WO2024084549A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2024084549A1
WO2024084549A1 PCT/JP2022/038589 JP2022038589W WO2024084549A1 WO 2024084549 A1 WO2024084549 A1 WO 2024084549A1 JP 2022038589 W JP2022038589 W JP 2022038589W WO 2024084549 A1 WO2024084549 A1 WO 2024084549A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
electric machine
rotor
rotating
holder
Prior art date
Application number
PCT/JP2022/038589
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 峰雪
啓一 古西
将大 金丸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/038589 priority Critical patent/WO2024084549A1/en
Publication of WO2024084549A1 publication Critical patent/WO2024084549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • This application relates to a rotating electric machine.
  • Patent Document 1 employs a rotor structure in which the radial thickness of the rotor core is small as explained above. This causes a bending moment, with the crimp acting as a fulcrum, when the rotor core is pressed into the rotary holder, resulting in stress concentration in the thin-walled portion of the rotor core's outer diameter, and thus a reduction in the strength of the rotor core.
  • the radial thickness is sufficiently large to allow for stacking and fixing by welding, and stress relief holes are provided to suppress thermal distortion during welding.
  • stress relief holes are provided to suppress thermal distortion during welding.
  • This application has been made to solve the above problems, and its purpose is to obtain a rotating electric machine that can reduce stress concentration in the thin-walled portion of the rotor core.
  • the rotating electric machine disclosed in this application is a rotating electric machine having a stator, a rotor arranged with a magnetic gap between the stator and a rotor core in which electromagnetic steel sheets are laminated, and a rotor composed of a number of permanent magnets arranged at equal intervals in the circumferential direction on the rotor core, and is provided with an axial retainer arranged radially inside the permanent magnets with half the number of magnetic poles of the rotor, a cylindrical rotating retainer with the rotor core arranged on its outer tube, and a suppression structure that suppresses the bending moment with the axial retainer as a fulcrum.
  • the rotating electric machine disclosed in this application has axial retainers arranged radially inside the permanent magnets, with half the number of magnetic poles of the rotor, and a rotor core arranged on the outer tubular part of the rotating retainer, which is cylindrical in shape.
  • the bending moment, which is supported by the axial retainer, is suppressed by a suppression structure, so that a rotating electric machine can be obtained that can reduce stress concentration in the thin-walled part of the rotor core.
  • 1 is a cross-sectional view showing a rotating electric machine according to a first embodiment of the present invention
  • 1 is a perspective view showing a rotor core in a rotating electric machine according to a first embodiment
  • 1 is a perspective view showing a rotary holder in a rotary electric machine according to a first embodiment
  • 1 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a first embodiment
  • 5 is an enlarged cross-sectional view of a main portion of the rotating electric machine according to the first embodiment of the present invention shown in FIG. 4 .
  • FIG. 11 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a second embodiment.
  • FIG. 11 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a second embodiment.
  • FIG. 13 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment.
  • FIG. 13 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment.
  • FIG. 13 is a cross-sectional view of a main portion showing a modified example of a rotor in a circumferential direction of a rotation axis in a rotating electric machine according to embodiment 4.
  • FIG. 13 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a fifth embodiment.
  • FIG. 12 is an enlarged cross-sectional view of a main portion of the rotating electric machine according to the fifth embodiment of the present invention
  • FIG. 13 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to a sixth embodiment.
  • FIG. 14 is an enlarged cross-sectional view of a main portion of the rotating electric machine of FIG. 13 according to a sixth embodiment.
  • FIG. 1 is a cross-sectional view showing a rotating electric machine according to the first embodiment.
  • Figure 2 is a perspective view showing a rotor core in the rotating electric machine according to the first embodiment.
  • Figure 3 is a perspective view showing a rotating holder in the rotating electric machine according to the first embodiment.
  • Figure 4 is a cross-sectional view showing the circumferential direction of the rotation axis of the rotor in the rotating electric machine according to the first embodiment.
  • Figure 5 is an enlarged cross-sectional view of a main part of Figure 4 in the rotating electric machine according to the first embodiment.
  • the rotating electric machine 100 includes a housing 210 consisting of a cylindrical frame 211 with a bottom and an end plate 212 that closes the opening of the frame 211, and an armature 220, which is a stator fixed in a state of being fitted inside the cylindrical portion of the frame 211.
  • the armature 220 is composed of multiple coils 221 that generate magnetic flux, a connection plate 222 that distributes current to the multiple coils 221, and an armature core 223 through which the magnetic flux flows.
  • the coils 221, connection plate 222, and armature core 223 are each fixed to a bobbin 224 and electrically insulated.
  • connection plates 222 are provided for three phases, each connected to a coil 221 of a different phase.
  • the rotor 300 is arranged with a magnetic gap between it and the armature 220 and is composed of a rotor core 311 in which electromagnetic steel sheets are arranged in layers, and a number of permanent magnets 321 arranged at equal intervals in the circumferential direction on the rotor core 311.
  • the rotor core 311 is disposed on the outer tube of the rotating holder 400, which is cylindrical in shape, and is structurally connected to the rotor 300 and extends in the direction of the rotation axis.
  • the rotating holder 400 is rotatably supported by bearings 500 provided in the housing 210.
  • the above configuration results in a high ratio of the diameter of the rotary holder 400 to the outer diameter of the rotor core 311, and a relatively thin thickness in the radial direction of the rotary shaft of the rotor core 311.
  • This structure is advantageous for reducing costs by reducing the amount of electromagnetic steel sheet used to compose the rotor core 311, and for reducing the weight of the rotary shaft member by providing a space between the rotary shaft and the cylindrical rotary holder 400 for the rotary holder material that holds the rotor core 311.
  • the rotating holder 400 that holds the rotor core 311 is directly supported for rotation by the bearing 500.
  • a separate shaft (not shown) with a smaller diameter than the rotating holder 400 at the position of the rotation axis through a cavity in the inner diameter part of the rotating holder 400, and to have the shaft rotatably supported by the bearing 500.
  • the permanent magnets 321 are embedded in the outer peripheral surface of the rotor core 311 and are arranged at equal intervals in the circumferential direction at a predetermined pitch to form magnetic poles, and are structurally fixed between the permanent magnets 321 and the rotor core 311 by applying a silicone resin-based adhesive between them and then heating and hardening it.
  • the polarities of multiple permanent magnets 321 arranged at equal intervals in the circumferential direction of the rotating shaft on the rotor core 311 are alternated, and axial retainers 331 are arranged at equal intervals on the radial inside of the permanent magnets 321, with half the number of magnetic poles of the rotor 300.
  • a core fitting portion 340 for positioning the rotor core 311 in the circumferential direction is provided on the inner circumference of the rotor core 311.
  • a suppression structure for example recesses 351, is provided on the inner circumference of the rotor core 311 radially inside the axial holder 331.
  • the recesses 351 are arranged in half the number of magnetic poles as the axial holder 331, and suppress the bending moment for which the axial holder 331 serves as a fulcrum.
  • the suppression structure, recesses 351 has a circumferential width that is equal to or greater than the angle of the number of poles of the permanent magnet 321.
  • the axial holder 331 has a V-shaped crimp structure that holds the magnetic steel sheet in the axial direction during punching so that the cross-sectional shape in the circumferential direction of the rotating shaft is V-shaped when the magnetic steel sheet is pressed.
  • the axial holder 331 is prone to eddy current loss due to residual stress during punching and reduced insulation between laminations, so it is characterized by being positioned inside the permanent magnet 321 in the radial direction of the rotating shaft to reduce the effect of magnetic properties.
  • the rotating holder 400 has an outer cylinder 410 into which the rotor core 311 is pressed, and an inner cylinder 420 for providing a cavity in the inner diameter of the rotating holder 400, and is characterized by a structure that allows the attachment of a shaft or vibration suppression parts for transmitting axial force to the inner cylinder 420.
  • the rotary holder 400 is also provided with a rotary retaining fitting 440 that positions the core fitting 340 of the rotor core 311, and is characterized by a structure that facilitates assembly by providing a small gap between the core fitting 340 of the rotor core 311 and the rotary retaining fitting 440. If positioning accuracy is required, the core fitting 340 of the rotor core 311 and the rotary retaining fitting 440 may be provided in multiple locations rather than in one location, and the positioning may be adjusted.
  • Figures 4 and 5 show a rotor structure 600 in which a rotor 300 is disposed on a rotating holder 400.
  • the rotor core 311 and the rotating holder 400 are positioned in the circumferential direction of the rotation axis by the core fitting portion 340 and the rotating holder fitting portion 440, and the rotor 300 is press-fitted into the rotating holder 400 to fit it.
  • Shrink fitting or cold fitting may be used for the fitting.
  • the rotor core 311 has a structure in which the thickness in the radial direction of the rotating shaft is 10% or less of the outermost diameter portion 602.
  • the rotor 300 is configured with a rotor core 311 fixed to the outer tube of a cylindrical rotating holder 400 connected to the rotating shaft, axial holders 331 arranged at equal intervals with half the number of magnetic poles of the rotor 300 on the radial inside of the permanent magnets 321, and recesses 351 as suppression structures arranged on the radial inside of the axial holders 331 in the rotating shaft direction.
  • This configuration provides the recesses 351 as suppression structures that suppress the application of bending moment with the axial holders 331 as a fulcrum when the rotor core 311 is pressed into the rotating holder 400 due to the rotor structure having a small radial thickness of the rotor core 311.
  • the structure of this embodiment 1 is characterized in that by providing a recess 351, which is a suppression structure arranged on the inner diameter portion of the rotor core 311 radially inside the axial retainer 331 in the direction of the rotation axis, the bending moment generated when the innermost diameter portion 603 of the rotor core 311 is corrected in the direction of the rotation axis is not transmitted to the axial retainer 311, and local stress is less likely to occur in the areas where the radial thickness of the outermost diameter portion 602 and the permanent magnet 321 is small in the direction of the rotation axis.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to Fig. 6 and Fig. 7, in which the same or corresponding members and parts are denoted by the same reference numerals in each drawing.
