WO2024084914A1 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
WO2024084914A1
WO2024084914A1 PCT/JP2023/035328 JP2023035328W WO2024084914A1 WO 2024084914 A1 WO2024084914 A1 WO 2024084914A1 JP 2023035328 W JP2023035328 W JP 2023035328W WO 2024084914 A1 WO2024084914 A1 WO 2024084914A1
Authority
WO
WIPO (PCT)
Prior art keywords
hermetic
plate
attached
motor chamber
motor
Prior art date
Application number
PCT/JP2023/035328
Other languages
French (fr)
Japanese (ja)
Inventor
美早子 冠城
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2024084914A1 publication Critical patent/WO2024084914A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an electric compressor in which a hermetic plate having a hermetic pin is attached to the partition between the motor chamber and the inverter housing section.
  • a refrigerant compressor used in an air conditioning system for an electric vehicle is an inverter-integrated electric compressor in which an inverter is attached to an inverter storage section formed in a housing.
  • a motor is housed in a motor chamber of the housing, and a hermetic plate is provided on the partition between the motor chamber and the inverter storage section.
  • the inverter circuit board and the motor are electrically connected by three hermetic pins of this hermetic plate (see, for example, Patent Document 1).
  • the hermetic pin is attached to the hermetic plate via glass (insulator) for insulation, but in Patent Document 1, the hermetic plate is attached to the motor chamber side of the partition, so an insulator (sealing member) is attached to the glass to insulate the connection between the high-voltage connector from the motor and the hermetic pin.
  • Figure 7 shows the positional relationship between the hermetic plate and the sealing material when an integrated insulator is used.
  • 100 is a conventional hermetic plate
  • 53 is a hermetic pin
  • three hermetic pins 53 are attached in a line via glass (not shown).
  • 101 is a rubber insulator that is molded integrally so that it can be attached across the three hermetic pins 53.
  • 102 is a sealing material consisting of an O-ring that surrounds the three hermetic pins 53 and the insulator 101.
  • the pressure inside the motor chamber is applied to the surface of the hermetic plate 100 facing the motor chamber (the area inside the sealing material 102), which is inside the sealing material 102.
  • the sealing material 102 inevitably becomes large, and therefore the area on the hermetic plate 100 to which pressure is applied (pressure-receiving area B shown in FIG. 7) becomes large. This causes the hermetic plate 100 to deform, causing the pressure inside the motor chamber to leak.
  • the sealing material 102 becomes large, there is a problem in that the leakage through the sealing material 102 itself also increases.
  • the present invention was made to solve the above-mentioned conventional technical problems, and aims to provide an electric compressor that can improve the sealing performance when the hermetic plate is attached to the inverter housing side of the partition.
  • the electric compressor of the present invention comprises a motor chamber with a built-in motor, an inverter accommodating section in which an inverter that supplies power to the motor is attached, a partition wall between the motor chamber and the inverter accommodating section, a hermetic plate attached to the inverter accommodating section side of the partition wall, and a number of hermetic pins that penetrate the hermetic plate and are attached to the hermetic plate, and the hermetic pins pass through through holes formed in the partition wall when the hermetic plate is attached to the partition wall, and are provided from the inverter accommodating section to the motor chamber, and individual insulators are attached around the periphery of the portion of each hermetic pin that is located on the motor chamber side, and a sealant is interposed between the hermetic plate and the partition wall so as to surround the periphery of the multiple hermetic pins and the through holes.
  • the electric compressor of the invention of claim 2 is characterized in that in the above invention, the hermetic pin is attached via glass to a through hole formed in the hermetic plate, and the insulator is attached by pressing against the periphery of the hermetic pin on the motor chamber side of the glass.
  • the electric compressor of the invention of claim 3 is characterized in that in the above invention, recesses corresponding to the insulators attached to each hermetic pin are formed around the through holes on the surface of the hermetic plate facing the motor chamber, and insulating resin is applied inside each recess and positioned between each insulator and the hermetic plate.
  • the electric compressor of the invention of claim 4 is characterized in that, in claim 2 or 3, convex portions are formed around the through-holes on the surface of the hermetic plate opposite the surface facing the motor chamber, and a silicone member is applied to cover each convex portion.
  • an electric compressor having a motor chamber with a built-in motor, an inverter accommodating section in which an inverter that supplies power to the motor is attached, a partition wall between the motor chamber and the inverter accommodating section, a hermetic plate attached to the inverter accommodating section side of the partition wall, and a number of hermetic pins that penetrate the hermetic plate and are attached to the hermetic plate, the hermetic pins pass through through holes formed in the partition wall when the hermetic plate is attached to the partition wall, and are provided from the inverter accommodating section to the motor chamber, an insulator is attached individually around the portion of each hermetic pin that is located on the motor chamber side, and further, a sealant is interposed between the hermetic plate and the partition wall so as to surround the periphery of the multiple hermetic pins and the through holes, so that when the hermetic plate is attached to the inverter accommodating section side of the partition wall, the position of the sealant that seals between the hermetic plate
  • the hermetic pin is attached to a through hole formed in the hermetic plate via glass.
  • the insulator by pressing it against the periphery of the hermetic pin, which is closer to the motor chamber than the glass, it is possible to move the sealing material one phase further inward and reduce the pressure-receiving area of the hermetic plate.
  • FIG. 1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention
  • FIG. 2 is a detailed cross-sectional view of a hermetic plate portion of the electric compressor of FIG. 1 .
  • FIG. 3 is an enlarged cross-sectional view of the hermetic plate of FIG. 2 .
  • 3 is a plan view of the hermetic plate of FIG. 2 as viewed from the inverter accommodating portion side.
  • FIG. 5 is a plan view of the partition wall in FIG. 4 with the hermetic plate removed.
  • FIG. 6 is a plan view of the hermetic plate as viewed from one surface side thereof, illustrating the positional relationship between the sealing material and the hermetic plate shown in FIG. 5 .
  • 13A and 13B are diagrams for explaining the positional relationship between a hermetic plate and a sealing material when an integrated insulator is used.
  • Figure 1 is a schematic cross-sectional view of an electric compressor 1 according to one embodiment of the present invention.
  • the electric compressor 1 of the embodiment is used, for example, in the refrigerant circuit of an air conditioner for an electric vehicle, and draws in the refrigerant as the working fluid of the air conditioner, compresses it, and discharges it to a discharge pipe.
  • It is a so-called horizontal inverter-integrated scroll electric compressor that includes a motor 2 (a three-phase electric motor), an inverter 3 for driving the motor 2, and a scroll compression mechanism 4 as a compression mechanism driven by the motor 2.
  • the electric compressor 1 of the embodiment includes a stator housing 7 that houses the motor 2 and center casing 6 inside, an inverter case 8 that is attached to an end wall 7A (a partition wall in the present invention) on one end side of the stator housing 7 and houses the inverter 3 inside, and a rear casing 9 that is attached to the other end side of the stator housing 7.
  • a stator housing 7 that houses the motor 2 and center casing 6 inside
  • an inverter case 8 that is attached to an end wall 7A (a partition wall in the present invention) on one end side of the stator housing 7 and houses the inverter 3 inside
  • a rear casing 9 that is attached to the other end side of the stator housing 7.
  • stator housing 7, inverter case 8, and rear casing 9 are all made of metal (aluminum in this embodiment), and are joined together to form the housing 11 of the electric compressor 1 in this embodiment.
  • the stator housing 7 defines a motor chamber 12 that houses the motor 2, and one end face of the motor chamber 12 is basically closed by an end wall 7A of the stator housing 7.
  • This end wall 7A serves as a partition that separates the motor chamber 12 from an inverter housing section 13, which will be described later.
  • the other end face of the motor chamber 12 is open, and after the motor 2 is housed in this opening, the center casing 6 is housed in it.
  • a secondary bearing 16 is attached to the inner surface (motor chamber 12 side) of the end wall 7A for rotatably supporting one end of the drive shaft 14 of the motor 2.
  • the center casing 6 is open on the side opposite the motor 2 (the other end), and this opening is accommodated in the movable scroll 22 of the scroll compression mechanism 4 (described later), and then closed when the rear casing 9, to which the fixed scroll 21 of the scroll compression mechanism 4 (also described later) is fixed, is fixed to the stator housing 7.
  • the center casing 6 also has a through hole 17 through which the other end of the drive shaft 14 of the motor 2 is inserted, and a main bearing 18 is attached inside the center casing 6 on the scroll compression mechanism 4 side of this through hole 17 to rotatably support the other end of the drive shaft 14 on the scroll compression mechanism 4 side.
  • the motor 2 is composed of a stator 25 with a coil wound around it and fixed to the inside of the peripheral wall of the stator housing 7, and a rotor 29 that rotates inside the stator 25.
  • direct current from the vehicle battery (not shown) is converted to three-phase alternating current by the inverter 3, and this current is supplied to the coil of the stator 25 of the motor 2, thereby driving and rotating the rotor 29.
  • the drive shaft 14 is fixed to this rotor 29.
  • the stator housing 7 is also formed with a suction port 20, and the refrigerant sucked in from the suction port 20 passes through the motor 2 inside the stator housing 7, then flows into the center casing 6 and is sucked into the suction section 37 outside the scroll compression mechanism 4. This cools the motor 2 with the sucked refrigerant.
  • the refrigerant compressed by the scroll compression mechanism 4 is also configured to be discharged from the discharge chamber 27 (described later) through a discharge port 30 formed in the rear casing 9 into a discharge piping of a refrigerant circuit (not shown) outside the housing 11.
  • the scroll compression mechanism 4 is composed of the fixed scroll 21 and movable scroll 22 described above.
  • the fixed scroll 21 is integrally equipped with a disk-shaped mirror plate 23 and an involute-shaped or spiral wrap 24 made of a curve similar thereto, which is erected on the surface (one side) of the mirror plate 23, and is fixed to the rear casing 9 with the surface of the mirror plate 23 on which the wrap 24 is erected facing the center casing 6.
  • a discharge hole 26 is formed in the center of the mirror plate 23 of the fixed scroll 21, and this discharge hole 26 is connected to a discharge chamber 27 in the rear casing 9.
  • 28 is a discharge valve provided at the opening of the discharge hole 26 on the rear surface (other side) side of the mirror plate 23.
  • the movable scroll 22 is a scroll that revolves around the fixed scroll 21, and is integrally equipped with a disk-shaped mirror plate 31, an involute-shaped or spiral-shaped wrap 32 made of a curve similar to this that is erected on the surface (one side) of the mirror plate 31, and a boss 33 that protrudes from the center of the back surface (the other side) of the mirror plate 31.
  • the movable scroll 22 is arranged so that the wrap 32 protrudes toward the fixed scroll 21, facing the wrap 24 of the fixed scroll 21, and meshing with each other, forming a compression chamber 34 between each wrap 24, 32.
  • the wrap 32 of the movable scroll 22 faces the wrap 24 of the fixed scroll 21, and the tip of the wrap 32 contacts the surface of the end plate 23, and the tip of the wrap 24 contacts the surface of the end plate 31, so that they are engaged with each other.
  • an eccentric portion 36 is fitted into the boss 33 of the movable scroll 22, which is provided eccentrically from the axis at the other end of the drive shaft 14.
  • 38 is an annular thrust plate.
  • This thrust plate 38 is used to separate a back pressure chamber 39 formed between the back surface of the end plate 31 of the movable scroll 22 and the center casing 6 from a suction section 37 on the outside of the scroll compression mechanism 4, and is positioned outside the boss 33 and interposed between the center casing 6 and the movable scroll 22.
  • 41 is a sliding seal attached to the back surface of the end plate 31 of the movable scroll 22 and slidably abuts against the thrust plate 38, and the back pressure chamber 39 and the suction section 37 are separated by this sliding seal 41 and the thrust plate 38.
  • This oil separator 48 is a centrifugal oil separator mounted in the discharge chamber 27 of the rear casing 9 (housing 11), which separates the lubricating oil mixed in with the refrigerant discharged from the scroll compression mechanism 4 to the discharge chamber 27 from the refrigerant.
  • This oil separator 48 is formed with an inlet 49, and the refrigerant containing oil that flows in from this inlet 49 swirls inside the oil separator 48, the oil being separated by the centrifugal force at this time, and the refrigerant flows from the outlet at the upper end toward the discharge port 30 and is discharged into the discharge piping as described above.
  • An oil storage chamber 44 is formed in the rear casing 9 below the oil separator 48, and the oil separated from the refrigerant by the oil separator 48 flows into this oil storage chamber 44 from the lower end of the oil separator 48.
  • 43 is a back pressure passage formed from the rear casing 9 to the center casing 6.
  • This back pressure passage 43 is a path that connects the oil separator 48 in the discharge chamber 27 (the discharge side of the scroll compression mechanism 4) in the rear casing 9 to the back pressure chamber 39, and in this embodiment has an orifice 50.
  • the discharge pressure reduced and adjusted by the orifice 50 of the back pressure passage 43 is supplied to the back pressure chamber 39 together with the oil in the oil storage chamber 44 separated by the oil separator 48.
  • This back pressure load presses the movable scroll 22 against the fixed scroll 21 against the compression reaction force from the compression chamber 34 of the scroll compression mechanism 4, maintaining contact between the wraps 24, 32 and the end plates 31, 23, making it possible to compress the refrigerant in the compression chamber 34.
  • the inverter case 8 is composed of a case body 10 that constitutes an inverter accommodating section 13 in which the inverter 3 is accommodated, and a lid member 15 that closes an opening on one end face of the case body 10. This lid member 15 is attached to the case body 10 after the inverter 3 is accommodated in the inverter accommodating section 13.
  • FIG. 2 is a detailed cross-sectional view of the hermetic plate 52 part of the electric compressor 1
  • Figure 3 is an enlarged cross-sectional view of the hermetic plate 52.
  • the inverter 3 of the embodiment is configured with a control circuit mounted on a single circuit board 51, and with switching elements, smoothing capacitors, etc. (not shown) connected to it.
  • the hermetic plate 52 has a conductive hermetic pin 53 that supplies power from the inverter 3 to the stator 25 of the motor 2, and is attached to the inverter accommodating section 13 side of the end wall 7A (partition) of the stator housing 7.
  • the detailed structure of the hermetic plate 52 according to Figs. 2 and 3 is shown.
  • hermetic pins 53 are attached, one for each phase (three phases) of the motor 2.
  • the hermetic plate 52 is formed by pressing a metal plate into a horizontally long plate shape, with three circular through holes 63 formed in a row in the longitudinal center for attaching each of the hermetic pins 53, and bolt insertion holes 72 formed at both longitudinal ends for inserting bolts 77 described below.
  • one surface of the hermetic plate 52 (the surface facing the motor chamber 12 when the hermetic plate 52 is attached to the bulkhead 10A as described below) is flat, and annular recesses 67 are formed around each of the through-holes 63 on this surface. Furthermore, cylindrical protrusions 69 are formed around each of the through-holes 63 on the other surface of the hermetic plate 52 (the surface opposite to the surface facing the motor chamber 12 when the hermetic plate 52 is attached to the bulkhead 10A as described below).
  • each hermetic pin 53 is attached to the through hole 63 of the hermetic plate 52 via the glass 64, and in this state it protrudes from both one side and the other side of the hermetic plate 52.
  • rubber insulators 66 are attached by pressure to the periphery of each hermetic pin 53 that is on one side of the hermetic plate 52 relative to the glass 64 (the periphery of each hermetic pin 53 that is on the motor chamber 12 side relative to the glass 64 when the hermetic plate 52 is attached to the bulkhead 10A as described below).
  • three independent insulators 66 are prepared and attached individually to the periphery of each hermetic pin 53 in the portion that is located on the motor chamber 12 side when the hermetic plate 52 is attached to the bulkhead 10A as described below.
  • each recess 67 of the hermetic plate 52 corresponds to each hermetic pin 53.
  • insulating resin 68 is applied beforehand to each recess 67.
  • the insulating resin 68 is positioned between the insulator 66 and the hermetic plate 52.
  • each insulator 66 adheres closely to the insulating resin 68, so that insulation and sealing are achieved between the insulator 66 and the hermetic plate 52, and the positioning of the insulator 66 is also achieved.
  • a silicon member 71 is applied to the other surface of the hermetic plate 52.
  • This silicon member 71 is applied in a manner that covers all of the protrusions 69 formed around each through-hole 63 of the hermetic plate 52 as shown in FIG. 4, thereby insulating and reinforcing each hermetic pin 53 on the other surface side of the hermetic plate 52.
  • the formation of the protrusions 69 increases the contact area between the silicon member 71 and the hermetic plate 52, so that the silicon member 71 is more stably fixed to the hermetic plate 52.
  • an opening 54 is formed in the bottom wall 10A of the case body 10 of the inverter case 8, which corresponds to the end wall 7A (partition) of the stator housing 7 (Fig. 1).
  • the end wall 7A (partition) that will be located within this opening 54 has three through holes 73 lined up as shown in Fig. 5, and two bolt holes 78 are recessed and formed in the outer surface of the end wall 7A (partition) on the line where the three through holes 73 are lined up (the outer surface of the stator housing 7 that faces the inverter accommodating section 13). At this time, each bolt hole 78 is located on both sides of the three through holes 73 (Fig. 5).
  • an oval groove 74 is formed on the outer surface of the end wall 7A (partition wall) located between the three through holes 73 and each bolt hole 78 (the outer surface of the stator housing 7 on the inverter accommodating section 13 side), surrounding the three through holes 73.
  • a seal material 76 made of an O-ring is placed in this groove 74.
  • each hermetic pin 53 and insulator 66 is inserted into each through hole 73. Note that each through hole 73 is formed in advance to correspond to the position of each hermetic pin 53.
  • the sealing material 76 is interposed between the hermetic plate 52 and the end wall 7A (partition wall) so as to surround the three hermetic pins 53 and the three through holes 73, and is in close contact with both the hermetic plate 52 and the end wall 7A (partition wall), sealing the gap between them. Furthermore, when the inverter case 8 is attached to the end wall 7A of the stator housing 7, the hermetic plate 52 and hermetic pins 53 are positioned within the opening 54 of the inverter case 8 and face the inverter accommodating section 13.
  • Each hermetic pin 53 passes through each through hole 73 and is provided from the inverter accommodating section 13 to the motor chamber 12, with the portion of each hermetic pin 53 to which the insulator 66 is attached protruding into the motor chamber 12 and the opposite portion standing upright within the inverter accommodating section 13.
  • each hermetic pin 53 on the motor chamber 12 side is electrically connected to a high-voltage connector 62 connected to the coil of the stator 25 of the motor 2 ( Figure 1).
  • a part of each insulator 66 enters the high-voltage connector 62 as shown in Figure 2, insulating each hermetic pin 53 from each other.
  • the circuit board 51 is then mounted in the inverter accommodating section 13, and at this time, three metal press-fit terminals 56 called power baskets are attached to the circuit board 51 at positions corresponding to the tips of the hermetic pins 53 on the inverter accommodating section 13 side ( Figure 1).
  • the tips of the hermetic pins 53 on the inverter accommodating section 13 side enter the press-fit terminals 56, respectively, and are pressed (press-fit) to the press-fit terminals 56.
  • the hermetic pins 53 are electrically connected to the circuit board 51, and the circuit board 51 and the motor 2 are connected via the hermetic pins 53.
  • an insulator 66 is attached individually around the portion of each hermetic pin 53 located on the motor chamber 12 side, and further, a sealant 74 is interposed between the hermetic plate 52 and the end wall 7A (partition) so as to surround the three hermetic pins 53 and the three through holes 73 in the end wall 7A (partition). Therefore, when the hermetic plate 52 is attached to the inverter accommodating section 13 side of the end wall 7A (partition), the position of the sealant 76 that seals between the hermetic plate 52 and the end wall 7A (partition) can be shifted inward as shown in FIG. 6 compared to when an integrated insulator is used (FIG. 7), and its size can be reduced.
  • the insulator 66 is attached by pressing it against the periphery of the hermetic pin 66, which is closer to the motor chamber 12 than the glass 64, so that the sealing material 76 can be moved one phase further inward, thereby reducing the pressure-receiving area A of the hermetic plate 52.
  • recesses 67 corresponding to the insulators 66 attached to each hermetic pin 53 are formed around the through holes 63 on the surface of the hermetic plate 52 facing the motor chamber 12, and insulating resin 68 located between each insulator 66 and the hermetic plate 52 is applied inside each recess 67, making it possible to improve the sealing and insulation properties of the portion on the motor chamber 12 side where the hermetic pin 53 penetrates the hermetic plate 52.
  • convex portions 69 are formed around the through holes 63 on the surface of the hermetic plate 52 opposite the surface facing the motor chamber 12, and the silicon member 71 is applied to cover each convex portion 69, so that the insulation and sealing properties around the hermetic pin 66 on the inverter accommodating section 13 side can also be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Inverter Devices (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

