WO2024083268A1 - 燃料电池性能恢复方法 - Google Patents

燃料电池性能恢复方法 Download PDF

Info

Publication number
WO2024083268A1
WO2024083268A1 PCT/CN2023/137035 CN2023137035W WO2024083268A1 WO 2024083268 A1 WO2024083268 A1 WO 2024083268A1 CN 2023137035 W CN2023137035 W CN 2023137035W WO 2024083268 A1 WO2024083268 A1 WO 2024083268A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
target fuel
impedance value
performance recovery
target
Prior art date
Application number
PCT/CN2023/137035
Other languages
English (en)
French (fr)
Inventor
张宇洲
邵恒
唐厚闻
Original Assignee
上海氢晨新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海氢晨新能源科技有限公司 filed Critical 上海氢晨新能源科技有限公司
Publication of WO2024083268A1 publication Critical patent/WO2024083268A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to the field of fuel cell technology, and in particular to a fuel cell performance recovery method, device and system.
  • a fuel cell is a power generation device that converts the chemical energy of fuel and oxidant directly into electrical energy through an electrochemical reaction.
  • the electrochemical reaction is clean and complete. From the perspective of saving energy and protecting the ecological environment, fuel cells are the most promising energy power device.
  • the membrane electrode catalyst of commercial proton exchange membrane fuel cells is mainly platinum catalyst.
  • the platinum catalyst in the cathode of the fuel cell membrane electrode is easily oxidized to generate PtOx, which reduces active sites and hinders the occurrence of chemical reactions, causing the fuel cell reaction rate to decrease and the fuel cell performance to decay.
  • the recovery of the platinum catalyst on the cathode side of an oxidized fuel cell is crucial to ensuring the conversion efficiency of the fuel cell and extending the service life of the fuel cell.
  • most methods use a fixed recovery mode to recover the cathode of an oxidized fuel cell. This method has poor targeting for different fuel cells and has limited recovery effects.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. To this end, the present disclosure proposes a fuel cell performance recovery method, device and system, which recover the oxidized fuel cell in stages, ensure the effect of fuel cell oxidation recovery, and effectively extend the service life of the fuel cell.
  • the present disclosure provides a fuel cell performance recovery method, the method comprising:
  • the first performance recovery condition is to apply a pulse current to the target fuel cell
  • the second performance recovery condition is to apply a voltage to the target fuel cell in a shutdown state.
  • the method further includes:
  • the target fuel cell is controlled to switch to the second performance recovery operating condition.
  • the method further includes:
  • the third performance recovery condition is to introduce reducing gas into the cathode of the target fuel cell.
  • controlling the target fuel cell to switch to the third performance recovery operating condition includes:
  • a reducing gas is introduced into the cathode of the target fuel cell.
  • controlling the target fuel cell to switch to the second performance recovery operating condition includes:
  • a target voltage is applied to the target fuel cell, and a reducing gas is introduced into a cathode of the target fuel cell.
  • controlling the target fuel cell to switch to the first performance recovery condition includes:
  • a target pulse current is applied to the target fuel cell.
  • the present disclosure also provides a fuel cell performance recovery device, which includes:
  • An acquisition module is used to acquire the high frequency impedance value, mass transfer impedance value and first charge migration impedance of the target fuel cell value;
  • a first processing module configured to determine oxidation of the cathode catalyst of the target fuel cell when the high-frequency impedance value remains unchanged, the mass transfer impedance value remains unchanged, and the first charge migration impedance value is greater than a reference charge migration impedance value of a rated operating condition of the target fuel cell;
  • a second processing module configured to control the target fuel cell to switch to a first performance recovery operating condition when the ratio of the reference charge migration impedance value to the first charge migration impedance value is less than or equal to a target threshold;
  • a third processing module configured to control the target fuel cell to switch to a second performance recovery operating condition when the ratio of the reference charge migration impedance value to the first charge migration impedance value is less than or equal to a target threshold;
  • the first performance recovery condition is to apply a pulse current to the target fuel cell
  • the second performance recovery condition is to apply a voltage to the target fuel cell in a shutdown state.
  • the present disclosure also provides a fuel cell performance recovery system, including:
  • An excitation module wherein a first end of the excitation module is connected to the power battery, and a second end of the excitation module is connected to the anode of the target fuel cell;
  • a fuel cell inspection controller wherein a first end of the fuel cell inspection controller is connected to the excitation module, a second end of the fuel cell inspection controller is connected to the anode of the target fuel cell, and the fuel cell inspection controller is used to collect impedance data of the target fuel cell;
  • a performance recovery system controller is connected to the target fuel cell, the excitation module and the fuel cell inspection controller, and the performance recovery system controller is used to restore the cathode catalyst oxidation of the target fuel cell based on the above-mentioned fuel cell performance recovery method.
  • An embodiment of the present disclosure also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the fuel cell performance recovery method as described in the first aspect above is implemented.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the fuel cell performance recovery method as described in the first aspect above is implemented.
  • the embodiment of the present disclosure further provides a computer program product, including a computer program, which, when executed by a processor, implements the fuel cell performance recovery method as described in the first aspect above.
  • the degree of oxidation of the fuel cell cathode is judged.
  • the first performance recovery condition is used for recovery.
  • the second performance recovery condition is used for recovery.
  • the fuel cell with oxidized cathode is recovered in stages, so that the performance of the fuel cell is recovered more fully, effectively extending the service life of the fuel cell.
  • FIG1 is a schematic flow chart of a fuel cell performance recovery method provided by an embodiment of the present disclosure
  • FIG2 is a schematic diagram of the structure of a fuel cell performance recovery system provided by an embodiment of the present disclosure
  • FIG3 is a schematic diagram of a flow chart of online diagnosis of a target fuel cell provided by an embodiment of the present disclosure
  • FIG4 is a schematic diagram of a process flow of a first performance recovery condition provided by an embodiment of the present disclosure
  • FIG5 is a schematic diagram of a flow chart of a second performance recovery condition provided by an embodiment of the present disclosure
  • FIG6 is a schematic diagram of a process of a third performance recovery condition provided by an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of the structure of a fuel cell performance recovery device provided in an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present disclosure.
  • an anode 210 of a target fuel cell a cathode 220 of a target fuel cell
  • first, second, etc. in the specification and claims of the present disclosure are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the data used in this way can be interchangeable when appropriate, so that the embodiments of the present disclosure can be implemented in an order other than those illustrated or described herein, and the objects distinguished by "first”, “second”, etc. are generally of one type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally indicates that the objects associated with each other are in an "or” relationship.
  • the fuel cell performance recovery method may be applied to a terminal, and may be specifically executed by hardware or software in the terminal.
  • the fuel cell performance recovery method provided by the embodiment of the present disclosure may be an electronic device or a functional module or functional entity in the electronic device that can implement the fuel cell performance recovery method.
  • the fuel cell performance recovery method provided by the embodiment of the present disclosure is described below using the electronic device as an example of the execution subject.
  • the fuel cell performance recovery method includes steps 110 to 140 .
  • Step 110 Obtain a high-frequency impedance value, a mass transfer impedance value, and a first charge transfer impedance value of a target fuel cell.
  • the target fuel cell is in an unknown state.
  • the catalyst on the cathode side of the target fuel cell can be a platinum catalyst.
  • the platinum catalyst on the anode and cathode sides of the target fuel cell is easily oxidized to generate platinum oxide (PtOx), which reduces the active sites on the cathode side, hinders the occurrence of chemical reactions, causes the reaction rate of the fuel cell to decrease, and the performance of the fuel cell to decay.
  • PtOx platinum oxide
  • the high frequency impedance value, mass transfer impedance value and first charge transfer impedance value of the target fuel cell are measured by a battery impedance measurement means.
  • one or more high-frequency excitation signals and one or more low-frequency excitation signals can be applied to a target fuel cell in an unknown state, and the voltage signal and current signal of the target fuel cell under high-frequency excitation and low-frequency excitation are collected. According to the voltage signal and current signal under high-frequency excitation and low-frequency excitation, impedance values such as high-frequency impedance value, mass transfer impedance value and first charge migration impedance value are calculated.
  • Step 120 when the high frequency impedance value remains unchanged, the mass transfer impedance value remains unchanged, and the first charge migration impedance value is greater than the reference charge migration impedance value of the rated operating condition of the target fuel cell, determine that the cathode 220 catalyst of the target fuel cell is oxidized.