  • Fig. 6 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the second embodiment.
  • Fig. 7 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the second embodiment.
  • Figures 6 and 7 show a rotor structure 700 in which a rotor 300 is disposed on a rotary holder 400.
  • the permanent magnet 321 is structured to be divided into two in the direction of the rotation axis.
  • the permanent magnet 321 may be one-piece without being divided, or instead of a sintered magnet, a bonded magnet that is injection molded directly onto the rotor core 311, or a field winding with an armature winding inserted into the core may be used.
  • the aspect ratio of the radial surface area can be set to an optimal number of divisions based on the shape before it is cut out by cutting. This improves cutting workability and reduces processing costs, and is characterized by the fact that it is easy to adjust the magnetic domain orientation within the permanent magnet 321 and stabilize the magnetic properties.
  • the recess 351 arranged on the inside of the axial retainer 331 in the radial direction of the rotating shaft is arranged in the direction of the rotating shaft, and the thickness of the recess 351 in the radial direction of the rotating shaft is characterized by a structure having a thickness greater than the clamping margin when the rotor core 311 and the rotating retainer 400 are pressed into place.
  • FIG. 8 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment.
  • Fig. 9 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment.
  • FIGS. 8 and 9 show a structure of a modified version of the rotary holder 400 in the first embodiment described above.
  • the rotor core 311 and the rotary holder 400 are press-fitted and held with a clamping margin when pressed in.
  • Figures 8 and 9 show a structure in which the configuration of the rotating holder 400 in embodiment 1 is modified to provide a recess or uneven portion such as a knurl 401 or staking 402, which is a suppression structure, on the outer tube of the rotating holder 400, in order to structurally increase the fastening force, for example, in cases where a configuration is adopted in which the recess 351 is not provided on the radially inner side of the rotating shaft of the rotor core 311, or in cases where the contact state of the respective parts during press-fitting is unstable due to the accuracy of the inner diameter of the rotor core 311 and the outer diameter of the rotating holder 400.
  • a recess or uneven portion such as a knurl 401 or staking 402 which is a suppression structure
  • recesses 351 provided on the inner diameter of rotor core 311, which functions as a suppression structure for the bending moment in embodiment 1 may be provided on the rotary holder 400 side.
  • FIG. 10 is a cross-sectional view of a main part showing a modification of the rotor in the circumferential direction of the rotation axis in a rotating electric machine according to the fourth embodiment.
  • the axial retainer 331 has been described using a V-shaped crimped structure with its longitudinal direction parallel to the circumferential direction of the rotation axis.
  • the axial retainer 331 may be a round crimped core 370 using a round crimp 371.
  • other axial retaining methods such as pin crimping, screw fastening, welding, and adhesive bonding may also be used.
  • the axial retainers 331 do not have to be half the number of magnetic poles and are not required to be equally spaced circumferentially, and may be arranged in multiple locations based on structural strength and magnetic circuit configuration.
  • FIG. 11 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the fifth embodiment.
  • Fig. 12 is an enlarged cross-sectional view of a main part of Fig. 11 in the rotating electric machine according to the fifth embodiment.
  • FIGS 11 and 12 show a rotor structure 800 in which a rotor 300 is disposed on a rotating holder 400.
  • the rotor structure according to this embodiment 5 is a structure made up of a rotating shaft radial V crimp core 811, a rotating shaft radial V crimp 361 as an axial holder, a permanent magnet 321, and a rotating holder outer cylinder portion 410 and a rotating holder inner cylinder portion 420 of the rotating holder 400.
  • a structure with a relatively thin rotating shaft radial thickness is adopted, similar to the rotor of embodiment 1 described above.
  • the rotating shaft radial V crimp core 811 and the permanent magnets 321 are arranged at equal intervals in the circumferential direction of the rotating shaft, the polarities of the permanent magnets 321 are arranged alternately, the rotating shaft radial V crimps 361 are arranged at equal intervals in the circumferential direction on the radial inside of the permanent magnets 321 with half the number of magnetic poles, and a core fitting portion 340 is provided for circumferential positioning of the rotating shaft radial V crimp core 811, and the rotating shaft radial V crimp 361 has a V crimp structure that holds the rotating shaft in the direction of the rotating shaft when punching so that the cross-sectional shape in the circumferential direction of the rotating shaft becomes V-shaped when the electromagnetic steel sheet is press-processed.
  • the V-shaped crimp 361 in the radial direction of the rotating shaft is prone to eddy current loss due to residual stress during punching and deterioration of interlaminar insulation, it is characterized by being positioned inside the permanent magnet 321 in the radial direction of the rotating shaft to reduce the effect on magnetic properties.
  • the thickness of the V-shaped crimped core 811 in the radial direction of the rotary shaft is 10% or less of the outermost diameter portion 802.
  • the diameter 804 of the rotation holder inner cylinder portion 420 of the rotation holder 400 is ⁇ c
  • the relationship is as follows: and the thickness of the rotary holder 400 in the radial direction of the rotary shaft is 10% or less of the outermost diameter portion 802 of the rotor core 311.
  • the structure is characterized by the fact that the radial V crimp 361 of the rotating shaft is displaced in the radial direction of the rotating shaft, making it difficult for local stress to occur at the location where the radial thickness of the rotating shaft of the outermost diameter portion 802 of the radial V crimp core 811 and the permanent magnet 321 is small.
  • the rotor 300 is configured with the rotating shaft radial V crimps 361 arranged circumferentially on the radial inside of the permanent magnet 321 as axial retainers and suppression components, with half the number of magnetic poles.
  • This provides a function as a suppression component that suppresses the application of bending moment with the rotating shaft radial V crimp 361 as a fulcrum when the rotating shaft radial V crimp core 811 is pressed into the rotating retainer 400, which is associated with a rotor structure with a small radial thickness of the rotor core.
  • FIG. 13 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the sixth embodiment.
  • Fig. 14 is an enlarged cross-sectional view of a main part of Fig. 13 in the rotating electric machine according to the sixth embodiment.
  • Figures 13 and 14 show a rotor structure 900 in which a rotor 300 is disposed on a rotating holder 400.
  • This embodiment 6 is a modification of the above-mentioned embodiment 5, and as shown in Figures 13 and 14, the structure shown in Figures 4 and 5 of the above-mentioned embodiment 1 is partially modified to have a rotating shaft radial V crimp 361 disposed on a rotating shaft radial V crimp core 911 with the V crimp structure of the rotating shaft radial V crimp 361 as an axial holder rotated 90 degrees in the rotating shaft radial direction.
  • the V-shaped crimp 361 in the radial direction of the rotating shaft is prone to eddy current loss due to residual stress during punching and deterioration of interlaminar insulation, it is characterized by being positioned inside the permanent magnet 321 in the radial direction of the rotating shaft to reduce the effect on magnetic properties.
  • the structure is characterized by a relationship of ⁇ 1 ⁇ 2.
  • the rotor core 311 has a structure in which the thickness in the radial direction of the rotating shaft is 10% or less of the outermost diameter portion 902.
  • the structure is characterized by the fact that the radial V crimp 361 of the rotating shaft is shifted in the radial direction of the rotating shaft, making it difficult for local stress to occur in the areas where the radial thickness of the rotating shaft of the outermost diameter part 802 of the rotor core 311 and the permanent magnet 321 is small.
  • the rotating shaft radial V crimp 361 By using the rotating shaft radial V crimp 361, when the rotor core 311 and the rotating holder 400 are fitted together and there is a large axial misalignment, no bending moment is generated with the rotating shaft radial V crimp 361 as a fulcrum when the innermost diameter part 903 of the rotor core 311 is corrected in the rotating shaft direction by the rotating holder 400.
  • the rotating shaft radial V crimp 361 is misaligned in the rotating shaft radial direction, which is a feature of the structure in which local stress is unlikely to occur in the areas where the outermost diameter part 902 of the rotor core 3911 and the permanent magnet 321 have a small thickness in the rotating shaft radial direction.
  • the configurations of the above-mentioned embodiments are not limited, and the same effect can be obtained by adopting a configuration in the core near the axial retainer that has a function of suppressing the occurrence of bending moment with the axial retainer as a fulcrum when the rotor core is pressed in.
  • it is effective to provide an opening in the core near the axial retainer or near the core inner diameter and to position the opening in an appropriate position that can suppress the above-mentioned bending moment.
  • the permanent magnet 321 that constitutes the magnetic poles of the rotor is exemplified as a configuration in which a single flat magnet is arranged in cross section.
  • a pair of flat magnets may be arranged in a straight line parallel to the circumferential direction to form each magnetic pole, or a pair of flat magnets may be arranged in a V-shape that is inclined relative to the circumferential direction, and the basic effects of the present application as described in each embodiment can be similarly obtained.
  • This application is suitable for realizing a rotating electric machine that can reduce stress concentration in the thin-walled parts of the rotor core.
  • 100 rotating electric machine 210 housing, 211 frame, 212 end plate, 220 armature, 221 coil, 222 connection plate, 223 armature core, 224 bobbin, 300 rotor, 311 rotor core, 321 permanent magnet, 331 axial holder, 340 core fitting, 351 recess, 361 rotary shaft radial V crimp, 370 round crimp core, 371 round crimp, 400 rotating holder, 401 knurling, 402 staking, 410 rotating holder outer cylinder, 420 rotating holder inner cylinder, 440 rotating holder fitting, 500 bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The present application provides a rotary electric machine in which stress concentration on a thin-walled portion of a rotor core can be reduced. A rotary electric machine (100) comprises a stator (200) and a rotor (300) configured of a rotor core (311), which is arranged through a magnetic gap with the stator (200) and in which electromagnetic steel sheets are laminated, and a plurality of permanent magnets (321) arranged at equal intervals in the circumferential direction in the rotor core (311). The rotary electric machine is provided with axial holders (331) arranged for half the number of magnetic poles of the rotor (300) on the radially inner side of the permanent magnets (321), a rotary holder (400) configured in a cylindrical shape with a rotor core (311) being arranged as an outer tubular part, and a suppressing structure (351) that suppresses the bending moments about the axial holders (331) as fulcrums.

