WO2024084911A1 - Voltage monitoring circuit, semiconductor integrated circuit device, vehicle, control device, switching regulator, and power supply device - Google Patents

Voltage monitoring circuit, semiconductor integrated circuit device, vehicle, control device, switching regulator, and power supply device Download PDF

Info

Publication number
WO2024084911A1
WO2024084911A1 PCT/JP2023/035185 JP2023035185W WO2024084911A1 WO 2024084911 A1 WO2024084911 A1 WO 2024084911A1 JP 2023035185 W JP2023035185 W JP 2023035185W WO 2024084911 A1 WO2024084911 A1 WO 2024084911A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
signal
output stage
transistor
switch
Prior art date
Application number
PCT/JP2023/035185
Other languages
French (fr)
Japanese (ja)
Inventor
公信 佐藤
和宏 村上
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024084911A1 publication Critical patent/WO2024084911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention disclosed in this specification relates to a voltage monitoring circuit, a semiconductor integrated circuit device, and a vehicle.
  • the invention disclosed in this specification also relates to a control device, a switching regulator including this control device, and a power supply device including this switching regulator.
  • in-vehicle power supply ICs Integrated Circuits
  • ADAS Advanced Driver-Assistance Systems
  • Patent Document 1 As an example of related prior art, Patent Document 1 can be mentioned.
  • the accuracy of voltage monitoring in a SoC that includes the power supply IC is required to be within the power supply specifications of the SoC. Therefore, there are cases where extremely high-precision voltage monitoring is required.
  • the coil currents of each switch output stage may not match, resulting in an unbalanced state. This may result in the output current of the switching regulator operating in an unbalanced manner, which may lead to reduced efficiency. Furthermore, if the imbalance is relatively large, the protection circuit will cause the switching regulator to malfunction.
  • the voltage monitoring circuit disclosed in this specification comprises a first differential input pair including a first transistor configured to receive a reference voltage and a second transistor configured to receive a monitored voltage, and a second differential input pair including a third transistor configured to receive the first voltage and a fourth transistor configured to receive a second voltage.
  • the output terminal of the first transistor and the output terminal of the third transistor are commonly connected.
  • the output terminal of the second transistor and the output terminal of the fourth transistor are commonly connected.
  • the semiconductor integrated circuit device disclosed in this specification includes a voltage monitoring circuit having the above configuration.
  • the vehicle disclosed in this specification is equipped with a semiconductor integrated circuit device having the above configuration.
  • the control device disclosed in this specification is a control device for a switching regulator configured to generate a desired output voltage from an input voltage by driving at least a first switch output stage and a second switch output stage with a predetermined phase difference.
  • the control device includes a first control circuit and a second control circuit configured to drive the first switch output stage and the second switch output stage, respectively, and a transmission signal having both clock information and duty information of the first switch output stage is transmitted from the first control circuit to the second control circuit.
  • the switching regulator disclosed in this specification is equipped with a control device having the above configuration.
  • the power supply device disclosed in this specification includes a switching regulator having the above configuration.
  • the invention disclosed in this specification makes it possible to achieve highly accurate voltage monitoring.
  • the second control circuit can obtain clock information and duty information of the first switch output stage. By controlling the drive of the second switch output stage based on this clock information and duty information, it is possible to prevent imbalance with the drive of the first switch output stage.
  • FIG. 1 is a diagram showing a comparative example of a switching power supply device.
  • FIG. 2 is a diagram showing a first embodiment of a switching power supply device.
  • FIG. 3 is a diagram showing an example of the configuration of a four-input terminal comparator.
  • FIG. 4 is a diagram showing a second embodiment of a switching power supply device.
  • FIG. 5 is a diagram showing a schematic diagram of the value of the second voltage being switched in a time division manner.
  • FIG. 6 is an external view of the vehicle.
  • FIG. 7 is a block diagram showing the configuration of a power supply device of the comparative example.
  • FIG. 8 is a timing chart showing the first inductor current, the second inductor current, the first switch voltage, and the second switch voltage in the power supply device of the comparative example.
  • FIG. 9 is a diagram showing a schematic configuration of an embodiment of a power supply device according to the present disclosure.
  • FIG. 10 is a timing chart showing the first switch voltage, the second switch voltage, the first inductor current, and the second inductor current.
  • FIG. 11 is a block diagram showing the configuration of the power supply device.
  • FIG. 12 is a timing chart showing the first ramp signal, the second ramp signal, the first error signal, the second error signal, the first comparison signal, the second comparison signal, the first inductor current, and the second inductor current.
  • FIG. 13 is a block diagram showing the details of the matching unit.
  • a switching power supply device 1 of this comparative example generates a desired DC output voltage VOUT from a DC input voltage VIN.
  • the switching power supply device 1 includes a semiconductor integrated circuit device 10, an inductor L1, and an output capacitor COUT.
  • the semiconductor integrated circuit device 10 is a power supply IC that serves as the main controller of the switching power supply device 1.
  • the semiconductor integrated circuit device 10 has multiple terminals (terminals T1 to T4 in this diagram) as a means for establishing electrical connection with the outside of the device.
  • a DC input voltage VIN is applied to terminal T1.
  • a ground voltage is applied to terminal T2.
  • a first end of inductor L1 is connected to terminal T3.
  • a second end of inductor L1 and a first end of output capacitor COUT are connected to terminal T4.
  • a ground voltage is applied to the second end of output capacitor COUT.
  • Inductor L1 and output capacitor COUT convert the pulsed switch voltage VSW output from terminal T3 into a DC output voltage VOUT.
  • the DC output voltage VOUT is applied to terminal T4.
  • the semiconductor integrated circuit device 10 includes a digital data generation circuit 11, a DAC (Digital Analog Converter) 12, a buffer amplifier 13, a switch voltage generation circuit 14, a voltage monitoring circuit 15, and resistors R1 and R2.
  • DAC Digital Analog Converter
  • the digital data generation circuit 11 generates and outputs digital data for the reference voltage. Note that the digital data for the reference voltage generated by the digital data generation circuit 11 may be fixed to one value, or may be switchable between multiple values.
  • DAC12 converts the digital data for the reference voltage into an analog voltage, the reference voltage VREF, and outputs it.
  • the reference voltage VREF output from DAC12 is supplied to the switch voltage generation circuit 14 and the voltage monitoring circuit 15 via the buffer amplifier 13.
  • Resistors R1 and R2 generate a feedback voltage VFB, which is a divided voltage of the DC output voltage VOUT applied to terminal T4, and supply the feedback voltage VFB to the switch voltage generating circuit 14 and the voltage monitoring circuit 15, respectively.
  • the switch voltage generating circuit 14 includes a switching element, and converts the DC input voltage VIN into a switch voltage VSW by switching the switching element with a duty corresponding to the difference between the reference voltage VREF and the feedback voltage VFB, and supplies the switch voltage VSW to the terminal T3.
  • the voltage monitoring circuit 15 includes voltage generating circuits 151 and 152, and comparators 153 and 154.
  • the voltage monitoring circuit 15 monitors whether the feedback voltage VFB is an overvoltage or not, and also monitors whether the feedback voltage VFB is a low voltage or not.
  • the voltage generation circuit 151 includes a constant current circuit and a resistor, and generates a first reference voltage VREF1 from the reference voltage VREF using the constant current and the resistor.
  • the first reference voltage VREF1 is greater than the reference voltage VREF by a first predetermined value.
  • the voltage generating circuit 152 includes a constant current circuit and a resistor, and generates a second reference voltage VREF2 from the reference voltage VREF using the constant current and the resistor.
  • the second reference voltage VREF2 is smaller than the reference voltage VREF by a second predetermined value.
  • the second predetermined value may be the same as the first predetermined value, or may be a value different from the first predetermined value.
  • the non-inverting input terminal of the comparator 153 is supplied with a first reference voltage VREF1.
  • the inverting input terminal of the comparator 154 is supplied with a feedback voltage VFB.
  • the overvoltage detection signal OVD which is the output signal of the comparator 153
  • the second reference voltage VREF2 is supplied to the inverting input terminal of the comparator 154.
  • the feedback voltage VFB is supplied to the non-inverting input terminal of the comparator 154.
  • the feedback voltage VFB is smaller than the second reference voltage VREF2
  • the low voltage detection signal UVD which is the output signal of the comparator 153
  • the accuracy of voltage monitoring can be improved by performing trimming.
  • the temperature characteristics and voltage characteristics of the constant current circuits included in the voltage generation circuits 151 and 152 and the temperature characteristics of the offsets of the comparators 153 and 154 are characteristics that vary depending on the usage environment of the switching power supply device 1, and are a cause of deterioration in accuracy.
  • the voltage monitoring circuit 15 of the comparative example had insufficient voltage monitoring accuracy.
  • ⁇ Switching power supply device (first embodiment)> 2 is a diagram showing a first embodiment of a switching power supply device.
  • the switching power supply device 1 of this embodiment is based on the comparative example (FIG. 1) described above, but includes a constant voltage generating circuit 16 and has a different configuration for the voltage monitoring circuit 15.
  • the constant voltage generation circuit 16 generates a constant voltage VREG from the DC input voltage VIN.
  • the voltage monitoring circuit 15 of this embodiment includes a four-input terminal comparator 155, a resistive voltage divider circuit formed by resistors R3 and R4, and a resistive voltage divider circuit formed by resistors R5 and R6.
  • the resistor voltage divider circuit formed by resistors R3 and R4 outputs a first voltage V1 obtained by dividing the constant voltage VREG by the resistance ratio of resistors R3 and R4.
  • the resistor voltage divider circuit formed by resistors R5 and R6 outputs a second voltage V2 obtained by dividing the constant voltage VREG by the resistance ratio of resistors R5 and R6.
  • the first non-inverting input terminal of the four-input terminal comparator 155 is supplied with a reference voltage VREF.
  • the first inverting input terminal of the four-input terminal comparator 155 is supplied with a feedback voltage VFB.
  • the second non-inverting input terminal of the four-input terminal comparator 155 is supplied with a first voltage V1.
  • the second inverting input terminal of the four-input terminal comparator 155 is supplied with a second voltage V2.
  • the overvoltage detection signal OVD which is the output signal of the four-input terminal comparator 155, is a voltage that corresponds to the sum of the difference between the reference voltage VREF and the feedback voltage VFB and the difference between the first voltage V1 and the second voltage V2 (VREF-VFB+V1-V2).
  • the voltage monitoring circuit 15 of this embodiment can monitor whether the feedback voltage VFB is an overvoltage, similar to the voltage monitoring circuit 15 of the comparative example.
  • the overvoltage detection signal OVD which is the output signal of the four-input terminal comparator 155
  • the overvoltage detection signal OVD which is the output signal of the four-input terminal comparator 155
  • the first voltage V1 and the second voltage V2 do not need to be generated using the reference voltage VREF. This makes it possible to make the first voltage V1 and the second voltage V2 voltages less likely to fluctuate with temperature. Therefore, the voltage monitoring circuit 15 of this embodiment can achieve highly accurate voltage monitoring.
  • the pairing of the two resistors included in the resistive voltage divider circuit is used to make each of the first voltage V1 and the second voltage V2 voltages less likely to fluctuate with temperature. Furthermore, as in this embodiment, by configuring the resistive voltage divider circuit formed by resistors R3 and R4 and the resistive voltage divider circuit formed by resistors R5 and R6 to be supplied with a common constant voltage VREG, it is possible to prevent the difference between the first voltage V1 and the second voltage V2 (V1-V2) from being affected by the temperature characteristics of the constant voltage VREG even if the constant voltage VREG fluctuates with temperature.
  • FIG. 3 is a diagram showing an example configuration of a four-input terminal comparator 155.
  • the four-input terminal comparator 155 of the example configuration shown in FIG. 3 includes transistors M1 to M16, current sources CS1 to CS6, switches SW1 to SW6, and capacitors C1 and C2.
  • Transistors M1 to M6, M15, and M16 are P-channel type MOS field effect transistors.
  • Transistors M7 to M14 are N-channel type MOS field effect transistors.
  • the first differential input pair P1 is formed by transistors M1 and M2.
  • the second differential input pair P2 is formed by transistors M3 and M4.
  • the calibration circuit CAL1 is formed by transistors M5 and M6, capacitors C1 and C2, and switches SW5 and SW6.
  • a constant voltage VREG is applied to the first terminal of each of the current sources CS1 to CS6.
  • the reference voltage VREF is supplied to the gate of transistor M1 and the first terminal of switch SW2.
  • the feedback voltage VFB is supplied to the first terminal of switch SW1.
  • the second terminals of switches SW1 and SW2 are connected to the gate of transistor M2.
  • the second terminal of current source CS1 is connected to the sources of transistors M1 and M2.
  • the first voltage V1 is supplied to the gate of transistor M3 and the first terminal of switch SW4.
  • the second voltage V2 is supplied to the first terminal of switch SW3.
  • the second terminals of switches SW3 and SW4 are connected to the gate of transistor M4.
  • the second terminal of current source CS2 is connected to the sources of transistors M3 and M4.
  • the drain of transistor M1 and the drain of transistor M3 are commonly connected.
  • the drain of transistor M2 and the drain of transistor M4 are commonly connected.
  • the gate of transistor M5 is connected to the first end of switch SW5 and the first end of capacitor C1.
  • the gate of transistor M6 is connected to the first end of switch SW6 and the first end of capacitor C2.
  • the second end of current source CS3 is connected to the sources of transistors M5 and M6. A ground voltage is applied to the second ends of capacitors C1 and C2.
  • the drain of transistor M5 and the second end of switch SW5 are connected to the drain of transistor M1, the drain of transistor M3, the source of transistor M9, and the drain of transistor M10.
  • the drain of transistor M9 is connected to the second end of current source CS5.
  • the drain of transistor M6 and the second end of switch SW6 are connected to the drain of transistor M2, the drain of transistor M4, the source of transistor M11, and the drain of transistor M12.
  • the drain of transistor M11 is connected to the second end of current source CS6.
  • the gates of transistors M7 to M12 are connected to the second end of current source CS4 and the drain of transistor M7.
  • the source of transistor M7 is connected to the drain of transistor M8.
  • a ground voltage is applied to the sources of transistors M8, M10, and M12.
  • a gate signal G14 is supplied to the gate of transistor M14 from the connection node between current source CS5 and transistor M9.
  • a gate signal G13 is supplied to the gate of transistor M13 from the connection node between current source CS6 and transistor M11.
  • a ground voltage is applied to the sources of transistors M13 and M14.
  • a current mirror circuit is formed by transistors M15 and M16.
  • a constant voltage VREG is applied to the sources of transistors M15 and M16.
  • the gates of transistors M15 and M16 and the drain of transistor M15 are connected to the drain of transistor M13.
  • the drain of transistor M16 is connected to the drain of transistor M14.
  • the output signal SOUT of the four-input terminal comparator 155 (overvoltage detection signal OVD in FIG. 1) is output from the connection node between transistors M16 and M14.
  • the four-input terminal comparator 155 in the configuration example shown in FIG. 3 turns on switches SW1 and SW3 during normal operation (during comparison operation) and turns off switches SW2, SW4, SW5, and SW6.
  • the four-input terminal comparator 155 of the configuration example shown in FIG. 3 turns off switches SW1 and SW3 during calibration operation, and turns on switches SW2, SW4, SW5, and SW6. At this time, if the threshold voltage of transistor M1 is equal to the threshold voltage of transistor M2, the drain current Ia2 of transistor M1 is equal to the drain current Ia3 of transistor M2. Similarly, if the threshold voltage of transistor M3 is equal to the threshold voltage of transistor M4, the drain current Ib2 of transistor M3 is equal to the drain current Ib3 of transistor M4.
  • the drain current Ia2 of transistor M1 will be smaller than the drain current Ia3 of transistor M2 and the drain current Ib2 of transistor M3 will be smaller than the drain current Ib3 of transistor M4.
  • the drain voltage V12 of transistors M1 and M3 will be smaller than the drain voltage V13 of transistors M2 and M4.
  • the calibration circuit CAL1 passes the drain current Ic2 of transistor M5 and the drain current Ic3 of transistor M6 in a balance that depends on the drain voltage V12 of transistors M1 and M3 and the drain voltage V13 of transistors M2 and M4.
  • the drain current Ic2 of the transistor M5 becomes larger than the drain current Ic3 of the transistor M6, and the drain voltage V12 of the transistors M1 and M3 and the drain voltage V13 of the transistors M2 and M4 are adjusted to be closer to an equal state. Then, a charge according to the drain voltage V12 of the transistors M1 and M3 is charged to the capacitor C1, and a charge according to the drain voltage V13 of the transistors M2 and M4 is charged to the capacitor C1.
  • the voltage monitoring circuit 15 of this embodiment can achieve even more accurate voltage monitoring by the calibration circuit CAL1.
  • the offsets of the first differential input pair P1 and the second differential input pair P2 vary depending on the environment in which the switching power supply device 1 is used. Therefore, the four-input terminal comparator 155 in the configuration example shown in FIG. 3 alternately repeats a calibration operation and a normal operation.
  • the voltage monitoring circuit 15 of this embodiment can only monitor whether the feedback voltage VFB is an overvoltage, and cannot monitor whether the feedback voltage VFB is an undervoltage. To monitor whether the feedback voltage VFB is an undervoltage, it is necessary to add another set of a four-input terminal comparator 155, a resistive voltage divider circuit formed by resistors R3 and R4, and a resistive voltage divider circuit formed by resistors R5 and R6 to the voltage monitoring circuit 15 of this embodiment for undervoltage monitoring.
  • Comparators including the calibration circuit CAL1 generally tend to be large in circuit size. Therefore, if the voltage monitoring circuit 15 of this embodiment is configured with two sets of a four-input terminal comparator 155, a resistive voltage divider circuit formed by resistors R3 and R4, and a resistive voltage divider circuit formed by resistors R5 and R6, the circuit area will be significantly larger than that of the voltage monitoring circuit 15 of the comparative example.
  • ⁇ Switching power supply device (second embodiment)> 4 is a diagram showing a second embodiment of a switching power supply device.
  • the switching power supply device 1 of this embodiment is based on the first embodiment (FIG. 2) described above, but has a configuration in which the resistive voltage divider circuit formed by resistors R5 and R6 is replaced with a digital data generation circuit 156 and a DAC 157.
  • the voltage monitoring circuit 15 of this embodiment can monitor not only whether the feedback voltage VFB is an overvoltage, but also whether the feedback voltage VFB is a low voltage. Furthermore, since the voltage monitoring circuit 15 of this embodiment does not need to have two four-input terminal comparators 155, an increase in the circuit area can be suppressed.
  • the semiconductor integrated circuit device 10 of this embodiment generates a clock signal CLK internally or receives it from the outside.
  • the digital data generation circuit 156 switches the digital data corresponding to the second voltage V2 between overvoltage data and low voltage data in a time-division manner based on the clock signal CLK.
  • a constant voltage VREG and a ground voltage are applied to the DAC 157.
  • the DAC 157 converts the digital data output from the digital data generation circuit 156 to the second voltage V2, which is an analog voltage, and outputs it based on the constant voltage VREG and the ground voltage. Therefore, as shown in FIG.
  • the second voltage V2 switches between an overvoltage value (OVD VALUE) and a low voltage value (UVD VALUE) in a time-division manner based on the clock signal CLK.
  • the four-input terminal comparator 155 outputs an overvoltage detection signal OVD and a low voltage detection signal UVD in a time-division manner.
  • the resistive voltage divider circuit formed by resistors R5 and R6 is replaced with a digital data generation circuit 156 and a DAC 157, as compared to the voltage monitoring circuit 15 of the first embodiment.
  • the resistive voltage divider circuit formed by resistors R5 and R6 may be replaced with a digital data generation circuit and a DAC.
  • the voltage division ratio of the resistive voltage divider circuit formed by resistors R3 and R4 is fixed, and the voltage division ratio of the resistive voltage divider circuit formed by resistors R5 and R6 is fixed, but at least one of the two resistive voltage divider circuits may be changed to a resistive voltage divider circuit with a variable voltage division ratio.
  • the voltage monitoring circuit 15 modified in this way also does not need to have two four-input terminal comparators 155, and can not only monitor whether the feedback voltage VFB is an overvoltage, but also monitor whether the feedback voltage VFB is an undervoltage.
  • the resistive voltage divider circuit formed by resistors R3 and R4 may be changed to a resistive voltage divider circuit with a variable voltage division ratio.
  • ⁇ Application Examples> 6 is an external view of a vehicle X.
  • the vehicle X of this configuration example is equipped with various electronic devices X11 to X18 that operate by receiving a voltage output from a battery (not shown). Note that the mounting positions of the electronic devices X11 to X18 in this figure may differ from the actual positions for convenience of illustration.
  • Electronic device X11 is an engine control unit that performs engine-related controls (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.).
  • engine-related controls injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.
  • the electronic device X12 is a lamp control unit that controls the turning on and off of HID [high intensity discharged lamp] and DRL [daytime running lamp].
  • Electronic device X13 is a transmission control unit that performs control related to the transmission.
  • the electronic device X14 is a braking unit that performs controls related to the movement of the vehicle X (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
  • ABS anti-lock brake system
  • EPS electric power steering
  • electronic suspension control etc.
  • Electronic device X15 is a security control unit that controls the operation of door locks, burglar alarms, etc.
  • Electronic device X16 is an electronic device that is installed in vehicle X at the time of shipment from the factory as standard equipment or manufacturer's option, such as wipers, power door mirrors, power windows, dampers (shock absorbers), power sunroof, and power seats.
  • Electronic device X17 is an electronic device that is optionally installed in vehicle X as a user option, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [electronic toll collection system].
  • vehicle X an electronic device that is optionally installed in vehicle X as a user option, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [electronic toll collection system].
  • Electronic device X18 is an electronic device equipped with a high-voltage motor, such as an in-vehicle blower, oil pump, water pump, or battery cooling fan.
  • a high-voltage motor such as an in-vehicle blower, oil pump, water pump, or battery cooling fan.
  • the switching power supply device 1 described above can be incorporated into any of the electronic devices X11 to X18. Therefore, the vehicle X is equipped with the semiconductor integrated circuit device 10 described above. Furthermore, the application of the switching power supply device 1 described above is not limited to a power supply mounted on the vehicle X, but may also be a power supply mounted on industrial equipment, for example.
  • ⁇ Comparative example power supply device Y20> The control device of the power supply device Y20 will be described as a comparative example with the power supply device X20 of the present disclosure.
  • Fig. 7 is a block diagram showing the configuration of the power supply device Y20 of the comparative example.
  • Fig. 8 is a timing chart showing the first inductor current IL1, the second inductor current IL2, the first switch voltage Vst1, and the second switch voltage Vst2 of the power supply device Y20 of the comparative example.
  • the power supply device Y20 of the comparative example has a first semiconductor device 301, a second semiconductor device 302, an inductor L21, an inductor L22, a capacitor C21, and a capacitor C22.
  • the first semiconductor device 301 is connected to the application terminal of the input voltage Vi and the ground terminal.
  • the output terminal of the first semiconductor device 301 is connected to the first terminal of the inductor L21.
  • the second terminal of the inductor L21 is commonly connected to the first terminal of the capacitor C21 and the application terminal of the output voltage Vo.
  • the second terminal of the capacitor C21 is connected to the ground terminal.
  • the first semiconductor device 301, the inductor L21, and the capacitor C21 form a step-down first output stage that generates a first switch voltage Vst1 from the input voltage Vi and rectifies and smoothes the first switch voltage Vst1.
  • the first semiconductor device 301 controls the switching of the first inductor current IL1 flowing through the inductor L21 based on a first clock signal (not shown).
  • the second semiconductor device 302 is connected to the application terminal of the input voltage Vi and the ground terminal.
  • the output terminal of the second semiconductor device 302 is connected to the first terminal of the inductor L22.
  • the second terminal of the inductor L22 is commonly connected to the first terminal of the capacitor C22 and the application terminal of the output voltage Vo.
  • the second terminal of the capacitor C22 is connected to the ground terminal.
  • the second semiconductor device 302, the inductor L21, and the capacitor C22 form a step-down second output stage that generates a second switch voltage Vst2 from the input voltage Vi and rectifies and smoothes the second switch voltage Vst2.
  • the second semiconductor device 302 controls the switching of the second inductor current IL2 flowing through the inductor L22 based on a second clock signal (not shown).
  • a load Z20 is connected to the output terminal of the output voltage Vo.
  • An output current Io flows through the load Z20 according to the output voltage Vo and the resistance value of the load Z20.
  • the average value A1 of the first inductor current IL1 and the average value A2 of the second inductor current IL2 are approximately equal.
  • the balance between the value of the first inductor current IL1 and the value of the second inductor current IL2 may be lost.
  • the average value A1 of the first inductor current IL1 and the average value A2 of the second inductor current IL2 do not match, resulting in an imbalance between the first inductor current IL1 and the second inductor current IL2.
  • the second semiconductor device 302 may receive a clock signal and an error signal from the first semiconductor device 301, and may control the second inductor current IL2 based on these.
  • the error signal is a signal generated according to the error between the output voltage Vo and its target value (details will be described later).
  • the power supply device Y20 may adopt a configuration in which it monitors the output current Io and feeds it back to the first semiconductor device 301 and the second semiconductor device 302, thereby controlling the first inductor current IL1 and the second inductor current IL2 to achieve a balance.
  • Fig. 9 is a diagram showing a schematic configuration of an embodiment of the power supply device X20 of the present disclosure.
  • Fig. 10 is a timing chart showing the first switch voltage Vst1, the second switch voltage Vst2, the first inductor current IL1, and the second inductor current IL2 of the power supply device X20 of the present disclosure.
  • the power supply device X20 is a switching regulator configured to generate a desired output voltage Vo from an input voltage Vi.
  • a load Z20 is connected to the output terminal of the power supply device X20.
  • the power supply device X20 has a control device 250, inductors L21 and L22, and capacitors C21 and C22.
  • the control device 250 controls the drive of the power supply device X20.
  • the control device 250 has a first semiconductor device 201 and a second semiconductor device 202.
  • Inductors L21 and L22 and capacitors C21 and C22 are discrete components external to the control device 250.
  • the first semiconductor device 201 is connected to the application terminal of the input voltage Vi and the ground terminal.
  • the output terminal of the first semiconductor device 201 is connected to the first terminal of the inductor L21.
  • the first terminal of the capacitor C21 is commonly connected to the second terminal of the inductor L21, the application terminal of the first semiconductor device 201, and the application terminal of the output voltage Vo.
  • the second terminal of the capacitor C21 is connected to the ground terminal.
  • the first semiconductor device 201 is configured to internally generate a first clock signal CL1 and a first error signal Vc1.
  • the first error signal Vc1 is generated according to the error between the output voltage Vo and its target value.