[Problem] To provide an electric compressor with which it is possible to improve sealing properties when attaching a hermetic plate to an inverter storage part side of a partition wall. [Solution] Hermetic pins 53 are provided from an inverter storage part 13 to a motor compartment 12 while passing through a through-hole 73 formed in an end wall 7A (partition wall) in a state in which a hermetic plate 52 is attached to the end wall 7A (partition wall). Individual insulators 66 are attached around portions of the respective hermetic pins 53 positioned on the motor compartment 12 side, and a sealing material 76 is interposed between the hermetic plate 52 and the end wall 7A (partition wall) so as to surround the plurality of hermetic pins 53 and the through-hole 73.

Description

電動圧縮機Electric Compressor
 本発明は、ハーメチックピンを有するハーメチックプレートを、モータ室とインバータ収容部との隔壁に取り付けて成る電動圧縮機に関するものである。 The present invention relates to an electric compressor in which a hermetic plate having a hermetic pin is attached to the partition between the motor chamber and the inverter housing section.
 例えば電動車両の空気調和装置に用いられる冷媒圧縮機としては、ハウジングに形成されたインバータ収容部にインバータを取り付けたインバータ一体型の電動圧縮機が用いられている。この場合、ハウジングのモータ室にはモータが収容され、モータ室とインバータ収容部との隔壁には、ハーメチックプレートが設けられる。そして、このハーメチックプレートの三本のハーメチックピンにより、インバータの回路基板とモータを電気的に接続するものであった(例えば、特許文献1参照)。 For example, a refrigerant compressor used in an air conditioning system for an electric vehicle is an inverter-integrated electric compressor in which an inverter is attached to an inverter storage section formed in a housing. In this case, a motor is housed in a motor chamber of the housing, and a hermetic plate is provided on the partition between the motor chamber and the inverter storage section. The inverter circuit board and the motor are electrically connected by three hermetic pins of this hermetic plate (see, for example, Patent Document 1).
 また、ハーメチックピンは絶縁のため、ガラス(ガイシ)を介してハーメチックプレートに取り付けられるが、特許文献1では隔壁のモータ室側にハーメチックプレートを取り付けていたため、モータからの高電圧コネクタとハーメチックピンとの接続部を絶縁するためのインシュレータ(密封部材)をガラスに取り付けていた。 In addition, the hermetic pin is attached to the hermetic plate via glass (insulator) for insulation, but in Patent Document 1, the hermetic plate is attached to the motor chamber side of the partition, so an insulator (sealing member) is attached to the glass to insulate the connection between the high-voltage connector from the motor and the hermetic pin.
特許第5944169号公報Patent No. 5944169 特許第7013402号公報Patent No. 7013402
 ここで、特許文献1のようにハーメチックプレートを隔壁のモータ室側に取り付けると、モータ室内が過密となる。そこで、ハーメチックプレートを隔壁のインバータ収容部側に取り付けることが考えられるが、モータ室は圧力が高く、インバータ収容部は大気圧となるため、差圧による冷媒漏れを防止するため、ハーメチックプレートと隔壁の間をOリング等のシール材によりシールしなければならない。 Here, if a hermetic plate is attached to the motor chamber side of the partition as in Patent Document 1, the inside of the motor chamber will become overcrowded. To solve this problem, it is possible to attach the hermetic plate to the inverter housing side of the partition, but because the motor chamber is at high pressure and the inverter housing is at atmospheric pressure, it is necessary to seal the gap between the hermetic plate and the partition with a sealing material such as an O-ring to prevent refrigerant leakage due to the pressure difference.
 このとき、例えば特許文献2のように三本のハーメチックピンに対して一体化されたインシュレータ(断熱体)を使用すると、それらの周囲を囲繞するシール材(Oリング)の大きさが大きくなってしまう。 In this case, if an insulator (thermal insulation body) integrated with the three hermetic pins is used, as in Patent Document 2, the size of the sealing material (O-ring) surrounding them becomes large.
 図7を用いて具体的に説明する。図7は一体化されたインシュレータを用いた場合のハーメチックプレートとシール材の位置関係を示す図である。この図において、100は従来のハーメチックプレート、53はハーメチックピンであり、図示しないガラスを介して三本のハーメチックピン53が並んで取り付けられている。101はゴム製のインシュレータであり、三本のハーメチックピン53に渡って取り付けられるように一体的に成形されたものである。102はこれら三本のハーメチックピン53やインシュレータ101の周囲を囲繞するOリングから成るシール材である。 The specific explanation will be given using Figure 7. Figure 7 shows the positional relationship between the hermetic plate and the sealing material when an integrated insulator is used. In this figure, 100 is a conventional hermetic plate, 53 is a hermetic pin, and three hermetic pins 53 are attached in a line via glass (not shown). 101 is a rubber insulator that is molded integrally so that it can be attached across the three hermetic pins 53. 102 is a sealing material consisting of an O-ring that surrounds the three hermetic pins 53 and the insulator 101.
 このシール材102より内側となるハーメチックプレート100のモータ室側の面(シール材102より内側となる領域)に、モータ室内の圧力が加わることになるが、図7のように一体化されたインシュレータ101を用いた場合、どうしてもシール材102が大きくなってしまい、そのため、ハーメチックプレート100に圧力が加わる面積(図7に示す受圧面積B)が大きくなる。そのため、ハーメチックプレート100が変形し、モータ室内の圧力が漏れてしまう。また、シール材102が大きくなると当該シール材102自体を透過する漏れも多くなるという問題が生じる。 The pressure inside the motor chamber is applied to the surface of the hermetic plate 100 facing the motor chamber (the area inside the sealing material 102), which is inside the sealing material 102. However, when an integrated insulator 101 is used as shown in FIG. 7, the sealing material 102 inevitably becomes large, and therefore the area on the hermetic plate 100 to which pressure is applied (pressure-receiving area B shown in FIG. 7) becomes large. This causes the hermetic plate 100 to deform, causing the pressure inside the motor chamber to leak. Furthermore, when the sealing material 102 becomes large, there is a problem in that the leakage through the sealing material 102 itself also increases.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、ハーメチックプレートを隔壁のインバータ収容部側に取り付ける場合のシール性を改善することができる電動圧縮機を提供することを目的とする。 The present invention was made to solve the above-mentioned conventional technical problems, and aims to provide an electric compressor that can improve the sealing performance when the hermetic plate is attached to the inverter housing side of the partition.
 本発明の電動圧縮機は、モータが内蔵されたモータ室と、モータに給電するインバータが取り付けられるインバータ収容部と、モータ室とインバータ収容部との隔壁と、この隔壁のインバータ収容部側に取り付けられたハーメチックプレートと、このハーメチックプレートを貫通して当該ハーメチックプレートに取り付けられた複数本のハーメチックピンを備えたものであって、ハーメチックピンは、ハーメチックプレートが隔壁に取り付けられた状態で、当該隔壁に形成された貫通孔を通過し、インバータ収容部からモータ室に渡って設けられ、各ハーメチックピンのモータ室側に位置する部分の周囲には、個別のインシュレータがそれぞれ取り付けられると共に、複数本のハーメチックピン及び貫通孔の周囲を囲繞するように、ハーメチックプレートと隔壁との間にシール材が介設されていることを特徴とする。 The electric compressor of the present invention comprises a motor chamber with a built-in motor, an inverter accommodating section in which an inverter that supplies power to the motor is attached, a partition wall between the motor chamber and the inverter accommodating section, a hermetic plate attached to the inverter accommodating section side of the partition wall, and a number of hermetic pins that penetrate the hermetic plate and are attached to the hermetic plate, and the hermetic pins pass through through holes formed in the partition wall when the hermetic plate is attached to the partition wall, and are provided from the inverter accommodating section to the motor chamber, and individual insulators are attached around the periphery of the portion of each hermetic pin that is located on the motor chamber side, and a sealant is interposed between the hermetic plate and the partition wall so as to surround the periphery of the multiple hermetic pins and the through holes.
 請求項2の発明の電動圧縮機は、上記発明においてハーメチックピンは、ハーメチックプレートに形成された透孔にガラスを介して取り付けられていると共に、インシュレータは、ガラスよりもモータ室側となるハーメチックピンの周囲に圧接して取り付けられていることを特徴とする。 The electric compressor of the invention of claim 2 is characterized in that in the above invention, the hermetic pin is attached via glass to a through hole formed in the hermetic plate, and the insulator is attached by pressing against the periphery of the hermetic pin on the motor chamber side of the glass.
 請求項3の発明の電動圧縮機は、上記発明においてハーメチックプレートのモータ室側となる面の透孔周囲には、各ハーメチックピンに取り付けられたインシュレータに対応する凹部がそれぞれ形成され、各凹部内には、各インシュレータとハーメチックプレートとの間に位置する絶縁レジンが塗布されていることを特徴とする。 The electric compressor of the invention of claim 3 is characterized in that in the above invention, recesses corresponding to the insulators attached to each hermetic pin are formed around the through holes on the surface of the hermetic plate facing the motor chamber, and insulating resin is applied inside each recess and positioned between each insulator and the hermetic plate.
 請求項4の発明の電動圧縮機は、請求項2又は請求項3においてハーメチックプレートのモータ室側となる面とは反対側の面の透孔周囲には凸部がそれぞれ形成され、各凸部を覆うかたちでシリコン部材が塗布されていることを特徴とする。 The electric compressor of the invention of claim 4 is characterized in that, in claim 2 or 3, convex portions are formed around the through-holes on the surface of the hermetic plate opposite the surface facing the motor chamber, and a silicone member is applied to cover each convex portion.
