WO2024084561A1 - Optical transmission system design method and design device - Google Patents

Optical transmission system design method and design device Download PDF

Info

Publication number
WO2024084561A1
WO2024084561A1 PCT/JP2022/038672 JP2022038672W WO2024084561A1 WO 2024084561 A1 WO2024084561 A1 WO 2024084561A1 JP 2022038672 W JP2022038672 W JP 2022038672W WO 2024084561 A1 WO2024084561 A1 WO 2024084561A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
irradiation
optical
parameters
Prior art date
Application number
PCT/JP2022/038672
Other languages
French (fr)
Japanese (ja)
Inventor
誉人 桐原
聖 成川
勝久 田口
亜弥子 岩城
和秀 中島
隆 松井
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/038672 priority Critical patent/WO2024084561A1/en
Publication of WO2024084561A1 publication Critical patent/WO2024084561A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • This disclosure relates to a method and device for designing an optical transmission system that includes bundled optical fibers as optical transmission paths.
  • Non-Patent Document 1 Mobile sterilization robot
  • the product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light.
  • the robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
  • Non-Patent Document 2 Freestanding Air Purifier
  • the product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
  • Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • the product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
  • Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
  • the products described in non-patent documents have a problem in that they lack versatility in terms of being able to irradiate ultraviolet light at any location.
  • (3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
  • an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered.
  • ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), multiple locations can be sterilized by sharing a single light source. Therefore, the economics of the above issue (1) can also be resolved.
  • P-MP Point to Multipoint
  • FTTH Fiber To The Home
  • Coupled efficiency means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
  • Figure 2(A) Since the light-emitting surface of an LED is larger than that of a laser, even if one tries to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency ( Figure 2(A)).
  • FIG. 3A is a diagram for explaining how the light L1 from the light source unit 11 is irradiated onto one end of the bundle optical fiber 36, how the bundle optical fiber 36 is separated into each single-core optical fiber 51a at the other end to become the path 14, and how the light propagating therethrough is emitted (the irradiation target area ARn is located at the end of the emitted light).
  • the bundle optical fiber 36 is a bundle of multiple single-core optical fibers 51a.
  • the light L1 from the light source unit 11 is irradiated onto one end (the coupling portion) of the bundle optical fiber 36, but the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot, and low around the light spot. 3A, when the size of one end of the bundle optical fiber 36 is larger than the size 51a of the light spot, the light spot may only partially hit the core of the single-core optical fiber 51a on the periphery of the bundle optical fiber 36.
  • the present invention aims to provide a design method for calculating the parameters of an optical transmission system that satisfies the requirements for an optical transmission system that uses a light source such as an LED and a bundled optical fiber as an optical transmission path.
  • the design method of the present invention uses the parameters of the optical transmission system to calculate the optical power output by each irradiation unit, and adjusts the parameters so that the time integral of the optical power becomes the energy required by each irradiation target area.
  • the design method according to the present invention includes the steps of: A light source that outputs light; a bundle optical fiber in which a plurality of optical fibers are bundled and which transmits the light; A plurality of irradiation units each irradiating an irradiation target area with the light; the optical fiber separated from the bundle optical fiber, the optical fiber having a plurality of paths for propagating the light to each of the irradiation units;
  • a method for designing an optical transmission system having The present invention is characterized in that the parameters are adjusted so that the power of the light output by each of the irradiation units, which is calculated using parameters of the optical transmission system, becomes a value that takes into account the energy required for each of the irradiation target areas.
  • the design device comprises: A light source that outputs light; a bundle optical fiber in which a plurality of optical fibers are bundled and which transmits the light; A plurality of irradiation units each irradiating an irradiation target area with the light; the optical fiber separated from the bundle optical fiber, the optical fiber having a plurality of paths for propagating the light to each of the irradiation units;
  • a design apparatus for designing an optical transmission system having The present invention is characterized in that the parameters are adjusted so that the power of the light output by each of the irradiation units, which is calculated using parameters of the optical transmission system, becomes a value that takes into account the energy required for each of the irradiation target areas.
  • the parameters are: The power P in of the light output by the light source, the number I of the optical fibers bundled into the optical fiber bundle; a coupling efficiency C i of the light coupled to each of the optical fibers bundled in the optical fiber bundle (i is an identifier for identifying the optical fiber); The number n of the irradiation units, The distance L n of the optical path from one end of the bundle optical fiber to which the light is coupled through the path to the irradiation unit, and
  • E n required for each of the irradiation target areas is E n
  • the irradiation time T n for each of the irradiation target areas is T n
  • the propagation loss per unit length in the optical path is C Loss , [Formula (1)]
  • E n P in ⁇ C i ⁇ L n ⁇ C Loss ⁇ T n
  • the parameter is adjusted so that
  • the specific design policy for making the adjustments is as follows: (1) The power of the light output from each of the irradiation units P in ⁇ C i ⁇ L n ⁇ C Loss and adjusting said parameters so that (2) Adjusting the parameters so that the irradiation time T n in equation (1) is minimized in any one of the irradiation target areas N. (3) Adjusting the parameters so that the sum of the irradiation times T n in equation (1) for all of the irradiation target areas N is minimized.
  • the present invention can provide a design method for calculating the parameters of an optical transmission system that satisfies the requirements for an optical transmission system that uses a light source such as an LED and a bundled optical fiber as an optical transmission path.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a design apparatus according to the present invention.
  • 1 is a flowchart illustrating a design method according to the present invention.
  • 1A to 1C are diagrams illustrating the effects of an optical transmission system designed by a design method according to the present invention.
  • FIG. 4 is a diagram illustrating a design device 200 for designing an optical transmission system 301 according to the present embodiment.
  • the optical transmission system 301 includes: A light source unit 11 that outputs light L1; a bundle optical fiber 36 in which a plurality of optical fibers are bundled and which transmits the light; A plurality of irradiation units 13 each irradiating a light beam L2 onto an irradiation target area; a plurality of single-core optical fibers 51 a which are optical fibers separated from the bundle optical fiber 36 and which propagate light to each of the irradiation units 13; has.
  • the light source unit 11 is, for example, an LED, and outputs light L1.
  • the light L1 is ultraviolet light, visible light, infrared light, or modulated light obtained by modulating any of these lights.
  • the bundle optical fiber 36 is an optical transmission path in which a plurality of single-core optical fibers 51a are bundled together as described in Fig. 3A.
  • the light L1 outputted from the light source unit 11 is inputted to one end T1 of the bundle optical fiber 36.
  • Each optical fiber 51a included in the bundle optical fiber 36 propagates the inputted light L1 to a separation unit T2 at the other end.
  • the separation section T2 is a section for separating each of the single-core optical fibers 51a bundled in the bundle optical fiber 36.
  • each of the single-core optical fibers 51a is separated at the separation section T2 and becomes a route 14 to each irradiation target area.
  • An irradiation unit 13 is disposed at the tip of each of the separated paths 14.
  • the light L1 propagated to the irradiation unit 13 is irradiated from each irradiation unit 13 to an irradiation target area (shown as irradiated light L2 in FIG. 4).
  • the design device 200 is a device that calculates the parameters of the optical transmission system 301 according to this design policy. In other words, the design device 200 adjusts the parameters so that the power of the light L2 output by each irradiation unit 13, calculated using the parameters of the optical transmission system 301, becomes a value that takes into account the energy required for each irradiation target area (for example, the ultraviolet light energy required for inactivation).
  • the parameters are: The power P in of the light L1 output from the light source unit 11, The number I of optical fibers 51a bundled into the optical fiber bundle 36; Coupling efficiency C i of the light L1 coupled to each of the optical fibers 51 a bundled in the optical fiber bundle 36 (i is an identifier for identifying the optical fiber 51 a); the number n of irradiation units 13 (n is an integer from 1 to N); and the distance L n of the optical path from one end T 1 of the bundle optical fiber 36 to which the light L 1 is coupled, through the paths 14 , to each of the irradiation units 13 .
  • FIG. 5 is a flowchart illustrating a design method performed by the design device 200.
  • E n the energy required for each irradiation target area ARn
  • T n the irradiation time for each irradiation target area ARn
  • C Loss the propagation loss per unit length in the optical path
  • This design method is for an optical transmission system 301 having a light source unit 11 which is an LED, an optical fiber bundle 36, a path 14 after the bundle is separated, and an irradiation unit 13, and includes the following processes.
  • Step S01 A design policy is established (performed by the designer).
  • the design policy may be, for example, a policy to make the intensity of light propagating through the optical fibers 51a included in the bundle optical fiber 36 uniform, to have a certain degree of deviation (the intensity of light propagating through the optical fibers 51a on the periphery is smaller than the intensity of light propagating through the optical fibers 51a near the center), or to propagate light through some of the optical fibers 51a.
  • Step S02 The following parameters are set.
  • the output power (P in ) of the light source unit 11 is set.
  • the number of cores (the number of optical fibers 51a) I of the bundle optical fiber 36 is set.
  • the coupling efficiency (C i ) of the light L1 to each optical fiber 51 a at one end T1 of the bundle optical fiber 36 is acquired.
  • “i” is an identifier for identifying each optical fiber 51 a at one end T1.
  • the identifier i can be expressed by the coordinates or location r l,m (l: number of layers, m: address) of the core.
  • the coupling efficiency (C i ) can be adjusted, for example, by the core diameter and numerical aperture of the optical fiber 51 a.
  • the coupling efficiency (C i ) can also be adjusted by the spot diameter and illuminance distribution of the light L1 from the light source unit 11.
  • the total number (N) of irradiation target areas ARn is set.
  • the distances (L n ) to the irradiation unit 13 of the bundle optical fiber 36 and the paths 14 after the separation unit T2 are set.
  • C Loss 0.3 may be used.
  • the energy E n is, for example, an estimated cumulative energy value required for inactivating the irradiation target area, and is set taking into account the area of the irradiation target area and the irradiation time T n .
  • Step S03 Perform numerical calculations using equation (1).
  • Step S04 It is confirmed whether the calculation result is in accordance with the design guidelines. Specifically, it is whether the desired energy E n is irradiated to the irradiation target area. Note that the energy irradiated to the irradiation target area does not necessarily have to be equal to the energy E n , and may be an energy that is close to the energy E n . The degree of approximation is determined according to the design guidelines. If the calculation result does not comply with the design policy ("No" in step S04), the parameters are changed and the process is repeated from step S02. On the other hand, if the calculation result complies with the design policy ("Yes" in step S04), step S05 is carried out.
  • Step S05 Determine each parameter, assign a single path 14 to each irradiation unit 13, and complete the optical transmission system 301.
  • E n P outn ⁇ T n
  • E n P in ⁇ C i ⁇ L n ⁇ C Loss It can be expressed as:
  • the calculation is performed taking into consideration the weighting of the power deviation according to the state of the bundle optical fiber 36, the path 14, and the irradiation target area AR that each irradiation unit 13 is responsible for.
  • step S03 becomes a complex system calculation having multiple parameters (P in , C i , N, L n , C Loss , E n ), and it is possible to obtain results that satisfy the desired design policy (desired effect).
  • the algorithm may utilize any prior art, for example, a multi-objective optimization method.
  • the design device 200 can design an optical transmission system 301 as shown in FIG. 6A, due to an illuminance deviation of the light L1 irradiated to one end T1 of the bundle optical fiber, a power deviation occurs in the light L2 irradiated from the irradiation unit 13.
  • the design device 200 performs a design in which, for example, in a desired irradiation target area, an outer core (optical fiber 51a arranged on the outside) of the bundle optical fiber 36 is assigned to the path 14(1) to irradiate low-power light L2 in a location where low power is sufficient, and a core near the center of the bundle optical fiber 36 (optical fiber 51a arranged near the center) is assigned to the path 14(2) to irradiate high-power light L2 in a location where high power is required.
  • the light L1 from the light source unit 11 can be efficiently coupled to the bundle optical fiber 36 and irradiated onto the irradiation target area, so that wasteful power consumption of the light source unit 11 can be reduced.
  • the design device 200 can design the irradiation unit 13 to irradiate light L2 of the same power based on the relationship between coupling efficiency and distance (propagation loss). By designing in this way, it is possible to achieve even illumination of the target area with light.
  • the optical system 11c capable of adjusting the optical spot of the light L1 from the light source unit 11, in comparison with the optical transmission system 301 described in FIG. 4.
  • the optical system 11c makes it easy to adjust the coupling efficiency (C i ).
  • the light source unit 11 is an LED.
  • the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics. - There is variation in wavelength, amplitude, or phase. ⁇ Light is scattered. ⁇ It is a natural release.
  • Optical system 11 Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light distribution unit (equal branching) 13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36) 16: Optical transmission path 36: Bundle optical fiber 51a: Single-core optical fiber 200: Design device 300, 301: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

