WO2024083253A1 - 一种风电机齿轮箱润滑装置及齿轮箱 - Google Patents

一种风电机齿轮箱润滑装置及齿轮箱 Download PDF

Info

Publication number
WO2024083253A1
WO2024083253A1 PCT/CN2023/125802 CN2023125802W WO2024083253A1 WO 2024083253 A1 WO2024083253 A1 WO 2024083253A1 CN 2023125802 W CN2023125802 W CN 2023125802W WO 2024083253 A1 WO2024083253 A1 WO 2024083253A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
wind turbine
flow channel
shaft
lubrication device
Prior art date
Application number
PCT/CN2023/125802
Other languages
English (en)
French (fr)
Inventor
吴树彬
Original Assignee
采埃孚(天津)风电有限公司
Zf风力安特卫普股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 采埃孚(天津)风电有限公司, Zf风力安特卫普股份有限公司 filed Critical 采埃孚(天津)风电有限公司
Publication of WO2024083253A1 publication Critical patent/WO2024083253A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the field of wind power generation, and in particular relates to a wind generator gearbox lubrication device and a gearbox.
  • a multi-stage gear structure is usually required to accelerate the low-speed rotation of the blade shaft and transmit it to the generator rotor to realize the conversion of kinetic energy into electrical energy.
  • the connected transmission shafts are often connected by flexible splines. There is a certain gap between the spline teeth of the flexible spline, which can allow a small relative movement between the spline teeth, so as to achieve the purpose of eliminating floating displacement.
  • the existing lubrication device usually sets a lubricating oil pipe in the wind turbine housing close to the transmission shaft, and sets a radial through hole at the corresponding position of the transmission shaft, so that the lubricating oil flows from the outside of the transmission shaft to the inside through the radial through hole to achieve lubrication between the spline teeth.
  • the flow of lubricating oil from outside to inside needs to overcome the centrifugal force generated by the rotation of the transmission shaft.
  • the lubricating oil needs to overcome the centrifugal force.
  • the sealing structure between the rotating transmission shaft and the fixed wind turbine housing is prone to leakage, which further leads to lubricating oil loss, and it is easy to cause poor lubrication and premature failure of the spline.
  • the purpose of the present invention is to provide a wind turbine gearbox lubrication device, which can achieve full lubrication of spline teeth under high-speed rotation conditions.
  • the present invention also provides a wind turbine gearbox.
  • a wind turbine gearbox lubrication device includes a driving shaft and a driven shaft, the driving shaft and the driven shaft are configured as hollow shafts connected by a flexible connector, wherein the wind turbine gearbox lubrication device also includes an inner shaft tube, the inner shaft tube is arranged through the driving shaft and the driven shaft and is fixedly connected to the wind turbine housing, the outer wall of the inner shaft tube and the inner wall of the driving shaft form an annular flow channel, and lubricating oil is provided in the annular flow channel; a lubricating oil flow channel is arranged between the annular flow channel and the flexible connector to allow the lubricating oil to enter the connector teeth of the flexible connector from the annular flow channel.
  • the annular flow channel for providing lubricating oil is arranged in the cavity inside the driving shaft and the driven shaft, the lubricating oil can be radially infiltrated into the flexible connector by the centrifugal force of the rotation of the transmission shaft to provide sufficient lubrication, and the higher the rotation speed, the more sufficient the infiltration of the lubricating oil, which can effectively eliminate the problem of poor lubrication at high speed caused by adding lubricating oil from the outside, improve the service life of the flexible connector, and save the maintenance cost of the wind turbine. Book.
  • the annular flow channel is at least partially configured as a conical cavity
  • the conical cavity includes a first end close to one side of the wind turbine blade and a second end connected to the lubricating oil flow channel, the cross-sectional area of the conical cavity gradually increases from the first end to the second end, and the conical cavity is used to concentrate the lubricating oil in the annular flow channel near the lubricating oil flow channel.
  • the transmission shaft of the wind turbine is arranged in an inclined manner with the blade side higher and the generator side lower.
  • the conical cavity with a gradually increasing cross-sectional area gradually increases the linear velocity of the lubricating oil to achieve an oil pumping effect, thereby enabling the lubricating oil to be concentrated near the lubricating oil flow channel and improving the lubrication efficiency.