  • the first semiconductor device 201 performs switching control of the first inductor current IL1 by pulse driving the first switch voltage Vst1 based on the first clock signal CL1 and the first error signal Vc1. In this way, the first semiconductor device 201 forms a step-down first output stage that generates the first switch voltage Vst1 from the input voltage Vi. The duty of the first output stage is determined according to the first error signal Vc1.
  • the second semiconductor device 202 is connected to the application terminal of the input voltage Vi and the ground terminal.
  • the output terminal of the second semiconductor device 202 is connected to the first terminal of the inductor L22.
  • the first terminal of the capacitor C22 is commonly connected to the second terminal of the inductor L22, the application terminal of the second semiconductor device 202, and the application terminal of the output voltage Vo.
  • the second terminal of the capacitor C22 is connected to the ground terminal.
  • the first semiconductor device 201 and the second semiconductor device 202 are connected to each other by a transmission path 228.
  • a first end of the transmission path 228 is connected to one application terminal of the first semiconductor device 201.
  • a second end of the transmission path 228 is connected to one application terminal of the second semiconductor device 202.
  • the first semiconductor device 201 transmits a transmission signal Vt and a first error signal Vc1 to the second semiconductor device 202.
  • the second semiconductor device 202 internally generates a second clock signal CL2 based on a transmission signal Vt that includes frequency information of the first clock signal CL1.
  • the second semiconductor device 202 also internally generates a second error signal Vc2 by correcting the first error signal Vc1 based on the transmission signal Vt that includes duty information of the first output stage.
  • the second semiconductor device 202 pulse-drives the second switch voltage Vst2 based on the second clock signal CL2 and the second error signal Vc2, thereby controlling the switching of the second inductor current IL2. In this way, the second semiconductor device 202 forms a step-down second output stage that generates the second switch voltage Vst2 from the input voltage Vi.
  • the second semiconductor device 202 can obtain duty information of the first output stage and clock information of the first clock signal CL1. Therefore, the second semiconductor device 202 can control the switching of the second inductor current IL2 based on the duty information of the first output stage and the clock information of the first clock signal CL1.
  • the first end of the transmission path 228 is connected to one application end of the first semiconductor device 201, and the second end of the transmission path 228 is connected to one application end of the second semiconductor device 202. Therefore, the number of terminals used in the first semiconductor device 201 and the second semiconductor device 202 can be reduced compared to the case where the clock information of the first clock signal CL1 contained in the transmission signal Vt and the duty information of the first output stage are transmitted from the first semiconductor device 201 to the second semiconductor device 202 via separate paths.
  • Figure 11 is a block diagram showing the configuration of the power supply device X20.
  • the first semiconductor device 201 is a monolithic semiconductor integrated circuit device (a so-called multi-phase switching regulator IC) in which a first switch output stage 203 and a first control circuit 204 are integrated into a single package.
  • a monolithic semiconductor integrated circuit device a so-called multi-phase switching regulator IC
  • the first switch output stage 203 includes a high-side transistor and a low-side transistor (not shown) and a first driver (not shown).
  • the high-side transistor and the low-side transistor are MOSFETs connected to each other to form a half bridge.
  • the first driver drives and controls the high-side transistor and the low-side transistor.
  • the first switch output stage 203 drives the first inductor current IL1 by turning the high-side transistor and the low-side transistor on and off.
  • the first control circuit 204 includes an error amplifier circuit 205 and a switch control circuit 206.
  • the error amplifier circuit 205 is configured to generate a first error signal Vc1 that corresponds to the error between the output voltage Vo and its target value.
  • the error amplifier circuit 205 includes resistors R21 and R22, a voltage source E3, and an error amplifier 207.
  • a first end of the resistor R21 is connected to a first end of the load Z20.
  • a second end of the resistor R21, together with a first end of the resistor R22, is connected to the non-inverting input terminal of the error amplifier 207.
  • a second end of the resistor R22 is connected to the ground terminal.
  • the first terminal of the voltage source E3 is connected to the inverting input terminal of the error amplifier 207.
  • the second terminal of the voltage source E3 is connected to the ground terminal.
  • the output terminal of the error amplifier 207 is connected to the input terminal of the switch control circuit 206 (the non-inverting input terminal of the first comparator 212 described later).
  • the functional block corresponding to the matching circuit 217 of the second semiconductor device 202 is disabled as shown by the dashed line in the figure. Therefore, the first error signal Vc1 is input directly to the non-inverting input terminal of the first comparator 212.
  • the switch control circuit 206 generates a first clock signal CL1 and a first comparison signal Va1 and outputs them to the first switch output stage 203.
  • the first clock signal CL1 is a signal that defines the switching frequency of the first switch output stage 203 (hereinafter referred to as the "first switching frequency").
  • the above-mentioned clock information is timing information of the rising or falling edge of the first clock signal CL1.
  • the switch control circuit 206 includes a first oscillator 208, a first PLL [Phase Locked Loop] 209, a first selector 210, a first ramp signal generating unit 211, a first comparator 212, and an adder 213.
  • the first oscillator 208 and the first PLL 209 are both connected to the input terminal of the first selector 210.
  • the first semiconductor device 201 is the master.
  • the first oscillator 208 is electrically connected to the first switch output stage 203 and the input terminal of the first ramp signal generating unit 211 via the first selector 210.
  • the first PLL 209 is electrically cut off by the first selector 210 and is in a non-functional state.
  • the first oscillator 208 generates a first clock signal CL1 and inputs it to the first ramp signal generating unit 211.
  • the output terminal of the first ramp signal generating unit 211 is connected to the input terminal of the adder unit 213 together with the first differential line 214 of the first switch output stage 203.
  • the first ramp signal generating unit 211 generates a first ramp signal Vr1 having a sawtooth waveform in response to the first clock signal CL1.
  • the output terminal of the adder 213 is connected to the inverting input terminal of the first comparator 212.
  • the adder 213 adds the first ramp signal Vr1 and the first differential signal Vd1 to generate the first reference signal Vs1.
  • the output terminal of the first comparator 212 is connected to the input terminal (not shown) of the first switch output stage 203.
  • the first comparator 212 compares the first error signal Vc1 with the first reference signal Vs1 to generate a first comparison signal Va1.
  • the first comparison signal Va1 is at a high level when the first reference signal Vs1 is lower than the first error signal Vc1, and conversely, is at a low level when the first reference signal Vs1 is higher than the first error signal Vc1.
  • the first control circuit 204 drives and controls the first switch output stage 203 based on the first clock signal CL1 and the first comparison signal Va1.
  • the second semiconductor device 202 is a monolithic semiconductor integrated circuit device (a so-called multi-phase switching regulator IC) in which the second switch output stage 215 and the second control circuit 216 are integrated into a single package.
  • the second semiconductor device 202 is formed as a package separate from the first semiconductor device 201.
  • the second switch output stage 215 includes a high-side transistor and a low-side transistor (not shown) and a second driver (not shown).
  • the high-side transistor and the low-side transistor are MOSFETs connected to each other to form a half bridge.
  • the second driver drives and controls the high-side transistor and the low-side transistor.
  • the second switch output stage 215 drives the second inductor current IL2 by turning the high-side transistor and the low-side transistor on and off.
  • the second control circuit 216 is configured to drive and control the second switch output stage 215.
  • the second control circuit 216 includes a matching circuit 217, a phase synchronization circuit 218, a second ramp signal generating unit 219, and a second comparator 230.
  • the matching circuit 217 includes a first low-pass filter 220, a second low-pass filter 221, a correction comparator 222, and a matching unit 223.
  • a first end of the first low-pass filter 220 is connected to a first end of the inductor L21.
  • a second end of the first low-pass filter 220 is connected to a non-inverting input terminal of the correction comparator 222.
  • the first low-pass filter 220 smoothes (averages) the first switch voltage Vst1 to generate a first average voltage Vave1 and transmits it to the correction comparator 222.
  • the first end of the second low-pass filter 221 is connected to the first end of the inductor L22.
  • the second end of the second low-pass filter 221 is connected to the inverting input terminal of the correction comparator 222.
  • the second low-pass filter 221 smoothes (averages) the second switch voltage Vst2 to generate a second average voltage Vave2 and transmits it to the correction comparator 222.
  • the output terminal of the correction comparator 222 is connected to the matching unit 223.
  • the correction comparator 222 compares the first average voltage Vave1 with the second average voltage Vave2 to generate a correction signal Vcr, and transmits the correction signal Vcr to the matching unit 223.
  • the output terminal of the matching unit 223 is connected to the non-inverting input terminal of the second comparator 230.
  • the first input terminal of the matching unit 223 is connected to the output terminal of the correction comparator 222.
  • the second input terminal of the matching unit 223 is connected to the output terminal of the error amplifier 207.
  • the matching unit 223 corrects the first error signal Vc1 output from the error amplifier 207 based on the correction signal Vcr output from the correction comparator 222 to generate a second error signal Vc2.
  • the second error signal Vc2 is input to the non-inverting input terminal of the second comparator 230. Note that the functional block corresponding to the error amplifier circuit 205 of the first semiconductor device 201 is disabled as indicated by the dashed line in the figure.
  • the phase-locked loop 218 is configured to generate a second clock signal CL2 based on the transmission signal Vt.
  • the second clock signal CL2 is a signal that defines the switching frequency of the second switch output stage 215 (hereinafter referred to as the "second switching frequency").
  • the phase synchronization circuit 218 includes a second oscillator 224, a second PLL 225, and a second selector 226.
  • the second oscillator 224 and the second PLL 225 are connected to the second selector 226.
  • the output terminal of the second selector 226 is connected to the second ramp signal generating unit 219 together with the second switch output stage 215.
  • the second semiconductor device 202 is the slave.
  • the second selector 226 internally cuts off the connection to the second oscillator 224.
  • the output terminal of the second PLL 225 is electrically connected to the second switch output stage 215 and the second ramp signal generating unit 219 via the second selector 226.
  • the input end of the second PLL 225 is connected to the first end of the inductor L21 via the transmission path 228. That is, the second PLL 225 generates the second clock signal CL2 based on the first switch voltage Vst1 including the clock information of the first clock signal CL1, and inputs the second clock signal CL2 to the second switch output stage 215 and the second ramp signal generating unit 219. From a functional perspective, the second PLL 225 generates the second clock signal CL2 by phase-shifting the first clock signal CL1 and converting it to a high frequency.
  • the output terminal of the second ramp signal generating unit 219 is connected to the input terminal of the adder unit 227 together with the second differential line 229 of the second switch output stage 215.
  • the second ramp signal generating unit 219 generates a second ramp signal Vr2 having a sawtooth waveform in response to the second clock signal CL2.
  • the output terminal of the adder 227 is connected to the inverting input terminal of the second comparator 230.
  • the adder 227 adds the second ramp signal Vr2 and the second differential signal Vd2 to generate the second reference signal Vs2.
  • the output terminal of the second comparator 230 is connected to the input terminal (not shown) of the second switch output stage 215.
  • the second comparator 230 compares the second error signal Vc2 with the second reference signal Vs2 to generate a second comparison signal Va2.
  • the second switch output stage 215 is driven based on the second clock signal CL2 and the second comparison signal Va2.
  • the second control circuit 216 drives and controls the second switch output stage 215 based on the second clock signal CL2 and the second comparison signal Va2.
  • FIG. 12 is a timing chart showing the first ramp signal Vr1, the second ramp signal Vr2, the first error signal Vc1, the second error signal Vc2, the first switch voltage Vst1, the second switch voltage Vst2, the first inductor current IL1, and the second inductor current IL2.
  • the first switch voltage Vst1 when the first switch voltage Vst1 is raised to a high level, the first inductor current IL1 gradually increases. In response to this, the first ramp signal Vr1 begins to rise. When the first ramp signal Vr1 exceeds the first error signal Vc1, the first switch voltage Vst1 is lowered to a low level. Then, the first inductor current IL1 gradually decreases.
  • the second inductor current IL2 gradually increases.
  • the second ramp signal Vr2 begins to rise.
  • the second switch voltage Vst2 is lowered to a low level. Then, the second inductor current IL2 gradually decreases.
  • the second error signal Vc2 is larger than the first error signal Vc1 by the second offset signal S2. This increases the duty ratio of the on-time of the second switch voltage Vst2, and increases the maximum value of the second inductor current IL2.
  • the duty ratio of the on-time of the second switch voltage Vst2 may be smaller than the duty ratio of the on-time of the first switch voltage Vst1 due to manufacturing variations in the device, etc.
  • the average value A2 of the second inductor current IL2 is smaller than the average value A1 of the first inductor current IL1.
  • the second error signal Vc2 becomes larger than the first error signal Vc1, and the second inductor current IL2 becomes larger. Therefore, as shown in FIG. 12, the average value A2 of the second inductor current IL2 becomes approximately equal to the average value A1 of the first inductor current IL1. Therefore, a current balance is achieved between the first inductor current IL1 and the second inductor current IL2, and a decrease in the efficiency of the power supply device X20 can be suppressed.
  • the voltage monitoring circuit 15 is provided in a semiconductor integrated circuit device that is a power supply IC, but it may also be provided in a semiconductor integrated circuit device other than a power supply IC.
  • the first semiconductor device 201 and the second semiconductor device 202 are formed in separate packages, but a configuration in which they are formed in the same package can also be adopted.
  • a configuration using a step-down output stage has been described as an example, but the configuration of the present invention is not limited to this, and a step-up output stage or a step-up/step-down output stage may also be used.
  • first semiconductor device 201 and second semiconductor device 202 have been shown as an example of an embodiment of the present disclosure.
  • a configuration including one or more other semiconductor devices in addition to first semiconductor device 201 and second semiconductor device 202 may also be adopted.
  • this other semiconductor device has the same configuration as the first semiconductor device 201 and the second semiconductor device 202.
  • the first semiconductor device 201 transmits the transmission signal Vt not only to the second semiconductor device 202 but also to the other semiconductor device.
  • This other semiconductor device like the second semiconductor device 202, controls the drive of the switch output stage based on the transmission signal Vt.
  • the first error signal Vc1 and the transmission signal Vt are supplied from one master to multiple slaves.
  • the matching unit 223 of the above embodiment may also have the following configuration (see FIG. 13).
  • FIG. 13 is a block diagram showing the details of the matching unit 223.
  • the matching unit 223 further includes a current balancer 231.
  • the input terminal of the current balancer 231 is connected to the output terminal of the correction comparator 222.
  • the first output terminal of the current balancer 231 is connected to the application terminal of the first comparator 212.
  • the second output terminal of the current balancer 231 is connected to the application terminal of the second comparator 230.
  • the current balancer 231 transmits the first offset signal S1 to the first comparator 212 and the second offset signal S2 to the second comparator 230 in response to the correction signal Vcr.
  • the first comparator 212 adjusts the offset of at least one of the first error signal Vc1, the first ramp signal Vr1, and the first differential signal Vd1 in response to the first offset signal S1.
  • the second comparator 230 adjusts the offset of at least one of the first error signal Vc1, the second ramp signal Vr2, and the second differential signal Vd2 in response to the second offset signal S2.
  • the voltage monitoring circuit (15) disclosed herein comprises a first differential input pair (P1) including a first transistor (M1) configured to receive a reference voltage and a second transistor (M2) configured to receive a voltage to be monitored, and a second differential input pair (P2) including a third transistor (M3) configured to receive a first voltage and a fourth transistor (M4) configured to receive a second voltage, and is configured (first configuration) in which the output terminal of the first transistor and the output terminal of the third transistor are commonly connected, and the output terminal of the second transistor and the output terminal of the fourth transistor are commonly connected.
  • At least one of the first voltage and the second voltage may be the output voltage of a resistor voltage divider circuit (R3 to R6) (second configuration).
  • At least one of the first voltage and the second voltage may be the output voltage of a DAC (157) (third configuration).
  • the value of at least one of the first voltage and the second voltage may be switched in a time-division manner (fourth configuration).
  • the voltage monitoring circuit of any of the first to fourth configurations may be configured (fifth configuration) to include a calibration circuit (CAL1) configured to cancel offsets due to the difference in threshold voltage between the first transistor and the second transistor and the difference in threshold voltage between the third transistor and the fourth transistor.
  • CAL1 calibration circuit
  • the semiconductor integrated circuit device (10) disclosed herein has a configuration (sixth configuration) that includes a voltage monitoring circuit having any of the first to fifth configurations described above.
  • the vehicle (X) disclosed herein is configured (seventh configuration) to include a semiconductor integrated circuit device of the sixth configuration described above.
  • the control device (250) disclosed in the specification is a switching regulator control device (250) configured to generate a desired output voltage (Vo) from an input voltage (Vi) by driving at least the first switch output stage (203) and the second switch output stage (215) with a predetermined phase difference, and includes a first control circuit (204) and a second control circuit (216) configured to drive the first switch output stage (203) and the second switch output stage (215), respectively, and is configured (8th configuration) in which a transmission signal (Vt) having both clock information and duty information of the first switch output stage (203) is transmitted from the first control circuit (204) to the second control circuit (216).
  • control device (250) having the eighth configuration may be configured such that the first control circuit (204) includes an error amplifier circuit (205) configured to generate a first error signal (Vc1) corresponding to the error between the output voltage (Vo) and its target value, and a switch control circuit (206) configured to generate a first clock signal (CL1) that defines a first switching frequency of the first switch output stage (203), and is configured to drive and control the first switch output stage (203) based on the first clock signal (CL1) and the first error signal (Vc1) and transmit the first error signal (Vc1) to the second control circuit (216), the clock information is timing information of the rise or fall of the first clock signal (CL1), and the second control circuit (216) drives and controls the second switch output stage (215) based on the first error signal (Vc1) and the transmission signal (Vt) (ninth configuration).
  • the first control circuit (204) includes an error amplifier circuit (205) configured to generate a first error signal (Vc1) corresponding to the error between the output voltage (Vo) and its target value, and
  • the second control circuit (216) includes a phase synchronization circuit (218) configured to generate a second clock signal (CL2) that defines a second switching frequency of the second switch output stage (215) based on the transmission signal (Vt), and a matching circuit configured to generate a second error signal (Vc2) based on the first error signal (Vc1) and the transmission signal (Vt), and is configured to drive and control the second switch output stage (215) based on the second clock signal (CL2) and the second error signal (Vc2) (tenth configuration).
  • CL2 second clock signal
  • Vc2 second error signal
  • the transmission signal (Vt) is a first switch voltage (Vst1) output by the first switch output stage (203) or a first switch control signal for PWM controlling the first switch output stage (203), and the matching circuit is a first low-pass filter (220) that averages the transmission signal (Vt) to generate a first average voltage (Vave1), and a second switch voltage (Vst2) output by the second switch output stage (215) or a second switch control signal for PWM controlling the second switch output stage (215).
  • the 11th configuration prefferably includes a second low-pass filter (221) that averages the second switch control signal for M control to generate a second average voltage (Vave2), a correction comparator (222) configured to compare the first average voltage (Vave1) and the second average voltage (Vave2) to generate a correction signal (Vcr), and a matching unit (223) configured to correct the first error signal (Vc1) based on the correction signal (Vcr) to generate a second error signal (Vc2).
  • a second low-pass filter (221) that averages the second switch control signal for M control to generate a second average voltage (Vave2)
  • a correction comparator 222
  • Vcr correction signal
  • Vcr correction signal
  • control device (250) having the 11th configuration includes a first control circuit (204) including a first ramp signal generating unit (211) configured to generate a first ramp signal (Vr1) in synchronization with a first clock signal (CL1), and a first comparator (212) configured to compare a first error signal (Vc1) with a first reference signal (Vs1) corresponding to the first ramp signal (Vr1) to generate a first comparison signal (Va1), and performs drive control of a first switch output stage (203) based on the first clock signal (CL1) and the first comparison signal (Va1).
  • a first control circuit (204) including a first ramp signal generating unit (211) configured to generate a first ramp signal (Vr1) in synchronization with a first clock signal (CL1), and a first comparator (212) configured to compare a first error signal (Vc1) with a first reference signal (Vs1) corresponding to the first ramp signal (Vr1) to generate a first comparison signal (Va1), and performs drive control of a first switch
  • the second control circuit (216) includes a second ramp signal generating unit (219) configured to generate a second ramp signal (Vr2) in synchronization with the second clock signal (CL2), and a second comparator (230) configured to compare the second error signal (Vc2) with a second reference signal (Vs2) corresponding to the second ramp signal (Vr2) to generate a second comparison signal (Va2), and is configured to control the drive of the second switch output stage (215) in response to the second clock signal (CL2) and the second comparison signal (Va2) (12th configuration).
  • a second ramp signal generating unit (219) configured to generate a second ramp signal (Vr2) in synchronization with the second clock signal (CL2)
  • a second comparator (230) configured to compare the second error signal (Vc2) with a second reference signal (Vs2) corresponding to the second ramp signal (Vr2) to generate a second comparison signal (Va2), and is configured to control the drive of the second switch output stage (215) in response to the second clock signal (CL2) and
  • the first control circuit (204) and the second control circuit (216) may be configured in the same package (thirteenth configuration).
  • the first control circuit (204) and the second control circuit (216) may be formed in different packages (14th configuration)
  • control device (250) having the 14th configuration may be configured (15th configuration) to include a first semiconductor device (201) having a first external terminal configured to output a transmission signal (Vt) and including a first control circuit (204), a second semiconductor device (202) having a second external terminal configured to input the transmission signal (Vt), and a transmission line electrically connecting the first external terminal and the second external terminal and configured to be a transmission path (228) for the transmission signal (Vt).
  • the switching regulator disclosed in the specification is configured (16th configuration) to include a control device (250) having any of the eighth to twelfth configurations.
  • the power supply device (X20) disclosed in the specification is configured to include a switching regulator having a 16th configuration (17th configuration).
  • the second control circuit (216) can obtain clock information and duty information of the first switch output stage (203). By controlling the drive of the second switch output stage (215) based on this clock information and duty information, it is possible to prevent imbalance with the drive of the first switch output stage (203).
  • the second control circuit (216) controls the drive of the second switch output stage (215) based on the first error signal (Vc1). This makes it possible to more effectively prevent the drive balance between the first switch output stage (203) and the second switch output stage (215) from being lost.
  • the second switch output stage (215) is driven based on the first error signal (Vc1) and the transmission signal (Vt).
  • the clock information contained in the transmission signal (Vt) is timing information of the rising or falling edge of the first clock signal (CL1). Therefore, the second switch output stage (215) is driven based on this timing information and the first error signal (Vc1), and therefore, it is possible to more suitably prevent the drive balance between the first switch output stage (203) and the second switch output stage (215) from being lost.
  • the second switch output stage (215) is driven based on the second clock signal (CL2) and the second error signal (Vc2).
  • the second clock signal (CL2) is generated based on the first clock signal (CL1)
  • the second error signal (Vc2) is generated based on the first error signal (Vc1).
  • the second error signal (Vc2) is generated by correcting the first error signal (Vc1) based on the correction signal (Vcr) generated by comparing the first average voltage (Vave1) and the second average voltage (Vave2). Therefore, it is possible to generate the second error signal (Vc2) that can more suitably suppress the loss of balance in the drive between the first switch output stage (203) and the second switch output stage (215).
  • the second reference signal (Vs2) corresponds to the second ramp signal (Vr2) synchronized with the second clock signal (CL2).
  • the second reference signal (Vs2) is compared with the second error signal (Vc2) to generate the second comparison signal (Va2), and the second switch output stage (215) is driven in response to the second clock signal (CL2) and the second comparison signal (Va2).
  • the second clock signal (CL2) is generated based on the transmission signal (Vt). This makes it possible to more effectively prevent the drive balance between the first switch output stage (203) and the second switch output stage (215) from being lost.
  • the first control circuit (204) and the second control circuit (216) are formed in a single package, which allows the control device (250) to be space-saving.
  • the control device (250) according to the 14th configuration has a relatively simple control circuit formed in one package, making it possible to suppress increases in the manufacturing costs of the control device (250).
  • the external terminals used to connect the transmission line can be limited to the first external terminal and the second external terminal.
  • a transmission signal (Vt) including duty information and clock information is transmitted via this transmission line. Therefore, it is possible to transmit duty information and clock information from the first semiconductor device (201) to the second semiconductor device (202) while suppressing an increase in the number of external terminals used in the first semiconductor device (201) and the second semiconductor device (202).
  • the control device (250) according to the 16th configuration can provide a switching regulator capable of suppressing imbalance in the drive of the first switch output stage (203) and the second switch output stage (215).
  • the control device (250) can provide a power supply device (X20) capable of suppressing imbalance in the drive of the first switch output stage (203) and the second switch output stage (215).
  • Switching power supply device 10 Semiconductor integrated circuit device 11, 156 Digital data generation circuit 12, 157 DAC 13 Buffer amplifier 14 Switch voltage generation circuit 15 Voltage monitoring circuit 16 Constant voltage generation circuit 151, 152 Voltage generation circuit 153, 154 Comparator 155 Four-input terminal comparator C1, C2 Capacitor CAL1 Calibration circuit CS1 to CS6 Current source COUT Output capacitor L1 Inductor M1 to M16 Transistor P1 First differential input pair P2 Second differential input pair R1 to R6 Resistor SW1 to SW6 Switch X Vehicle X11 to X18 Electronic device 201 First semiconductor device 202 Second semiconductor device 203 First switch output stage 204 First control circuit 205 Error amplifier circuit 206 Switch control circuit 207 Error amplifier 208 First oscillator 209 First PLL 210 First selector 211 First ramp signal generating section 212 First comparator 213 Adding section 214 First differential line 215 Second switch output stage 216 Second control circuit 217 Matching circuit 218 Phase locked loop circuit 219 Second ramp