 本発明によれば、モータが内蔵されたモータ室と、モータに給電するインバータが取り付けられるインバータ収容部と、モータ室とインバータ収容部との隔壁と、この隔壁のインバータ収容部側に取り付けられたハーメチックプレートと、このハーメチックプレートを貫通して当該ハーメチックプレートに取り付けられた複数本のハーメチックピンを備えた電動圧縮機において、ハーメチックピンが、ハーメチックプレートが隔壁に取り付けられた状態で、当該隔壁に形成された貫通孔を通過し、インバータ収容部からモータ室に渡って設けられており、各ハーメチックピンのモータ室側に位置する部分の周囲に、それぞれ個別にインシュレータを取り付け、更に、複数本のハーメチックピン及び貫通孔の周囲を囲繞するように、ハーメチックプレートと隔壁との間にシール材を介設したので、ハーメチックプレートを隔壁のインバータ収容部側に取り付ける際にハーメチックプレートと隔壁間をシールするシール材の位置を内側に寄せ、その大きさを縮小することができるようになる。 According to the present invention, in an electric compressor having a motor chamber with a built-in motor, an inverter accommodating section in which an inverter that supplies power to the motor is attached, a partition wall between the motor chamber and the inverter accommodating section, a hermetic plate attached to the inverter accommodating section side of the partition wall, and a number of hermetic pins that penetrate the hermetic plate and are attached to the hermetic plate, the hermetic pins pass through through holes formed in the partition wall when the hermetic plate is attached to the partition wall, and are provided from the inverter accommodating section to the motor chamber, an insulator is attached individually around the portion of each hermetic pin that is located on the motor chamber side, and further, a sealant is interposed between the hermetic plate and the partition wall so as to surround the periphery of the multiple hermetic pins and the through holes, so that when the hermetic plate is attached to the inverter accommodating section side of the partition wall, the position of the sealant that seals between the hermetic plate and the partition wall can be shifted inward, and its size can be reduced.
 これにより、モータ室側の圧力を受けるハーメチックプレートの受圧面積を縮小し、ハーメチックプレートの変形を抑制することができるようになる。また、シール材自体を透過する漏れも少なくすることができるようになるので、総じてハーメチックプレートと隔壁間のシール性を著しく改善することができるようになる。 This reduces the pressure-receiving area of the hermetic plate that receives pressure from the motor chamber side, making it possible to suppress deformation of the hermetic plate. It also reduces leakage through the sealing material itself, so overall it is possible to significantly improve the seal between the hermetic plate and the bulkhead.
 ここで、ハーメチックピンはハーメチックプレートに形成された透孔にガラスを介して取り付けられるが、この場合、請求項2の発明の如くインシュレータを、ガラスよりもモータ室側となるハーメチックピンの周囲に圧接して取り付けることで、シール材をより一相内側に寄せてハーメチックプレートの受圧面積の縮小を図ることが可能となる。 Here, the hermetic pin is attached to a through hole formed in the hermetic plate via glass. In this case, as in the invention of claim 2, by attaching the insulator by pressing it against the periphery of the hermetic pin, which is closer to the motor chamber than the glass, it is possible to move the sealing material one phase further inward and reduce the pressure-receiving area of the hermetic plate.
 また、請求項3の発明の如くハーメチックプレートのモータ室側となる面の透孔周囲に各ハーメチックピンに取り付けられたインシュレータに対応する凹部をそれぞれ形成し、各インシュレータとハーメチックプレートとの間に位置する絶縁レジンを各凹部内に塗布するようにすれば、ハーメチックピンがハーメチックプレートを貫通するモータ室側の部分のシール性と絶縁性を一相改善することができるようになる。 Furthermore, as in the invention of claim 3, by forming recesses corresponding to the insulators attached to each hermetic pin around the through holes on the surface of the hermetic plate facing the motor chamber, and applying insulating resin located between each insulator and the hermetic plate into each recess, it is possible to improve the sealing and insulation properties of the part on the motor chamber side where the hermetic pin penetrates the hermetic plate.
 更に、請求項4の発明の如くハーメチックプレートのモータ室側となる面とは反対側の面の透孔周囲に凸部をそれぞれ形成し、各凸部を覆うかたちでシリコン部材を塗布するようにすれば、インバータ収容部側のハーメチックピン周辺の絶縁性とシール性を改善することができるようになる。 Furthermore, as in the invention of claim 4, by forming protrusions around the through-holes on the surface of the hermetic plate opposite the motor chamber side and applying a silicone material to cover each protrusion, it is possible to improve the insulation and sealing properties around the hermetic pin on the inverter housing side.
本発明を適用した一実施形態の電動圧縮機の概略断面図である。1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention; 図1の電動圧縮機のハーメチックプレート部分の詳細断面図である。FIG. 2 is a detailed cross-sectional view of a hermetic plate portion of the electric compressor of FIG. 1 . 図2のハーメチックプレートの拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the hermetic plate of FIG. 2 . 図2のハーメチックプレートをインバータ収容部側から見た平面図である。3 is a plan view of the hermetic plate of FIG. 2 as viewed from the inverter accommodating portion side. FIG. 図4においてハーメチックプレートを取り外した状態の隔壁の平面図である。5 is a plan view of the partition wall in FIG. 4 with the hermetic plate removed. FIG. 図5に示したシール材とハーメチックプレートとの位置関係を説明するハーメチックプレートの一面側から見た平面図である。6 is a plan view of the hermetic plate as viewed from one surface side thereof, illustrating the positional relationship between the sealing material and the hermetic plate shown in FIG. 5 . 一体化されたインシュレータを用いた場合のハーメチックプレートとシール材の位置関係を説明する図である。13A and 13B are diagrams for explaining the positional relationship between a hermetic plate and a sealing material when an integrated insulator is used.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施形態の電動圧縮機1の概略断面図である。 The following describes in detail an embodiment of the present invention with reference to the drawings. Figure 1 is a schematic cross-sectional view of an electric compressor 1 according to one embodiment of the present invention.
 実施例の電動圧縮機1は、例えば電動車両用の空調装置の冷媒回路に使用され、空調装置の作動流体としての冷媒を吸入し、圧縮して吐出配管に吐出するものであり、モータ2(三相の電動モータ)と、このモータ2を運転するためのインバータ3と、モータ2によって駆動される圧縮機構としてのスクロール圧縮機構4を備えた所謂横置き型のインバータ一体型スクロール式電動圧縮機である。 The electric compressor 1 of the embodiment is used, for example, in the refrigerant circuit of an air conditioner for an electric vehicle, and draws in the refrigerant as the working fluid of the air conditioner, compresses it, and discharges it to a discharge pipe. It is a so-called horizontal inverter-integrated scroll electric compressor that includes a motor 2 (a three-phase electric motor), an inverter 3 for driving the motor 2, and a scroll compression mechanism 4 as a compression mechanism driven by the motor 2.
 実施例の電動圧縮機1は、モータ2やセンターケーシング6をその内側に収容するステータハウジング7と、このステータハウジング7の一端側の端壁7A(本発明における隔壁)に取り付けられ、インバータ3をその内側に収容するインバータケース8と、ステータハウジング7の他端側に取り付けられたリアケーシング9を備えている。 The electric compressor 1 of the embodiment includes a stator housing 7 that houses the motor 2 and center casing 6 inside, an inverter case 8 that is attached to an end wall 7A (a partition wall in the present invention) on one end side of the stator housing 7 and houses the inverter 3 inside, and a rear casing 9 that is attached to the other end side of the stator housing 7.
 これらステータハウジング7、インバータケース8、リアケーシング9は何れも金属製(実施例ではアルミニウム製)であり、それらが一体的に接合されて実施例の電動圧縮機1のハウジング11が構成されている。 The stator housing 7, inverter case 8, and rear casing 9 are all made of metal (aluminum in this embodiment), and are joined together to form the housing 11 of the electric compressor 1 in this embodiment.
 ステータハウジング7内にはモータ2を収容するモータ室12が構成されており、モータ室12の一端面はステータハウジング7の端壁7Aにより基本的には閉塞されている。そして、この端壁7Aがモータ室12と後述するインバータ収容部13とを区画する隔壁となる。モータ室12の他端面は開口しており、この開口にはモータ2が収容された後、センターケーシング6が収容される。また、端壁7Aの内面(モータ室12側)には、モータ2の駆動軸14の一端部を回転可能に支持するための副軸受16が取り付けられている。 The stator housing 7 defines a motor chamber 12 that houses the motor 2, and one end face of the motor chamber 12 is basically closed by an end wall 7A of the stator housing 7. This end wall 7A serves as a partition that separates the motor chamber 12 from an inverter housing section 13, which will be described later. The other end face of the motor chamber 12 is open, and after the motor 2 is housed in this opening, the center casing 6 is housed in it. In addition, a secondary bearing 16 is attached to the inner surface (motor chamber 12 side) of the end wall 7A for rotatably supporting one end of the drive shaft 14 of the motor 2.
 センターケーシング6は、モータ2とは反対側(他端側)が開口しており、この開口はスクロール圧縮機構4の後述する可動スクロール22が収容された後、スクロール圧縮機構4のこれも後述する固定スクロール21が固定されたリアケーシング9がステータハウジング7に固定されることで閉塞される。 The center casing 6 is open on the side opposite the motor 2 (the other end), and this opening is accommodated in the movable scroll 22 of the scroll compression mechanism 4 (described later), and then closed when the rear casing 9, to which the fixed scroll 21 of the scroll compression mechanism 4 (also described later) is fixed, is fixed to the stator housing 7.
 また、センターケーシング6にはモータ2の駆動軸14の他端部を挿通する貫通孔17が開設されており、この貫通孔17のスクロール圧縮機構4側のセンターケーシング6内には、スクロール圧縮機構4側で駆動軸14の他端部を回転可能に支持する主軸受18が取り付けられている。 The center casing 6 also has a through hole 17 through which the other end of the drive shaft 14 of the motor 2 is inserted, and a main bearing 18 is attached inside the center casing 6 on the scroll compression mechanism 4 side of this through hole 17 to rotatably support the other end of the drive shaft 14 on the scroll compression mechanism 4 side.
