前記溶媒が、アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒との混合溶媒である、[A1]~[A1-2]のいずれか一つに記載の方法。
[A80]前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1以上10以下の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRおよびRは、それぞれ独立して水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、Rは水酸基で置換されていても良いC~C18アルキル、または水酸基で置換されていても良いC~C18アルケニルである、[A78]または[A79]に記載の方法。
[A81]前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1、2、3もしくは4の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRは水素またはC~Cアルキルであり、Rは水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、RはC10~C18アルキルである、[A78]または[A79]に記載の方法。
[A82]前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1、2、3または4の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRは水素またはメチルであり、Rは水素、メチルまたは-C(=O)Rであり、Rは水素またはメチルであり、RはC11~C17アルキルである、[A78]または[A79]に記載の方法。
[A83]前記PEG系溶媒が、ジグリム、トリグリム、テトラグリム、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールまたはポリエチレングリコールモノ脂肪酸エステルである、[A78]または[A79]に記載の方法。
[A84]前記PEG系溶媒が、ポリエチレングリコールである、[A78]または[A79]に記載の方法。
[A84-2]前記ポリエチレングリコールの数平均分子量が、150~5000である、[A84]に記載の方法。
[A84-3]前記ポリエチレングリコールの数平均分子量が、360~440、540~660、900~1100または1800~2200である、[A84]に記載の方法。
[A85]前記ポリエチレングリコールが、PEG400、PEG600、PEG1000またはPEG2000である、[A84]に記載の方法。
〔A86〕前記PEG系溶媒が、ポリエチレングリコールモノ脂肪酸エステルである、[A78]または[A79]に記載の方法。
[A87]前記ポリエチレングリコールモノ脂肪酸エステルが、ポリエチレングリコールモノステアレートまたはポリエチレングリコールモノラウレートである、[A86]に記載の方法。
[A88]前記アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種が、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、ベンジルアルコール、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよび水からなる群より選択される1種または複数種である、[A77]または[A79]~[A87]のいずれか一つに記載の方法。
[A89]前記アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種が、2-プロパノール、n-ヘプタンおよび水からなる群より選択される1種または複数種である、[A77]または[A79]~[A87]のいずれか一つに記載の方法。
[B1]環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法であって、前記環状ペプチドは、以下の(I)および(II)の特徴:
(I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
(II)N-置換アミノ酸を少なくとも2残基含む特徴;
を有する環状ペプチドであり、前記溶媒が溶媒(A)、または溶媒(A)と溶媒(B)を含む混合溶媒であり、前記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される1種または複数種であり、前記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種である、方法。
[B1-1]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[B1]に記載の方法。
[B1-2]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[B1]に記載の方法。
[B2]前記溶媒(A)が、アミド系溶媒、スルホキシド系溶媒および芳香族炭化水素系溶媒からなる群より選択される1種または複数種である、[B1]~[B1-2]のいずれか一つに記載の方法。
[B3]前記溶媒(A)が、アミド系溶媒である、[B1]~[B1-2]のいずれか一つに記載の方法。
[B4]前記アミド系溶媒が、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドンおよびN-メチルピロリドンからなる群より選択される1種または複数種である、[B3]に記載の方法。
[B5]前記アミド系溶媒が、ホルムアミドである、[B3]に記載の方法。
[B6]前記溶媒(A)が、スルホキシド系溶媒である、[B1]~[B1-2]のいずれか一つに記載の方法。
[B7]前記スルホキシド系溶媒が、ジメチルスルホキシド、フェニルメチルスルホキシドおよびジエチルスルホキシドからなる群より選択される1種または複数種である、[B6]に記載の方法。
[B8]前記スルホキシド系溶媒が、ジメチルスルホキシドである、[B6]に記載の方法。
[B9]前記溶媒(A)が、芳香族炭化水素系溶媒である、[B1]~[B1-2]のいずれか一つに記載の方法。
[B10]前記芳香族炭化水素系溶媒が、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリンおよびクメンからなる群より選択される1種または複数種である、[B9]に記載の方法。
[B11]前記芳香族炭化水素系溶媒が、トルエン、テトラリンまたはクメンである、[B9]に記載の方法。
[B12]前記溶媒(A)が、ハロゲン系溶媒である、[B1]~[B1-2]のいずれか一つに記載の方法。
[B13]前記ハロゲン系溶媒が、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼンおよび四塩化炭素からなる群より選択される1種または複数種である、[B12]に記載の方法。
[B14]前記ハロゲン系溶媒が、ジクロロメタンまたはクロロベンゼンである、[B12]に記載の方法。
[B15]前記溶媒(A)が、エステル系溶媒である、[B1]~[B1-2]のいずれか一つに記載の方法。
[B16]前記エステル系溶媒が、ギ酸エチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、n-酢酸ブチル、酢酸プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸ペンチルおよびγ-バレロラクトンからなる群より選択される1種または複数種である、[B15]に記載の方法。
[B17]前記エステル系溶媒が、酢酸エチル、酢酸イソプロピルまたはn-酢酸ブチルである、[B15]に記載の方法。
[B18]前記溶媒(B)が、脂肪族炭化水素系溶媒である、[B1]~[B17]のいずれか一つに記載の方法。
[B19]前記脂肪族炭化水素系溶媒が、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよびメチルシクロヘキサンからなる群より選択される1種または複数種である、[B18]に記載の方法。
[B20]前記脂肪族炭化水素系溶媒が、n-ヘプタン、シクロヘキサンまたはメチルシクロヘキサンである、[B18]に記載の方法。
[B21]前記溶媒(B)が、水である、[B1]~[B17]のいずれか一つに記載の方法。
[B21-1]前記溶媒(B)が、エチレングリコールである、[B1]~[B17]のいずれか一つに記載の方法。
[B22]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:40である、[B1]~[B21]のいずれか一つに記載の方法。
[B23]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:30、1:0~1:20、1:0~1:10、1:0~1:7、または1:0~1:5である、[B1]~[B21]のいずれか一つに記載の方法。
[B24]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:4である、[B1]~[B21]のいずれか一つに記載の方法。
[B25]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が10:1~1:40である、[B1]~[B21]のいずれか一つに記載の方法。
[B26]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が5:1~1:30、3:1~1:20、2:1~1:10、1:1~1:7、または1:2~1:5である、[B1]~[B21]のいずれか一つに記載の方法。
[B27]前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:2~1:4である、[B1]~[B21]のいずれか一つに記載の方法。
[B28]前記溶媒(A)および前記溶媒(B)の融点が25℃以下である、[B1]~[B27]のいずれか一つに記載の方法。
[B29]環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法であって、前記環状ペプチドは、以下の(I)および(II)の特徴:
(I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
(II)N-置換アミノ酸を少なくとも2残基含む特徴;
を有する環状ペプチドであり、前記溶媒が溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水である、方法。
[B29-1]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[B29]に記載の方法。
[B29-2]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[B29]に記載の方法。
[B30]前記界面活性剤が、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤および非イオン性界面活性剤からなる群より選択される1種または複数種である、[B29]~[B29-2]のいずれか一つに記載の方法。
[B31]前記界面活性剤が、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタイン、レシチン、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[B29]~[B29-2]のいずれか一つに記載の方法。
[B32]前記界面活性剤が、アルキル硫酸塩、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[B29]~[B29-2]のいずれか一つに記載の方法。
[B33]前記界面活性剤が、アルキル硫酸塩、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルまたはポリオキシエチレンソルビタン脂肪酸エステルである、[B29]~[B29-2]のいずれか一つに記載の方法。
[B34]前記界面活性剤が、ラウリル硫酸ナトリウム、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール、Polyoxyl 35 Hydrogenated Castor Oilまたはポリオキシエチレンソルビタンモノラウラートである、[B29]~[B29-2]のいずれか一つに記載の方法。
[B35]前記界面活性剤が、イオン性界面活性剤または非イオン性界面活性剤である、[B29]~[B29-2]のいずれか一つに記載の方法。
[B36]前記界面活性剤が、イオン性界面活性剤である、[B29]~[B29-2]のいずれか一つに記載の方法。
[B37]前記イオン性界面活性剤が、陽イオン性界面活性剤、陰イオン性界面活性剤および両性界面活性剤からなる群より選択される1種または複数種である、[B36]に記載の方法。
[B38]前記イオン性界面活性剤が、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタインおよびレシチンからなる群より選択される1種または複数種である、[B36]に記載の方法。
[B39]前記イオン性界面活性剤が、アルキル硫酸塩である、[B36]に記載の方法。
[B40]前記イオン性界面活性剤が、ラウリル硫酸塩である、[B36]に記載の方法。
[B41]前記イオン性界面活性剤が、ラウリル硫酸ナトリウムである、[B36]に記載の方法。
[B42]前記界面活性剤が、非イオン性界面活性剤である、[B29]~[B29-2]のいずれか一つに記載の方法。
[B43]前記非イオン性界面活性剤が、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[B42]に記載の方法。
[B44]前記非イオン性界面活性剤が、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、[B42]に記載の方法。
[B45]前記非イオン性界面活性剤が、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール、Polyoxyl 35 Hydrogenated Castor Oilおよびポリオキシエチレンソルビタンモノラウラートからなる群より選択される1種または複数種である、[B42]に記載の方法。
[B46]前記水溶性有機溶媒が、アルコール系溶媒、アミド系溶媒、ニトリル系溶媒またはスルホキシド系溶媒である、[B29]~[B45]のいずれか一つに記載の方法。
[B47]前記水溶性有機溶媒が、アルコール系溶媒またはスルホキシド系溶媒である、[B29]~[B45]のいずれか一つに記載の方法。
[B48]前記水溶性有機溶媒が、メタノール、エタノール、1-プロパノール、2-プロパノールまたはジメチルスルホキシドである、[B29]~[B45]のいずれか一つに記載の方法。
[B49]前記水溶性有機溶媒が、エタノールまたはジメチルスルホキシドである、[B29]~[B45]のいずれか一つに記載の方法。
[B50]前記界面活性剤の含有量が、溶媒全量を基準として0.02~20wt/v%、0.05~15wt/v%、0.1~10wt/v%、0.12~8wt/v%、0.15~5wt/v%または0.18~3wt/v%であり、前記水溶性有機溶媒の含有量が、溶媒全量を基準として5~40v/v%、5~30v/v%、5~25v/v%、8~20v/v%または10~15v/v%である、[B29]~[B49]のいずれか一つに記載の方法。
[B51]前記界面活性剤の含有量が、溶媒全量を基準として0.1~10wt/v%であり、前記水溶性有機溶媒の含有量が、溶媒全量を基準として5~25v/v%である、[B29]~[B49]のいずれか一つに記載の方法。
[B52]環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法であって、前記環状ペプチドは、以下の(I)および(II)の特徴:
(I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
(II)N-置換アミノ酸を少なくとも2残基含む特徴;
を有する環状ペプチドであり、前記溶媒が(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒を含む混合溶媒である、方法。
[B52-1]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[B52]に記載の方法。
[B52-2]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[B52]に記載の方法。
[B53]前記溶媒が、PEG系溶媒である、[B52]~[B52-2]のいずれか一つに記載の方法。
[B54]前記溶媒が、アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒との混合溶媒である、[B52]~[B52-2]のいずれか一つに記載の方法。
[B55]前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1以上10以下の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRおよびRは、それぞれ独立して水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、Rは水酸基で置換されていても良いC~C18アルキル、または水酸基で置換されていても良いC~C18アルケニルである、[B53]または[B54]に記載の方法。
[B56]前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1、2、3または4の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRは水素またはC~Cアルキルであり、Rは水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、RはC10~C18アルキルである、[B53]または[B54]に記載の方法。
[B57]前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1、2、3または4の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRは水素またはメチルであり、Rは水素、メチルまたは-C(=O)Rであり、Rは水素またはメチルであり、RはC11~C17アルキルである、[B53]または[B54]に記載の方法。
[B58]前記PEG系溶媒が、ジグリム、トリグリム、テトラグリム、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールまたはポリエチレングリコールモノ脂肪酸エステルである、[B53]または[B54]に記載の方法。
[B59]前記PEG系溶媒が、ポリエチレングリコールである、[B53]または[B54]に記載の方法。
[B59-2]前記ポリエチレングリコールの数平均分子量が、150~5000である、[B59]に記載の方法。
[B59-3]前記ポリエチレングリコールの数平均分子量が、360~440、540~660、900~1100または1800~2200である、[B59]に記載の方法。
[B60]前記ポリエチレングリコールが、PEG400、PEG600、PEG1000またはPEG2000である、[B59]に記載の方法。
〔B61〕前記PEG系溶媒が、ポリエチレングリコールモノ脂肪酸エステルである、[B53]または[B54]に記載の方法。
[B62]前記ポリエチレングリコールモノ脂肪酸エステルが、ポリエチレングリコールモノステアレートまたはポリエチレングリコールモノラウレートである、[B61]に記載の方法。
[B63]前記アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種が、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、ベンジルアルコール、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよび水からなる群より選択される1種または複数種である、[B52]~[B52-2]または[B54]~[B62]のいずれか一つに記載の方法。
[B64]前記アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種が、2-プロパノール、n-ヘプタンおよび水からなる群より選択される1種または複数種である、[B52]~[B52-2]または[B54]~[B62]のいずれか一つに記載の方法。
[C1]前記環状ペプチドを溶媒と接触させる工程において、環状ペプチドの濃度が、1mg~2000mg/mLである、[A1]~[A89]または[B1]~[B64]のいずれか一つに記載の方法。
[C2]前記環状ペプチドを溶媒と接触させる工程において、環状ペプチドの濃度が、5mg~1500mg/mL、10mg~1000mg/mL、10mg~500mg/mL、10mg~100mg/mL、10mg~50mg/mL、100mg~400mg/mL、100mg~200mg/mLまたは500mg~1000mg/mLである、[A1]~[A89]または[B1]~[B64]のいずれか一つに記載の方法。
[C3]前記環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドが、凍結乾燥品である、[A1]~[A89]、[B1]~[B64]または[C1]~[C2]のいずれか一つに記載の方法。
[C4]前記環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドが、ジメチルスルホキシド溶液からの凍結乾燥品である、[A1]~[A89]、[B1]~[B64]または[C1]~[C2]のいずれか一つに記載の方法。
[C5]前記環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドが、0.5mg~200kgである、[A1]~[A89]、[B1]~[B64]または[C1]~[C4]のいずれか一つに記載の方法。
[C6]前記環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドが、1mg~1gである、[A1]~[A89]、[B1]~[B64]または[C1]~[C4]のいずれか一つに記載の方法。
[C7]前記環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドが、0g~200kg、100g~100kg、0.5mg~10g、1mg~1g、1mg~100mg、1mg~10mgまたは1mg~5mgである、[A1]~[A89]、[B1]~[B64]または[C1]~[C4]のいずれか一つに記載の方法。
[C8]前記環状ペプチドを溶媒と接触させる工程において、種結晶を加えることを含まない、[A1]~[A89]、[B1]~[B64]または[C1]~[C7]のいずれか一つに記載の方法。
[C9]前記環状ペプチドを溶媒と接触させる工程において、種結晶を加えることを含む、[A1]~[A89]、[B1]~[B64]または[C1]~[C7]のいずれか一つに記載の方法。
[C10]前記環状ペプチドを溶媒と接触させる工程の後に、さらにろ過工程を含む、[A1]~[A89]、[B1]~[B64]または[C1]~[C9]のいずれか一つに記載の方法。
[C11]前記環状ペプチドを溶媒と接触させる工程が、-10℃~120℃の温度で、30分間~12週間行われる、[A1]~[A89]、[B1]~[B64]または[C1]~[C10]のいずれか一つに記載の方法。
[C12]前記環状ペプチドを溶媒と接触させる工程が、0℃~110℃、10℃~100℃、15℃~90℃または20℃~80℃における一定の温度で行われるか、または下限温度10℃、20℃、30℃、40℃、45℃、50℃または55℃、上限温度100℃、90℃、85℃、80℃、75℃、70℃または60℃の間で、昇温冷却を10回以上、20回以上、または30回以上、1000回以下、500回以下または100回以下で繰り返し行われ、1時間~6週間、2時間~4週間、4時間~2週間または6時間~7日間で行われる、[A1]~[A89]、[B1]~[B64]または[C1]~[C10]のいずれか一つに記載の方法。
[C13]前記環状ペプチドを溶媒と接触させる工程が、20℃~90℃における一定温度で、12時間~7日間行われる、[A1]~[A89]、[B1]~[B64]または[C1]~[C10]のいずれか一つに記載の方法。
[C14]前記環状ペプチドを溶媒と接触させる工程が、下限温度50℃、上限温度90℃の間で、昇温冷却を30回以上、100回以下で繰り返し行われ、12時間~7日間行われる、[A1]~[A89]、[B1]~[B64]または[C1]~[C10]のいずれか一つに記載の方法。
[D1]前記環状ペプチドが、アミノ酸の合計が7~15残基、8~14残基、9~13残基、10~13残基、11~13残基、11~12残基または11残基からなる環状部を含み、アミノ酸の総数が9~18残基、10~16残基、10~14残基、11~14残基、11~13残基、11~12残基または11残基である、[A1]~[A89]、[B1]~[B64]または[C1]~[C14]のいずれか一つに記載の方法。
[D2]前記環状ペプチドが、アミノ酸の合計が11~13残基からなる環状部を含み、アミノ酸の総数が11~14残基である、[A1]~[A89]、[B1]~[B64]または[C1]~[C14]のいずれか一つに記載の方法。
[D2-1]前記環状ペプチドが、アミノ酸の合計が11残基からなる環状部を含み、アミノ酸の総数が11残基である、[A1]~[A89]、[B1]~[B64]または[C1]~[C14]のいずれか一つに記載の方法。
[D3]前記環状ペプチドが、N-置換アミノ酸を少なくとも3残基、4残基または5残基含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D2]のいずれか一つに記載の方法。
[D3-1]前記環状ペプチドが、N-非置換アミノ酸を少なくとも1残基、2残基または3残基含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D3]のいずれか一つに記載の方法。
[D4]前記環状ペプチドが、N-置換アミノ酸を少なくとも5残基含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D2]のいずれか一つに記載の方法。
[D4-1]前記環状ペプチドが、N-非置換アミノ酸を少なくとも3残基含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D4]のいずれか一つに記載の方法。
[D4-2]前記N-置換アミノ酸が、N-アルキルアミノ酸である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D4-1]のいずれか一つに記載の方法。
[D4-3]前記N-置換アミノ酸が、N-メチルアミノ酸、またはN-エチルアミノ酸である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D4-1]のいずれか一つに記載の方法。
[D4-4]前記N-置換アミノ酸が、N-メチルアミノ酸である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D4-1]のいずれか一つに記載の方法。
[D5]前記環状ペプチドが、β-アミノ酸骨格を少なくとも1つ含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D4-4]のいずれか一つに記載の方法。
[D6]前記環状ペプチドの環状部に、β-アミノ酸骨格を少なくとも1つ含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D4-4]のいずれか一つに記載の方法。
[D7]前記環状ペプチドが、28~55、28~49、31~46、34~43、34~40、34~37または34員環からなる環状部を含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D6]のいずれか一つに記載の方法。
[D8]前記環状ペプチドが、34~40員環からなる環状部を含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D6]のいずれか一つに記載の方法。
[D8-1]前記環状ペプチドが、34員環からなる環状部を含む、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D6]のいずれか一つに記載の方法。
[D8-2]前記34員環からなる環状部が、α-アミノ酸10残基およびβ-アミノ酸骨格を有するアミノ酸1残基の合計11残基のアミノ酸からなる環状ペプチドである、以下の環状構造を有する、[D8-1]に記載の方法。
[D8-3]前記環状ペプチドが、以下の構造である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D6]のいずれか一つに記載の方法。
Figure JPOXMLDOC01-appb-C000001