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This voltage monitoring circuit comprises: a first differential input pair including a first transistor configured so as to receive a reference voltage and a second transistor configured so as to receive a voltage to be monitored; and a second differential input pair including a third transistor configured so as to receive a first voltage and a fourth transistor configured so as to receive a second voltage. The output end of the first transistor and the output end of the third transistor are connected in common. The output end of the second transistor and the output end of the fourth transistor are connected in common.

Description

電圧監視回路、半導体集積回路装置、車両、制御装置、スイッチングレギュレータ、及び電源装置VOLTAGE MONITORING CIRCUIT, SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE, VEHICLE, CONTROL DEVICE, SWITCHING REGULATOR, AND POWER SUPPLY DEVICE
 本明細書中に開示されている発明は、電圧監視回路、半導体集積回路装置、及び車両に関する。また、本明細書中に開示されている発明は、制御装置、この制御装置を備えるスイッチングレギュレータ、およびこのスイッチングレギュレータを備える電源装置に関する。 The invention disclosed in this specification relates to a voltage monitoring circuit, a semiconductor integrated circuit device, and a vehicle. The invention disclosed in this specification also relates to a control device, a switching regulator including this control device, and a power supply device including this switching regulator.
 例えば車載向けの電源IC(Integrated Circuit)では、ISO26262規格等で制定されている機能安全、ADAS(Advanced Driver-Assistance Systems)対応のために電圧監視機能が必要となる。 For example, in-vehicle power supply ICs (Integrated Circuits) require voltage monitoring functions to comply with the functional safety established in standards such as ISO26262 and ADAS (Advanced Driver-Assistance Systems).
 なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。 As an example of related prior art, Patent Document 1 can be mentioned.
 また、スイッチングレギュレータにおいて、単一のスイッチ出力段では電流能力が不足する場合に、複数のスイッチ出力段を並列に接続して所定の位相差で駆動させるStack方式(又はマルチフェイズ方式)という駆動方式がある。この駆動方式では、各スイッチ出力段のコイルにそれぞれ流れるコイル電流の値が一致していることが理想的である。 In addition, in switching regulators, when the current capacity of a single switch output stage is insufficient, there is a drive method called the stack method (or multi-phase method) in which multiple switch output stages are connected in parallel and driven with a specified phase difference. With this drive method, it is ideal for the values of the coil currents flowing through the coils of each switch output stage to be the same.
特開2011-204164号公報JP 2011-204164 A 特開2018-161008号公報JP 2018-161008 A
 例えば上記電源ICを含むSoC(System-on-a-Chip)における電圧監視の精度は、上記SoCの電源仕様内での監視が求められる。そのため、非常に高精度な電圧監視が求められる場合がある。 For example, the accuracy of voltage monitoring in a SoC (System-on-a-Chip) that includes the power supply IC is required to be within the power supply specifications of the SoC. Therefore, there are cases where extremely high-precision voltage monitoring is required.
 また、スイッチングレギュレータにおいて、例えば各スイッチ出力段、これらを駆動するドライバ、またはドライバを制御する制御回路等の特性のばらつきによって、各スイッチ出力段のコイル電流が一致せず、バランスの崩れた状態となることがある。すると、スイッチングレギュレータの出力電流が偏った動作となり、効率の低下につながるおそれがある。また、比較的大きくバランスを崩した場合には、保護回路によって、スイッチングレギュレータが動作不良の状態となる。 In addition, in a switching regulator, for example, due to variations in the characteristics of each switch output stage, the drivers that drive them, or the control circuit that controls the drivers, the coil currents of each switch output stage may not match, resulting in an unbalanced state. This may result in the output current of the switching regulator operating in an unbalanced manner, which may lead to reduced efficiency. Furthermore, if the imbalance is relatively large, the protection circuit will cause the switching regulator to malfunction.
 本明細書中に開示されている電圧監視回路は、基準電圧を受け取るように構成された第1トランジスタ及び監視対象電圧を受け取るように構成された第2トランジスタを含む第1差動入力対と、第1電圧を受け取るように構成された第3トランジスタ及び第2電圧を受け取るように構成された第4トランジスタを含む第2差動入力対と、を備える。前記第1トランジスタの出力端と前記第3トランジスタの出力端とが共通接続される。前記第2トランジスタの出力端と前記第4トランジスタの出力端とが共通接続される。 The voltage monitoring circuit disclosed in this specification comprises a first differential input pair including a first transistor configured to receive a reference voltage and a second transistor configured to receive a monitored voltage, and a second differential input pair including a third transistor configured to receive the first voltage and a fourth transistor configured to receive a second voltage. The output terminal of the first transistor and the output terminal of the third transistor are commonly connected. The output terminal of the second transistor and the output terminal of the fourth transistor are commonly connected.
 本明細書中に開示されている半導体集積回路装置は、上記構成の電圧監視回路を備える。 The semiconductor integrated circuit device disclosed in this specification includes a voltage monitoring circuit having the above configuration.
 本明細書中に開示されている車両は、上記構成の半導体集積回路装置を備える。 The vehicle disclosed in this specification is equipped with a semiconductor integrated circuit device having the above configuration.
 本明細書中に開示されている制御装置は、少なくとも第1スイッチ出力段及び第2スイッチ出力段を所定の位相差で駆動することにより入力電圧から所望の出力電圧を生成するように構成されたスイッチングレギュレータの制御装置である。制御装置は、第1スイッチ出力段及び第2スイッチ出力段をそれぞれ駆動するように構成された第1制御回路および第2制御回路を含み、第1制御回路から第2制御回路へ、第1スイッチ出力段のクロック情報とDuty情報を併せ持つ伝送信号が伝送される。 The control device disclosed in this specification is a control device for a switching regulator configured to generate a desired output voltage from an input voltage by driving at least a first switch output stage and a second switch output stage with a predetermined phase difference. The control device includes a first control circuit and a second control circuit configured to drive the first switch output stage and the second switch output stage, respectively, and a transmission signal having both clock information and duty information of the first switch output stage is transmitted from the first control circuit to the second control circuit.
 本明細書中に開示されているスイッチングレギュレータは、上記構成の制御装置を備える。 The switching regulator disclosed in this specification is equipped with a control device having the above configuration.
 本明細書中に開示されている電源装置は、上記構成のスイッチングレギュレータを備える。 The power supply device disclosed in this specification includes a switching regulator having the above configuration.
 本明細書中に開示されている発明によれば、高精度な電圧監視を実現することができる。 The invention disclosed in this specification makes it possible to achieve highly accurate voltage monitoring.
 本明細書中に開示されている制御装置によれば、第2制御回路は、第1スイッチ出力段のクロック情報およびDuty情報を得ることができる。このクロック情報およびDuty情報に基づいて第2スイッチ出力段を駆動制御することで、第1スイッチ出力段の駆動とのバランスが崩れるのを抑制することができる。 According to the control device disclosed in this specification, the second control circuit can obtain clock information and duty information of the first switch output stage. By controlling the drive of the second switch output stage based on this clock information and duty information, it is possible to prevent imbalance with the drive of the first switch output stage.
図1は、スイッチング電源装置の比較例を示す図である。FIG. 1 is a diagram showing a comparative example of a switching power supply device. 図2は、スイッチング電源装置の第1実施形態を示す図である。FIG. 2 is a diagram showing a first embodiment of a switching power supply device. 図3は、4入力端子コンパレータの構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of a four-input terminal comparator. 図4は、スイッチング電源装置の第2実施形態を示す図である。FIG. 4 is a diagram showing a second embodiment of a switching power supply device. 図5は、第2電圧の値が時分割で切り替えられることを模式的に示す図である。FIG. 5 is a diagram showing a schematic diagram of the value of the second voltage being switched in a time division manner. 図6は、車両の外観図である。FIG. 6 is an external view of the vehicle. 図7は、比較例の電源装置の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of a power supply device of the comparative example. 図8は、比較例の電源装置に係る第1インダクタ電流、第2インダクタ電流、第1スイッチ電圧、および第2スイッチ電圧、を示すタイミングチャートである。FIG. 8 is a timing chart showing the first inductor current, the second inductor current, the first switch voltage, and the second switch voltage in the power supply device of the comparative example. 図9は、本開示の電源装置の実施形態の概略構成を示す図である。FIG. 9 is a diagram showing a schematic configuration of an embodiment of a power supply device according to the present disclosure. 図10は、第1スイッチ電圧、第2スイッチ電圧、第1インダクタ電流、および第2インダクタ電流を示すタイミングチャートである。FIG. 10 is a timing chart showing the first switch voltage, the second switch voltage, the first inductor current, and the second inductor current. 図11は、電源装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the power supply device. 図12は、第1ランプ信号、第2ランプ信号、第1誤差信号、第2誤差信号、第1比較信号、第2比較信号、第1インダクタ電流、および第2インダクタ電流を示すタイミングチャートである。FIG. 12 is a timing chart showing the first ramp signal, the second ramp signal, the first error signal, the second error signal, the first comparison signal, the second comparison signal, the first inductor current, and the second inductor current. 図13は、整合部の詳細を示すブロック図である。FIG. 13 is a block diagram showing the details of the matching unit.
<スイッチング電源装置(比較例)>
 図1は、スイッチング電源装置の比較例(=後出の実施形態と対比される一般的な構成)を示す図である。本比較例のスイッチング電源装置1は、直流入力電圧VINから所望の直流出力電圧VOUTを生成する。
<Switching power supply device (comparison example)>
1 is a diagram showing a comparative example of a switching power supply device (= a general configuration to be compared with the embodiments described later). A switching power supply device 1 of this comparative example generates a desired DC output voltage VOUT from a DC input voltage VIN.
 スイッチング電源装置1は、半導体集積回路装置10と、インダクタL1と、出力コンデンサCOUTと、を備える。半導体集積回路装置10は、スイッチング電源装置1の制御主体となる電源ICである。 The switching power supply device 1 includes a semiconductor integrated circuit device 10, an inductor L1, and an output capacitor COUT. The semiconductor integrated circuit device 10 is a power supply IC that serves as the main controller of the switching power supply device 1.
 半導体集積回路装置10は、装置外部との電気的な接続を確立するための手段として、複数の端子(本図では端子T1~T4)を備える。 The semiconductor integrated circuit device 10 has multiple terminals (terminals T1 to T4 in this diagram) as a means for establishing electrical connection with the outside of the device.
 端子T1には、直流入力電圧VINが印加される。端子T2には、グラウンド電圧が印加される。端子T3には、インダクタL1の第1端が接続される。インダクタL1の第2端及び出力コンデンサCOUTの第1端は、端子T4に接続される。出力コンデンサCOUTの第2端には、グラウンド電圧が印加される。 A DC input voltage VIN is applied to terminal T1. A ground voltage is applied to terminal T2. A first end of inductor L1 is connected to terminal T3. A second end of inductor L1 and a first end of output capacitor COUT are connected to terminal T4. A ground voltage is applied to the second end of output capacitor COUT.
 インダクタL1及び出力コンデンサCOUTは、端子T3から出力されるパルス状のスイッチ電圧VSWを直流出力電圧VOUTに変換する。端子T4には、直流出力電圧VOUTが印加される。 Inductor L1 and output capacitor COUT convert the pulsed switch voltage VSW output from terminal T3 into a DC output voltage VOUT. The DC output voltage VOUT is applied to terminal T4.
 半導体集積回路装置10は、デジタルデータ生成回路11と、DAC(Digital Analog Converter)12と、バッファアンプ13と、スイッチ電圧生成回路14と、電圧監視回路15と、抵抗R1及びR2と、を備える。 The semiconductor integrated circuit device 10 includes a digital data generation circuit 11, a DAC (Digital Analog Converter) 12, a buffer amplifier 13, a switch voltage generation circuit 14, a voltage monitoring circuit 15, and resistors R1 and R2.
 デジタルデータ生成回路11は、基準電圧用のデジタルデータを生成して出力する。なお、デジタルデータ生成回路11によって生成される基準電圧用のデジタルデータは、1つの値に固定されていてもよく、複数の値に切り替え可能であってもよい。 The digital data generation circuit 11 generates and outputs digital data for the reference voltage. Note that the digital data for the reference voltage generated by the digital data generation circuit 11 may be fixed to one value, or may be switchable between multiple values.
 DAC12は、基準電圧用のデジタルデータを、アナログ電圧である基準電圧VREFに変換して出力する。DAC12から出力される基準電圧VREFは、バッファアンプ13を経由して、スイッチ電圧生成回路14及び電圧監視回路15それぞれに供給される。 DAC12 converts the digital data for the reference voltage into an analog voltage, the reference voltage VREF, and outputs it. The reference voltage VREF output from DAC12 is supplied to the switch voltage generation circuit 14 and the voltage monitoring circuit 15 via the buffer amplifier 13.
 抵抗R1及びR2は、端子T4に印加される直流出力電圧VOUTの分圧である帰還電圧VFBを生成し、帰還電圧VFBをスイッチ電圧生成回路14及び電圧監視回路15それぞれに供給する。 Resistors R1 and R2 generate a feedback voltage VFB, which is a divided voltage of the DC output voltage VOUT applied to terminal T4, and supply the feedback voltage VFB to the switch voltage generating circuit 14 and the voltage monitoring circuit 15, respectively.
 スイッチ電圧生成回路14は、スイッチング素子を含み、基準電圧VREFと帰還電圧VFBとの差に応じたデューティでスイッチング素子をスイッチングすることによって、直流入力電圧VINをスイッチ電圧VSWに変換し、スイッチ電圧VSWを端子T3に供給する。 The switch voltage generating circuit 14 includes a switching element, and converts the DC input voltage VIN into a switch voltage VSW by switching the switching element with a duty corresponding to the difference between the reference voltage VREF and the feedback voltage VFB, and supplies the switch voltage VSW to the terminal T3.
 電圧監視回路15は、電圧生成回路151及び152と、コンパレータ153及び154と、を備える。電圧監視回路15は、帰還電圧VFBが過電圧であるか否かを監視するとともに、帰還電圧VFBが低電圧であるか否かを監視する。 The voltage monitoring circuit 15 includes voltage generating circuits 151 and 152, and comparators 153 and 154. The voltage monitoring circuit 15 monitors whether the feedback voltage VFB is an overvoltage or not, and also monitors whether the feedback voltage VFB is a low voltage or not.
 電圧生成回路151は、定電流回路及び抵抗を含み、定電流と抵抗を用いて基準電圧VREFから第1基準電圧VREF1を生成する。第1基準電圧VREF1は、基準電圧VREFより第1所定値だけ大きい。 The voltage generation circuit 151 includes a constant current circuit and a resistor, and generates a first reference voltage VREF1 from the reference voltage VREF using the constant current and the resistor. The first reference voltage VREF1 is greater than the reference voltage VREF by a first predetermined value.
 電圧生成回路152は、定電流回路及び抵抗を含み、定電流と抵抗を用いて基準電圧VREFから第2基準電圧VREF2を生成する。第2基準電圧VREF2は、基準電圧VREFより第2所定値だけ小さい。なお、第2所定値は、第1所定値と同じ値であってもよく、第1所定値と異なる値であってもよい。 The voltage generating circuit 152 includes a constant current circuit and a resistor, and generates a second reference voltage VREF2 from the reference voltage VREF using the constant current and the resistor. The second reference voltage VREF2 is smaller than the reference voltage VREF by a second predetermined value. Note that the second predetermined value may be the same as the first predetermined value, or may be a value different from the first predetermined value.
 コンパレータ153の非反転入力端子には、第1基準電圧VREF1が供給される。コンパレータ154の反転入力端子には、帰還電圧VFBが供給される。帰還電圧VFBが第1基準電圧VREF1より大きいとき、すなわち帰還電圧VFBが過電圧であるとき、コンパレータ153の出力信号である過電圧検出信号OVDは、LOWレベルになる。一方、帰還電圧VFBが過電圧でないとき、コンパレータ153の出力信号である過電圧検出信号OVDは、HIGHレベルになる。 The non-inverting input terminal of the comparator 153 is supplied with a first reference voltage VREF1. The inverting input terminal of the comparator 154 is supplied with a feedback voltage VFB. When the feedback voltage VFB is greater than the first reference voltage VREF1, that is, when the feedback voltage VFB is an overvoltage, the overvoltage detection signal OVD, which is the output signal of the comparator 153, becomes a LOW level. On the other hand, when the feedback voltage VFB is not an overvoltage, the overvoltage detection signal OVD, which is the output signal of the comparator 153, becomes a HIGH level.
 コンパレータ154の反転入力端子には、第2基準電圧VREF2が供給される。コンパレータ154の非反転入力端子には、帰還電圧VFBが供給される。帰還電圧VFBが第2基準電圧VREF2より小さいとき、すなわち帰還電圧VFBが低電圧であるとき、コンパレータ153の出力信号である低電圧検出信号UVDは、LOWレベルになる。一方、帰還電圧VFBが低電圧でないとき、コンパレータ153の出力信号である低電圧検出信号UVDは、HIGHレベルになる。 The second reference voltage VREF2 is supplied to the inverting input terminal of the comparator 154. The feedback voltage VFB is supplied to the non-inverting input terminal of the comparator 154. When the feedback voltage VFB is smaller than the second reference voltage VREF2, that is, when the feedback voltage VFB is a low voltage, the low voltage detection signal UVD, which is the output signal of the comparator 153, becomes a LOW level. On the other hand, when the feedback voltage VFB is not a low voltage, the low voltage detection signal UVD, which is the output signal of the comparator 153, becomes a HIGH level.
 電圧監視回路15では、トリミングを実施することで電圧監視の精度を向上させることができる。 In the voltage monitoring circuit 15, the accuracy of voltage monitoring can be improved by performing trimming.
 しかしながら、電圧生成回路151及び152に含まれる定電流回路の温度特性及び電圧特性と、コンパレータ153及び154のオフセットの温度特性とは、スイッチング電源装置1の使用環境によって変動する特性であり、精度悪化の要因となっていた。つまり、比較例の電圧監視回路15は、電圧監視の精度が不十分であった。 However, the temperature characteristics and voltage characteristics of the constant current circuits included in the voltage generation circuits 151 and 152 and the temperature characteristics of the offsets of the comparators 153 and 154 are characteristics that vary depending on the usage environment of the switching power supply device 1, and are a cause of deterioration in accuracy. In other words, the voltage monitoring circuit 15 of the comparative example had insufficient voltage monitoring accuracy.
 上記の考察に鑑み、以下では、高精度な電圧監視を実現することができる新規な実施形態を提案する。 In light of the above considerations, we propose a new embodiment below that can achieve highly accurate voltage monitoring.
<スイッチング電源装置(第1実施形態)>
 図2は、スイッチング電源装置の第1実施形態を示す図である。本実施形態のスイッチング電源装置1は、先出の比較例(図1)を基本としつつ、定電圧生成回路16を備え、電圧監視回路15の構成が異なっている。
<Switching power supply device (first embodiment)>
2 is a diagram showing a first embodiment of a switching power supply device. The switching power supply device 1 of this embodiment is based on the comparative example (FIG. 1) described above, but includes a constant voltage generating circuit 16 and has a different configuration for the voltage monitoring circuit 15.
 定電圧生成回路16は、直流入力電圧VINから定電圧VREGを生成する。 The constant voltage generation circuit 16 generates a constant voltage VREG from the DC input voltage VIN.
 本実施形態の電圧監視回路15は、4入力端子コンパレータ155と、抵抗R3及びR4によって構成される抵抗分圧回路と、抵抗R5及びR6によって構成される抵抗分圧回路と、を備える。 The voltage monitoring circuit 15 of this embodiment includes a four-input terminal comparator 155, a resistive voltage divider circuit formed by resistors R3 and R4, and a resistive voltage divider circuit formed by resistors R5 and R6.
 抵抗R3及びR4によって構成される抵抗分圧回路は、定電圧VREGを抵抗R3及びR4の抵抗値比で分圧して得られる第1電圧V1を出力する。抵抗R5及びR6によって構成される抵抗分圧回路は、定電圧VREGを抵抗R5及びR6の抵抗値比で分圧して得られる第2電圧V2を出力する。 The resistor voltage divider circuit formed by resistors R3 and R4 outputs a first voltage V1 obtained by dividing the constant voltage VREG by the resistance ratio of resistors R3 and R4. The resistor voltage divider circuit formed by resistors R5 and R6 outputs a second voltage V2 obtained by dividing the constant voltage VREG by the resistance ratio of resistors R5 and R6.
 4入力端子コンパレータ155の第1非反転入力端子には基準電圧VREFが供給される。4入力端子コンパレータ155の第1反転入力端子には帰還電圧VFBが供給される。4入力端子コンパレータ155の第2非反転入力端子には第1電圧V1が供給される。4入力端子コンパレータ155の第2反転入力端子には第2電圧V2が供給される。 The first non-inverting input terminal of the four-input terminal comparator 155 is supplied with a reference voltage VREF. The first inverting input terminal of the four-input terminal comparator 155 is supplied with a feedback voltage VFB. The second non-inverting input terminal of the four-input terminal comparator 155 is supplied with a first voltage V1. The second inverting input terminal of the four-input terminal comparator 155 is supplied with a second voltage V2.
 4入力端子コンパレータ155の出力信号である過電圧検出信号OVDは、基準電圧VREFと帰還電圧VFBとの差及び第1電圧V1と第2電圧V2との差の合計(VREF-VFB+V1-V2)に応じた電圧になる。 The overvoltage detection signal OVD, which is the output signal of the four-input terminal comparator 155, is a voltage that corresponds to the sum of the difference between the reference voltage VREF and the feedback voltage VFB and the difference between the first voltage V1 and the second voltage V2 (VREF-VFB+V1-V2).
 したがって、第1電圧V1と第2電圧V2との差(V1-V2)が上述した第1所定値に設定されることで、本実施形態の電圧監視回路15は、比較例の電圧監視回路15と同様に、帰還電圧VFBが過電圧であるか否かを監視することができる。帰還電圧VFBが過電圧であるとき、4入力端子コンパレータ155の出力信号である過電圧検出信号OVDは、LOWレベルになる。一方、帰還電圧VFBが過電圧でないとき、4入力端子コンパレータ155の出力信号である過電圧検出信号OVDは、HIGHレベルになる。 Therefore, by setting the difference (V1-V2) between the first voltage V1 and the second voltage V2 to the above-mentioned first predetermined value, the voltage monitoring circuit 15 of this embodiment can monitor whether the feedback voltage VFB is an overvoltage, similar to the voltage monitoring circuit 15 of the comparative example. When the feedback voltage VFB is an overvoltage, the overvoltage detection signal OVD, which is the output signal of the four-input terminal comparator 155, becomes a LOW level. On the other hand, when the feedback voltage VFB is not an overvoltage, the overvoltage detection signal OVD, which is the output signal of the four-input terminal comparator 155, becomes a HIGH level.
 第1電圧V1及び第2電圧V2それぞれは、基準電圧VREFを用いて生成される必要がない。このため、第1電圧V1及び第2電圧V2それぞれを温度によって変動し難い電圧にすることができる。したがって、本実施形態の電圧監視回路15は、高精度な電圧監視を実現することができる。 The first voltage V1 and the second voltage V2 do not need to be generated using the reference voltage VREF. This makes it possible to make the first voltage V1 and the second voltage V2 voltages less likely to fluctuate with temperature. Therefore, the voltage monitoring circuit 15 of this embodiment can achieve highly accurate voltage monitoring.
 本実施形態では、抵抗分圧回路に含まれる2つの抵抗のペア性を利用して、第1電圧V1及び第2電圧V2それぞれを温度によって変動し難い電圧にしている。また、本実施形態のように、抵抗R3及びR4によって構成される抵抗分圧回路と、抵抗R5及びR6によって構成される抵抗分圧回路とに共通の定電圧VREGが供給される構成にすることで、仮に定電圧VREGが温度によって変動しても第1電圧V1と第2電圧V2との差(V1-V2)が定電圧VREGの温度特性の影響を受けないようにすることができる。 In this embodiment, the pairing of the two resistors included in the resistive voltage divider circuit is used to make each of the first voltage V1 and the second voltage V2 voltages less likely to fluctuate with temperature. Furthermore, as in this embodiment, by configuring the resistive voltage divider circuit formed by resistors R3 and R4 and the resistive voltage divider circuit formed by resistors R5 and R6 to be supplied with a common constant voltage VREG, it is possible to prevent the difference between the first voltage V1 and the second voltage V2 (V1-V2) from being affected by the temperature characteristics of the constant voltage VREG even if the constant voltage VREG fluctuates with temperature.
 図3は、4入力端子コンパレータ155の構成例を示す図である。図3に示す構成例の4入力端子コンパレータ155は、トランジスタM1~M16と、電流源CS1~CS6と、スイッチSW1~SW6と、コンデンサC1及びC2と、を備える。トランジスタM1~M6、M15、及びM16は、Pチャネル型MOS電界効果トランジスタである。トランジスタM7~M14は、Nチャネル型MOS電界効果トランジスタである。 FIG. 3 is a diagram showing an example configuration of a four-input terminal comparator 155. The four-input terminal comparator 155 of the example configuration shown in FIG. 3 includes transistors M1 to M16, current sources CS1 to CS6, switches SW1 to SW6, and capacitors C1 and C2. Transistors M1 to M6, M15, and M16 are P-channel type MOS field effect transistors. Transistors M7 to M14 are N-channel type MOS field effect transistors.
 トランジスタM1及びM2によって第1差動入力対P1が構成される。トランジスタM3及びM4によって第2差動入力対P2が構成される。トランジスタM5及びM6とコンデンサC1及びC2とスイッチSW5及びSW6とによってキャリブレーション回路CAL1が構成される。 The first differential input pair P1 is formed by transistors M1 and M2. The second differential input pair P2 is formed by transistors M3 and M4. The calibration circuit CAL1 is formed by transistors M5 and M6, capacitors C1 and C2, and switches SW5 and SW6.
 電流源CS1~CS6の各第1端には定電圧VREGが印加される。 A constant voltage VREG is applied to the first terminal of each of the current sources CS1 to CS6.
 基準電圧VREFは、トランジスタM1のゲート及びスイッチSW2の第1端に供給される。帰還電圧VFBは、スイッチSW1の第1端に供給される。スイッチSW1及びSW2の各第2端は、トランジスタM2のゲートに接続される。電流源CS1の第2端は、トランジスタM1及びM2の各ソースに接続される。 The reference voltage VREF is supplied to the gate of transistor M1 and the first terminal of switch SW2. The feedback voltage VFB is supplied to the first terminal of switch SW1. The second terminals of switches SW1 and SW2 are connected to the gate of transistor M2. The second terminal of current source CS1 is connected to the sources of transistors M1 and M2.
 第1電圧V1は、トランジスタM3のゲート及びスイッチSW4の第1端に供給される。第2電圧V2は、スイッチSW3の第1端に供給される。スイッチSW3及びSW4の各第2端は、トランジスタM4のゲートに接続される。電流源CS2の第2端は、トランジスタM3及びM4の各ソースに接続される。 The first voltage V1 is supplied to the gate of transistor M3 and the first terminal of switch SW4. The second voltage V2 is supplied to the first terminal of switch SW3. The second terminals of switches SW3 and SW4 are connected to the gate of transistor M4. The second terminal of current source CS2 is connected to the sources of transistors M3 and M4.
 トランジスタM1のドレインとトランジスタM3のドレインとは共通接続される。トランジスタM2のドレインとトランジスタM4のドレインとは共通接続される。 The drain of transistor M1 and the drain of transistor M3 are commonly connected. The drain of transistor M2 and the drain of transistor M4 are commonly connected.
 トランジスタM5のゲートは、スイッチSW5の第1端及びコンデンサC1の第1端に接続される。トランジスタM6のゲートは、スイッチSW6の第1端及びコンデンサC2の第1端に接続される。電流源CS3の第2端は、トランジスタM5及びM6の各ソースに接続される。コンデンサC1及びC2の各第2端には、グラウンド電圧が印加される。 The gate of transistor M5 is connected to the first end of switch SW5 and the first end of capacitor C1. The gate of transistor M6 is connected to the first end of switch SW6 and the first end of capacitor C2. The second end of current source CS3 is connected to the sources of transistors M5 and M6. A ground voltage is applied to the second ends of capacitors C1 and C2.
 トランジスタM5のドレイン及びスイッチSW5の第2端は、トランジスタM1のドレインと、トランジスタM3のドレインと、トランジスタM9のソースと、トランジスタM10のドレインと、に接続される。トランジスタM9のドレインは、電流源CS5の第2端に接続される。 The drain of transistor M5 and the second end of switch SW5 are connected to the drain of transistor M1, the drain of transistor M3, the source of transistor M9, and the drain of transistor M10. The drain of transistor M9 is connected to the second end of current source CS5.
 トランジスタM6のドレイン及びスイッチSW6の第2端は、トランジスタM2のドレインと、トランジスタM4のドレインと、トランジスタM11のソースと、トランジスタM12のドレインと、に接続される。トランジスタM11のドレインは、電流源CS6の第2端に接続される。 The drain of transistor M6 and the second end of switch SW6 are connected to the drain of transistor M2, the drain of transistor M4, the source of transistor M11, and the drain of transistor M12. The drain of transistor M11 is connected to the second end of current source CS6.