 モータ2は、コイルが巻装されてステータハウジング7の周壁内側に固定されたステータ25と、その内側で回転するロータ29から構成されている。そして、例えば車両のバッテリ(図示せず)からの直流電流がインバータ3により三相交流電流に変換され、モータ2のステータ25のコイルに給電されることで、ロータ29が回転駆動されるよう構成されている。そして、駆動軸14はこのロータ29に固定されている。 The motor 2 is composed of a stator 25 with a coil wound around it and fixed to the inside of the peripheral wall of the stator housing 7, and a rotor 29 that rotates inside the stator 25. For example, direct current from the vehicle battery (not shown) is converted to three-phase alternating current by the inverter 3, and this current is supplied to the coil of the stator 25 of the motor 2, thereby driving and rotating the rotor 29. The drive shaft 14 is fixed to this rotor 29.
 また、ステータハウジング7には、吸入ポート20が形成されており、吸入ポート20から吸入された冷媒は、ステータハウジング7内のモータ2を通過した後、センターケーシング6内に流入し、スクロール圧縮機構4の外側の吸入部37に吸入される。これにより、モータ2は吸入冷媒により冷却される。また、スクロール圧縮機構4にて圧縮された冷媒は、後述する吐出室27からリアケーシング9に形成された吐出ポート30より、ハウジング11外の図示しない冷媒回路の吐出配管に吐出される構成とされている。 The stator housing 7 is also formed with a suction port 20, and the refrigerant sucked in from the suction port 20 passes through the motor 2 inside the stator housing 7, then flows into the center casing 6 and is sucked into the suction section 37 outside the scroll compression mechanism 4. This cools the motor 2 with the sucked refrigerant. The refrigerant compressed by the scroll compression mechanism 4 is also configured to be discharged from the discharge chamber 27 (described later) through a discharge port 30 formed in the rear casing 9 into a discharge piping of a refrigerant circuit (not shown) outside the housing 11.
 スクロール圧縮機構4は、前述した固定スクロール21と可動スクロール22から構成されている。固定スクロール21は、円盤状の鏡板23と、この鏡板23の表面(一方の面)に立設されたインボリュート状、又は、これに近似した曲線から成る渦巻き状のラップ24を一体に備えており、このラップ24が立設された鏡板23の表面をセンターケーシング6側としてリアケーシング9に固定されている。固定スクロール21の鏡板23の中央には吐出孔26が形成されており、この吐出孔26はリアケーシング9内の吐出室27に連通されている。図中において28は、吐出孔26の鏡板23の背面(他方の面)側の開口に設けられた吐出バルブである。 The scroll compression mechanism 4 is composed of the fixed scroll 21 and movable scroll 22 described above. The fixed scroll 21 is integrally equipped with a disk-shaped mirror plate 23 and an involute-shaped or spiral wrap 24 made of a curve similar thereto, which is erected on the surface (one side) of the mirror plate 23, and is fixed to the rear casing 9 with the surface of the mirror plate 23 on which the wrap 24 is erected facing the center casing 6. A discharge hole 26 is formed in the center of the mirror plate 23 of the fixed scroll 21, and this discharge hole 26 is connected to a discharge chamber 27 in the rear casing 9. In the figure, 28 is a discharge valve provided at the opening of the discharge hole 26 on the rear surface (other side) side of the mirror plate 23.
 可動スクロール22は、固定スクロール21に対して公転旋回運動するスクロールであり、円盤状の鏡板31と、この鏡板31の表面(一方の面)に立設されたインボリュート状、又は、これに近似した曲線から成る渦巻き状のラップ32と、鏡板31の背面(他方の面)の中央に突出形成されたボス33を一体に備えている。この可動スクロール22は、ラップ32の突出方向を固定スクロール21側としてラップ32が固定スクロール21のラップ24に対向し、相互に向かい合って噛み合うように配置され、各ラップ24、32間に圧縮室34を形成する。 The movable scroll 22 is a scroll that revolves around the fixed scroll 21, and is integrally equipped with a disk-shaped mirror plate 31, an involute-shaped or spiral-shaped wrap 32 made of a curve similar to this that is erected on the surface (one side) of the mirror plate 31, and a boss 33 that protrudes from the center of the back surface (the other side) of the mirror plate 31. The movable scroll 22 is arranged so that the wrap 32 protrudes toward the fixed scroll 21, facing the wrap 24 of the fixed scroll 21, and meshing with each other, forming a compression chamber 34 between each wrap 24, 32.
 即ち、可動スクロール22のラップ32は、固定スクロール21のラップ24と対向し、ラップ32の先端が鏡板23の表面に接し、ラップ24の先端が鏡板31の表面に接するように噛み合い、且つ、可動スクロール22のボス33には、駆動軸14の他端において軸心から偏心して設けられた偏心部36が嵌め合わされている。そして、モータ2のロータ29と共に駆動軸14が回転されると、可動スクロール22は自転すること無く、固定スクロール21に対して公転旋回運動するように構成されている。 In other words, the wrap 32 of the movable scroll 22 faces the wrap 24 of the fixed scroll 21, and the tip of the wrap 32 contacts the surface of the end plate 23, and the tip of the wrap 24 contacts the surface of the end plate 31, so that they are engaged with each other. In addition, an eccentric portion 36 is fitted into the boss 33 of the movable scroll 22, which is provided eccentrically from the axis at the other end of the drive shaft 14. When the drive shaft 14 is rotated together with the rotor 29 of the motor 2, the movable scroll 22 is configured to make an orbital movement relative to the fixed scroll 21 without rotating on its own axis.
 可動スクロール22は固定スクロール21に対して偏心して公転旋回するため、各ラップ24、32の偏心方向と接触位置は回転しながら移動し、外側の前述した吸入部37から冷媒を吸入した圧縮室34は、内側に向かって移動しながら次第に縮小していく。これにより冷媒は圧縮されていき、最終的に中央の吐出孔26から吐出バルブ28を経て吐出室27に吐出される。 Since the movable scroll 22 revolves eccentrically relative to the fixed scroll 21, the eccentric direction and contact position of each wrap 24, 32 move while rotating, and the compression chamber 34 that draws in the refrigerant from the aforementioned suction section 37 on the outside gradually shrinks as it moves inward. This causes the refrigerant to be compressed, and it is finally discharged from the central discharge hole 26 through the discharge valve 28 into the discharge chamber 27.
 図1において、38は円環状のスラストプレートである。このスラストプレート38は、可動スクロール22の鏡板31の背面とセンターケーシング6との間に形成された背圧室39と、スクロール圧縮機構4の外側の吸入部37とを区画するためのものであり、ボス33の外側に位置してセンターケーシング6と可動スクロール22の間に介設されている。また、41は可動スクロール22の鏡板31の背面に取り付けられてスラストプレート38に摺動可能に当接する摺接シールであり、この摺接シール41とスラストプレート38により背圧室39と吸入部37とが区画される。 In FIG. 1, 38 is an annular thrust plate. This thrust plate 38 is used to separate a back pressure chamber 39 formed between the back surface of the end plate 31 of the movable scroll 22 and the center casing 6 from a suction section 37 on the outside of the scroll compression mechanism 4, and is positioned outside the boss 33 and interposed between the center casing 6 and the movable scroll 22. Also, 41 is a sliding seal attached to the back surface of the end plate 31 of the movable scroll 22 and slidably abuts against the thrust plate 38, and the back pressure chamber 39 and the suction section 37 are separated by this sliding seal 41 and the thrust plate 38.
 また、48はリアケーシング9(ハウジング11)の吐出室27内に取り付けられた遠心式のオイルセパレータであり、スクロール圧縮機構4から吐出室27に吐出された冷媒に混入した潤滑用のオイルを当該冷媒から分離する。このオイルセパレータ48には流入口49が形成され、この流入口49から流入したオイルを含む冷媒は、オイルセパレータ48内で旋回し、このときの遠心力でオイルは分離され、冷媒は上端の流出口から吐出ポート30に向かい、前述した如く吐出配管に吐出される。 48 is a centrifugal oil separator mounted in the discharge chamber 27 of the rear casing 9 (housing 11), which separates the lubricating oil mixed in with the refrigerant discharged from the scroll compression mechanism 4 to the discharge chamber 27 from the refrigerant. This oil separator 48 is formed with an inlet 49, and the refrigerant containing oil that flows in from this inlet 49 swirls inside the oil separator 48, the oil being separated by the centrifugal force at this time, and the refrigerant flows from the outlet at the upper end toward the discharge port 30 and is discharged into the discharge piping as described above.
 オイルセパレータ48の下方のリアケーシング9には貯油室44が形成されており、オイルセパレータ48で冷媒から分離されたオイルは、オイルセパレータ48の下端からこの貯油室44に流入する。図中において43は、リアケーシング9からセンターケーシング6に渡って形成された背圧通路である。この背圧通路43はリアケーシング9内の吐出室27内(スクロール圧縮機構4の吐出側)のオイルセパレータ48と背圧室39とを連通する経路であり、実施例ではオリフィス50を有している。これにより、背圧室39には背圧通路43のオリフィス50で減圧調整された吐出圧が、オイルセパレータ48で分離された貯油室44内のオイルと共に供給されるように構成されている。 An oil storage chamber 44 is formed in the rear casing 9 below the oil separator 48, and the oil separated from the refrigerant by the oil separator 48 flows into this oil storage chamber 44 from the lower end of the oil separator 48. In the figure, 43 is a back pressure passage formed from the rear casing 9 to the center casing 6. This back pressure passage 43 is a path that connects the oil separator 48 in the discharge chamber 27 (the discharge side of the scroll compression mechanism 4) in the rear casing 9 to the back pressure chamber 39, and in this embodiment has an orifice 50. As a result, the discharge pressure reduced and adjusted by the orifice 50 of the back pressure passage 43 is supplied to the back pressure chamber 39 together with the oil in the oil storage chamber 44 separated by the oil separator 48.
 この背圧室39内の圧力(背圧)により、可動スクロール22を固定スクロール21に押し付ける背圧荷重が生じる。この背圧荷重により、スクロール圧縮機構4の圧縮室34からの圧縮反力に抗して可動スクロール22が固定スクロール21に押し付けられ、ラップ24、32と鏡板31、23との接触が維持され、圧縮室34で冷媒を圧縮可能となる。 The pressure (back pressure) in this back pressure chamber 39 generates a back pressure load that presses the movable scroll 22 against the fixed scroll 21. This back pressure load presses the movable scroll 22 against the fixed scroll 21 against the compression reaction force from the compression chamber 34 of the scroll compression mechanism 4, maintaining contact between the wraps 24, 32 and the end plates 31, 23, making it possible to compress the refrigerant in the compression chamber 34.