Description

回転電機Rotating Electric Machine
 本願は、回転電機に関するものである。 This application relates to a rotating electric machine.
 従来の回転電機では、例えば、電動車両用の回転電機に汎用される回転子コアがシャフトに連結される円筒状の回転保持体に保持される回転子構造においては、回転子コアの外径に占める回転保持体の径の割合が高く、結果、回転子コアの径方向厚みが小さい構造が採られることがある。(例えば特許文献1参照) In conventional rotating electric machines, for example, in rotor structures in which a rotor core commonly used in rotating electric machines for electric vehicles is held by a cylindrical rotating holder connected to a shaft, the ratio of the diameter of the rotating holder to the outer diameter of the rotor core is high, and as a result, a structure in which the radial thickness of the rotor core is small is sometimes adopted. (See, for example, Patent Document 1)
 また、回転子の構造で耐遠心強度を確保するため、回転子コアの積層を固定で内径部を溶接した形状で、溶接時の熱歪変形を抑制するための応力緩和穴を設けた構造が示されている。(例えば特許文献2参照) Also, to ensure that the rotor structure can withstand centrifugal forces, the rotor core laminations are fixed and the inner diameter is welded, and a structure is shown in which stress relief holes are provided to suppress thermal distortion during welding. (See, for example, Patent Document 2.)
特開2012-100477号公報JP 2012-100477 A WO2014/208582A1号公報Publication No. WO2014/208582A1
 上述した従来の回転電機において、特許文献1の構造では、上記説明のとおり回転子コアの径方向厚みが小さい回転子構造が採られていることから、回転子コアを回転保持体に圧入した際にかしめが支点となる曲げモーメントが掛かり、回転子コアのコア外径の薄肉部への応力集中が発生し、回転子コアの強度低下となるという課題があった。 In the conventional rotating electric machine described above, the structure of Patent Document 1 employs a rotor structure in which the radial thickness of the rotor core is small as explained above. This causes a bending moment, with the crimp acting as a fulcrum, when the rotor core is pressed into the rotary holder, resulting in stress concentration in the thin-walled portion of the rotor core's outer diameter, and thus a reduction in the strength of the rotor core.
 また、特許文献2では、溶接による積層固定に対して、径方向厚みを十分に裕度があり、溶接時の熱歪変形を抑制するための応力緩和穴を設けているが、径方向厚みが小さい場合の応力低減の効果が小さくなるため、応力緩和穴を大きく取る必要があるという問題があった。 In addition, in Patent Document 2, the radial thickness is sufficiently large to allow for stacking and fixing by welding, and stress relief holes are provided to suppress thermal distortion during welding. However, there is a problem in that the effect of stress reduction is reduced when the radial thickness is small, so the stress relief holes must be made large.
 本願は、上記のような課題を解決するためになされたものであり、その目的は、回転子コアの薄肉部への応力集中を低減することができる回転電機を得ることを目的とするものである。 This application has been made to solve the above problems, and its purpose is to obtain a rotating electric machine that can reduce stress concentration in the thin-walled portion of the rotor core.
 本願に開示される回転電機は、固定子と、前記固定子と磁気的空隙部を介して配置され、電磁鋼板が積層配置された回転子コアと前記回転子コアに円周方向に等間隔に配置された複数の永久磁石とにより構成された回転子とを備えた回転電機であって、前記永久磁石の径方向内側で前記回転子の磁極数の半数で配置された軸方向保持体と、円筒形状で構成され、外筒部に前記回転子コアが配置された回転保持体と、前記軸方向保持体が支点となる曲げモーメントを抑制する抑制構成体とを設けたものである。 The rotating electric machine disclosed in this application is a rotating electric machine having a stator, a rotor arranged with a magnetic gap between the stator and a rotor core in which electromagnetic steel sheets are laminated, and a rotor composed of a number of permanent magnets arranged at equal intervals in the circumferential direction on the rotor core, and is provided with an axial retainer arranged radially inside the permanent magnets with half the number of magnetic poles of the rotor, a cylindrical rotating retainer with the rotor core arranged on its outer tube, and a suppression structure that suppresses the bending moment with the axial retainer as a fulcrum.
 本願に開示される回転電機によれば、永久磁石の径方向内側で回転子の磁極数の半数の軸方向保持体を配置し、円筒形状で構成された回転保持体の外筒部に回転子コアを配置し、軸方向保持体が支点となる曲げモーメントを抑制構成体により抑制するようにしたので、回転子コアの薄肉部への応力集中を低減することができる回転電機を得ることができる。 The rotating electric machine disclosed in this application has axial retainers arranged radially inside the permanent magnets, with half the number of magnetic poles of the rotor, and a rotor core arranged on the outer tubular part of the rotating retainer, which is cylindrical in shape. The bending moment, which is supported by the axial retainer, is suppressed by a suppression structure, so that a rotating electric machine can be obtained that can reduce stress concentration in the thin-walled part of the rotor core.
実施の形態1に係わる回転電機を示す断面図である。1 is a cross-sectional view showing a rotating electric machine according to a first embodiment of the present invention; 実施の形態1に係わる回転電機における回転子コアを示す斜視図である。1 is a perspective view showing a rotor core in a rotating electric machine according to a first embodiment; 実施の形態1に係わる回転電機における回転保持体を示す斜視図である。1 is a perspective view showing a rotary holder in a rotary electric machine according to a first embodiment; 実施の形態1に係わる回転電機における回転子の回転軸周方向を示す断面図である。1 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a first embodiment. 実施の形態1に係わる回転電機における図4の要部拡大断面図である。5 is an enlarged cross-sectional view of a main portion of the rotating electric machine according to the first embodiment of the present invention shown in FIG. 4 . 実施の形態2に係わる回転電機における回転子の回転軸周方向を示す断面図である。11 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a second embodiment. FIG. 実施の形態2に係わる回転電機における回転子の回転軸周方向を示す断面図である。11 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a second embodiment. FIG. 実施の形態3に係わる回転電機における回転保持体の変形例を示す断面図である。13 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment. FIG. 実施の形態3に係わる回転電機における回転保持体の変形例を示す断面図である。13 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment. FIG. 実施の形態4に係わる回転電機における回転子の回転軸周方向の変形例を示す要部断面図である。13 is a cross-sectional view of a main portion showing a modified example of a rotor in a circumferential direction of a rotation axis in a rotating electric machine according to embodiment 4. FIG. 実施の形態5に係わる回転電機における回転子の回転軸周方向を示す断面図である。13 is a cross-sectional view showing a circumferential direction of a rotation axis of a rotor in a rotating electric machine according to a fifth embodiment. FIG. 実施の形態5に係わる回転電機における図11の要部拡大断面図である。12 is an enlarged cross-sectional view of a main portion of the rotating electric machine according to the fifth embodiment of the present invention, FIG. 実施の形態6に係わる回転電機における回転子の回転軸周方向を示す断面図である。13 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to a sixth embodiment. FIG. 実施の形態6に係わる回転電機における図13の要部拡大断面図である。14 is an enlarged cross-sectional view of a main portion of the rotating electric machine of FIG. 13 according to a sixth embodiment.
実施の形態1.
 以下、本願の実施の形態1を図1から図5に基づいて説明するが、各図において、同一、または相当部材、部位については同一符号を付して説明する。図1は実施の形態1に係わる回転電機を示す断面図である。図2は実施の形態1に係わる回転電機における回転子コアを示す斜視図である。図3は実施の形態1に係わる回転電機における回転保持体を示す斜視図である。図4は実施の形態1に係わる回転電機における回転子の回転軸周方向を示す断面図である。図5は実施の形態1に係わる回転電機における図4の要部拡大断面図である。
Embodiment 1.
A first embodiment of the present invention will be described below with reference to Figures 1 to 5, with the same or corresponding members and parts in each figure being denoted by the same reference numerals. Figure 1 is a cross-sectional view showing a rotating electric machine according to the first embodiment. Figure 2 is a perspective view showing a rotor core in the rotating electric machine according to the first embodiment. Figure 3 is a perspective view showing a rotating holder in the rotating electric machine according to the first embodiment. Figure 4 is a cross-sectional view showing the circumferential direction of the rotation axis of the rotor in the rotating electric machine according to the first embodiment. Figure 5 is an enlarged cross-sectional view of a main part of Figure 4 in the rotating electric machine according to the first embodiment.
 図1に示されるとおり、回転電機100は、有底円筒状のフレーム211およびフレーム211の開口部を塞口する端板212からなるハウジング210と、フレーム211の円筒部に内嵌状態に固定した固定子である電機子220とを備えている。 As shown in FIG. 1, the rotating electric machine 100 includes a housing 210 consisting of a cylindrical frame 211 with a bottom and an end plate 212 that closes the opening of the frame 211, and an armature 220, which is a stator fixed in a state of being fitted inside the cylindrical portion of the frame 211.
 電機子220は、磁束を発生する複数のコイル221と、複数のコイル221に電流を分配する結線板222、磁束を流す電機子コア223で構成されており、コイル221、結線板222、電機子コア223はそれぞれボビン224に固定され電気的に絶縁されている。 The armature 220 is composed of multiple coils 221 that generate magnetic flux, a connection plate 222 that distributes current to the multiple coils 221, and an armature core 223 through which the magnetic flux flows. The coils 221, connection plate 222, and armature core 223 are each fixed to a bobbin 224 and electrically insulated.