[ここで、P、P、P、P、P10およびP11はC~Cアルキルであり、PはC~Cアルキルであるか、またはPは、Pが結合している窒素原子、R4、並びにR4が結合している炭素原子と一緒になって4~7員飽和複素環を形成し、Pは、C~Cアルキルであるか、またはPは、Pが結合している窒素原子、R、並びにRが結合している炭素原子と一緒になって4~7員飽和複素環を形成し、該4~7員飽和複素環はC~Cアルコキシによって置換されていてもよく、R、R、R、R、RおよびR10は水素原子、C~Cアルキル、C~Cシクロアルキルまたは置換基を有していても良いアラルキルであり、RとPが4~7員飽和複素環を形成している場合を除き、Rは水素原子またはC~Cアルキルであり、RとPが4~7員飽和複素環を形成している場合を除き、Rは水素原子またはC~Cアルキルであり、Rは、Q並びにRとQが結合している炭素原子と一緒になって3~7員飽和炭素環を形成し、R11は水素原子、C~Cアルキル、ジC~Cアルキルアミノカルボニルまたは4~8員環状アミノカルボニルである。]
[D8-4]前記P、P、P、P、P10およびP11はメチルまたはエチルである、[D8-3]に記載の方法。
[D8-5]前記Pは、メチル、またはPが結合している窒素原子、R4、並びにR4が結合している炭素原子と一緒になって4員飽和複素環を形成している、[D8-3]または[D8-4]に記載の方法。
[D8-6]前記Pは、Pが結合している窒素原子、R、並びにRが結合している炭素原子と一緒になって5員飽和複素環を形成し、該5員飽和複素環はC~Cアルコキシによって置換されていてもよい、[D8-3]~[D8-5]のいずれか一つに記載の方法。
[D8-7]前記RおよびRはC~Cアルキルであり、前記Rは水素原子またはC~Cアルキルであり、前記Rは、RとPが4~7員飽和複素環を形成している場合を除き、水素原子であり、前記RはC~Cシクロアルキルまたは置換基を有していても良いベンジルであり、前記Rは置換基を有していても良いフェニルエチルであり、前記Rは、Q並びにRとQが結合している炭素原子と一緒になって5員飽和炭素環を形成し、前記R10はC~CアルキルまたはC~Cシクロアルキルであり、R11はメチル、ジC~Cアルキルアミノカルボニルまたは6員環状アミノカルボニルである、[D8-3]~[D8-6]のいずれか1つに記載の方法。
[D9]前記環状ペプチドの分子量(g/mol)が、1205以上、1206以上、1207以上、1208以上、1210以上、1220以上、1230以上、1250以上または1300以上であり、2800以下、2500以下、2000以下、1900以下、1800以下、1700以下または1600以下、である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D8-7]のいずれか一つに記載の方法。
[D10]前記環状ペプチドの分子量(g/mol)が、1300以上であり、1600以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D8-7]のいずれか一つに記載の方法。
[D11]前記環状ペプチドのClogPが4以上25以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D10]のいずれか一つに記載の方法。
[D12]前記環状ペプチドのClogPが5以上、6以上、7以上、8以上または9以上であり、24以下、23以下、22以下、21以下、20以下、19以下または18以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D10]のいずれか一つに記載の方法。
[D13]前記環状ペプチドのClogPが、9以上18以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D10]のいずれか一つに記載の方法。
[D14]前記環状ペプチドのClogPが、シクロスポリンAのClogPより大きい、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D10]のいずれか一つに記載の方法。
[D14-1]前記環状ペプチドのClogP/アミノ酸残基数が、0.3以上2.3以下、0.5以上1.9以下、0.7以上1.8以下、または0.8以上1.6以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14]のいずれか一つに記載の方法。
[D14-2]前記環状ペプチドのClogP/アミノ酸残基数が、0.8以上1.6以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14]のいずれか一つに記載の方法。
[D14-3]前記環状ペプチドの50mMリン酸緩衝液(pH6.5)への溶解度が、1200mg/mL以下、800mg/mL以下、600mg/mL以下、300mg/mL以下、200mg/mL以下、100mg/mL以下、50mg/mL以下、25mg/mL以下、10mg/mL以下、5.0mg/mL以下、または2.6mg/mL以下である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-2]のいずれか一つに記載の方法。
[D14-4]前記環状ペプチドの50mMリン酸緩衝液(pH6.5)への溶解度が、0.8mg/mL以上である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-2]のいずれか一つに記載の方法。
[D14-5]前記環状ペプチドの50mMリン酸緩衝液(pH6.5)への溶解度が、0.9mg/mL以上、1.0mg/mL以上、または1.1mg/mL以上である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-2]のいずれか一つに記載の方法。
[D14-6]前記環状ペプチドの50mMリン酸緩衝液(pH6.5)への溶解度が、1.1mg/mL以上である、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-2]のいずれか一つに記載の方法。
[D14-7]CuKα放射を用いた粉末X線回析において2つ以上の回折ピークを有する、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-2]のいずれか一つに記載の方法。
[D14-8]CuKα放射を用いた粉末X線回析において、3つ以上の回折ピークを有する、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-2]のいずれか一つに記載の方法。
[D15]前記環状ペプチドが、シクロスポリンAを除く環状ペプチドである、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D14-4]のいずれか一つに記載の方法。
[D16]前記環状ペプチドが、(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドを除く環状ペプチドである、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D15]のいずれか一つに記載の方法。
[E1]環状ペプチドの結晶をスクリーニングする方法であって、以下の工程(a)および(b):
(a)[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D16]のいずれか一つに記載の方法により環状ペプチドの結晶を製造する工程;
(b)粉末X線結晶回折により結晶を分析する工程;
を含む、方法。
[E2]スクリーニング対象となる結晶が、ホルムアミドを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E3]スクリーニング対象となる結晶が、ホルムアミドを含む溶媒およびジメチルスルホキシドを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E4]スクリーニング対象となる結晶が、ホルムアミドを含む溶媒、ジメチルスルホキシドを含む溶媒、トルエンを含む溶媒およびジクロロメタンを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E5]スクリーニング対象となる結晶が、Polyoxyl 35 Hydrogenated Castor Oilを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E6]スクリーニング対象となる結晶が、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E7]スクリーニング対象となる結晶が、ポリエチレングリコールを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E8]スクリーニング対象となる結晶が、Polyoxyl 35 Hydrogenated Castor Oilを含む溶媒、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒およびポリエチレングリコールを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[E9]スクリーニング対象となる結晶が、Polyoxyl 35 Hydrogenated Castor Oilを含む溶媒を用いて製造された結晶、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒を用いて製造された結晶およびホルムアミドを含む溶媒を用いて製造された結晶を含む、[E1]に記載の方法。
[F1]環状ペプチドの結晶化方法をスクリーニングする方法であって、以下の工程(a)および(b):
(a)[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D16]のいずれか一つに記載の方法により環状ペプチドの結晶を製造する工程;
(b)粉末X線結晶回折により結晶を分析する工程;
を含む、方法。
[F2]スクリーニングの対象となる結晶化方法が、ホルムアミドを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F3]スクリーニングの対象となる結晶化方法が、ホルムアミドを含む溶媒およびジメチルスルホキシドを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F4]スクリーニングの対象となる結晶化方法が、ホルムアミドを含む溶媒、ジメチルスルホキシドを含む溶媒、トルエンを含む溶媒およびジクロロメタンを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F5]スクリーニングの対象となる結晶化方法が、Polyoxyl 35 Hydrogenated Castor Oilを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F6]スクリーニングの対象となる結晶化方法が、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F7]スクリーニングの対象となる結晶化方法が、ポリエチレングリコールを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F8]スクリーニングの対象となる結晶化方法が、Polyoxyl 35 Hydrogenated Castor Oilを含む溶媒、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒およびポリエチレングリコールを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F9]スクリーニングの対象となる結晶化方法が、Polyoxyl 35 Hydrogenated Castor Oilを含む溶媒、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒およびホルムアミドを含む溶媒を用いる結晶化方法を含む、[F1]に記載の方法。
[F10]環状ペプチドを溶媒と接触させる工程において、1条件当たりに使用する環状ペプチドが0.5mg~10mgである、[E1]~[E9]または[F1]~[F9]のいずれか一つに記載の方法。
[F11]スクリーニング対象となる結晶または結晶化方法が、2種類以上、5種類以上、10種類以上、15種類以上または20種類以上である、[E1]~[E9]または[F1]~[F10]のいずれか一つに記載の方法。
[F12]環状ペプチドを溶媒と接触させる工程において、種結晶を加えることを含まない、[E1]~[E9]または[F1]~[F11]のいずれか一つに記載の方法。
[G1]環状ペプチドの結晶が生成する確率を高める方法であって、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D16]のいずれか一つに記載の方法により環状ペプチドの結晶を製造する工程を含む、方法。
[H1]環状ペプチドの結晶製造における、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、ポリオキシエチレングリセリン脂肪酸エステル、およびポリエチレングリコールモノ脂肪酸エステルからなる群から選択されるいずれかの溶媒の使用。
[H2]環状ペプチドの結晶製造における、アミド系溶媒の使用。
[H3]環状ペプチドの結晶製造における、ホルムアミドの使用。
[H4]環状ペプチドの結晶製造における、スルホキシド系溶媒の使用。
[H5]環状ペプチドの結晶製造における、ジメチルスルホキシドの使用。
[H6]環状ペプチドの結晶製造における、芳香族炭化水素系溶媒の使用。
[H7]環状ペプチドの結晶製造における、トルエン、テトラリンまたはクメンの使用。
[H8]環状ペプチドの結晶製造における、Polyoxyl 35 Hydrogenated Castor Oilの使用。
[H9]環状ペプチドの結晶製造における、ポリエチレングリコールモノ脂肪酸エステルの使用。
[H10]環状ペプチドの結晶製造における、ポリエチレングリコールの使用。
[H11][H1]~[H10]のいずれか一つに記載の使用であって、前記環状ペプチドの結晶が[D1]~[D16]のいずれか一つに記載の方法により製造される、前記使用。
[I1]環状ペプチドを精製する方法であって、[A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D16]のいずれか一つに記載の方法により環状ペプチドの結晶を製造する工程、および固液分離により該結晶を採取する工程、を含む、方法。
[J1]環状ペプチドの結晶を製造するスクリーニングキットであって、[H1]~[H11]のいずれか一つに記載の使用により環状ペプチドの結晶を製造する、キット。
[K1]ホルムアミドを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K2]ジメチルスルホキシドを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K3]芳香族炭化水素系溶媒を含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K4]トルエン、テトラリンまたはクメンを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K5]Polyoxyl 35 Hydrogenated Castor Oilを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K6]ポリエチレングリコールモノ脂肪酸エステルを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K7]ポリエチレングリコールを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法。
[K8][A1]~[A89]、[B1]~[B64]、[C1]~[C14]または[D1]~[D16]のいずれか一つに記載の方法により環状ペプチドの結晶を製造する、[K1]~[K7]のいずれか1つに記載の方法。
[L1](3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドを溶媒と接触させる工程を含む、(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドドの結晶の製造方法であって、前記溶媒が溶媒(A)、または溶媒(A)と溶媒(B)を含む混合溶媒であり、前記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される1種または複数種であり、前記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種である、方法。
[L2]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[L1]に記載の方法。
[L3]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[L1]に記載の方法。
[L4]前記溶媒が、トルエンである、[L1]~[L3]のいずれか一つに記載の方法。
[L5]前記溶媒が、ジメチルスルホキシドである、[L1]~[L3]のいずれか一つに記載の方法。
[L6]前記溶媒は、エタノールと水の混合溶媒である、[L1]~[L3]のいずれか一つに記載の方法。
[L7]前記溶媒はアセトニトリルと水の混合溶媒である、[L1]~[L3]のいずれか一つに記載の方法。
[L8]前記溶媒がクメンである、[L1]~[L3]のいずれか一つに記載の方法。
[L9]前記溶媒がテトラリンである、[L1]~[L3]のいずれか一つに記載の方法。
[L10]前記溶媒がホルムアミドである、[L1]~[L3]のいずれか一つに記載の方法。
[L11]前記溶媒がジイソプロピルエーテルである、[L1]~[L3]のいずれか一つに記載の方法。
[L12]前記溶媒は、3-アセチルピリジンとエチレングリコールの混合溶媒である、[L1]~[L3]のいずれか一つに記載の方法。
[L13](3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドを溶媒と接触させる工程を含む、(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドの結晶の製造方法であって、前記溶媒が溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水である、方法。
[L14]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[L13]に記載の方法。
[L15]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[L13]に記載の方法。
[L16]前記界面活性剤が、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤および非イオン性界面活性剤からなる群より選択される1種または複数種である、[L13]~[L15]のいずれか一つに記載の方法。
[L17]前記界面活性剤が、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコールであり、前記水溶性有機溶媒が、エタノールである、[L13]~[L15]に記載の方法。
[L18]前記界面活性剤が、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコールであり、前記水溶性有機溶媒が、ジメチルスルホキシドである、[L13]~[L15]に記載の方法。
[L19]前記界面活性剤が、Polyoxyl 35 Hydrogenated Castor Oilであり、前記水溶性有機溶媒が、エタノールである、[L13]~[L15]に記載の方法。
[L20]前記界面活性剤が、Polyoxyl 35 Hydrogenated Castor Oilであり、前記水溶性有機溶媒が、ジメチルスルホキシドである、[L13]~[L15]に記載の方法。
[L21]前記界面活性剤が、ポリオキシエチレンソルビタンモノラウラート(Tween 80)であり、前記水溶性有機溶媒が、エタノールである、[L13]~[L15]に記載の方法。
[L22]前記界面活性剤が、ポリオキシエチレンソルビタンモノラウラートであり、前記水溶性有機溶媒が、ジメチルスルホキシドである、[L13]~[L15]に記載の方法。
[L23]前記界面活性剤が、ラウリル硫酸ナトリウムであり、前記水溶性有機溶媒が、エタノールである、[L13]~[L15]のいずれか一つに記載の方法。
[L24]前記界面活性剤が、ラウリル硫酸ナトリウムであり、前記水溶性有機溶媒が、ジメチルスルホキシドである、[L13]~[L15]のいずれか一つに記載の方法。
[L25](3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドを溶媒と接触させる工程を含む、(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドの結晶の製造方法であって、前記溶媒が(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒を含む混合溶媒である、方法。
[L26]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、[L25]に記載の方法。
[L27]前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、[L25]に記載の方法。
[L28]前記溶媒が、テトラエチレングリコールである、[L13]~[L15]のいずれか一つに記載の方法。
[L29]前記溶媒が、ポリエチレングリコールである、[L13]~[L15]のいずれか一つに記載の方法。
[L30]前記溶媒が、トリグリムである、[L13]~[L15]のいずれか一つに記載の方法。
[L31]前記溶媒が、エチレングリコールである、[L13]~[L15]のいずれか一つに記載の方法。
[L32]前記溶媒が、PEG400である、[L13]~[L15]のいずれか一つに記載の方法。
[M1]前記[A1]~[A89]、[B1]~[B64]、[C1]~[C14]、[D1]~[D16]、[K1]~[K7]または[L32]~[L32]のいずれか一つに記載の方法により製造された、結晶。
[M2]前記[A1]~[A89]、[B1]~[B64]、[C1]~[C14]、[D1]~[D16]、[K1]~[K7]または[L32]~[L32]のいずれか一つに記載の方法により製造された結晶を含む、医薬組成物。
 本発明によれば、N-置換アミノ酸残基を含む環状ペプチドの結晶を製造する方法が提供される。また、本発明によれば、N-置換アミノ酸残基を含む環状ペプチドの結晶スクリーニング方法が提供される。また、本発明によれば、結晶化方法のスクリーニング方法が提供される。また、本発明によれば、カラムクロマトグラフィーに依らずに目的の環状ペプチド、もしくはその塩またはそれらの溶媒和物を、結晶として単離、精製する方法が提供される。
(A)実施例2-1-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-2-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-2-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-2-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-3-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-4-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-4-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-5-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-5-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-5-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-5-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-5-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-5-6で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-5-7で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-5-8で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 実施例2-5-9で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-6-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-7-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-7-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-7-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-7-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-7-8で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-7-9で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-7-10で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-7-12で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-7-14で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-7-15で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-7-16で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-7-17で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-7-18で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-7-19で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-7-20で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-7-21で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-7-22で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-7-23で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-7-24で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-7-25で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-7-26で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-7-29で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-7-31で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-7-32で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-7-33で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-7-34で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-6で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-10で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-13で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-14で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-15で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-16で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-17で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-19で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-20で