To solve the problems, the purpose of the present invention is to provide a design method for calculating optical transmission system parameters satisfying conditions required for an optical transmission system using a light source such as an LED and a bundled optical fiber as an optical transmission path. A design method according to the present invention designs an optical transmission system 301 comprising a light source 11 that outputs light L1, a bundled optical fiber 36 obtained by bundling a plurality of optical fibers and transmitting the light L1, a plurality of radiation units 13 each radiating light L2 to each radiation target area, and a plurality of single-core optical fibers 51a separated from the bundled optical fiber 36 and propagating light to each radiation unit 13, the design method being characterized by adjusting the parameters of the optical transmission system 301 such that the power of the light L2 output by each radiation unit 13 and calculated by using the parameters is a value considering energy required for each radiation target area.

Description

光伝送システムの設計方法及び設計装置Optical transmission system design method and design device
 本開示は、光伝送路としてバンドル光ファイバを備える光伝送システムの設計方法及び設計装置に関する。 This disclosure relates to a method and device for designing an optical transmission system that includes bundled optical fibers as optical transmission paths.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
There is an increasing demand for systems that use ultraviolet light to sterilize and inactivate viruses for the purpose of preventing infectious diseases. There are three main categories of such systems. In this specification, the term "sterilization, etc." refers to sterilization and inactivation of viruses.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. The robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
(II) Freestanding Air Purifier The product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc. This device does not directly irradiate ultraviolet light and has no effect on the human body, so it is possible to sterilize, etc. with a high degree of safety.
(III) Portable sterilization device The product of Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the devices described in the non-patent literature have the following problems.
(1) Economic Efficiency The product of Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility With the product of Non-Patent Document 1, the areas to be irradiated with ultraviolet light are limited to areas where a robot can move/enter, making it difficult to irradiate small or deep areas with ultraviolet light.
The product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
The product of Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
As described above, the products described in non-patent documents have a problem in that they lack versatility in terms of being able to irradiate ultraviolet light at any location.
(3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 To address these issues, an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered. In this ultraviolet light irradiation system, ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), multiple locations can be sterilized by sharing a single light source. Therefore, the economics of the above issue (1) can also be resolved.
 さらに紫外光照射システムにおいて、光ファイバへの結合効率が高いレーザではなく安価なLED(Light-Emitting Diode)を光源に用いてシステムコストの低減を図ることが提案されている。ここで、「結合効率」とは、光源の出力パワーに対する光ファイバへ入力された(光ファイバコアに光結合された)パワーの比を意味する。
 この提案の課題を図2に示す。LEDは発光面がレーザに比べて広いため、LEDが出力した光を1本の単一コアの光ファイバに結合しようとしてもその断面におけるコア面積が狭く、ほとんどが結合されないため結合効率が低い(図2(A))。これは、レンズなどの光学系を用いてもLEDが出力した光を絞り切れず、結合効率を向上させることが困難である(図2(B))。つまり、光源にLEDを使用した場合、光源の出力パワーの大半が有効活用できないという課題がある。
 なお、この課題は紫外光を伝送する光伝送システムに限らず、赤外光や可視光を伝送する光伝送システムに共通する課題である。
Furthermore, in an ultraviolet light irradiation system, it has been proposed to use an inexpensive LED (Light-Emitting Diode) as a light source instead of a laser, which has a high coupling efficiency to an optical fiber, to reduce system costs. Here, "coupling efficiency" means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
The problem with this proposal is shown in Figure 2. Since the light-emitting surface of an LED is larger than that of a laser, even if one tries to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency (Figure 2(A)). This is because even if an optical system such as a lens is used, it is not possible to completely focus the light output from the LED, making it difficult to improve the coupling efficiency (Figure 2(B)). In other words, when an LED is used as a light source, there is a problem that most of the output power of the light source cannot be effectively utilized.
This problem is not limited to optical transmission systems that transmit ultraviolet light, but is a common problem to optical transmission systems that transmit infrared light or visible light.
 ここで、マルチコア光ファイバ(MCF)や複数の単一コア光ファイバを束ねたバンドル光ファイバのように、断面に存在する複数のコアに光を結合すれば、結合効率が向上し、光源の出力パワーの無駄を低減することができる(図2(C))。 Here, if light is coupled to multiple cores present in the cross section, such as in a multi-core optical fiber (MCF) or a bundled optical fiber consisting of multiple single-core optical fibers, the coupling efficiency can be improved and the waste of output power from the light source can be reduced (Figure 2 (C)).
 このように光源の出力パワーの無駄を低減することができるバンドル光ファイバであるが、図3に示すような課題もある。
 図3(A)は、光源部11からの光L1がバンドル光ファイバ36の一端に照射される様子と、バンドル光ファイバ36が他端で各単一コア光ファイバ51aに分離され方路14となり、それを伝搬した光が放射される様子を説明する図である(放射された先には照射対象域ARnがある。)。バンドル光ファイバ36は複数の単一コア光ファイバ51aが束ねられたものである。光源部11からの光L1はバンドル光ファイバ36の一端(結合部)に照射されるが、その照射面(光スポット)において照度は均一ではない(パワー偏差がある。)。具体的には、光スポットの中心付近は照度が高く、光スポットの周辺は照度が低い。
 さらに、図3(A)のようにバンドル光ファイバ36の一端の大きさが光スポットの大きさ51aより大きい場合、バンドル光ファイバ36の外周の単一コア光ファイバ51aのコアには一部にしか光スポットが当たらないこともある。このような状態で光L1がバンドル光ファイバ36に結合されると、バンドル光ファイバ36の外周の光ファイバ51aには中央の光ファイバ51aより小さいパワーの光が伝搬することになる。
 このような状態であると、バンドル光ファイバ36の他端(分離部)において、各光ファイバ51aをそれぞれの照射対象域へ分離した場合、バンドル光ファイバ36の外側に配置された光ファイバ51aが照射対象域へ出射する光は、バンドル光ファイバ36の中心付近に配置された光ファイバ51aが照射対象域へ出射する光よりパワーが小さくなる。
 この課題は、光学系11cで光L1を絞ったとしても同様である(図3(B))。
Although the optical fiber bundle can reduce waste of the output power of the light source in this way, it also has problems as shown in FIG.