 また、結線板222は、3相分となる3枚設けられ、それぞれ別の相のコイル221に接続される。 In addition, three connection plates 222 are provided for three phases, each connected to a coil 221 of a different phase.
 回転子300は、電機子220と磁気的空隙部を介して配置され、電磁鋼板が積層配置された回転子コア311と、回転子コア311に円周方向に等間隔に配置された複数の永久磁石321とから構成されている。 The rotor 300 is arranged with a magnetic gap between it and the armature 220 and is composed of a rotor core 311 in which electromagnetic steel sheets are arranged in layers, and a number of permanent magnets 321 arranged at equal intervals in the circumferential direction on the rotor core 311.
 円筒形状で構成された回転保持体400の外筒部に回転子コア311が配置され、回転子300と構造的に接続されて回転軸方向に延びている。回転保持体400はハウジング210に設けられたベアリング500により回転可能に支承されている。 The rotor core 311 is disposed on the outer tube of the rotating holder 400, which is cylindrical in shape, and is structurally connected to the rotor 300 and extends in the direction of the rotation axis. The rotating holder 400 is rotatably supported by bearings 500 provided in the housing 210.
 以上の構成により、回転子コア311の外径に占める回転保持体400の径の割合が高く、回転子コア311の回転軸径方向厚みが比較的薄い構造が採られている。回転子コア311を構成する電磁鋼板の使用量の削減による低コスト化、あるいは回転子コア311を保持する回転保持体材について、回転軸と円筒状の回転保持体400の間に空間を設けることなどによる回転軸部材の軽量化に有利な構造が採られている。 The above configuration results in a high ratio of the diameter of the rotary holder 400 to the outer diameter of the rotor core 311, and a relatively thin thickness in the radial direction of the rotary shaft of the rotor core 311. This structure is advantageous for reducing costs by reducing the amount of electromagnetic steel sheet used to compose the rotor core 311, and for reducing the weight of the rotary shaft member by providing a space between the rotary shaft and the cylindrical rotary holder 400 for the rotary holder material that holds the rotor core 311.
 なお、この図1に示される構成の例では、回転子コア311を保持する回転保持体400が直接ベアリング500により回転可能に支承される構成の場合を示している。これに限定されることなく、例えば、回転保持体400の内径部に空洞を介して回転軸の位置に回転保持体400に比べて小径のシャフト(図示せず)を別途設け、当該シャフトがベアリング500により回転可能に支持される構成とすることも可能である。更に、回転保持体400と当該シャフトとを径方向に延在する連結部材(図示せず)を介して一体に連結することにより、回転子コア311を保持する回転保持体部材とする構成とすることも可能である。 In the example configuration shown in FIG. 1, the rotating holder 400 that holds the rotor core 311 is directly supported for rotation by the bearing 500. Without being limited to this, for example, it is also possible to provide a separate shaft (not shown) with a smaller diameter than the rotating holder 400 at the position of the rotation axis through a cavity in the inner diameter part of the rotating holder 400, and to have the shaft rotatably supported by the bearing 500. Furthermore, it is also possible to connect the rotating holder 400 and the shaft together via a connecting member (not shown) extending radially, thereby forming a rotating holder member that holds the rotor core 311.
 このように、回転保持体400の内径部に空洞を介してシャフトを設けた構成とした場合においても、回転軸およびシャフトと回転保持体の間に空間が設けられることにより、図1に示される構成と同様に軽量化に有利な構造とすることができる。 In this way, even if the shaft is provided through a cavity in the inner diameter portion of the rotating holder 400, a space is provided between the rotating shaft and the rotating holder, making it possible to achieve a structure that is advantageous for weight reduction, similar to the configuration shown in Figure 1.
 また、永久磁石321は回転子コア311の外周面側に埋設されて周方向に所定のピッチで等間隔に配列されて磁極を構成し、永久磁石321と回転子コア311の間にシリコン樹脂系の接着剤を用いて加熱硬化させることで構造的に固定されている。 The permanent magnets 321 are embedded in the outer peripheral surface of the rotor core 311 and are arranged at equal intervals in the circumferential direction at a predetermined pitch to form magnetic poles, and are structurally fixed between the permanent magnets 321 and the rotor core 311 by applying a silicone resin-based adhesive between them and then heating and hardening it.
 図2に示すように、回転子コア311に回転軸の円周方向に等間隔に配置された複数の永久磁石321の極性が交互に配置されており、永久磁石321の径方向内側で回転子300の磁極数の半数で等間隔に軸方向保持体331が配置されている。回転子コア311の周方向の位置決めを行うためのコア嵌合部340が回転子コア311の内周部に設けられている。 As shown in FIG. 2, the polarities of multiple permanent magnets 321 arranged at equal intervals in the circumferential direction of the rotating shaft on the rotor core 311 are alternated, and axial retainers 331 are arranged at equal intervals on the radial inside of the permanent magnets 321, with half the number of magnetic poles of the rotor 300. A core fitting portion 340 for positioning the rotor core 311 in the circumferential direction is provided on the inner circumference of the rotor core 311.
 軸方向保持体の331の径方向内側で回転子コア311の内周部に抑制構成体として例えば凹部351を設けている。凹部351は軸方向保持体331と同数の磁極数の半数で配置され、軸方向保持体331が支点となる曲げモーメントを抑制するものである。抑制構成体である凹部351の周方向の幅を永久磁石321の極数分の角度以上であることを特徴としている。 A suppression structure, for example recesses 351, is provided on the inner circumference of the rotor core 311 radially inside the axial holder 331. The recesses 351 are arranged in half the number of magnetic poles as the axial holder 331, and suppress the bending moment for which the axial holder 331 serves as a fulcrum. The suppression structure, recesses 351, has a circumferential width that is equal to or greater than the angle of the number of poles of the permanent magnet 321.
 軸方向保持体331は電磁鋼板をプレス加工する際に回転軸周方向の断面形状がV字形状になるよう打ち抜き時の回転軸方向に保持するVかしめ構造を備えている。また、軸方向保持体331は、打ち抜き時の残留応力や積層間絶縁性の低下により渦電流損が発生し易いため、磁気特性影響を小さくするために回転軸径方向の永久磁石321より内側に配置されることを特徴としている。 The axial holder 331 has a V-shaped crimp structure that holds the magnetic steel sheet in the axial direction during punching so that the cross-sectional shape in the circumferential direction of the rotating shaft is V-shaped when the magnetic steel sheet is pressed. In addition, the axial holder 331 is prone to eddy current loss due to residual stress during punching and reduced insulation between laminations, so it is characterized by being positioned inside the permanent magnet 321 in the radial direction of the rotating shaft to reduce the effect of magnetic properties.
 また、図3に示すように、回転保持体400は、回転子コア311が圧入される回転保持体400の外筒部410と、回転保持体400の内径部に空洞を設けるための回転保持内筒部420を備えており、回転保持内筒部420にシャフトあるいは軸力伝達時の振動抑制部品を組み付けることが可能な構造であることを特徴としている。 Also, as shown in FIG. 3, the rotating holder 400 has an outer cylinder 410 into which the rotor core 311 is pressed, and an inner cylinder 420 for providing a cavity in the inner diameter of the rotating holder 400, and is characterized by a structure that allows the attachment of a shaft or vibration suppression parts for transmitting axial force to the inner cylinder 420.
 また、回転保持体400に回転子コア311のコア嵌合部340を位置決めする回転保持嵌合部440を備えており、回転子コア311のコア嵌合部340と回転保持嵌合部440との僅かな隙間を設けることで組み立てを容易にする構造を特徴としている。位置決め精度が要求される場合、回転子コア311のコア嵌合部340と回転保持嵌合部440は1箇所ではなく、複数個所設けて位置決めを調整してもよい。 The rotary holder 400 is also provided with a rotary retaining fitting 440 that positions the core fitting 340 of the rotor core 311, and is characterized by a structure that facilitates assembly by providing a small gap between the core fitting 340 of the rotor core 311 and the rotary retaining fitting 440. If positioning accuracy is required, the core fitting 340 of the rotor core 311 and the rotary retaining fitting 440 may be provided in multiple locations rather than in one location, and the positioning may be adjusted.
 図4および図5に、回転保持体400に回転子300が配置された回転子構造体600を示している。回転子コア311と回転保持体400をコア嵌合部340と回転保持嵌合部440で回転軸周方向に位置決めして配置し、回転保持体400に回転子300を圧入して嵌合する構造を特徴としている。嵌合には焼き嵌め、あるいは冷間嵌めを用いても良い。 Figures 4 and 5 show a rotor structure 600 in which a rotor 300 is disposed on a rotating holder 400. The rotor core 311 and the rotating holder 400 are positioned in the circumferential direction of the rotation axis by the core fitting portion 340 and the rotating holder fitting portion 440, and the rotor 300 is press-fitted into the rotating holder 400 to fit it. Shrink fitting or cold fitting may be used for the fitting.
 回転子コア311のコア嵌合部340と軸方向保持体331の回転軸周方向位置の角度601をθ1とし、抑制構成体である凹部351の回転軸周方向の幅角度611をθ2とした場合、
Figure JPOXMLDOC01-appb-M000001
の関係性となる構造を特徴としている。
When an angle 601 between the core fitting portion 340 of the rotor core 311 and the axial retainer 331 in the circumferential direction of the rotation axis is defined as θ1, and a width angle 611 in the circumferential direction of the rotation axis of the recess 351, which is the suppression structure, is defined as θ2,
Figure JPOXMLDOC01-appb-M000001
It is characterized by a structure in which the following relationships exist:
 また、回転子コア311の最外径部602をφa、回転子コア311の最内径部603をφbとした場合、
Figure JPOXMLDOC01-appb-M000002
の関係性となり、回転子コア311の回転軸径方向厚みが最外径部602の10%以下である構造を特徴としている。
In addition, when the outermost diameter portion 602 of the rotor core 311 is φa and the innermost diameter portion 603 of the rotor core 311 is φb,
Figure JPOXMLDOC01-appb-M000002
The rotor core 311 has a structure in which the thickness in the radial direction of the rotating shaft is 10% or less of the outermost diameter portion 602.