  • the outer wall of the shaft inner tube is provided with a plurality of annular flow limiting grooves for limiting the axial flow of the lubricating oil in the annular flow channel.
  • the flow limiting grooves are used to increase the flow resistance of the lubricating oil in the annular flow channel, so that the lubricating oil is concentrated in the conical cavity of the annular flow channel and the overflow loss is reduced.
  • the flow limiting groove is arranged on a side of the lubricating oil flow channel close to the wind turbine blade.
  • the flow limiting groove can more centrally limit the lubricating oil to the area close to the lubricating oil flow channel to improve the utilization efficiency of the lubricating oil.
  • a receiving chamber connected to the gap of the flexible connector is provided between the driving shaft and the driven shaft for receiving lubricating oil.
  • the receiving chamber provided between the driving shaft and the driven shaft can receive lubricating oil to make the connector more fully wetted. Meanwhile, when the centrifugal force is insufficient to make the lubricating oil flow quickly from the annular flow channel to the connector teeth during slow rotation or startup, the lubricating oil deposited in the receiving chamber below can also ensure that the connector teeth are fully lubricated.
  • an oil supply pipeline is arranged in the inner tube of the shaft, and the oil supply pipeline is connected to the annular flow channel through an oil overflow hole arranged on the surface of the inner tube of the shaft to inject lubricating oil.
  • the inner tube of the shaft does not rotate with the driving shaft and the driven shaft, so it is convenient to arrange the lubricating oil filling pipeline.
  • the oil overflow hole is arranged on a side of the flexible connector close to the wind turbine blade. With the inclination angle of the wind turbine transmission shaft, the lubricating oil injected into the oil overflow hole can naturally flow to the lubricating oil flow channel under the action of gravity.
  • an oil storage tank and an oil pump are arranged in the wind turbine housing, and the oil pump is used to pump the lubricating oil in the oil storage tank into the oil supply pipeline.
  • the oil pump and the oil storage tank are arranged in the wind turbine housing for easy filling and maintenance.
  • a sealing structure is provided between the driven shaft and the shaft inner tube to prevent leakage of lubricating oil.
  • the sealing structure limits the lubricating oil to the area where the flexible connector is located to improve the utilization efficiency of the lubricating oil.
  • the flexible connector is a flexible spline.
  • the flexible spline has a simple structure and helps to reduce the Cause this.
  • a wind turbine gearbox which uses any of the aforementioned wind turbine gearbox lubrication devices to lubricate the flexible connector, and can keep the connector fully lubricated even at high speeds, thereby reducing connector wear and increasing the service life of the gearbox.
  • FIG1 is a schematic diagram of a partial cross-sectional structure of a wind turbine gearbox in one embodiment
  • FIG2 is a schematic diagram of a partial cross-sectional structure of a proportional wind turbine gearbox
  • FIG3 is a schematic diagram of a partial structure of a flexible spline of a wind turbine gearbox in an embodiment. .
  • orientation or positional relationships such as “upper”, “lower”, “left”, “right”, “axial”, “radial”, and “circumferential”, are intended to accurately describe the embodiments and simplify the description, but are not intended to limit the parts or structures involved to have a specific orientation, be installed or operate in a specific orientation, and should not be construed as a limitation on the embodiments in this document.
  • the blade speed of wind turbines is relatively low, and usually needs to be accelerated by a gearbox to drive the generator rotor to generate electricity.
  • the partial structure of a wind turbine gearbox in a pair of proportions is shown in Figure 2.
  • the sun shaft 1 as the driving shaft and the hollow shaft 2 as the driven shaft are meshed through splines to achieve transmission. Due to the influence of factors such as gear accuracy, the sun shaft will inevitably have radial floating displacement during the rotation process, which will have an adverse effect on the torque transmission. Therefore, the connection structure between the sun shaft 1 and the hollow shaft 2 needs to be configured as a flexible connector that allows floating.
  • the flexible connector is, for example, a flexible spline 3 with a certain gap between the spline teeth.
  • the flexible connector can also be a connector with a certain elasticity or other forms of clearance connectors such as concave-convex fittings.