  • the changing trends of the high-frequency impedance value, the mass transfer impedance value and the first charge migration impedance value are determined by detecting the high-frequency impedance value, the mass transfer impedance value and the first charge migration impedance value.
  • the high-frequency impedance value remains unchanged, the mass transfer impedance value remains unchanged, and the first charge migration impedance value is greater than the reference charge migration impedance value of the rated operating condition of the target fuel cell, it is determined that the cathode 220 catalyst of the target fuel cell is oxidized.
  • the detected first charge migration impedance value is greater than the reference charge migration impedance value of the rated operating condition of the target fuel cell, indicating that the charge migration impedance of the target fuel cell is increasing. Based on the increasing trend of the charge migration impedance of the target fuel cell, it can be determined that the cathode 220 catalyst of the target fuel cell is oxidized.
  • Step 130 When the ratio of the reference charge transfer impedance value to the first charge transfer impedance value is less than or equal to the target threshold, control the target fuel cell to switch to the first performance recovery operating condition.
  • Step 140 When the ratio of the reference charge transfer impedance value to the first charge transfer impedance value is less than or equal to the target threshold, control the target fuel cell to switch to the second performance recovery operating condition.
  • the first performance recovery condition is to apply a pulse current to the target fuel cell
  • the second performance recovery condition is to apply a voltage to the target fuel cell in a shutdown state.
  • the generated platinum oxide is relatively sparse in texture, and a thin layer of platinum oxide is attached to the surface of the cathode membrane electrode, and the platinum oxide has a 2D structure; when the fuel cell potential is higher than a certain threshold (for example, 0.8V), the catalyst on the cathode side is easily oxidized to form a more stable 3D structure of platinum oxide.
  • a certain potential range for example, 0.7V-0.8V
  • the oxidation degree of the cathode 220 catalyst of the target fuel cell is determined by a preset target threshold value, and whether the platinum oxide on the cathode side has a 2D structure or a 3D structure, wherein the target threshold value can be obtained based on experimental measurements.
  • step 130 the ratio of the reference charge migration impedance value to the first charge migration impedance value is less than or equal to the target threshold value, indicating that the platinum oxide on the cathode side of the target fuel cell may be an oxide of a 2D structure, and performance recovery can be performed using the first performance recovery condition of applying a pulse current to the target fuel cell.
  • step 140 the ratio of the reference charge migration impedance value to the first charge migration impedance value is greater than the target threshold value, indicating that the platinum oxide on the cathode side of the target fuel cell may be an oxide of a 3D structure, and performance recovery can be performed using a second performance recovery condition of applying voltage to the target fuel cell in a shutdown state.
  • the ratio of the reference charge transfer impedance value to the first charge transfer impedance value is used to characterize the rising range of the charge transfer impedance of the target fuel cell.
  • the ratio of the difference between the first charge transfer impedance value and the reference charge transfer impedance value to the first charge transfer impedance value may be used to indicate the rising range of the charge transfer impedance of the target fuel cell.
  • the first charge transfer impedance value is Rct
  • the reference charge transfer impedance value is Rre
  • (Rct-Rre)/Rct is a parameter indicating a rising range of the charge transfer impedance of the target fuel cell.
  • the value of a% may be 2%-20%, which may be obtained through experimental measurement.
  • the platinum oxide on the cathode side surface of the fuel cell is restored by periodically lowering the potential.
  • This recovery method has poor specificity.
  • 3D-structured platinum oxide is generated on the cathode side of the fuel cell, the 3D-structured platinum oxide cannot be reduced, and the degree of recovery of the fuel cell is limited.
  • the degree of oxidation of the cathode of the fuel cell is judged by measuring impedance.
  • the first performance recovery condition is adopted for recovery.
  • the second performance recovery condition is used for recovery, and the fuel cell whose cathode has been oxidized is recovered in stages, so that the performance of the fuel cell is recovered more fully, and the service life of the fuel cell is effectively extended.
  • the power battery 250 is connected to the excitation module 240, the first end of the excitation module 240 is connected to the power battery 250, the second end of the excitation module 240 is connected to the anode 210 of the target fuel cell, the first end of the fuel cell inspection controller 230 is connected to the excitation module 240, and the second end is connected to the anode 210 of the target fuel cell.
  • the fuel cell inspection controller 230 is used to collect impedance data of the target fuel cell.
  • the degree of cathode oxidation of the target fuel cell is judged based on the measured impedance of the fuel cell inspection controller 230.
  • the excitation module 240 is controlled to apply a pulse current to the target fuel cell, corresponding to the first performance recovery condition.
  • the power battery 250 and the excitation module 240 are controlled to apply voltage to the target fuel cell, corresponding to the second performance recovery condition.
  • the following is a specific online diagnosis process.
  • each stack of the target fuel cell enters the rated operating condition to determine whether the performance at the rated point is attenuated.
  • the impedance is measured at multiple fixed frequencies and the relevant impedance coefficients, high-frequency impedance values (Rhf), mass transfer impedance values (Rmt) and first charge transfer impedance values (Rct) are obtained by fitting.
  • the target fuel cell When Rmt changes, the target fuel cell is diagnosed to be short of gas; when Rhf changes, the target fuel cell is diagnosed to be dry membrane.
  • the fuel cell performance recovery method may further include:
  • the target fuel cell is controlled to switch to a second performance recovery operating condition.
  • the target fuel cell is restored using a first performance recovery condition, the target fuel cell is controlled to maintain a first target time length in the first performance recovery condition, the charge migration impedance of the target fuel cell is collected again, that is, a second charge migration impedance value is obtained, and based on the second charge migration impedance value and the first charge migration impedance value, it is determined whether the oxidation of the cathode 220 of the target fuel cell is restored.
  • the charge transfer impedance of the target fuel cell remains unchanged or increases, indicating that the first performance recovery condition is maintained for the first target time.
  • the performance recovery condition has limited effect on the cathode oxidation of the target fuel cell, and it is necessary to switch to a second performance recovery condition.
  • controlling the target fuel cell to maintain the first target time in the first performance recovery condition and performing charge transfer impedance measurement is to determine whether the target fuel cell can be effectively recovered in the first performance recovery condition, and it is not to complete the recovery of the cathode oxidation of the target fuel cell after the first performance recovery condition is maintained for the first target time.
  • the target fuel cell can be controlled to continue to maintain the first performance recovery condition, and the charge migration impedance value of the target fuel cell can be collected regularly.
  • the charge migration impedance value is compared with the reference charge migration impedance value to determine whether to end the first performance recovery condition and complete the recovery of the cathode oxidation of the target fuel cell.
  • the fuel cell performance recovery method may further include:
  • the third performance recovery condition is to introduce reducing gas into the cathode 220 of the target fuel cell.
  • the target fuel cell after controlling the target fuel cell to switch to the second performance recovery condition, it can be after the ratio of the reference charge migration impedance value to the first charge migration impedance value is less than or equal to the target threshold, and the target fuel cell is controlled to switch to the second performance recovery condition; it can also be after controlling the target fuel cell to switch to the first performance recovery condition, and the target fuel cell is controlled to switch to the second performance recovery condition according to the second charge migration impedance value.
  • the target fuel cell is restored using the second performance recovery condition, the target fuel cell is controlled to maintain the second target time length in the second performance recovery condition, the charge migration impedance of the target fuel cell is collected again, that is, the third charge migration impedance value is obtained, and based on the third charge migration impedance value and the first charge migration impedance value, it is determined whether the oxidation of the cathode 220 of the target fuel cell is restored.
  • the charge migration impedance of the target fuel cell remains unchanged or increases, indicating that the second performance recovery condition has limited recovery of the cathode oxidation of the target fuel cell and needs to be switched to the third performance recovery condition.
  • the cathode of the target fuel cell is restored in stages using the first performance recovery condition, the second performance recovery condition and the third performance recovery condition to ensure the recovery effect of the oxidation of the cathode catalyst of the target fuel cell.