 一方、インバータケース8は、内部にインバータ3が収容されるインバータ収容部13を構成するケース本体10と、このケース本体10の一端面の開口を閉塞する蓋部材15から構成されている。この蓋部材15はインバータ3をインバータ収容部13に収容した後、ケース本体10に取り付けられるものである。 On the other hand, the inverter case 8 is composed of a case body 10 that constitutes an inverter accommodating section 13 in which the inverter 3 is accommodated, and a lid member 15 that closes an opening on one end face of the case body 10. This lid member 15 is attached to the case body 10 after the inverter 3 is accommodated in the inverter accommodating section 13.
 次に、図2~図6を更に参照しながら、実施例の電動圧縮機1のハーメチックプレート52周辺の構造について説明する。尚、図2以降ではインバータケース8側を上として電動圧縮機1を立てた状態で示す。図2は電動圧縮機1のハーメチックプレート52部分の詳細断面図、図3はハーメチックプレート52の拡大断面図である。実施例のインバータ3は、一枚の回路基板51に制御回路が実装され、図示しないスイッチング素子や平滑コンデンサ等が接続されて構成されるものである。 Next, the structure around the hermetic plate 52 of the electric compressor 1 of the embodiment will be described with further reference to Figures 2 to 6. Note that in Figure 2 and subsequent figures, the electric compressor 1 is shown standing with the inverter case 8 side facing up. Figure 2 is a detailed cross-sectional view of the hermetic plate 52 part of the electric compressor 1, and Figure 3 is an enlarged cross-sectional view of the hermetic plate 52. The inverter 3 of the embodiment is configured with a control circuit mounted on a single circuit board 51, and with switching elements, smoothing capacitors, etc. (not shown) connected to it.
 ここで、ハーメチックプレート52は、インバータ3からモータ2のステータ25に給電する導電性のハーメチックピン53を備えており、ステータハウジング7の端壁7A(隔壁)のインバータ収容部13側に取り付けられている。図2と図3に係るハーメチックプレート52の詳細構造を示す。 Here, the hermetic plate 52 has a conductive hermetic pin 53 that supplies power from the inverter 3 to the stator 25 of the motor 2, and is attached to the inverter accommodating section 13 side of the end wall 7A (partition) of the stator housing 7. The detailed structure of the hermetic plate 52 according to Figs. 2 and 3 is shown.
 この場合、ハーメチックピン53は、モータ2の各相(三相)に対応して三本取り付けられている。ハーメチックプレート52は金属板をプレス加工して横長の板状に成形されており、長手方向の中央部には各ハーメチックピン53を取り付けるための円形の透孔63が三箇所並んで形成され、長手方向の両端部には後述するボルト77を挿通させるためのボルト挿通孔72がそれぞれ形成されている。 In this case, three hermetic pins 53 are attached, one for each phase (three phases) of the motor 2. The hermetic plate 52 is formed by pressing a metal plate into a horizontally long plate shape, with three circular through holes 63 formed in a row in the longitudinal center for attaching each of the hermetic pins 53, and bolt insertion holes 72 formed at both longitudinal ends for inserting bolts 77 described below.
 また、ハーメチックプレート52の一面(ハーメチックプレート52が後述する如く隔壁10Aに取り付けられたときにモータ室12側となる面)は平坦面とされ、この一面の各透孔63周囲には、円環状の凹部67がそれぞれ形成されている。また、ハーメチックプレート52の他面(ハーメチックプレート52が後述する如く隔壁10Aに取り付けられたときにモータ室12側となる面とは反対側の面)の各透孔63の周囲には、円柱状の凸部69がそれぞれ形成されている。 Furthermore, one surface of the hermetic plate 52 (the surface facing the motor chamber 12 when the hermetic plate 52 is attached to the bulkhead 10A as described below) is flat, and annular recesses 67 are formed around each of the through-holes 63 on this surface. Furthermore, cylindrical protrusions 69 are formed around each of the through-holes 63 on the other surface of the hermetic plate 52 (the surface opposite to the surface facing the motor chamber 12 when the hermetic plate 52 is attached to the bulkhead 10A as described below).
 また、各透孔63内面には円柱状のガラス(ガイシ)64がそれぞれ嵌め込まれており、各ハーメチックピン53はその長手方向の中途部が、このガラス64の内側にそれぞれ嵌合されている。即ち、各ハーメチックピン53はガラス64を介してハーメチックプレート52の透孔63に取り付けられ、この状態でハーメチックプレート52の一面と他面の双方から突出したかたちとなる。 In addition, cylindrical glass (insulator) 64 is fitted into the inner surface of each through hole 63, and the middle part of each hermetic pin 53 in the longitudinal direction is fitted inside this glass 64. In other words, each hermetic pin 53 is attached to the through hole 63 of the hermetic plate 52 via the glass 64, and in this state it protrudes from both one side and the other side of the hermetic plate 52.
 また、ガラス64よりもハーメチックプレート52の一面側となる各ハーメチックピン53の周囲(ハーメチックプレート52が後述する如く隔壁10Aに取り付けられたときにガラス64よりもモータ室12側となる各ハーメチックピン53の周囲)には、実施例ではゴム製のインシュレータ66が圧接して取り付けられている。この場合、インシュレータ66はそれぞれ独立して三つ用意され、ハーメチックプレート52が後述する如く隔壁10Aに取り付けられたときにモータ室12側に位置する部分の各ハーメチックピン53の周囲に個別に取り付けられる。 In addition, in this embodiment, rubber insulators 66 are attached by pressure to the periphery of each hermetic pin 53 that is on one side of the hermetic plate 52 relative to the glass 64 (the periphery of each hermetic pin 53 that is on the motor chamber 12 side relative to the glass 64 when the hermetic plate 52 is attached to the bulkhead 10A as described below). In this case, three independent insulators 66 are prepared and attached individually to the periphery of each hermetic pin 53 in the portion that is located on the motor chamber 12 side when the hermetic plate 52 is attached to the bulkhead 10A as described below.
 また、各インシュレータ66がハーメチックピン53に取り付けられた状態で、ハーメチックプレート52の各凹部67は各ハーメチックピン53にそれぞれ対応する。このとき、各凹部67内には絶縁レジン68を予め塗布しておく。そして、インシュレータ66をハーメチックピン53に取り付けたときに、絶縁レジン68がインシュレータ66とハーメチックプレート52の間に位置するようにする。これにより、各インシュレータ66は絶縁レジン68に密着するので、インシュレータ66とハーメチックプレート52の間の絶縁とシールが成され、インシュレータ66の位置決めも成されることになる。 Furthermore, when each insulator 66 is attached to the hermetic pin 53, each recess 67 of the hermetic plate 52 corresponds to each hermetic pin 53. At this time, insulating resin 68 is applied beforehand to each recess 67. Then, when the insulator 66 is attached to the hermetic pin 53, the insulating resin 68 is positioned between the insulator 66 and the hermetic plate 52. As a result, each insulator 66 adheres closely to the insulating resin 68, so that insulation and sealing are achieved between the insulator 66 and the hermetic plate 52, and the positioning of the insulator 66 is also achieved.
 更に、ハーメチックプレート52の他面には、シリコン部材71が塗布されている。このシリコン部材71は、図4に示す如くハーメチックプレート52の各透孔63の周囲に形成された凸部69を全て覆うかたちで塗布されており、これにより、ハーメチックプレート52の他面側における各ハーメチックピン53の絶縁と補強が成される。また、凸部69が形成されていることで、シリコン部材71とハーメチックプレート52のとの接触面積が増えるので、シリコン部材71はより安定的にハーメチックプレート52に固着されている。 Furthermore, a silicon member 71 is applied to the other surface of the hermetic plate 52. This silicon member 71 is applied in a manner that covers all of the protrusions 69 formed around each through-hole 63 of the hermetic plate 52 as shown in FIG. 4, thereby insulating and reinforcing each hermetic pin 53 on the other surface side of the hermetic plate 52. In addition, the formation of the protrusions 69 increases the contact area between the silicon member 71 and the hermetic plate 52, so that the silicon member 71 is more stably fixed to the hermetic plate 52.
 一方、ステータハウジング7の端壁7A(隔壁)に対応するインバータケース8のケース本体10の底壁10Aには、開口54が形成されている(図1)。そして、この開口54内に位置することになる端壁7A(隔壁)には、図5に示す如く貫通孔73が三箇所並んで形成されており、更にこの三つの貫通孔73が並んだ線上における端壁7A(隔壁)の外面(インバータ収容部13側となるステータハウジング7の外面)には、ボルト孔78が二箇所凹陥形成されている。このとき、各ボルト孔78は三つの貫通孔73の両側方にそれぞれ位置する(図5)。 On the other hand, an opening 54 is formed in the bottom wall 10A of the case body 10 of the inverter case 8, which corresponds to the end wall 7A (partition) of the stator housing 7 (Fig. 1). The end wall 7A (partition) that will be located within this opening 54 has three through holes 73 lined up as shown in Fig. 5, and two bolt holes 78 are recessed and formed in the outer surface of the end wall 7A (partition) on the line where the three through holes 73 are lined up (the outer surface of the stator housing 7 that faces the inverter accommodating section 13). At this time, each bolt hole 78 is located on both sides of the three through holes 73 (Fig. 5).
 更に、三つの貫通孔73と各ボルト孔78の間に位置する部分の端壁7A(隔壁)の外面(インバータ収容部13側となるステータハウジング7の外面)には、長円形状の溝74が形成されており、三つの貫通孔73を囲繞するかたちとされている。そして、この溝74内にはOリングから成るシール材76が配置される。 Furthermore, an oval groove 74 is formed on the outer surface of the end wall 7A (partition wall) located between the three through holes 73 and each bolt hole 78 (the outer surface of the stator housing 7 on the inverter accommodating section 13 side), surrounding the three through holes 73. A seal material 76 made of an O-ring is placed in this groove 74.
 以上の構成で、ハーメチックプレート52をステータハウジング7の端壁7A(隔壁)に取り付ける際には、先ず、溝74内にシール材76を配置する。次に、図3の如くハーメチックピン53やインシュレータ66等が取り付けられ、組み立てられたハーメチックプレート52の一面側を端壁7A(隔壁)側とした状態で、各ハーメチックピン53及びインシュレータ66を各貫通孔73内にそれぞれ挿入する。尚、各貫通孔73は各ハーメチックピン53の位置にそれぞれ対応して予め形成しておく。 When attaching the hermetic plate 52 to the end wall 7A (partition wall) of the stator housing 7 with the above configuration, first, the sealant 76 is placed in the groove 74. Next, as shown in FIG. 3, the hermetic pins 53, insulators 66, etc. are attached, and with one side of the assembled hermetic plate 52 facing the end wall 7A (partition wall), each hermetic pin 53 and insulator 66 is inserted into each through hole 73. Note that each through hole 73 is formed in advance to correspond to the position of each hermetic pin 53.