 トランジスタM7~M12の各ゲートは、電流源CS4の第2端及びトランジスタM7のドレインに接続される。トランジスタM7のソースは、トランジスタM8のドレインに接続される。トランジスタM8、M10、及びM12の各ソースには、グラウンド電圧が印加される。電流源CS5とトランジスタM9との接続ノードからトランジスタM14のゲートにゲート信号G14が供給される。電流源CS6とトランジスタM11との接続ノードからトランジスタM13のゲートにゲート信号G13が供給される。トランジスタM13及びM14の各ソースは、グラウンド電圧が印加される。トランジスタM15及びM16によってカレントミラー回路が構成される。トランジスタM15及びM16の各ソースには、定電圧VREGが印加される。トランジスタM15及びM16の各ゲート並びにトランジスタM15のドレインは、トランジスタM13のドレインに接続される。トランジスタM16のドレインは、トランジスタM14のドレインに接続される。トランジスタM16とトランジスタM14との接続ノードから4入力端子コンパレータ155の出力信号SOUT(図1における過電圧検出信号OVD)が出力される。 The gates of transistors M7 to M12 are connected to the second end of current source CS4 and the drain of transistor M7. The source of transistor M7 is connected to the drain of transistor M8. A ground voltage is applied to the sources of transistors M8, M10, and M12. A gate signal G14 is supplied to the gate of transistor M14 from the connection node between current source CS5 and transistor M9. A gate signal G13 is supplied to the gate of transistor M13 from the connection node between current source CS6 and transistor M11. A ground voltage is applied to the sources of transistors M13 and M14. A current mirror circuit is formed by transistors M15 and M16. A constant voltage VREG is applied to the sources of transistors M15 and M16. The gates of transistors M15 and M16 and the drain of transistor M15 are connected to the drain of transistor M13. The drain of transistor M16 is connected to the drain of transistor M14. The output signal SOUT of the four-input terminal comparator 155 (overvoltage detection signal OVD in FIG. 1) is output from the connection node between transistors M16 and M14.
 図3に示す構成例の4入力端子コンパレータ155は、通常動作時(比較動作時)にスイッチSW1及びスイッチSW3をオンにし、スイッチSW2、SW4、SW5、及びSW6をオフにする。 The four-input terminal comparator 155 in the configuration example shown in FIG. 3 turns on switches SW1 and SW3 during normal operation (during comparison operation) and turns off switches SW2, SW4, SW5, and SW6.
 図3に示す構成例の4入力端子コンパレータ155は、キャリブレーション動作時にスイッチSW1及びスイッチSW3をオフにし、スイッチSW2、SW4、SW5、及びSW6をオンにする。このとき、トランジスタM1の閾値電圧とトランジスタM2の閾値電圧が等しければ、トランジスタM1のドレイン電流Ia2とトランジスタM2のドレイン電流Ia3は等しくなる。同様に、トランジスタM3の閾値電圧とトランジスタM4の閾値電圧が等しければ、トランジスタM3のドレイン電流Ib2とトランジスタM4のドレイン電流Ib3は等しくなる。 The four-input terminal comparator 155 of the configuration example shown in FIG. 3 turns off switches SW1 and SW3 during calibration operation, and turns on switches SW2, SW4, SW5, and SW6. At this time, if the threshold voltage of transistor M1 is equal to the threshold voltage of transistor M2, the drain current Ia2 of transistor M1 is equal to the drain current Ia3 of transistor M2. Similarly, if the threshold voltage of transistor M3 is equal to the threshold voltage of transistor M4, the drain current Ib2 of transistor M3 is equal to the drain current Ib3 of transistor M4.
 しかし、例えばトランジスタM1の閾値電圧がトランジスタM2の閾値電圧より大きく、且つ、トランジスタM3の閾値電圧がトランジスタM4の閾値電圧より大きい場合、トランジスタM1のドレイン電流Ia2がトランジスタM2のドレイン電流Ia3より小さくなり、且つ、トランジスタM3のドレイン電流Ib2がトランジスタM4のドレイン電流Ib3より小さくなる。その結果、トランジスタM1及びM3のドレイン電圧V12は、トランジスタM2及びM4のドレイン電圧V13より小さくなる。 However, for example, if the threshold voltage of transistor M1 is greater than the threshold voltage of transistor M2 and the threshold voltage of transistor M3 is greater than the threshold voltage of transistor M4, the drain current Ia2 of transistor M1 will be smaller than the drain current Ia3 of transistor M2 and the drain current Ib2 of transistor M3 will be smaller than the drain current Ib3 of transistor M4. As a result, the drain voltage V12 of transistors M1 and M3 will be smaller than the drain voltage V13 of transistors M2 and M4.
 ここで、スイッチSW5及びSW6がオンであるため、キャリブレーション回路CAL1は、トランジスタM1及びM3のドレイン電圧V12とトランジスタM2及びM4のドレイン電圧V13とに依存したバランスで、トランジスタM5のドレイン電流Ic2とトランジスタM6のドレイン電流Ic3とを流す。 Now, because switches SW5 and SW6 are on, the calibration circuit CAL1 passes the drain current Ic2 of transistor M5 and the drain current Ic3 of transistor M6 in a balance that depends on the drain voltage V12 of transistors M1 and M3 and the drain voltage V13 of transistors M2 and M4.
 例えば、トランジスタM1及びM3のドレイン電圧V12がトランジスタM2及びM4のドレイン電圧V13より小さいときには、トランジスタM5のドレイン電流Ic2がトランジスタM6のドレイン電流Ic3より大きくなり、トランジスタM1及びM3のドレイン電圧V12とトランジスタM2及びM4のドレイン電圧V13とが等しい状態に近づくように調整される。そして、トランジスタM1及びM3のドレイン電圧V12に応じた電荷がコンデンサC1にチャージされ、トランジスタM2及びM4のドレイン電圧V13に応じた電荷がコンデンサC1にチャージされる。これより、キャリブレーション動作から通常動作に切り替わったときに、第1差動入力対P1及び第2差動入力対P2の各オフセットがキャンセルされる。したがって、本実施形態の電圧監視回路15は、キャリブレーション回路CAL1によってより一層高精度な電圧監視を実現することができる。 For example, when the drain voltage V12 of the transistors M1 and M3 is smaller than the drain voltage V13 of the transistors M2 and M4, the drain current Ic2 of the transistor M5 becomes larger than the drain current Ic3 of the transistor M6, and the drain voltage V12 of the transistors M1 and M3 and the drain voltage V13 of the transistors M2 and M4 are adjusted to be closer to an equal state. Then, a charge according to the drain voltage V12 of the transistors M1 and M3 is charged to the capacitor C1, and a charge according to the drain voltage V13 of the transistors M2 and M4 is charged to the capacitor C1. As a result, when switching from the calibration operation to the normal operation, the offsets of the first differential input pair P1 and the second differential input pair P2 are canceled. Therefore, the voltage monitoring circuit 15 of this embodiment can achieve even more accurate voltage monitoring by the calibration circuit CAL1.
 第1差動入力対P1及び第2差動入力対P2の各オフセットは、スイッチング電源装置1の使用環境によって変動する。したがって、図3に示す構成例の4入力端子コンパレータ155は、キャリブレーション動作と通常動作とを交互に繰り返すようにする。 The offsets of the first differential input pair P1 and the second differential input pair P2 vary depending on the environment in which the switching power supply device 1 is used. Therefore, the four-input terminal comparator 155 in the configuration example shown in FIG. 3 alternately repeats a calibration operation and a normal operation.
 本実施形態の電圧監視回路15は、帰還電圧VFBが過電圧であるか否かを監視することしかできず、帰還電圧VFBが低電圧であるか否かを監視することができない。帰還電圧VFBが低電圧であるか否かを監視するためには、本実施形態の電圧監視回路15に、低電圧監視用として、4入力端子コンパレータ155と、抵抗R3及びR4によって構成される抵抗分圧回路と、抵抗R5及びR6によって構成される抵抗分圧回路と、をもう一組追加する必要がある。 The voltage monitoring circuit 15 of this embodiment can only monitor whether the feedback voltage VFB is an overvoltage, and cannot monitor whether the feedback voltage VFB is an undervoltage. To monitor whether the feedback voltage VFB is an undervoltage, it is necessary to add another set of a four-input terminal comparator 155, a resistive voltage divider circuit formed by resistors R3 and R4, and a resistive voltage divider circuit formed by resistors R5 and R6 to the voltage monitoring circuit 15 of this embodiment for undervoltage monitoring.
 キャリブレーション回路CAL1を含むコンパレータは、一般的に回路規模が大きくなる傾向にある。したがって、本実施形態の電圧監視回路15を、4入力端子コンパレータ155と、抵抗R3及びR4によって構成される抵抗分圧回路と、抵抗R5及びR6によって構成される抵抗分圧回路と、を二組設ける構成にした場合、比較例の電圧監視回路15に比べて大幅に回路面積が増大してしまう。 Comparators including the calibration circuit CAL1 generally tend to be large in circuit size. Therefore, if the voltage monitoring circuit 15 of this embodiment is configured with two sets of a four-input terminal comparator 155, a resistive voltage divider circuit formed by resistors R3 and R4, and a resistive voltage divider circuit formed by resistors R5 and R6, the circuit area will be significantly larger than that of the voltage monitoring circuit 15 of the comparative example.
<スイッチング電源装置(第2実施形態)>
 図4は、スイッチング電源装置の第2実施形態を示す図である。本実施形態のスイッチング電源装置1は、先出の第1実施形態(図2)を基本としつつ、抵抗R5及びR6によって構成される抵抗分圧回路をデジタルデータ生成回路156及びDAC157に置換した構成である。
<Switching power supply device (second embodiment)>
4 is a diagram showing a second embodiment of a switching power supply device. The switching power supply device 1 of this embodiment is based on the first embodiment (FIG. 2) described above, but has a configuration in which the resistive voltage divider circuit formed by resistors R5 and R6 is replaced with a digital data generation circuit 156 and a DAC 157.
 本実施形態の電圧監視回路15は、帰還電圧VFBが過電圧であるか否かを監視することのみならず、帰還電圧VFBが低電圧であるか否かを監視することもできる。そして、本実施形態の電圧監視回路15は、4入力端子コンパレータ155を二つ備える必要がないため、回路面積の増大を抑制することができる。 The voltage monitoring circuit 15 of this embodiment can monitor not only whether the feedback voltage VFB is an overvoltage, but also whether the feedback voltage VFB is a low voltage. Furthermore, since the voltage monitoring circuit 15 of this embodiment does not need to have two four-input terminal comparators 155, an increase in the circuit area can be suppressed.
 本実施形態の半導体集積回路装置10は、クロック信号CLKを内部で発生させるか外部から受け取る。デジタルデータ生成回路156は、クロック信号CLKに基づき、第2電圧V2に対応するデジタルデータを過電圧用データと低電圧用データとに時分割で切り替える。DAC157には、定電圧VREG及びグラウンド電圧が印加される。DAC157は、定電圧VREG及びグラウンド電圧を基準として、デジタルデータ生成回路156から出力されるデジタルデータを、アナログ電圧である第2電圧V2に変換して出力する。したがって、図5に示すように、第2電圧V2は、クロック信号CLKに基づき、過電圧用の値(OVD VALUE)と低電圧用の値(UVD VALUE)とで時分割に切り替わる。これにより、4入力端子コンパレータ155は、過電圧検出信号OVDと低電圧検出信号UVDとを時分割で出力する。 The semiconductor integrated circuit device 10 of this embodiment generates a clock signal CLK internally or receives it from the outside. The digital data generation circuit 156 switches the digital data corresponding to the second voltage V2 between overvoltage data and low voltage data in a time-division manner based on the clock signal CLK. A constant voltage VREG and a ground voltage are applied to the DAC 157. The DAC 157 converts the digital data output from the digital data generation circuit 156 to the second voltage V2, which is an analog voltage, and outputs it based on the constant voltage VREG and the ground voltage. Therefore, as shown in FIG. 5, the second voltage V2 switches between an overvoltage value (OVD VALUE) and a low voltage value (UVD VALUE) in a time-division manner based on the clock signal CLK. As a result, the four-input terminal comparator 155 outputs an overvoltage detection signal OVD and a low voltage detection signal UVD in a time-division manner.
 なお、本実施形態の電圧監視回路15は、第1実施形態の電圧監視回路15に対して、抵抗R5及びR6によって構成される抵抗分圧回路をデジタルデータ生成回路156及びDAC157に置換した構成であったが、抵抗R5及びR6によって構成される抵抗分圧回路のみならず抵抗R3及びR4によって構成される抵抗分圧回路もデジタルデータ生成回路及びDACに置換した構成であってもよい。 In addition, in the voltage monitoring circuit 15 of the present embodiment, the resistive voltage divider circuit formed by resistors R5 and R6 is replaced with a digital data generation circuit 156 and a DAC 157, as compared to the voltage monitoring circuit 15 of the first embodiment. However, not only the resistive voltage divider circuit formed by resistors R5 and R6 but also the resistive voltage divider circuit formed by resistors R3 and R4 may be replaced with a digital data generation circuit and a DAC.
 第1実施形態の電圧監視回路15では、抵抗R3及びR4によって構成される抵抗分圧回路の分圧比が固定され、抵抗R5及びR6によって構成される抵抗分圧回路の分圧比が固定されているが、2組の抵抗分圧回路の少なくとも一方を分圧比が可変する抵抗分圧回路に変更してもよい。このような変更を施した電圧監視回路15も、4入力端子コンパレータ155を二つ備える必要がなく、帰還電圧VFBが過電圧であるか否かを監視することのみならず、帰還電圧VFBが低電圧であるか否かを監視することもできる。 In the voltage monitoring circuit 15 of the first embodiment, the voltage division ratio of the resistive voltage divider circuit formed by resistors R3 and R4 is fixed, and the voltage division ratio of the resistive voltage divider circuit formed by resistors R5 and R6 is fixed, but at least one of the two resistive voltage divider circuits may be changed to a resistive voltage divider circuit with a variable voltage division ratio. The voltage monitoring circuit 15 modified in this way also does not need to have two four-input terminal comparators 155, and can not only monitor whether the feedback voltage VFB is an overvoltage, but also monitor whether the feedback voltage VFB is an undervoltage.
 また、本実施形態の電圧監視回路15において、抵抗R3及びR4によって構成される抵抗分圧回路を分圧比が可変する抵抗分圧回路に変更してもよい。 In addition, in the voltage monitoring circuit 15 of this embodiment, the resistive voltage divider circuit formed by resistors R3 and R4 may be changed to a resistive voltage divider circuit with a variable voltage division ratio.
<適用例>
 図6は、車両Xの外観図である。本構成例の車両Xは、不図示のバッテリから出力される電圧の供給を受けて動作する種々の電子機器X11~X18を搭載している。なお、本図における電子機器X11~X18の搭載位置は、図示の便宜上、実際とは異なる場合がある。
<Application Examples>
6 is an external view of a vehicle X. The vehicle X of this configuration example is equipped with various electronic devices X11 to X18 that operate by receiving a voltage output from a battery (not shown). Note that the mounting positions of the electronic devices X11 to X18 in this figure may differ from the actual positions for convenience of illustration.
 電子機器X11は、エンジンに関連する制御(インジェクション制御、電子スロットル制御、アイドリング制御、酸素センサヒータ制御、及び、オートクルーズ制御など)を行うエンジンコントロールユニットである。 Electronic device X11 is an engine control unit that performs engine-related controls (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.).
 電子機器X12は、HID[high intensity discharged lamp]やDRL[daytime running lamp]などの点消灯制御を行うランプコントロールユニットである。 The electronic device X12 is a lamp control unit that controls the turning on and off of HID [high intensity discharged lamp] and DRL [daytime running lamp].
 電子機器X13は、トランスミッションに関連する制御を行うトランスミッションコントロールユニットである。 Electronic device X13 is a transmission control unit that performs control related to the transmission.
 電子機器X14は、車両Xの運動に関連する制御(ABS[anti-lock brake system]制御、EPS[electric power steering]制御、電子サスペンション制御など)を行う制動ユニットである。 The electronic device X14 is a braking unit that performs controls related to the movement of the vehicle X (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
 電子機器X15は、ドアロックや防犯アラームなどの駆動制御を行うセキュリティコントロールユニットである。 Electronic device X15 is a security control unit that controls the operation of door locks, burglar alarms, etc.
 電子機器X16は、ワイパー、電動ドアミラー、パワーウィンドウ、ダンパー(ショックアブソーバー)、電動サンルーフ、及び、電動シートなど、標準装備品やメーカーオプション品として、工場出荷段階で車両Xに組み込まれている電子機器である。 Electronic device X16 is an electronic device that is installed in vehicle X at the time of shipment from the factory as standard equipment or manufacturer's option, such as wipers, power door mirrors, power windows, dampers (shock absorbers), power sunroof, and power seats.
 電子機器X17は、車載A/V[audio/visual]機器、カーナビゲーションシステム、及び、ETC[electronic toll collection system]など、ユーザオプション品として任意で車両Xに装着される電子機器である。 Electronic device X17 is an electronic device that is optionally installed in vehicle X as a user option, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [electronic toll collection system].
 電子機器X18は、車載ブロア、オイルポンプ、ウォーターポンプ、バッテリ冷却ファンなど、高耐圧系モータを備えた電子機器である。 Electronic device X18 is an electronic device equipped with a high-voltage motor, such as an in-vehicle blower, oil pump, water pump, or battery cooling fan.
 なお、先に説明したスイッチング電源装置1は、電子機器X11~X18のいずれにも組み込むことが可能である。したがって、車両Xは、先に説明した半導体集積回路装置10を備える。また、先に説明したスイッチング電源装置1の用途としては、車両Xに搭載される電源に限定されず、例えば産業機器に搭載される電源であってもよい。 The switching power supply device 1 described above can be incorporated into any of the electronic devices X11 to X18. Therefore, the vehicle X is equipped with the semiconductor integrated circuit device 10 described above. Furthermore, the application of the switching power supply device 1 described above is not limited to a power supply mounted on the vehicle X, but may also be a power supply mounted on industrial equipment, for example.
<比較例の電源装置Y20>
 電源装置Y20の制御装置について、本開示の電源装置X20との比較例として説明する。図7は、比較例の電源装置Y20の構成を示すブロック図である。図8は、比較例の電源装置Y20に係る第1インダクタ電流IL1、第2インダクタ電流IL2、第1スイッチ電圧Vst1、および第2スイッチ電圧Vst2を示すタイミングチャートである。
<Comparative example power supply device Y20>
The control device of the power supply device Y20 will be described as a comparative example with the power supply device X20 of the present disclosure. Fig. 7 is a block diagram showing the configuration of the power supply device Y20 of the comparative example. Fig. 8 is a timing chart showing the first inductor current IL1, the second inductor current IL2, the first switch voltage Vst1, and the second switch voltage Vst2 of the power supply device Y20 of the comparative example.
 比較例の電源装置Y20は、第1半導体装置301と、第2半導体装置302と、インダクタL21と、インダクタL22と、キャパシタC21と、キャパシタC22と、を有する。 The power supply device Y20 of the comparative example has a first semiconductor device 301, a second semiconductor device 302, an inductor L21, an inductor L22, a capacitor C21, and a capacitor C22.
 第1半導体装置301は、入力電圧Viの印加端、および接地端に接続されている。第1半導体装置301の出力端は、インダクタL21の第1端に接続されている。インダクタL21の第2端は、キャパシタC21の第1端と、出力電圧Voの印加端とに共通に接続されている。キャパシタC21の第2端は、接地端に接続されている。 The first semiconductor device 301 is connected to the application terminal of the input voltage Vi and the ground terminal. The output terminal of the first semiconductor device 301 is connected to the first terminal of the inductor L21. The second terminal of the inductor L21 is commonly connected to the first terminal of the capacitor C21 and the application terminal of the output voltage Vo. The second terminal of the capacitor C21 is connected to the ground terminal.
 第1半導体装置301と、インダクタL21と、キャパシタC21とは、入力電圧Viから第1スイッチ電圧Vst1を生成し、第1スイッチ電圧Vst1を整流及び平滑する降圧型の第1出力段を形成している。第1半導体装置301は、第1クロック信号(図示省略)に基づいて、インダクタL21に流れる第1インダクタ電流IL1をスイッチング制御する。 The first semiconductor device 301, the inductor L21, and the capacitor C21 form a step-down first output stage that generates a first switch voltage Vst1 from the input voltage Vi and rectifies and smoothes the first switch voltage Vst1. The first semiconductor device 301 controls the switching of the first inductor current IL1 flowing through the inductor L21 based on a first clock signal (not shown).
 第2半導体装置302は、入力電圧Viの印加端、および接地端に接続されている。第2半導体装置302の出力端は、インダクタL22の第1端に接続されている。インダクタL22の第2端には、キャパシタC22の第1端と出力電圧Voの印加端とが共通に接続されている。キャパシタC22の第2端は、接地端に接続されている。 The second semiconductor device 302 is connected to the application terminal of the input voltage Vi and the ground terminal. The output terminal of the second semiconductor device 302 is connected to the first terminal of the inductor L22. The second terminal of the inductor L22 is commonly connected to the first terminal of the capacitor C22 and the application terminal of the output voltage Vo. The second terminal of the capacitor C22 is connected to the ground terminal.
 第2半導体装置302と、インダクタL21と、キャパシタC22とは、入力電圧Viから第2スイッチ電圧Vst2を生成し、第2スイッチ電圧Vst2を整流及び平滑する降圧型の第2出力段を形成している。第2半導体装置302は、第2クロック信号(図示省略)に基づいて、インダクタL22に流れる第2インダクタ電流IL2をスイッチング制御する。 The second semiconductor device 302, the inductor L21, and the capacitor C22 form a step-down second output stage that generates a second switch voltage Vst2 from the input voltage Vi and rectifies and smoothes the second switch voltage Vst2. The second semiconductor device 302 controls the switching of the second inductor current IL2 flowing through the inductor L22 based on a second clock signal (not shown).
 出力電圧Voの出力端には負荷Z20が接続されている。負荷Z20には、出力電圧Voと負荷Z20の抵抗値に応じた出力電流Ioが流れる。 A load Z20 is connected to the output terminal of the output voltage Vo. An output current Io flows through the load Z20 according to the output voltage Vo and the resistance value of the load Z20.
 図7に示すような電源装置Y20は、第1インダクタ電流IL1の平均値A1と第2インダクタ電流IL2の平均値A2とが略等しくなることが好ましい。 In the power supply device Y20 shown in FIG. 7, it is preferable that the average value A1 of the first inductor current IL1 and the average value A2 of the second inductor current IL2 are approximately equal.
 しかしながら、例えば第1半導体装置301、第2半導体装置302、インダクタL21、L22、キャパシタC21、C22の特性のばらつきによって、第1インダクタ電流IL1の値と第2インダクタ電流IL2の値とのバランスが崩れた状態となることがある。 However, for example, due to variations in the characteristics of the first semiconductor device 301, the second semiconductor device 302, the inductors L21 and L22, and the capacitors C21 and C22, the balance between the value of the first inductor current IL1 and the value of the second inductor current IL2 may be lost.
 具体的には、図8に示すように、第1インダクタ電流IL1の平均値A1と第2インダクタ電流IL2の平均値A2とが一致せず、第1インダクタ電流IL1と第2インダクタ電流IL2のバランスが崩れた状態となってしまう。 Specifically, as shown in FIG. 8, the average value A1 of the first inductor current IL1 and the average value A2 of the second inductor current IL2 do not match, resulting in an imbalance between the first inductor current IL1 and the second inductor current IL2.
 このようにバランスが崩れた状態になると、電源装置Y20の出力電流Ioが偏った動作となり、電源装置Y20の効率低下につながるおそれがある。また、比較的大きくバランスを崩した場合には、保護回路によって、スイッチングレギュレータが動作不良の状態となる。 When this balance is lost, the output current Io of the power supply device Y20 becomes biased, which may lead to a decrease in the efficiency of the power supply device Y20. Furthermore, when the balance is lost to a relatively large extent, the protection circuit causes the switching regulator to malfunction.
 また、電源装置Y20では、第2半導体装置302は、第1半導体装置301からクロック信号と誤差信号とを享受し、これらに基づいて第2インダクタ電流IL2を駆動制御する構成も考えられる。誤差信号とは、出力電圧Voとその目標値との誤差に応じて生成される信号である(詳細は後述)。この場合、電源装置Y20は、出力電流Ioをモニターし、第1半導体装置301および第2半導体装置302にフィードバックすることで、第1インダクタ電流IL1と第2インダクタ電流IL2とのバランスを取るように制御する構成を採用することも考えられる。 Furthermore, in the power supply device Y20, the second semiconductor device 302 may receive a clock signal and an error signal from the first semiconductor device 301, and may control the second inductor current IL2 based on these. The error signal is a signal generated according to the error between the output voltage Vo and its target value (details will be described later). In this case, the power supply device Y20 may adopt a configuration in which it monitors the output current Io and feeds it back to the first semiconductor device 301 and the second semiconductor device 302, thereby controlling the first inductor current IL1 and the second inductor current IL2 to achieve a balance.
 しかしながら、この場合、第1半導体装置301と第2半導体装置302との間で、第1クロック信号CL1、第1誤差信号Vc1、および出力電流Ioに関する電流情報を伝送する必要がある。このため、それぞれに対応する伝送経路を第1半導体装置301と第2半導体装置302との間に複数接続する必要があり、第1半導体装置301および第2半導体装置302の端子を多く使用してしまう。 However, in this case, it is necessary to transmit the first clock signal CL1, the first error signal Vc1, and current information related to the output current Io between the first semiconductor device 301 and the second semiconductor device 302. For this reason, it is necessary to connect multiple transmission paths corresponding to each between the first semiconductor device 301 and the second semiconductor device 302, which uses many terminals of the first semiconductor device 301 and the second semiconductor device 302.
<本開示の電源装置X20>
 次に、本開示の実施形態について説明する。図9は、本開示の電源装置X20の実施形態の概略構成を示す図である。図10は、本開示の電源装置X20に係る第1スイッチ電圧Vst1、第2スイッチ電圧Vst2、第1インダクタ電流IL1、および第2インダクタ電流IL2を示すタイミングチャートである。
<Power supply device X20 of the present disclosure>
Next, an embodiment of the present disclosure will be described. Fig. 9 is a diagram showing a schematic configuration of an embodiment of the power supply device X20 of the present disclosure. Fig. 10 is a timing chart showing the first switch voltage Vst1, the second switch voltage Vst2, the first inductor current IL1, and the second inductor current IL2 of the power supply device X20 of the present disclosure.
 電源装置X20は、入力電圧Viから所望の出力電圧Voを生成するように構成されたスイッチングレギュレータである。電源装置X20の出力端には、負荷Z20が接続されている。電源装置X20は、制御装置250と、インダクタL21、L22と、キャパシタC21、C22とを有する。制御装置250は、電源装置X20の駆動制御を行う。 The power supply device X20 is a switching regulator configured to generate a desired output voltage Vo from an input voltage Vi. A load Z20 is connected to the output terminal of the power supply device X20. The power supply device X20 has a control device 250, inductors L21 and L22, and capacitors C21 and C22. The control device 250 controls the drive of the power supply device X20.
 制御装置250は、第1半導体装置201と、第2半導体装置202を有する。インダクタL21、L22、およびキャパシタC21、C22は、制御装置250に外付けされたディスクリート部品である。 The control device 250 has a first semiconductor device 201 and a second semiconductor device 202. Inductors L21 and L22 and capacitors C21 and C22 are discrete components external to the control device 250.
 第1半導体装置201は、入力電圧Viの印加端、および接地端に接続されている。第1半導体装置201の出力端は、インダクタL21の第1端に接続されている。キャパシタC21の第1端は、インダクタL21の第2端と、第1半導体装置201の印加端と、出力電圧Voの印加端とに共通に接続されている。キャパシタC21の第2端は、接地端に接続されている。 The first semiconductor device 201 is connected to the application terminal of the input voltage Vi and the ground terminal. The output terminal of the first semiconductor device 201 is connected to the first terminal of the inductor L21. The first terminal of the capacitor C21 is commonly connected to the second terminal of the inductor L21, the application terminal of the first semiconductor device 201, and the application terminal of the output voltage Vo. The second terminal of the capacitor C21 is connected to the ground terminal.
 第1半導体装置201は、第1クロック信号CL1、および第1誤差信号Vc1を内部で生成するように構成されている。第1誤差信号Vc1は、出力電圧Voとその目標値との誤差に応じて生成される。 The first semiconductor device 201 is configured to internally generate a first clock signal CL1 and a first error signal Vc1. The first error signal Vc1 is generated according to the error between the output voltage Vo and its target value.
 第1半導体装置201は、第1クロック信号CL1、および第1誤差信号Vc1に基づいて第1スイッチ電圧Vst1をパルス駆動することにより、第1インダクタ電流IL1をスイッチング制御する。このように、第1半導体装置201は、入力電圧Viから第1スイッチ電圧Vst1を生成する降圧型の第1出力段を形成している。なお、第1出力段のDutyは、第1誤差信号Vc1に応じて決定される。 The first semiconductor device 201 performs switching control of the first inductor current IL1 by pulse driving the first switch voltage Vst1 based on the first clock signal CL1 and the first error signal Vc1. In this way, the first semiconductor device 201 forms a step-down first output stage that generates the first switch voltage Vst1 from the input voltage Vi. The duty of the first output stage is determined according to the first error signal Vc1.
 第2半導体装置202は、入力電圧Viの印加端、および接地端に接続されている。第2半導体装置202の出力端は、インダクタL22の第1端に接続されている。キャパシタC22の第1端は、インダクタL22の第2端と、第2半導体装置202の印加端と、出力電圧Voの印加端とに共通に接続されている。キャパシタC22の第2端は、接地端に接続されている。 The second semiconductor device 202 is connected to the application terminal of the input voltage Vi and the ground terminal. The output terminal of the second semiconductor device 202 is connected to the first terminal of the inductor L22. The first terminal of the capacitor C22 is commonly connected to the second terminal of the inductor L22, the application terminal of the second semiconductor device 202, and the application terminal of the output voltage Vo. The second terminal of the capacitor C22 is connected to the ground terminal.