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-21で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-22で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-23で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-24で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-25で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-26で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-28で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-30で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-31で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-32で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-33で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-34で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-35で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-36で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-37で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-38で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-39で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-40で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例2-8-41で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例2-8-42で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例2-8-43で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-8-44で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例2-8-45で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-1-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-4-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-5-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-5-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-5-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-5-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-5-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-5-6で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-5-7で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-5-8で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-5-9で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-5-10で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-5-11で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-5-12で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-5-13で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-5-14で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-5-15で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-5-16で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-5-17で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-5-18で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-5-19で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-5-20で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-5-21で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-5-22で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-5-23で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-5-24で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-5-25で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-5-26で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-5-27で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-5-28で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-5-29で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-5-30で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-7-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-8-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例3-8-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例3-8-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例3-8-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例3-8-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例3-8-6で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例4-1-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例4-3-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例4-4-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例4-4-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例4-4-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例4-4-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例4-4-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例4-4-6で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。PEG2000に由来する19.2°および24.4°以外にも、複数の回折ピークが認められる。これらがCP04の結晶の回折ピークである。(D)PEG2000の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。19.2°および24.4°に特徴的なピークを有している。 (A)実施例4-4-7で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。ポリエチレングリコールモノステアラート(n=約4)(パルミタート,ステアラート混合物)に由来する21.7°および24.1°以外にも、複数の回折ピークが認められる。これらがCP04の結晶の回折ピークである。(B)ポリエチレングリコールモノステアラート(n=約4)(パルミタート,ステアラート混合物)の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。21.7°および24.1°に特徴的なピークを有している。(C)実施例4-4-8で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例4-4-9で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例4-4-10で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例4-5-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例4-5-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例4-5-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例4-5-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例4-5-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 実施例4-5-6で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例4-7-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例4-7-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例4-7-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例4-7-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(E)実施例4-8-1で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例4-8-2で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(B)実施例4-8-3で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(C)実施例4-8-4で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。(D)実施例4-8-5で得られた結晶の粉末X線回折測定の結果を示す。縦軸は回折強度であり、横軸は回折角2θ(°)である。 (A)実施例2-1-1で得られた化合物CP01の結晶の単結晶X線構造解析による結晶構造を示す。
 本明細書において「室温」とは約20℃~約25℃の温度を意味する。
 本明細書において「1つまたは複数の」とは、1つまたは2つ以上の数を意味する。「1つまたは複数の」が、ある基の置換基に関連する文脈で用いられる場合、この用語は、1つからその基が許容する置換基の最大数までの数を意味する。「1つまたは複数の」として具体的には、たとえば、1、2、3、4、5、6、7、8、9、10、および/またはそれより大きい数が挙げられる。
 本明細書において、範囲を示す「~」とはその両端の値を含み、例えば、「A~B」は、A以上であり、かつB以下である範囲を意味する。
 本明細書において、「約」という用語は、数値と組み合わせて使用される場合、その数値の+10%および-10%の値範囲を意味する。
 本発明において、「および/または」との用語の意義は、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば、「A、B、および/またはC」には、以下の7通りのバリエーションが含まれる;(i)A、(ii)B、(iii)C、(iv)AおよびB、(v)AおよびC、(vi)BおよびC、(vii)A、B、およびC。
 本明細書において「v/v%」は、体積%(volume%)を表し、「wt/v%」は、重量体積%(weight/volume%)を表す。
 本明細書における「ペプチド」は、2以上のアミノ酸がアミド結合によって連結したものを意味する。デプシペプチドのように主鎖の一部にエステル結合を有するペプチドも、本明細書における「ペプチド」に含まれる。
 本明細書における「環状ペプチド」は、4以上のアミノ酸残基によって構成される環状構造を有するペプチドである。環状ペプチドの環化の態様として、アミド結合のような炭素-窒素結合による環化、エステル結合やエーテル結合のような炭素-酸素結合による環化、チオエーテル結合のような炭素-硫黄結合による環化、炭素-炭素結合による環化、あるいは複素環構築による環化など、どのような形態であってもよい。これらのうちでは、アミド結合、炭素-硫黄結合または炭素-炭素結合などの共有結合を介した環化が好ましい。アミド結合による環化がより好ましく、環化に用いられるカルボキシル基やアミノ基の位置は、主鎖上のものでも側鎖上のものでもよい。最も好ましくは、側鎖のカルボキシル基とN末端の主鎖のアミノ基によるアミド結合を介した環化である。
 本明細書における「複素環」は、環を構成する原子中に好ましくは1~5個、より好ましくは1~3個のヘテロ原子を含有する、非芳香族の複素環を意味する。複素環は、環中に二重および/または三重結合を有していてもよく、環中の炭素原子は酸化されてカルボニルを形成してもよく、単環、縮合環、スピロ環でもよい。複素環の環を構成する原子の数は好ましくは3~12(3~12員複素環)であり、より好ましくは4~10(4~10員複素環)である。複素環としては具体的には、たとえば、アゼチジン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環、モルホリン環、チオモルホリン環、ピロリジン環、4-オキソピロリジン環、ピペリジン環、4-オキソピペリジン環、ピペラジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、イソオキサゾリジン環、チアゾリジン環、イソチアゾリジン環、チアジアゾリジン環、オキサゾリドン環、ジオキソラン環、ジオキサン環、チエタン環、オクタヒドロインドール環、6,7-ジヒドロ-ピロロ[1,2-a]イミダゾール環、またはアゾカン環、4,5,6,7-テトラヒドロピラゾロ[1,5-a]ピラジン環、アゼパン環、ジオキセパン環、5,9-ジオキサスピロ[3.5]ノナン環あるいはこれらの飽和複素環中の1つまたは複数の単結合が二重結合または三重結合に置き換えられた環などが挙げられる。
 ペプチドの「環化」とは、4以上のアミノ酸残基を含む環状部を形成することを意味する。本明細書における環状ペプチドの環状部に含まれるアミノ酸の数は4以上であれば特に限定されないが、4~20残基、5~15残基、6~13残基、9~13残基、11残基が例示され、好ましくは5~15残基、より好ましくは9~13残基、最も好ましくは11残基である。鎖状のペプチドを環状ペプチドに変換する方法は、Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 3rd Edition(R. C. Larock著)、またはMarch's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition、(M. B. Smith, J. March著)などに記載の方法により、分子内で結合形成反応を行うことにより実施することができる。結合形成反応の後に、さらに官能基変換反応を行うこともできる。環状ペプチドの環化部位の結合としては、カルボン酸とアミンから形成されるC(O)-N結合、酸素原子を介したC-O-C結合、C(O)-O結合、C(S)-O結合、硫黄原子を介したC(O)-S結合、C(S)-S結合、C-S-S-C結合、C-S-C結合、C-S(O)-C結合、C-S(O2)-C結合、窒素原子を介したC-N-C結合、C=N-C結合、N-C(O)-N結合、N-C(S)N結合、C(S)-N結合などが例示される。さらに、鈴木反応、Heck反応、Sonogashira反応等の遷移金属を触媒としたカップリング反応により形成されたC-C結合などが挙げられる。結合形成反応の後に、さらに行う官能基変換反応として、酸化反応または還元反応が例示される。具体的には硫黄原子を酸化して、スルホキシド基やスルホン基に変換する反応が例示される。また、炭素-炭素結合のうち、三重結合や二重結合を還元して、二重結合または単結合に変換する還元反応が例示される。2つのアミノ酸をアミノ酸の主鎖において結合することで、ペプチド結合により閉環構造を形成してもよく、2つのアミノ酸の側鎖同士、側鎖と主鎖の結合等により、2つのアミノ酸間の共有結合が形成されてもよい。
 本明細書において、環状ペプチドの「環状部」とは、4以上のアミノ酸残基が連結され、形成されている環状の部分を意味する。
 本明細書における「環状ペプチドの結晶」は、(i)環状ペプチドフリー体の結晶、(ii)環状ペプチドの溶媒和物の結晶および(iii)それらの混合物を含む意味として理解され、そのいずれであってもよい。
 本明細書において溶媒和物とは、化合物が溶媒とともに、一つの分子集団を形成したものをさし、医薬の投与に付随して摂取が許容される溶媒により形成された溶媒和物であれば特に限定されない。その例としては、水和物、アルコール和物(エタノール和物、メタノール和物、1-プロパノール和物、2-プロノール和物など)、ホルムアミド、ジメチルスルホキシドなどの単独の溶媒との溶媒和物だけでなく、化合物1分子に対して複数個の溶媒と溶媒和物を形成したもの、または化合物1分子に対して複数種類の溶媒と溶媒和物を形成したものなどが挙げられる。なお、Crystal Growth & Design 2012, 12, 2147-2152 に記載されているように、溶媒和物は共結晶と区別される。本明細書において共結晶は、化合物と、25℃にて固体である成分とで構成された結晶と定義される。本明細書における「環状ペプチドの結晶」としては、(i)環状ペプチドフリー体の結晶、(ii)環状ペプチドの溶媒和物の結晶および(iii)それらの混合物を含む一方で、環状ペプチドを含有する共結晶、ならびに環状ペプチドを含有する共結晶と上記(i)~(iii)のいずれかの結晶との混合物を含まない。
 本明細書における「アミノ酸」には、天然アミノ酸、および非天然アミノ酸が含まれる。また本明細書において「アミノ酸」はアミノ酸残基を意味することがある。本明細書における「天然アミノ酸」とは、Gly、Ala、Ser、Thr、Val、Leu、Ile、Phe、Tyr、Trp、His、Glu、Asp、Gln、Asn、Cys、Met、Lys、Arg、Proを指す。非天然アミノ酸は特に限定されないが、β-アミノ酸、D型アミノ酸、N-置換アミノ酸、α,α-ジ置換アミノ酸、側鎖が天然アミノ酸と異なるアミノ酸、ヒドロキシカルボン酸などが例示される。本明細書におけるアミノ酸としては、任意の立体配置が許容される。アミノ酸の側鎖の選択は特に制限を設けないが、水素原子の他にも例えばアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアリールアルキル基、シクロアルキル基、スピロ結合したシクロアルキル基から自由に選択される。それぞれには置換基が付与されていてもよく、それら置換基も制限されず、例えば、ハロゲン原子、O原子、S原子、N原子、B原子、Si原子、またはP原子を含む任意の置換基の中から独立して1つまたは2つ以上自由に選択されてよい。すなわち、置換されていてもよいアルキル基、アルコキシ基、アルコキシアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、シクロアルキル基など、または、オキソ、アミノカルボニル、ハロゲン原子などが例示される。非限定の一態様において、本明細書におけるアミノ酸は、同一分子内にカルボキシル基とアミノ基を有する化合物であってよい。この場合であっても、アミノ基の窒素原子と側鎖の任意の原子が一緒になって環を形成した化合物(例えば、プロリン、ヒドロキシプロリン、アゼチジン-2-カルボン酸など)も本明細書におけるアミノ酸に含まれる。
 本明細書において「置換されていてもよい」とは、ある基が任意の置換基によって置換されていてもよいことを意味する。さらにこれらそれぞれに置換基が付与されていてもよく、それら置換基も制限されず、例えば、ハロゲン原子、酸素原子、硫黄原子、窒素原子、ホウ素原子、ケイ素原子、またはリン原子を含む任意の置換基の中から独立して1つまたは2つ以上自由に選択されてよい。その置換基としては、例えば、アルキル、アルコキシ、フルオロアルキル、フルオロアルコキシ、オキソ、アミノカルボニル、アルキルスルホニル、アルキルスルホニルアミノ、シクロアルキル、アリール、ヘテロアリール、ヘテロシクリル、アリールアルキル、ヘテロアリールアルキル、ハロゲン、ニトロ、アミノ、モノアルキルアミノ、ジアルキルアミノ、シアノ、カルボキシル、アルコキシカルボニル、ホルミルなどが例示される。
 本明細書における「ハロゲン」としては、F、Cl、BrまたはIが例示される。
 本明細書において「アルキル」とは、脂肪族炭化水素から任意の水素原子を1個除いて誘導される1価の基であり、骨格中にヘテロ原子(炭素および水素原子以外の原子をいう。)または不飽和の炭素-炭素結合を含有せず、水素および炭素原子を含有するヒドロカルビルまたは炭化水素基構造の部分集合を有する。アルキルは直鎖状のものだけでなく、分枝鎖状のものも含む。アルキルとして好ましくは、炭素原子数1~20(C-C20、以下「C-C」とは炭素原子数がp~q個であることを意味する)のアルキルであり、好ましくはC-C10アルキル、より好ましくはC-Cアルキルが挙げられる。アルキルとして、具体的には、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、イソブチル(2-メチルプロピル)、n-ペンチル、s-ペンチル(1-メチルブチル)、t-ペンチル(1,1-ジメチルプロピル)、ネオペンチル(2,2-ジメチルプロピル)、イソペンチル(3-メチルブチル)、3-ペンチル(1-エチルプロピル)、1,2-ジメチルプロピル、2-メチルブチル、n-ヘキシル、1,1,2-トリメチルプロピル、1,2,2-トリメチルプロピル、1,1,2,2-テトラメチルプロピル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,2-ジメチルブチル、2,3-ジメチルブチル、3,3-ジメチルブチル、1-エチルブチル、2-エチルブチル等が挙げられる。
 本明細書において「アルキニル」とは、少なくとも1個の三重結合(2個の隣接SP炭素原子)を有する、1価の基である。アルキニルは、直鎖状のものだけでなく、分枝鎖状のものも含む。アルキニルとして好ましくはC-C10アルキニル、より好ましくはC-Cアルキニルが挙げられる。具体的には、たとえば、エチニル、1-プロピニル、プロパルギル、3-ブチニル、ペンチニル、ヘキシニル、3-フェニル-2-プロピニル、3-(2'-フルオロフェニル)-2-プロピニル、2-ヒドロキシ-2-プロピニル、3-(3-フルオロフェニル)-2-プロピニル、3-メチル-(5-フェニル)-4-ペンチニルなどが挙げられる。
 本明細書において「アルケニル」とは、少なくとも1個の二重結合(2個の隣接SP2炭素原子)を有する1価の基である。二重結合および置換分(存在する場合)の配置によって、二重結合の幾何学的形態は、エントゲーゲン(E)またはツザンメン(Z)、シスまたはトランス配置をとることができる。アルケニルは、直鎖状のものだけでなく、分枝鎖状ものも含む。アルケニルとして好ましくはC-C10アルケニル、より好ましくはC-Cアルケニルが挙げられる。具体的には、たとえば、ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル(シス、トランスを含む)、3-ブテニル、ペンテニル、3-メチル-2-ブテニル、ヘキセニルなどが挙げられる。
 本明細書において「アリール」とは1価の芳香族炭化水素環、および芳香族炭化水素環基を意味する。アリールとして好ましくはC-C10アリールが挙げられる。アリールとして具体的には、たとえば、フェニル、ナフチル(たとえば、1-ナフチル、2-ナフチル)などが挙げられる。
 本明細書において「ヘテロアリール」とは、炭素原子に加えて1~5個のヘテロ原子を含有する、芳香族性の環状の1価の基、および芳香族複素環基を意味する。環は単環でも、他の環との縮合環でもよく、部分的に飽和されていてもよい。ヘテロアリールの環を構成する原子の数は好ましくは5~10(5~10員ヘテロアリール)であり、より好ましくは5~7(5~7員ヘテロアリール)である。ヘテロアリールとして具体的には、たとえば、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、ベンゾチエニル、ベンゾチアジアゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、ベンゾオキサジアゾリル、ベンゾイミダゾリル、ベンゾトリアゾリル、インドリル、イソインドリル、インダゾリル、アザインドリル、キノリル、イソキノリル、シンノリニル、キナゾリニル、キノキサリニル、ベンゾジオキソリル、インドリジニル、イミダゾピリジル、ピラゾロピリジル、イミダゾピリジル、トリアゾロピリジル、ピロロピラジニル、フロピリジルなどが挙げられる。
 本明細書において「アラルキル(アリールアルキル)」とは、前記定義の「アルキル」の少なくとも一つの水素原子が前記定義の「アリール」で置換された基を意味する。アラルキルとして、C-C14アラルキルが好ましく、C-C10アラルキルがより好ましい。アラルキルとして具体的には、たとえば、ベンジル、フェネチル、3-フェニルプロピルなどが挙げられる。
 本明細書において「ヘテロアリールアルキル」とは、前記定義の「アルキル」の少なくとも一つの水素原子が前記定義の「ヘテロアリール」で置換された基を意味する。ヘテロアリールアルキルとして、5~10員ヘテロアリールC-Cアルキルが好ましく、5~10員ヘテロアリールC-Cアルキルがより好ましい。ヘテロアリールアルキルとして具体的には、たとえば、3-チエニルメチル、4-チアゾリルメチル、2-ピリジルメチル、3-ピリジルメチル、4-ピリジルメチル、2-(2-ピリジル)エチル、2-(3-ピリジル)エチル、2-(4-ピリジル)エチル、2-(6-キノリル)エチル、2-(7-キノリル)エチル、2-(6-インドリル)エチル、2-(5-インドリル)エチル、2-(5-ベンゾフラニル)エチルなどが挙げられる。
 本明細書において「シクロアルキル」とは、飽和または部分的に飽和した環状の1価の脂肪族炭化水素基を意味し、単環、ビシクロ環、スピロ環を含む。シクロアルキルとして好ましくはC-Cシクロアルキルが挙げられる。具体的には、たとえば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ[2.2.1]ヘプチル、スピロ[3.3]ヘプチルなどが挙げられる。
 本明細書において「アルコキシ」とは、前記定義の「アルキル」が結合したオキシ基を意味する。アルコキシとして、好ましくはC-Cアルコキシが挙げられる。アルコキシとして具体的には、たとえば、メトキシ、エトキシ、1-プロポキシ、2-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、3-メチルブトキシなどが挙げられる。