 また、回転保持体400の回転保持内筒部420の直径604をφcとした場合、
Figure JPOXMLDOC01-appb-M000003
の関係性となり、回転保持体400の回転軸径方向厚みが回転子コア311の最外径部602の10%以下である構造を特徴としている。
In addition, when the diameter 604 of the rotation holder inner cylinder portion 420 of the rotation holder 400 is φc,
Figure JPOXMLDOC01-appb-M000003
The relationship is as follows: and the thickness of the rotary holder 400 in the radial direction of the rotary shaft is 10% or less of the outermost diameter portion 602 of the rotor core 311.
 この実施の形態1の基本構成のように、回転子300について、回転軸と接続される円筒形状の回転保持体400の外筒部に固定される回転子コア311に対して、永久磁石321の径方向内側で回転子300の磁極数の半数で等間隔に配置された軸方向保持体331と、軸方向保持体331の回転軸径方向の内側に配置された抑制構成体である凹部351を備えた構成とすることで、回転子コア311の径方向厚みが小さい回転子構造が採られていることに伴う、回転子コア311を回転保持体400に圧入した際に軸方向保持体331が支点となる曲げモーメントが掛かることを抑制する抑制構成体である凹部351を設けた構成を採っている。 As in the basic configuration of this embodiment 1, the rotor 300 is configured with a rotor core 311 fixed to the outer tube of a cylindrical rotating holder 400 connected to the rotating shaft, axial holders 331 arranged at equal intervals with half the number of magnetic poles of the rotor 300 on the radial inside of the permanent magnets 321, and recesses 351 as suppression structures arranged on the radial inside of the axial holders 331 in the rotating shaft direction. This configuration provides the recesses 351 as suppression structures that suppress the application of bending moment with the axial holders 331 as a fulcrum when the rotor core 311 is pressed into the rotating holder 400 due to the rotor structure having a small radial thickness of the rotor core 311.
 その結果として、回転子コア311の最外径部602と永久磁石321の回転軸径方向の厚みが小さい箇所に局所応力が発生することを抑制することが可能となるものであるが、回転子コア311若しくは回転保持体400の回転軸径方向厚みの最外径部602の外径に占める比率が上記のとおりの10%以下の比率になる場合には、以下説明のとおり本願の効果がより顕著となる。 As a result, it is possible to suppress the occurrence of local stress in the areas where the radial thickness of the rotor core 311 and the permanent magnet 321 in the direction of the rotation axis is small. However, when the ratio of the radial thickness of the rotor core 311 or the rotating holder 400 in the direction of the rotation axis to the outer diameter of the outermost diameter 602 is 10% or less as described above, the effect of the present application becomes more pronounced, as explained below.
 回転子コア311と回転保持体400を嵌合した際に軸ずれが大きい場合に回転保持体400に回転子コア311の最内径部603が回転軸方向に矯正された際に、軸方向保持体331を支点とする曲げモーメントが軸方向保持体331を経由して回転子コア311の回転軸方向の次の層に伝達する。その際に、回転子コア311の回転軸径方向厚みが最外径部602の10%以下で小さい場合に、最外径部602と永久磁石321の径方向の厚みが小さい箇所に局所応力が発生し、高回転時の疲労破壊に至る要因となっていた。 When the rotor core 311 and the rotary holder 400 are fitted together and the innermost diameter portion 603 of the rotor core 311 is corrected in the direction of the rotary shaft by the rotary holder 400, the bending moment with the axial holder 331 as the fulcrum is transmitted to the next layer in the direction of the rotary shaft of the rotor core 311 via the axial holder 331. At that time, if the radial thickness of the rotor core 311 in the rotary shaft direction is small, 10% or less of the outermost diameter portion 602, local stress is generated in the area where the radial thickness of the outermost diameter portion 602 and the permanent magnet 321 is small, which is a factor that leads to fatigue failure during high rotation.
 この実施の形態1の構造により、軸方向保持体331の回転軸径方向の内側で回転子コア311内径部に配置された抑制構成体である凹部351を設けることで、回転子コア311の最内径部603が回転軸方向に矯正された際の曲げモーメントを軸方向保持体311に伝達させず、最外径部602と永久磁石321の回転軸径方向の厚みが小さい箇所に局所応力が発生しにくい構造であることを特徴としている。 The structure of this embodiment 1 is characterized in that by providing a recess 351, which is a suppression structure arranged on the inner diameter portion of the rotor core 311 radially inside the axial retainer 331 in the direction of the rotation axis, the bending moment generated when the innermost diameter portion 603 of the rotor core 311 is corrected in the direction of the rotation axis is not transmitted to the axial retainer 311, and local stress is less likely to occur in the areas where the radial thickness of the outermost diameter portion 602 and the permanent magnet 321 is small in the direction of the rotation axis.
実施の形態2.
 本願の実施の形態2を図6および図7に基づいて説明するが、各図において、同一、または相当部材、部位については同一符号を付して説明する。図6は実施の形態2に係わる回転電機における回転子の回転軸周方向を示す断面図である。図7は実施の形態2に係わる回転電機における回転子の回転軸周方向を示す断面図である。
Embodiment 2.
A second embodiment of the present invention will be described with reference to Fig. 6 and Fig. 7, in which the same or corresponding members and parts are denoted by the same reference numerals in each drawing. Fig. 6 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the second embodiment. Fig. 7 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the second embodiment.
 図6および図7に、回転保持体400に回転子300が配置された回転子構造体700を示している。この実施の形態2においては、図6のA-A線における断面および図7のB-B線における断面に示すように、永久磁石321は回転軸方向に2分割されている構造を備えている。 Figures 6 and 7 show a rotor structure 700 in which a rotor 300 is disposed on a rotary holder 400. In this second embodiment, as shown in the cross section taken along line A-A in Figure 6 and the cross section taken along line B-B in Figure 7, the permanent magnet 321 is structured to be divided into two in the direction of the rotation axis.
 永久磁石321は、分割せずに一体形状のもの、あるいは焼結磁石でなく、回転子コア311に直接射出成形したボンド磁石、あるいは電機子巻線をコアに挿入した界磁巻線を用いてもよい。この実施の形態2においては、永久磁石321を回転軸方向に分割することで、径方向表面の面積のアスペクト比を切削で切り出す前の形状から最適な分割数を設定することができる。これにより、切削加工性が上がり加工コストが低減でき、かつ、永久磁石321内の磁区配向を調整し易く、磁気特性を安定させ易いことを特徴としている。 The permanent magnet 321 may be one-piece without being divided, or instead of a sintered magnet, a bonded magnet that is injection molded directly onto the rotor core 311, or a field winding with an armature winding inserted into the core may be used. In this second embodiment, by dividing the permanent magnet 321 in the direction of the rotation axis, the aspect ratio of the radial surface area can be set to an optimal number of divisions based on the shape before it is cut out by cutting. This improves cutting workability and reduces processing costs, and is characterized by the fact that it is easy to adjust the magnetic domain orientation within the permanent magnet 321 and stabilize the magnetic properties.
 また、軸方向保持体331の回転軸径方向の内側に配置される凹部351は回転軸方向に配置され、凹部351の回転軸径方向の厚みは回転子コア311と回転保持体400の圧入時の締め代以上の厚みを持った構造であることを特徴としている。 Furthermore, the recess 351 arranged on the inside of the axial retainer 331 in the radial direction of the rotating shaft is arranged in the direction of the rotating shaft, and the thickness of the recess 351 in the radial direction of the rotating shaft is characterized by a structure having a thickness greater than the clamping margin when the rotor core 311 and the rotating retainer 400 are pressed into place.
実施の形態3.
 本願の実施の形態3を図8および図9に基づいて説明するが、各図において、同一、または相当部材、部位については同一符号を付して説明する。図8は実施の形態3に係わる回転電機における回転保持体の変形例を示す断面図である。図9は実施の形態3に係わる回転電機における回転保持体の変形例を示す断面図である。
Embodiment 3.
A third embodiment of the present invention will be described with reference to Fig. 8 and Fig. 9, in which the same or corresponding members and parts are denoted by the same reference numerals in each drawing. Fig. 8 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment. Fig. 9 is a cross-sectional view showing a modified example of a rotary holder in a rotary electric machine according to the third embodiment.
 図8および図9は、上述した実施の形態1における回転保持体400の変形例を示す構造である。実施の形態1における回転保持体400では、図1に示すように、回転子コア311と回転保持体400に圧入時の締め代を設けて、圧入保持している。 FIGS. 8 and 9 show a structure of a modified version of the rotary holder 400 in the first embodiment described above. In the rotary holder 400 in the first embodiment, as shown in FIG. 1, the rotor core 311 and the rotary holder 400 are press-fitted and held with a clamping margin when pressed in.