 第1半導体装置201と第2半導体装置202とは、伝送経路228によって互いに接続されている。伝送経路228の第1端は第1半導体装置201の1つの印加端に接続されている。伝送経路228の第2端は第2半導体装置202の1つの印加端に接続されている。 The first semiconductor device 201 and the second semiconductor device 202 are connected to each other by a transmission path 228. A first end of the transmission path 228 is connected to one application terminal of the first semiconductor device 201. A second end of the transmission path 228 is connected to one application terminal of the second semiconductor device 202.
 第1半導体装置201は、第2半導体装置202へ伝送信号Vtと、第1誤差信号Vc1を送信する。伝送信号Vtは、第1出力段のDuty情報(=第1出力段のDutyに関する情報)と第1クロック信号CL1のクロック情報(=第1出力段のスイッチング周波数に関する情報)を含んでいる。 The first semiconductor device 201 transmits a transmission signal Vt and a first error signal Vc1 to the second semiconductor device 202. The transmission signal Vt includes duty information of the first output stage (=information related to the duty of the first output stage) and clock information of the first clock signal CL1 (=information related to the switching frequency of the first output stage).
 第2半導体装置202は、内部で、第1クロック信号CL1の周波数情報を含む伝送信号Vtに基づいて第2クロック信号CL2を生成する。また、第2半導体装置202は、内部で、第1出力段のDuty情報を含む伝送信号Vtに基づいて第1誤差信号Vc1を補正することにより第2誤差信号Vc2を生成する。第2半導体装置202は、第2クロック信号CL2、および第2誤差信号Vc2に基づいて第2スイッチ電圧Vst2をパルス駆動することにより、第2インダクタ電流IL2をスイッチング制御する。このように、第2半導体装置202は、入力電圧Viから第2スイッチ電圧をVst2生成する降圧型の第2出力段を形成している。 The second semiconductor device 202 internally generates a second clock signal CL2 based on a transmission signal Vt that includes frequency information of the first clock signal CL1. The second semiconductor device 202 also internally generates a second error signal Vc2 by correcting the first error signal Vc1 based on the transmission signal Vt that includes duty information of the first output stage. The second semiconductor device 202 pulse-drives the second switch voltage Vst2 based on the second clock signal CL2 and the second error signal Vc2, thereby controlling the switching of the second inductor current IL2. In this way, the second semiconductor device 202 forms a step-down second output stage that generates the second switch voltage Vst2 from the input voltage Vi.
 第1半導体装置201から第2半導体装置202に伝送信号Vtが伝送されることで、第2半導体装置202は、第1出力段のDuty情報および第1クロック信号CL1のクロック情報を得ることができる。このため、第2半導体装置202が、第1出力段のDuty情報および第1クロック信号CL1のクロック情報に基づいて第2インダクタ電流IL2のスイッチング制御することができる。 By transmitting the transmission signal Vt from the first semiconductor device 201 to the second semiconductor device 202, the second semiconductor device 202 can obtain duty information of the first output stage and clock information of the first clock signal CL1. Therefore, the second semiconductor device 202 can control the switching of the second inductor current IL2 based on the duty information of the first output stage and the clock information of the first clock signal CL1.
 これにより、図10に示すように、駆動開始当初は第1インダクタ電流IL1と第2インダクタ電流IL2とのバランスが崩れていたとしても、第1半導体装置201から第2半導体装置202に供給される伝送信号Vtに基づいて第2インダクタ電流IL2の駆動制御を補正することで、第1インダクタ電流IL1と第2インダクタ電流IL2とのバランスが徐々に整うものとなる。従って、第1インダクタ電流IL1と第2インダクタ電流IL2とのバランスが崩れるのを抑制できる。 As a result, as shown in FIG. 10, even if the balance between the first inductor current IL1 and the second inductor current IL2 is lost at the beginning of driving, the balance between the first inductor current IL1 and the second inductor current IL2 is gradually restored by correcting the drive control of the second inductor current IL2 based on the transmission signal Vt supplied from the first semiconductor device 201 to the second semiconductor device 202. Therefore, it is possible to prevent the balance between the first inductor current IL1 and the second inductor current IL2 from being lost.
 また、上述した通り、伝送経路228の第1端は第1半導体装置201の1つの印加端に接続され、伝送経路228の第2端は第2半導体装置202の1つの印加端に接続されている。このため、伝送信号Vtに含まれる第1クロック信号CL1のクロック情報と第1出力段のDuty情報とを別々の経路で第1半導体装置201から第2半導体装置202へ伝送する場合に比べて、第1半導体装置201および第2半導体装置202の端子の使用数を削減することができる。 As described above, the first end of the transmission path 228 is connected to one application end of the first semiconductor device 201, and the second end of the transmission path 228 is connected to one application end of the second semiconductor device 202. Therefore, the number of terminals used in the first semiconductor device 201 and the second semiconductor device 202 can be reduced compared to the case where the clock information of the first clock signal CL1 contained in the transmission signal Vt and the duty information of the first output stage are transmitted from the first semiconductor device 201 to the second semiconductor device 202 via separate paths.
 本開示の電源装置X20の構成について、さらに詳細に説明する。図11は、電源装置X20の構成を示すブロック図である。 The configuration of the power supply device X20 of the present disclosure will now be described in further detail. Figure 11 is a block diagram showing the configuration of the power supply device X20.
 なお、本図の第1半導体装置201と第2半導体装置202は、同一の機種であり、全く同様の機能ブロックを備えている。ただし、第1半導体装置201と第2半導体装置202は、それぞれの主従関係に応じていくつかの機能ブロックの有効/無効が切り替えられる。以下では、第1半導体装置201がマスタ(=誤差信号及び伝送信号を送る側)となり、第2半導体装置202がスレーブ(=誤差信号及び伝送信号を受ける側)となる場合について説明する。 Note that the first semiconductor device 201 and the second semiconductor device 202 in this diagram are the same model and have exactly the same functional blocks. However, the first semiconductor device 201 and the second semiconductor device 202 have some functional blocks that can be enabled or disabled depending on their respective master-slave relationships. Below, we will explain the case where the first semiconductor device 201 is the master (= the side that sends the error signal and transmission signal) and the second semiconductor device 202 is the slave (= the side that receives the error signal and transmission signal).
 図11に示すように、第1半導体装置201は、第1スイッチ出力段203と、第1制御回路204と、を1つのパッケージ内に集積化したモノリシック半導体集積回路装置(いわゆるマルチフェイズ型スイッチングレギュレータIC)である。 As shown in FIG. 11, the first semiconductor device 201 is a monolithic semiconductor integrated circuit device (a so-called multi-phase switching regulator IC) in which a first switch output stage 203 and a first control circuit 204 are integrated into a single package.
 第1スイッチ出力段203は、ハイサイドトランジスタおよびロ―サイドトランジスタ(図示省略)と、第1ドライバと(図示省略)と、を含んで構成される。ハイサイドトランジスタおよびロ―サイドトランジスタは、ハーフブリッジを形成するように互いに接続されたMOSFETである。第1ドライバは、ハイサイドトランジスタおよびロ―サイドトランジスタを駆動制御する。第1スイッチ出力段203は、ハイサイドトランジスタおよびロ―サイドトランジスタをオン/オフすることにより第1インダクタ電流IL1を駆動する。 The first switch output stage 203 includes a high-side transistor and a low-side transistor (not shown) and a first driver (not shown). The high-side transistor and the low-side transistor are MOSFETs connected to each other to form a half bridge. The first driver drives and controls the high-side transistor and the low-side transistor. The first switch output stage 203 drives the first inductor current IL1 by turning the high-side transistor and the low-side transistor on and off.
 第1制御回路204は、誤差増幅回路205と、スイッチ制御回路206と、を含んで構成されている。誤差増幅回路205は、出力電圧Voとその目標値との誤差に応じた第1誤差信号Vc1を生成するように構成されている。 The first control circuit 204 includes an error amplifier circuit 205 and a switch control circuit 206. The error amplifier circuit 205 is configured to generate a first error signal Vc1 that corresponds to the error between the output voltage Vo and its target value.
 誤差増幅回路205は、抵抗R21、R22と、電圧源E3と、誤差増幅アンプ207と、を含んで構成されている。抵抗R21の第1端は、負荷Z20の第1端に接続されている。抵抗R21の第2端は、抵抗R22の第1端と共に誤差増幅アンプ207の非反転入力端子に接続されている。抵抗R22の第2端は、接地端に接続されている。 The error amplifier circuit 205 includes resistors R21 and R22, a voltage source E3, and an error amplifier 207. A first end of the resistor R21 is connected to a first end of the load Z20. A second end of the resistor R21, together with a first end of the resistor R22, is connected to the non-inverting input terminal of the error amplifier 207. A second end of the resistor R22 is connected to the ground terminal.
 電圧源E3の第1端は、誤差増幅アンプ207の反転入力端子に接続されている。電圧源E3の第2端は、接地端に接続されている。誤差増幅アンプ207の出力端は、スイッチ制御回路206の入力端(後述する第1コンパレータ212の非反転入力端子)に接続されている。 The first terminal of the voltage source E3 is connected to the inverting input terminal of the error amplifier 207. The second terminal of the voltage source E3 is connected to the ground terminal. The output terminal of the error amplifier 207 is connected to the input terminal of the switch control circuit 206 (the non-inverting input terminal of the first comparator 212 described later).
 なお、第2半導体装置202の整合回路217に相当する機能ブロックは、図中の破線で示すように無効化されている。従って、第1誤差信号Vc1は、第1コンパレータ212の非反転入力端子にそのまま入力される。 Note that the functional block corresponding to the matching circuit 217 of the second semiconductor device 202 is disabled as shown by the dashed line in the figure. Therefore, the first error signal Vc1 is input directly to the non-inverting input terminal of the first comparator 212.
 スイッチ制御回路206は、第1クロック信号CL1と第1比較信号Va1を生成して第1スイッチ出力段203に出力する。第1クロック信号CL1は、第1スイッチ出力段203のスイッチング周波数(以下「第1スイッチング周波数」と称する)を規定する信号である。上述したクロック情報は、第1クロック信号CL1の立上がり又は立下りのタイミング情報である。 The switch control circuit 206 generates a first clock signal CL1 and a first comparison signal Va1 and outputs them to the first switch output stage 203. The first clock signal CL1 is a signal that defines the switching frequency of the first switch output stage 203 (hereinafter referred to as the "first switching frequency"). The above-mentioned clock information is timing information of the rising or falling edge of the first clock signal CL1.
 スイッチ制御回路206は、第1オシレータ208と、第1PLL[Phase Locked Loop]209と、第1セレクタ210と、第1ランプ信号生成部211と、第1コンパレータ212と、加算部213と、を含んで構成されている。 The switch control circuit 206 includes a first oscillator 208, a first PLL [Phase Locked Loop] 209, a first selector 210, a first ramp signal generating unit 211, a first comparator 212, and an adder 213.
 第1オシレータ208および第1PLL209は、共に第1セレクタ210の入力端に接続されている。なお、本図では、第1半導体装置201がマスタとなる。この場合、第1オシレータ208は、第1セレクタ210を介して第1スイッチ出力段203及び第1ランプ信号生成部211の入力端に電気的に接続している。第1PLL209は、第1セレクタ210によって電気的に遮断されており、機能しない状態となっている。第1オシレータ208は、第1クロック信号CL1を生成して第1ランプ信号生成部211に入力する。 The first oscillator 208 and the first PLL 209 are both connected to the input terminal of the first selector 210. In this diagram, the first semiconductor device 201 is the master. In this case, the first oscillator 208 is electrically connected to the first switch output stage 203 and the input terminal of the first ramp signal generating unit 211 via the first selector 210. The first PLL 209 is electrically cut off by the first selector 210 and is in a non-functional state. The first oscillator 208 generates a first clock signal CL1 and inputs it to the first ramp signal generating unit 211.
 第1ランプ信号生成部211の出力端は、第1スイッチ出力段203の第1差動ライン214と共に加算部213の入力端に接続されている。第1ランプ信号生成部211は、第1クロック信号CL1に応じて鋸波形の第1ランプ信号Vr1を生成する。第1差動ライン214は、第1スイッチ出力段203の生成した第1差動信号Vd1(=第1インダクタ電流IL1に応じた電流帰還信号)を加算部213に伝達する。 The output terminal of the first ramp signal generating unit 211 is connected to the input terminal of the adder unit 213 together with the first differential line 214 of the first switch output stage 203. The first ramp signal generating unit 211 generates a first ramp signal Vr1 having a sawtooth waveform in response to the first clock signal CL1. The first differential line 214 transmits the first differential signal Vd1 (= a current feedback signal corresponding to the first inductor current IL1) generated by the first switch output stage 203 to the adder unit 213.
 加算部213の出力端は、第1コンパレータ212の反転入力端子に接続されている。加算部213は、第1ランプ信号Vr1と第1差動信号Vd1とを加算して、第1基準信号Vs1を生成する。 The output terminal of the adder 213 is connected to the inverting input terminal of the first comparator 212. The adder 213 adds the first ramp signal Vr1 and the first differential signal Vd1 to generate the first reference signal Vs1.
 第1コンパレータ212の出力端は、第1スイッチ出力段203の入力端(図示省略)に接続されている。第1コンパレータ212は、第1誤差信号Vc1と第1基準信号Vs1とを比較して、第1比較信号Va1を生成する。具体的には、第1比較信号Va1は、第1基準信号Vs1が第1誤差信号Vc1よりも低いときにハイレベルとなり、逆に、第1基準信号Vs1が第1誤差信号Vc1よりも高いときにローレベルとなる。 The output terminal of the first comparator 212 is connected to the input terminal (not shown) of the first switch output stage 203. The first comparator 212 compares the first error signal Vc1 with the first reference signal Vs1 to generate a first comparison signal Va1. Specifically, the first comparison signal Va1 is at a high level when the first reference signal Vs1 is lower than the first error signal Vc1, and conversely, is at a low level when the first reference signal Vs1 is higher than the first error signal Vc1.
 第1制御回路204は、第1クロック信号CL1および第1比較信号Va1に基づいて第1スイッチ出力段203を駆動制御する。 The first control circuit 204 drives and controls the first switch output stage 203 based on the first clock signal CL1 and the first comparison signal Va1.
 図11に示すように、第2半導体装置202は、第2スイッチ出力段215と、第2制御回路216とを1つのパッケージ内に集積化したモノリシック半導体集積回路装置(いわゆるマルチフェイズ型スイッチングレギュレータIC)である。第2半導体装置202は、第1半導体装置201とは別のパッケージとして形成されている。 As shown in FIG. 11, the second semiconductor device 202 is a monolithic semiconductor integrated circuit device (a so-called multi-phase switching regulator IC) in which the second switch output stage 215 and the second control circuit 216 are integrated into a single package. The second semiconductor device 202 is formed as a package separate from the first semiconductor device 201.
 第2スイッチ出力段215は、ハイサイドトランジスタおよびロ―サイドトランジスタ(図示省略)と、第2ドライバと(図示省略)と、を含んで構成される。ハイサイドトランジスタおよびロ―サイドトランジスタは、ハーフブリッジを形成するように互いに接続されたMOSFETである。第2ドライバは、ハイサイドトランジスタおよびロ―サイドトランジスタを駆動制御する。第2スイッチ出力段215は、ハイサイドトランジスタおよびロ―サイドトランジスタをオン/オフすることにより第2インダクタ電流IL2を駆動する。 The second switch output stage 215 includes a high-side transistor and a low-side transistor (not shown) and a second driver (not shown). The high-side transistor and the low-side transistor are MOSFETs connected to each other to form a half bridge. The second driver drives and controls the high-side transistor and the low-side transistor. The second switch output stage 215 drives the second inductor current IL2 by turning the high-side transistor and the low-side transistor on and off.
 第2制御回路216は、第2スイッチ出力段215を駆動制御するように構成されている。第2制御回路216は、整合回路217と、位相同期回路218と、第2ランプ信号生成部219と、第2コンパレータ230と、を含んで構成されている。 The second control circuit 216 is configured to drive and control the second switch output stage 215. The second control circuit 216 includes a matching circuit 217, a phase synchronization circuit 218, a second ramp signal generating unit 219, and a second comparator 230.
 整合回路217は、第1誤差信号Vc1および伝送信号Vt(=本図では第1スイッチ電圧Vst1)に基づいて第2誤差信号Vc2を生成するように構成されている。具体的には、整合回路217は、第1ローパスフィルタ220と、第2ローパスフィルタ221と、補正コンパレータ222と、整合部223とを含んで構成されている。 The matching circuit 217 is configured to generate a second error signal Vc2 based on the first error signal Vc1 and the transmission signal Vt (= the first switch voltage Vst1 in this figure). Specifically, the matching circuit 217 includes a first low-pass filter 220, a second low-pass filter 221, a correction comparator 222, and a matching unit 223.
 第1ローパスフィルタ220の第1端は、インダクタL21の第1端に接続されている。第1ローパスフィルタ220の第2端は、補正コンパレータ222の非反転入力端子に接続されている。第1ローパスフィルタ220は、第1スイッチ電圧Vst1を平滑化(平均化)して第1平均電圧Vave1を生成し、補正コンパレータ222に送信する。 A first end of the first low-pass filter 220 is connected to a first end of the inductor L21. A second end of the first low-pass filter 220 is connected to a non-inverting input terminal of the correction comparator 222. The first low-pass filter 220 smoothes (averages) the first switch voltage Vst1 to generate a first average voltage Vave1 and transmits it to the correction comparator 222.
 第2ローパスフィルタ221の第1端は、インダクタL22の第1端に接続されている。第2ローパスフィルタ221の第2端は、補正コンパレータ222の反転入力端子に接続されている。第2ローパスフィルタ221は、第2スイッチ電圧Vst2を平滑化(平均化)して第2平均電圧Vave2を生成し、補正コンパレータ222に送信する。 The first end of the second low-pass filter 221 is connected to the first end of the inductor L22. The second end of the second low-pass filter 221 is connected to the inverting input terminal of the correction comparator 222. The second low-pass filter 221 smoothes (averages) the second switch voltage Vst2 to generate a second average voltage Vave2 and transmits it to the correction comparator 222.
 補正コンパレータ222の出力端子は、整合部223に接続されている。補正コンパレータ222は、第1平均電圧Vave1と第2平均電圧Vave2とを比較して補正信号Vcrを生成し、補正信号Vcrを整合部223に送信する。 The output terminal of the correction comparator 222 is connected to the matching unit 223. The correction comparator 222 compares the first average voltage Vave1 with the second average voltage Vave2 to generate a correction signal Vcr, and transmits the correction signal Vcr to the matching unit 223.
 整合部223の出力端は、第2コンパレータ230の非反転入力端子に接続されている。整合部223の第1入力端は、補正コンパレータ222の出力端に接続されている。整合部223の第2入力端は、誤差増幅アンプ207の出力端に接続されている。整合部223は、誤差増幅アンプ207の出力する第1誤差信号Vc1を補正コンパレータ222の出力する補正信号Vcrに基づいて補正して、第2誤差信号Vc2を生成する。第2誤差信号Vc2は、第2コンパレータ230の非反転入力端子に入力される。なお、第1半導体装置201の誤差増幅回路205に相当する機能ブロックは、図中の破線で示すように無効化されている。 The output terminal of the matching unit 223 is connected to the non-inverting input terminal of the second comparator 230. The first input terminal of the matching unit 223 is connected to the output terminal of the correction comparator 222. The second input terminal of the matching unit 223 is connected to the output terminal of the error amplifier 207. The matching unit 223 corrects the first error signal Vc1 output from the error amplifier 207 based on the correction signal Vcr output from the correction comparator 222 to generate a second error signal Vc2. The second error signal Vc2 is input to the non-inverting input terminal of the second comparator 230. Note that the functional block corresponding to the error amplifier circuit 205 of the first semiconductor device 201 is disabled as indicated by the dashed line in the figure.
 位相同期回路218は、伝送信号Vtに基づいて第2クロック信号CL2を生成するように構成されている。第2クロック信号CL2は、第2スイッチ出力段215のスイッチング周波数(以下、「第2スイッチング周波数」と称する)を規定する信号である。 The phase-locked loop 218 is configured to generate a second clock signal CL2 based on the transmission signal Vt. The second clock signal CL2 is a signal that defines the switching frequency of the second switch output stage 215 (hereinafter referred to as the "second switching frequency").
 位相同期回路218は、第2オシレータ224と、第2PLL225と、第2セレクタ226と、を含んで構成されている。 The phase synchronization circuit 218 includes a second oscillator 224, a second PLL 225, and a second selector 226.
 第2オシレータ224および第2PLL225は、第2セレクタ226に接続されている。第2セレクタ226の出力端は、第2スイッチ出力段215と共に、第2ランプ信号生成部219に接続されている。なお、本図では、第2半導体装置202がスレーブとなる。この場合、第2セレクタ226は、内部で第2オシレータ224との接続を遮断する。第2PLL225の出力端は、第2セレクタ226を介して第2スイッチ出力段215及び第2ランプ信号生成部219に電気的に接続されている。 The second oscillator 224 and the second PLL 225 are connected to the second selector 226. The output terminal of the second selector 226 is connected to the second ramp signal generating unit 219 together with the second switch output stage 215. In this figure, the second semiconductor device 202 is the slave. In this case, the second selector 226 internally cuts off the connection to the second oscillator 224. The output terminal of the second PLL 225 is electrically connected to the second switch output stage 215 and the second ramp signal generating unit 219 via the second selector 226.
 第2PLL225の入力端は、伝送経路228を介して、インダクタL21の第1端に接続されている。すなわち、第2PLL225は、第1クロック信号CL1のクロック情報を含む第1スイッチ電圧Vst1に基づいて第2クロック信号CL2を生成し、第2クロック信号CL2を第2スイッチ出力段215及び第2ランプ信号生成部219に入力する。第2PLL225は、機能的に見ると、第1クロック信号CL1をフェイズシフトさせて、高周波に変換することで第2クロック信号CL2を生成する。 The input end of the second PLL 225 is connected to the first end of the inductor L21 via the transmission path 228. That is, the second PLL 225 generates the second clock signal CL2 based on the first switch voltage Vst1 including the clock information of the first clock signal CL1, and inputs the second clock signal CL2 to the second switch output stage 215 and the second ramp signal generating unit 219. From a functional perspective, the second PLL 225 generates the second clock signal CL2 by phase-shifting the first clock signal CL1 and converting it to a high frequency.
 第2ランプ信号生成部219の出力端は、第2スイッチ出力段215の第2差動ライン229と共に加算部227の入力端に接続されている。第2ランプ信号生成部219は、第2クロック信号CL2に応じて鋸波形の第2ランプ信号Vr2を生成する。第2差動ライン229は、第2スイッチ出力段215の生成した第2差動信号Vd2(=第2インダクタ電流IL2に応じた電流帰還信号)を加算部227に伝達する。 The output terminal of the second ramp signal generating unit 219 is connected to the input terminal of the adder unit 227 together with the second differential line 229 of the second switch output stage 215. The second ramp signal generating unit 219 generates a second ramp signal Vr2 having a sawtooth waveform in response to the second clock signal CL2. The second differential line 229 transmits the second differential signal Vd2 (= a current feedback signal corresponding to the second inductor current IL2) generated by the second switch output stage 215 to the adder unit 227.
 加算部227の出力端は、第2コンパレータ230の反転入力端子に接続されている。加算部227は、第2ランプ信号Vr2と第2差動信号Vd2とを加算して、第2基準信号Vs2を生成する。 The output terminal of the adder 227 is connected to the inverting input terminal of the second comparator 230. The adder 227 adds the second ramp signal Vr2 and the second differential signal Vd2 to generate the second reference signal Vs2.
 第2コンパレータ230の出力端は、第2スイッチ出力段215の入力端(図示省略)に接続されている。第2コンパレータ230は、第2誤差信号Vc2と第2基準信号Vs2とを比較して、第2比較信号Va2を生成する。第2スイッチ出力段215は、第2クロック信号CL2及び第2比較信号Va2に基づいて駆動する。 The output terminal of the second comparator 230 is connected to the input terminal (not shown) of the second switch output stage 215. The second comparator 230 compares the second error signal Vc2 with the second reference signal Vs2 to generate a second comparison signal Va2. The second switch output stage 215 is driven based on the second clock signal CL2 and the second comparison signal Va2.
 第2制御回路216は、第2クロック信号CL2および第2比較信号Va2に基づいて第2スイッチ出力段215を駆動制御する。 The second control circuit 216 drives and controls the second switch output stage 215 based on the second clock signal CL2 and the second comparison signal Va2.
 図12は、第1ランプ信号Vr1、第2ランプ信号Vr2、第1誤差信号Vc1、第2誤差信号Vc2、第1スイッチ電圧Vst1、第2スイッチ電圧Vst2、第1インダクタ電流IL1、および第2インダクタ電流IL2を示すタイミングチャートである。 FIG. 12 is a timing chart showing the first ramp signal Vr1, the second ramp signal Vr2, the first error signal Vc1, the second error signal Vc2, the first switch voltage Vst1, the second switch voltage Vst2, the first inductor current IL1, and the second inductor current IL2.
 図12に示すように、第1スイッチ電圧Vst1がハイレベルに立ち上げられると、第1インダクタ電流IL1が徐々に大きくなる。これに伴い、第1ランプ信号Vr1が上昇し始める。第1ランプ信号Vr1が第1誤差信号Vc1を上回ると、第1スイッチ電圧Vst1がローレベルに立ち下げられる。すると第1インダクタ電流IL1が徐々に小さくなる。 As shown in FIG. 12, when the first switch voltage Vst1 is raised to a high level, the first inductor current IL1 gradually increases. In response to this, the first ramp signal Vr1 begins to rise. When the first ramp signal Vr1 exceeds the first error signal Vc1, the first switch voltage Vst1 is lowered to a low level. Then, the first inductor current IL1 gradually decreases.
 同様に、第2スイッチ電圧Vst2がハイレベルに立ち上げられると、第2インダクタ電流IL2が徐々に大きくなる。これに伴い、第2ランプ信号Vr2が上昇し始める。第2ランプ信号Vr2が第2誤差信号Vc2を上回ると、第2スイッチ電圧Vst2がローレベルに立ち下げられる。すると第2インダクタ電流IL2が徐々に小さくなる。 Similarly, when the second switch voltage Vst2 is raised to a high level, the second inductor current IL2 gradually increases. In response to this, the second ramp signal Vr2 begins to rise. When the second ramp signal Vr2 exceeds the second error signal Vc2, the second switch voltage Vst2 is lowered to a low level. Then, the second inductor current IL2 gradually decreases.
 図12に示すように、第2誤差信号Vc2は、第1誤差信号Vc1よりも第2オフセット信号S2分大きくなっている。これにより、第2スイッチ電圧Vst2のオン時間のDuty比が大きくなり、第2インダクタ電流IL2の最大値が大きくなる。 As shown in FIG. 12, the second error signal Vc2 is larger than the first error signal Vc1 by the second offset signal S2. This increases the duty ratio of the on-time of the second switch voltage Vst2, and increases the maximum value of the second inductor current IL2.
 比較例の電源装置Y20では、仮に、第1誤差信号Vc1と第2誤差信号Vc2とが同一の場合に、デバイスの製造ばらつき等に起因して、第2スイッチ電圧Vst2のオン時間のDuty比が第1スイッチ電圧Vst1のオン時間のDuty比よりも小さくなる場合があり得る。この場合、第2インダクタ電流IL2の平均値A2は、第1インダクタ電流IL1の平均値A1よりも電流値が小さなものとなる。 In the power supply device Y20 of the comparative example, if the first error signal Vc1 and the second error signal Vc2 are the same, the duty ratio of the on-time of the second switch voltage Vst2 may be smaller than the duty ratio of the on-time of the first switch voltage Vst1 due to manufacturing variations in the device, etc. In this case, the average value A2 of the second inductor current IL2 is smaller than the average value A1 of the first inductor current IL1.
 対して、本開示の電源装置X20では、上記の場合であっても、第2誤差信号Vc2が第1誤差信号Vc1よりも大きくなり、第2インダクタ電流IL2が大きくなる。このため、図12に示すように、第2インダクタ電流IL2の平均値A2は、第1インダクタ電流IL1の平均値A1と略等しいものとなる。従って、第1インダクタ電流IL1と第2インダクタ電流IL2の電流バランスが取れ、電源装置X20の効率の低下を抑制できる。 In contrast, in the power supply device X20 of the present disclosure, even in the above case, the second error signal Vc2 becomes larger than the first error signal Vc1, and the second inductor current IL2 becomes larger. Therefore, as shown in FIG. 12, the average value A2 of the second inductor current IL2 becomes approximately equal to the average value A1 of the first inductor current IL1. Therefore, a current balance is achieved between the first inductor current IL1 and the second inductor current IL2, and a decrease in the efficiency of the power supply device X20 can be suppressed.
<その他>
 本開示の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。これまでに説明してきた各種の実施形態は、矛盾のない範囲で適宜組み合わせて実施してもよい。以上の実施形態は、あくまでも、本開示の実施形態の例であって、本開示ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。
<Other>
The embodiments of the present disclosure may be modified in various ways as appropriate within the scope of the technical ideas set forth in the claims. The various embodiments described above may be combined as appropriate within a range that does not cause inconsistency. The above embodiments are merely examples of the embodiments of the present disclosure, and the meanings of the terms of the present disclosure or each component are not limited to those described in the above embodiments.
 例えば、上述した実施形態では、電圧監視回路15は、電源ICである半導体集積回路装置に設けられたが、電源IC以外の半導体集積回路装置に設けられてもよい。 For example, in the above-described embodiment, the voltage monitoring circuit 15 is provided in a semiconductor integrated circuit device that is a power supply IC, but it may also be provided in a semiconductor integrated circuit device other than a power supply IC.