 本明細書における「アルコキシアルキル」とは、前記定義の「アルキル」の1つまたは複数の水素が前記定義の「アルコキシ」で置換された基を意味する。アルコキシアルキルとして、C-CアルコキシC-Cアルキルが好ましく、C-CアルコキシC-Cアルキルがより好ましい。アルコキシアルキルとして具体的には、たとえば、メトキシメチル、エトキシメチル、1-プロポキシメチル、2-プロポキシメチル、n-ブトキシメチル、i-ブトキシメチル、s-ブトキシメチル、t-ブトキシメチル、ペンチルオキシメチル、3-メチルブトキシメチル、1-メトキシエチル、2-メトキシエチル、2-エトキシエチルなどが挙げられる。
 本明細書において「アミノ」とは、狭義には-NHを意味し、広義には-NRR’を意味し、ここでRおよびR’は独立して、水素、アルキル、アルケニル、アルキニル、シクロアルキル、ヘテロシクリル、アリール、またはヘテロアリールから選択されるか、あるいはRおよびR’はそれらが結合している窒素原子と一緒になって環を形成する。アミノとして好ましくは、-NH、モノC-Cアルキルアミノ、ジC-Cアルキルアミノ、4~8員環状アミノなどが挙げられる。
 本明細書において「モノアルキルアミノ」とは、前記定義の「アミノ」のうち、Rが水素であり、かつR’が前記定義の「アルキル」である基を意味する。モノアルキルアミノとして、好ましくは、モノC1-C6アルキルアミノが挙げられる。モノアルキルアミノとして具体的には、たとえば、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、n-ブチルアミノ、s-ブチルアミノ、t-ブチルアミノなどが挙げられる。
 本明細書において「ジアルキルアミノ」とは、前記定義の「アミノ」のうち、RおよびR’が独立して前記定義の「アルキル」である基を意味する。ジアルキルアミノとして、好ましくは、ジC-Cアルキルアミノが挙げられる。ジアルキルアミノとして具体的には、たとえば、ジメチルアミノ、ジエチルアミノなどが挙げられる。
 本明細書において「アルキルスルホニルアミノ」とは、前記定義の「アミノ」にスルホニルが結合した基を意味する。好ましくは、C-Cアルキルスルホニル-NH-、(C-Cアルキルスルホニル-)-N-などが挙げられる。アミノアルキルスルホニルして具体的には、たとえば、メチルスルホニルアミノ、エチルスルホニルアミノ、ビス(メチルスルホニル)アミノ、ビス(エチルスルホニル)アミノ、などが挙げられる。
 本明細書において「アミノカルボニル」とは、前記定義の「アミノ」が結合したカルボニル基を意味する。アミノカルボニルとして、好ましくは、-CONH、モノC-Cアルキルアミノカルボニル、ジC-Cアルキルアミノカルボニル、4~8員環状アミノカルボニルが挙げられる。アミノカルボニルとして具体的には、例えば、-CONH、ジメチルアミノカルボニル、1-アゼチジニルカルボニル、1-ピロリジニルカルボニル、1-ピペリジニルカルボニル、1-ピペラジニルカルボニル、4-モルホリニルカルボニル、3-オキサゾリジニルカルボニル、1,1-ジオキシドチオモルホリニル-4-イルカルボニル、3-オキサ-8-アザビシクロ[3.2.1]オクタン-8-イルカルボニルなどが挙げられる。
 本明細書においてペプチドを構成する「アミノ酸残基」を単に「アミノ酸」ということがある。
 本明細書における「アミノ酸の側鎖」とは、α-アミノ酸の場合、アミノ基とカルボキシル基が結合した炭素(α-炭素)に結合した、アミノ基とカルボキシル基以外の原子団を意味する。例えば、Alaのメチル基はアミノ酸の側鎖である。β-アミノ酸の場合、α-炭素、および/またはβ-炭素に結合した原子団であって、β-炭素に結合したアミノ基とα-炭素に結合したカルボキシル基以外の原子団がアミノ酸の側鎖となり得る。またγ-アミノ酸の場合、α-炭素、β-炭素、および/またはγ-炭素に結合した原子団であって、γ-炭素に結合したアミノ基とα-炭素に結合したカルボキシル基以外の原子団がアミノ酸の側鎖となり得る。
 本明細書における「アミノ酸の主鎖」とは、α-アミノ酸の場合は、アミノ基、α-炭素、およびカルボキシル基から構成される鎖状部分、β-アミノ酸の場合は、アミノ基、β-炭素、α-炭素、およびカルボキシル基から構成される鎖状部分、およびγ-アミノ酸の場合は、アミノ基、γ-炭素、β-炭素、α-炭素、およびカルボキシル基から構成される鎖状部分をそれぞれ意味する。また、「α―アミノ酸骨格」とは、アミノ基、α-炭素、およびカルボキシル基から構成される鎖状部分、「β―アミノ酸骨格」とは、アミノ基、β-炭素、α-炭素、およびカルボキシル基から構成される鎖状部分、「γ-アミノ酸骨格」とは、アミノ基、γ-炭素、β-炭素、α-炭素、およびカルボキシル基から構成される鎖状部分をそれぞれ意味する。本明細書において、全体又は部分構造として「β―アミノ酸骨格」を有するアミノ酸を「β-アミノ酸骨格を有するアミノ酸」と呼ぶことがある。例えばアスパラギン酸は、アミノ基、β-炭素、α-炭素、およびカルボキシル基から構成される鎖状部分(β―アミノ酸骨格)を有することから、「β-アミノ酸骨格を有するアミノ酸」に該当する。
 本明細書における「ペプチドの主鎖」とは、アミノ酸がアミド結合で複数連結した構造を意味する。本明細書における「環状ペプチドの主鎖」および「環状部の主鎖」とは、環状ペプチドの環状部に含まれる、アミノ酸がアミド結合で複数連結した構造を意味する。「ペプチドの主鎖」、「環状ペプチドの主鎖」および「環状部の主鎖」には、一部にアミド結合の代わりにエステル結合などの他の結合が含まれていてもよい。また、「環状ペプチドの主鎖」および「環状部の主鎖」には、環状ペプチドの環化部位の結合として本明細書で例示される結合、または、ペプチドの環化形成反応により形成された結合が含まれていてもよい。
 本明細書における「N-置換アミノ酸」とは、アミノ酸に含まれるアミノ基が置換されている、すなわち-NHR(Rは置換基を有していてもよいアルキル、アルケニル、アルキニル、アリール、ヘテロアリール、アラルキル、シクロアルキルを示し、これらの基の中の隣接しない1または2個のメチレン基は酸素原子、カルボニル基(-CO-)、またはスルホニル基(-SO-)で置換されていてもよく、またプロリンのようにN原子に結合した炭素鎖とα位の炭素原子とが環を形成していてもよい。)と表されるアミノ酸を意味する。本明細書における「N-置換アミノ酸」としては、N-アルキルアミノ酸であってもよく、好ましくはN-C~Cアルキルアミノ酸が、より好ましくはN-C~Cアルキルアミノ酸が、最も好ましくはN-エチルアミノ酸、またはN-メチルアミノ酸が挙げられるが、これらに限定されるものではない。本明細書における「N-置換アミノ酸」としては、「アミノ酸の主鎖」に含まれるアミノ基が置換されているN-置換アミノ酸が好ましく例示される。
 本明細書における「N-非置換アミノ酸」とは、アミノ酸に含まれるアミノ基が置換されていない、すなわち-NHと表されるアミノ酸を意味する。本明細書における「N-非置換アミノ酸」としては、「アミノ酸の主鎖」に含まれるアミノ基が置換されていないN-非置換アミノ酸が好ましく例示される。
 本明細書における環状ペプチドを構成するアミノ酸がアスパラギン酸、もしくはアスパラギン酸のα-炭素上水素およびβ-炭素上水素の1つ以上が置換されたアミノ酸、またはそれらの「アミノ酸の主鎖」に含まれるアミノ基が置換されているアミノ酸である場合において、「アミノ酸の主鎖」に含まれるα-炭素に結合したカルボキシ基が「環状ペプチドの主鎖」に含まれていてもよい。他方、「アミノ酸の側鎖」に含まれるβ-炭素に結合したカルボキシ基が「環状ペプチドの主鎖」に含まれていてもよく、その場合、「β―アミノ酸骨格」を「環状ペプチドの主鎖」に含む。
 本明細書において「アミノ酸の数」および「アミノ酸残基数」とは、ペプチドを構成するアミノ酸残基(アミノ酸ユニット)の数のことであり、アミノ酸を連結しているアミド結合、エステル結合、および環化部の結合を切断した際に生じるアミノ酸ユニットの数を意味する。例えば、環状部が10個のアミノ酸残基からなり、直鎖部が1アミノ酸残基からなる環状ペプチドのアミノ酸の数およびアミノ酸残基数は11である。
 本明細書において、「環状ペプチドの環状部にアミノ酸を含む」とは、環状ペプチドの環状部の主鎖が、アミノ酸を部分構造として含むことを意味する。
 本明細書における「飽和複素環」は、炭素原子に加えて1~5個のヘテロ原子を含有し、環中に二重結合および/または三重結合を含まない、非芳香族の複素環を意味する。飽和複素環は単環でもよく、他の環、例えば、ベンゼン環などの芳香環と縮合環を形成してもよい。飽和複素環として好ましくは4~10員飽和複素環が挙げられる。飽和複素環として具体的には、たとえば、アゼチジン環、オキソアゼチジン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環、モルホリン環、チオモルホリン環、ピロリジン環、2-オキソピロリジン環、4-オキソピロリジン環、ピペリジン環、4-オキソピペリジン環、ピペラジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、イソオキサゾリジン環、チアゾリジン環、イソチアゾリジン環、チアジアゾリジン環、オキサゾリドン環、ジオキソラン環、ジオキサン環、チエタン環、オクタヒドロインドール環、インドリン環、アゼパン環、ジオキセパン環、5,9-ジオキサスピロ[3.5]ノナン環などが挙げられる。
 本明細書において、環状ペプチドまたは溶媒の分子量は、特別な記載がない限り、g/molで表される。また、環状ペプチドの結晶が環状ペプチドのフリー体の結晶、環状ペプチドの溶媒和物の結晶またはそれらの混合物のいずれの場合においても、「環状ペプチドの分子量」は、環状ペプチドのフリー体の分子量を基準とする。
 本発明の一実施形態に係る環状ペプチドの分子量(g/mol)は、1205以上、1206以上、1207以上、1208以上、1210以上、1220以上、1230以上、1250以上または1300以上であってよく、2800以下、2500以下、2000以下、1900以下、1800以下、1700以下または1600以下であってよい。本発明の環状ペプチドの分子量(g/mol)は、好ましくは1204以上3000以下であり、より好ましくは1300以上1600以下であり、最も好ましくは1400以上1500以下である。
 本発明の一実施形態に係る環状ペプチドは、アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基であってよい。また、本発明の一実施形態に係る環状ペプチドは、アミノ酸の合計が7~15残基、8~14残基、9~13残基、10~13残基、11~13残基、11~12残基または11残基からなる環状部を含み、アミノ酸の総数が9~18残基、10~16残基、10~14残基、11~14残基、11~13残基、11~12残基または11残基であってもよい。本発明の環状ペプチドは、好ましくは8~16残基からなる環状部を含み、アミノ酸の総数が8~20残基であり、より好ましくは11~13残基からなる環状部を含み、アミノ酸の総数が11~14残基であり、最も好ましくはアミノ酸の合計が11残基からなる環状部を含み、アミノ酸の総数が11残基である。
 本発明の一実施形態に係る環状ペプチドは、N-置換アミノ酸を少なくとも3残基、4残基または5残基含んでもよく、他の一実施形態においては、N-置換アミノ酸を少なくとも5残基含んでもよい。また、本発明の一実施形態に係る環状ペプチドは、N-非置換アミノ酸を少なくとも1残基、2残基または3残基含んでもよく、他の一実施形態においては、N-非置換アミノ酸を少なくとも3残基含んでもよい。本発明の環状ペプチドは、好ましくはN-置換アミノ酸を少なくとも3残基含み、より好ましくはN-置換アミノ酸を少なくとも5残基含み、最も好ましくはN-置換アミノ酸を少なくとも7残基含む。
 本発明の一実施形態に係る環状ペプチドに含まれるN-置換アミノ酸は、N-アルキルアミノ酸であってよく、他の一実施形態においては、N-メチルアミノ酸またはN-エチルアミノ酸であってもよく、他の一実施形態においては、N-メチルアミノ酸であってもよい。本発明の環状ペプチドに含まれるN-置換アミノ酸は、好ましくはN-アルキルアミノ酸であり、より好ましくはN-メチルアミノ酸またはN-エチルアミノ酸であり、最も好ましくはN-メチルアミノ酸である。
 本発明の一実施形態に係る環状ペプチドは、以下の(I)、(II)および(III)の特徴:
(I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
(II)N-置換アミノ酸を少なくとも2残基含む特徴;
(III)分子量(g/mol)が、1204以上3000以下である特徴;
を有する環状ペプチドであってもよい。
 本発明の一実施形態に係る環状ペプチドは、以下の(I)および(II)の特徴:
(I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
(II)N-置換アミノ酸を少なくとも2残基含む特徴;
を有する環状ペプチドであってもよい。
 本発明の一実施形態に係る環状ペプチドは、β-アミノ酸骨格を少なくとも1つ含んでもよい。また、本発明の一実施形態に係る環状ペプチドは、環状部に、β-アミノ酸骨格を少なくとも1つ含んでもよい。
 本発明の一実施形態に係る環状ペプチドは、28~55、28~49、31~46、34~43、34~40、34~37または34員環からなる環状部を含んでもよい。本発明の一実施形態に係る環状ペプチドは、34~40員環からなる環状部を含んでもよく、他の一実施形態に係る環状ペプチドは、34員環からなる環状部を含んでもよい。
 本発明の一実施形態に係る環状ペプチドが34員環からなる環状部を含む場合、上記34員環からなる環状部は、α-アミノ酸10残基およびβ-アミノ酸骨格を有するアミノ酸1残基の合計11残基のアミノ酸からなる環状ペプチドあってよい。
 本発明の一実施形態に係る環状ペプチドは、以下の構造であってもよい。
Figure JPOXMLDOC01-appb-C000002
[ここで、P、P、P、P、P10およびP11はC~Cアルキルであり、PはC~Cアルキルであるか、またはPは、Pが結合している窒素原子、R4、並びにR4が結合している炭素原子と一緒になって4~7員飽和複素環を形成し、Pは、C~Cアルキルであるか、またはPは、Pが結合している窒素原子、R、並びにRが結合している炭素原子と一緒になって4~7員飽和複素環を形成し、該4~7員飽和複素環はC~Cアルコキシによって置換されていてもよく、R、R、R、R、RおよびR10は水素原子、C~Cアルキル、C~Cシクロアルキルまたは置換基を有していても良いアラルキルであり、RとPが4~7員飽和複素環を形成している場合を除き、Rは水素原子またはC~Cアルキルであり、RとPが4~7員飽和複素環を形成している場合を除き、Rは水素原子またはC~Cアルキルであり、Rは、Q並びにRとQが結合している炭素原子と一緒になって3~7員飽和炭素環を形成し、R11は水素原子、C~Cアルキル、ジC~Cアルキルアミノカルボニルまたは4~8員環状アミノカルボニルである。]
 一実施形態において、上記P、P、P、P、P10およびP11はメチルまたはエチルであってもよい。また、一実施形態において、上記Pは、メチル、またはPが結合している窒素原子、R4、並びにR4が結合している炭素原子と一緒になって4員飽和複素環を形成していてもよい。また、一実施形態において、Pは、Pが結合している窒素原子、R、並びにRが結合している炭素原子と一緒になって5員飽和複素環を形成していてもよく、該5員飽和複素環はC~Cアルコキシによって置換されていてもよい。
 一実施形態において、上記RおよびRはC~Cアルキルであり、上記Rは水素原子またはC~Cアルキルであり、上記Rは、RとPが4~7員飽和複素環を形成している場合を除き、水素原子であり、上記RはC~Cシクロアルキルまたは置換基を有していても良いベンジルであり、上記Rは置換基を有していても良いフェニルエチルであり、上記Rは、Q並びにRとQが結合している炭素原子と一緒になって5員飽和炭素環を形成し、上記R10はC~CアルキルまたはC~Cシクロアルキルであり、上記R11はメチル、ジC~Cアルキルアミノカルボニルまたは6員環状アミノカルボニルであってもよい。
 本発明の一実施形態に係る環状ペプチドのClogPは、「CLOGP Reference Manual Daylight Version 4.9(リリース日:2011年8月1日、https://www.daylight.com/dayhtml/doc/clogp/)」に記載の原則に則って求めることができる。ClogPを計算する方法の一例として、Daylight Chemical Information Systems, Inc.のDaylight Version 4.95(リリース日:2011年8月1日、ClogPアルゴリズムversion5.4、データベースversion28、https://www.daylight.com/dayhtml/doc/release_notes/index.html)を用いて計算することが挙げられる。
 本発明の一実施形態に係る環状ペプチドのClogPは、5以上、6以上、7以上、8以上または9以上であってよく、24以下、23以下、22以下、21以下、20以下、19以下または18以下であってもよい。本発明の一実施形態に係る環状ペプチドのClogPの範囲として、例えば、5以上23以下、6以上21以下、7以上20以下、8以上19以下、9以上18以下、10以上17以下、11以上16.5以下、11.2以上16.1以下が例示される。また、本発明の一実施形態に係る環状ペプチドのClogPは、4以上25以下であってもよく、他の一実施形態に係る環状ペプチドのClogPは、9以上18以下であってもよい。また、本発明の一実施形態に係る環状ペプチドのClogPは、シクロスポリンA(ClogP:14.36)のClogPより大きくてもよい。本発明の環状ペプチドのClogPは、好ましくは5以上23以下であり、より好ましくは9以上18以下であり、最も好ましくは11.2以上16.1以下である。
 本発明の一実施形態に係る環状ペプチドは、ClogP/アミノ酸残基数が1.0以上であることが好ましい。ClogP/アミノ酸残基数は、環状ペプチドのClogPを該環状ペプチドに含まれるアミノ酸残基数で除すことにより算出される値である。例えば、環状ペプチドのClogPが14.0で、該環状ペプチドに含まれるアミノ酸残基数が7のとき、該環状ペプチドのClogP/アミノ酸残基数は2.0と計算される。
 本発明の一実施形態に係る環状ペプチドのClogP/アミノ酸残基数は、0.3以上であることが好ましく、0.5以上であることがより好ましく、0.8以上であることが最も好ましい。本発明の一実施形態に係る環状ペプチドのCloP/アミノ酸残基数の上限は、2.3以下であることが好ましく、1.9以下であることがより好ましく、1.6以下であることが最も好ましい。本発明の一実施形態に係る環状ペプチドのClogP/アミノ酸残基数の範囲として、例えば、0.3以上2.3以下、0.4以上2.3以下、0.5以上1.9以下、0.7以上1.8以下、および0.8以上1.6以下が例示される。一実施形態に係る環状ペプチドのClogP/アミノ酸残基数は、0.8以上1.6以下であってもよい。
 本発明の一実施形態に係る環状ペプチドの、50mMリン酸緩衝液(pH6.5)への溶解度は、一般的な方法により測定することができる。例えば、凍結乾燥した化合物粉末に50mM リン酸緩衝液(PPB:Phosphate buffer、pH6.5)を添加し、振盪(1800rpm、22~24時間)後、フィルター濾過し、LC/MS/MSでろ液の化合物濃度を測定し、測定された化合物濃度から、溶解度(μg/mL)を算出することができる。なお、「溶解度」は、25℃、1気圧の条件下での溶解度を意味する。本発明の一実施形態に係る環状ペプチドの50mMリン酸緩衝液(pH6.5)への溶解度は、1200mg/mL以下、800mg/mL以下、600mg/mL以下、300mg/mL以下、200mg/mL以下、100mg/mL以下、50mg/mL以下、25mg/mL以下、10mg/mL以下、5.0mg/mL以下、または2.6mg/mL以下であってよく、0.8mg/mL以上、0.9mg/mL以上、1.0mg/mL以上、または1.1mg/mL以上であってよい。一実施形態に係る環状ペプチドの50mMリン酸緩衝液(pH6.5)への溶解度は、0.8mg/mL以上であってよく、他の一実施形態においては、1.1mg/mL以上であってもよい。
 本発明の一実施形態に係る、50mMリン酸緩衝液(pH6.5)への溶解度が10mg/mL以下である環状ペプチドの具体例としては、例えば、シクロスポリンA等を挙げることができる。
 本発明の一実施形態に係る環状ペプチドの結晶は、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有していてもよい。本発明の他の一実施形態に係る環状ペプチドの結晶は、CuKα放射を用いた粉末X線回析において2つ以上の回折ピークを有していてもよい。本発明の他の一実施形態に係る環状ペプチドの結晶は、CuKα放射を用いた粉末X線回析において3つ以上の回折ピークを有していてもよい。
 なお、CuKα放射を用いた粉末X線回析は、例えば、以下のような条件で測定することができる。具体例として、D8 Discover、2D VÅNTEC-500 solid state detector(Bruker社製)などの粉末X線回析装置を用い、線源としてCuKαを用い、管電圧/管電流は40kV/40mAまたは50kV/1000μAなどの条件において、測定範囲5~31°、露光時間:40~600秒などの条件により測定することができる。
 本発明の一実施形態に係る環状ペプチドの結晶は、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する結晶であってもよい。
 本発明の一実施形態に係る環状ペプチドは、シクロスポリンAを除く環状ペプチドであってもよく、他の一実施形態に係る環状ペプチドは、(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドを除く環状ペプチドであってもよく、他の一実施形態に係る環状ペプチドは、シクロスポリンAおよび(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドを除く環状ペプチドであってもよい。本発明の他の一実施形態に係る環状ペプチドは、(3s,9s,12s,17s,20s,23s,27s,30s,36s)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1s)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1’-シクロペンタン]-27-カルボキサミドであってもよい。
 本明細書における「アミド系溶媒」は、分子内にアミド結合を含む溶媒を意味する。本明細書における「アミド系溶媒」または「分子量18以上170以下のアミド系溶媒」としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドンおよびN-メチルピロリドン等を挙げることができる。本発明の一実施形態における「アミド系溶媒」または「分子量18以上170以下のアミド系溶媒」は、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、2-ピロリドンおよびN-メチルピロリドンからなる群より選択される1種または複数種であってよく、好ましくはホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、2-ピロリドンまたはN-メチルピロリドンであり、より好ましくはホルムアミドまたはN,N-ジメチルホルムアミドであり、最も好ましくはホルムアミドである。
 本明細書における「スルホキシド系溶媒」は、スルホキシドに該当する溶媒を意味する。本明細書における「スルホキシド系溶媒」または「分子量18以上170以下のスルホキシド系溶媒」としては、例えばジメチルスルホキシド、フェニルメチルスルホキシドおよびジエチルスルホキシド等を挙げることができる。本発明の一実施形態における「スルホキシド系溶媒」または「分子量18以上170以下のスルホキシド系溶媒」は、ジメチルスルホキシドおよびジエチルスルホキシドからなる群より選択される1種または複数種であってよく、好ましくはジメチルスルホキシド、フェニルメチルスルホキシドまたはジエチルスルホキシドであり、より好ましくはジメチルスルホキシドまたはジエチルスルホキシドであり、最も好ましくはジメチルスルホキシドである。
 本明細書における「炭化水素系溶媒」は、炭素原子および水素原子のみからなる溶媒を意味する。
 本明細書における「芳香族炭化水素系溶媒」は、分子内に芳香環を1つ以上有する炭化水素系溶媒を意味する。本明細書における「芳香族炭化水素系溶媒」は、好ましくは分子内にベンゼン環を1つ以上有する溶媒であり、より好ましくは分子内にベンゼン環を1つ有する溶媒である。本明細書における「芳香族炭化水素系溶媒」または「分子量18以上分子量170以下の芳香族炭化水素系溶媒」としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、テトラリンおよびクメン等を挙げることができる。本発明の一実施形態における「芳香族炭化水素系溶媒」または「分子量170以下の芳香族炭化水素系溶媒」は、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリンおよびクメンからなる群より選択される1種または複数種であってよく、好ましくは、トルエン、キシレン、エチルベンゼン、テトラリンおよびクメンからなる群より選択される1種または複数種であり、より好ましくは、トルエン、キシレン、テトラリンまたはクメンであり、最も好ましくはトルエン、テトラリンまたはクメンである。
 本明細書における「ハロゲン系溶媒」は、分子内にハロゲン原子を1つ以上有する溶媒を意味する。本明細書における「ハロゲン系溶媒」は、好ましくは分子内に塩素原子および/または臭素原子を1つ以上有する溶媒であり、より好ましくは分子内に塩素原子を1つ以上有する溶媒である。本明細書における「ハロゲン系溶媒」または「分子量18以上170以下のハロゲン系溶媒」としては、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼンおよび四塩化炭素等を挙げることができる。本発明の一実施形態における「ハロゲン系溶媒」または「分子量170以下のハロゲン系溶媒」は、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼンおよび四塩化炭素からなる群より選択される1種または複数種であってよく、好ましくは、ジクロロメタン、クロロホルム、1,2-ジクロロエタンおよびクロロベンゼンからなる群より選択される1種または複数種であり、より好ましくはジクロロメタン、クロロホルム、1,2-ジクロロエタンまたはクロロベンゼンであり、最も好ましくはジクロロメタンまたはクロロベンゼンである。
 本明細書における「アルコール系溶媒」は、分子内に炭素原子に結合した水酸基を1つ以上有する溶媒を意味する。本明細書における「アルコール系溶媒」または「分子量18以上170以下のアルコール系溶媒」としては、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールおよびベンジルアルコール等を挙げることができる。本発明の一実施形態における「アルコール系溶媒」または「分子量18以上170以下のアルコール系溶媒」は、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールおよびベンジルアルコールからなる群より選択される1種または複数種であってよく、好ましくは、メタノール、エタノール、1-プロパノール、イソプロパノールおよびn-ブタノールからなる群より選択される1種または複数種であり、より好ましくはメタノール、エタノール、1-プロパノール、イソプロパノールまたはn-ブタノールであり、最も好ましくはエタノールである。
 本明細書における「エーテル系溶媒」は、分子内にエーテル結合を1つ以上有する溶媒を意味する。本明細書における「エーテル系溶媒」または「分子量18以上170以下のエーテル系溶媒」としては、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、1,3-ジオキソラン、1,4-ジオキサン、1,2-ジメトキシエタン、ジイソプロピルエーテル、アニソールおよびt-ブチルメチルエーテル等を挙げることができる。本発明の一実施形態における「エーテル系溶媒」または「分子量18以上170以下のエーテル系溶媒」は、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、1,3-ジオキソラン、1,4-ジオキサン、1,2-ジメトキシエタン、ジイソプロピルエーテル、アニソールおよびt-ブチルメチルエーテルからなる群より選択される1種または複数種であってよく、好ましくは、テトラヒドロフラン、1,4-ジオキサン、ジイソプロピルエーテル、アニソールおよびt-ブチルメチルエーテルからなる群より選択される1種または複数種であり、より好ましくは、テトラヒドロフラン、1,4-ジオキサン、ジイソプロピルエーテル、アニソールまたはt-ブチルメチルエーテルであり、最も好ましくは1,4-ジオキサン、アニソールまたはt-ブチルメチルエーテルである。