 そして、各ボルト挿通孔72にボルト77を挿通し、端壁7A(隔壁)の各ボルト孔78にそれぞれ螺合させることで、ハーメチックプレート52を端壁7A(隔壁)に取り付ける。そして、インバータケース8はその後ステータハウジング7の端壁7A(隔壁)に取り付けられる。即ち、ハーメチックプレート52は端壁7A(隔壁)のインバータ収容部13側に取り付けられる。 Then, bolts 77 are inserted into each bolt insertion hole 72 and screwed into each bolt hole 78 in the end wall 7A (partition wall), thereby attaching the hermetic plate 52 to the end wall 7A (partition wall). The inverter case 8 is then attached to the end wall 7A (partition wall) of the stator housing 7. In other words, the hermetic plate 52 is attached to the inverter accommodating section 13 side of the end wall 7A (partition wall).
 この状態で、シール材76は三本のハーメチックピン53及び三箇所の貫通孔73の周囲を囲繞するようにハーメチックプレート52と端壁7A(隔壁)との間に介設され、ハーメチックプレート52と端壁7A(隔壁)の双方に密接し、それらの間をシールする。また、インバータケース8がステータハウジング7の端壁7Aに取り付けられた状態で、ハーメチックプレート52とハーメチックピン53は、インバータケース8の開口54内に位置してインバータ収容部13内に臨む。 In this state, the sealing material 76 is interposed between the hermetic plate 52 and the end wall 7A (partition wall) so as to surround the three hermetic pins 53 and the three through holes 73, and is in close contact with both the hermetic plate 52 and the end wall 7A (partition wall), sealing the gap between them. Furthermore, when the inverter case 8 is attached to the end wall 7A of the stator housing 7, the hermetic plate 52 and hermetic pins 53 are positioned within the opening 54 of the inverter case 8 and face the inverter accommodating section 13.
 そして、各ハーメチックピン53は各貫通孔73を通過し、インバータ収容部13からモータ室12に渡って設けられたかたちとなり、インシュレータ66が取り付けられた部分の各ハーメチックピン53はモータ室12内に突出し、反対側の部分はインバータ収容部13内において起立する。 Each hermetic pin 53 passes through each through hole 73 and is provided from the inverter accommodating section 13 to the motor chamber 12, with the portion of each hermetic pin 53 to which the insulator 66 is attached protruding into the motor chamber 12 and the opposite portion standing upright within the inverter accommodating section 13.
 このように設けられた各ハーメチックピン53のモータ室12側の先端部には、モータ2のステータ25のコイルに接続された高電圧コネクタ62が電気的に接続される(図1)。このとき、各インシュレータ66の一部は図2に示す如く高電圧コネクタ62内に入り、各ハーメチックピン53を相互に絶縁する。 The tip of each hermetic pin 53 on the motor chamber 12 side is electrically connected to a high-voltage connector 62 connected to the coil of the stator 25 of the motor 2 (Figure 1). At this time, a part of each insulator 66 enters the high-voltage connector 62 as shown in Figure 2, insulating each hermetic pin 53 from each other.
 また、回路基板51はその後インバータ収容部13内に取り付けられるが、このとき、各ハーメチックピン53のインバータ収容部13側の先端部に対応する位置の回路基板51には、パワーバスケットと称される金属製のプレスフィット端子56を三個取り付けておく(図1)。そして、回路基板51がインバータ収容部13内に取り付けられるとき、各ハーメチックピン53のインバータ収容部13側の先端部が各プレスフィット端子56内にそれぞれ進入し、当該プレスフィット端子56に圧接(プレスフィット)される。これにより、各ハーメチックピン53は回路基板51に電気的に接続され、ハーメチックピン53を介して回路基板51とモータ2が接続されることになる。 The circuit board 51 is then mounted in the inverter accommodating section 13, and at this time, three metal press-fit terminals 56 called power baskets are attached to the circuit board 51 at positions corresponding to the tips of the hermetic pins 53 on the inverter accommodating section 13 side (Figure 1). When the circuit board 51 is mounted in the inverter accommodating section 13, the tips of the hermetic pins 53 on the inverter accommodating section 13 side enter the press-fit terminals 56, respectively, and are pressed (press-fit) to the press-fit terminals 56. As a result, the hermetic pins 53 are electrically connected to the circuit board 51, and the circuit board 51 and the motor 2 are connected via the hermetic pins 53.
 以上詳述した如く、本発明では各ハーメチックピン53のモータ室12側に位置する部分の周囲に、それぞれ個別にインシュレータ66を取り付け、更に、三本のハーメチックピン53及び端壁7A(隔壁)の三つの貫通孔73の周囲を囲繞するように、ハーメチックプレート52と端壁7A(隔壁)との間にシール材74を介設したので、ハーメチックプレート52を端壁7A(隔壁)のインバータ収容部13側に取り付ける際に、ハーメチックプレート52と端壁7A(隔壁)間をシールするシール材76の位置を、一体化されたインシュレータを用いた場合(図7)に比して図6に示すように内側に寄せ、その大きさを縮小することができるようになる。 As described above in detail, in the present invention, an insulator 66 is attached individually around the portion of each hermetic pin 53 located on the motor chamber 12 side, and further, a sealant 74 is interposed between the hermetic plate 52 and the end wall 7A (partition) so as to surround the three hermetic pins 53 and the three through holes 73 in the end wall 7A (partition). Therefore, when the hermetic plate 52 is attached to the inverter accommodating section 13 side of the end wall 7A (partition), the position of the sealant 76 that seals between the hermetic plate 52 and the end wall 7A (partition) can be shifted inward as shown in FIG. 6 compared to when an integrated insulator is used (FIG. 7), and its size can be reduced.
 これにより、貫通孔73を介してモータ室12側の圧力を受けるハーメチックプレート52の受圧面積(ハーメチックプレート52の一面に圧力が加わる面積。図6のAで示す領域)を縮小し、ハーメチックプレート52の変形を抑制することができるようになる。また、シール材76自体を透過する漏れも少なくすることができるようになるので、総じてハーメチックプレート52と端壁7A(隔壁)間のシール性を著しく改善することができるようになる。 This reduces the pressure-receiving area of the hermetic plate 52 that receives pressure from the motor chamber 12 side through the through-hole 73 (the area to which pressure is applied on one side of the hermetic plate 52; the area indicated by A in Figure 6), making it possible to suppress deformation of the hermetic plate 52. In addition, leakage through the sealing material 76 itself can also be reduced, making it possible to significantly improve the seal between the hermetic plate 52 and the end wall 7A (partition wall) overall.
 また、実施例ではインシュレータ66を、ガラス64よりもモータ室12側となるハーメチックピン66の周囲に圧接して取り付けているので、シール材76をより一相内側に寄せてハーメチックプレート52の受圧面積Aの縮小を図ることが可能となる。 In addition, in this embodiment, the insulator 66 is attached by pressing it against the periphery of the hermetic pin 66, which is closer to the motor chamber 12 than the glass 64, so that the sealing material 76 can be moved one phase further inward, thereby reducing the pressure-receiving area A of the hermetic plate 52.
 また、実施例ではハーメチックプレート52のモータ室12側となる面の透孔63周囲に各ハーメチックピン53に取り付けられたインシュレータ66に対応する凹部67をそれぞれ形成し、各インシュレータ66とハーメチックプレート52との間に位置する絶縁レジン68を各凹部67内に塗布しているので、ハーメチックピン53がハーメチックプレート52を貫通するモータ室12側の部分のシール性と絶縁性を一相改善することができるようになる。 In addition, in this embodiment, recesses 67 corresponding to the insulators 66 attached to each hermetic pin 53 are formed around the through holes 63 on the surface of the hermetic plate 52 facing the motor chamber 12, and insulating resin 68 located between each insulator 66 and the hermetic plate 52 is applied inside each recess 67, making it possible to improve the sealing and insulation properties of the portion on the motor chamber 12 side where the hermetic pin 53 penetrates the hermetic plate 52.
 更に、実施例ではハーメチックプレート52のモータ室12側となる面とは反対側の面の透孔63周囲に凸部69をそれぞれ形成し、各凸部69を覆うかたちでシリコン部材71を塗布しているので、インバータ収容部13側のハーメチックピン66周辺の絶縁性とシール性も改善することができるようになる。 Furthermore, in this embodiment, convex portions 69 are formed around the through holes 63 on the surface of the hermetic plate 52 opposite the surface facing the motor chamber 12, and the silicon member 71 is applied to cover each convex portion 69, so that the insulation and sealing properties around the hermetic pin 66 on the inverter accommodating section 13 side can also be improved.
 尚、実施例ではハーメチックピン53が三本設けられる構造で説明したが、それに限らず、モータ2の相が更に多い場合には、それに応じて更に多くのハーメチックピンが設けられることになる。また、実施例で示した各部材の具体的形状は、それに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更に、実施例ではスクロール式電動圧縮機で本発明を説明したが、それに限らず、ロータリ式等の各形式の電動圧縮機に本発明は有効である。 In the embodiment, a structure in which three hermetic pins 53 are provided is described, but this is not limited thereto, and if the motor 2 has more phases, more hermetic pins will be provided accordingly. In addition, the specific shapes of the components shown in the embodiment are not limited thereto, and it goes without saying that they can be changed without departing from the spirit of the present invention. Furthermore, in the embodiment, the present invention is described using a scroll type electric compressor, but this is not limited thereto, and the present invention is effective for various types of electric compressors, such as rotary type.
 1 電動圧縮機
 2 モータ
 3 インバータ
 4 スクロール圧縮機構
 7 ステータハウジング
 7A 端壁(隔壁)
 8 インバータケース
 11 ハウジング
 12 モータ室
 13 インバータ収容部
 51 回路基板
 52 ハーメチックプレート
 53 ハーメチックピン
 56 プレスフィット端子
 62 高電圧コネクタ
 63 透孔
 64 ガラス
 66 インシュレータ
 67 凹部
 68 絶縁レジン
 69 凸部
 71 シリコン部材
 73 貫通孔
 76 シール材
 77 ボルト
REFERENCE SIGNS LIST 1 Electric compressor 2 Motor 3 Inverter 4 Scroll compression mechanism 7 Stator housing 7A End wall (partition wall)
Reference Signs List 8 inverter case 11 housing 12 motor chamber 13 inverter accommodating section 51 circuit board 52 hermetic plate 53 hermetic pin 56 press-fit terminal 62 high-voltage connector 63 through hole 64 glass 66 insulator 67 recess 68 insulating resin 69 protrusion 71 silicon member 73 through hole 76 sealing material 77 bolt