  • the measurement of the third charge transfer impedance value is to determine whether the target fuel cell can The second performance recovery condition is effectively restored. If the third charge migration impedance value is less than the first charge migration impedance value, the target fuel cell can be controlled to continue to maintain the second performance recovery condition, and the charge migration impedance value of the target fuel cell can be collected regularly. The charge migration impedance value is compared with the reference charge migration impedance value to determine whether to end the second performance recovery condition and complete the recovery of the cathode oxidation of the target fuel cell.
  • the first performance recovery condition and the second performance recovery condition are to recover the cathode oxidation of the target fuel cell by current or voltage, which is an online recovery strategy
  • the third performance recovery condition is to recover the cathode oxidation of the target fuel cell by reducing gas, which is an offline recovery strategy.
  • controlling the target fuel cell to switch to the third performance recovery operating condition may include:
  • a reducing gas is introduced into the cathode 220 of the target fuel cell.
  • the process of controlling the target fuel cell to switch to the third performance recovery condition requires first introducing a protective gas, such as nitrogen protective gas, into the cathode 220 of the target fuel cell to protect the cathode, and then introducing a reducing gas into the anode 210 and cathode 220 of the target fuel cell.
  • a protective gas such as nitrogen protective gas
  • the reducing gas introduced into the anode 210 and the cathode 220 of the target fuel cell may be hydrogen.
  • a reducing gas is introduced into both the anode 210 and the cathode 220 of the target fuel cell to provide a reducing atmosphere for the cathode 220 of the target fuel cell, and a reduction reaction occurs with platinum oxide at the cathode.
  • controlling the target fuel cell to switch to the second performance recovery operating condition may include:
  • a target voltage is applied to the target fuel cell, and a reducing gas is introduced into the cathode 220 of the target fuel cell.
  • a reducing gas is introduced into the cathode to produce a hydrogen pump effect, whereby hydrogen ions or other reducing ions combine with electrons in the cathode catalyst layer to regenerate hydrogen, thereby reducing the platinum oxide on the cathode side of the target fuel cell.
  • a target voltage is applied to a target fuel cell, and the total target voltage can be determined based on the voltage of each stack of the target fuel cell being between 50 mV and 200 mV.
  • the anode 210 and cathode 220 of the target fuel cell may be humidified, for example, the humidity of the anode and cathode may be adjusted to 100% to reduce membrane resistance and accelerate the reaction rate of the hydrogen pump.
  • controlling the target fuel cell to switch to the first performance recovery condition may include:
  • a target pulse current is applied to the target fuel cell.
  • the duty cycle of the target pulse current used in the first performance recovery condition may be 1%-10%.
  • a target pulse current with a duty cycle of 2% may be applied to the target fuel cell to perform performance recovery.
  • the following introduces a specific online recovery process of the first performance recovery condition.
  • each stack of the target fuel cell has entered the rated state, that is, the target fuel cell has entered the rated operating condition.
  • the ventilation amounts of the anode and cathode of the target fuel cell are increased, that is, the ventilation amount of hydrogen at the anode of the target fuel cell is increased, and at the same time, the ventilation amount of oxygen at the cathode of the target fuel cell is increased.
  • a target pulse current is applied to the target fuel cell, where the target pulse current is a low-potential high-current pulse, which can effectively remove the 2D-structured platinum oxide on the surface of the cathode catalyst of the target fuel cell.
  • the duty cycle of the target pulse current may be 1%-10%.
  • the oxidation degree of the cathode catalyst of the target fuel cell is diagnosed again at the rated point, ie, under the rated condition.
  • the following introduces a specific online recovery process of the second performance recovery condition.
  • the stack of the target fuel cell is controlled to shut down, and a voltage is applied to the stack of the target fuel cell through the high-voltage battery and the bidirectional DC module, that is, a target voltage is applied to the target fuel cell.
  • a reducing gas is introduced into the cathode 220 of the target fuel cell, and a hydrogen pump effect occurs in the cathode 220 of the target fuel cell.
  • the hydrogen pump effect continues to react for n minutes.
  • the air compressor 280 of the cathode 220 of the target fuel cell is replaced to the cathode of the target fuel cell. 220Introduce nitrogen protective gas.
  • Hydrogen gas is supplied to the anode 210 of the target fuel cell.
  • the valve of the hydrogen bottle 270 is opened to introduce hydrogen into the cathode 220 of the target fuel cell, so that the cathode 220 of the target fuel cell is in a hydrogen reducing atmosphere, and the hydrogen reducing atmosphere reacts with the PtOx on the catalyst of the cathode 220 of the target fuel cell to undergo a reduction reaction.
  • the valve of the hydrogen bottle 270 is closed, and nitrogen is introduced into the cathode 220 of the target fuel cell until the hydrogen concentration sensor 271 for detecting exhaust emissions shows that the exhaust emission concentration is lower than the safe value.
  • Whether the performance is restored at the rated point of the target fuel cell can be determined by collecting the charge transfer impedance Rct of the target fuel cell.
  • the fuel cell performance recovery method provided in the embodiment of the present disclosure can be executed by a fuel cell performance recovery device.
  • the fuel cell performance recovery method is executed by a fuel cell performance recovery device as an example to illustrate the fuel cell performance recovery device provided in the embodiment of the present disclosure.
  • the disclosed embodiment also provides a fuel cell performance recovery device.
  • the fuel cell performance recovery device comprises:
  • An acquisition module 710 is used to acquire a high-frequency impedance value, a mass transfer impedance value, and a first charge migration impedance value of a target fuel cell;
  • a first processing module 720 for determining oxidation of the cathode 220 catalyst of the target fuel cell when the high frequency impedance value is unchanged, the mass transfer impedance value is unchanged, and the first charge migration impedance value is greater than the reference charge migration impedance value of the rated operating condition of the target fuel cell;
  • a second processing module 730 configured to control the target fuel cell to switch to a first performance recovery operating condition when the ratio of the reference charge migration impedance value to the first charge migration impedance value is less than or equal to the target threshold;
  • a third processing module 740 is used to control the target fuel cell to switch to a second performance recovery operating condition when the ratio of the reference charge migration impedance value to the first charge migration impedance value is less than or equal to the target threshold;
  • the first performance recovery condition is to apply a pulse current to the target fuel cell
  • the second performance recovery condition is to apply a voltage to the target fuel cell in a shutdown state.
  • the degree of oxidation of the fuel cell cathode is judged by measuring impedance.
  • the first performance recovery condition is adopted for recovery.
  • the second performance recovery condition is adopted for recovery.
  • the fuel cell whose cathode has been oxidized is recovered in stages, so that the performance recovery of the fuel cell is more complete, and the service life of the fuel cell is effectively extended.
  • the second processing module 730 is used to control the target fuel cell to switch to the first performance recovery After the operating condition, controlling the target fuel cell to maintain a first target time period in the first performance recovery operating condition;
  • the target fuel cell is controlled to switch to a second performance recovery operating condition.
  • the third processing module 740 is used to control the target fuel cell to maintain a second target time length in the second performance recovery condition after the target fuel cell is switched to the second performance recovery condition;
  • the third performance recovery condition is to introduce reducing gas into the cathode 220 of the target fuel cell.
  • the third processing module 740 is further used to pass a protective gas to the cathode 220 of the target fuel cell;
  • a reducing gas is introduced into the cathode 220 of the target fuel cell.
  • the third processing module 740 is further used to control the target fuel cell to shut down;
  • a target voltage is applied to the target fuel cell, and a reducing gas is introduced into the cathode 220 of the target fuel cell.
  • the second processing module 730 is further used to control the target fuel cell to enter a rated operating condition
  • a target pulse current is applied to the target fuel cell.
  • the fuel cell performance recovery device provided in the embodiment of the present disclosure can implement each process implemented by the method embodiments of Figures 1 to 6, and will not be described again here to avoid repetition.
  • the present disclosure also provides a fuel cell performance recovery system, including:
  • An excitation module 240 wherein a first end of the excitation module 240 is connected to the power battery 250, and a second end of the excitation module 240 is connected to the anode 210 of the target fuel cell;
  • a fuel cell inspection controller 230 wherein a first end of the fuel cell inspection controller 230 is connected to the excitation module 240, and a second end of the fuel cell inspection controller 230 is connected to the anode 210 of the target fuel cell, and the fuel cell inspection controller 230 is used to collect impedance data of the target fuel cell;
  • the performance recovery system controller is connected with the target fuel cell, the excitation module 240 and the fuel cell inspection controller 230.
