WO2024084786A1 - 多層基板 - Google Patents

多層基板 Download PDF

Info

Publication number
WO2024084786A1
WO2024084786A1 PCT/JP2023/029138 JP2023029138W WO2024084786A1 WO 2024084786 A1 WO2024084786 A1 WO 2024084786A1 JP 2023029138 W JP2023029138 W JP 2023029138W WO 2024084786 A1 WO2024084786 A1 WO 2024084786A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
axis
viewed
signal
ground
Prior art date
Application number
PCT/JP2023/029138
Other languages
English (en)
French (fr)
Inventor
恒亮 西尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024084786A1 publication Critical patent/WO2024084786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the present invention relates to a multilayer substrate.
  • a microstrip antenna is one example of a conventional invention related to a multilayer board.
  • the microstrip antenna includes a ground conductor, a central conductor, and a radiating conductor.
  • the central conductor is located below the ground conductor.
  • the radiating conductor is located above the ground conductor.
  • a slot is provided in the ground conductor. When viewed from below, the slot overlaps with the radiating conductor and central conductor. This allows the radiating conductor to be electromagnetically coupled to the ground conductor.
  • the object of the present invention is to provide a multilayer substrate that can easily adjust the input impedance to the radiating conductor layer and suppress a decrease in the symmetry of the radiation characteristics and reception characteristics of the radiating conductor layer.
  • a multilayer substrate comprises:
  • the antenna includes a laminate, a radiation conductor layer, one or more first ground conductor layers, a signal conductor layer, a first branch conductor layer, and a second branch conductor layer,
  • the laminate has a structure in which a plurality of insulating layers are laminated along the Z axis, the radiating conductor layer is provided on the laminate, the one or more first ground conductor layers are provided in the laminate, overlap with the radiation conductor layer when viewed in the negative direction of the Z axis, and are located on the negative side of the Z axis with respect to the radiation conductor layer;
  • the signal conductor layer is provided on the laminate, overlaps with the radiation conductor layer and the one or more first ground conductor layers when viewed in the negative direction of the Z axis, is located on the negative side of the Z axis with respect to the radiation conductor layer and the one or more first ground conductor layers, and is not electrically connected to the radiation conductor layer; when viewed in the negative direction of the Z
  • the multilayer board according to the present invention makes it easy to adjust the input impedance to the radiating conductor layer in the band of high-frequency signals transmitted and received by the radiating conductor layer, and also suppresses a decrease in the symmetry of the radiation characteristics and reception characteristics of the radiating conductor layer.
  • FIG. 1 is an exploded perspective view of a multilayer substrate 10.
  • FIG. FIG. 2 is a top view of the multilayer substrate 10.
  • FIG. 3 is a cross-sectional view of the multilayer substrate 10.
  • FIG. 4 is an exploded perspective view of the multilayer substrate 10a.
  • FIG. 5 is an exploded perspective view of the multilayer substrate 10b.
  • FIG. 6 is a cross-sectional view of the multilayer substrate 10c.
  • FIG. 7 is an exploded perspective view of the multilayer board 10d.
  • FIG. 1 is an exploded perspective view of the multilayer substrate 10.
  • Fig. 2 is a top view of the multilayer substrate 10.
  • Fig. 3 is a cross-sectional view of the multilayer substrate 10.
  • Fig. 3 is a cross-sectional view taken along line A-A in Fig. 2.
  • directions are defined as follows.
  • the direction in which the insulating layers 16a to 16f are arranged in this order is defined as the downward direction.
  • the downward direction coincides with the negative direction of the Z axis.
  • two sides of the laminate 15 extend along the front-rear axis.
  • the front-rear axis coincides with the Y axis.
  • the remaining two sides of the laminate 15 extend along the left-right axis.
  • the left-right axis coincides with the X axis.
  • the up-down axis (Z axis), front-rear axis (Y axis), and left-right axis (X axis) are mutually perpendicular.
  • up-down axis, front-rear axis, and left-right axis in this embodiment do not have to coincide with the up-down axis, front-rear axis, and left-right axis when the multilayer substrate 10 is in use.
  • the multilayer board 10 is an antenna module that is built into an electronic device such as a wireless communication terminal. As shown in Figure 1, the multilayer board 10 includes a laminate 15, a radiation conductor layer 17, a signal conductor layer 18, a first ground conductor layer 20, a second ground conductor layer 22, an external electrode 28, an annular ground conductor layer 30, and interlayer connection conductors v1 to v3.
  • the laminate 15 has a plate shape. When viewed from below, the laminate 15 has a rectangular shape.
  • the laminate 15 has a structure in which the insulator layers 16a to 16f are stacked along the vertical axis (Z-axis).
  • the insulator layers 16a to 16f are lined up in this order from the bottom up.
  • the insulator layers 16a to 16f are fused together with adjacent layers.
  • the material of the insulator layers 16a to 16f is a thermoplastic resin.
  • the thermoplastic resin is, for example, a liquid crystal polymer.
  • the radiating conductor layer 17 is provided on the laminate 15. In this embodiment, the radiating conductor layer 17 is located on the upper main surface of the laminate 15. Therefore, the radiating conductor layer 17 is located on the upper main surface of the insulator layer 16a.
  • the radiating conductor layer 17 has a rectangular shape when viewed from below.
  • the radiating conductor layer 17 may have a square shape when viewed from below. When viewed from below, two sides of the radiating conductor layer 17 extend along the front-to-back axis. The remaining two sides of the radiating conductor layer 17 extend along the left-to-right axis.
  • the first ground conductor layer 20 is provided in the laminate 15.
  • the first ground conductor layer 20 is located on the upper main surface of the insulator layer 16d.
  • the first ground conductor layer 20 is located below the radiating conductor layer 17 (on the negative side of the Z axis).
  • the first ground conductor layer 20 covers most of the upper main surface of the insulator layer 16d.
  • the first ground conductor layer 20 overlaps with the radiating conductor layer 17 when viewed in the downward direction.
  • the first ground conductor layer 20 as described above is connected to the ground potential.
  • the signal conductor layer 18 is provided in the laminate 15.
  • the signal conductor layer 18 is located on the upper main surface of the insulator layer 16e. Therefore, the signal conductor layer 18 is located below (on the negative side of the Z axis) the radiation conductor layer 17 and the first ground conductor layer 20. Also, when viewed in the downward direction (negative direction of the Z axis), the signal conductor layer 18 overlaps with the radiation conductor layer 17 and the first ground conductor layer 20. However, the signal conductor layer 18 is not electrically connected to the radiation conductor layer 17 and the first ground conductor layer 20.
  • the signal conductor layer 18 has a linear shape extending along the left-right axis (X axis). As a result, the signal conductor layer 18 has a left end (first end) and a right end. A high-frequency signal is transmitted to the signal conductor layer 18 as described above.
  • the second ground conductor layer 22 is provided in the laminate 15.
  • the second ground conductor layer 22 is located on the lower main surface of the insulator layer 16f.
  • the second ground conductor layer 22 is located below the signal conductor layer 18 (on the negative side of the Z axis).
  • the second ground conductor layer 22 covers most of the lower main surface of the insulator layer 16f.
  • the second ground conductor layer 22 overlaps with the radiation conductor layer 17 and the signal conductor layer 18 when viewed in the downward direction.
  • the second ground conductor layer 22 as described above is connected to the ground potential.
  • the signal conductor layer 18, the first ground conductor layer 20, and the second ground conductor layer 22 as described above have a stripline structure.
  • the external electrode 28 is provided on the laminate 15. In this embodiment, the external electrode 28 is located on the lower main surface of the insulator layer 16f. However, the external electrode 28 is not in contact with the second ground conductor layer 22.
  • the external electrode 28 has a rectangular shape when viewed from below. When viewed from below, the external electrode 28 overlaps with the right end of the signal conductor layer 18.
  • the external electrode 28 is connected to an electrode of the circuit board by soldering.
  • the annular ground conductor layer 30 is provided in the laminate 15.
  • the annular ground conductor layer 30 is located on the upper main surface of the insulator layer 16e.
  • the annular ground conductor layer 30 has a rectangular ring shape when viewed from below.
  • the signal conductor layer 18 is located within the area surrounded by the annular ground conductor layer 30 when viewed from below.
  • the annular ground conductor layer 30 is connected to the ground potential.
  • the interlayer connection conductor v1 electrically connects the signal conductor layer 18 and the external electrode 28.
  • the interlayer connection conductor v1 penetrates the insulator layers 16e and 16f along the up-down axis.
  • the upper end of the interlayer connection conductor v1 contacts the right end of the signal conductor layer 18.
  • the lower end of the interlayer connection conductor v1 contacts the external electrode 28.
  • the interlayer connection conductors v2 and v3 electrically connect the first ground conductor layer 20, the second ground conductor layer 22, and the annular ground conductor layer 30.
  • the interlayer connection conductors v2 and v3 penetrate the insulator layers 16d to 16f along the up-down axis.
  • the upper ends of the interlayer connection conductors v2 and v3 are in contact with the first ground conductor layer 20.
  • the lower ends of the interlayer connection conductors v2 and v3 are in contact with the second ground conductor layer 22.
  • the middle parts of the interlayer connection conductors v2 and v3 are in contact with the annular ground conductor layer 30.
  • the area in which the radiation conductor layer 17 is provided is defined as the radiation conductor layer area A1 when viewed downward (negative direction of the Z axis).
  • the radiation conductor layer area A1 When viewed downward (negative direction of the Z axis), the radiation conductor layer area A1 includes a ground conductor layer non-forming area A0 in which the first ground conductor layer 20 is not provided.
  • the ground conductor layer non-forming area A0 When viewed downward (negative direction of the Z axis), the ground conductor layer non-forming area A0 is surrounded by the first ground conductor layer 20.
  • the ground conductor layer non-forming area A0 has a rectangular shape. The two long sides of the ground conductor layer non-forming area A0 extend in the front-rear direction.
  • the two short sides of the ground conductor layer non-forming area A0 extend in the left-right direction.