Claims (4)

  1.  モータが内蔵されたモータ室と、前記モータに給電するインバータが取り付けられるインバータ収容部と、前記モータ室と前記インバータ収容部との隔壁と、該隔壁の前記インバータ収容部側に取り付けられたハーメチックプレートと、該ハーメチックプレートを貫通して当該ハーメチックプレートに取り付けられた複数本のハーメチックピンを備えた電動圧縮機において、
     前記ハーメチックピンは、前記ハーメチックプレートが前記隔壁に取り付けられた状態で、当該隔壁に形成された貫通孔を通過し、前記インバータ収容部から前記モータ室に渡って設けられ、各ハーメチックピンの前記モータ室側に位置する部分の周囲には、個別のインシュレータがそれぞれ取り付けられると共に、
     前記複数本のハーメチックピン及び前記貫通孔の周囲を囲繞するように、前記ハーメチックプレートと前記隔壁との間にシール材が介設されていることを特徴とする電動圧縮機。
    An electric compressor including a motor chamber incorporating a motor, an inverter accommodating section in which an inverter that supplies power to the motor is attached, a partition wall between the motor chamber and the inverter accommodating section, a hermetic plate attached to the inverter accommodating section side of the partition wall, and a plurality of hermetic pins attached to the hermetic plate by penetrating the hermetic plate,
    The hermetic pins pass through through holes formed in the partition wall when the hermetic plate is attached to the partition wall, and are provided from the inverter accommodating section to the motor chamber, and an individual insulator is attached to the periphery of a portion of each hermetic pin that is positioned on the motor chamber side,
    a sealing material is interposed between the hermetic plate and the partition wall so as to surround the periphery of the plurality of hermetic pins and the through hole.
  2.  前記ハーメチックピンは、前記ハーメチックプレートに形成された透孔にガラスを介して取り付けられていると共に、
     前記インシュレータは、前記ガラスよりも前記モータ室側となる前記ハーメチックピンの周囲に圧接して取り付けられていることを特徴とする請求項1に記載の電動圧縮機。
    The hermetic pin is attached to a through hole formed in the hermetic plate through glass,
    2. The electric compressor according to claim 1, wherein the insulator is attached by being pressed against a periphery of the hermetic pin that is closer to the motor chamber than the glass.
  3.  前記ハーメチックプレートの前記モータ室側となる面の前記透孔周囲には、前記各ハーメチックピンに取り付けられたインシュレータに対応する凹部がそれぞれ形成され、前記各凹部内には、前記各インシュレータと前記ハーメチックプレートとの間に位置する絶縁レジンが塗布されていることを特徴とする請求項2に記載の電動圧縮機。 The electric compressor according to claim 2, characterized in that recesses corresponding to the insulators attached to the hermetic pins are formed around the through holes on the surface of the hermetic plate facing the motor chamber, and insulating resin is applied to each recess between the insulators and the hermetic plate.
  4.  前記ハーメチックプレートの前記モータ室側となる面とは反対側の面の前記透孔周囲には凸部がそれぞれ形成され、各凸部を覆うかたちでシリコン部材が塗布されていることを特徴とする請求項2又は請求項3に記載の電動圧縮機。 The electric compressor according to claim 2 or 3, characterized in that a protrusion is formed around each of the through-holes on the surface of the hermetic plate opposite the surface facing the motor chamber, and a silicon material is applied to cover each protrusion.
PCT/JP2023/035328 2022-10-20 2023-09-28 Electric compressor WO2024084914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-168045 2022-10-20
JP2022168045A JP2024060651A (en) 2022-10-20 2022-10-20 Electric Compressor