 例えば、上記実施形態では、第1半導体装置201と第2半導体装置202とは別々のパッケージ内に形成されている、としたが、同一のパッケージ内に形成されている構成を採用することもできる。 For example, in the above embodiment, the first semiconductor device 201 and the second semiconductor device 202 are formed in separate packages, but a configuration in which they are formed in the same package can also be adopted.
 また、上記実施形態では、降圧型の出力段を用いた構成を例に挙げて説明を行ったが、本発明の構成はこれに限定されるものではなく、昇圧型の出力段又は昇降圧型の出力段を用いても構わない。 In addition, in the above embodiment, a configuration using a step-down output stage has been described as an example, but the configuration of the present invention is not limited to this, and a step-up output stage or a step-up/step-down output stage may also be used.
 また、上記の説明では、本開示の実施形態について、2つの半導体装置(第1半導体装置201および第2半導体装置202)からなるマルチフェイズ型スイッチングレギュレータICを例に示した。しかし、第1半導体装置201および第2半導体装置202に加えて、更に別の半導体装置を1つ以上備える構成を採用することもできる。 In the above description, a multi-phase switching regulator IC consisting of two semiconductor devices (first semiconductor device 201 and second semiconductor device 202) has been shown as an example of an embodiment of the present disclosure. However, a configuration including one or more other semiconductor devices in addition to first semiconductor device 201 and second semiconductor device 202 may also be adopted.
 この場合、この別の半導体装置は、第1半導体装置201および第2半導体装置202と同じ構成のものを採用するのが好ましい。そして、第1半導体装置201は、第2半導体装置202だけでなく、上記の別の半導体装置にも伝送信号Vtを送信する。この別の半導体装置は、第2半導体装置202と同様に、伝送信号Vtに基づいてスイッチ出力段の駆動制御を行う。すなわち、1つのマスタから複数のスレーブに第1誤差信号Vc1及び伝送信号Vtが供給される形となる。 In this case, it is preferable that this other semiconductor device has the same configuration as the first semiconductor device 201 and the second semiconductor device 202. The first semiconductor device 201 transmits the transmission signal Vt not only to the second semiconductor device 202 but also to the other semiconductor device. This other semiconductor device, like the second semiconductor device 202, controls the drive of the switch output stage based on the transmission signal Vt. In other words, the first error signal Vc1 and the transmission signal Vt are supplied from one master to multiple slaves.
 また、上記実施形態の整合部223について、以下の構成を採用することもできる(図13参照)。図13は、整合部223の詳細を示すブロック図である。整合部223は、カレントバランサ―231をさらに備えている。 The matching unit 223 of the above embodiment may also have the following configuration (see FIG. 13). FIG. 13 is a block diagram showing the details of the matching unit 223. The matching unit 223 further includes a current balancer 231.
 カレントバランサ―231の入力端は、補正コンパレータ222の出力端に接続されている。カレントバランサ―231の第1出力端は、第1コンパレータ212の印加端に接続されている。カレントバランサ―231の第2出力端は、第2コンパレータ230の印加端に接続されている。 The input terminal of the current balancer 231 is connected to the output terminal of the correction comparator 222. The first output terminal of the current balancer 231 is connected to the application terminal of the first comparator 212. The second output terminal of the current balancer 231 is connected to the application terminal of the second comparator 230.
 カレントバランサ―231は、補正信号Vcrに応じて、第1オフセット信号S1を第1コンパレータ212に、第2オフセット信号S2を第2コンパレータ230に伝送する。 The current balancer 231 transmits the first offset signal S1 to the first comparator 212 and the second offset signal S2 to the second comparator 230 in response to the correction signal Vcr.
 第1コンパレータ212は、第1オフセット信号S1に応じて、第1誤差信号Vc1、第1ランプ信号Vr1及び第1差動信号Vd1のうち少なくとも一つのオフセットを調整する。第2コンパレータ230は、第2オフセット信号S2に応じて、第1誤差信号Vc1、第2ランプ信号Vr2及び第2差動信号Vd2のうち少なくとも一つのオフセットを調整する。 The first comparator 212 adjusts the offset of at least one of the first error signal Vc1, the first ramp signal Vr1, and the first differential signal Vd1 in response to the first offset signal S1. The second comparator 230 adjusts the offset of at least one of the first error signal Vc1, the second ramp signal Vr2, and the second differential signal Vd2 in response to the second offset signal S2.
<付記>
 上述の実施形態にて具体的構成例が示された本開示について付記を設ける。
<Additional Notes>
Regarding the present disclosure, specific configuration examples of which have been shown in the above-mentioned embodiments, additional notes will be provided.
 本開示の電圧監視回路(15)は、基準電圧を受け取るように構成された第1トランジスタ(M1)及び監視対象電圧を受け取るように構成された第2トランジスタ(M2)を含む第1差動入力対(P1)と、第1電圧を受け取るように構成された第3トランジスタ及(M3)び第2電圧を受け取るように構成された第4トランジスタ(M4)を含む第2差動入力対(P2)と、を備え、前記第1トランジスタの出力端と前記第3トランジスタの出力端とが共通接続され、前記第2トランジスタの出力端と前記第4トランジスタの出力端とが共通接続される構成(第1の構成)である。 The voltage monitoring circuit (15) disclosed herein comprises a first differential input pair (P1) including a first transistor (M1) configured to receive a reference voltage and a second transistor (M2) configured to receive a voltage to be monitored, and a second differential input pair (P2) including a third transistor (M3) configured to receive a first voltage and a fourth transistor (M4) configured to receive a second voltage, and is configured (first configuration) in which the output terminal of the first transistor and the output terminal of the third transistor are commonly connected, and the output terminal of the second transistor and the output terminal of the fourth transistor are commonly connected.
 上記第1の構成の電圧監視回路において、前記第1電圧及び前記第2電圧の少なくとも一方は、抵抗分圧回路(R3~R6)の出力電圧である構成(第2の構成)であってもよい。 In the voltage monitoring circuit of the first configuration described above, at least one of the first voltage and the second voltage may be the output voltage of a resistor voltage divider circuit (R3 to R6) (second configuration).
 上記第1又は第2の構成の電圧監視回路において、前記第1電圧及び前記第2電圧の少なくとも一方は、DAC(157)の出力電圧である構成(第3の構成)であってもよい。 In the voltage monitoring circuit of the first or second configuration, at least one of the first voltage and the second voltage may be the output voltage of a DAC (157) (third configuration).
 上記第1~第3いずれかの構成の電圧監視回路において、前記第1電圧及び前記第2電圧の少なくとも一方の値が時分割で切り替えられる構成(第4の構成)であってもよい。 In the voltage monitoring circuit of any of the first to third configurations, the value of at least one of the first voltage and the second voltage may be switched in a time-division manner (fourth configuration).
 上記第1~第4いずれかの構成の電圧監視回路において、前記第1トランジスタと前記第2トランジスタとの閾値電圧の差及び前記第3トランジスタと前記第4トランジスタとの閾値電圧の差によるオフセットをキャンセルするように構成されたキャリブレーション回路(CAL1)を備える構成(第5の構成)であってもよい。 The voltage monitoring circuit of any of the first to fourth configurations may be configured (fifth configuration) to include a calibration circuit (CAL1) configured to cancel offsets due to the difference in threshold voltage between the first transistor and the second transistor and the difference in threshold voltage between the third transistor and the fourth transistor.
 本開示の半導体集積回路装置(10)は、上記第1~第5いずれかの構成の電圧監視回路を備える構成(第6の構成)である。 The semiconductor integrated circuit device (10) disclosed herein has a configuration (sixth configuration) that includes a voltage monitoring circuit having any of the first to fifth configurations described above.
 本開示の車両(X)は、上記第6の構成の半導体集積回路装置を備える構成(第7の構成)である。 The vehicle (X) disclosed herein is configured (seventh configuration) to include a semiconductor integrated circuit device of the sixth configuration described above.
 明細書中に開示されている制御装置(250)は、少なくとも第1スイッチ出力段(203)及び第2スイッチ出力段(215)を所定の位相差で駆動することにより入力電圧(Vi)から所望の出力電圧(Vo)を生成するように構成されたスイッチングレギュレータの制御装置(250)であって、第1スイッチ出力段(203)及び第2スイッチ出力段(215)をそれぞれ駆動するように構成された第1制御回路(204)および第2制御回路(216)を含み、第1制御回路(204)から第2制御回路(216)へ、第1スイッチ出力段(203)のクロック情報とDuty情報を併せ持つ伝送信号(Vt)が伝送される構成(第8の構成)とされている。 The control device (250) disclosed in the specification is a switching regulator control device (250) configured to generate a desired output voltage (Vo) from an input voltage (Vi) by driving at least the first switch output stage (203) and the second switch output stage (215) with a predetermined phase difference, and includes a first control circuit (204) and a second control circuit (216) configured to drive the first switch output stage (203) and the second switch output stage (215), respectively, and is configured (8th configuration) in which a transmission signal (Vt) having both clock information and duty information of the first switch output stage (203) is transmitted from the first control circuit (204) to the second control circuit (216).
 なお、第8の構成からなる制御装置(250)は、第1制御回路(204)は、出力電圧(Vo)とその目標値との誤差に応じた第1誤差信号(Vc1)を生成するように構成された誤差増幅回路(205)と、第1スイッチ出力段(203)の第1スイッチング周波数を規定する第1クロック信号(CL1)を生成するように構成されたスイッチ制御回路(206)と、を含み、第1クロック信号(CL1)および第1誤差信号(Vc1)に基づいて第1スイッチ出力段(203)を駆動制御し、かつ第1誤差信号(Vc1)を第2制御回路(216)に伝送するように構成され、クロック情報は、第1クロック信号(CL1)の立上がり又は立下りのタイミング情報であり、第2制御回路(216)は、第1誤差信号(Vc1)および伝送信号(Vt)に基づいて第2スイッチ出力段(215)を駆動制御する構成(第9の構成)にするとよい。 In addition, the control device (250) having the eighth configuration may be configured such that the first control circuit (204) includes an error amplifier circuit (205) configured to generate a first error signal (Vc1) corresponding to the error between the output voltage (Vo) and its target value, and a switch control circuit (206) configured to generate a first clock signal (CL1) that defines a first switching frequency of the first switch output stage (203), and is configured to drive and control the first switch output stage (203) based on the first clock signal (CL1) and the first error signal (Vc1) and transmit the first error signal (Vc1) to the second control circuit (216), the clock information is timing information of the rise or fall of the first clock signal (CL1), and the second control circuit (216) drives and controls the second switch output stage (215) based on the first error signal (Vc1) and the transmission signal (Vt) (ninth configuration).
 また、第9の構成からなる制御装置(250)は、第2制御回路(216)は、伝送信号(Vt)に基づいて第2スイッチ出力段(215)の第2スイッチング周波数を規定する第2クロック信号(CL2)を生成するように構成された位相同期回路(218)と、第1誤差信号(Vc1)および伝送信号(Vt)に基づいて第2誤差信号(Vc2)を生成するように構成された整合回路と、を含み、第2クロック信号(CL2)および第2誤差信号(Vc2)に基づいて第2スイッチ出力段(215)を駆動制御するように構成(第10の構成)するとよい。 Furthermore, in the control device (250) having a ninth configuration, the second control circuit (216) includes a phase synchronization circuit (218) configured to generate a second clock signal (CL2) that defines a second switching frequency of the second switch output stage (215) based on the transmission signal (Vt), and a matching circuit configured to generate a second error signal (Vc2) based on the first error signal (Vc1) and the transmission signal (Vt), and is configured to drive and control the second switch output stage (215) based on the second clock signal (CL2) and the second error signal (Vc2) (tenth configuration).
 また、第10の構成からなる制御装置(250)は、伝送信号(Vt)は、第1スイッチ出力段(203)が出力する第1スイッチ電圧(Vst1)又は第1スイッチ出力段(203)をPWM制御するための第1スイッチ制御信号であり、整合回路は、伝送信号(Vt)を平均化して第1平均電圧(Vave1)を生成する第1ローパスフィルタ(220)と、第2スイッチ出力段(215)が出力する第2スイッチ電圧(Vst2)又は第2スイッチ出力段(215)をPWM制御するための第2スイッチ制御信号を平均化して第2平均電圧(Vave2)を生成する第2ローパスフィルタ(221)と、第1平均電圧(Vave1)と、第2平均電圧(Vave2)とを比較して補正信号(Vcr)を生成するように構成された補正コンパレータ(222)と、補正信号(Vcr)に基づいて第1誤差信号(Vc1)を補正して第2誤差信号(Vc2)を生成するように構成された整合部(223)と、を含むように構成(第11の構成)するとよい。 In addition, in the control device (250) having the tenth configuration, the transmission signal (Vt) is a first switch voltage (Vst1) output by the first switch output stage (203) or a first switch control signal for PWM controlling the first switch output stage (203), and the matching circuit is a first low-pass filter (220) that averages the transmission signal (Vt) to generate a first average voltage (Vave1), and a second switch voltage (Vst2) output by the second switch output stage (215) or a second switch control signal for PWM controlling the second switch output stage (215). It is preferable to configure the 11th configuration to include a second low-pass filter (221) that averages the second switch control signal for M control to generate a second average voltage (Vave2), a correction comparator (222) configured to compare the first average voltage (Vave1) and the second average voltage (Vave2) to generate a correction signal (Vcr), and a matching unit (223) configured to correct the first error signal (Vc1) based on the correction signal (Vcr) to generate a second error signal (Vc2).
 また、第11の構成からなる制御装置(250)は、第1制御回路(204)は、第1クロック信号(CL1)に同期して第1ランプ信号(Vr1)を生成するように構成された第1ランプ信号生成部(211)と、第1誤差信号(Vc1)と第1ランプ信号(Vr1)に応じた第1基準信号(Vs1)とを比較して第1比較信号(Va1)を生成するように構成された第1コンパレータ(212)と、を含み、第1クロック信号(CL1)および第1比較信号(Va1)に基づいて第1スイッチ出力段(203)の駆動制御を行うように構成され、第2制御回路(216)は、第2クロック信号(CL2)に同期して第2ランプ信号(Vr2)を生成するように構成された第2ランプ信号生成部(219)と、第2誤差信号(Vc2)と第2ランプ信号(Vr2)に応じた第2基準信号(Vs2)とを比較して第2比較信号(Va2)を生成するように構成された第2コンパレータ(230)と、を含み、第2クロック信号(CL2)および第2比較信号(Va2)に応じて第2スイッチ出力段(215)の駆動制御を行うように構成(第12の構成)するとよい。 In addition, the control device (250) having the 11th configuration includes a first control circuit (204) including a first ramp signal generating unit (211) configured to generate a first ramp signal (Vr1) in synchronization with a first clock signal (CL1), and a first comparator (212) configured to compare a first error signal (Vc1) with a first reference signal (Vs1) corresponding to the first ramp signal (Vr1) to generate a first comparison signal (Va1), and performs drive control of a first switch output stage (203) based on the first clock signal (CL1) and the first comparison signal (Va1). The second control circuit (216) includes a second ramp signal generating unit (219) configured to generate a second ramp signal (Vr2) in synchronization with the second clock signal (CL2), and a second comparator (230) configured to compare the second error signal (Vc2) with a second reference signal (Vs2) corresponding to the second ramp signal (Vr2) to generate a second comparison signal (Va2), and is configured to control the drive of the second switch output stage (215) in response to the second clock signal (CL2) and the second comparison signal (Va2) (12th configuration).
 また、第8の構成から第12の構成のいずれかの構成からなる制御装置(250)は、第1制御回路(204)および第2制御回路(216)は、同一のパッケージ内に形成されている構成(第13の構成)とするとよい。 In addition, in the control device (250) having any of the eighth to twelfth configurations, the first control circuit (204) and the second control circuit (216) may be configured in the same package (thirteenth configuration).
 また、第8の構成から第12の構成のいずれかの構成からなる制御装置(250)は、第1制御回路(204)および第2制御回路(216)は、それぞれ異なるパッケージ内に形成されている構成とするとよい(第14の構成) In addition, in the control device (250) having any of the eighth to twelfth configurations, the first control circuit (204) and the second control circuit (216) may be formed in different packages (14th configuration)
 また、第14の構成からなる制御装置(250)は、第1制御回路(204)を内部に含み、伝送信号(Vt)を出力するように構成された第1外部端子を有する第1半導体装置(201)と、第2制御回路(216)を内部に含み、伝送信号(Vt)が入力されるように構成された第2外部端子を有する第2半導体装置(202)と、第1外部端子と第2外部端子とを電気的に接続し、伝送信号(Vt)の伝送経路(228)となるように構成された伝送線路と、を含む構成(第15の構成)とするとよい。 Furthermore, the control device (250) having the 14th configuration may be configured (15th configuration) to include a first semiconductor device (201) having a first external terminal configured to output a transmission signal (Vt) and including a first control circuit (204), a second semiconductor device (202) having a second external terminal configured to input the transmission signal (Vt), and a transmission line electrically connecting the first external terminal and the second external terminal and configured to be a transmission path (228) for the transmission signal (Vt).
 また、明細書中に開示されているスイッチングレギュレータは、第8の構成から第12の構成のいずれかの制御装置(250)を備える構成(第16の構成)とされている。 The switching regulator disclosed in the specification is configured (16th configuration) to include a control device (250) having any of the eighth to twelfth configurations.
 また、明細書中に開示されている電源装置(X20)は、第16の構成からなるスイッチングレギュレータを備える構成(第17の構成)とされている。 Furthermore, the power supply device (X20) disclosed in the specification is configured to include a switching regulator having a 16th configuration (17th configuration).
 第8の構成に係る制御装置(250)によれば、第2制御回路(216)は、第1スイッチ出力段(203)のクロック情報およびDuty情報を得ることができる。このクロック情報およびDuty情報に基づいて第2スイッチ出力段(215)を駆動制御することで、第1スイッチ出力段(203)の駆動とのバランスが崩れるのを抑制することができる。 According to the control device (250) of the eighth configuration, the second control circuit (216) can obtain clock information and duty information of the first switch output stage (203). By controlling the drive of the second switch output stage (215) based on this clock information and duty information, it is possible to prevent imbalance with the drive of the first switch output stage (203).
 第9の構成に係る制御装置(250)によれば、第2制御回路(216)は、第1誤差信号(Vc1)に基づいて第2スイッチ出力段(215)の駆動を制御する。このため、第1スイッチ出力段(203)と第2スイッチ出力段(215)の駆動のバランスが崩れるのをより好適に抑制することが可能となる。 According to the control device (250) of the ninth configuration, the second control circuit (216) controls the drive of the second switch output stage (215) based on the first error signal (Vc1). This makes it possible to more effectively prevent the drive balance between the first switch output stage (203) and the second switch output stage (215) from being lost.
 第9の構成に係る制御装置(250)によれば、第2スイッチ出力段(215)は、第1誤差信号(Vc1)および伝送信号(Vt)に基づいて駆動する。そして、伝送信号(Vt)に含まれるクロック情報は、第1クロック信号(CL1)の立上がりまたは立下りのタイミング情報である。このため、第2スイッチ出力段(215)は、このタイミング情報および第1誤差信号(Vc1)に基づいて駆動するため、第1スイッチ出力段(203)と第2スイッチ出力段(215)の駆動のバランスが崩れるのを、より好適に抑制できる。 According to the control device (250) of the ninth configuration, the second switch output stage (215) is driven based on the first error signal (Vc1) and the transmission signal (Vt). The clock information contained in the transmission signal (Vt) is timing information of the rising or falling edge of the first clock signal (CL1). Therefore, the second switch output stage (215) is driven based on this timing information and the first error signal (Vc1), and therefore, it is possible to more suitably prevent the drive balance between the first switch output stage (203) and the second switch output stage (215) from being lost.
 第10の構成に係る制御装置(250)によれば、第2クロック信号(CL2)および第2誤差信号(Vc2)に基づいて第2スイッチ出力段(215)が駆動する。第2クロック信号(CL2)は第1クロック信号(CL1)に基づいて生成され、第2誤差信号(Vc2)は第1誤差信号(Vc1)に基づいて生成される。このため、第1スイッチ出力段(203)の駆動制御に対応するように第2スイッチ出力段(215)の駆動制御をすることが可能になり、第1スイッチ出力段(203)と第2スイッチ出力段(215)とのバランスが崩れるのを、より好適に抑制できる。 According to the control device (250) of the tenth configuration, the second switch output stage (215) is driven based on the second clock signal (CL2) and the second error signal (Vc2). The second clock signal (CL2) is generated based on the first clock signal (CL1), and the second error signal (Vc2) is generated based on the first error signal (Vc1). This makes it possible to control the drive of the second switch output stage (215) in response to the drive control of the first switch output stage (203), and more suitably prevents imbalance between the first switch output stage (203) and the second switch output stage (215).
 第11の構成に係る制御装置(250)によれば、第2誤差信号(Vc2)は、第1平均電圧(Vave1)と第2平均電圧(Vave2)とを比較して生成された補正信号(Vcr)に基づいて第1誤差信号(Vc1)を補正して生成される。このため、第2誤差信号(Vc2)が第1スイッチ出力段(203)と第2スイッチ出力段(215)との駆動のバランスが崩れるのをより好適に抑制可能な第2誤差信号(Vc2)を生成することができる。 According to the control device (250) of the eleventh configuration, the second error signal (Vc2) is generated by correcting the first error signal (Vc1) based on the correction signal (Vcr) generated by comparing the first average voltage (Vave1) and the second average voltage (Vave2). Therefore, it is possible to generate the second error signal (Vc2) that can more suitably suppress the loss of balance in the drive between the first switch output stage (203) and the second switch output stage (215).
 第12の構成に係る制御装置(250)によれば、第2基準信号(Vs2)は、第2クロック信号(CL2)と同期している第2ランプ信号(Vr2)に応じたものとなっている。この第2基準信号(Vs2)と第2誤差信号(Vc2)とを比較して第2比較信号(Va2)が生成されており、第2スイッチ出力段(215)は、第2クロック信号(CL2)および第2比較信号(Va2)に応じて駆動する。第2クロック信号(CL2)は、伝送信号(Vt)に基づいて生成されている。このため、第1スイッチ出力段(203)と第2スイッチ出力段(215)の駆動のバランスが崩れるのを、より好適に抑制できる。 According to the control device (250) of the twelfth configuration, the second reference signal (Vs2) corresponds to the second ramp signal (Vr2) synchronized with the second clock signal (CL2). The second reference signal (Vs2) is compared with the second error signal (Vc2) to generate the second comparison signal (Va2), and the second switch output stage (215) is driven in response to the second clock signal (CL2) and the second comparison signal (Va2). The second clock signal (CL2) is generated based on the transmission signal (Vt). This makes it possible to more effectively prevent the drive balance between the first switch output stage (203) and the second switch output stage (215) from being lost.
 第13の構成に係る制御装置(250)によれば、1つのパッケージ内に第1制御回路(204)および第2制御回路(216)が形成されるものとなり、制御装置(250)の省スペース化を図ることができる。 According to the control device (250) of the thirteenth configuration, the first control circuit (204) and the second control circuit (216) are formed in a single package, which allows the control device (250) to be space-saving.
 第14の構成に係る制御装置(250)によれば、1つのパッケージ内に形成される制御回路が比較的簡易な構成となり、制御装置(250)の製造コストの増大を抑制可能となる。 The control device (250) according to the 14th configuration has a relatively simple control circuit formed in one package, making it possible to suppress increases in the manufacturing costs of the control device (250).
 第15の構成に係る制御装置(250)によれば、伝送線路の接続に用いる外部端子を、第1外部端子と第2外部端子のみとすることができる。この伝送線路を経由してDuty情報およびクロック情報を含む伝送信号(Vt)が伝送される。このため、第1半導体装置(201)および第2半導体装置(202)の外部端子の使用数が増加するのを抑制しつつ、Duty情報およびクロック情報を第1半導体装置(201)から第2半導体装置(202)に伝送することができる。 According to the control device (250) of the fifteenth configuration, the external terminals used to connect the transmission line can be limited to the first external terminal and the second external terminal. A transmission signal (Vt) including duty information and clock information is transmitted via this transmission line. Therefore, it is possible to transmit duty information and clock information from the first semiconductor device (201) to the second semiconductor device (202) while suppressing an increase in the number of external terminals used in the first semiconductor device (201) and the second semiconductor device (202).
 第16の構成に係る制御装置(250)によれば、第1スイッチ出力段(203)と第2スイッチ出力段(215)の駆動のバランスが崩れるのを抑制可能なスイッチングレギュレータを提供できる。 The control device (250) according to the 16th configuration can provide a switching regulator capable of suppressing imbalance in the drive of the first switch output stage (203) and the second switch output stage (215).
 第17の構成に係る制御装置(250)によれば、第1スイッチ出力段(203)と第2スイッチ出力段(215)の駆動のバランスが崩れるのを抑制可能な電源装置(X20)を提供することができる。 The control device (250) according to the seventeenth configuration can provide a power supply device (X20) capable of suppressing imbalance in the drive of the first switch output stage (203) and the second switch output stage (215).
 1 スイッチング電源装置
 10 半導体集積回路装置
 11、156 デジタルデータ生成回路
 12、157 DAC
 13 バッファアンプ
 14 スイッチ電圧生成回路
 15 電圧監視回路
 16 定電圧生成回路
 151、152 電圧生成回路
 153、154 コンパレータ
 155 4入力端子コンパレータ
 C1、C2 コンデンサ
 CAL1 キャリブレーション回路
 CS1~CS6 電流源
 COUT 出力コンデンサ
 L1 インダクタ
 M1~M16 トランジスタ
 P1 第1差動入力対
 P2 第2差動入力対
 R1~R6 抵抗
 SW1~SW6 スイッチ
 X 車両
 X11~X18 電子機器
 201 第1半導体装置
 202 第2半導体装置
 203 第1スイッチ出力段
 204 第1制御回路
 205 誤差増幅回路
 206 スイッチ制御回路
 207 誤差増幅アンプ
 208 第1オシレータ
 209 第1PLL
 210 第1セレクタ
 211 第1ランプ信号生成部
 212 第1コンパレータ
 213 加算部
 214 第1差動ライン
 215 第2スイッチ出力段
 216 第2制御回路
 217 整合回路
 218 位相同期回路
 219 第2ランプ信号生成部
 220 第1ローパスフィルタ
 221 第2ローパスフィルタ
 222 補正コンパレータ
 223 整合部
 224 第2オシレータ
 225 第2PLL
 226 第2セレクタ
 227 加算部
 228 伝送経路
 229 第2差動ライン
 230 第2コンパレータ
 250 制御装置
 301 第1半導体装置
 302 第2半導体装置
 C21、C22 キャパシタ
 CL1 第1クロック信号
 CL2 第2クロック信号
 E3 電圧源
 IL1 第1インダクタ電流
 IL2 第2インダクタ電流
 Io 出力電流
 L21、L22 インダクタ
 R21、R22 抵抗
 S1 第1オフセット信号
 S2 第2オフセット信号
 Vave1 第1平均電圧
 Vave2 第2平均電圧
 Va1 第1比較信号
 Va2 第2比較信号
 Vc1 第1誤差信号
 Vc2 第2誤差信号
 Vcr 補正信号
 Vd1 第1差動信号
 Vd2 第2差動信号
 Vi 入力電圧
 Vo 出力電圧
 Vr1 第1ランプ信号
 Vr2 第2ランプ信号
 Vs1 第1基準信号
 Vs2 第2基準信号
Vst1 第1スイッチ電圧
Vst2 第2スイッチ電圧
 Vt 伝送信号
 X20 電源装置
 Y20 電源装置
 Z20 負荷
1 Switching power supply device 10 Semiconductor integrated circuit device 11, 156 Digital data generation circuit 12, 157 DAC
13 Buffer amplifier 14 Switch voltage generation circuit 15 Voltage monitoring circuit 16 Constant voltage generation circuit 151, 152 Voltage generation circuit 153, 154 Comparator 155 Four-input terminal comparator C1, C2 Capacitor CAL1 Calibration circuit CS1 to CS6 Current source COUT Output capacitor L1 Inductor M1 to M16 Transistor P1 First differential input pair P2 Second differential input pair R1 to R6 Resistor SW1 to SW6 Switch X Vehicle X11 to X18 Electronic device 201 First semiconductor device 202 Second semiconductor device 203 First switch output stage 204 First control circuit 205 Error amplifier circuit 206 Switch control circuit 207 Error amplifier 208 First oscillator 209 First PLL
210 First selector 211 First ramp signal generating section 212 First comparator 213 Adding section 214 First differential line 215 Second switch output stage 216 Second control circuit 217 Matching circuit 218 Phase locked loop circuit 219 Second ramp signal generating section 220 First low pass filter 221 Second low pass filter 222 Correction comparator 223 Matching section 224 Second oscillator 225 Second PLL
226 Second selector 227 Adder 228 Transmission path 229 Second differential line 230 Second comparator 250 Control device 301 First semiconductor device 302 Second semiconductor device C21, C22 Capacitor CL1 First clock signal CL2 Second clock signal E3 Voltage source IL1 First inductor current IL2 Second inductor current Io Output current L21, L22 Inductor R21, R22 Resistor S1 First offset signal S2 Second offset signal Vave1 First average voltage Vave2 Second average voltage Va1 First comparison signal Va2 Second comparison signal Vc1 First error signal Vc2 Second error signal Vcr Correction signal Vd1 First differential signal Vd2 Second differential signal Vi Input voltage Vo Output voltage Vr1 First ramp signal Vr2 Second ramp signal Vs1 First reference signal Vs2 Second reference signal Vst1 First switch voltage Vst2 Second switch voltage Vt Transmission signal X20 Power supply unit Y20 Power supply unit Z20 Load