  • the length of the ground conductor layer non-forming area A0 in the direction along the front-rear axis (Y axis) is equal to or less than 1 ⁇ 4 of the wavelength of the high-frequency signal transmitted through the signal conductor layer 18. This suppresses the occurrence of unnecessary resonance in the ground conductor layer non-forming area A0, thereby suppressing the occurrence of noise.
  • the ground conductor layer non-forming area A0 intersects with the signal conductor layer 18 when viewed in the downward direction.
  • the ground conductor layer non-forming area A0 is perpendicular to the signal conductor layer 18 when viewed in the downward direction.
  • the signal conductor layer 18 overlaps with the ground conductor layer non-forming area A0 when viewed in the downward direction (negative direction of the Z axis). That is, when viewed in the downward direction (negative direction of the Z axis), the signal conductor layer 18 has an overlapping portion P that overlaps with the ground conductor layer non-forming area A0.
  • the length L1 of the signal conductor layer 18 between the left end (first end) of the signal conductor layer 18 and the overlapping portion P is 1 ⁇ 4 or less of the wavelength of the high-frequency signal transmitted through the signal conductor layer 18.
  • the signal conductor layer 18 overlaps with the radiation conductor layer 17 in the ground conductor layer non-forming area A0. That is, when viewed in the downward direction, the overlapping portion P overlaps with the radiation conductor layer 17.
  • the signal conductor layer 18 and the radiation conductor layer 17 are electromagnetically coupled.
  • the signal conductor layer 18 and the radiation conductor layer 17 are mainly magnetically coupled.
  • the high-frequency signal transmitted through the signal conductor layer 18 is transmitted to the radiation conductor layer 17 by the electromagnetic field through the ground conductor layer non-forming area A0. Then, a standing wave of the high-frequency signal is generated in the radiation conductor layer 17.
  • the radiation conductor layer 17 radiates the electromagnetic wave of the high-frequency signal upward. Note that, by the same principle, the radiation conductor layer 17 receives the electromagnetic wave of the high-frequency signal.
  • the multilayer substrate 10 further includes a first branched conductor layer 24 and a second branched conductor layer 26.
  • the first branched conductor layer 24 and the second branched conductor layer 26 are provided in the laminate 15.
  • the first branched conductor layer 24 and the second branched conductor layer 26 are located on the upper main surface of the insulator layer 16e.
  • the first branched conductor layer 24 and the second branched conductor layer 26 have an L-shape when viewed downward.
  • the first branched conductor layer 24 includes a first portion 24a and a second portion 24b.
  • the first portion 24a extends in the front-rear direction.
  • the rear end of the first portion 24a is connected to the connection point P0 of the signal conductor layer 18.
  • the connection point P0 is located between the left end and the right end of the signal conductor layer 18.
  • the length L2 of the transmission path of the high-frequency signal from the overlapping portion P to the connection point P0 is shorter than half the wavelength of the high-frequency signal. That is, the length L2 of the transmission path of the high-frequency signal from the overlapping portion P to the first branched conductor layer 24 is shorter than half the wavelength of the high-frequency signal.
  • the second portion 24b extends in the left-right direction. The right end of the second portion 24b is connected to the front end of the first portion 24a.
  • the first branched conductor layer 24 is electrically connected to the signal conductor layer 18.
  • the length of the first branched conductor layer 24 is less than half the wavelength of the high-frequency signal transmitted through the signal conductor layer 18.
  • the first branched conductor layer 24 as described above functions as an open stub.
  • the second branch conductor layer 26 includes a first portion 26a and a second portion 26b.
  • the first portion 26a extends in the front-rear direction.
  • the front end of the first portion 26a is connected to the connection point P0 of the signal conductor layer 18.
  • the length L2 of the transmission path of the high-frequency signal from the overlapping portion P to the connection point P0 is shorter than half the wavelength of the high-frequency signal.
  • the length L2 of the transmission path of the high-frequency signal from the overlapping portion P to the second branch conductor layer 26 is shorter than half the wavelength of the high-frequency signal.
  • the second portion 26b extends in the left-right direction. The right end of the second portion 26b is connected to the rear end of the first portion 26a.
  • the second branch conductor layer 26 is electrically connected to the signal conductor layer 18.
  • the length of the second branch conductor layer 26 is equal to or shorter than half the wavelength of the high-frequency signal transmitted through the signal conductor layer 18.
  • the second branch conductor layer 26 as described above functions as an open stub.
  • the length of the first portion 24a is equal to the length of the first portion 26a.
  • the length of the second portion 24b is equal to the length of the second portion 26b.
  • the radiation conductor layer 17 has a shape that is line-symmetrical with respect to the imaginary line L. Furthermore, when viewed in the downward direction (negative direction of the Z axis), the ground conductor layer non-forming area A0 extends along the front-to-rear axis. As a result, when viewed in the downward direction (negative direction of the Z axis), the ground conductor layer non-forming area A0 extends along an axis that is perpendicular to the imaginary line L. And the ground conductor layer non-forming area A0 has a structure that is line-symmetrical with respect to the imaginary line L.
  • the radiation conductor layer 17, the signal conductor layer 18, the first ground conductor layer 20, the second ground conductor layer 22, the first branch conductor layer 24, the second branch conductor layer 26, the external electrode 28, and the annular ground conductor layer 30 are formed by patterning metal foil attached to the upper or lower principal surfaces of the insulator layers 16a, 16d to 16f.
  • the metal foil is, for example, copper foil.
  • the interlayer connection conductors v1 to v3 are formed by filling the through holes that penetrate the insulator layers 16d to 16f along the vertical axis with a conductive paste, and then solidifying the conductive paste by heating and pressurizing.
  • the input impedance to the radiation conductor layer 17 can be easily adjusted. More specifically, in the multilayer substrate 10, the first branch conductor layer 24 and the second branch conductor layer 26 are electrically connected to the signal conductor layer 18. This allows the first branch conductor layer 24 and the second branch conductor layer 26 to function as a matching circuit by adjusting the shapes of the first branch conductor layer 24 and the second branch conductor layer 26. As a result, the input impedance to the radiation conductor layer 17 can be easily adjusted.
  • the multilayer board 10 can suppress the decrease in the symmetry of the radiation characteristics of the radiation conductor layer 17. More specifically, when the first branch conductor layer 24 and the second branch conductor layer 26 are provided on the multilayer board 10, the radiation characteristics of the radiation conductor layer 17 are affected by the first branch conductor layer 24 and the second branch conductor layer 26. Therefore, when viewed in the downward direction, there is a virtual line L that passes through the overlapping portion P and on which the first branch conductor layer 24 and the second branch conductor layer 26 are line-symmetric. That is, the first branch conductor layer 24 and the second branch conductor layer 26 are in a line-symmetric relationship.
  • the multilayer board 10 can suppress the decrease in the symmetry of the radiation characteristics of the radiation conductor layer 17. For the same reason, the multilayer board 10 can suppress the decrease in the symmetry of the reception characteristics of the radiation conductor layer 17.
  • FIG. 4 is an exploded perspective view of the multilayer substrate 10a.
  • the multilayer board 10a differs from the multilayer board 10 in that the signal conductor layer 18 and the first and second branch conductor layers 24 and 26 are located on different insulator layers. More specifically, the signal conductor layer 18 is located on the upper main surface of the insulator layer 16e. The first and second branch conductor layers 24 and 26 are located on the upper main surface of the insulator layer 16g. The insulator layer 16g is located between the insulator layers 16e and 16f. As a result, the first and second branch conductor layers 24 and 26 are located below the signal conductor layer 18 (on the negative side of the Z axis).
  • the interlayer connection conductor v1 electrically connects the signal conductor layer 18, the first branch conductor layer 24, the second branch conductor layer 26, and the external electrode 28.
  • the interlayer connection conductor v1 penetrates the insulator layers 16e, 16g, and 16f along the up-down axis.
  • the upper end of the interlayer connection conductor v1 contacts the right end of the signal conductor layer 18.
  • the lower end of the interlayer connection conductor v1 contacts the external electrode 28.
  • the middle part of the interlayer connection conductor v1 contacts the first branch conductor layer 24 and the second branch conductor layer 26.
  • the rest of the structure of the multilayer board 10a is the same as that of the multilayer board 10, so a description will be omitted.
  • the multilayer board 10a can achieve the same effects as the multilayer board 10.
  • the first branch conductor layer 24 and the second branch conductor layer 26 are located below the signal conductor layer 18 (on the negative side of the Z axis). This places the first branch conductor layer 24 and the second branch conductor layer 26 away from the radiation conductor layer 17. As a result, the radiation characteristics of the radiation conductor layer 17 are less susceptible to the influence of the first branch conductor layer 24 and the second branch conductor layer 26.
  • Fig. 5 is an exploded perspective view of the multilayer substrate 10b.
  • the multilayer substrate 10b differs from the multilayer substrate 10 in that it further includes annular ground conductor layers 32, 34, and 36.
  • the annular ground conductor layers 32, 34, and 36 are provided in the laminate 15.
  • the annular ground conductor layer 32 is located on the upper main surface of the insulator layer 16a.
  • the annular ground conductor layer 34 is located on the upper main surface of the insulator layer 16b.
  • the annular ground conductor layer 36 is located on the upper main surface of the insulator layer 16c.
  • the annular ground conductor layers 32, 34, and 36 have a rectangular ring shape when viewed from below.
  • the radiation conductor layer 17, the signal conductor layer 18, the first branch conductor layer 24, and the second branch conductor layer 26 are located within the area surrounded by the annular ground conductor layers 32, 34, and 36 when viewed from below.
  • the interlayer connection conductors v2 and v3 electrically connect the first ground conductor layer 20, the second ground conductor layer 22, and the annular ground conductor layers 30, 32, 34, and 36. As a result, the annular ground conductor layers 32, 34, and 36 are connected to the ground potential.
  • the rest of the structure of the multilayer board 10b is the same as that of the multilayer board 10, so a description thereof will be omitted.