  • the performance recovery system controller is used to restore the cathode catalyst oxidation of the target fuel cell based on the above-mentioned fuel cell performance recovery method.
  • the degree of oxidation of the cathode of the fuel cell is determined by measuring impedance.
  • the first performance recovery condition is used for recovery.
  • the second performance recovery condition is used for recovery.
  • the fuel cell whose cathode has been oxidized is recovered in stages. Recovery can make the performance of the fuel cell recover more fully and effectively extend the service life of the fuel cell.
  • the excitation module 240 is used to apply an excitation signal to the target fuel cell so that the fuel cell inspection controller 230 can obtain parameters such as the impedance value of the target fuel cell.
  • the excitation module 240 is also used to apply a target voltage to the target fuel cell based on the electric energy provided by the power battery 250, and to produce a hydrogen pump effect in conjunction with the hydrogen gas delivered to the cathode of the target fuel cell by the hydrogen bottle 270.
  • the excitation module 240 may be a DC-DC module.
  • the gas inlet of the cathode 220 of the target fuel cell is provided with a first humidifier 261
  • the gas inlet of the anode 210 of the target fuel cell is provided with a second humidifier 262 .
  • the first humidifier 261 and the second humidifier 262 work to humidify the anode 210 and the cathode 220 of the target fuel cell, for example, adjusting the humidity of the anode and the cathode to 100%, reducing the membrane resistance and accelerating the reaction rate of the hydrogen pump.
  • the fuel cell performance recovery system further includes an air compressor 280 , a hydrogen cylinder 270 , and a control valve 290 .
  • the control valve 290 may control the gas passage so that the air compressor 280 may provide the protective gas to the anode 210 and the cathode 220 of the target fuel cell, or provide the protective gas to one of the anode 210 and the cathode 220 of the target fuel cell.
  • control valve 290 may control the gas passage so that the hydrogen bottle 270 may provide hydrogen to the anode 210 and the cathode 220 of the target fuel cell, or to one of the anode 210 and the cathode 220 of the target fuel cell.
  • the cathode 220 of the target fuel cell is connected to a hydrogen concentration sensor 271 , and the hydrogen concentration sensor 271 performs hydrogen tail gas detection on the cathode 220 of the target fuel cell.
  • the embodiment of the present disclosure also provides an electronic device 800, including a processor 801, a memory 802, and a computer program stored in the memory 802 and executable on the processor 801.
  • a processor 801 When the program is executed by the processor 801, each process of the above-mentioned fuel cell performance recovery method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the electronic devices in the embodiments of the present disclosure include the mobile electronic devices and non-mobile electronic devices mentioned above.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the various processes of the above-mentioned fuel cell performance recovery method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a disk or CDs, etc.
  • the embodiment of the present disclosure also provides a computer program product, including a computer program, which implements the above-mentioned fuel cell performance recovery method when executed by a processor.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the technical solution of the present disclosure can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in each embodiment of the present disclosure.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料电池性能恢复方法包括:获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值;在高频阻抗值不变,传质阻抗值不变,且第一电荷迁移阻抗值大于目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定目标燃料电池的阴极催化剂氧化;在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值大于目标阈值的情况下,控制目标燃料电池切换至第一性能恢复工况;在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制目标燃料电池切换至第二性能恢复工况。

Description

燃料电池性能恢复方法
相关申请的交叉引用
本申请基于申请号为:202211295834.0,申请日为2022年10月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及燃料电池技术领域,具体而言,涉及一种燃料电池性能恢复方法、装置及***。
背景技术
燃料电池是将燃料与氧化剂的化学能通过电化学反应直接转换成电能的发电装置,电化学反应清洁、完全,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的能源动力装置。