 本明細書における「エステル系溶媒」は、分子内にエステル結合を1つ以上有する溶媒を意味する。本明細書における「エステル系溶媒」または「分子量18以上170以下のエステル系溶媒」としては、ギ酸エチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、n-酢酸ブチル、酢酸プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸ペンチルおよびγ-バレロラクトン等を挙げることができる。本発明の一実施形態における「エステル系溶媒」または「分子量18以上170以下のエステル系溶媒」は、ギ酸エチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、n-酢酸ブチル、酢酸プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸ペンチルおよびγ-バレロラクトンからなる群より選択される1種または複数種であってよく、好ましくは、酢酸エチル、酢酸イソプロピルおよびn-酢酸ブチルからなる群より選択される1種または複数種であり、より好ましくは、酢酸エチル、酢酸イソプロピルまたはn-酢酸ブチルであり、最も好ましくは酢酸エチルまたはn-酢酸ブチルである。
 本明細書における「ニトリル系溶媒」は、分子内に炭素原子に結合したシアノ基を1つ以上有する溶媒を意味する。本明細書における「ニトリル系溶媒」または「分子量18以上170以下のニトリル系溶媒」としては、アセトニトリル、ベンゾニトリルおよびプロピオニトリル等を挙げることができる。本発明の一実施形態における「ニトリル系溶媒」または「分子量18以上170以下のニトリル系溶媒」は、アセトニトリルおよびプロピオニトリルからなる群より選択される1種または複数種であってよく、好ましくはアセトニトリル、ベンゾニトリルおよびプロピオニトリルからなる群より選択される1種または複数種であり、より好ましくはアセトニトリル、ベンゾニトリルまたはプロピオニトリルであり、最も好ましくはアセトニトリルである。
 本明細書における「ケトン系溶媒」は、R-C(=O)-Rで表される溶媒であって、RおよびRはそれぞれ独立したアルキル基、アリール基又はヘテロアリール基であるか、RおよびRが一緒になってアルキレン基を形成する溶媒溶媒を意味する。本明細書における「ケトン系溶媒」または「分子量18以上170以下のケトン系溶媒」としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン、シクロヘキサノン、ジエチルケトン、シクロペンタノンおよび3-アセチルピリジン等を挙げることができる。本発明の一実施形態における「ケトン系溶媒」または「分子量18以上170以下のケトン系溶媒」は、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン、シクロヘキサノン、ジエチルケトン、シクロペンタノンおよび3-アセチルピリジンからなる群より選択される1種または複数種であってよく、好ましくは、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンおよび3-アセチルピリジンからなる群より選択される1種または複数種であり、より好ましくはアセトン、メチルエチルケトン、シクロヘキサノンまたはメチルイソブチルケトンであり、最も好ましくはアセトンまたはメチルエチルケトンである。
 本明細書における「脂肪族炭化水素系溶媒」は、分子内に芳香環を有しない炭化水素系溶媒を意味する。本明細書における「脂肪族炭化水素系溶媒」または「分子量18以上170以下の脂肪族炭化水素系溶媒」としては、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよびメチルシクロヘキサン等を挙げることができる。本発明の一実施形態における「脂肪族炭化水素系溶媒」または「分子量18以上170以下の脂肪族炭化水素系溶媒」は、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよびメチルシクロヘキサンからなる群より選択される1種または複数種であってよく、好ましくは、n-ヘプタン、シクロヘキサンおよびメチルシクロヘキサンからなる群より選択される1種または複数種であり、より好ましくは、n-ヘプタン、シクロヘキサンまたはメチルシクロヘキサンであり、最も好ましくは、n-ヘプタンまたはシクロヘキサンである。
 本明細書における「水溶性有機溶媒」は、水と任意の割合で混和する有機溶媒を意味する。本明細書における「水溶性有機溶媒」としては、アルコール系溶媒、アミド系溶媒、ニトリル系溶媒およびスルホキシド系溶媒等を挙げることができる。本発明の一実施形態における「水溶性有機溶媒」は、アルコール系溶媒、アミド系溶媒、ニトリル系溶媒またはスルホキシド系溶媒であってよく、好ましくは、アルコール系溶媒またはスルホキシド系溶媒であり、より好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノールまたはジメチルスルホキシドであり、最も好ましくは、エタノールまたはジメチルスルホキシドである。
 本明細書における「PEG系溶媒」は、R(OCHRCH)nORで表される溶媒またはその混合物を意味し、nは1以上の自然数であり、RおよびRは、それぞれ独立して水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、Rは水酸基で置換されていても良いC~C18アルキル、または水酸基で置換されていても良いC~C18アルケニルである。本発明の一実施形態における「PEG系溶媒」は、(i)R(OCHRCH)nORで表される溶媒であってnが1以上10以下の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であってよく、ここでRおよびRは、それぞれ独立して水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、Rは水酸基で置換されていても良いC~C18アルキル、または水酸基で置換されていても良いC~C18アルケニルである。本発明の好ましい一実施形態における「PEG系溶媒」は、(i)R(OCHRCH)nORで表される溶媒であってnが1、2、3もしくは4の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であってもよく、ここでRは水素またはC~Cアルキルであり、Rは水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、RはC10~C18アルキルである。本発明のより好ましい一実施形態における「PEG系溶媒」は、(i)R(OCHRCH)nORで表される溶媒であってnが1、2、3または4の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であってもよく、ここでRは水素またはメチルであり、Rは水素、メチルまたは-C(=O)Rであり、Rは水素またはメチルであり、RはC11~C17アルキルである。本発明のさらに好ましい一実施形態における「PEG系溶媒」は、ジグリム、トリグリム、テトラグリム、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールまたはポリエチレングリコールモノ脂肪酸エステルであってもよい。本発明のより一層好ましい一実施形態における「PEG系溶媒」は、ポリエチレングリコールであってもよく、この場合のポリエチレングリコールの数平均分子量は150~5000であってよく、好ましくは360~440、540~660、900~1100または1800~2200であってもよく、また、ポリエチレングリコールは、PEG400、PEG600、PEG1000またはPEG2000であってもよい。本発明の他のより一層好ましい一実施形態における「PEG系溶媒」は、ポリエチレングリコールモノ脂肪酸エステルであってもよく、この場合のポリエチレングリコールモノ脂肪酸エステルは、ポリエチレングリコールモノステアレートまたはポリエチレングリコールモノラウレートであってもよい。本発明における「PEG系溶媒」として、好ましくはジグリム、トリグリム、テトラグリム、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールまたはポリエチレングリコールモノ脂肪酸エステルであり、より好ましくはポリエチレングリコールまたはポリエチレングリコールモノ脂肪酸エステルであり、最も好ましくはポリエチレングリコールモノ脂肪酸エステルである。
 本開示の一側面は、環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法である。
 本開示の一側面の製造方法における溶媒は、以下の(1)、(2)および(3):
(1)(i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒;
(2)溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水;
(3)(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒を含む混合溶媒;
からなる群より選択されるいずれかの溶媒であってもよい。
 本開示の一側面の製造方法における溶媒は、(i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒であってよい。
 本開示の一側面の製造方法における溶媒は、(i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒である場合、該溶媒は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される溶媒であってよく、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択される溶媒であってもよく、好ましくはアミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される溶媒であり、より好ましくはアミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、およびハロゲン系溶媒からなる群より選択される溶媒であり、最も好ましくはアミド系溶媒、スルホキシド系溶媒および芳香族炭化水素系溶媒からなる群より選択される溶媒である。
 本開示の一側面の製造方法における溶媒は、一実施形態において、分子量18以上170以下の溶媒(A)、または分子量18以上170以下の溶媒(A)と分子量18以上170以下の溶媒(B)との混合溶媒であってよく、他の一実施形態において、溶媒(A)、または溶媒(A)と溶媒(B)を含む混合溶媒であってよい。これらの場合において、上記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択される1種または複数種であり、上記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種であってもよい。また、これらの場合において、上記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択され、上記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択されてもよい。
 上記溶媒(A)は、例えばアミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される1種または複数種であってよく、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、およびハロゲン系溶媒からなる群より選択される1種または複数種であってもよく、アミド系溶媒、スルホキシド系溶媒および芳香族炭化水素系溶媒からなる群より選択される1種または複数種であってもよく、アミド系溶媒であってもよく、スルホキシド系溶媒であってもよく、芳香族炭化水素系溶媒であってもよく、ハロゲン系溶媒であってもよく、アルコール系溶媒であってもよく、エーテル系溶媒であってもよく、エステル系溶媒であってもよく、ニトリル系溶媒であってもよく、ケトン系溶媒であってもよい。上記溶媒(A)として好ましくはアミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される1種または複数種であり、より好ましくはアミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、またはハロゲン系溶媒であり、最も好ましくはアミド系溶媒、スルホキシド系溶媒または芳香族炭化水素系溶媒である。
 上記溶媒(B)は、例えば脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種の溶媒であってよく、脂肪族炭化水素系溶媒、エチレングリコールまたは水であってもよく、脂肪族炭化水素系溶媒であってもよく、水であってもよい。上記溶媒(B)として好ましくは脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種の溶媒であり、より好ましくは脂肪族炭化水素系溶媒、エチレングリコールまたは水であり、最も好ましくはn-ヘプタン、シクロヘキサンまたは水である。
 本開示の一側面の製造方法に係る溶媒における上記溶媒(A)と上記溶媒(B)との体積比(v/v)は、1:0~1:40であってよく、1:0~1:30、1:0~1:20、1:0~1:10、1:0~1:7、または1:0~1:5であってもよく、1:0~1:4であってもよく、10:1~1:40であってもよく、5:1~1:30、3:1~1:20、2:1~1:10、1:1~1:7、または1:2~1:5であってもよく、1:2~1:4であってもよい。溶媒における上記溶媒(A)と上記溶媒(B)との体積比(v/v)は、好ましくは1:0~1:4であり、より好ましくは、1:1~1:4であり、最も好ましくは、1:2~1:4である。
 本開示の一側面の製造方法に係る溶媒における上記溶媒(A)は、分子量18以上170以下の溶媒であればよく、分子量18以上160以下、分子量18以上150以下、分子量18以上140以下、または分子量32以上135以下の溶媒であってよい。上記溶媒(A)は好ましくは分子量18以上150以下であり、より好ましくは分子量18以上140以下であり、最も好ましくは分子量32以上135以下である。
 本開示の一側面の製造方法に係る溶媒における上記溶媒(B)は、分子量18以上170以下の溶媒であればよく、分子量18以上160以下、分子量18以上135以下、分子量18以上120以下、または分子量18以上105以下の溶媒であってよい。上記溶媒(B)は好ましくは分子量18以上135以下であり、より好ましくは分子量18以上120以下であり、最も好ましくは分子量18以上105以下の溶媒である。
 本開示の一側面の製造方法に係る溶媒における上記溶媒(A)および上記溶媒(B)の融点は、25℃以下であってもよい。
 本開示の一側面の製造方法における溶媒は、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水であってよい。
 本開示の一側面の製造方法における溶媒が、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水である場合、上記界面活性剤は、一実施形態においては、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤および非イオン性界面活性剤からなる群より選択される1種または複数種であってもよく、他の一実施形態においては、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタイン、レシチン、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種であってもよく、さらに他の一実施形態においては、アルキル硫酸塩、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種であってもよく、好ましくは、アルキル硫酸塩、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルまたはポリオキシエチレンソルビタン脂肪酸エステルであり、より好ましくは、ラウリル硫酸ナトリウム、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール(Triton X-100(登録商標))、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))またはポリオキシエチレンソルビタンモノラウラート(Tween(登録商標))であり、最も好ましくは、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))である。
 本開示の一側面の製造方法における溶媒が、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水である場合、上記界面活性剤は、一実施形態においてはイオン性界面活性剤または非イオン性界面活性剤であってよく、他の一実施形態においてはイオン性界面活性剤であってもよく、さらに別の一実施形態においては非イオン性界面活性剤であってもよい。
 本発明の一実施形態におけるイオン性界面活性剤は、陽イオン性界面活性剤、陰イオン性界面活性剤および両性界面活性剤からなる群より選択される1種または複数種であってよく、他の一実施形態においては、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタインおよびレシチンからなる群より選択される1種または複数種であってもよく、好ましくは、アルキル硫酸塩であり、より好ましくはラウリル硫酸塩であり、最も好ましくは、ラウリル硫酸ナトリウムである。
 本発明の一実施形態における非イオン性界面活性剤は、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種であってよく、好ましくはアルキルアリールポリオキシエチレンエーテル、ポリオキシエチレングリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種であってもよく、より好ましくは、4-(1,1,3,3-テトラメチルブチル)フェニル-ポリエチレングリコール(Triton X-100(登録商標))、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))およびポリオキシエチレンソルビタンモノラウラート(Tween(登録商標))からなる群より選択される1種または複数種であり、最も好ましくはPolyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))である。
 本開示の一側面の製造方法における溶媒が、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水である場合、一実施形態においては、上記界面活性剤の含有量が、溶媒全量を基準として0.02~20wt/v%、0.05~15wt/v%、0.1~10wt/v%、0.12~8wt/v%、0.15~5wt/v%または0.18~3wt/v%であり、上記水溶性有機溶媒の含有量が、溶媒全量を基準として5~40v/v%、5~30v/v%、5~25v/v%、8~20v/v%または10~15v/v%であってもよく、好ましくは、上記界面活性剤の含有量が、溶媒全量を基準として0.01~30wt/v%であり、上記水溶性有機溶媒の含有量が、溶媒全量を基準として5~40v/v%であり、より好ましくは、上記界面活性剤の含有量が、溶媒全量を基準として0.05~15wt/v%であり、上記水溶性有機溶媒の含有量が、溶媒全量を基準として5~30v/v%であり、最も好ましくは、上記界面活性剤の含有量が、溶媒全量を基準として0.1~10wt/v%であり、上記水溶性有機溶媒の含有量が、溶媒全量を基準として5~25v/v%である。
 本開示の一側面の製造方法における溶媒は、(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒とを含む混合溶媒であってよい。
 本開示の一側面の製造方法における溶媒は、PEG系溶媒であってよい。
 本開示の一側面の製造方法における溶媒は、アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒との混合溶媒であってよい。
 本発明の一実施形態における「アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種」は、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、ベンジルアルコール、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよび水からなる群より選択される1種または複数種であってよく、好ましくはメタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、1-ペンタノール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、ベンジルアルコール、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘプタンおよび水からなる群より選択される1種または複数種であり、より好ましくは2-プロパノール、n-ヘプタンおよび水からなる群より選択される1種または複数種であり、最も好ましくは2-プロパノール、n-ヘプタンまたは水である。
 本開示の一側面の製造方法は、例えば以下の方法により実施することができる。環状ペプチドを溶媒に溶解し、所定の温度条件下で所定時間振とう攪拌して溶媒に接触させることで、環状ペプチドの結晶を製造することができる。
 本開示の一側面の製造方法に含まれる環状ペプチドを溶媒と接触させる工程において、環状ペプチドの濃度は、1mg~2000mg/mLであってよく、5mg~1500mg/mL、10mg~1000mg/mL、10mg~500mg/mL、10mg~100mg/mL、10mg~50mg/mL、100mg~400mg/mL、100mg~200mg/mLまたは500mg~1000mg/mLであってよもよい。
 本開示の一側面の製造方法に含まれる環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドは、凍結乾燥品であってよく、例えば、ジメチルスルホキシド溶液からの凍結乾燥品であってもよい。
 本開示の一側面の製造方法に含まれる環状ペプチドを溶媒と接触させる工程において使用する環状ペプチドは、一実施形態において0.5mg~200kgであってよく、他の一実施形態においては1mg~1gであってもよく、さらに別の一実施形態においては0g~200kg、100g~100kg、0.5mg~10g、1mg~1g、1mg~100mg、1mg~10mgまたは1mg~5mgであってもよい。
 本開示の一側面の製造方法の一実施形態においては、環状ペプチドを溶媒と接触させる工程において、種結晶を加えることを含まない。他の一実施形態においては、環状ペプチドを溶媒と接触させる工程において、種結晶を加えることを含む。該種結晶は、本開示の一側面の製造方法により製造された環状ペプチドの結晶であってもよく、他の方法により製造された環状ペプチドの結晶であってもよい。
 本開示の一側面の製造方法の一実施形態においては、環状ペプチドを溶媒と接触させる工程の後に、さらにろ過工程を含む。ろ過工程は、環状ペプチドの結晶を含む溶媒をろ過して固液分離により該結晶を採取する工程である。ろ過工程は、例えば環状ペプチドの結晶を含む溶媒をろ紙等でろ過して、環状ペプチドの結晶をろ取すること等により行うことができる。
 本開示の一側面の製造方法に係る環状ペプチドを溶媒と接触させる工程は、一実施形態においては-10℃~120℃の温度で、30分間~12週間行われてよく、好ましい一実施形態においては20℃~90℃における一定温度で、12時間~7日間行われてもよい。また、本開示の一側面の製造方法に係る環状ペプチドを溶媒と接触させる工程は、一実施形態においては0℃~110℃、10℃~100℃、15℃~90℃または20℃~80℃における一定の温度で行われるか、または下限温度10℃、20℃、30℃、40℃、45℃、50℃または55℃、上限温度100℃、90℃、85℃、80℃、75℃、70℃または60℃の間で、昇温冷却を10回以上、20回以上、または30回以上、1000回以下、500回以下または100回以下で繰り返し行われ、1時間~6週間、2時間~4週間、4時間~2週間または6時間~7日間で行われてもよく、好ましい一実施形態においては下限温度50℃、上限温度90℃の間で、昇温冷却を30回以上、100回以下で繰り返し行われ、12時間~7日間行われてもよい。
 本開示の一側面の製造方法により環状ペプチドの結晶が製造されたことは、例えばCuKα放射を用いた粉末X線回析において回折ピークを有することおよび偏光顕微鏡を用いて偏光と外形を観察することにより確認することができる。
 本開示の他の一側面は、環状ペプチドの結晶をスクリーニングする方法であって、以下の工程(a)および(b):
(a)本開示の一側面に係る環状ペプチドの結晶の製造方法により環状ペプチドの結晶を製造する工程;
(b)粉末X線結晶回折により結晶を分析する工程;
を含む、方法である。この場合において、スクリーニング対象となる結晶は、一実施形態において、ホルムアミドを含む溶媒を用いて製造された結晶を含んでよく、好ましい一実施形態において、ホルムアミドを含む溶媒およびジメチルスルホキシドを含む溶媒を用いて製造された結晶を含んでもよく、より好ましい一実施形態において、ホルムアミドを含む溶媒、ジメチルスルホキシドを含む溶媒、トルエンを含む溶媒およびジクロロメタンを含む溶媒を用いて製造された結晶を含んでもよい。また、この場合において、スクリーニング対象となる結晶は、一実施形態において、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))を含む溶媒を用いて製造された結晶を含んでよく、他の一実施形態において、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒を用いて製造された結晶を含んでもよく、さらに別の一実施形態において、ポリエチレングリコールを含む溶媒を用いて製造された結晶を含んでよく、好ましい一実施形態において、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))を含む溶媒、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒およびポリエチレングリコールを含む溶媒を用いて製造された結晶を含んでもよく、他の好ましい一実施形態において、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))を含む溶媒を用いて製造された結晶、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒を用いて製造された結晶およびホルムアミドを含む溶媒を用いて製造された結晶を含んでもよい。
 本開示の他の一側面は、環状ペプチドの結晶化方法をスクリーニングする方法であって、以下の工程(a)および(b):
(a)本開示の一側面に係る環状ペプチドの結晶の製造方法により環状ペプチドの結晶を製造する工程;
(b)粉末X線結晶回折により結晶を分析する工程;
を含む、方法である。この場合において、スクリーニングの対象となる結晶化方法は、一実施形態において、ホルムアミドを含む溶媒を用いる結晶化方法を含んでよく、好ましい一実施形態において、ホルムアミドを含む溶媒およびジメチルスルホキシドを含む溶媒を用いる結晶化方法を含んでよく、より好ましい一実施形態において、ホルムアミドを含む溶媒、ジメチルスルホキシドを含む溶媒、トルエンを含む溶媒およびジクロロメタンを含む溶媒を用いる結晶化方法を含んでもよい。また、この場合において、スクリーニングの対象となる結晶化方法は、一実施形態において、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))を含む溶媒を用いる結晶化方法を含んでもよく、他の一実施形態において、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒を用いる結晶化方法を含んでもよく、さらに別の一実施形態において、ポリエチレングリコールを含む溶媒を用いる結晶化方法を含んでもよく、好ましい一実施形態において、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))を含む溶媒、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒およびポリエチレングリコールを含む溶媒を用いる結晶化方法を含んでもよく、他の好ましい一実施形態において、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor E(登録商標)L)を含む溶媒、ポリエチレングリコールモノ脂肪酸エステルを含む溶媒およびホルムアミドを含む溶媒を用いる結晶化方法を含んでもよい。
 上記環状ペプチドの結晶化方法をスクリーニングする方法に含まれる環状ペプチドを溶媒と接触させる工程において1条件当たりに使用する環状ペプチドは、0.5mg~10mgであってもよい。
 上記環状ペプチドの結晶化方法をスクリーニングする方法におけるスクリーニング対象となる結晶または結晶化方法は、2種類以上、5種類以上、10種類以上、15種類以上または20種類以上であってよい。
 上記環状ペプチドの結晶化方法をスクリーニングする方法に含まれる環状ペプチドを溶媒と接触させる工程は、一実施形態において、種結晶を加えることを含まなくてもよい。
 本開示の他の一側面は、環状ペプチドの結晶が生成する確率を高める方法であって、本開示の一側面に係る環状ペプチドの結晶の製造方法により環状ペプチドの結晶を製造する工程を含む、方法である。