  • the multilayer board 10b can achieve the same effects as the multilayer board 10.
  • the radiation conductor layer 17, the signal conductor layer 18, the first branch conductor layer 24, and the second branch conductor layer 26 are located in an area surrounded by the annular ground conductor layers 32, 34, and 36 when viewed from below. This prevents noise from entering the multilayer board 10b, and also prevents noise from radiating forward, backward, left, and right from the multilayer board 10b.
  • the radiation conductor layer 17, the signal conductor layer 18, the first branch conductor layer 24, and the second branch conductor layer 26 are prevented from forming capacitance with the conductors surrounding the multilayer board 10b.
  • the electromagnetic field radiating from the ground conductor layer non-forming area A0 is prevented from spreading in the left-right direction, so that power is efficiently input to the radiation conductor layer 17.
  • Fig. 6 is a cross-sectional view of the multilayer substrate 10c.
  • the multilayer board 10c differs from the multilayer board 10 in that the laminate 15 is curved. More specifically, the laminate 15 has a first section A11 in which the radiating conductor layer 17 is provided when viewed downward (negative direction of the Z axis), and second sections A12a, A12b in which the radiating conductor layer 17 is not provided when viewed downward (negative direction of the Z axis). The vertical thickness of a portion of the second section A12b is smaller than the vertical thickness of the first section A11. The second section A12b of the laminate 15 has a curved portion when viewed forward (orthogonal to the Z axis). The other structure of the multilayer board 10c is the same as that of the multilayer board 10, so a description will be omitted. The multilayer board 10c can achieve the same effects as the multilayer board 10.
  • the vertical thickness of a portion of the second section A12b is smaller than the vertical thickness of the first section A11. This makes it easier to bend the second section A12b of the laminate 15 when viewed in the forward direction (direction perpendicular to the Z axis).
  • the first section A11 and the second section A12b include the insulator layers 16d to 16f. This means that no connection is made in the signal conductor layer 18 between the first section A11 and the second section A12b. As a result, loss is suppressed from occurring in the signal conductor layer 18.
  • FIG. 7 is an exploded perspective view of the multilayer substrate 10d.
  • Multilayer substrate 10d differs from multilayer substrate 10 in that the materials of insulator layers 16a-16c are different from the materials of insulator layers 16d-16f.
  • the dielectric constant of insulator layers 16a-16c is higher than the dielectric constant of insulator layers 16d-16f.
  • the rest of the structure of multilayer substrate 10d is the same as that of multilayer substrate 10, so a description is omitted.
  • Multilayer substrate 10d can achieve the same effects as multilayer substrate 10.
  • the dielectric constant of the insulator layers 16a to 16c is higher than the dielectric constant of the insulator layers 16d to 16f. This creates a wavelength shortening effect in the radiating conductor layer 17. As a result, the radiating conductor layer 17 can be made smaller.
  • the multilayer board according to the present invention is not limited to the multilayer boards 10, 10a to 10d, and may be modified within the scope of the invention.
  • the structures of the multilayer boards 10, 10a to 10d may be combined in any desired manner.
  • the number of first ground conductor layers is not limited to one.
  • the number of first ground conductor layers may be one or more.
  • a ground conductor layer-free area A0 is formed between the two first ground conductor layers.
  • the ground conductor layer-free area A0 is not surrounded by the first ground conductor layers. For example, when viewed from below, no first ground conductor layers are present in front of or behind the ground conductor layer-free area A0.
  • the dielectric constant of the insulator layers 16a to 16c may be equal to or less than the dielectric constant of the insulator layers 16d to 16f. In this case, the capacitance between the radiation conductor layer 17 and the first ground conductor layer 20 is reduced. As a result, the gain of the multilayer board is improved.
  • the second ground conductor layer 22, the external electrode 28, and the annular ground conductor layers 30, 32, 34, and 36 are not essential components.
  • the dielectric constant of the insulator layers 16a to 16c may be lower than the dielectric constant of the insulator layers 16d to 16f. In this case, the distance between the radiation conductor layer 17 and the first ground conductor layer 20 is shortened, and the thickness of the multilayer substrate 10 in the vertical direction is reduced.
  • the first branched conductor layer 24 and the second branched conductor layer 26 may be located above the signal conductor layer 18.
  • the first branch conductor layer 24 and the second branch conductor layer 26 may be located to the left of the area A0 where the ground conductor layer is not formed.
  • the connection point P0 may be located between the left end of the signal conductor layer 18 and the overlapping portion P.
  • the first branch conductor layer 24 and the second branch conductor layer 26 may be short stubs instead of open stubs.
  • the first branch conductor layer 24 and the second branch conductor layer 26 are connected to, for example, the annular ground conductor layer 32.
  • the length L2 of the transmission path of the high-frequency signal from the overlapping portion P to the first branched conductor layer 24 and the second branched conductor layer 26 may be longer than half the wavelength of the high-frequency signal.
  • the radiating conductor layer 17 does not have to have a shape that is linearly symmetrical with respect to the imaginary line L.
  • the signal conductor layer 18 When viewed from below, the signal conductor layer 18 does not have to have a shape that is linearly symmetrical with respect to the imaginary line L.
  • the area A0 without the ground conductor layer does not have to extend along an axis perpendicular to the imaginary line L.
  • the length L1 of the signal conductor layer 18 between the left end of the signal conductor layer 18 and the overlapping portion P may be longer than half the wavelength of the high-frequency signal transmitted through the signal conductor layer 18.
  • the length of the ground conductor layer non-forming area A0 along the front-rear axis may be longer than half the wavelength of the high-frequency signal transmitted through the signal conductor layer 18.
  • the multilayer substrate 10, 10a to 10d may further include one or more branch conductor layers.
  • the one or more branch conductor layers may not have a shape that is linearly symmetrical with respect to the imaginary line L when viewed in the downward direction. However, the length of the transmission path from the first branch conductor layer 24 to the overlapping portion P and the length of the transmission path from the second branch conductor layer 26 to the overlapping portion P are shorter than the length of the transmission path from the one or more branch conductor layers to the overlapping portion P.
  • each of the first branched conductor layer 24 and the second branched conductor layer 26 may have a straight line shape when viewed downward, or may have a curved shape.
  • the multilayer substrate 10, 10a to 10d may further include a third branch conductor layer and a fourth branch conductor layer that are linearly symmetrical with respect to the imaginary line L.
  • the first branch conductor layer 24 and the second branch conductor layer 26 do not have to overlap with the radiating conductor layer 17 when viewed from below. Therefore, the entire first branch conductor layer 24 and the entire second branch conductor layer 26 may overlap with the radiating conductor layer 17 when viewed from below, or a portion of the first branch conductor layer 24 and a portion of the second branch conductor layer 26 may overlap with the radiating conductor layer 17 when viewed from below.
  • the present invention has the following structure:
  • the multilayer substrate includes a laminate, a radiation conductor layer, one or more first ground conductor layers, a signal conductor layer, a first branch conductor layer, and a second branch conductor layer
  • the laminate has a structure in which a plurality of insulating layers are laminated along the Z axis, the radiating conductor layer is provided on the laminate, the one or more first ground conductor layers are provided in the laminate, overlap with the radiation conductor layer when viewed in the negative direction of the Z axis, and are located on the negative side of the Z axis with respect to the radiation conductor layer;
  • the signal conductor layer is provided on the laminate, overlaps with the radiation conductor layer and the one or more first ground conductor layers when viewed in the negative direction of the Z axis, is located on the negative side of the Z axis with respect to the radiation conductor layer and the one or more first ground conductor layers, and is not electrically connected to the radiation conductor layer; when viewed in the negative direction of the Z axis, a radiating
  • a length of a transmission path of a high frequency signal from the overlapping portion to the first branch conductor layer and the second branch conductor layer is shorter than half the wavelength of the high frequency signal;
  • the radiation conductor layer When viewed in the negative direction of the Z axis, the radiation conductor layer has a shape that is line-symmetric with respect to the imaginary line.
  • a multilayer substrate according to any one of (1) to (3).
  • the ground conductor layer non-forming area extends along an axis perpendicular to the imaginary line.
  • the signal conductor layer has a first end, a length of the signal conductor layer between the first end and the overlapping portion when viewed in the negative direction of the Z axis is equal to or less than half the wavelength of a high-frequency signal transmitted through the signal conductor layer;
  • a multilayer substrate according to any one of (1) to (5).
  • the multilayer substrate further includes a second ground conductor layer, the second ground conductor layer is provided in the laminate, overlaps with the radiation conductor layer when viewed in the negative direction of the Z axis, and is located on the negative side of the Z axis with respect to the signal conductor layer;
  • the laminate has a first section in which the radiating conductor layer is provided, as viewed in the negative direction of the Z axis, and a second section in which the radiating conductor layer is not provided, as viewed in the negative direction of the Z axis,
  • the second section of the laminate has a curved portion when viewed in a direction perpendicular to the Z axis.
  • the signal conductor layer extends along the X-axis, The Y-axis is perpendicular to the X-axis and the Z-axis. a length of the ground conductor layer non-forming area in the direction along the Y-axis is equal to or less than half the wavelength of a high-frequency signal transmitted through the signal conductor layer;
  • a multilayer substrate according to any one of (1) to (8).
  • the signal conductor layer extends along the X-axis, The Y-axis is perpendicular to the X-axis and the Z-axis. the ground conductor layer-free region is surrounded by the first ground conductor layer when viewed in the negative direction of the Z axis.
  • a multilayer substrate according to any one of (1) to (9).