商业化质子交换膜的燃料电池膜电极催化剂以铂催化剂为主,当燃料电池电堆运行在高电位工况时(例如,启动、停机和怠速工况),燃料电池膜电极中阴极中的铂催化剂容易被氧化,生成PtOx,减少活性位点,阻碍化学反应的发生,造成燃料电池反应速率下降,燃料电池性能衰减。
氧化的燃料电池阴极侧的铂催化剂的恢复,对保证燃料电池的转换效率,延长燃料电池使用寿命至关重要,目前大多采用固定恢复模式的方式进行氧化的燃料电池阴极的恢复,该方式对不同的燃料电池的针对性差,恢复效果有限。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种燃料电池性能恢复方法、装置及***,分阶段地对已氧化的燃料电池进行恢复,保证燃料电池氧化恢复的效果,有效延长燃料电池的使用寿命。
本公开实施例提供了一种燃料电池性能恢复方法,该方法包括:
获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值;
在所述高频阻抗值不变,所述传质阻抗值不变,且所述第一电荷迁移阻抗值大于所述目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定所述目标燃料电池的阴极催化剂氧化;
在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第一性能恢复工况;
在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第二性能恢复工况;
其中,所述第一性能恢复工况为向所述目标燃料电池施加脉冲电流,所述第二性能恢复工况为停机状态下向所述目标燃料电池施加电压。
本公开一些实施例中,在所述控制所述目标燃料电池切换至第一性能恢复工况之后,所述方法还包括:
控制所述目标燃料电池在所述第一性能恢复工况保持第一目标时长;
获取所述目标燃料电池的第二电荷迁移阻抗值;
在所述第二电荷迁移阻抗值大于或等于所述第一电荷迁移阻抗值的情况下,控制所述目标燃料电池切换至所述第二性能恢复工况。
本公开一些实施例中,在所述控制所述目标燃料电池切换至第二性能恢复工况之后,所述方法还包括:
控制所述目标燃料电池在所述第二性能恢复工况保持第二目标时长;
获取所述目标燃料电池的第三电荷迁移阻抗值;
在所述第三电荷迁移阻抗值大于或等于所述第一电荷迁移阻抗值的情况下,控制所述目标燃料电池切换至第三性能恢复工况;
其中,所述第三性能恢复工况为向所述目标燃料电池的阴极通入还原性气体。
本公开一些实施例中,所述控制所述目标燃料电池切换至所述第三性能恢复工况,包括:
向所述目标燃料电池的阴极通入保护气体;
向所述目标燃料电池的阳极通入还原性气体;
向所述目标燃料电池的阴极通入还原性气体。
本公开一些实施例中,所述控制所述目标燃料电池切换至第二性能恢复工况,包括:
控制所述目标燃料电池停机;
向所述目标燃料电池施加目标电压,并向所述目标燃料电池的阴极通入还原性气体。
本公开一些实施例中,所述控制所述目标燃料电池切换至第一性能恢复工况,包括:
控制所述目标燃料电池进入额定工况;
向所述目标燃料电池施加目标脉冲电流。
本公开实施例还提供了一种燃料电池性能恢复装置,该装置包括:
获取模块,用于获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗 值;
第一处理模块,用于在所述高频阻抗值不变,所述传质阻抗值不变,且所述第一电荷迁移阻抗值大于所述目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定所述目标燃料电池的阴极催化剂氧化;
第二处理模块,用于在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第一性能恢复工况;
第三处理模块,用于在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第二性能恢复工况;
其中,所述第一性能恢复工况为向所述目标燃料电池施加脉冲电流,所述第二性能恢复工况为停机状态下向所述目标燃料电池施加电压。
本公开实施例还提供了一种燃料电池性能恢复***,包括:
激励模块,所述激励模块的第一端与动力电池连接,所述激励模块的第二端与目标燃料电池的阳极连接;
燃料电池巡检控制器,所述燃料电池巡检控制器的第一端与所述激励模块连接,第二端与所述目标燃料电池的阳极连接,所述燃料电池巡检控制器用于采集所述目标燃料电池的阻抗数据;
性能恢复***控制器,所述性能恢复***控制器与所述目标燃料电池、所述激励模块和所述燃料电池巡检控制器,所述性能恢复***控制器用于基于上述的燃料电池性能恢复方法,恢复阴极催化剂氧化的所述目标燃料电池。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的燃料电池性能恢复方法。
本公开实施例还提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的燃料电池性能恢复方法。
本公开实施例还提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的燃料电池性能恢复方法。
本公开实施例带来了以下有益效果:
通过测量阻抗,对燃料电池阴极氧化程度进行判断,催化剂氧化程度轻微时,采用第一性能恢复工况进行恢复,催化剂氧化程度严重时,采用第二性能恢复工况进行恢复,分阶段地对阴极已氧化的燃料电池进行恢复,使得燃料电池的性能恢复更加充分,有效延长燃料电池的使用寿命。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开实施例提供的燃料电池性能恢复方法的流程示意图;
图2是本公开实施例提供的燃料电池性能恢复***的结构示意图;
图3是本公开实施例提供的目标燃料电池在线诊断的流程示意图;
图4是本公开实施例提供的第一性能恢复工况的流程示意图;
图5是本公开实施例提供的第二性能恢复工况的流程示意图;
图6是本公开实施例提供的第三性能恢复工况的流程示意图;
图7是本公开实施例提供的燃料电池性能恢复装置的结构示意图;
图8是本公开实施例提供的电子设备的结构示意图。
附图标记:
目标燃料电池的阳极210,目标燃料电池的阴极220;
燃料电池巡检控制器230,激励模块240,动力电池250,第一增湿器261,第二增湿器262,氢气瓶270,氢浓度传感器271,空压机280,控制阀门290。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本公开实施例提供的燃料电池性能恢复方法、装置及***进行详细地说明。
其中,燃料电池性能恢复方法可应用于终端,具体可由,终端中的硬件或软件执行。
本公开实施例提供的燃料电池性能恢复方法,该燃料电池性能恢复方法的执行主体 可以为电子设备或者电子设备中能够实现该燃料电池性能恢复方法的功能模块或功能实体,下面以电子设备作为执行主体为例对本公开实施例提供的燃料电池性能恢复方法进行说明。
如图1所示,该燃料电池性能恢复方法包括:步骤110至步骤140。
步骤110、获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值。
在该步骤中,目标燃料电池为未知状态,通过获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值,判断目标燃料电池的阴极侧的催化剂是否被氧化,目标燃料电池阳阴侧的催化剂可以为铂催化剂。
目标燃料电池阳阴侧的铂催化剂容易被氧化,生成氧化铂(PtOx),减少阴侧的活性位点,阻碍化学反应的发生,造成燃料电池反应速率下降,燃料电池性能衰减。
在该实施例中,通过电池阻抗测量手段,对目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值进行测量。
在实际执行中,可以向未知状态的目标燃料电池施加一个或多个高频的激励信号,以及一个或多个低频的激励信号,采集目标燃料电池在高频激励和低频激励下的电压信号和电流信号,根据高频激励和低频激励下的电压信号和电流信号,计算高频阻抗值、传质阻抗值和第一电荷迁移阻抗值等阻抗值。
步骤120、在高频阻抗值不变,传质阻抗值不变,且第一电荷迁移阻抗值大于目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定目标燃料电池的阴极220催化剂氧化。
在该步骤中,通过对高频阻抗值、传质阻抗值和第一电荷迁移阻抗值的检测,判断高频阻抗值、传质阻抗值和第一电荷迁移阻抗值的变化趋势,当出现高频阻抗值不变,传质阻抗值不变,且第一电荷迁移阻抗值大于目标燃料电池额定工况的参考电荷迁移阻抗值的情况时,确定目标燃料电池的阴极220催化剂氧化。
可以理解的是,检测到的第一电荷迁移阻抗值大于目标燃料电池额定工况的参考电荷迁移阻抗值,表明目标燃料电池的电荷迁移阻抗是在增大的,根据目标燃料电池的电荷迁移阻抗增大的趋势,可以判断目标燃料电池的阴极220催化剂氧化。
步骤130、在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制目标燃料电池切换至第一性能恢复工况。
步骤140、在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制目标燃料电池切换至第二性能恢复工况。
其中,第一性能恢复工况为向目标燃料电池施加脉冲电流,第二性能恢复工况为停机状态下向目标燃料电池施加电压。
需要说明的是,燃料电池电位在一定电位区间(例如,0.7V-0.8V)时,生成的氧化铂质地较稀疏,氧化铂薄层附着在阴极膜电极表面,氧化铂为2D结构;当燃料电池电位高于一定的阈值(例如,0.8V)后,阴极侧的催化剂容易被氧化,形成更加稳定的3D结构的氧化铂。
在该实施例中,通过预先设置的目标阈值判断目标燃料电池的阴极220催化剂的氧化程度,判断阴极侧的氧化铂是2D结构还是3D结构,其中,目标阈值可以根据实验测量得到。
在步骤130中,参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值,表明目标燃料电池阴极侧的氧化铂可能是2D结构的氧化物,可以采用向目标燃料电池施加脉冲电流的第一性能恢复工况进行性能恢复。