Claims (17)

  1.  基準電圧を受け取るように構成された第1トランジスタ及び監視対象電圧を受け取るように構成された第2トランジスタを含む第1差動入力対と、
     第1電圧を受け取るように構成された第3トランジスタ及び第2電圧を受け取るように構成された第4トランジスタを含む第2差動入力対と、
     を備え、
     前記第1トランジスタの出力端と前記第3トランジスタの出力端とが共通接続され、
     前記第2トランジスタの出力端と前記第4トランジスタの出力端とが共通接続される、電圧監視回路。
    a first differential input pair including a first transistor configured to receive a reference voltage and a second transistor configured to receive a monitored voltage;
    a second differential input pair including a third transistor configured to receive the first voltage and a fourth transistor configured to receive the second voltage;
    Equipped with
    an output terminal of the first transistor and an output terminal of the third transistor are commonly connected;
    an output terminal of the second transistor and an output terminal of the fourth transistor are commonly connected to each other;
  2.  前記第1電圧及び前記第2電圧の少なくとも一方は、抵抗分圧回路の出力電圧である、請求項1に記載の電圧監視回路。 The voltage monitoring circuit according to claim 1, wherein at least one of the first voltage and the second voltage is an output voltage of a resistor voltage divider circuit.
  3.  前記第1電圧及び前記第2電圧の少なくとも一方は、DACの出力電圧である、請求項1又は請求項2に記載の電圧監視回路。 The voltage monitoring circuit according to claim 1 or 2, wherein at least one of the first voltage and the second voltage is an output voltage of a DAC.
  4.  前記第1電圧及び前記第2電圧の少なくとも一方の値が時分割で切り替えられる、請求項1~3のいずれか一項に記載の電圧監視回路。 The voltage monitoring circuit according to any one of claims 1 to 3, wherein the value of at least one of the first voltage and the second voltage is switched in a time-division manner.
  5.  前記第1トランジスタと前記第2トランジスタとの閾値電圧の差及び前記第3トランジスタと前記第4トランジスタとの閾値電圧の差によるオフセットをキャンセルするように構成されたキャリブレーション回路を備える、請求項1~4のいずれか一項に記載の電圧監視回路。 The voltage monitoring circuit according to any one of claims 1 to 4, comprising a calibration circuit configured to cancel an offset due to a difference in threshold voltage between the first transistor and the second transistor and a difference in threshold voltage between the third transistor and the fourth transistor.
  6.  請求項1~5のいずれか一項に記載の電圧監視回路を備える、半導体集積回路装置。 A semiconductor integrated circuit device comprising a voltage monitoring circuit according to any one of claims 1 to 5.
  7.  請求項6に記載の半導体集積回路装置を備える、車両。 A vehicle equipped with the semiconductor integrated circuit device according to claim 6.
  8.  少なくとも第1スイッチ出力段及び第2スイッチ出力段を所定の位相差で駆動することにより入力電圧から所望の出力電圧を生成するように構成されたスイッチングレギュレータの制御装置であって、
     前記第1スイッチ出力段及び前記第2スイッチ出力段をそれぞれ駆動するように構成された第1制御回路および第2制御回路を含み、
     前記第1制御回路から前記第2制御回路へ、前記第1スイッチ出力段のクロック情報とDuty情報を併せ持つ伝送信号が伝送される制御装置。
    A control device for a switching regulator configured to generate a desired output voltage from an input voltage by driving at least a first switch output stage and a second switch output stage with a predetermined phase difference,
    a first control circuit and a second control circuit configured to drive the first switch output stage and the second switch output stage, respectively;
    A control device in which a transmission signal having both clock information and duty information of the first switch output stage is transmitted from the first control circuit to the second control circuit.
  9.  前記第1制御回路は、
      前記出力電圧とその目標値との誤差に応じた第1誤差信号を生成するように構成された誤差増幅回路と、
      前記第1スイッチ出力段の第1スイッチング周波数を規定する第1クロック信号を生成するように構成されたスイッチ制御回路と、
     を含み、前記第1クロック信号および前記第1誤差信号に基づいて前記第1スイッチ出力段を駆動制御し、かつ前記第1誤差信号を前記第2制御回路に伝送するように構成され、
     前記クロック情報は、前記第1クロック信号の立上がり又は立下りのタイミング情報であり、
     前記第2制御回路は、前記第1誤差信号および前記伝送信号に基づいて前記第2スイッチ出力段を駆動制御するように構成されている請求項8に記載の制御装置。
    The first control circuit is
    an error amplifier circuit configured to generate a first error signal corresponding to an error between the output voltage and a target value thereof;
    a switch control circuit configured to generate a first clock signal defining a first switching frequency of the first switch output stage;
    configured to drive and control the first switch output stage based on the first clock signal and the first error signal, and to transmit the first error signal to the second control circuit;
    the clock information is timing information of a rising edge or a falling edge of the first clock signal,
    9. The control device according to claim 8, wherein the second control circuit is configured to drive and control the second switch output stage based on the first error signal and the transmission signal.
  10.  前記第2制御回路は、
     前記伝送信号に基づいて前記第2スイッチ出力段の第2スイッチング周波数を規定する第2クロック信号を生成するように構成された位相同期回路と、
     前記第1誤差信号および前記伝送信号に基づいて第2誤差信号を生成するように構成された整合回路と、
     を含み、前記第2クロック信号および前記第2誤差信号に基づいて前記第2スイッチ出力段を駆動制御するように構成されている請求項9に記載の制御装置。
    The second control circuit is
    a phase locked loop configured to generate a second clock signal based on the transmit signal, the second clock signal defining a second switching frequency of the second switch output stage;
    a matching circuit configured to generate a second error signal based on the first error signal and the transmission signal;
    10. The control device according to claim 9, further comprising: a second switch output stage configured to drive and control the second switch output stage based on the second clock signal and the second error signal.
  11.  前記伝送信号は、前記第1スイッチ出力段が出力する第1スイッチ電圧又は前記第1スイッチ出力段をPWM制御するための第1スイッチ制御信号であり、
     前記整合回路は、
      前記伝送信号を平均化して第1平均電圧を生成する第1ローパスフィルタと、
      前記第2スイッチ出力段が出力する第2スイッチ電圧又は前記第2スイッチ出力段をPWM制御するための第2スイッチ制御信号を平均化して第2平均電圧を生成する第2ローパスフィルタと、
      前記第1平均電圧と、前記第2平均電圧とを比較して補正信号を生成するように構成された補正コンパレータと、
      前記補正信号に基づいて前記第1誤差信号を補正して前記第2誤差信号を生成するように構成された整合部と、
     を含むように構成された請求項10に記載の制御装置。
    the transmission signal is a first switch voltage output by the first switch output stage or a first switch control signal for PWM-controlling the first switch output stage,
    The matching circuit includes:
    a first low pass filter that averages the transmission signal to generate a first average voltage;
    a second low-pass filter that averages a second switch voltage output by the second switch output stage or a second switch control signal for PWM controlling the second switch output stage to generate a second average voltage;
    a correction comparator configured to compare the first average voltage and the second average voltage to generate a correction signal;
    a matching unit configured to correct the first error signal based on the correction signal to generate the second error signal;
    The control device of claim 10 configured to include:
  12.  前記第1制御回路は、
      前記第1クロック信号に同期して第1ランプ信号を生成するように構成された第1ランプ信号生成部と、
      前記第1誤差信号と前記第1ランプ信号に応じた第1基準信号とを比較して第1比較信号を生成するように構成された第1コンパレータと、
     を含み、前記第1クロック信号および前記第1比較信号に基づいて前記第1スイッチ出力段の駆動制御を行うように構成され、
     前記第2制御回路は、
      前記第2クロック信号に同期して第2ランプ信号を生成するように構成された第2ランプ信号生成部と、
      前記第2誤差信号と前記第2ランプ信号に応じた第2基準信号とを比較して第2比較信号を生成するように構成された第2コンパレータと、
     を含み、前記第2クロック信号および前記第2比較信号に応じて前記第2スイッチ出力段の駆動制御を行うように構成されている請求項11に記載の制御装置。
    The first control circuit is
    a first ramp signal generating unit configured to generate a first ramp signal in synchronization with the first clock signal;
    a first comparator configured to compare the first error signal with a first reference signal responsive to the first ramp signal to generate a first comparison signal;
    and configured to perform drive control of the first switch output stage based on the first clock signal and the first comparison signal;
    The second control circuit is
    a second ramp signal generating unit configured to generate a second ramp signal in synchronization with the second clock signal;
    a second comparator configured to compare the second error signal with a second reference signal responsive to the second ramp signal to generate a second comparison signal;
    12. The control device according to claim 11, further comprising: a second switch output stage configured to perform drive control of the second switch output stage in response to the second clock signal and the second comparison signal.
  13.  前記第1制御回路および前記第2制御回路は、同一のパッケージ内に形成されている請求項8~12のいずれか一項に記載の制御装置。 The control device according to any one of claims 8 to 12, wherein the first control circuit and the second control circuit are formed in the same package.
  14.  前記第1制御回路および前記第2制御回路は、それぞれ異なるパッケージ内に形成されている請求項8~12のいずれか一項に記載の制御装置。 The control device according to any one of claims 8 to 12, wherein the first control circuit and the second control circuit are formed in different packages.
  15.  前記第1制御回路を内部に含み、前記伝送信号を出力するように構成された第1外部端子を有する第1半導体装置と、
     前記第2制御回路を内部に含み、前記伝送信号が入力されるように構成された第2外部端子を有する第2半導体装置と、
     前記第1外部端子と前記第2外部端子とを電気的に接続し、前記伝送信号の伝送経路となるように構成された伝送線路と、
     を含む請求項14に記載の制御装置。
    a first semiconductor device including the first control circuit therein and having a first external terminal configured to output the transmission signal;
    a second semiconductor device including the second control circuit therein and having a second external terminal configured to receive the transmission signal;
    a transmission line electrically connecting the first external terminal and the second external terminal and configured to be a transmission path for the transmission signal;
    The control device of claim 14 including:
  16.  請求項8~12のいずれか一項に記載の制御装置を備えるスイッチングレギュレータ。 A switching regulator equipped with a control device according to any one of claims 8 to 12.
  17.  請求項16に記載のスイッチングレギュレータを備える電源装置。 A power supply device comprising the switching regulator according to claim 16.
PCT/JP2023/035185 2022-10-17 2023-09-27 Voltage monitoring circuit, semiconductor integrated circuit device, vehicle, control device, switching regulator, and power supply device WO2024084911A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022166160 2022-10-17
JP2022-166160 2022-10-17
JP2022183127 2022-11-16
JP2022-183127 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024084911A1 true WO2024084911A1 (en) 2024-04-25