  • the flexible spline 3 is shown in Figure 3, and there is a certain gap 12 between its tooth top and tooth side when meshing, so as to allow the internal spline teeth and the external spline teeth to move relatively slightly during the transmission process. The floating displacement of the sun shaft is absorbed by this relative movement between the spline teeth.
  • the flexible spline 3 can also be configured as a transmission structure with a certain flexibility and a concave-convex fit, such as a semicircular key with a certain gap between the key and the keyway.
  • the lubricating oil is stored in the oil filling groove 6a between the wind turbine housing 8 and the hollow shaft 2. During the operation of the wind turbine, the lubricating oil is injected into the cavity 7 at one end of the flexible spline 3 through the lubricating oil flow channel 6, and then flows into the gap of the spline teeth to achieve lubrication.
  • the sun shaft 1 drives the hollow shaft 2 to rotate rapidly, and the significant centrifugal effect will hinder the radial centripetal flow of the lubricating oil through the lubricating oil flow channel 6, thereby causing poor lubrication of the spline teeth and easily inducing premature failure of the spline.
  • the sealing structures 9a and 9b between the fixed wind turbine housing 8 and the rotating hollow shaft 2 are difficult to perform a stable and effective sealing function, and it is easy to leak and lose the lubricating oil, further reducing the lubrication effect.
  • an embodiment of one aspect of the present invention provides a wind turbine gearbox lubrication structure as shown in FIG1, which can ensure the lubrication effect of the spline under high speed conditions.
  • the sun shaft 1 is connected to the previous stage transmission mechanism at one end as the driving shaft, and the other end is inserted into the hollow shaft 2 as the driven shaft and meshed with it through the flexible spline 3.
  • an inner shaft tube 10 fixedly connected to the wind turbine housing 8 is provided through, and the inner shaft tube 10 does not rotate with the sun shaft 1 and the hollow shaft 2.
  • An annular flow channel 4 with an annular cross section is formed between the outer wall of the inner shaft tube 10 and the inner wall of the sun shaft 1, and lubricating oil is provided in the annular flow channel 4 to lubricate the flexible spline 3.
  • the inner shaft tube 4 can be configured as an independent dedicated structure, or the existing structure of the wind turbine, such as the tube wall of the energy tube, can be used to achieve the same effect.
  • the lubricating oil in the annular flow channel 4 is thrown into the cavity 7 through the lubricating oil flow channel 6 formed by the gap between the sun shaft 1 and the hollow shaft 2 at one end of the flexible spline 3, and further flows into the spline tooth gap of the flexible spline 3 to achieve lubrication and cooling. Since the lubricating oil enters the cavity 7 and flows radially outward along the lubricating oil flow channel 6, the centrifugal effect will not inhibit the outflow of the lubricating oil at a higher speed, but on the contrary can promote the lubricating oil to more fully infiltrate the flexible spline 3. Better lubrication effect under load conditions.
  • the area where the annular flow channel 4 is connected to the lubricating oil flow channel 6 is configured as a conical cavity 5 whose cross-sectional area gradually increases from one side of the blade to the lubricating oil flow channel 6. Under the action of the inclination angle ⁇ , the lubricating oil is more concentrated in the conical cavity 5 close to the lubricating oil flow channel 6, which can avoid excessive dispersion of the lubricating oil and improve lubrication efficiency.
  • the outer wall of the shaft inner tube 10 is provided with a plurality of annular flow limiting grooves 11, which define a tortuous radial flow channel in the annular flow channel 4, and can hinder and restrict the flow of the lubricating oil, and limit the lubricating oil to the area close to the lubricating oil flow channel 6.
  • the flow limiting groove 11 is arranged on the side close to the blade relative to the lubricating oil flow channel 6, and the combined effect of the inclination angle ⁇ and the flow limiting groove 11 can prevent the lubricating oil from flowing back from the side close to the generator to the side close to the blade, further improving the concentration of the lubricating oil, improving the lubrication effect, and improving the utilization rate of the lubricating oil.
  • a receiving chamber 12 connected to the gap between the spline teeth of the flexible spline 3 is further provided between the sun shaft 1 and the hollow shaft 2.
  • the receiving chamber 12 can accommodate a large amount of lubricating oil.