在步骤140中,参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值大于目标阈值,表明目标燃料电池阴极侧的氧化铂可能是3D结构的氧化物,可以采用停机状态下向目标燃料电池施加电压的第二性能恢复工况进行性能恢复。
其中,参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值用于表征目标燃料电池的电荷迁移阻抗的上升范围。
在实际执行中,可以使用第一电荷迁移阻抗值与参考电荷迁移阻抗值的差值与第一电荷迁移阻抗值的比,来指示目标燃料电池的电荷迁移阻抗的上升范围。
下面介绍一个具体的实施例。
第一电荷迁移阻抗值为Rct,参考电荷迁移阻抗值为Rre,(Rct-Rre)/Rct为指示目标燃料电池的电荷迁移阻抗的上升范围的参数。
当(Rct-Rre)/Rct大于a%,采用第二性能恢复工况进行性能恢复;当(Rct-Rre)/Rct小于或等于a%,采用第一性能恢复工况进行性能恢复。
(Rct-Rre)/Rct=1-Rre/Rct,当1-Rre/Rct大于a%,表明Rre/Rct小于或等于目标阈值,控制目标燃料电池切换至第二性能恢复工况。
当1-Rre/Rct小于或等于a%,表明Rre/Rct大于目标阈值,控制目标燃料电池切换至第一性能恢复工况。
在实际执行中,a%的取值可以为2%-20%,可以根据实验测量得到。
相关技术中,通过定期降低电位的方式恢复燃料电池阴极侧表面的氧化铂,这种恢复方式针对性差,当燃料电池阴极侧生成3D结构的氧化铂时,无法使得3D结构的氧化铂还原,燃料电池的恢复程度有限。
根据本公开实施例提供的燃料电池性能恢复方法,通过测量阻抗,对燃料电池阴极氧化程度进行判断,催化剂氧化程度轻微时,采用第一性能恢复工况进行恢复,催化剂 氧化程度严重时,采用第二性能恢复工况进行恢复,分阶段地对阴极已氧化的燃料电池进行恢复,使得燃料电池的性能恢复更加充分,有效延长燃料电池的使用寿命。
以如图2所示燃料电池性能恢复为例。
动力电池250连接激励模块240,激励模块240的第一端与动力电池250连接,激励模块240的第二端与目标燃料电池的阳极210连接,燃料电池巡检控制器230的第一端与激励模块240连接,第二端与目标燃料电池的阳极210连接,燃料电池巡检控制器230用于采集目标燃料电池的阻抗数据。
根据燃料电池巡检控制器230的测量阻抗,对目标燃料电池阴极氧化程度进行判断,催化剂氧化程度轻微时,控制激励模块240向目标燃料电池施加脉冲电流,对应第一性能恢复工况;催化剂氧化程度严重时,控制动力电池250和激励模块240向目标燃料电池施加电压,对应第二性能恢复工况。
下面介绍一个具体的在线诊断流程。
如图3所示,目标燃料电池的各个电堆进入额定工况,测定额定点性能是否衰减。
如果额定点性能衰减,在多个固定频率测量阻抗,拟合得到相关的阻抗系数,高频阻抗值高频阻抗值(Rhf)、传质阻抗值(Rmt)和第一电荷迁移阻抗值(Rct)。
当Rmt改变时,诊断目标燃料电池欠气;当Rhf改变时,诊断目标燃料电池膜干。
当Rhf和Rmt不变,且Rct改变(主要是增大)时,诊断目标燃料电池阴极催化剂氧化。
根据(Rct-Rre)/Rct与a%相比,判断目标燃料电池采用第一性能恢复工况(在线恢复策略1)进行恢复,还是采用第二性能恢复工况(在线恢复策略2)进行恢复。
在一些实施例中,在控制目标燃料电池切换至第一性能恢复工况之后,燃料电池性能恢复方法还可以包括:
控制目标燃料电池在第一性能恢复工况保持第一目标时长;
获取目标燃料电池的第二电荷迁移阻抗值;
在第二电荷迁移阻抗值大于或等于第一电荷迁移阻抗值的情况下,控制目标燃料电池切换至第二性能恢复工况。
在该实施例中,采用第一性能恢复工况对目标燃料电池进行恢复,控制目标燃料电池在第一性能恢复工况保持第一目标时长,再次采集目标燃料电池的电荷迁移阻抗,即获取第二电荷迁移阻抗值,根据第二电荷迁移阻抗值和第一电荷迁移阻抗值,判断目标燃料电池的阴极220氧化是否恢复。
在第二电荷迁移阻抗值大于或等于第一电荷迁移阻抗值的情况下,也即第一性能恢复工况保持第一目标时长后,目标燃料电池的电荷迁移阻抗不变或者增长,表明第一性 能恢复工况对目标燃料电池阴极氧化的恢复有限,需要切换至第二性能恢复工况。
需要说明的是,控制目标燃料电池在第一性能恢复工况保持第一目标时长,进行电荷迁移阻抗测量,是为了判断目标燃料电池是否能在第一性能恢复工况进行有效恢复,并非在第一性能恢复工况保持第一目标时长后,完成目标燃料电池阴极氧化的恢复工作。
在实际执行中,如果第二电荷迁移阻抗值小于第一电荷迁移阻抗值,可以控制目标燃料电池在第一性能恢复工况继续保持,并定时采集目标燃料电池的电荷迁移阻抗值,使用该电荷迁移阻抗值与参考电荷迁移阻抗值进行比较,判断是否结束第一性能恢复工况,完成目标燃料电池阴极氧化的恢复工作。
在一些实施例中,在控制目标燃料电池切换至第二性能恢复工况之后,燃料电池性能恢复方法还可以包括:
控制目标燃料电池在第二性能恢复工况保持第二目标时长;
获取目标燃料电池的第三电荷迁移阻抗值;
在第三电荷迁移阻抗值大于或等于第一电荷迁移阻抗值的情况下,控制目标燃料电池切换至第三性能恢复工况;
其中,第三性能恢复工况为向目标燃料电池的阴极220通入还原性气体。
需要说明的是,在该实施例中,控制目标燃料电池切换至第二性能恢复工况之后,可以是在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值,控制目标燃料电池切换至第二性能恢复工况之后;也可以是在控制目标燃料电池切换至第一性能恢复工况,根据第二电荷迁移阻抗值控制目标燃料电池切换至第二性能恢复工况之后。
在该实施例中,采用第二性能恢复工况对目标燃料电池进行恢复,控制目标燃料电池在第二性能恢复工况保持第二目标时长,再次采集目标燃料电池的电荷迁移阻抗,即获取第三电荷迁移阻抗值,根据第三电荷迁移阻抗值和第一电荷迁移阻抗值,判断目标燃料电池的阴极220氧化是否恢复。
在第三电荷迁移阻抗值大于或等于第一电荷迁移阻抗值的情况下,也即第二性能恢复工况保持第二目标时长后,目标燃料电池的电荷迁移阻抗不变或者增长,表明第二性能恢复工况对目标燃料电池阴极氧化的恢复有限,需要切换至第三性能恢复工况。
在该实施例中,根据阻抗测量结果,分段式的采用第一性能恢复工况、第二性能恢复工况和第三性能恢复工况对目标燃料电池阴极进行恢复,保证目标燃料电池阴极催化剂氧化的恢复效果。
可以理解的是,第三电荷迁移阻抗值的测量,是为了判断目标燃料电池是否能在第 二性能恢复工况进行有效恢复,如果第三电荷迁移阻抗值小于第一电荷迁移阻抗值,可以控制目标燃料电池在第二性能恢复工况继续保持,并定时采集目标燃料电池的电荷迁移阻抗值,使用该电荷迁移阻抗值与参考电荷迁移阻抗值进行比较,判断是否结束第二性能恢复工况,完成目标燃料电池阴极氧化的恢复工作。
需要说明的是,第一性能恢复工况和第二性能恢复工况是通过电流或电压对目标燃料电池阴极氧化进行恢复,属于在线恢复策略,第三性能恢复工况是通过还原性气体对目标燃料电池阴极氧化进行恢复,属于离线恢复策略。
在一些实施例中,控制目标燃料电池切换至第三性能恢复工况,可以包括:
向目标燃料电池的阴极220通入保护气体;
向目标燃料电池的阳极210通入还原性气体;
向目标燃料电池的阴极220通入还原性气体。
需要说明的是,控制目标燃料电池切换至第三性能恢复工况的过程需要先向目标燃料电池的阴极220通入保护气体,例如,氮气保护气,对阴极进行保护,再向目标燃料电池的阳极210和阴极220通入还原性气体。
其中,向目标燃料电池的阳极210和阴极220通入的还原性气体可以为氢气。
在该实施例中,向目标燃料电池的阳极210和阴极220均通入还原性气体,为目标燃料电池的阴极220提供还原气氛,与阴极的氧化铂发生还原反应。
需要说明的是,在第三性能恢复工况下,目标燃料电池的阴极220通入保护气体和一定比例的还原性气体,保证还原性气体的浓度小于对应的***极限,保证第三性能恢复工况的安全性。
在一些实施例中,控制目标燃料电池切换至第二性能恢复工况,可以包括:
控制目标燃料电池停机;
向目标燃料电池施加目标电压,并向目标燃料电池的阴极220通入还原性气体。
在该实施例中,在停机状态下,向目标燃料电池施加电压的同时,向阴极通入还原性气体,产生氢泵效应,氢离子或其他还原性离子在阴极催化剂层与电子结合重新生成氢气,还原目标燃料电池阴极侧的氧化铂。
在实际执行中,向目标燃料电池施加目标电压,可以根据目标燃料电池的分堆每堆电压在50mV-200mV,确定总的目标电压。
氢泵效应发生过程中,可以在目标燃料电池的阳极210和阴极220进行加湿,例如,将阳极和阴极的湿度调整为100%,减小膜阻,加速氢泵的反应速率。
在一些实施例中,控制目标燃料电池切换至第一性能恢复工况,可以包括:
控制目标燃料电池进入额定工况;
向目标燃料电池施加目标脉冲电流。
在该实施例中,第一性能恢复工况所使用的目标脉冲电流的占空比可以为1%-10%。
例如,可以向目标燃料电池施加占空比为2%的目标脉冲电流,进行性能恢复。
下面介绍一个具体的第一性能恢复工况的在线恢复流程。
如图4所示,确认目标燃料电池的各个电堆都进入额定状态,也即目标燃料电池进入额定工况。
增大目标燃料电池阳极和阴极的通气量,即增大目标燃料电池阳极的氢气的通气量,同时增大目标燃料电池阴极的氧气的通气量。
向目标燃料电池施加目标脉冲电流,目标脉冲电流为低电位高电流脉冲,可以有效去除目标燃料电池阴极催化剂表面的2D结构的氧化铂。
其中,目标脉冲电流的占空比可以为1%-10%。
第一性能恢复工况持续一段时间后,在额定点,即额定工况下,再次对目标燃料电池阴极催化剂的氧化程度进行诊断。
当目标燃料电池的电荷迁移阻抗Rct减小时,表明第一性能恢复工况可以有效恢复目标燃料电池阴极催化剂的氧化铂,性能恢复可以成功。
当目标燃料电池的电荷迁移阻抗Rct不变或增大时,表明第一性能恢复工况无法有效恢复目标燃料电池阴极催化剂的氧化铂,采用恢复策略2进行恢复,也即切换至第二性能恢复工况。
下面介绍一个具体的第二性能恢复工况的在线恢复流程。
如图5所示,控制目标燃料电池的电堆停机,通过高压电池和双向DC模块向目标燃料电池的电堆施加电压,也即向目标燃料电池施加目标电压。
向目标燃料电池的阴极220通入还原性气体,目标燃料电池的阴极220发生氢泵效应,氢泵效应持续反应n分钟。
等待目标燃料电池下一次运行,再次对目标燃料电池阴极催化剂的氧化程度进行诊断。