3A is a diagram for explaining how the light L1 from the light source unit 11 is irradiated onto one end of the bundle optical fiber 36, how the bundle optical fiber 36 is separated into each single-core optical fiber 51a at the other end to become the path 14, and how the light propagating therethrough is emitted (the irradiation target area ARn is located at the end of the emitted light). The bundle optical fiber 36 is a bundle of multiple single-core optical fibers 51a. The light L1 from the light source unit 11 is irradiated onto one end (the coupling portion) of the bundle optical fiber 36, but the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot, and low around the light spot.
3A, when the size of one end of the bundle optical fiber 36 is larger than the size 51a of the light spot, the light spot may only partially hit the core of the single-core optical fiber 51a on the periphery of the bundle optical fiber 36. When light L1 is coupled to the bundle optical fiber 36 in this state, light with a smaller power propagates through the optical fiber 51a on the periphery of the bundle optical fiber 36 than through the central optical fiber 51a.
In this state, when each optical fiber 51a is separated into its respective irradiation target area at the other end (separation portion) of the bundle optical fiber 36, the light emitted to the irradiation target area by the optical fiber 51a arranged on the outside of the bundle optical fiber 36 will have a lower power than the light emitted to the irradiation target area by the optical fiber 51a arranged near the center of the bundle optical fiber 36.
This problem also occurs when the light L1 is narrowed down by the optical system 11c (FIG. 3B).
 また、上記のパワー偏差を生じさせないようにするためには、結合部での光スポットの面積をバンドル光ファイバ36の一端の面積より大きくする必要がある(図3(C))。しかし、そのようにするとバンドル光ファイバ36に結合できない光が発生し、パワー損失が大きくなり、光源部11のパワーが無駄になる。これは、その無駄になっている分、照射可能な時間分だけ短時間化が困難、照射している光源の駆動時間分の低消費電力化が困難、結果低コスト化が困難となる。 In addition, to prevent the above-mentioned power deviation from occurring, it is necessary to make the area of the light spot at the coupling portion larger than the area of one end of the bundle optical fiber 36 (FIG. 3(C)). However, doing so will result in some light not being able to be coupled to the bundle optical fiber 36, resulting in large power losses and wasting the power of the light source unit 11. This means that it is difficult to shorten the time that irradiation is possible due to the wasted power, and it is difficult to reduce the power consumption for the operating time of the irradiating light source, which results in difficulty in reducing costs.
 つまり、バンドル化の特徴を生かしてシングルコア光ファイバに分離して送受信するPoint-to-MultiPoint構成の紫外光照射システムには、
(課題1)光源からバンドル光ファイバへの結合部においてパワー偏差が生じるため、それぞれの照射部に対して公平にパワーを送受信することが困難、及び
(課題2)パワー偏差を無くそうとすれば、低コスト化や低消費電力化が困難、
という課題がある。
In other words, in a point-to-multipoint ultraviolet light irradiation system that utilizes the characteristics of bundling to separate and transmit signals to a single-core optical fiber,
(Problem 1) Since power deviation occurs at the coupling portion from the light source to the bundle optical fiber, it is difficult to transmit and receive power fairly to each irradiation portion, and (Problem 2) if one tries to eliminate the power deviation, it is difficult to reduce costs and power consumption.
There is a problem that...
 本発明は、これらの課題を解決するために、LEDのような光源と、光伝送路としてバンドル光ファイバを使った光伝送システムについて要求されている条件を満たす光伝送システムのパラメータを計算する設計方法を提供することを目的とする。 In order to solve these problems, the present invention aims to provide a design method for calculating the parameters of an optical transmission system that satisfies the requirements for an optical transmission system that uses a light source such as an LED and a bundled optical fiber as an optical transmission path.
 上記目的を達成するために、本発明に係る設計方法は、光伝送システムのパラメータを使って照射部それぞれが出力する光のパワーを計算し、光のパワーの時間積算が照射対象域それぞれが必要とするエネルギーとなるように前記パラメータを調整することとした。 In order to achieve the above objective, the design method of the present invention uses the parameters of the optical transmission system to calculate the optical power output by each irradiation unit, and adjusts the parameters so that the time integral of the optical power becomes the energy required by each irradiation target area.
 具体的には、本発明に係る設計方法は、
 光を出力する光源と、
 複数の光ファイバが束ねられ、前記光を伝送するバンドル光ファイバと、
 それぞれの照射対象域に前記光を照射する複数の照射部と、
 前記バンドル光ファイバから分離された前記光ファイバであって、各々の前記照射部まで前記光を伝搬する複数の方路と、
を有する光伝送システムを設計する設計方法であって、
 前記光伝送システムのパラメータを使って計算される、前記照射部それぞれが出力する前記光のパワーが、前記照射対象域それぞれに必要なエネルギーを考慮した値となるように前記パラメータを調整することを特徴とする。
Specifically, the design method according to the present invention includes the steps of:
A light source that outputs light;
a bundle optical fiber in which a plurality of optical fibers are bundled and which transmits the light;
A plurality of irradiation units each irradiating an irradiation target area with the light;
the optical fiber separated from the bundle optical fiber, the optical fiber having a plurality of paths for propagating the light to each of the irradiation units;
A method for designing an optical transmission system having
The present invention is characterized in that the parameters are adjusted so that the power of the light output by each of the irradiation units, which is calculated using parameters of the optical transmission system, becomes a value that takes into account the energy required for each of the irradiation target areas.
 また、本発明に係る設計装置は、
 光を出力する光源と、
 複数の光ファイバが束ねられ、前記光を伝送するバンドル光ファイバと、
 それぞれの照射対象域に前記光を照射する複数の照射部と、
 前記バンドル光ファイバから分離された前記光ファイバであって、各々の前記照射部まで前記光を伝搬する複数の方路と、
を有する光伝送システムを設計する設計装置であって、
 前記光伝送システムのパラメータを使って計算される、前記照射部それぞれが出力する前記光のパワーが、前記照射対象域それぞれに必要なエネルギーを考慮した値となるように前記パラメータを調整することを特徴とする。
Further, the design device according to the present invention comprises:
A light source that outputs light;
a bundle optical fiber in which a plurality of optical fibers are bundled and which transmits the light;
A plurality of irradiation units each irradiating an irradiation target area with the light;
the optical fiber separated from the bundle optical fiber, the optical fiber having a plurality of paths for propagating the light to each of the irradiation units;
A design apparatus for designing an optical transmission system having