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

Z軸の負方向に見て、放射導体層が設けられている放射導体層領域には、1以上の第1グランド導体層が設けられていないグランド導体層非形成領域が存在している。Z軸の負方向に見て、信号導体層は、グランド導体層非形成領域と重なる重複部分を有している。グランド導体層非形成領域において、信号導体層よりZ軸の正側には、グランド導体層非形成領域の全体を覆う導体が放射導体層以外に存在しない。第1分岐導体層及び第2分岐導体層は、積層体に設けられており、かつ、信号導体層に電気的に接続されている。Z軸の負方向に見て、重複部分を通過する仮想線であって、かつ、第1分岐導体層と第2分岐導体層とが線対称となる仮想線が存在する。

Description

多層基板
 本発明は、多層基板に関する。
 従来の多層基板に関する発明としては、例えば、特許文献1に記載のマイクロストリップアンテナが知られている。マイクロストリップアンテナは、地導体、中心導体及び放射導体を備えている。中心導体は、地導体の下に位置している。放射導体は、地導体の上に位置している。地導体には、スロットが設けられている。スロットは、下方向に見て、放射導体及び中心導体と重なっている。これにより、放射導体は、地導体と電磁気的に結合している。
特開2000-261235号公報
 ところで、特許文献1に記載のマイクロストリップアンテナにおいて、アンテナへの入力インピーダンスを容易に調整したいという要望がある。そこで、マイクロストリップアンテナに整合回路を追加することが考えられる。しかしながら、整合回路がマイクロストリップアンテナに追加されると、マイクロストリップアンテナの放射特性及び受信特性の対称性を維持することが難しくなる場合がある。
 そこで、本発明の目的は、放射導体層への入力インピーダンスを容易に調整できると共に、放射導体層の放射特性及び受信特性の対称性の低下を抑制できる多層基板を提供することである。
 本発明の一形態に係る多層基板は、
 積層体と、放射導体層と、1以上の第1グランド導体層と、信号導体層と、第1分岐導体層と、第2分岐導体層と、を備えており、
 前記積層体は、複数の絶縁体層がZ軸に沿って積層された構造を有しており、
 前記放射導体層は、前記積層体に設けられており、
 前記1以上の第1グランド導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層と重なっており、かつ、前記放射導体層より前記Z軸の負側に位置しており、
 前記信号導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層及び前記1以上の第1グランド導体層と重なっており、かつ、前記放射導体層及び前記1以上の第1グランド導体層より前記Z軸の負側に位置しており、かつ、前記放射導体層と電気的に接続されておらず、
 前記Z軸の負方向に見て、前記放射導体層が設けられている放射導体層領域には、前記1以上の第1グランド導体層が設けられていないグランド導体層非形成領域が存在しており、
 前記Z軸の負方向に見て、前記信号導体層は、前記グランド導体層非形成領域と重なる重複部分を有しており、
 前記グランド導体層非形成領域において、前記信号導体層より前記Z軸の正側には、前記グランド導体層非形成領域の全体を覆う導体が前記放射導体層以外に存在せず、
 前記第1分岐導体層及び前記第2分岐導体層は、前記積層体に設けられており、かつ、前記信号導体層に電気的に接続されており、
 前記Z軸の負方向に見て、前記重複部分を通過する仮想線であって、かつ、前記第1分岐導体層と前記第2分岐導体層とが線対称となる仮想線が存在する。
 本発明に係る多層基板によれば、放射導体層が送受信する高周波信号の帯域の放射導体層への入力インピーダンスを容易に調整できると共に、放射導体層の放射特性及び受信特性の対称性の低下を抑制できる。
図1は、多層基板10の分解斜視図である。 図2は、多層基板10の上面図である。 図3は、多層基板10の断面図である。 図4は、多層基板10aの分解斜視図である。 図5は、多層基板10bの分解斜視図である。 図6は、多層基板10cの断面図である。 図7は、多層基板10dの分解斜視図である。
(実施形態)
[多層基板の構造]
 以下に、本発明の実施形態に係る多層基板10の構造について図面を参照しながら説明する。図1は、多層基板10の分解斜視図である。図2は、多層基板10の上面図である。図3は、多層基板10の断面図である。図3は、図2のA-Aにおける断面図である。
 本明細書において、方向を以下のように定義する。絶縁体層16a~16fがこの順に並ぶ方向を下方向と定義する。下方向は、Z軸の負方向と一致する。下方向に見て、積層体15の2辺は、前後軸に沿って延びている。前後軸は、Y軸と一致している。積層体15の残余の2辺は、左右軸に沿って延びている。左右軸は、X軸と一致している。上下軸(Z軸)、前後軸(Y軸)及び左右軸(X軸)は、互いに直交している。なお、本実施形態における上下軸、前後軸及び左右軸は、多層基板10の使用時における上下軸、前後軸及び左右軸と一致していなくてもよい。
 まず、図1ないし図3を参照しながら、多層基板10の構造について説明する。多層基板10は、無線通信端末等の電子機器に内蔵されるアンテナモジュールである。多層基板10は、図1に示すように、積層体15、放射導体層17、信号導体層18、第1グランド導体層20、第2グランド導体層22、外部電極28、環状グランド導体層30及び層間接続導体v1~v3を備えている。
 積層体15は、板形状を有している。積層体15は、下方向に見て、長方形状を有している。積層体15は、絶縁体層16a~16fが上下軸(Z軸)に沿って積層された構造を有している。絶縁体層16a~16fは、下方向にこの順に並んでいる。絶縁体層16a~16fは、隣り合うもの同士で融着している。絶縁体層16a~16fの材料は、熱可塑性樹脂である。熱可塑性樹脂は、例えば、液晶ポリマである。
 放射導体層17は、積層体15に設けられている。本実施形態では、放射導体層17は、積層体15の上主面に位置している。そのため、放射導体層17は、絶縁体層16aの上主面に位置している。放射導体層17は、下方向に見て、長方形状を有している。なお、放射導体層17は、下方向に見て、正方形状を有していてもよい。下方向に見て、放射導体層17の2辺は、前後軸に沿って延びている。放射導体層17の残余の2辺は、左右軸に沿って延びている。
 第1グランド導体層20は、積層体15に設けられている。本実施形態では、第1グランド導体層20は、絶縁体層16dの上主面に位置している。これにより、第1グランド導体層20は、放射導体層17より下(Z軸の負側)に位置している。第1グランド導体層20は、絶縁体層16dの上主面の大部分を覆っている。これにより、第1グランド導体層20は、下方向に見て、放射導体層17と重なっている。以上のような第1グランド導体層20は、グランド電位に接続される。
 信号導体層18は、積層体15に設けられている。本実施形態では、信号導体層18は、絶縁体層16eの上主面に位置している。従って、信号導体層18は、放射導体層17及び第1グランド導体層20より下(Z軸の負側)に位置している。また、下方向(Z軸の負方向)に見て、放射導体層17及び第1グランド導体層20と重なっている。ただし、信号導体層18は、放射導体層17及び第1グランド導体層20と電気的に接続されていない。信号導体層18は、左右軸(X軸)に沿って延びる線形状を有している。これにより、信号導体層18は、左端(第1端)及び右端を有している。以上のような信号導体層18には、高周波信号が伝送される。
 第2グランド導体層22は、積層体15に設けられている。本実施形態では、第2グランド導体層22は、絶縁体層16fの下主面に位置している。これにより、第2グランド導体層22は、信号導体層18より下(Z軸の負側)に位置している。第2グランド導体層22は、絶縁体層16fの下主面の大部分を覆っている。これにより、第2グランド導体層22は、下方向に見て、放射導体層17及び信号導体層18と重なっている。以上のような第2グランド導体層22は、グランド電位に接続される。