 本開示の他の一側面は、環状ペプチドの結晶製造における溶媒の使用である。一実施形態において、該溶媒は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、ポリオキシエチレングリセリン脂肪酸エステル、およびポリエチレングリコールモノ脂肪酸エステルからなる群から選択される溶媒であってよい。他の一実施形態において、該溶媒は、アミド系溶媒であってよく、好ましい一実施形態において、該溶媒は、ホルムアミドであってもよい。他の一実施形態において、該溶媒は、スルホキシド系溶媒であってもよく、好ましい一実施形態において、該溶媒は、ジメチルスルホキシドであってもよい。他の一実施形態において、該溶媒は、芳香族炭化水素系溶媒であってよく、好ましい一実施形態において、該溶媒は、トルエン、テトラリンまたはクメンであってもよい。他の好ましい一実施形態において、該溶媒は、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))であってもよく、さらに別の好ましい一実施形態において、該溶媒は、ポリエチレングリコールモノ脂肪酸エステルであってもよく、さらに別の好ましい一実施形態において、該溶媒は、ポリエチレングリコールであってもよい。
 本開示の他の一側面は、環状ペプチドの結晶を製造するスクリーニングキットであって、本開示の一側面に係る環状ペプチドの結晶製造における溶媒の使用により環状ペプチドの結晶を製造する、キットである。
 本開示の他の一側面は、環状ペプチドを精製する方法であって、本開示の一側面に係る環状ペプチドの結晶の製造方法により環状ペプチドの結晶を製造する工程、および固液分離により該結晶を採取する工程、を含む、方法である。固液分離により該結晶を採取する工程は、例えばろ過工程であってもよい。
 本開示の他の一側面は、ホルムアミドを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドのホルムアミド和物の結晶であってもよい。
 本開示の他の一側面は、ジメチルスルホキシドを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドのジメチルスルホキシド和物の結晶であってもよい。
 本開示の他の一側面は、芳香族炭化水素系溶媒を含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドの芳香族炭化水素系溶媒和物の結晶であってもよい。
 本開示の他の一側面は、トルエン、テトラリンまたはクメンを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドのトルエン和物、テトラリン和物またはクメン和物の結晶であってもよい。
 本開示の他の一側面は、Polyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))を含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドの水和物であってもよく、環状ペプチドのPolyoxyl 35 Hydrogenated Castor Oil(Cremophor EL(登録商標))和物の結晶であってもよい。
 本開示の他の一側面は、ポリエチレングリコールモノ脂肪酸エステルを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドの水和物であってもよく、環状ペプチドのポリエチレングリコールモノ脂肪酸エステル和物の結晶であってもよい。
 本開示の他の一側面は、ポリエチレングリコールを含む環状ペプチドの結晶を製造する工程を含む、環状ペプチドの製造方法である。一実施形態において、該製造方法は、本開示の一側面に係る環状ペプチドの結晶の製造方法であってもよい。すなわち、本開示の一側面に係る環状ペプチドの結晶の製造方法により製造される結晶は、環状ペプチドの水和物であってもよく、環状ペプチドのポリエチレングリコール和物の結晶であってもよい。
 本発明の内容を以下の実施例でさらに説明するが、本発明はその内容に限定されるものではない。特に記載したものを除き、出発物質、出発原料、溶媒、および試薬は商業的供給業者から入手、もしくは公知の方法を用いて合成した。
〔実施例1〕環状ペプチドの合成
 表1に示した環状ペプチドCP01~CP08(単に化合物CP01~CP08ともいう。)は、国際公開第2013/100132号、国際公開第2018/225864号、または国際公開第2021/90855号に記載の方法と同様の方法で合成し、最終物を乾燥物として得た。具体的には、国際公開第2021/90855号における化合物2118が化合物CP01に該当し、化合物1787が化合物CP02に該当し、化合物926が化合物CP03に該当し、化合物1147が化合物CP04に該当し、化合物1217が化合物CP05に該当し、化合物1201が化合物CP06に該当し、化合物301が化合物CP07に該当し、化合物640が化合物CP08に該当する。表1には化合物CP01~CP08の構造式を示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
 なお、化合物CP01~CP08の分子量は以下のとおりである。
化合物CP01:1443.8
化合物CP02:1454.2
化合物CP03:1456.2
化合物CP04:1478.2
化合物CP05:1437.7
化合物CP06:1459.7
化合物CP07:1451.1
化合物CP08:1463.1
 また、化合物CP01~CP08のIUPAC名は以下のとおりである。
化合物CP01:(3S,9S,18S,21S,25S,28S,34S,36R)-9-(シクロヘキシルメチル)-36-エトキシ-3-[2-[3-フルオロ-4-(トリフルオロメチル)フェニル]エチル]-21,28-ジイソブチル-7,10,13,16,22,26,29-ヘプタメチル-18-[(1S)-1-メチルプロピル]-25-(ピペリジン-1-カルボニル)スピロ[1,4,7,10,13,16,19,22,26,29,32-ウンデカザビシクロ[32.3.0]ヘプタトリアコンタン-31,1'-シクロペンタン]-2,5,8,11,14,17,20,23,27,30,33-ウンデカオン
化合物CP02:(3S,9S,12S,17S,20S,23S,27S,30S,36S)-3-[2-[3-クロロ-4-(トリフルオロメチル)フェニル]エチル]-9-(シクロヘキシルメチル)-30-シクロペンチル-23-イソブチル-7,10,17,18,24,28,31-ヘプタメチル-20-[(1S)-1-メチルプロピル]-27-(ピペリジン-1-カルボニル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオン
化合物CP03:(3S,9S,12S,17S,20S,23S,27S,30S,36S)-3-[2-[3-クロロ-4-(トリフルオロメチル)フェニル]エチル]-9-(シクロヘキシルメチル)-30-シクロペンチル-23-イソブチル-7,10,17,18,24,28,31-ヘプタメチル-20-[(1S)-1-メチルプロピル]-27-(モルホリン-4-カルボニル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオン
化合物CP04:(3S,9S,12S,17S,20S,23S,27S,30S,36S)-3-[2-[3-クロロ-4-(トリフルオロメチル)フェニル]エチル]-30-シクロペンチル-10-エチル-23-イソブチル-7,17,18,24,28,31-ヘキサメチル-20-[(1S)-1-メチルプロピル]-27-(モルホリン-4-カルボニル)-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオン
化合物CP05:(3S,9S,12S,17S,20S,23S,27S,30S,36S)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1S)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-27-カルボキサミド
化合物CP06:(3S,9S,12S,17S,20S,23S,27S,30S,36S,38R)-9-(シクロヘキシルメチル)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-38-エトキシ-23-イソブチル-N,N,7,10,17,18,24,28,31-ノナメチル-20-[(1S)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-27-カルボキサミド
化合物CP07:(3S,9S,12S,17S,20S,23S,27R,30S,36S,38R)-3-[2-[3-クロロ-4-(トリフルオロメチル)フェニル]エチル]-38-エトキシ-23-イソブチル-7,10,17,18,24,27,28,31-オクタメチル-20,30-ビス[(1S)-1-メチルプロピル]-9-[[4-(トリフルオロメチル)フェニル]メチル]スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオン
化合物CP08:(3S,9S,12S,17S,20S,23S,27R,30S,36S,38R)-3-[2-[3-クロロ-4-(トリフルオロメチル)フェニル]エチル]-30-シクロペンチル-38-エトキシ-23-イソブチル-7,10,17,18,24,27,28,31-オクタメチル-20-[(1S)-1-メチルプロピル]-9-[[4-(トリフルオロメチル)フェニル]メチル]スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.012,15]ノナトリアコンタン-33,1'-シクロペンタン]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオン
〔実施例2〕分子量18以上170以下の溶媒、またはそれらの2つ以上の混合溶媒を用いた環状ペプチドの結晶の製造
 (i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒と接触させる工程を含む方法により、環状ペプチドの結晶を製造した。なお、以下の製造における溶媒と接触させる工程においては、種結晶を用いなかった。また、以下の実施例において、%(パーセント)は、体積%(v/v%)を表す。
(実施例2-1-1)化合物CP01(136.7mg)をジメチルスルホキシド(0.684mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に水/イソプロパノール混合液(水比率75%,0.015mL)を加え、室温にて5日間振とう攪拌することで化合物CP01の結晶を得た。
(実施例2-1-2)化合物CP01(72.5mg)をジメチルスルホキシド(0.363mL)に溶解させ、この溶解液(0.015mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にジクロロメタン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP01の結晶を得た。
(実施例2-2-1)化合物CP02(149.2mg)をジメチルスルホキシド(0.746mL)に溶解させ、この溶解液(0.015mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にホルムアミド(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP02の結晶を得た。
(実施例2-2-2)化合物CP02(72.4mg)をジメチルスルホキシド(0.362mL)に溶解させ、この溶解液(0.015mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にホルムアミド/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP02の結晶を得た。
(実施例2-2-3)化合物CP02(72.4mg)をジメチルスルホキシド(0.362mL)に溶解させ、この溶解液(0.015mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にジメチルスルホキシド/t-ブチルメチルエーテル混合液(t-ブチルメチルエーテル比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP02の結晶を得た。
(実施例2-3-1)化合物CP03(147.4mg)をジメチルスルホキシド(0.737mL)に溶解させ、この溶解液(0.015mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にホルムアミド(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP03の結晶を得た。
(実施例2-4-1)化合物CP04(120.2mg)をジメチルスルホキシド(0.601mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にt-ブチルメチルエーテル(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP04の結晶を得た。
(実施例2-4-2)化合物CP04(120.2mg)をジメチルスルホキシド(0.601mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にトルエン(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP04の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-4-3)化合物CP04(120.2mg)をジメチルスルホキシド(0.601mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル(0.015mL)を加え、室温にて3日間振とう攪拌後、さらにn-へプタン(0.015mL)を加えた。室温にて4日間振とう攪拌することで化合物CP04の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-4-4)化合物CP04(120.2mg)をジメチルスルホキシド(0.601mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にクメン(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP04の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-4-5)化合物CP04(50.3mg)をジメチルスルホキシド(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸エチル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP04の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-4-6)化合物CP04(50.3mg)をジメチルスルホキシド(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP04の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-5-1)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にトルエン(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-2)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にジメチルスルホキシド(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-3)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にエタノール/水混合液(水比率75%,0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-4)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトニトリル/水混合液(水比率75%,0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-5)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にクメン(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-6)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にテトラリン(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-7)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にホルムアミド(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-8)化合物CP05(122.3mg)をジメチルスルホキシド(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にジイソプロピルエーテル(0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-5-9)化合物CP05(148.8mg)をジメチルスルホキシド(0.744mL)に溶解させ、この溶解液(0.015mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物に3-アセチルピリジン/エチレングリコール混合液(3-アセチルピリジン比率50体積%,0.015mL)を加え、室温にて11日間振とう攪拌した。更に直径1mmのジルコニアビーズを10粒程度加え、2日間振とう攪拌した。5日間静置し、更に3日間振とう攪拌することで化合物CP05の結晶を得た。
(実施例2-6-1)化合物CP06(122.1mg)をジメチルスルホキシド(0.611mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にホルムアミド(0.015mL)を加え、室温にて3日間振とう攪拌することで化合物CP06の結晶を得た。
(実施例2-7-1)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトニトリル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-2)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸エチル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-3)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-4)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸プロピル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-5)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-6)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルエチルケトン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-7)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルイソブチルケトン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-8)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にt-ブチルメチルエーテル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-9)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にジメチルスルホキシド(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-10)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に水/アセトニトリル混合液(水比率75%,0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-11)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にテトラヒドロフラン(0.015mL)を加え、室温にて6日間振とう攪拌後、さらにn-へプタン(0.015mL)を加えた。室温にて14日間振とう攪拌することで化合物CP07の結晶を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-12)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に1,4-ジオキサン(0.015mL)を加え、室温にて6日間振とう攪拌後、さらにn-へプタン(0.015mL)を加えた。室温にて14日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-13)化合物CP07(75.3mg)を1,4-ジオキサン(0.377mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にトルエン(0.015mL)を加え、室温にて6日間振とう攪拌後、さらにn-へプタン(0.015mL)を加えた。室温にて14日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-7-14)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にエタノール/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-15)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物に2-プロパノール/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-16)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアセトニトリル/t-ブチルメチルエーテル混合液(t-ブチルメチルエーテル比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-17)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にn-ブタノール/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-18)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアニソール/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-19)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にジメチルスルホキシド/t-ブチルメチルエーテル混合液(t-ブチルメチルエーテル比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-20)化合物CP07(72.6mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,1.452mL)に70℃で溶解させ、この溶解液(0.06mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアセトニトリル/水混合液(水比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-21)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にイソプロパノール/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-22)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に1,4-ジオキサン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-23)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸エチル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-24)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-25)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にテトラヒドロフラン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-26)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にジクロロメタン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-27)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアニソール/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-28)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-ブタノール/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-29)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にトルエン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-30)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸プロピル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-7-31)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-32)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルエチルケトン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-7-33)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルイソブチルケトン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-7-34)化合物CP07(50.3mg)を1,4-ジオキサン(0.252mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にクロロベンゼン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP07の結晶を得た。
(実施例2-8-1)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトニトリル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-2)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸エチル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-8-3)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-4)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸プロピル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-8-5)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-8-6)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルエチルケトン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-7)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルイソブチルケトン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-8-8)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にt-ブチルメチルエーテル(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-8-9)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にトルエン(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった板状結晶であることを確認した。