 図8および図9は、実施の形態1における回転保持体400の構成を変更し、例えば、回転子コア311の回転軸径方向内側に凹部351が設けられない構成を採った場合、あるいは、回転子コア311の内径と回転保持体400の外径の精度により圧入時のそれぞれの部品の当接状態が安定しない場合において、より構造的に締結力を上げるため、回転保持体400の外筒部に抑制構成体であるローレット401あるいはステーキング402などの凹部あるいは凹凸部を設ける構造としたものである。 Figures 8 and 9 show a structure in which the configuration of the rotating holder 400 in embodiment 1 is modified to provide a recess or uneven portion such as a knurl 401 or staking 402, which is a suppression structure, on the outer tube of the rotating holder 400, in order to structurally increase the fastening force, for example, in cases where a configuration is adopted in which the recess 351 is not provided on the radially inner side of the rotating shaft of the rotor core 311, or in cases where the contact state of the respective parts during press-fitting is unstable due to the accuracy of the inner diameter of the rotor core 311 and the outer diameter of the rotating holder 400.
 また、これらの回転保持体400の外筒部に設けた抑制構成体であるローレット401あるいはステーキング402などの凹部あるいは凹凸部については、実施の形態1の構成における回転子コア311の回転軸径方向内側に凹部351を設けたことによるなる軸方向保持体331を支点として生ずる曲げモーメントの抑制構成体の代替として機能する。つまり、実施の形態1において上記曲げモーメントの抑制構成体として機能する回転子コア311の内径に設けられる凹部351については、回転保持体400側に設けても良い。 The recesses or uneven parts such as knurling 401 or staking 402, which are suppression structures provided on the outer cylinder of the rotary holder 400, function as substitutes for the suppression structure for the bending moment generated with the axial holder 331 as a fulcrum, which is formed by providing recesses 351 on the radially inner side of the rotary shaft of rotor core 311 in the configuration of embodiment 1. In other words, recesses 351 provided on the inner diameter of rotor core 311, which functions as a suppression structure for the bending moment in embodiment 1, may be provided on the rotary holder 400 side.
 回転保持体側の特に回転保持体の外筒部に凹部を設ける場合にも回転子コア311の内径に設けられる凹部351と同様に軸方向保持体と周方向の位置が重なる各位置に設けると良く、上記曲げモーメントの抑制手段として有効に機能させることができる。 When providing a recess on the rotating holder side, particularly on the outer cylinder of the rotating holder, it is advisable to provide it at a position where it overlaps with the axial holder in the circumferential direction, similar to the recess 351 provided on the inner diameter of the rotor core 311, and this can effectively function as a means for suppressing the bending moment.
実施の形態4.
 本願の実施の形態4を図10に基づいて説明する。図10は実施の形態4に係わる回転電機における回転子の回転軸周方向の変形例を示す要部断面図である。
Embodiment 4.
A fourth embodiment of the present invention will be described with reference to Fig. 10. Fig. 10 is a cross-sectional view of a main part showing a modification of the rotor in the circumferential direction of the rotation axis in a rotating electric machine according to the fourth embodiment.
 上述した各実施の形態においては、軸方向保持体331の具体例として、回転軸周方向に平行な方向に長手方向を有したVかしめ構造を用いた例について説明を行ったが、この実施の形態3においては、図10に示すように、軸方向保持体331に丸かしめ371を用いた丸かしめコア370としてもよい。また、図示はしないが、ピンかしめ、ネジ止め、溶接、接着などの軸方向保持の方法を用いてもよい。また、軸方向保持体331は磁極数の半数で周方向に等間隔でなくてもよく、構造強度と磁気回路構成上で複数個所に配置することも可能である。 In each of the above-mentioned embodiments, a specific example of the axial retainer 331 has been described using a V-shaped crimped structure with its longitudinal direction parallel to the circumferential direction of the rotation axis. However, in this embodiment 3, as shown in FIG. 10, the axial retainer 331 may be a round crimped core 370 using a round crimp 371. Although not shown, other axial retaining methods such as pin crimping, screw fastening, welding, and adhesive bonding may also be used. Furthermore, the axial retainers 331 do not have to be half the number of magnetic poles and are not required to be equally spaced circumferentially, and may be arranged in multiple locations based on structural strength and magnetic circuit configuration.
実施の形態5.
 本願の実施の形態5を図11および図12に基づいて説明するが、図において、同一、または相当部材、部位については同一符号を付して説明する。図11は実施の形態5に係わる回転電機における回転子の回転軸周方向を示す断面図である。図12は実施の形態5に係わる回転電機における図11の要部拡大断面図である。
Embodiment 5.
A fifth embodiment of the present invention will be described with reference to Fig. 11 and Fig. 12, in which the same or corresponding members and parts are denoted by the same reference numerals. Fig. 11 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the fifth embodiment. Fig. 12 is an enlarged cross-sectional view of a main part of Fig. 11 in the rotating electric machine according to the fifth embodiment.
 図11および図12に、回転保持体400に回転子300が配置された回転子構造体800を示している。この実施の形態5による回転子の構造は、回転軸径方向Vかしめコア811と、軸方向保持体としての回転軸径方向Vかしめ361と、永久磁石321と、回転保持体400の回転保持外筒部410と回転保持内筒部420で構成された構造である。その結果、上述した実施の形態1の回転子と同様に回転軸径方向厚みが比較的薄い構造が採られている。 Figures 11 and 12 show a rotor structure 800 in which a rotor 300 is disposed on a rotating holder 400. The rotor structure according to this embodiment 5 is a structure made up of a rotating shaft radial V crimp core 811, a rotating shaft radial V crimp 361 as an axial holder, a permanent magnet 321, and a rotating holder outer cylinder portion 410 and a rotating holder inner cylinder portion 420 of the rotating holder 400. As a result, a structure with a relatively thin rotating shaft radial thickness is adopted, similar to the rotor of embodiment 1 described above.
 また、この実施の形態5においては、上述した実施の形態1における軸方向保持体331と、その回転軸径方向の内側に配置される凹部351を備えた構成の代替として、永久磁石321の径方向内側に軸方向保持体としての回転軸径方向Vかしめ361を磁極数の半数で周方向に等間隔に配置する構成を採ることにより、回転軸径方向の厚みが小さい箇所に局所応力が発生しにくい構造としている。 In addition, in this embodiment 5, instead of the configuration of the axial retainer 331 in the above-mentioned embodiment 1 and the recess 351 arranged on the radial inside of the rotating shaft, a configuration is adopted in which radial V-shaped crimps 361 of the rotating shaft as axial retainers are arranged on the radial inside of the permanent magnet 321 at equal intervals in the circumferential direction by half the number of magnetic poles, thereby making it difficult for local stress to occur in areas where the radial thickness of the rotating shaft is small.
 より詳細には、図11および図12に示すように、回転軸径方向Vかしめコア811と永久磁石321が回転軸周方向において等間隔に配列され、永久磁石321の極性が交互に配置されており、永久磁石321の径方向内側に回転軸径方向Vかしめ361が磁極数の半数で周方向に等間隔に配置され、回転軸径方向Vかしめコア811の周方向の位置決めのコア嵌合部340を備え、回転軸径方向Vかしめ361は電磁鋼板をプレス加工する際に回転軸周方向の断面形状がV字形状になるよう打ち抜き時の回転軸方向に保持するVかしめ構造を備えている。 More specifically, as shown in Figures 11 and 12, the rotating shaft radial V crimp core 811 and the permanent magnets 321 are arranged at equal intervals in the circumferential direction of the rotating shaft, the polarities of the permanent magnets 321 are arranged alternately, the rotating shaft radial V crimps 361 are arranged at equal intervals in the circumferential direction on the radial inside of the permanent magnets 321 with half the number of magnetic poles, and a core fitting portion 340 is provided for circumferential positioning of the rotating shaft radial V crimp core 811, and the rotating shaft radial V crimp 361 has a V crimp structure that holds the rotating shaft in the direction of the rotating shaft when punching so that the cross-sectional shape in the circumferential direction of the rotating shaft becomes V-shaped when the electromagnetic steel sheet is press-processed.
 また、回転軸径方向Vかしめ361は、打ち抜き時の残留応力や積層間絶縁性の低下により渦電流損が発生し易いため、磁気特性影響を小さくするために回転軸径方向の永久磁石321より内側に配置されることを特徴としている。 Furthermore, since the V-shaped crimp 361 in the radial direction of the rotating shaft is prone to eddy current loss due to residual stress during punching and deterioration of interlaminar insulation, it is characterized by being positioned inside the permanent magnet 321 in the radial direction of the rotating shaft to reduce the effect on magnetic properties.
 また、回転軸径方向Vかしめコア811の最外径部802をφa、回転軸径方向Vかしめコア811の最内径部803をφbとした場合、
Figure JPOXMLDOC01-appb-M000004
の関係性となり、回転軸径方向Vかしめコア811の回転軸径方向厚みが最外径部802の10%以下である構造を特徴としている。
In addition, when the outermost diameter portion 802 of the rotary shaft radial direction V-shaped crimped core 811 is φa and the innermost diameter portion 803 of the rotary shaft radial direction V-shaped crimped core 811 is φb,
Figure JPOXMLDOC01-appb-M000004
The relationship is as follows: the thickness of the V-shaped crimped core 811 in the radial direction of the rotary shaft is 10% or less of the outermost diameter portion 802.
 また、回転保持体400の回転保持内筒部420の直径804をφcとした場合、
Figure JPOXMLDOC01-appb-M000005
の関係性となり、回転保持体400の回転軸径方向厚みが回転子コア311の最外径部802の10%以下である構造を特徴としている。
In addition, when the diameter 804 of the rotation holder inner cylinder portion 420 of the rotation holder 400 is φc,
Figure JPOXMLDOC01-appb-M000005
The relationship is as follows: and the thickness of the rotary holder 400 in the radial direction of the rotary shaft is 10% or less of the outermost diameter portion 802 of the rotor core 311.