The present invention is characterized in that the parameters are adjusted so that the power of the light output by each of the irradiation units, which is calculated using parameters of the optical transmission system, becomes a value that takes into account the energy required for each of the irradiation target areas.
 前記パラメータは、
 前記光源が出力する前記光のパワーPin
 前記バンドル光ファイバに束ねられる前記光ファイバの数I、
 前記バンドル光ファイバに束ねられる前記光ファイバのそれぞれへ前記光が結合する結合効率C(iは前記光ファイバを識別するための識別子)、
 前記照射部の数n、
 前記光が結合される前記バンドル光ファイバの一端から前記方路を介して前記照射部に至るまでの光経路の距離L
であり、
 それぞれの前記照射対象域に必要なエネルギーE、それぞれの前記照射対象域への照射時間T、及び前記光経路における単位長あたりの伝搬損失CLossとしたとき、
[式(1)]
 E=Pin×C×L×CLoss×T
となるように前記パラメータを調整することを特徴とする。
The parameters are:
The power P in of the light output by the light source,
the number I of the optical fibers bundled into the optical fiber bundle;
a coupling efficiency C i of the light coupled to each of the optical fibers bundled in the optical fiber bundle (i is an identifier for identifying the optical fiber);
The number n of the irradiation units,
The distance L n of the optical path from one end of the bundle optical fiber to which the light is coupled through the path to the irradiation unit,
and
When the energy E n required for each of the irradiation target areas is E n , the irradiation time T n for each of the irradiation target areas is T n , and the propagation loss per unit length in the optical path is C Loss ,
[Formula (1)]
E n = P in × C i × L n × C Loss × T n
The parameter is adjusted so that
 調整するための具体的な設計方針は次の通りである。
(1)前記照射部それぞれが出力する前記光のパワー
in×C×L×CLoss
が等しくなるように前記パラメータを調整すること。
(2)任意の前記照射対象域Nにおいて式(1)の前記照射時間Tが最小になるように前記パラメータを調整すること。
(3)全ての前記照射対象域Nにおける式(1)の前記照射時間Tの和が最小になるように前記パラメータを調整すること。
The specific design policy for making the adjustments is as follows:
(1) The power of the light output from each of the irradiation units P in ×C i ×L n ×C Loss
and adjusting said parameters so that
(2) Adjusting the parameters so that the irradiation time T n in equation (1) is minimized in any one of the irradiation target areas N.
(3) Adjusting the parameters so that the sum of the irradiation times T n in equation (1) for all of the irradiation target areas N is minimized.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、LEDのような光源と、光伝送路としてバンドル光ファイバを使った光伝送システムについて要求されている条件を満たす光伝送システムのパラメータを計算する設計方法を提供することができる。 The present invention can provide a design method for calculating the parameters of an optical transmission system that satisfies the requirements for an optical transmission system that uses a light source such as an LED and a bundled optical fiber as an optical transmission path.
本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明に係る設計装置を説明する図である。FIG. 1 is a diagram illustrating a design apparatus according to the present invention. 本発明に係る設計方法を説明するフローチャートである。1 is a flowchart illustrating a design method according to the present invention. 本発明に係る設計方法で設計した光伝送システムの効果を説明する図である。1A to 1C are diagrams illustrating the effects of an optical transmission system designed by a design method according to the present invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 The following describes an embodiment of the present invention with reference to the attached drawings. The embodiment described below is an example of the present invention, and the present invention is not limited to the following embodiment. Note that components with the same reference numerals in this specification and drawings are mutually identical.
(実施形態1)
 図4は、本実施形態の光伝送システム301を設計する設計装置200を説明する図である。当該光伝送システム301は、
 光L1を出力する光源部11と、
 複数の光ファイバが束ねられ、前記光を伝送するバンドル光ファイバ36と、
 それぞれの照射対象域に光L2を照射する複数の照射部13と、
 バンドル光ファイバ36から分離された光ファイバであって、各々の照射部13まで光を伝搬する複数の単一コア光ファイバ51aと、
を有する。
(Embodiment 1)
FIG. 4 is a diagram illustrating a design device 200 for designing an optical transmission system 301 according to the present embodiment. The optical transmission system 301 includes:
A light source unit 11 that outputs light L1;
a bundle optical fiber 36 in which a plurality of optical fibers are bundled and which transmits the light;
A plurality of irradiation units 13 each irradiating a light beam L2 onto an irradiation target area;
a plurality of single-core optical fibers 51 a which are optical fibers separated from the bundle optical fiber 36 and which propagate light to each of the irradiation units 13;
has.
 光源部11は、例えば、LEDであり、光L1を出力する。光L1は、紫外光、可視光、赤外光、あるいはこれらの光が変調された変調光である。
 バンドル光ファイバ36は、図3(A)で説明したような複数の単一コア光ファイバ51aを束ねた光伝送路である。光源部11が出力した光L1は、バンドル光ファイバ36の一端T1に入射される。バンドル光ファイバ36に含まれる各光ファイバ51aは入射された光L1を他端にある分離部T2まで伝搬する。
 分離部T2は、バンドル光ファイバ36に束ねられた各単一コア光ファイバ51aをそれぞれに解体している部分である。つまり、各単一コア光ファイバ51aは、分離部T2で分離され、各照射対象域への方路14となる。
 分離された各方路14の先端には照射部13が配置されている。照射部13まで伝搬された光L1は、それぞれの照射部13から光の照射対象域へ照射される(図4では、照射光L2で示している。)。
The light source unit 11 is, for example, an LED, and outputs light L1. The light L1 is ultraviolet light, visible light, infrared light, or modulated light obtained by modulating any of these lights.
The bundle optical fiber 36 is an optical transmission path in which a plurality of single-core optical fibers 51a are bundled together as described in Fig. 3A. The light L1 outputted from the light source unit 11 is inputted to one end T1 of the bundle optical fiber 36. Each optical fiber 51a included in the bundle optical fiber 36 propagates the inputted light L1 to a separation unit T2 at the other end.
The separation section T2 is a section for separating each of the single-core optical fibers 51a bundled in the bundle optical fiber 36. That is, each of the single-core optical fibers 51a is separated at the separation section T2 and becomes a route 14 to each irradiation target area.
An irradiation unit 13 is disposed at the tip of each of the separated paths 14. The light L1 propagated to the irradiation unit 13 is irradiated from each irradiation unit 13 to an irradiation target area (shown as irradiated light L2 in FIG. 4).