  • the lubricating oil in the receiving chamber 12 below can keep the flexible spline 3 wetted. In this way, when the wind turbine is started from a stationary state or rotates at a low speed, the centrifugal force is not sufficient to drive the lubricating oil to quickly enter the cavity 7 through the lubricating oil flow channel 6 to lubricate the flexible spline 3.
  • the lubricating oil in the receiving chamber 12 can still ensure that the flexible spline 3 is fully lubricated, thereby avoiding wear of the spline under low-speed rotation conditions.
  • the lubricating oil supply pipeline (not shown) is arranged inside the shaft inner tube 10, and the lubricating oil is injected into the annular flow channel 4 through the oil overflow hole (not shown) arranged on the surface of the shaft inner tube 10 through the oil supply pipeline.
  • the oil overflow hole 4 is arranged on the side close to the blade relative to the flexible spline 3, so that the injected lubricating oil can flow to the lubricating oil flow channel 6 by gravity under the action of the inclination angle ⁇ .
  • the lubricating oil storage tank (not shown) and the oil pump (not shown) are arranged inside the wind turbine housing 8, and the oil pump is connected to the oil supply pipeline, and the lubricating oil in the oil storage tank is pumped into the oil delivery pipeline and injected into the annular flow channel 4 through the oil overflow hole.
  • annular sealing structure 9 such as an oil seal is provided between the hollow shaft 2 and the inner shaft tube 10.
  • the annular sealing structure 9 can prevent the lubricating oil from continuing to flow along the inner shaft tube 10 to the generator side, thereby improving the utilization efficiency of the lubricating oil.
  • the annular sealing structure 9 rotates with the hollow shaft 2, and the lubricating oil in contact with it flows radially into the lubricating oil flow channel 6 under the centrifugal effect, so that the annular sealing structure 9 can stably maintain a good sealing effect.