 回転軸径方向Vかしめコア811を回転保持体400に嵌合した際に軸ずれが大きい場合に、回転保持体400に回転軸径方向Vかしめコア811の最内径部803が回転軸方向に矯正された際に、回転軸径方向Vかしめ361を支点とする曲げモーメントが発生しない。 If there is a large axial misalignment when the rotating shaft radial V-shaped crimped core 811 is fitted to the rotating holder 400, when the innermost diameter portion 803 of the rotating shaft radial V-shaped crimped core 811 is corrected in the rotating shaft direction by the rotating holder 400, no bending moment is generated with the rotating shaft radial V-shaped crimp 361 as the fulcrum.
 回転軸径方向Vかしめ361が回転軸径方向にずれることで、回転軸径方向Vかしめコア811の最外径部802と永久磁石321の回転軸径方向の厚みが小さい箇所に局所応力が発生しにくい構造であることを特徴としている。 The structure is characterized by the fact that the radial V crimp 361 of the rotating shaft is displaced in the radial direction of the rotating shaft, making it difficult for local stress to occur at the location where the radial thickness of the rotating shaft of the outermost diameter portion 802 of the radial V crimp core 811 and the permanent magnet 321 is small.
 この実施の形態5の基本構成のように、回転子300について、永久磁石321の径方向内側に回転軸径方向Vかしめ361が軸方向保持体および抑制構成体として磁極数の半数で周方向に並んで配置された構成とすることで、回転子コアの径方向厚みが小さい回転子構造が採られていることに伴う、回転軸径方向Vかしめコア811を回転保持体400に圧入した際に回転軸径方向Vかしめ361が支点となる曲げモーメントが掛かることを抑制する抑制構成体としての機能を具備している。 As in the basic configuration of this embodiment 5, the rotor 300 is configured with the rotating shaft radial V crimps 361 arranged circumferentially on the radial inside of the permanent magnet 321 as axial retainers and suppression components, with half the number of magnetic poles. This provides a function as a suppression component that suppresses the application of bending moment with the rotating shaft radial V crimp 361 as a fulcrum when the rotating shaft radial V crimp core 811 is pressed into the rotating retainer 400, which is associated with a rotor structure with a small radial thickness of the rotor core.
 その結果として、回転軸径方向Vかしめコア811の最外径部802と永久磁石321の回転軸径方向の厚みが小さい箇所に局所応力が発生することを抑制することが可能となる。更に、回転軸径方向Vかしめコア811若しくは回転保持体400の回転軸径方向厚みの最外径部802の外径に占める比率が上記のとおりの10%以下の比率になる場合には、上記説明のとおり本願の効果がより顕著となる。 As a result, it is possible to suppress the occurrence of local stress in the locations where the radial thickness of the outermost diameter part 802 of the rotating shaft radial V crimped core 811 and the rotating shaft radial thickness of the permanent magnet 321 are small. Furthermore, when the ratio of the radial thickness of the rotating shaft radial V crimped core 811 or the rotating holder 400 to the outer diameter of the outermost diameter part 802 is 10% or less as described above, the effect of the present application becomes more pronounced as explained above.
実施の形態6.
 本願の実施の形態6を図13および図14に基づいて説明するが、図において、同一、または相当部材、部位については同一符号を付して説明する。図13は実施の形態6に係わる回転電機における回転子の回転軸周方向を示す断面図である。図14は実施の形態6に係わる回転電機における図13の要部拡大断面図である。
Embodiment 6.
A sixth embodiment of the present invention will be described with reference to Fig. 13 and Fig. 14, in which the same or corresponding members and parts are denoted by the same reference numerals. Fig. 13 is a cross-sectional view showing the circumferential direction of the rotation axis of a rotor in a rotating electric machine according to the sixth embodiment. Fig. 14 is an enlarged cross-sectional view of a main part of Fig. 13 in the rotating electric machine according to the sixth embodiment.
 図13および図14に、回転保持体400に回転子300が配置された回転子構造体900を示している。この実施の形態6において、上述した実施の形態5の変形例であり、図13および図14に示すように、上述した実施の形態1の図4および図5で示した構造より一部変更して、回転軸径方向Vかしめコア911に軸方向保持体としての回転軸径方向Vかしめ361のVかしめ構造を長辺の方向を回転軸径方向に90度回転させて配置させた回転軸径方向Vかしめ361としたものである。 Figures 13 and 14 show a rotor structure 900 in which a rotor 300 is disposed on a rotating holder 400. This embodiment 6 is a modification of the above-mentioned embodiment 5, and as shown in Figures 13 and 14, the structure shown in Figures 4 and 5 of the above-mentioned embodiment 1 is partially modified to have a rotating shaft radial V crimp 361 disposed on a rotating shaft radial V crimp core 911 with the V crimp structure of the rotating shaft radial V crimp 361 as an axial holder rotated 90 degrees in the rotating shaft radial direction.
 また、回転軸径方向Vかしめ361は、打ち抜き時の残留応力や積層間絶縁性の低下により渦電流損が発生し易いため、磁気特性影響を小さくするために回転軸径方向の永久磁石321より内側に配置されることを特徴としている。 Furthermore, since the V-shaped crimp 361 in the radial direction of the rotating shaft is prone to eddy current loss due to residual stress during punching and deterioration of interlaminar insulation, it is characterized by being positioned inside the permanent magnet 321 in the radial direction of the rotating shaft to reduce the effect on magnetic properties.
 回転子コア311のコア嵌合部340と軸方向保持体331の回転軸周方向位置の角度901をθ1とし、抑制構成体である凹部351の回転軸周方向の幅角度911をθ2とした場合、θ1≦θ2の関係性となる構造を特徴としている。 If the angle 901 between the core fitting portion 340 of the rotor core 311 and the axial retainer 331 in the circumferential direction of the rotation axis is θ1, and the width angle 911 of the recess 351, which is the suppression structure, in the circumferential direction of the rotation axis is θ2, then the structure is characterized by a relationship of θ1≦θ2.
 また、回転子コア311の最外径部902をφa、回転子311の最内径部903をφbとした場合、
Figure JPOXMLDOC01-appb-M000006
の関係性となり、回転子コア311の回転軸径方向厚みが最外径部902の10%以下である構造を特徴としている。
In addition, when the outermost diameter portion 902 of the rotor core 311 is φa and the innermost diameter portion 903 of the rotor 311 is φb,
Figure JPOXMLDOC01-appb-M000006
The rotor core 311 has a structure in which the thickness in the radial direction of the rotating shaft is 10% or less of the outermost diameter portion 902.
 また、回転保持体400の回転保持内筒部420の直径904をφcとした場合、
Figure JPOXMLDOC01-appb-M000007
の関係性となり、回転保持体400の回転軸径方向厚みが回転子コア311の最外径部902の10%以下である構造を特徴としている。
In addition, when the diameter 904 of the rotation holder inner cylinder portion 420 of the rotation holder 400 is φc,
Figure JPOXMLDOC01-appb-M000007
The relationship is as follows: and the thickness of the rotary holder 400 in the radial direction of the rotary shaft is 10% or less of the outermost diameter portion 902 of the rotor core 311.
 回転子コア311と回転保持体400を嵌合した際に軸ずれが大きい場合に回転保持体400に回転子コア311の最内径部803が回転軸方向に矯正された際に、回転軸径方向Vかしめ361を支点とする曲げモーメントが発生しない。 When the rotor core 311 and the rotary holder 400 are fitted together and there is a large axial misalignment, when the innermost diameter portion 803 of the rotor core 311 is corrected in the direction of the rotary shaft by the rotary holder 400, no bending moment is generated with the rotary shaft radial V-shaped crimp 361 as a fulcrum.
 回転軸径方向Vかしめ361が回転軸径方向にずれることで、回転子コア311の最外径部802と永久磁石321の回転軸径方向の厚みが小さい箇所に局所応力が発生しにくい構造であることを特徴としている。 The structure is characterized by the fact that the radial V crimp 361 of the rotating shaft is shifted in the radial direction of the rotating shaft, making it difficult for local stress to occur in the areas where the radial thickness of the rotating shaft of the outermost diameter part 802 of the rotor core 311 and the permanent magnet 321 is small.
 回転軸径方向Vかしめ361を用いることで、回転子コア311と回転保持体400を嵌合した際に軸ずれが大きい場合に回転保持体400に回転子コア311の最内径部903が回転軸方向に矯正された際に、回転軸径方向Vかしめ361を支点とする曲げモーメントが発生しない。回転軸径方向Vかしめ361が回転軸径方向にずれることで、回転子コア3911の最外径部902と永久磁石321の回転軸径方向の厚みが小さい箇所に局所応力が発生しにくい構造であることを特徴としている。 By using the rotating shaft radial V crimp 361, when the rotor core 311 and the rotating holder 400 are fitted together and there is a large axial misalignment, no bending moment is generated with the rotating shaft radial V crimp 361 as a fulcrum when the innermost diameter part 903 of the rotor core 311 is corrected in the rotating shaft direction by the rotating holder 400. The rotating shaft radial V crimp 361 is misaligned in the rotating shaft radial direction, which is a feature of the structure in which local stress is unlikely to occur in the areas where the outermost diameter part 902 of the rotor core 3911 and the permanent magnet 321 have a small thickness in the rotating shaft radial direction.
 なお、上述した各実施の形態の構成に限定されるものではなく、軸方向保持体の近傍のコアにおいて、回転子コアを圧入する際に軸方向保持体を支点とする曲げモーメントが発生することの抑制機能のある構成を採用することで同様の効果が得られる。例えば、軸方向保持体の近傍あるいはコア内径の近傍のコアに開口部を設け、上記の曲げモーメントを抑制可能となる適当な位置に当該開口部を配置することも有効であり、特に軸方向保持体の周方向に重なる各位置のコア内径の近傍のコアに当該開口部を配置すると良い。 Note that the configurations of the above-mentioned embodiments are not limited, and the same effect can be obtained by adopting a configuration in the core near the axial retainer that has a function of suppressing the occurrence of bending moment with the axial retainer as a fulcrum when the rotor core is pressed in. For example, it is effective to provide an opening in the core near the axial retainer or near the core inner diameter and to position the opening in an appropriate position that can suppress the above-mentioned bending moment. In particular, it is good to position the opening in the core near the core inner diameter at each position that overlaps with the axial retainer in the circumferential direction.