 各照射対象域に所望の光エネルギーを照射できるように(設計方針に従って)光伝送システム301を設計するパラメータが複数存在する。設計装置200は、この設計方針に従って光伝送システム301のパラメータを算出する装置である。つまり、設計装置200は、光伝送システム301のパラメータを使って計算される、照射部13それぞれが出力する光L2のパワーが、前記照射対象域それぞれに必要なエネルギー(例えば、不活化に必要な紫外光のエネルギー)を考慮した値となるように前記パラメータを調整する。 There are multiple parameters for designing the optical transmission system 301 (according to the design policy) so that the desired light energy can be irradiated to each irradiation target area. The design device 200 is a device that calculates the parameters of the optical transmission system 301 according to this design policy. In other words, the design device 200 adjusts the parameters so that the power of the light L2 output by each irradiation unit 13, calculated using the parameters of the optical transmission system 301, becomes a value that takes into account the energy required for each irradiation target area (for example, the ultraviolet light energy required for inactivation).
 前記パラメータは、
 光源部11が出力する光L1のパワーPin
 バンドル光ファイバ36に束ねられる光ファイバ51aの数I、
 バンドル光ファイバ36に束ねられる光ファイバ51aのそれぞれへ光L1が結合する結合効率C(iは光ファイバ51aを識別するための識別子)、
 照射部13の数n(nは1からNまでの整数)、
 光L1が結合されるバンドル光ファイバ36の一端T1から方路14を介してそれぞれの照射部13に至るまでの光経路の距離L、である。
The parameters are:
The power P in of the light L1 output from the light source unit 11,
The number I of optical fibers 51a bundled into the optical fiber bundle 36;
Coupling efficiency C i of the light L1 coupled to each of the optical fibers 51 a bundled in the optical fiber bundle 36 (i is an identifier for identifying the optical fiber 51 a);
the number n of irradiation units 13 (n is an integer from 1 to N);
and the distance L n of the optical path from one end T 1 of the bundle optical fiber 36 to which the light L 1 is coupled, through the paths 14 , to each of the irradiation units 13 .
 図5は、設計装置200が行う設計方法を説明するフローチャートである。
 設計装置200は、それぞれの照射対象域ARnに必要なエネルギーE、それぞれの照射対象域ARnへの照射時間T、及び光経路における単位長あたりの伝搬損失CLossとしたとき、
[式(1)]
 E=Pin×C×L×CLoss×T
となるように前記パラメータを調整する。
FIG. 5 is a flowchart illustrating a design method performed by the design device 200.
When the energy E n required for each irradiation target area ARn is denoted by E n , the irradiation time T n for each irradiation target area ARn is denoted by T n , and the propagation loss per unit length in the optical path is denoted by C Loss , the design device 200 calculates the following formula:
[Formula (1)]
E n = P in × C i × L n × C Loss × T n
The parameters are adjusted so that
 より具体的に説明する。
 本設計方法は、LEDである光源部11、バンドル光ファイバ36、バンドル分離後の方路14、及び照射部13を有する光伝送システム301であって、次のプロセスを有する。
A more specific explanation will now be given.
This design method is for an optical transmission system 301 having a light source unit 11 which is an LED, an optical fiber bundle 36, a path 14 after the bundle is separated, and an irradiation unit 13, and includes the following processes.
 ステップS01:設計方針をたてる(設計者が行う)。なお、設計指針とは、例えば、バンドル光ファイバ36に含まれる光ファイバ51aを伝搬する光の強度が均等になるようにする、ある程度の偏差(外周の光ファイバ51aを伝搬する光の強度は中心付近の光ファイバ51aを伝搬する光の強度より小さくする)を持たせる、あるいは、一部の光ファイバ51aに対して光を伝搬させる、というような方針である。 Step S01: A design policy is established (performed by the designer). The design policy may be, for example, a policy to make the intensity of light propagating through the optical fibers 51a included in the bundle optical fiber 36 uniform, to have a certain degree of deviation (the intensity of light propagating through the optical fibers 51a on the periphery is smaller than the intensity of light propagating through the optical fibers 51a near the center), or to propagate light through some of the optical fibers 51a.
 ステップS02:次のパラメータの設定を行う。
(i)光源部11の出力パワー(Pin)を設定する。
(ii)バンドル光ファイバ36のコア数(光ファイバ51aの数)Iを設定する。
(iii)バンドル光ファイバ36の一端T1における光L1の各光ファイバ51aへの結合効率(C)を取得する。ここで、“i”は一端T1における各光ファイバ51aを識別するための識別子である。例えば、識別子iをコアの座標や所在地rl,m(l:層数、m:番地)で表現することができる。
 結合効率(C)は、例えば、光ファイバ51aのコア径や開口数で調整することができる。また、結合効率(C)は、光源部11からの光L1のスポット径や照度分布によっても調整することができる。
(iv)照射対象域ARnの総数(N)を設定する。
(v)バンドル光ファイバ36および分離部T2以降の方路14それぞれの照射部13までの距離(L)を設定する。
(vi)伝搬損失特性(CLoss)を計算する。なお、CLoss=0.3としてもよい。
(vii)各照射対象域ARnにおいて所望されるエネルギー(E)を設定する(nは1からNまでの整数)。エネルギーEは、例えば、照射対象域の不活化に必要なエネルギー積算見込値であり、照射対象域の面積や照射時間Tを考慮して設定される。
Step S02: The following parameters are set.
(i) The output power (P in ) of the light source unit 11 is set.
(ii) The number of cores (the number of optical fibers 51a) I of the bundle optical fiber 36 is set.
(iii) The coupling efficiency (C i ) of the light L1 to each optical fiber 51 a at one end T1 of the bundle optical fiber 36 is acquired. Here, “i” is an identifier for identifying each optical fiber 51 a at one end T1. For example, the identifier i can be expressed by the coordinates or location r l,m (l: number of layers, m: address) of the core.
The coupling efficiency (C i ) can be adjusted, for example, by the core diameter and numerical aperture of the optical fiber 51 a. The coupling efficiency (C i ) can also be adjusted by the spot diameter and illuminance distribution of the light L1 from the light source unit 11.
(iv) The total number (N) of irradiation target areas ARn is set.
(v) The distances (L n ) to the irradiation unit 13 of the bundle optical fiber 36 and the paths 14 after the separation unit T2 are set.
(vi) Calculate the propagation loss characteristic (C Loss ). Note that C Loss = 0.3 may be used.
(vii) Set the desired energy (E n ) in each irradiation target area ARn (n is an integer from 1 to N). The energy E n is, for example, an estimated cumulative energy value required for inactivating the irradiation target area, and is set taking into account the area of the irradiation target area and the irradiation time T n .
 ステップS03:式(1)を利用して数値計算を行う。 Step S03: Perform numerical calculations using equation (1).
 ステップS04:計算結果が設計方針に従った結果であるかを確認する。具体的には、照射対象域に所望のエネルギーEが照射されるか否かである。なお、照射対象域に照射されるエネルギーは必ずしもエネルギーEに等しくなくてもよく、エネルギーEに近似したエネルギーであってもよい。どの程度まで近似させるかは設計指針に従う。
 計算結果が設計方針に従っていなければ(ステップS04で“No”)、パラメータを変更してステップS02から再度行う。
 一方、計算結果が設計方針に従っていれば(ステップS04で“Yes”)、ステップS05を行う。
Step S04: It is confirmed whether the calculation result is in accordance with the design guidelines. Specifically, it is whether the desired energy E n is irradiated to the irradiation target area. Note that the energy irradiated to the irradiation target area does not necessarily have to be equal to the energy E n , and may be an energy that is close to the energy E n . The degree of approximation is determined according to the design guidelines.
If the calculation result does not comply with the design policy ("No" in step S04), the parameters are changed and the process is repeated from step S02.
On the other hand, if the calculation result complies with the design policy ("Yes" in step S04), step S05 is carried out.