  • a wind turbine gearbox which uses the wind turbine gearbox lubrication device in any of the above embodiments to lubricate the flexible spline in the gearbox, and can keep the spline teeth fully lubricated even under high speed conditions, which can effectively reduce the wear of the spline and improve the gear
  • the service life of the wheel box is extended, and the maintenance cost of the wind turbine is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

一种风电机齿轮箱润滑装置,在主动轴与从动轴内设置有轴内管,轴内管与主动轴围成环形流道,在环形流道内提供润滑油;环形流道中的润滑油能够通过润滑油流道流向柔性花键,实现对花键齿间的润滑与冷却。由于润滑过程中润滑油径向向外流动,在风电机高速转动的条件下润滑油也能够对花键齿提供充分润滑,防止柔性花键磨损失效,延长齿轮箱的使用寿命。本发明还提供一种风电机齿轮箱。

Description

一种风电机齿轮箱润滑装置及齿轮箱 技术领域
本发明属于风力发电领域,具体涉及一种风电机齿轮箱润滑装置及齿轮箱。
背景技术
在风力发电机中,通常需要采用多级齿轮结构将叶片轴的低速转动加速并传递至发电机转子实现动能到电能的转化。其中,为了消除传动轴在转动过程中难以避免的浮动位移,相连的传动轴之间常采用柔性花键进行连接,柔性花键的花键齿之间存在一定间隙,能够容许花键齿之间发生小幅度的相对移动,以此达到消除浮动位移的目的。为了避免花键齿在长期服役下摩擦受损,需要为花键齿提供润滑油以进行润滑和冷却。现有的润滑装置通常在贴近传动轴的风电机箱体内设置润滑油管,并在传动轴相应位置上设置径向通孔,使润滑油经径向通孔由传动轴外侧向内流动至花键齿间实现润滑。然而,在这一润滑方式中,润滑油由外向内的流动需要克服传动轴旋转产生的离心力,当风电机转速较高时润滑油需要克服的离心力。同时,转动的传动轴与固定的风电机箱体之间的密封结构容易发生泄漏,进一步导致润滑油损耗,容易造成润滑不良导致花键提前失效。
发明内容
本发明的目的在于提供一种风电机齿轮箱润滑装置,能够在高速转动工况下实现花键齿的充分润滑。本发明还提供一种风电机齿轮箱。
根据本发明实施例的一个方面,提供一种风电机齿轮箱润滑装置,该装置包括主动轴和从动轴,所述主动轴与从动轴配置为通过柔性连接件相连的空心轴,其中,所述风电机齿轮箱润滑装置还包括轴内管,所述轴内管贯穿设置于所述主动轴和从动轴内部并与风电机箱体固定连接,所述轴内管外壁与所述主动轴的内壁围成环形流道,所述环形流道内提供润滑油;所述环形流道与所述柔性连接件之间设置有润滑油流道,以容许所述润滑油由所述环形流道进入所述柔性连接件的连接件齿间。由于提供润滑油的环形流道设置在主动轴与从动轴内的空腔中,润滑油可以借助传动轴旋转的离心力沿径向浸润至柔性连接件,以提供充分的润滑,且旋转速度越高润滑油的浸润越充分,能够有效消除从外侧加注润滑油导致的高转速下润滑不良的问题,提高柔性连接件的使用寿命,节约风电机的维护成 本。
进一步地,所述环形流道至少部分配置为锥形腔,所述锥形腔包括靠近风电机叶片一侧的第一端和与所述润滑油流道连通的第二端,从所述第一端到第二端所述锥形腔的截面积逐渐扩大,所述锥形腔用于将所述环形流道内的润滑油集中在所述润滑油流道附近。风电机的传动轴以叶片一侧较高、发电机一侧较低的倾斜方式布置,截面积逐渐扩大的锥形腔使润滑油的线速度逐渐增加实现泵油效应,从而能够使润滑油集中在润滑油流道附近,提高润滑效率。
进一步地,所述轴内管外壁设置有多道环形限流槽用于限制润滑油在所述环形流道内的轴向流动。限流槽用于增大润滑油在环形流道内的流动阻力,,使润滑油集中于所述环形流道的锥形腔,减少外溢损耗。
进一步地,所述限流槽设置在相对所述润滑油流道靠近风电机叶片的一侧。利用风电机传动轴的倾斜角度,限流槽可以将润滑油更集中地限制在靠近润滑油流道的区域,以提高润滑油的利用效率。
进一步地,所述主动轴与从动轴之间设置有与所述柔性连接件的间隙相连的容纳腔用于容纳润滑油。主动轴与从动轴之间设置的容纳腔能够容纳润滑油以使连接件的浸润更加充分,同时在慢速转动或启动阶段离心力不足以使润滑油由环形流道快速流动至连接件齿时,沉积在下方的容纳腔中的润滑油也能够保证连接件齿得到充分的润滑。
进一步地,所述轴内管内设置有供油管路,所述供油管路通过设置在所述轴内管表面的溢油孔与所述环形流道接通以注入润滑油。轴内管不随主动轴和从动轴转动,便于设置润滑油加注管路。
进一步地,所述溢油孔设置在相对所述柔性连接件靠近风电机叶片的一侧。借助风电机传动轴的倾角,溢油孔注入的润滑油在重力作用下能够自然地流动至润滑油流道。