(実施例2-8-10)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にジメチルスルホキシド(0.015mL)を加え、室温にて6日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-11)化合物CP08(75.3mg)を1,4-ジオキサン(0.376mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に1,4-ジオキサン(0.015mL)を加え、室温にて6日間振とう攪拌後、さらにn-へプタン(0.015mL)を加えた。室温にて14日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった針状結晶であることを確認した。
(実施例2-8-12)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にエタノール/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった板状結晶であることを確認した。
(実施例2-8-13)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にイソプロパノール/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-14)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物に酢酸エチル/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-15)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアセトン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-16)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にテトラヒドロフラン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-17)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にジクロロメタン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-18)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にホルムアミド/水混合液(水比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-8-19)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にn―ブタノール/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-20)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物に酢酸プロピル/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-21)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-22)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にメチルエチルケトン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-23)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にメチルイソブチルケトン/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-24)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にホルムアミド/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-25)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアニソール/n-へプタン混合液(n-へプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-26)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物に1,4-ジオキサン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-27)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にジメチルスルホキシド/t-ブチルメチルエーテル混合液(t-ブチルメチルエーテル比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-8-28)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にエタノール/水混合液(水比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-29)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアセトニトリル/水混合液(水比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の固体を得た。得られた固体は偏光顕微鏡にて偏光をもった微結晶であることを確認した。
(実施例2-8-30)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にクロロベンゼン/n-ヘプタン混合液(n-ヘプタン比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-31)化合物CP08(72.5mg)をジメチルスルホキシド/1,4-ジオキサン混合液(1,4-ジオキサン比率50%,0.726mL)に溶解させ、この溶解液(0.03mL)を-20℃で3日間凍結乾燥した。得られた凍結乾燥物にアセトン/水混合液(水比率80%,0.015mL)を加え、室温にて8日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-32)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にイソプロパノール/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-33)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に1,4-ジオキサン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-34)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸エチル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-35)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアセトン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-36)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にテトラヒドロフラン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-37)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にジクロロメタン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-38)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にアニソール/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-39)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にブタノール/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-40)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にトルエン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-41)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に酢酸プロピル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-42)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にn-酢酸ブチル/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-43)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルエチルケトン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-44)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にメチルイソブチルケトン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
(実施例2-8-45)化合物CP08(50.6mg)を1,4-ジオキサン(0.253mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物にクロロベンゼン/シクロヘキサン混合液(シクロヘキサン比率80%,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物CP08の結晶を得た。
 以上の結果から、分子量18以上170以下の溶媒、またはそれらの2つ以上の混合溶媒を用いたいずれかの条件において、8種類の環状ペプチドすべての結晶が得られた。具体的には、溶媒としてホルムアミドを含む溶媒を用いる条件では、8種類の環状ペプチドのうち5種類の結晶が得られた(実施例)。溶媒としてジメチルスルホキシドを含む溶媒を用いる条件では、8種類の環状ペプチドのうち4種類の結晶が得られた(実施例)。溶媒として芳香族炭化水素系溶媒であるトルエン、クメン、またはテトラリンを含む溶媒を用いる条件では、8種類の環状ペプチドのうち4種類の結晶が得られた(実施例)。溶媒としてハロゲン系溶媒であるジクロロメタン、またはクロロベンゼンを含む溶媒を用いる条件では、8種類の環状ペプチドのうち3種類の結晶が得られた(実施例)。溶媒としてアルコール系溶媒を含む溶媒を用いる条件では、8種類の環状ペプチドのうち4種類の結晶が得られた(実施例)。溶媒としてエーテル系溶媒を含む溶媒を用いる条件では、8種類の環状ペプチドのうち4種類の結晶が得られた(実施例)。溶媒としてエステル系溶媒を含む溶媒を用いる条件では、8種類の環状ペプチドのうち3種類の結晶が得られた(実施例)。溶媒としてニトリル系溶媒を含む溶媒を用いる条件では、8種類の環状ペプチドのうち3種類の結晶が得られた(実施例)。溶媒としてケトン系溶媒を含む溶媒を用いる条件では、8種類の環状ペプチドのうち2種類の結晶が得られた(実施例)。
 多様な環状ペプチドを結晶化するための溶媒として、ホルムアミド、ジメチルスルホキシド、芳香族炭化水素系溶媒、およびハロゲン系溶媒からなる群より選択される1種または複数種であることが好ましく、これらの溶媒の少なくとも1種を用いることにより、環状ペプチド8種類のすべてを結晶化することができた。ホルムアミド、またはジメチルスルホキシドを含む溶媒がより好ましく、ホルムアミドを含む溶媒が最も好ましい結果であった。
〔実施例3〕界面活性剤および水溶性有機溶媒を含む水溶液を用いた環状ペプチドの結晶の製造
 液体の界面活性剤に関しては溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水と接触させる工程を含む方法により、環状ペプチドの結晶を製造した。なお、以下の製造における溶媒と接触させる工程においては、種結晶を用いなかった。
(実施例3-1-1)化合物CP01(19.7mg)をエタノール(0.197mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP01の結晶を得た。
(実施例3-4-1)化合物CP04(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP04の結晶を得た。
(実施例3-5-1)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率1v/v%(1.05wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-2)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-3)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率1v/v%(1.05wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-4)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-5)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-6)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率3v/v%(3.24wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-7)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-8)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率3v/v%(3.24wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-9)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-10)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率3v/v%(3.21wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-11)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-12)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率3v/v%(3.21wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-13)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にラウリル硫酸ナトリウム/水混合液(ラウリル硫酸ナトリウム比率1wt/v%、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-14)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にラウリル硫酸ナトリウム/水混合液(ラウリル硫酸ナトリウム比率0.2wt/v%、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-15)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にラウリル硫酸ナトリウム/水混合液(ラウリル硫酸ナトリウム比率1wt/v%、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP05の結晶を得た。
(実施例3-5-16)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率1v/v%(1.05wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-17)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-18)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率1v/v%(1.05wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-19)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-20)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-21)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率3v/v%(3.24wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-22)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-23)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率3v/v%(3.24wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-24)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-25)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率3v/v%(3.21wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-26)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-27)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率3v/v%(3.21wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-28)化合物CP05(19.1mg)をエタノール(0.191mL)に溶解させた。この溶解液(0.010mL)にラウリル硫酸ナトリウム/水混合液(ラウリル硫酸ナトリウム比率1wt/v%、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-29)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にラウリル硫酸ナトリウム/水混合液(ラウリル硫酸ナトリウム比率0.2wt/v%、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-5-30)化合物CP05(19.2mg)をジメチルスルホキシド(0.192mL)に溶解させた。この溶解液(0.010mL)にラウリル硫酸ナトリウム/水混合液(ラウリル硫酸ナトリウム比率1wt/v%、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP05の結晶を得た。
(実施例3-7-1)化合物CP07(19.3mg)をジメチルスルホキシド(0.193mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP07の結晶を得た。
(実施例3-8-1)化合物CP08(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率5v/v%(5.25wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP08の結晶を得た。
(実施例3-8-2)化合物CP08(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、温度を50℃から90℃の範囲で36回上下させながら攪拌することで化合物CP08の結晶を得た。
(実施例3-8-3)化合物CP08(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にCremophor EL/水混合液(Cremophor EL比率1v/v%(1.05wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP08の結晶を得た。
(実施例3-8-4)化合物CP08(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率0.5v/v%(0.54wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP08の結晶を得た。
(実施例3-8-5)化合物CP08(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にTween 80/水混合液(Tween 80比率3v/v%(3.24wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP08の結晶を得た。
(実施例3-8-6)化合物CP08(19.5mg)をエタノール(0.195mL)に溶解させた。この溶解液(0.010mL)にTriton X-100/水混合液(Triton X-100比率3v/v%(3.21wt/v%)、0.090mL)を加え、10時間、25℃で攪拌することで化合物CP08の結晶を得た。
 以上の結果から、界面活性剤および水溶性有機溶媒を含む水溶液を用いた条件では、8種類の環状ペプチドのうち5種類の結晶が得られた。界面活性剤として、Cremophor ELを用いた場合、8種類の環状ペプチドのうち4種類の結晶が得られた(実施例)。界面活性剤として、Triton X-100を用いた場合、8種類の環状ペプチドのうち3種類の結晶が得られた(実施例)。
 多様な環状ペプチドを結晶化するための条件として、界面活性剤としてはCremophor EL、Tween 80、またはTriton X-100を用いた条件が好ましく、温度に関しては上下させることが好ましく、水溶性有機溶媒としてはエタノールを用いる条件が好ましい条件であった。より好ましくは、界面活性剤としてはCremophor ELを用いる条件であった。さらに、界面活性剤としてCremophor ELを用い、温度に関しては50℃から90℃の範囲で上下させ、水溶性有機溶媒としてはエタノールを用いる条件が最も好ましい結果であった。
〔実施例4〕PEG系溶媒、またはPEG系溶媒を含む混合溶媒を用いた環状ペプチドの結晶の製造
 (i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒を含む混合溶媒と接触させる工程を含む方法により、環状ペプチドの結晶を製造した。なお、以下の製造における溶媒と接触させる工程においては、種結晶を用いなかった。また、以下の実施例において、%(パーセント)は、体積%(v/v%)を表す。
(実施例4-1-1)化合物CP01(4.8mg)にPEG400(0.015mL)を加え、イソプロパノール(0.005mL)を加え、更に水(0.005mL)を加え80℃で攪拌して溶解した。翌日温度を室温に下げ、更に3日間攪拌したところ化合物CP01の結晶が析出した。
(実施例4-3-1)化合物CP03(5.8mg)にポリエチレングリコールモノラウラート(n=約10)(0.015mL)を加え、80℃で攪拌して溶解した。この溶液を80℃で更に1日攪拌したところ化合物CP03の結晶が析出した。
(実施例4-4-1)化合物CP04(6.3mg)にテトラエチレングリコール(0.030mL)を加え、80℃で1時間攪拌した。室温に冷却し更に1日攪拌し化合物CP04の結晶を得た。
(実施例4-4-2)化合物CP04(5.5mg)にPEG400(0.030mL)を加え、80℃で40分攪拌し化合物CP04の結晶を得た。
(実施例4-4-3)化合物CP04(5.6mg)にPEG400(0.020mL)を加え、80℃で30分攪拌し、化合物CP04の結晶を得た。
(実施例4-4-4)化合物CP04(5.4mg)にポリエチレングリコールモノラウラート(n=約10)(0.020mL)を加え、80℃で40分攪拌し化合物CP04の結晶を得た。
(実施例4-4-5)化合物CP04(5.6mg)に60℃に加温して融解したPEG600(0.020mL)を加え、60℃で10分攪拌した。80℃で更に16時間攪拌した。更に室温で3時間攪拌し化合物CP04の結晶を得た。
(実施例4-4-6)化合物CP04(5.7mg)に60℃に加温して融解したPEG2000(0.020mL)を加え、60℃で30分攪拌した。80℃に加温し更にPEG2000を(0.080mL)加え15時間攪拌した。室温まで冷却し、化合物CP04の結晶とPEG2000の結晶の混合物を得た。図26(D)はPEG2000のX線回折ピークであり、19.2°および24.4°に特徴的なピークを有している。図26(C)は得られた混合物のX線回折ピークであり、19.2°および24.4°以外にも複数の回折ピークが認められる。これらがCP04の結晶の回折ピークである。
(実施例4-4-7)化合物CP04(6.1mg)に60℃に加温して融解したポリエチレングリコールモノステアラート(n=約4)(パルミタート,ステアラート混合物)(0.030mL)を加え、その後80℃で16時間攪拌した。更に室温で3時間攪拌し、化合物CP04の結晶とポリエチレングリコールモノステアラート(n=約4)(パルミタート,ステアラート混合物)の結晶の混合物を得た。図27(B)はポリエチレングリコールモノステアラート(n=約4)(パルミタート,ステアラート混合物)のX線回折ピークであり、21.7°および24.1°に特徴的なピークを有している。図27(A)は得られた混合物のX線回折ピークであり、21.7°および24.1°以外にも複数の回折ピークが認められる。これらがCP04の結晶の回折ピークである。
(実施例4-4-8)化合物CP04(5.0mg)に60℃に加温して融解したポリエチレングリコールモノステアラート(n=約10)(パルミタート,ステアラート混合物)(0.020mL)を加え、80℃で16時間攪拌した。更に室温で3時間攪拌し、化合物CP04の結晶を得た。
(実施例4-4-9)化合物CP04(6.1mg)にジグリム(0.015mL)を加え、更にn-へプタン(0.015mL)を加え室温で5日間攪拌し、化合物CP04の結晶を得た。
(実施例4-4-10)化合物CP04(5.0mg)にトリグリム(0.005mL)を加え、80℃で攪拌して溶解した。この溶液を80℃で更に18時間攪拌したところ、化合物CP04の結晶が析出した。
(実施例4-5-1)化合物CP05(約5mg)にテトラエチレングリコール(0.020mL)を加え攪拌して溶解した。この溶液を80℃に加熱して1時間攪拌したところ、化合物CP05の結晶が析出した。
(実施例4-5-2)化合物CP05(約5mg)にPEG400(0.020mL)を加え攪拌して溶解した。この溶液を80℃に加熱して1時間攪拌したところ、化合物CP05の結晶が析出した。
(実施例4-5-3)化合物CP05(約5mg)にポリプロピレングリコール(平均分子量~425)(0.020mL)を加え攪拌して溶解した。この溶液を80℃に加熱して1時間攪拌したところ化合物CP05の結晶が析出した。
(実施例4-5-4)化合物CP05(約5mg)にポリエチレングリコールモノラウラート(n=約10)(0.020mL)を加え攪拌して溶解した。この溶液を80℃に加熱して1時間攪拌したところ化合物CP05の結晶が析出した。
(実施例4-5-5)化合物CP05(約5mg)にトリグリム(0.020mL)を加え攪拌して溶解した。この溶液を80℃に加熱して1時間攪拌したところ化合物CP05の結晶が析出した。
(実施例4-5-6)化合物CP05(5.3mg)に水/エチレングリコール混合液(エチレングリコール比率80体積%、0.015mL)を加え100℃で攪拌して溶解した。この溶液を室温に冷却して3日間攪拌したところ化合物CP05の結晶が析出した。