 ステップS05:各パラメータを確定し、単一方路14を各照射部13へ割当て、光伝送システム301を完成させる。 Step S05: Determine each parameter, assign a single path 14 to each irradiation unit 13, and complete the optical transmission system 301.
 なお、照射対象域ARnでの光パワーをPoutn、照射箇所Nでの照射時間TとするとEは、
 E=Poutn×T
と表せる。なおこのEは設計の見積もり値でその他の結合損失等はないものとする。
 Poutn
outn=Pin×C×L×CLoss
で表せる。
In addition, if the optical power in the irradiation target area ARn is P outn and the irradiation time at the irradiation point N is T n , E n is expressed as follows.
E n = P outn × T n
Note that E n is an estimated design value and does not include other coupling losses.
P outn is P outn = P in × C i × L n × C Loss
It can be expressed as:
 ステップS03の数値計算は、設計方針に従って次のように行う。
(1)各照射部13が担当する照射対象域が公平に不活化されるように計算する。
 数値計算においてE=Poutn×Tの計算を実施するため、全ての照射部13の単位時間あたりのPoutnを一定にすることで公平性を保つことが可能である(公平性を担保)。
 従前のように、光源部11からの光L1のスポット径を大きくせずに公平性を担保できるため、無駄な光を低減でき、光源の低消費電力化が可能である。
(2)バンドル光ファイバ36、方路14、各照射部13が担当する照射対象域ARの状態に応じ、パワー偏差の重み付けを考慮して計算する。
 数値計算においてE=Poutn×Tの計算を実施するため、任意の照射対象域ARnにおける時間Tまたは、全ての照射対象域(AR1~ARN)における時間の和ΣTを最小化することで照射時間の短縮が可能である(短時間化)。
 照射時間の短縮ができるので、光源の低消費電力化が可能である。
The numerical calculation in step S03 is performed in accordance with the design policy as follows.
(1) Calculation is performed so that the irradiation target area assigned to each irradiation unit 13 is inactivated fairly.
Since the calculation E n =P outn ×T n is performed in the numerical calculation, fairness can be maintained by making P outn per unit time of all the irradiation units 13 constant (fairness is guaranteed).
Since fairness can be ensured without increasing the spot diameter of the light L1 from the light source unit 11 as in the past, it is possible to reduce wasted light and reduce the power consumption of the light source.
(2) The calculation is performed taking into consideration the weighting of the power deviation according to the state of the bundle optical fiber 36, the path 14, and the irradiation target area AR that each irradiation unit 13 is responsible for.
In the numerical calculation, the calculation E n = P outn × T n is performed, so the irradiation time can be shortened (shortened) by minimizing the time T n in any irradiation target area ARn or the sum of the times ΣT n in all irradiation target areas (AR1 to ARN).
Since the irradiation time can be shortened, it is possible to reduce the power consumption of the light source.
 このように、ステップS03の数値計算は複数のパラメータ(Pin、C、N、L、CLoss、E)をもつ複雑系計算となり、所望の設計方針(得たい効果)を満足する結果を得ることができる。
 そのアルゴリズムについては、いずれの先行技術を活用可能で、例えば多目的最適化法などを適用しても良い。
In this way, the numerical calculation in step S03 becomes a complex system calculation having multiple parameters (P in , C i , N, L n , C Loss , E n ), and it is possible to obtain results that satisfy the desired design policy (desired effect).
The algorithm may utilize any prior art, for example, a multi-objective optimization method.
 具体的には、設計装置200は図6のような光伝送システム301の設計を行うことができる。
 図6(A)のように、バンドル光ファイバの一端T1に照射される光L1の照度偏差により、照射部13から照射される光L2にはパワー偏差が生じることになる。ここで、設計装置200は、照射対象域にて所望される事項、例えば低パワーで良い箇所には、バンドル光ファイバ36の外側コア(外側に配置された光ファイバ51a)を方路14(1)に割り当てて低パワーの光L2を照射し、高パワーが必要な箇所には、バンドル光ファイバ36の中心付近のコア(中心付近に配置された光ファイバ51a)を方路14(2)に割り当てて高パワーの光L2を照射する設計を行う。
 そうすることで、光源部11からの光L1を無駄なくバンドル光ファイバ36へ結合して照射対象域へ照射できるので、光源部11の消費電力の無駄を削減できる。
Specifically, the design device 200 can design an optical transmission system 301 as shown in FIG.
6A, due to an illuminance deviation of the light L1 irradiated to one end T1 of the bundle optical fiber, a power deviation occurs in the light L2 irradiated from the irradiation unit 13. Here, the design device 200 performs a design in which, for example, in a desired irradiation target area, an outer core (optical fiber 51a arranged on the outside) of the bundle optical fiber 36 is assigned to the path 14(1) to irradiate low-power light L2 in a location where low power is sufficient, and a core near the center of the bundle optical fiber 36 (optical fiber 51a arranged near the center) is assigned to the path 14(2) to irradiate high-power light L2 in a location where high power is required.
By doing so, the light L1 from the light source unit 11 can be efficiently coupled to the bundle optical fiber 36 and irradiated onto the irradiation target area, so that wasteful power consumption of the light source unit 11 can be reduced.
 また、図6(B)のように、各照射対象域ARnまでの距離Lnに差異が生じている場合であっても、設計装置200は、結合効率と距離(伝搬損失)の関係から同じパワーの光L2を照射部13から照射させるように設計することができる。
 このように設計することで、照射対象域への公平な光の照射を実現できる。
Furthermore, even if there is a difference in the distance Ln to each irradiation target area ARn, as shown in Figure 6 (B), the design device 200 can design the irradiation unit 13 to irradiate light L2 of the same power based on the relationship between coupling efficiency and distance (propagation loss).
By designing in this way, it is possible to achieve even illumination of the target area with light.
 なお、図6の光伝送システム301は、図4で説明した光伝送システム301に対して、光源部11からの光L1の光スポットを調整できる光学系11cを備えている。光学系11cにより、結合効率(C)の調整が容易になる。 6 includes an optical system 11c capable of adjusting the optical spot of the light L1 from the light source unit 11, in comparison with the optical transmission system 301 described in FIG. 4. The optical system 11c makes it easy to adjust the coupling efficiency (C i ).
(他の実施形態)
 上述した実施形態は、光源部11がLEDである場合を説明した。しかし、本発明は、光源部11がLEDに限らず次のような光学特性を持つ光源(例えば、白熱ランプ、または放電ランプ)であってもよい。
・波長、振幅、又は位相にばらつきがある。
・光が散乱する。
・自然放出である。
Other Embodiments
In the above-described embodiment, the light source unit 11 is an LED. However, in the present invention, the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics.
- There is variation in wavelength, amplitude, or phase.
・Light is scattered.
・It is a natural release.
11:光源部
11a:紫外光源部
11c:光学系
12:光分配部(等分岐)
13、13-1、・・・、13-n、・・・、13-N:照射部
14:方路(バンドル光ファイバ36に束ねられていた各単一コア光ファイバ51a)
16:光伝送路
36:バンドル光ファイバ
51a:単一コア光ファイバ
200:設計装置
300、301:光伝送システム
L1、L2:光
Lc:光スポットの大きさ
AR1、AR2、・・・、ARn、・・・、ARN:照射対象域
11: Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light distribution unit (equal branching)
13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36)
16: Optical transmission path 36: Bundle optical fiber 51a: Single-core optical fiber 200: Design device 300, 301: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Claims (6)