 以上のような信号導体層18、第1グランド導体層20及び第2グランド導体層22は、ストリップライン構造を有している。
 外部電極28は、積層体15に設けられている。本実施形態では、外部電極28は、絶縁体層16fの下主面に位置している。ただし、外部電極28は、第2グランド導体層22と接触していない。外部電極28は、下方向に見て、長方形状を有している。外部電極28は、下方向に見て、信号導体層18の右端部と重なっている。外部電極28は、回路基板の電極に半田により接続される。
 環状グランド導体層30は、積層体15に設けられている。本実施形態では、環状グランド導体層30は、絶縁体層16eの上主面に位置している。環状グランド導体層30は、下方向に見て、長方形状の環形状を有している。信号導体層18は、下方向に見て、環状グランド導体層30により囲まれた領域内に位置している。環状グランド導体層30は、グランド電位に接続される。
 層間接続導体v1は、信号導体層18と外部電極28とを電気的に接続している。層間接続導体v1は、絶縁体層16e,16fを上下軸に沿って貫通している。層間接続導体v1の上端は、信号導体層18の右端部に接触している。層間接続導体v1の下端は、外部電極28に接触している。
 層間接続導体v2,v3は、第1グランド導体層20と第2グランド導体層22と環状グランド導体層30とを電気的に接続している。層間接続導体v2,v3は、絶縁体層16d~16fを上下軸に沿って貫通している。層間接続導体v2,v3の上端は、第1グランド導体層20に接触している。層間接続導体v2,v3の下端は、第2グランド導体層22に接触している。層間接続導体v2,v3の中間部分は、環状グランド導体層30に接触している。
 ところで、図2に示すように、下方向(Z軸の負方向)に見て、放射導体層17が設けられている領域を放射導体層領域A1と定義する。下方向(Z軸の負方向)に見て、放射導体層領域A1には、第1グランド導体層20が設けられていないグランド導体層非形成領域A0が存在している。グランド導体層非形成領域A0は、下方向(Z軸の負方向)に見て、第1グランド導体層20に囲まれている。具体的には、グランド導体層非形成領域A0は、下方向に見て、長方形状を有している。グランド導体層非形成領域A0の2本の長辺は、前後方向に延びている。グランド導体層非形成領域A0の2本の短辺は、左右方向に延びている。グランド導体層非形成領域A0の前後軸(Y軸)に沿う方向の長さは、信号導体層18を伝送される高周波信号の波長の1/4以下である。これにより、グランド導体層非形成領域A0において、不要な共振が発生することが抑制され、ノイズの発生が抑制される。
 グランド導体層非形成領域A0は、下方向に見て、信号導体層18と交差している。本実施形態では、グランド導体層非形成領域A0は、下方向に見て、信号導体層18と直交している。これにより、下方向(Z軸の負方向)に見て、信号導体層18は、グランド導体層非形成領域A0と重なっている。すなわち、下方向(Z軸の負方向)に見て、信号導体層18は、グランド導体層非形成領域A0と重なる重複部分Pを有している。そして、下方向(Z軸の負方向)に見て、信号導体層18の左端(第1端)と重複部分Pとの間の信号導体層18の長さL1は、信号導体層18を伝送される高周波信号の波長の1/4以下である。これにより、信号導体層18の左端と重複部分Pとの間の信号導体層18において、不要な共振が発生することが抑制され、ノイズの発生が抑制される。
 下方向(Z軸の負方向)に見て、グランド導体層非形成領域A0において、信号導体層18は、放射導体層17と重なっている。すなわち、下方向に見て、重複部分Pは、放射導体層17と重なっている。そして、図3に示すように、グランド導体層非形成領域A0において、信号導体層18より上(Z軸の正側)には、グランド導体層非形成領域A0の全体を覆う導体が放射導体層17以外に存在しない。これにより、信号導体層18と放射導体層17とが電磁界結合している。本実施形態では、信号導体層18と放射導体層17とは、主に磁界結合している。その結果、信号導体層18を伝送される高周波信号は、グランド導体層非形成領域A0を介して、電磁界により放射導体層17に伝達される。そして、放射導体層17では、高周波信号の定常波が発生する。放射導体層17は、高周波信号の電磁波を上方向に放射する。なお、同様の原理により、放射導体層17は、高周波信号の電磁波を受信する。
 ところで、多層基板10は、第1分岐導体層24及び第2分岐導体層26を更に備えている。第1分岐導体層24及び第2分岐導体層26は、積層体15に設けられている。本実施形態では、第1分岐導体層24及び第2分岐導体層26は、絶縁体層16eの上主面に位置している。第1分岐導体層24及び第2分岐導体層26は、下方向に見て、L字型形状を有している。より詳細には、第1分岐導体層24は、第1部分24a及び第2部分24bを含んでいる。第1部分24aは、前後方向に延びている。第1部分24aの後端は、信号導体層18の接続箇所P0に接続されている。接続箇所P0は、信号導体層18の左端と右端との間に位置している。本実施形態では、重複部分Pから接続箇所P0までの高周波信号の伝送経路の長さL2は、高周波信号の波長の半分より短い。すなわち、重複部分Pから第1分岐導体層24までの高周波信号の伝送経路の長さL2は、高周波信号の波長の半分より短い。第2部分24bは、左右方向に延びている。第2部分24bの右端は、第1部分24aの前端に接続されている。これにより、第1分岐導体層24は、信号導体層18に電気的に接続されている。そして、第1分岐導体層24の長さは、信号導体層18を伝送される高周波信号の波長の半分以下である。以上のような第1分岐導体層24は、オープンスタブとして機能する。
 第2分岐導体層26は、第1部分26a及び第2部分26bを含んでいる。第1部分26aは、前後方向に延びている。第1部分26aの前端は、信号導体層18の接続箇所P0に接続されている。本実施形態では、重複部分Pから接続箇所P0までの高周波信号の伝送経路の長さL2は、高周波信号の波長の半分より短い。すなわち、重複部分Pから第2分岐導体層26までの高周波信号の伝送経路の長さL2は、高周波信号の波長の半分より短い。第2部分26bは、左右方向に延びている。第2部分26bの右端は、第1部分26aの後端に接続されている。これにより、第2分岐導体層26は、信号導体層18に電気的に接続されている。そして、第2分岐導体層26の長さは、信号導体層18を伝送される高周波信号の波長の半分以下である。以上のような第2分岐導体層26は、オープンスタブとして機能する。
 ここで、第1部分24aの長さと第1部分26aの長さとは等しい。第2部分24bの長さと第2部分26bの長さとは等しい。これにより、下方向(Z軸の負方向)に見て、重複部分Pを通過する仮想線Lであって、かつ、第1分岐導体層24と第2分岐導体層26とが線対称となる仮想線Lが存在する。本実施形態では、仮想線Lは、左右軸に沿って延びている。そのため、信号導体層18は、下方向に見て、その全長にわたって仮想線Lと重なっている。そして、信号導体層18は、下方向に見て、仮想線Lに関して線対称な形状を有している。
 また、下方向(Z軸の負方向)に見て、放射導体層17は、仮想線Lに関して線対称な形状を有している。更に、下方向(Z軸の負方向)に見て、グランド導体層非形成領域A0は、前後軸に沿って延びている。これにより、下方向(Z軸の負方向)に見て、グランド導体層非形成領域A0は、仮想線Lに直交する軸線に沿って延びている。そして、グランド導体層非形成領域A0は、仮想線Lに関して線対称な構造を有している。