当目标燃料电池的电荷迁移阻抗Rct减小时,表明第二性能恢复工况可以有效恢复目标燃料电池阴极催化剂的氧化铂,性能恢复可以成功。
当目标燃料电池的电荷迁移阻抗Rct不变或增大时,表明第二性能恢复工况无法有效恢复目标燃料电池阴极催化剂的氧化铂,提醒用户需要目标燃料电池阴极催化剂需要保养,进行离线恢复,也即采用第三性能恢复工况进行恢复。
下面介绍一个具体的第三性能恢复工况的在线恢复流程。
如图6所示,目标燃料电池的阴极220的空压机280换位,向目标燃料电池的阴极 220通入氮气保护气。
向目标燃料电池的阳极210通入氢气。
打开氢气瓶270的阀门向目标燃料电池的阴极220通入氢气,使得目标燃料电池的阴极220处于氢气还原气氛,氢气还原气氛与目标燃料电池的阴极220催化剂上的PtOx发生还原反应。
在还原反应持续n分钟后,关闭氢气瓶270的阀门,再向目标燃料电池的阴极220通入氮气,直到检测尾气排放的氢浓度传感器271显示尾气排放浓度低于安全值。
在目标燃料电池额定点测试性能是否恢复,可以通过采集目标燃料电池的电荷迁移阻抗Rct进行判断。
PtOx恢复完成,结束恢复工况,目标燃料电池的性能无法恢复时,需要提示用户更换目标燃料电池的阴极220膜电极。
本公开实施例提供的燃料电池性能恢复方法,执行主体可以为燃料电池性能恢复装置。本公开实施例中以燃料电池性能恢复装置执行燃料电池性能恢复方法为例,说明本公开实施例提供的燃料电池性能恢复装置。
本公开实施例还提供一种燃料电池性能恢复装置。
如图7所示,该燃料电池性能恢复装置包括:
获取模块710,用于获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值;
第一处理模块720,用于在高频阻抗值不变,传质阻抗值不变,且第一电荷迁移阻抗值大于目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定目标燃料电池的阴极220催化剂氧化;
第二处理模块730,用于在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制目标燃料电池切换至第一性能恢复工况;
第三处理模块740,用于在参考电荷迁移阻抗值与第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制目标燃料电池切换至第二性能恢复工况;
其中,第一性能恢复工况为向目标燃料电池施加脉冲电流,第二性能恢复工况为停机状态下向目标燃料电池施加电压。
根据本公开实施例提供的燃料电池性能恢复装置,通过测量阻抗,对燃料电池阴极氧化程度进行判断,催化剂氧化程度轻微时,采用第一性能恢复工况进行恢复,催化剂氧化程度严重时,采用第二性能恢复工况进行恢复,分阶段地对阴极已氧化的燃料电池进行恢复,使得燃料电池的性能恢复更加充分,有效延长燃料电池的使用寿命。
在一些实施例中,第二处理模块730用于在控制目标燃料电池切换至第一性能恢复 工况之后,控制目标燃料电池在第一性能恢复工况保持第一目标时长;
获取目标燃料电池的第二电荷迁移阻抗值;
在第二电荷迁移阻抗值大于或等于第一电荷迁移阻抗值的情况下,控制目标燃料电池切换至第二性能恢复工况。
在一些实施例中,第三处理模块740用于在控制目标燃料电池切换至第二性能恢复工况之后,控制目标燃料电池在第二性能恢复工况保持第二目标时长;
获取目标燃料电池的第三电荷迁移阻抗值;
在第三电荷迁移阻抗值大于或等于第一电荷迁移阻抗值的情况下,控制目标燃料电池切换至第三性能恢复工况;
其中,第三性能恢复工况为向目标燃料电池的阴极220通入还原性气体。
在一些实施例中,第三处理模块740还用于向目标燃料电池的阴极220通入保护气体;
向目标燃料电池的阳极210通入还原性气体;
向目标燃料电池的阴极220通入还原性气体。
在一些实施例中,第三处理模块740还用于控制目标燃料电池停机;
向目标燃料电池施加目标电压,并向目标燃料电池的阴极220通入还原性气体。
在一些实施例中,第二处理模块730还用于控制目标燃料电池进入额定工况;
向目标燃料电池施加目标脉冲电流。
本公开实施例提供的燃料电池性能恢复装置能够实现图1至图6的方法实施例实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种燃料电池性能恢复***,包括:
激励模块240,激励模块240的第一端与动力电池250连接,激励模块240的第二端与目标燃料电池的阳极210连接;
燃料电池巡检控制器230,燃料电池巡检控制器230的第一端与激励模块240连接,第二端与目标燃料电池的阳极210连接,燃料电池巡检控制器230用于采集目标燃料电池的阻抗数据;
性能恢复***控制器,性能恢复***控制器与目标燃料电池、激励模块240和燃料电池巡检控制器230,性能恢复***控制器用于基于上述燃料电池性能恢复方法,恢复阴极催化剂氧化的目标燃料电池。
根据本公开实施例提供的燃料电池性能恢复***,通过测量阻抗,对燃料电池阴极氧化程度进行判断,催化剂氧化程度轻微时,采用第一性能恢复工况进行恢复,催化剂氧化程度严重时,采用第二性能恢复工况进行恢复,分阶段地对阴极已氧化的燃料电池 进行恢复,使得燃料电池的性能恢复更加充分,有效延长燃料电池的使用寿命。
在一些实施例中,激励模块240用于向目标燃料电池施加激励信号,以使燃料电池巡检控制器230可以获取目标燃料电池的阻抗值等参数。
激励模块240还用于基于动力电池250提供的电能,向目标燃料电池施加目标电压,配合氢气瓶270向目标燃料电池阴极输送的氢气,产生氢泵效应。
在实际执行中,激励模块240可以为DC-DC模块。
在一些实施例中,目标燃料电池的阴极220的气体入口设置有第一增湿器261,目标燃料电池的阳极210的气体入口设置有第二增湿器262。
氢泵效应发生过程中,第一增湿器261和第二增湿器262工作,可以在目标燃料电池的阳极210和阴极220进行加湿,例如,将阳极和阴极的湿度调整为100%,减小膜阻,加速氢泵的反应速率。
在一些实施例中,燃料电池性能恢复***还包括空压机280、氢气瓶270和控制阀门290。
控制阀门290可以控制气体通道,使得空压机280可以为目标燃料电池的阳极210和阴极220提供保护气体,或者为目标燃料电池的阳极210和阴极220中的一个提供保护气体。
在该实施例中,控制阀门290可以控制气体通道,使得氢气瓶270可以为目标燃料电池的阳极210和阴极220提供氢气,或者为目标燃料电池的阳极210和阴极220中的一个提供氢气。
在一些实施例中,目标燃料电池的阴极220连接氢浓度传感器271,氢浓度传感器271对目标燃料电池的阴极220进行氢气尾气检测。
在一些实施例中,如图8所示,本公开实施例还提供一种电子设备800,包括处理器801、存储器802及存储在存储器802上并可在处理器801上运行的计算机程序,该程序被处理器801执行时实现上述燃料电池性能恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本公开实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
本公开实施例还提供一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述燃料电池性能恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或 者光盘等。
本公开实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述燃料电池性能恢复方法。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本公开实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱 离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种燃料电池性能恢复方法,其中,包括:
    获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值;
    在所述高频阻抗值不变,所述传质阻抗值不变,且所述第一电荷迁移阻抗值大于所述目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定所述目标燃料电池的阴极催化剂氧化;
    在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第一性能恢复工况;
    在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第二性能恢复工况;
    其中,所述第一性能恢复工况为向所述目标燃料电池施加脉冲电流,所述第二性能恢复工况为停机状态下向所述目标燃料电池施加电压。
  2. 根据权利要求1所述的燃料电池性能恢复方法,其中,在所述控制所述目标燃料电池切换至第一性能恢复工况之后,所述方法还包括:
    控制所述目标燃料电池在所述第一性能恢复工况保持第一目标时长;
    获取所述目标燃料电池的第二电荷迁移阻抗值;
    在所述第二电荷迁移阻抗值大于或等于所述第一电荷迁移阻抗值的情况下,控制所述目标燃料电池切换至所述第二性能恢复工况。
  3. 根据权利要求1或2所述的燃料电池性能恢复方法,其中,在所述控制所述目标燃料电池切换至第二性能恢复工况之后,所述方法还包括:
    控制所述目标燃料电池在所述第二性能恢复工况保持第二目标时长;
    获取所述目标燃料电池的第三电荷迁移阻抗值;
    在所述第三电荷迁移阻抗值大于或等于所述第一电荷迁移阻抗值的情况下,控制所述目标燃料电池切换至第三性能恢复工况;
    其中,所述第三性能恢复工况为向所述目标燃料电池的阴极通入还原性气体。
  4. 根据权利要求3所述的燃料电池性能恢复方法,其中,所述控制所述目标燃料电池切换至所述第三性能恢复工况,包括:
    向所述目标燃料电池的阴极通入保护气体;
    向所述目标燃料电池的阳极通入还原性气体;
    向所述目标燃料电池的阴极通入还原性气体。
  5. 根据权利要求1-4任一项所述的燃料电池性能恢复方法,其中,所述控制所述目标燃料电池切换至第二性能恢复工况,包括:
    控制所述目标燃料电池停机;