  1.  光を出力する光源と、
     複数の光ファイバが束ねられ、前記光を伝送するバンドル光ファイバと、
     それぞれの照射対象域に前記光を照射する複数の照射部と、
     前記バンドル光ファイバから分離された前記光ファイバであって、各々の前記照射部まで前記光を伝搬する複数の方路と、
    を有する光伝送システムを設計する設計方法であって、
     前記光伝送システムのパラメータを使って計算される、前記照射部それぞれが出力する前記光のパワーが、前記照射対象域それぞれに必要なエネルギーを考慮した値となるように前記パラメータを調整することを特徴とする設計方法。
    A light source that outputs light;
    a bundle optical fiber in which a plurality of optical fibers are bundled and which transmits the light;
    A plurality of irradiation units each irradiating an irradiation target area with the light;
    the optical fiber separated from the bundle optical fiber, the optical fiber having a plurality of paths for propagating the light to each of the irradiation units;
    A method for designing an optical transmission system having
    A design method characterized by adjusting the parameters of the optical transmission system so that the optical power output by each of the irradiation units is a value that takes into account the energy required for each of the irradiation target areas.
  2.  前記パラメータは、
     前記光源が出力する前記光のパワーPin
     前記バンドル光ファイバに束ねられる前記光ファイバの数I、
     前記バンドル光ファイバに束ねられる前記光ファイバのそれぞれへ前記光が結合する結合効率C(iは前記光ファイバを識別するための識別子)、
     前記照射部の数n、
     前記光が結合される前記バンドル光ファイバの一端から前記方路を介して前記照射部に至るまでの光経路の距離L
    であり、
     それぞれの前記照射対象域に必要なエネルギーE、それぞれの前記照射対象域への照射時間T、及び前記光経路における単位長あたりの伝搬損失CLossとしたとき、
    [式(1)]
     E=Pin×C×L×CLoss×T
    となるように前記パラメータを調整することを特徴とする請求項1に記載の設計方法。
    The parameters are:
    The power P in of the light output by the light source,
    the number I of the optical fibers bundled into the optical fiber bundle;
    a coupling efficiency C i of the light coupled to each of the optical fibers bundled in the optical fiber bundle (i is an identifier for identifying the optical fiber);
    The number n of the irradiation units,
    The distance L n of the optical path from one end of the bundle optical fiber to which the light is coupled through the path to the irradiation unit,
    and
    When the energy E n required for each of the irradiation target areas is E n , the irradiation time T n for each of the irradiation target areas is T n , and the propagation loss per unit length in the optical path is C Loss ,
    [Formula (1)]
    E n = P in × C i × L n × C Loss × T n
    2. The design method according to claim 1, further comprising adjusting the parameters so that:
  3.  前記照射部それぞれが出力する前記光のパワー
    in×C×L×CLoss
    が等しくなるように前記パラメータを調整することを特徴とする請求項2に記載の設計方法。
    The power of the light output from each of the irradiation units is P in ×C i ×L n ×C Loss
    3. The design method according to claim 2, wherein the parameters are adjusted so that:
  4.  任意の前記照射対象域Nにおいて式(1)の前記照射時間Tが最小になるように前記パラメータを調整することを特徴とする請求項2に記載の設計方法。 The design method according to claim 2, characterized in that the parameters are adjusted so that the irradiation time T n in formula (1) is minimized in any one of the irradiation target areas N.
  5.  全ての前記照射対象域Nにおける式(1)の前記照射時間Tの和が最小になるように前記パラメータを調整することを特徴とする請求項2に記載の設計方法。 The design method according to claim 2, characterized in that the parameters are adjusted so that a sum of the irradiation times Tn in equation (1) for all the irradiation target regions N is minimized.
  6.  光を出力する光源と、
     複数の光ファイバが束ねられ、前記光を伝送するバンドル光ファイバと、
     それぞれの照射対象域に前記光を照射する複数の照射部と、
     前記バンドル光ファイバから分離された前記光ファイバであって、各々の前記照射部まで前記光を伝搬する複数の方路と、
    を有する光伝送システムを設計する設計装置であって、
     前記光伝送システムのパラメータを使って計算される、前記照射部それぞれが出力する前記光のパワーが、前記照射対象域それぞれに必要なエネルギーを考慮した値となるように前記パラメータを調整することを特徴とする設計装置。
    A light source that outputs light;
    a bundle optical fiber in which a plurality of optical fibers are bundled and which transmits the light;
    A plurality of irradiation units each irradiating an irradiation target area with the light;
    the optical fiber separated from the bundle optical fiber, the optical fiber having a plurality of paths for propagating the light to each of the irradiation units;
    A design apparatus for designing an optical transmission system having
    A design device characterized by adjusting the parameters so that the power of the light output by each of the irradiation units, which is calculated using parameters of the optical transmission system, becomes a value that takes into account the energy required for each of the irradiation target areas.
PCT/JP2022/038672 2022-10-18 2022-10-18 Optical transmission system design method and design device WO2024084561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038672 WO2024084561A1 (en) 2022-10-18 2022-10-18 Optical transmission system design method and design device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038672 WO2024084561A1 (en) 2022-10-18 2022-10-18 Optical transmission system design method and design device