 放射導体層17、信号導体層18、第1グランド導体層20、第2グランド導体層22、第1分岐導体層24、第2分岐導体層26、外部電極28及び環状グランド導体層30は、絶縁体層16a,16d~16fの上主面又は下主面に張り付けられた金属箔にパターニングが施されることにより形成される。金属箔は、例えば、銅箔である。
 層間接続導体v1~v3は、絶縁体層16d~16fを上下軸に沿って貫通する貫通孔に導電性ペーストを充填し、加熱処理及び加圧処理により導電性ペーストを固化させることにより形成される。
[効果]
 多層基板10によれば、放射導体層17への入力インピーダンスを容易に調整できる。より詳細には、多層基板10では、第1分岐導体層24及び第2分岐導体層26は、信号導体層18に電気的に接続されている。これにより、第1分岐導体層24及び第2分岐導体層26の形状を調整することによって、第1分岐導体層24及び第2分岐導体層26を整合回路として機能させることができる。その結果、放射導体層17への入力インピーダンスを容易に調整できる。
 多層基板10によれば、放射導体層17の放射特性の対称性の低下を抑制できる。より詳細には、多層基板10に第1分岐導体層24及び第2分岐導体層26が設けられると、放射導体層17の放射特性が第1分岐導体層24及び第2分岐導体層26の影響を受ける。そこで、下方向に見て、重複部分Pを通過する仮想線Lであって、かつ、第1分岐導体層24と第2分岐導体層26とが線対称となる仮想線Lが存在する。すなわち、第1分岐導体層24と第2分岐導体層26とは線対称な関係にある。これにより、放射導体層17の放射パターンの前半分が第1分岐導体層24から受ける影響と、放射導体層17の放射パターンの後半分が第2分岐導体層26から受ける影響とが近づく。その結果、多層基板10によれば、放射導体層17の放射特性の対称性の低下を抑制できる。なお、同じ理由により、多層基板10によれば、放射導体層17の受信特性の対称性の低下を抑制できる。
(第1変形例)
 以下に、第1変形例に係る多層基板10aについて図面を参照しながら説明する。図4は、多層基板10aの分解斜視図である。
 多層基板10aは、信号導体層18と第1分岐導体層24及び第2分岐導体層26とが異なる絶縁体層に位置している点において多層基板10と相違する。より詳細には、信号導体層18は、絶縁体層16eの上主面に位置している。第1分岐導体層24及び第2分岐導体層26は、絶縁体層16gの上主面に位置している。絶縁体層16gは、絶縁体層16eと絶縁体層16fとの間に位置している。これにより、第1分岐導体層24及び第2分岐導体層26は、信号導体層18より下(Z軸の負側)に位置している。
 層間接続導体v1は、信号導体層18と第1分岐導体層24と第2分岐導体層26と外部電極28とを電気的に接続している。層間接続導体v1は、絶縁体層16e,16g,16fを上下軸に沿って貫通している。層間接続導体v1の上端は、信号導体層18の右端に接触している。層間接続導体v1の下端は、外部電極28に接触している。層間接続導体v1の中間部は、第1分岐導体層24及び第2分岐導体層26に接触している。多層基板10aのその他の構造は、多層基板10と同じであるので説明を省略する。多層基板10aは、多層基板10と同じ効果を奏することができる。
 多層基板10aでは、第1分岐導体層24及び第2分岐導体層26は、信号導体層18より下(Z軸の負側)に位置している。これにより、第1分岐導体層24及び第2分岐導体層26が放射導体層17から離れる。その結果、放射導体層17の放射特性が第1分岐導体層24及び第2分岐導体層26の影響を受けにくくなる。
(第2変形例)
 以下に、第2変形例に係る多層基板10bについて図面を参照しながら説明する。図5は、多層基板10bの分解斜視図である。
 多層基板10bは、環状グランド導体層32,34,36を更に備えている点において、多層基板10と相違する。環状グランド導体層32,34,36は、積層体15に設けられている。本実施形態では、環状グランド導体層32は、絶縁体層16aの上主面に位置している。環状グランド導体層34は、絶縁体層16bの上主面に位置している。環状グランド導体層36は、絶縁体層16cの上主面に位置している。環状グランド導体層32,34,36は、下方向に見て、長方形状の環形状を有している。放射導体層17、信号導体層18、第1分岐導体層24及び第2分岐導体層26は、下方向に見て、環状グランド導体層32,34,36により囲まれた領域内に位置している。
 層間接続導体v2,v3は、第1グランド導体層20、第2グランド導体層22及び環状グランド導体層30,32,34,36を電気的に接続している。これにより、環状グランド導体層32,34,36は、グランド電位に接続される。多層基板10bのその他の構造は、多層基板10と同じであるので説明を省略する。多層基板10bは、多層基板10と同じ効果を奏することができる。
 多層基板10bでは、放射導体層17、信号導体層18、第1分岐導体層24及び第2分岐導体層26は、下方向に見て、環状グランド導体層32,34,36により囲まれた領域内に位置している。これにより、多層基板10bにノイズが侵入することが抑制されると共に、多層基板10bから前方向、後方向、左方向及び右方向にノイズが放射することが抑制される。また、放射導体層17、信号導体層18、第1分岐導体層24及び第2分岐導体層26が、多層基板10bの周囲の導体と容量を形成することが抑制される。更に、グランド導体層非形成領域A0から放射する電磁界が、左右方向に広がることを抑制されるので、放射導体層17に電力が効率的に入力する。
(第3変形例)
 以下に、第3変形例に係る多層基板10cについて図面を参照しながら説明する。図6は、多層基板10cの断面図である。
 多層基板10cは、積層体15が曲がっている点において多層基板10と相違する。より詳細には、積層体15は、下方向(Z軸の負方向)に見て、放射導体層17が設けられている第1区間A11と、下方向(Z軸の負方向)に見て、放射導体層17が設けられていない第2区間A12a,A12bと、を有している。第2区間A12bの一部分の上下方向の厚みは、第1区間A11の上下方向の厚みより小さい。そして、積層体15の第2区間A12bは、前方向(Z軸に直交する方向)に見て、曲がっている部分を有している。多層基板10cのその他の構造は、多層基板10と同じであるので説明を省略する。多層基板10cは、多層基板10と同じ効果を奏することができる。
 また、多層基板10cでは、第2区間A12bの一部分の上下方向の厚みは、第1区間A11の上下方向の厚みより小さい。これにより、前方向(Z軸に直交する方向)に見て、積層体15の第2区間A12bを曲げることが容易になる。また、第1区間A11と第2区間A12bとが絶縁体層16d~16fを含んでいる。これにより、第1区間A11と第2区間A12bとの間で信号導体層18の接続部が生じない。その結果、信号導体層18において損失が発生することが抑制される。
(第4変形例)
 以下に、第4変形例に係る多層基板10dについて図面を参照しながら説明する。図7は、多層基板10dの分解斜視図である。
 多層基板10dは、絶縁体層16a~16cの材料と絶縁体層16d~16fの材料との材料が異なっている点において多層基板10と相違する。絶縁体層16a~16cの誘電率は、絶縁体層16d~16fの誘電率より高い。多層基板10dのその他の構造は、多層基板10と同じであるので説明を省略する。多層基板10dは、多層基板10と同じ効果を奏することができる。
 多層基板10dでは、絶縁体層16a~16cの誘電率は、絶縁体層16d~16fの誘電率より高い。これにより、放射導体層17では、波長短縮効果が生じる。その結果、放射導体層17の小型化が図られる。
(その他の実施形態)
 本発明に係る多層基板は、多層基板10,10a~10dに限らずその要旨の範囲内において変更可能である。なお、多層基板10,10a~10dの構造を任意に組み合わせてもよい。