Family

ID=90737610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035185 WO2024084911A1 (en) 2022-10-17 2023-09-27 Voltage monitoring circuit, semiconductor integrated circuit device, vehicle, control device, switching regulator, and power supply device

Country Status (1)

Country Link
WO (1) WO2024084911A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804286B2 (en) * 2007-09-05 2010-09-28 Linear Technology Corporation Multiple output amplifiers and comparators
JP2015180121A (en) * 2014-03-18 2015-10-08 株式会社リコー Multiphase power supply device
JP2018161008A (en) * 2017-03-23 2018-10-11 ローム株式会社 Switching regulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804286B2 (en) * 2007-09-05 2010-09-28 Linear Technology Corporation Multiple output amplifiers and comparators
JP2015180121A (en) * 2014-03-18 2015-10-08 株式会社リコー Multiphase power supply device
JP2018161008A (en) * 2017-03-23 2018-10-11 ローム株式会社 Switching regulator

Similar Documents

Publication Publication Date Title
US11285819B2 (en) Current mode control type switching power supply device
US8766615B2 (en) DC-DC converter control circuit and DC-DC converter including same
US7965070B2 (en) Switching power supply with slope compensation circuit and added slope circuit
US8760138B2 (en) DC-DC converter control circuit and DC-DC converter including same
KR100744592B1 (en) Dc-dc converter, dc-dc converter control circuit, and dc-dc converter control method
US8760137B2 (en) DC-DC converter control circuit and DC-DC converter including same
US20210339634A1 (en) Current mode control type switching power supply device
US8760139B2 (en) DC-DC converter control circuit and DC-DC converter including same
JP6901238B2 (en) Switching regulator and integrated circuit package
JP6594199B2 (en) Switching regulator
US8742743B2 (en) Switching control circuit
JP6603810B2 (en) Switching regulator and integrated circuit package
US10673332B2 (en) Switching regulator
JP2014003812A (en) Power supply device, and on-vehicle apparatus and vehicle using the same
CN113568461B (en) Power supply device
JP2014003770A (en) Power supply device, and on-vehicle apparatus and vehicle using the same
WO2024084911A1 (en) Voltage monitoring circuit, semiconductor integrated circuit device, vehicle, control device, switching regulator, and power supply device
JP2019213317A (en) Semiconductor device
JP2018026950A (en) Switching regulator and integrated circuit package
JP6744781B2 (en) Switching regulator and integrated circuit package
US11764685B2 (en) Power supply control device and insulated switching power supply
WO2017002834A1 (en) Switching regulator and integrated-circuit package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879559

Country of ref document: EP

Kind code of ref document: A1