Publications (1)

Publication Number Publication Date
WO2024084561A1 true WO2024084561A1 (en) 2024-04-25

Family

ID=90737081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038672 WO2024084561A1 (en) 2022-10-18 2022-10-18 Optical transmission system design method and design device

Country Status (1)

Country Link
WO (1) WO2024084561A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430105A (en) * 1990-05-26 1992-02-03 Matsushita Electric Works Ltd Fiber light source device
JP2000501548A (en) * 1995-11-29 2000-02-08 ファーライト コーポレーション Universal remote lighting system
JP2003322730A (en) * 2002-04-30 2003-11-14 Sumitomo Electric Ind Ltd Bundle fiber, light source device using the same and its manufacturing method
US20060140558A1 (en) * 2004-12-29 2006-06-29 Michaloski Paul F Optical fiber bundles and devices including them
JP2015212688A (en) * 2014-04-18 2015-11-26 Drc株式会社 Light irradiation device and method for measuring light transmission characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430105A (en) * 1990-05-26 1992-02-03 Matsushita Electric Works Ltd Fiber light source device
JP2000501548A (en) * 1995-11-29 2000-02-08 ファーライト コーポレーション Universal remote lighting system
JP2003322730A (en) * 2002-04-30 2003-11-14 Sumitomo Electric Ind Ltd Bundle fiber, light source device using the same and its manufacturing method
US20060140558A1 (en) * 2004-12-29 2006-06-29 Michaloski Paul F Optical fiber bundles and devices including them
JP2015212688A (en) * 2014-04-18 2015-11-26 Drc株式会社 Light irradiation device and method for measuring light transmission characteristic

Similar Documents

Publication Publication Date Title
CN106794357A (en) Sterilizing unit
JP2017502718A (en) Antibacterial light transmission device and method for sterilizing surface
JP2017502717A (en) Irradiated bandages and methods of disinfecting wounds
JP2008545479A5 (en)
JP2024059974A (en) Ultraviolet Light Irradiation System
WO2024084561A1 (en) Optical transmission system design method and design device
WO2024084562A1 (en) Bundled optical fiber
WO2022085123A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
US20220283476A1 (en) Light generation and distribution methods and systems for disinfection, medical therapeutics, and lighting
WO2022024304A1 (en) Ultraviolet irradiation system and decontamination method
WO2024100862A1 (en) Optical transmission system
WO2024105875A1 (en) Optical transfer system and optical transfer method
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2022085142A1 (en) Ultraviolet light irradiation system and method
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2023084677A1 (en) Ultraviolet light emission system
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2024100864A1 (en) Optical transmission system and optical transmission method
WO2023276148A1 (en) Ultraviolet light irradiation system and control method
WO2023073884A1 (en) Ultraviolet light irradiation system
WO2024100863A1 (en) Optical transmission system and optical transmission method
WO2022185458A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023073774A1 (en) Uv irradiation system
US20240216559A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962673

Country of ref document: EP

Kind code of ref document: A1