 なお、第1グランド導体層の数は、1に限らない。第1グランド導体層の数は、1以上であればよい。第1グランド導体層の数が2である場合、2つの第1グランド導体層の間には、グランド導体層非形成領域A0が形成される。この場合、グランド導体層非形成領域A0の周囲が第1グランド導体層に囲まれない。例えば、下方向に見て、グランド導体層非形成領域A0の前及び後には第1グランド導体層が存在しない。
 なお、絶縁体層16a~16cの誘電率は、絶縁体層16d~16fの誘電率以下でもよい。この場合、放射導体層17と第1グランド導体層20との間の容量が低減される。その結果、多層基板の利得が向上する。
 なお、第2グランド導体層22、外部電極28、環状グランド導体層30,32,34,36は、必須の構成要件ではない。
 なお、絶縁体層16a~16cの誘電率は、絶縁体層16d~16fの誘電率より低くてもよい。この場合、放射導体層17と第1グランド導体層20との距離が短くなるので、多層基板10の上下方向の厚みが小さくなる。
 なお、第1分岐導体層24及び第2分岐導体層26は、信号導体層18より上に位置してもよい。
 なお、第1分岐導体層24及び第2分岐導体層26は、グランド導体層非形成領域A0より左に位置していてもよい。すなわち、接続箇所P0は、信号導体層18の左端と重複部分Pとの間に位置してもよい。
 なお、第1分岐導体層24及び第2分岐導体層26は、オープンスタブではなく、ショートスタブであってもよい。この場合、第1分岐導体層24及び第2分岐導体層26は、例えば、環状グランド導体層32に接続される。
 なお、重複部分Pから第1分岐導体層24及び第2分岐導体層26までの高周波信号の伝送経路の長さL2は、高周波信号の波長の半分より長くてもよい。
 なお、下方向に見て、放射導体層17は、仮想線Lに関して線対称な形状を有していなくてもよい。
 なお、下方向に見て、信号導体層18は、仮想線Lに関して線対称な形状を有していなくてもよい。
 なお、下方向に見て、グランド導体層非形成領域A0は、仮想線Lに直交する軸線に沿って延びていなくてもよい。
 なお、下方向に見て、信号導体層18の左端と重複部分Pとの間の信号導体層18の長さL1は、信号導体層18を伝送される高周波信号の波長の半分より長くてもよい。
 なお、グランド導体層非形成領域A0の前後軸に沿う方向の長さは、信号導体層18を伝送される高周波信号の波長の半分より長くてもよい。
 なお、多層基板10,10a~10dは、1以上の分岐導体層を更に備えていてもよい。1以上の分岐導体層は、下方向に見て、仮想線Lに関して線対称な形状を有していなくてもよい。ただし、第1分岐導体層24から重複部分Pまでの伝送経路の長さ及び第2分岐導体層26から重複部分Pまでの伝送経路の長さは、1以上の分岐導体層から重複部分Pまでの伝送経路の長さより短い。
 なお、第1分岐導体層24及び第2分岐導体層26のそれぞれは、下方向に見て、1本の直線形状を有していてもよいし、湾曲した形状であってもよい。
 なお、多層基板10,10a~10dは、仮想線Lに関して線対称な関係を有する第3分岐導体層及び第4分岐導体層を更に備えていてもよい。
 なお、第1分岐導体層24及び第2分岐導体層26は、下方向に見て、放射導体層17と重なっていなくてもよい。従って、第1分岐導体層24の全体及び第2分岐導体層26の全体は、下方向に見て、放射導体層17と重なっていてもよいし、第1分岐導体層24の一部分及び第2分岐導体層26の一部分は、下方向に見て、放射導体層17と重なっていてもよい。
 本発明は、以下の構造を備える。
(1)
 多層基板は、積層体と、放射導体層と、1以上の第1グランド導体層と、信号導体層と、第1分岐導体層と、第2分岐導体層と、を備えており、
 前記積層体は、複数の絶縁体層がZ軸に沿って積層された構造を有しており、
 前記放射導体層は、前記積層体に設けられており、
 前記1以上の第1グランド導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層と重なっており、かつ、前記放射導体層より前記Z軸の負側に位置しており、
 前記信号導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層及び前記1以上の第1グランド導体層と重なっており、かつ、前記放射導体層及び前記1以上の第1グランド導体層より前記Z軸の負側に位置しており、かつ、前記放射導体層と電気的に接続されておらず、
 前記Z軸の負方向に見て、前記放射導体層が設けられている放射導体層領域には、前記1以上の第1グランド導体層が設けられていないグランド導体層非形成領域が存在しており、
 前記Z軸の負方向に見て、前記信号導体層は、前記グランド導体層非形成領域と重なる重複部分を有しており、
 前記グランド導体層非形成領域において、前記信号導体層より前記Z軸の正側には、前記グランド導体層非形成領域の全体を覆う導体が前記放射導体層以外に存在せず、
 前記第1分岐導体層及び前記第2分岐導体層は、前記積層体に設けられており、かつ、前記信号導体層に電気的に接続されており、
 前記Z軸の負方向に見て、前記重複部分を通過する仮想線であって、かつ、前記第1分岐導体層と前記第2分岐導体層とが線対称となる仮想線が存在する、
 多層基板。
(2)
 前記第1分岐導体層及び前記第2分岐導体層は、前記信号導体層より前記Z軸の負側に位置している、
 (1)に記載の多層基板。
(3)
 前記重複部分から前記第1分岐導体層及び前記第2分岐導体層までの高周波信号の伝送経路の長さは、前記高周波信号の波長の半分より短い、
 (1)又は(2)に記載の多層基板。
(4)
 前記Z軸の負方向に見て、前記放射導体層は、前記仮想線に関して線対称な形状を有している、
 (1)ないし(3)のいずれかに記載の多層基板。
(5)
 前記Z軸の負方向に見て、前記グランド導体層非形成領域は、前記仮想線に直交する軸線に沿って延びている、
 (1)ないし(4)のいずれかに記載の多層基板。
(6)
 前記信号導体層は、第1端を有しており、
 前記Z軸の負方向に見て、前記第1端と前記重複部分との間の前記信号導体層の長さは、前記信号導体層を伝送される高周波信号の波長の半分以下である、
 (1)ないし(5)のいずれかに記載の多層基板。
(7)
 前記多層基板は、第2グランド導体層を、更に備えており、
前記第2グランド導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層と重なっており、かつ、前記信号導体層より前記Z軸の負側に位置している、
 (1)ないし(6)のいずれかに記載の多層基板。
(8)
 前記積層体は、前記Z軸の負方向に見て、前記放射導体層が設けられている第1区間と、前記Z軸の負方向に見て、前記放射導体層が設けられていない第2区間と、を有しており、
 前記積層体の前記第2区間は、前記Z軸に直交する方向に見て、曲がっている部分を有している、
 (1)ないし(7)のいずれかに記載の多層基板。
(9)
 前記信号導体層は、X軸に沿って延びており、
 Y軸は、前記X軸及び前記Z軸に直交しており、
 前記グランド導体層非形成領域の前記Y軸に沿う方向の長さは、前記信号導体層を伝送される高周波信号の波長の半分以下である、
 (1)ないし(8)のいずれかに記載の多層基板。
(10)
 前記信号導体層は、X軸に沿って延びており、
 Y軸は、前記X軸及び前記Z軸に直交しており、
 前記グランド導体層非形成領域は、前記Z軸の負方向に見て、前記第1グランド導体層に囲まれている、
 (1)ないし(9)のいずれかに記載の多層基板。
10,10a~10d:多層基板
15:積層体
16a~16g:絶縁体層
17:放射導体層
18:信号導体層
20:第1グランド導体層
22:第2グランド導体層
24:第1分岐導体層
24a,26a:第1部分
24b,26b:第2部分
26:第2分岐導体層
28:外部電極
30,32,34,36:環状グランド導体層
A0:グランド導体層非形成領域
A1:放射導体層領域
A11:第1区間
A12a,A12b:第2区間
L:仮想線
P:重複部分
P0:接続箇所
v1~v3:層間接続導体