    向所述目标燃料电池施加目标电压,并向所述目标燃料电池的阴极通入还原性气体。
  6. 根据权利要求1-5任一项所述的燃料电池性能恢复方法,其中,所述控制所述目标燃料电池切换至第一性能恢复工况,包括:
    控制所述目标燃料电池进入额定工况;
    向所述目标燃料电池施加目标脉冲电流。
  7. 一种燃料电池性能恢复装置,其中,包括:
    获取模块,用于获取目标燃料电池的高频阻抗值、传质阻抗值和第一电荷迁移阻抗值;
    第一处理模块,用于在所述高频阻抗值不变,所述传质阻抗值不变,且所述第一电荷迁移阻抗值大于所述目标燃料电池额定工况的参考电荷迁移阻抗值的情况下,确定所述目标燃料电池的阴极催化剂氧化;
    第二处理模块,用于在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第一性能恢复工况;
    第三处理模块,用于在所述参考电荷迁移阻抗值与所述第一电荷迁移阻抗值的比值小于或等于目标阈值的情况下,控制所述目标燃料电池切换至第二性能恢复工况;
    其中,所述第一性能恢复工况为向所述目标燃料电池施加脉冲电流,所述第二性能恢复工况为停机状态下向所述目标燃料电池施加电压。
  8. 一种燃料电池性能恢复***,其中,包括:
    激励模块,所述激励模块的第一端与动力电池连接,所述激励模块的第二端与目标燃料电池的阳极连接;
    燃料电池巡检控制器,所述燃料电池巡检控制器的第一端与所述激励模块连接,第二端与所述目标燃料电池的阳极连接,所述燃料电池巡检控制器用于采集所述目标燃料电池的阻抗数据;
    性能恢复***控制器,所述性能恢复***控制器与所述目标燃料电池、所述激励模块和所述燃料电池巡检控制器,所述性能恢复***控制器用于基于权利要求1-6任一项所述的燃料电池性能恢复方法,恢复阴极催化剂氧化的所述目标燃料电池。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1-6任一项所述燃料电池性能恢复方法。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1-6任一项所述的燃料电池性能恢复方法。
PCT/CN2023/137035 2022-10-21 2023-12-07 燃料电池性能恢复方法 WO2024083268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211295834.0A CN115663240B (zh) 2022-10-21 2022-10-21 燃料电池性能恢复方法、装置及***
CN202211295834.0 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024083268A1 true WO2024083268A1 (zh) 2024-04-25

Family

ID=84989913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137035 WO2024083268A1 (zh) 2022-10-21 2023-12-07 燃料电池性能恢复方法

Country Status (2)

Country Link
CN (1) CN115663240B (zh)
WO (1) WO2024083268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663240B (zh) * 2022-10-21 2024-05-10 上海氢晨新能源科技有限公司 燃料电池性能恢复方法、装置及***
AT526964A1 (de) * 2023-06-19 2024-07-15 Avl List Gmbh Regenerationsverfahren zum Regenerieren von Brennstoffzellenstapeln und Brennstoffzellenstapelsystem
CN117117255B (zh) * 2023-10-23 2024-02-09 上海重塑能源科技有限公司 增湿器隔膜性能参数确定方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050289A (ko) * 2013-10-31 2015-05-08 현대자동차주식회사 극치환을 이용한 연료전지의 성능 회복 방법
CN107681181A (zh) * 2016-09-26 2018-02-09 中国计量大学 一种燃料电池的性能诊断方法
CN114264881A (zh) * 2021-12-24 2022-04-01 上海重塑能源科技有限公司 一种燃料电池阻抗在线监控方法及***
CN114566677A (zh) * 2022-03-04 2022-05-31 上海重塑能源科技有限公司 燃料电池控制***及其控制方法
CN114759231A (zh) * 2022-04-08 2022-07-15 中国第一汽车股份有限公司 燃料电池在线性能恢复的方法、控制装置及处理器
CN115663240A (zh) * 2022-10-21 2023-01-31 上海氢晨新能源科技有限公司 燃料电池性能恢复方法、装置及***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447380B (zh) * 2022-01-18 2024-04-26 同济大学 一种恢复质子交换膜燃料电池电堆性能的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050289A (ko) * 2013-10-31 2015-05-08 현대자동차주식회사 극치환을 이용한 연료전지의 성능 회복 방법
CN107681181A (zh) * 2016-09-26 2018-02-09 中国计量大学 一种燃料电池的性能诊断方法
CN114264881A (zh) * 2021-12-24 2022-04-01 上海重塑能源科技有限公司 一种燃料电池阻抗在线监控方法及***
CN114566677A (zh) * 2022-03-04 2022-05-31 上海重塑能源科技有限公司 燃料电池控制***及其控制方法
CN114759231A (zh) * 2022-04-08 2022-07-15 中国第一汽车股份有限公司 燃料电池在线性能恢复的方法、控制装置及处理器
CN115663240A (zh) * 2022-10-21 2023-01-31 上海氢晨新能源科技有限公司 燃料电池性能恢复方法、装置及***

Also Published As

Publication number Publication date
CN115663240A (zh) 2023-01-31
CN115663240B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2024083268A1 (zh) 燃料电池性能恢复方法
CN102034995B (zh) 利用燃料电池堆的电池电压预测来改进燃料电池***性能的方法
EP2622672B1 (en) Fuel cell system, method and program of determining cause of negative voltage, and storage medium storing program
CN103928695B (zh) 一种恢复质子交换膜燃料电池低效膜电极性能的方法
Gebregergis et al. PEMFC fault diagnosis, modeling, and mitigation
CN101521288A (zh) 基于燃料电池***的电压性能的电流限制的增益调度控制
CN111916800B (zh) 一种燃料电池膜电极的活化方法及应用
US20070036891A1 (en) Method of Making A Fuel Cell Component Using An Easily Removed Mask
Jo et al. Effects of a hydrogen and air supply procedure on the performance degradation of PEMFCs
US9178233B2 (en) Smart in-vehicle reactive recovery strategy
CN114447380B (zh) 一种恢复质子交换膜燃料电池电堆性能的方法
JP2004127548A (ja) 固体高分子型燃料電池の運転方法および運転システム
CN114628745B (zh) 用于高温质子交换膜燃料电池的极化损失分离方法及***
CN117039071A (zh) 燃料电池电堆***的前置工况影响恢复方法及存储介质
CN113793960B (zh) 一种燃料电池排氢方法及装置
Mugikura et al. Performance evaluation technology for long term durability and reliability of SOFCs
KR20160066953A (ko) 초기 내구성 향상을 위한 연료전지 활성화 공정
CN114243053A (zh) 一种延长燃料电池寿命的测试方法及装置
JP2542096B2 (ja) 燃料電池の停止方法
JP5428496B2 (ja) 燃料電池システムの触媒被毒状態の判定
CN113219349A (zh) 一种燃料电池膜电极破损在线检测***及方法
JP2010186704A (ja) 固体高分子型燃料電池の寿命加速試験方法
CN115548393A (zh) 燃料电池性能恢复方法、装置和***
KR101551060B1 (ko) 연료 전지 스택 진단 방법
CN116256638A (zh) 一种质子交换膜燃料电池的寿命预测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879251

Country of ref document: EP

Kind code of ref document: A1