Publications (1)

Publication Number Publication Date
WO2024084914A1 true WO2024084914A1 (en) 2024-04-25

Family

ID=90737606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035328 WO2024084914A1 (en) 2022-10-20 2023-09-28 Electric compressor

Country Status (2)

Country Link
JP (1) JP2024060651A (en)
WO (1) WO2024084914A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185463A (en) * 1990-03-21 1994-07-05 Tecumseh Prod Co Airtight terminal with electrical insulating anti-tracking-cap
JP2010168914A (en) * 2009-01-20 2010-08-05 Mitsubishi Heavy Ind Ltd Electric compressor
JP2012082719A (en) * 2010-10-07 2012-04-26 Toyota Industries Corp Electric compressor
JP2014055545A (en) * 2012-09-12 2014-03-27 Toyota Industries Corp Motor compressor
JP2015528631A (en) * 2012-08-10 2015-09-28 エマソン エレクトリック コー. Hermetic terminal with pin separation structure
JP2015183668A (en) * 2014-03-26 2015-10-22 サンデンホールディングス株式会社 electric compressor
JP2018517092A (en) * 2016-04-22 2018-06-28 ハンオン システムズ Compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185463A (en) * 1990-03-21 1994-07-05 Tecumseh Prod Co Airtight terminal with electrical insulating anti-tracking-cap
JP2010168914A (en) * 2009-01-20 2010-08-05 Mitsubishi Heavy Ind Ltd Electric compressor
JP2012082719A (en) * 2010-10-07 2012-04-26 Toyota Industries Corp Electric compressor
JP2015528631A (en) * 2012-08-10 2015-09-28 エマソン エレクトリック コー. Hermetic terminal with pin separation structure
JP2014055545A (en) * 2012-09-12 2014-03-27 Toyota Industries Corp Motor compressor
JP2015183668A (en) * 2014-03-26 2015-10-22 サンデンホールディングス株式会社 electric compressor
JP2018517092A (en) * 2016-04-22 2018-06-28 ハンオン システムズ Compressor

Also Published As

Publication number Publication date
JP2024060651A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2014068914A1 (en) Electric compressor
US9068570B2 (en) Motor-driven compressor with intermittent communication between back pressure region and suction pressure region
WO2007077857A1 (en) Electric compressor
CN113614377B (en) Scroll compressor having a discharge port
CN212028054U (en) Electric compressor
CN113994098A (en) Scroll compressor having a discharge port
JP2006042409A (en) Motor integrated compressor
EP2730741A2 (en) Scroll compressor with rotation restriction mechanism
EP1867874B1 (en) Electric motor-driven compressor
WO2024084914A1 (en) Electric compressor
JP6023973B2 (en) Electric compressor
CN217216223U (en) Terminal unit and compressor
KR100417584B1 (en) Cylinder assembly of compressor
CN114810587A (en) Scroll compressor having a scroll compressor with a suction chamber
US20200386230A1 (en) Motor-operated compressor
WO2023248707A1 (en) Electric compressor and method for manufacturing same
WO2023248703A1 (en) Electric compressor
WO2023203950A1 (en) Inverter-integrated electric compressor
WO2024062859A1 (en) Electric compressor
WO2023248704A1 (en) Electric compressor and method for producing same
WO2024042986A1 (en) Electric compressor
WO2023203951A1 (en) Inverter-integrated electric compressor
EP4365449A1 (en) Electric compressor
JP3327702B2 (en) Scroll compressor
KR20200069509A (en) Scroll-type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879562

Country of ref document: EP

Kind code of ref document: A1