 また、各実施の形態では、回転子の磁極を構成する永久磁石321について、断面視で1つの平板状の磁石を配置した構造を採用した構成を例示したが、径方向の回転子コアの厚みが薄くなる構造に適用される場合においては、一対の平板状の磁石を周方向に平行な直線状に並べて各磁極を構成する配置としても良いし、一対の平板状の磁石を周方向に対して傾斜するV字形状に配置した構成としても良く、各実施の形態で説明した本願の基本的な効果について同様に得ることができる。 In addition, in each embodiment, the permanent magnet 321 that constitutes the magnetic poles of the rotor is exemplified as a configuration in which a single flat magnet is arranged in cross section. However, when applied to a structure in which the thickness of the rotor core in the radial direction is thin, a pair of flat magnets may be arranged in a straight line parallel to the circumferential direction to form each magnetic pole, or a pair of flat magnets may be arranged in a V-shape that is inclined relative to the circumferential direction, and the basic effects of the present application as described in each embodiment can be similarly obtained.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments are not limited to application to a particular embodiment, but may be applied to the embodiments alone or in various combinations.
Therefore, countless modifications not exemplified are assumed within the scope of the technology disclosed in the present specification, including, for example, modifying, adding, or omitting at least one component, and further, extracting at least one component and combining it with a component of another embodiment.
 本願は、回転子コアの薄肉部への応力集中を低減することができる回転電機の実現に好適である。 This application is suitable for realizing a rotating electric machine that can reduce stress concentration in the thin-walled parts of the rotor core.
 100 回転電機、 210 ハウジング、211 フレーム、212 端板、220 電機子、221 コイル、 222 結線板、223 電機子コア、224 ボビン、300 回転子、311 回転子コア、321 永久磁石、331 軸方向保持体、340 コア嵌合部、351 凹部、361 回転軸径方向Vかしめ、370 丸かしめコア、371 丸かしめ、400 回転保持体、401 ローレット、402 ステーキング、410 回転保持外筒部、420 回転保持内筒部、440 回転保持嵌合部、500 ベアリング 100 rotating electric machine, 210 housing, 211 frame, 212 end plate, 220 armature, 221 coil, 222 connection plate, 223 armature core, 224 bobbin, 300 rotor, 311 rotor core, 321 permanent magnet, 331 axial holder, 340 core fitting, 351 recess, 361 rotary shaft radial V crimp, 370 round crimp core, 371 round crimp, 400 rotating holder, 401 knurling, 402 staking, 410 rotating holder outer cylinder, 420 rotating holder inner cylinder, 440 rotating holder fitting, 500 bearing

Claims (9)

  1.  固定子と、前記固定子と磁気的空隙部を介して配置され、電磁鋼板が積層配置された回転子コアと前記回転子コアに円周方向に等間隔に配置された複数の永久磁石とにより構成された回転子とを備えた回転電機であって、
     前記永久磁石の径方向内側で前記回転子の磁極数の半数で配置された軸方向保持体と、円筒形状で構成され、外筒部に前記回転子コアが配置された回転保持体と、前記軸方向保持体が支点となる曲げモーメントを抑制する抑制構成体とを設けたことを特徴とする回転電機。
    A rotating electric machine including a stator, a rotor core arranged with a magnetic gap between the stator and the rotor, the rotor core being made of laminated electromagnetic steel sheets, and a plurality of permanent magnets arranged at equal intervals in a circumferential direction on the rotor core,
    A rotating electric machine comprising: an axial retaining body arranged radially inside the permanent magnet with half the number of magnetic poles of the rotor; a rotating retaining body configured in a cylindrical shape with the rotor core arranged on its outer tube portion; and a suppression structure that suppresses the bending moment for which the axial retaining body serves as a fulcrum.
  2.  前記軸方向保持体は、前記回転子の磁極数の半数で等間隔に配置されたことを特徴とする請求項1に記載の回転電機。 The rotating electric machine according to claim 1, characterized in that the axial retainers are arranged at equal intervals, half the number of magnetic poles of the rotor.
  3.  前記抑制構成体は、前記軸方向保持体の位置で前記回転子コアの内周部に形成された凹部からなることを特徴とする請求項1に記載の回転電機。 The rotating electric machine according to claim 1, characterized in that the suppression structure is a recess formed on the inner periphery of the rotor core at the position of the axial retainer.
  4.  前記抑制構成体は、前記回転保持体の外筒部に形成された凹部からなることを特徴とする請求項1に記載の回転電機。 The rotating electric machine according to claim 1, characterized in that the suppression structure is a recess formed in the outer cylinder of the rotating holder.
  5.  前記軸方向保持体は、Vかしめ形状としたことを特徴とする請求項1に記載の回転電機。 The rotating electric machine according to claim 1, characterized in that the axial retainer is V-shaped.
  6.  前記軸方向保持体は、丸かしめ形状としたことを特徴とする請求項1に記載の回転電機。 The rotating electric machine according to claim 1, characterized in that the axial retainer is rounded and crimped.
  7.  前記回転子コアの径方向の厚みは、前記回転子コアの最外周直径の10%以下であることを特徴とする請求項1から請求項6のいずれか1項に記載の回転電機。 The rotating electric machine according to any one of claims 1 to 6, characterized in that the radial thickness of the rotor core is 10% or less of the outermost diameter of the rotor core.
  8.  前記回転保持体の外筒部から前記回転子コアの径方向の厚みは、前記回転子コアの最外周直径の10%以下であることを特徴とする請求項1から請求項6のいずれか1項に記載の回転電機。 The rotating electric machine according to any one of claims 1 to 6, characterized in that the radial thickness of the rotor core from the outer cylinder of the rotating holder is 10% or less of the outermost diameter of the rotor core.
  9. 前記凹部の周方向の角度が360°/極数以上の形状であることを特徴とする請求項3または請求項4に記載の回転電機。 The rotating electric machine according to claim 3 or 4, characterized in that the recess has a circumferential angle of 360°/number of poles or more.
PCT/JP2022/038589 2022-10-17 2022-10-17 Rotary electric machine WO2024084549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038589 WO2024084549A1 (en) 2022-10-17 2022-10-17 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038589 WO2024084549A1 (en) 2022-10-17 2022-10-17 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2024084549A1 true WO2024084549A1 (en) 2024-04-25

Family

ID=90737117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038589 WO2024084549A1 (en) 2022-10-17 2022-10-17 Rotary electric machine

Country Status (1)

Country Link
WO (1) WO2024084549A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959055A (en) * 1982-09-27 1984-04-04 Fanuc Ltd Permanent magnet field rotor
JP2003259576A (en) * 2002-03-06 2003-09-12 Fuji Heavy Ind Ltd Rotor structure of inner rotor type generator
JP2005102460A (en) * 2003-08-29 2005-04-14 Toyota Motor Corp Rotor of rotating electric machine
JP2008187804A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Rotor and rotary electric machine equipped with rotor
WO2008139675A1 (en) * 2007-05-07 2008-11-20 Panasonic Corporation Permanent magnet buried type electric motor
JP2017189003A (en) * 2016-04-05 2017-10-12 日立オートモティブシステムズ株式会社 Rotary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959055A (en) * 1982-09-27 1984-04-04 Fanuc Ltd Permanent magnet field rotor
JP2003259576A (en) * 2002-03-06 2003-09-12 Fuji Heavy Ind Ltd Rotor structure of inner rotor type generator
JP2005102460A (en) * 2003-08-29 2005-04-14 Toyota Motor Corp Rotor of rotating electric machine
JP2008187804A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Rotor and rotary electric machine equipped with rotor
WO2008139675A1 (en) * 2007-05-07 2008-11-20 Panasonic Corporation Permanent magnet buried type electric motor
JP2017189003A (en) * 2016-04-05 2017-10-12 日立オートモティブシステムズ株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
US7378774B2 (en) Laminated core of rotary electric machine
US8970085B2 (en) Rotor for electric rotating machine and method of manufacturing the same
JP7266180B2 (en) Rotor and motor with same
CN107528396B (en) Rotor member, rotor, and motor
US20120139382A1 (en) End plate, and rotor for rotary electric machine which employs the end plate
WO2011155042A1 (en) Rotating electrical machine rotor
JP2001238377A (en) Rotating electric machine
JP2008035616A (en) Motor
US20120175996A1 (en) Stator for electric rotating machine and method of manufacturing the same
JPWO2020017133A1 (en) Distributed winding radial gap type rotary electric machine and its stator
JP3137510B2 (en) Stator for synchronous machine, method of manufacturing the same, teeth piece and yoke piece
US11277053B2 (en) Rotor, motor, and method for manufacturing rotor
JP2005229767A (en) Rotating electric machine
WO2020255614A1 (en) Coil, and stator, rotor, and motor equipped with same, and manufacturing method for coil
JP5277743B2 (en) Rotating electric machine
US11374443B2 (en) Rotary electric machine
WO2024084549A1 (en) Rotary electric machine
JP3954399B2 (en) Rotating electric machine
JPWO2020255614A5 (en)
JP2012125111A (en) Rotor of outer rotor type rotary machine
JPWO2020054469A1 (en) Stator and motor using it
CN111756136A (en) Rotating electrical machine
JP2004064925A (en) Brushless motor
JP2006254651A (en) Rotating electric machine
JP7325645B2 (en) Rotating electric machine and manufacturing method of rotating electric machine