(実施例4-7-1)化合物CP07(4.8mg)にトリグリム(0.010mL)を加え、室温で攪拌して溶解した。この溶液を室温で更に35分攪拌したところ化合物CP07の結晶が析出した。
(実施例4-7-2)化合物CP07(4.6mg)にポリエチレングリコールモノラウラート(n=約10)(0.015mL)を加え、80℃で攪拌して溶解した。この溶液を80℃で更に18時間攪拌したところ化合物CP07の結晶が析出した。
(実施例4-7-3)化合物CP07(4.8mg)にトリグリム(0.010mL)を加え、室温で15時間攪拌したところ化合物CP07の結晶が析出した。
(実施例4-7-4)化合物CP07(10.0mg)にPEG400(0.020mL)を加え、80℃で攪拌して溶解した。この溶液を80℃で更に18時間攪拌したところ化合物CP07の結晶が析出した。
(実施例4-8-1)化合物CP08(5.0mg)にトリグリム(0.010mL)を加え、室温で20分攪拌したところ化合物CP08の結晶が析出した。
(実施例4-8-2)化合物CP08(5.1mg)にPEG400(0.015mL)を加え、80℃で溶解した。80℃で18時間攪拌後、室温に戻し、さらに1日攪拌したところ化合物CP08の結晶が析出した。
(実施例4-8-3)化合物CP08(5.3mg)にポリエチレングリコールモノラウラート(n=約10)(0.015mL)を加え、80℃で攪拌して溶解した。この溶液を80℃で更に10分攪拌したところ化合物CP08の結晶が析出した。
(実施例4-8-4)化合物CP08(5.1mg)にトリグリム(0.010mL)を加え、室温で攪拌して溶解した。この溶液を室温で更に15時間攪拌したところ化合物CP08の結晶が析出した。
(実施例4-8-5)化合物CP08(10.1mg)にPEG400(0.020mL)を加え、80℃で攪拌して溶解した。この溶液を80℃で更に5時間攪拌したところ化合物CP08の結晶が析出した。
 以上の結果から、PEG系溶媒、またはPEG系溶媒を含む混合溶媒を用いた条件では、8種類の環状ペプチドのうち6種類の結晶が得られた。PEG系溶媒として、ポリエチレングリコールモノ脂肪酸エステルを用いた場合、8種類の環状ペプチドのうち5種類の結晶が得られた(実施例)。PEG系溶媒としてポリエチレングリコール(PEG400、PEG600、PEG2000)を含む溶媒を用いた場合、8種類の環状ペプチドのうち5種類の結晶が得られた(実施例)。
 多様な環状ペプチドを結晶化するための条件として、PEG系溶媒としてはポリエチレングリコールモノ脂肪酸エステル、またはポリエチレングリコールを用いた条件が好ましい条件であった。より好ましくは、PEG系溶媒としてポリエチレングリコールモノラウレート、またはPEG400を用い、温度に関しては室温から80℃の範囲であった。PEG系溶媒としてポリエチレングリコールモノラウレートを用い、温度を80℃で行う条件が最も好ましい結果であった。
〔実施例5〕環状ペプチドの結晶のX線回折測定
(実施例5-1)
 実施例2、実施例3、および実施例4で得られた結晶を、以下の測定方法にてそれぞれ粉末X線回折測定に供した。結果を図1A~図30Dに示す。
測定装置:D8 Discover、2D VÅNTEC-500 solid state detector(Bruker社製)
線源:CuKα
管電圧・管電流:40kV・40mAまたは50kV・1000μA
測定範囲:5~31°
露光時間:40~600秒
(実施例5-2)
 実施例2-1-1で得られた結晶について、以下の測定方法にて単結晶X線構造解析を行った。
測定装置:Rigaku R-AXIS RAPID-II with a VariMax Cu diffractometer(リガク社製)
線源:CuKα
管電圧・管電流:40kV・30mA
温度:-180℃
測定:構造解析に十分な回折斑点が得られると考えらえるストラテジー、露光時間で測定を行った。
構造解析:初期構造決定は直接法(SHELXD97、CrystalStructure 4.2.2、Rigaku)で行い、構造精密化はfull-matrix least-squares法(SHELXL97、CrystalStructure 4.2.2、Rigaku)で行った。全ての温度因子は等方性として精密化した。結果を図31Aに示す。

 

Claims (17)

  1.  環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法であって、前記環状ペプチドは、以下の(I)、(II)および(III)の特徴:
    (I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
    (II)N-置換アミノ酸を少なくとも2残基含む特徴;
    (III)分子量(g/mol)が、1204以上3000以下である特徴;
    を有する環状ペプチドである、方法。
  2.  前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、または偏光顕微鏡を用いた観察において偏光を有する、請求項1に記載の方法。
  3.  前記結晶が、CuKα放射を用いた粉末X線回析において1つ以上の回折ピークを有する、請求項1に記載の方法。
  4.  前記溶媒が、以下の(1)、(2)および(3):
    (1)(i)分子量18以上170以下の溶媒または(ii)分子量18以上170以下の溶媒2種以上を含む混合溶媒;
    (2)溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水;
    (3)(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒を含む混合溶媒;
    からなる群より選択されるいずれかの溶媒である、請求項1~3のいずれか一項に記載の方法。
  5.  前記溶媒が、分子量18以上170以下の溶媒(A)、または分子量18以上170以下の溶媒(A)と分子量18以上170以下の溶媒(B)との混合溶媒であって、前記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒およびケトン系溶媒からなる群より選択される1種または複数種であり、前記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種である、請求項1~3のいずれか一項に記載の方法。
  6.  前記溶媒(A)が、ホルムアミドである、請求項5に記載の方法。
  7.  前記溶媒(B)が、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種の溶媒である、請求項5または6に記載の方法。
  8.  前記溶媒における前記溶媒(A)と前記溶媒(B)との体積比(v/v)が1:0~1:40である、請求項5~7のいずれか一項に記載の方法。
  9.  前記溶媒(A)および前記溶媒(B)の融点が25℃以下である、請求項5~8のいずれか一項に記載の方法。
  10.  前記溶媒が、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水であって、前記界面活性剤が、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤および非イオン性界面活性剤からなる群より選択される1種または複数種である、請求項1~3のいずれか一項に記載の方法。
  11.  前記溶媒が、溶媒全量を基準として0.01~30wt/v%の界面活性剤および5~50v/v%の水溶性有機溶媒を含む水であって、前記界面活性剤が、第1級アミン塩、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキルポリオキシエチレンアミン、脂肪酸塩、ロジン酸塩、アルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルナフタレン硫酸塩、リグニン硫酸塩、アルキルリン酸塩、N-アルキルβ-アミノプロピオン酸、N-アルキルスルホベタイン、N-アルキルヒドロキシスルホベタイン、レシチン、アルキルポリオキシエチレンエーテル、アルキルアリールポリオキシエチレンエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステルからなる群より選択される1種または複数種である、請求項1~3のいずれか一項に記載の方法。
  12.  前記溶媒が、(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒とを含む混合溶媒であって、前記PEG系溶媒が、(i)R(OCHRCH)nORで表される溶媒であってnが1以上10以下の自然数である溶媒、または(ii)R(OCHRCH)nORで表される溶媒の混合物であってnの平均が3~100の混合物である溶媒であり、ここでRおよびRは、それぞれ独立して水素、C~Cアルキルまたは-C(=O)Rであり、Rは水素またはC~Cアルキルであり、Rは水酸基で置換されていても良いC~C18アルキル、または水酸基で置換されていても良いC~C18アルケニルである、請求項1~3のいずれか一項に記載の方法。
  13.  前記溶媒が、(i)PEG系溶媒、または(ii)アルコール系溶媒、脂肪族炭化水素系溶媒および水からなる群より選択される1種または複数種と、PEG系溶媒とを含む混合溶媒であって、前記PEG系溶媒が、ジグリム、トリグリム、テトラグリム、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールまたはポリエチレングリコールモノ脂肪酸エステルである、請求項1~3のいずれか一項に記載の方法。
  14.  環状ペプチドを溶媒と接触させる工程を含む、環状ペプチドの結晶の製造方法であって、前記環状ペプチドは、以下の(I)および(II)の特徴:
    (I)アミノ酸の合計が8~16残基からなる環状部を含み、かつ、アミノ酸の総数が8~20残基である特徴;
    (II)N-置換アミノ酸を少なくとも2残基含む特徴;
    を有する環状ペプチドであり、前記溶媒が溶媒(A)、または溶媒(A)と溶媒(B)を含む混合溶媒であり、前記溶媒(A)は、アミド系溶媒、スルホキシド系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒およびエステル系溶媒からなる群より選択される1種または複数種であり、前記溶媒(B)は、脂肪族炭化水素系溶媒、エチレングリコールおよび水からなる群より選択される1種または複数種である、方法。
  15.  前記環状ペプチドを溶媒と接触させる工程において、環状ペプチドの濃度が、1mg~2000mg/mLである、請求項1~14のいずれか一項に記載の方法。
  16.  前記環状ペプチドを溶媒と接触させる工程が、-10℃~120℃の温度で、30分間~12週間行われる、請求項1~15のいずれか一項に記載の方法。
  17.  環状ペプチドの結晶化方法をスクリーニングする方法であって、以下の工程(a)および(b):
    (a)請求項1~16のいずれか一項に記載の方法により環状ペプチドの結晶を製造する工程;
    (b)粉末X線結晶回折により結晶を分析する工程;
    を含む、方法。

     
PCT/JP2023/037907 2022-10-20 2023-10-19 環状ペプチドの結晶の製造方法 WO2024085235A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-168237 2022-10-20
JP2022168237 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024085235A1 true WO2024085235A1 (ja) 2024-04-25

Family

ID=90737959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037907 WO2024085235A1 (ja) 2022-10-20 2023-10-19 環状ペプチドの結晶の製造方法

Country Status (1)

Country Link
WO (1) WO2024085235A1 (ja)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211598A (ja) * 1987-12-21 1989-08-24 Sandoz Ag 新規シクロスポリン結晶形、その製法、それを含有する医薬組成物およびその用途
JPH05239090A (ja) * 1991-05-01 1993-09-17 Merck & Co Inc 環状リポペプチドの結晶化方法
JP2003508492A (ja) * 1999-09-09 2003-03-04 エラン ファーマ インターナショナル,リミティド 非晶質シクロスポリンを含んで成るナノ粒状組成物並びに当該組成物の製造方法及び使用方法
JP2004525108A (ja) * 2000-12-18 2004-08-19 キュービスト ファーマスーティカルズ インコーポレイテッド 精製リポペプチドの調製方法
JP2005053782A (ja) * 2001-08-31 2005-03-03 Fujisawa Pharmaceut Co Ltd 環状リポペプチド化合物の新規結晶
US20120157658A1 (en) * 2004-02-17 2012-06-21 Johnson Thomas E Methods, compositions, and apparatuses for forming macrocyclic compounds
JP2014515372A (ja) * 2011-05-27 2014-06-30 アラーガン、インコーポレイテッド シクロスポリンaの結晶形態、その調製方法、およびその使用のための方法
JP2017519043A (ja) * 2014-05-29 2017-07-13 シャンハイ テックウェル バイオファーマシューティカル カンパニー リミテッドShanghai Techwell Biopharmaceutical Co.,Ltd シクロペプチド系化合物の溶媒和物およびその製造方法と使用
JP2017210488A (ja) * 2011-11-15 2017-11-30 アラーガン、インコーポレイテッドAllergan,Incorporated シクロスポリンaの形態2およびその作製方法
WO2018225851A1 (ja) * 2017-06-09 2018-12-13 中外製薬株式会社 N-置換アミノ酸を含むペプチドの合成方法
JP2020530456A (ja) * 2017-08-11 2020-10-22 フェリング ベスローテン フェンノートシャップ 医薬組成物を製造する方法
WO2021090855A1 (ja) * 2019-11-07 2021-05-14 中外製薬株式会社 Kras阻害作用を有する環状ペプチド化合物
WO2021090856A1 (ja) * 2019-11-07 2021-05-14 中外製薬株式会社 立体障害の大きなアミノ酸を含むペプチド化合物の製造方法
WO2021141684A1 (en) * 2020-01-06 2021-07-15 Bristol-Myers Squibb Company Immunomodulators
WO2021226460A1 (en) * 2020-05-08 2021-11-11 Bristol-Myers Squibb Company Immunomodulators
US20210355165A1 (en) * 2018-10-25 2021-11-18 Cidara Therapeutics, Inc. Polymorph of echinocandin antifungal agent
JP2022003092A (ja) * 2011-12-28 2022-01-11 中外製薬株式会社 ペプチド化合物の環化方法
WO2022138891A1 (ja) * 2020-12-25 2022-06-30 中外製薬株式会社 N-置換-アミノ酸残基を含むペプチド化合物の製造方法
WO2022234639A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 変異型ras(g12d)に対する選択的結合性を示す結合分子
WO2022234850A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 環状ペプチド化合物を含む製剤及びその製造方法
WO2022234852A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 環状ペプチド化合物の医薬用途
WO2022234853A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 Hrasおよびnrasに対して選択的なkras阻害作用を有する環状化合物
WO2022234864A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 N-置換アミノ酸残基を含む環状化合物の製造方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211598A (ja) * 1987-12-21 1989-08-24 Sandoz Ag 新規シクロスポリン結晶形、その製法、それを含有する医薬組成物およびその用途
JPH05239090A (ja) * 1991-05-01 1993-09-17 Merck & Co Inc 環状リポペプチドの結晶化方法
JP2003508492A (ja) * 1999-09-09 2003-03-04 エラン ファーマ インターナショナル,リミティド 非晶質シクロスポリンを含んで成るナノ粒状組成物並びに当該組成物の製造方法及び使用方法
JP2004525108A (ja) * 2000-12-18 2004-08-19 キュービスト ファーマスーティカルズ インコーポレイテッド 精製リポペプチドの調製方法
JP2005053782A (ja) * 2001-08-31 2005-03-03 Fujisawa Pharmaceut Co Ltd 環状リポペプチド化合物の新規結晶
US20120157658A1 (en) * 2004-02-17 2012-06-21 Johnson Thomas E Methods, compositions, and apparatuses for forming macrocyclic compounds
JP2014515372A (ja) * 2011-05-27 2014-06-30 アラーガン、インコーポレイテッド シクロスポリンaの結晶形態、その調製方法、およびその使用のための方法
JP2017210488A (ja) * 2011-11-15 2017-11-30 アラーガン、インコーポレイテッドAllergan,Incorporated シクロスポリンaの形態2およびその作製方法
JP2022003092A (ja) * 2011-12-28 2022-01-11 中外製薬株式会社 ペプチド化合物の環化方法
JP2017519043A (ja) * 2014-05-29 2017-07-13 シャンハイ テックウェル バイオファーマシューティカル カンパニー リミテッドShanghai Techwell Biopharmaceutical Co.,Ltd シクロペプチド系化合物の溶媒和物およびその製造方法と使用
WO2018225851A1 (ja) * 2017-06-09 2018-12-13 中外製薬株式会社 N-置換アミノ酸を含むペプチドの合成方法
JP2020530456A (ja) * 2017-08-11 2020-10-22 フェリング ベスローテン フェンノートシャップ 医薬組成物を製造する方法
US20210355165A1 (en) * 2018-10-25 2021-11-18 Cidara Therapeutics, Inc. Polymorph of echinocandin antifungal agent
WO2021090856A1 (ja) * 2019-11-07 2021-05-14 中外製薬株式会社 立体障害の大きなアミノ酸を含むペプチド化合物の製造方法
WO2021090855A1 (ja) * 2019-11-07 2021-05-14 中外製薬株式会社 Kras阻害作用を有する環状ペプチド化合物
WO2021141684A1 (en) * 2020-01-06 2021-07-15 Bristol-Myers Squibb Company Immunomodulators
WO2021226460A1 (en) * 2020-05-08 2021-11-11 Bristol-Myers Squibb Company Immunomodulators
WO2022138891A1 (ja) * 2020-12-25 2022-06-30 中外製薬株式会社 N-置換-アミノ酸残基を含むペプチド化合物の製造方法
WO2022234639A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 変異型ras(g12d)に対する選択的結合性を示す結合分子
WO2022234850A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 環状ペプチド化合物を含む製剤及びその製造方法
WO2022234852A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 環状ペプチド化合物の医薬用途
WO2022234853A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 Hrasおよびnrasに対して選択的なkras阻害作用を有する環状化合物
WO2022234864A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 N-置換アミノ酸残基を含む環状化合物の製造方法
WO2022234851A1 (ja) * 2021-05-07 2022-11-10 中外製薬株式会社 変異型ras(g12d)に対する選択的結合性を示す結合分子

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HOSSAIN, Bilayet M. et al. Crystal and molecular structure of didemnin A, an antiviral depsipeptide. INTERNATIONAL JOURNAL OF PEPTIDE & PROTEIN RESEARCH. 1996, vol. 47, pp. 20-27 *
KARLE, Isabella L. [Phe4,Val6]Antamanide Crystallized from Methyl Acetate/n-Hexane. Conformation and Packing. Journal of the American Chemical Society. 20 July 1977, vol. 99, no. 15, pp. 5152-5157 *
KARLE, Isabella L. Water structure in [Phe4Val6] antamanide・12H2O crystallized from dioxane. Int. J. Peptide Protein Res. 1986, vol. 28, pp. 6-14 *
KOPPITZ, Marcus et al. Structure Investigation of Amphiphilic Cyclopeptides in Isotropic and Anisotropic Environments -A Model Study Simulationg Peptide -Membrane Interactions. Journal of Peptide Science. 1999, vol. 5, pp. 507-518 *
LANGS, David A. et al. Crystal structure of valinomycin-monohydrate cage complexes crystallized from dioxane. Int. J. Peptide Protein Res. 1992, vol. 39, pp. 291-299 *
SHAW, A. R. et al. Solvent influence on the conformation of cyclosporin. An FT-IR study. CAN. J. CHEM. 1993, vol. 71, pp. 1334-1339 *

Similar Documents

Publication Publication Date Title
US9120766B2 (en) Methods of making cocrystals
US8735392B2 (en) Crystalline (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one tosylate salt
ES2293626T3 (es) Forma cristalina del maleato de asenapina.
AU2011215250B2 (en) Salt of fused heterocyclic derivative and crystal thereof
CN107759568A (zh) 沃诺拉赞盐、晶型及其制备方法和用途
CN109311832A (zh) 沃替西汀的帕莫酸盐及其晶型
George et al. Drug–drug cocrystals of anticancer drugs erlotinib–furosemide and gefitinib–mefenamic acid for alternative multi-drug treatment
EP3283491A1 (en) New forms of ixazomib citrate
WO2018073574A1 (en) Polymorphic forms of palbociclib
WO2024085235A1 (ja) 環状ペプチドの結晶の製造方法
JP2022505756A (ja) Wee1阻害剤としてのピリミドピラゾロン類誘導体及びその使用
Zhang et al. Tetrahydroberberine pharmaceutical salts/cocrystals with dicarboxylic acids: charge-assisted hydrogen bond recognitions and solubility regulation
WO2017037150A1 (en) Quaternary assemblies of water-soluble non-peptide helical foldamers, their use and production thereof
Chen et al. Structure properties of scoparone: Polymorphs and cocrystals
AU2019224410A1 (en) Salt of pyrazolo[1,5-a]pyrimidine compound and crystals thereof
Schaber et al. Preparation, crystal and molecular structures, and properties of tetrabromo (1, 5, 9, 13, 17, 21-hexaazacyclotetracosane) dicopper (II) and bromo (1, 5, 9-triazacyclododecane) zinc (II) bromide. Separation of mono-and binucleating ligands by selective complexation
CA2805962A1 (en) Crystal of peptide substance as well as the preparation method and use thereof
WO2018214877A1 (zh) 一种地佐辛晶型及其制备方法
RO109337B1 (ro) Derivati de imidazolilmetil-piridine si procedeu pentru prepararea acestora
Huang et al. Simultaneously improving the physicochemical and pharmacokinetic properties of vemurafenib through cocrystallization strategy
WO2011113293A1 (zh) 二氢喋啶酮类衍生物、其制备方法及其在医药上的应用
US20050143445A1 (en) Novel crystalline forms of levetiracetam
Llinàs et al. Synthesis and anion binding studies of a new crown ether containing 2, 2′-biimidazole
Shaikh et al. Novel crystal forms of Entresto: a supramolecular complex of trisodium sacubitril/valsartan hemi-pentahydrate
CN101128446B (zh) 焦谷氨酸盐及其在用于合成右旋西替利嗪和左旋西替利嗪的中间体的光学拆分中的用途