Claims (10)

  1.  多層基板は、積層体と、放射導体層と、1以上の第1グランド導体層と、信号導体層と、第1分岐導体層と、第2分岐導体層と、を備えており、
     前記積層体は、複数の絶縁体層がZ軸に沿って積層された構造を有しており、
     前記放射導体層は、前記積層体に設けられており、
     前記1以上の第1グランド導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層と重なっており、かつ、前記放射導体層より前記Z軸の負側に位置しており、
     前記信号導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層及び前記1以上の第1グランド導体層と重なっており、かつ、前記放射導体層及び前記1以上の第1グランド導体層より前記Z軸の負側に位置しており、かつ、前記放射導体層と電気的に接続されておらず、
     前記Z軸の負方向に見て、前記放射導体層が設けられている放射導体層領域には、前記1以上の第1グランド導体層が設けられていないグランド導体層非形成領域が存在しており、
     前記Z軸の負方向に見て、前記信号導体層は、前記グランド導体層非形成領域と重なる重複部分を有しており、
     前記グランド導体層非形成領域において、前記信号導体層より前記Z軸の正側には、前記グランド導体層非形成領域の全体を覆う導体が前記放射導体層以外に存在せず、
     前記第1分岐導体層及び前記第2分岐導体層は、前記積層体に設けられており、かつ、前記信号導体層に電気的に接続されており、
     前記Z軸の負方向に見て、前記重複部分を通過する仮想線であって、かつ、前記第1分岐導体層と前記第2分岐導体層とが線対称となる仮想線が存在する、
     多層基板。
  2.  前記第1分岐導体層及び前記第2分岐導体層は、前記信号導体層より前記Z軸の負側に位置している、
     請求項1に記載の多層基板。
  3.  前記重複部分から前記第1分岐導体層及び前記第2分岐導体層までの高周波信号の伝送経路の長さは、前記高周波信号の波長の半分より短い、
     請求項1又は請求項2に記載の多層基板。
  4.  前記Z軸の負方向に見て、前記放射導体層は、前記仮想線に関して線対称な形状を有している、
     請求項1ないし請求項3のいずれかに記載の多層基板。
  5.  前記Z軸の負方向に見て、前記グランド導体層非形成領域は、前記仮想線に直交する軸線に沿って延びている、
     請求項1ないし請求項4のいずれかに記載の多層基板。
  6.  前記信号導体層は、第1端を有しており、
     前記Z軸の負方向に見て、前記第1端と前記重複部分との間の前記信号導体層の長さは、前記信号導体層を伝送される高周波信号の波長の半分以下である、
     請求項1ないし請求項5のいずれかに記載の多層基板。
  7.  前記多層基板は、第2グランド導体層を、更に備えており、
    前記第2グランド導体層は、前記積層体に設けられており、かつ、前記Z軸の負方向に見て、前記放射導体層と重なっており、かつ、前記信号導体層より前記Z軸の負側に位置している、
     請求項1ないし請求項6のいずれかに記載の多層基板。
  8.  前記積層体は、前記Z軸の負方向に見て、前記放射導体層が設けられている第1区間と、前記Z軸の負方向に見て、前記放射導体層が設けられていない第2区間と、を有しており、
     前記積層体の前記第2区間は、前記Z軸に直交する方向に見て、曲がっている部分を有している、
     請求項1ないし請求項7のいずれかに記載の多層基板。
  9.  前記信号導体層は、X軸に沿って延びており、
     Y軸は、前記X軸及び前記Z軸に直交しており、
     前記グランド導体層非形成領域の前記Y軸に沿う方向の長さは、前記信号導体層を伝送される高周波信号の波長の半分以下である、
     請求項1ないし請求項8のいずれかに記載の多層基板。
  10.  前記信号導体層は、X軸に沿って延びており、
     Y軸は、前記X軸及び前記Z軸に直交しており、
     前記グランド導体層非形成領域は、前記Z軸の負方向に見て、前記第1グランド導体層に囲まれている、
     請求項1ないし請求項9のいずれかに記載の多層基板。
PCT/JP2023/029138 2022-10-18 2023-08-09 多層基板 WO2024084786A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166830 2022-10-18
JP2022-166830 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084786A1 true WO2024084786A1 (ja) 2024-04-25

Family

ID=90737439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029138 WO2024084786A1 (ja) 2022-10-18 2023-08-09 多層基板

Country Status (1)

Country Link
WO (1) WO2024084786A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700117A1 (en) * 1994-08-30 1996-03-06 Pilkington Plc Patch antenna assembly
US6069587A (en) * 1998-05-15 2000-05-30 Hughes Electronics Corporation Multiband millimeterwave reconfigurable antenna using RF mem switches
JP2002290144A (ja) * 2001-03-28 2002-10-04 Hitachi Chem Co Ltd 平面アレーアンテナ
US20020163468A1 (en) * 2001-05-01 2002-11-07 Anderson Joseph M. Stripline fed aperture coupled microstrip antenna
JP2016127481A (ja) * 2015-01-06 2016-07-11 株式会社東芝 偏波共用アンテナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700117A1 (en) * 1994-08-30 1996-03-06 Pilkington Plc Patch antenna assembly
US6069587A (en) * 1998-05-15 2000-05-30 Hughes Electronics Corporation Multiband millimeterwave reconfigurable antenna using RF mem switches
JP2002290144A (ja) * 2001-03-28 2002-10-04 Hitachi Chem Co Ltd 平面アレーアンテナ
US20020163468A1 (en) * 2001-05-01 2002-11-07 Anderson Joseph M. Stripline fed aperture coupled microstrip antenna
JP2016127481A (ja) * 2015-01-06 2016-07-11 株式会社東芝 偏波共用アンテナ

Similar Documents

Publication Publication Date Title
JP6750738B2 (ja) アンテナモジュールおよび通信装置
US9332644B2 (en) High-frequency transmission line and electronic device
CN102714357B (zh) 宽带天线
JP2006024618A (ja) 配線基板
JP5375962B2 (ja) アンテナモジュール
US9059493B2 (en) High-frequency signal line and electronic device
JPH10173410A (ja) ストリップ線路を用いた伝送回路
WO2013114974A1 (ja) 高周波信号伝送線路及び電子機器
JP7276620B2 (ja) アンテナ素子
JP5472555B2 (ja) 高周波信号伝送線路及び電子機器
US9472839B2 (en) High-frequency transmission line and electronic device
JPH10261914A (ja) アンテナ装置
CN113678318B (zh) 一种封装天线装置及终端设备
JP5527493B1 (ja) フラットケーブルおよび電子機器
WO2024084786A1 (ja) 多層基板
US20140184360A1 (en) High-frequency signal line and electronic device
WO2024080043A1 (ja) アンテナモジュール
WO2024147257A1 (ja) 多層基板及び配線基板
WO2023210198A1 (ja) 多層基板
CN115298902A (zh) 天线模块
WO2024150551A1 (ja) 多層基板
US20240088565A1 (en) Multilayer board and antenna module
JP2024041036A (ja) 多層基板及びアンテナモジュール
US12046838B2 (en) Multilayer board
JP7409493B2 (ja) 信号伝送線路及び信号伝送線路の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879439

Country of ref document: EP

Kind code of ref document: A1