进一步地,所述风电机箱体内设置有储油箱和油泵,所述油泵用于将所述储油箱中的所述润滑油泵入所述供油管路。油泵与储油箱设置在风电机箱体内,便于加注与维护。
进一步地,所述从动轴与所述轴内管之间设置有密封结构,用于防止润滑油泄漏。密封结构将润滑油限制在柔性连接件所在的区域,以提高润滑油利用效率。
进一步地,所述柔性连接件是柔性花键。柔性花键结构简单,有助于降低制 造成本。
根据本发明实施例的另一个方面,提供一种风电机齿轮箱,该齿轮箱采用前述任一的风电机齿轮箱润滑装置来对柔性连接件进行润滑,在高转速下也能保持连接件润滑充分,能够减轻连接件磨损,提高齿轮箱的使用寿命。
附图说明
图1为一实施例中风电机齿轮箱局部剖面结构示意图;
图2为一对比例中风电机齿轮箱局部剖面结构示意图;
图3为一实施例中风电机齿轮箱柔性花键局部结构示意图。。
上述附图的目的在于对本发明作出详细说明以便本领域技术人员能够理解本发明的技术构思,而非旨在限制本发明。为了表达简洁,上述附图仅示意性地画出了与本发明技术特征有关的结构,并未严格按照实际比例画出完整的装置和所有细节。
具体实施方式
下面通过具体实施例结合附图对本发明作出进一步的详细说明。
本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本文的至少一个实施例中。在说明书的各个位置出现的该短语并不一定指代同一实施例,也并非限定为互斥的独立或备选的实施例。本领域技术人员应当能够理解,在不发生结构冲突的前提下本文中的实施例可以与其他实施例相结合。
本文的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”等应做广义理解,可以是活动连接,也可以是固定连接或成一体。对本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本文的描述中,“上”、“下”、“左”、“右”、“轴向”、“径向”、“周向”等指示方位或位置关系的术语目的在于准确描述实施例和简化描述,而非限定所涉及的零件或结构必须具有特定的方位、以特定方位安装或操作,不能理解为对本文中实施例的限制。
受风力与叶片结构强度限制,风力发电机叶片转速较低,通常需要经过齿轮箱加速后带动发电机转子进行发电。一对比例中的风电机齿轮箱局部结构如图2所示,作为主动轴的太阳轴1与作为从动轴的空心轴2通过花键啮合实现传动。由于 齿轮精度等因素的影响,太阳轴在转动过程中不可避免地会发生径向浮动位移进而对扭矩传递造成不利影响,因此太阳轴1与空心轴2之间的连接结构需要配置为允许存在浮动的柔性连接件。在本实施例中,柔性连接件例如为花键齿间存在一定间隙的柔性花键3。但本发明并不局限于此,柔性连接件例如也可以为具有一定弹性的连接件或凹凸配合件等其他形式的游隙连接件。在本实施例中,柔性花键3如图3所示,其齿顶与齿侧在啮合时存在一定间隙12,以容许内花键齿与外花键齿在传动过程中发生小幅度的相对移动,通过花键齿间的这一相对移动来吸收太阳轴的浮动位移,而为了避免花键齿长期服役发生磨损失效,需要对花键齿进行润滑和冷却。在其他实施例中,柔性花键3也可以配置为具有一定挠性的凹凸配合的传动结构,如键与键槽件存在一定间隙的半圆键等。通常润滑油储存在风电机箱体8与空心轴2之间的注油槽6a中,在风电机运转过程中润滑油通过润滑油流道6注入柔性花键3一端的腔体7中,进而流入花键齿的间隙中实现润滑。然而,当风电机转速较高时,太阳轴1带动空心轴2快速旋转,显著的离心作用将阻碍润滑油经润滑油流道6径向的向心流动,进而导致花键齿润滑不良,容易诱发花键提前失效。另一方面,当润滑油积聚在润滑油流道6中,固定的风电机箱体8与转动的空心轴2之间的密封结构9a和9b难以稳定有效地起到密封作用,容易发生润滑油的泄漏损失,进一步降低润滑效果。
为了解决上述问题,本发明一个方面的实施例提供了一种如图1所示的风电机齿轮箱润滑结构,能够在高转速工况下保证花键的润滑效果。如图1所示,太阳轴1作为主动轴一端与前一级传动机构相连接,另一端***作为从动轴的空心轴2内并通过柔性花键3与相啮合,根据风电机结构设计,太阳轴1、空心轴2与水平方向间存在一夹角α,使靠近叶片的一端处于较高的位置,靠近发电机的一端处于较低的位置。在太阳轴1与空心轴2共同组成的管状空腔内,贯穿设置有与风电机箱体8固定连接的轴内管10,轴内管10不随太阳轴1与空心轴2转动。轴内管10外壁与太阳轴1的内壁之间形成了截面成环形的环形流道4,环形流道4内提供润滑油对柔性花键3进行润滑。轴内管4可以配置为独立的专用结构,也可以利用风电机的现有结构如能量管的管壁来发挥同样的效果。在太阳轴1与空心轴2转动作用下,环形流道4内的润滑油经位于柔性花键3一端太阳轴1与空心轴2之间的间隙所形成的润滑油流道6甩入腔体7并进一步地流入柔性花键3的花键齿间隙中实现润滑与冷却作用。由于润滑油进入腔体7是沿润滑油流道6径向向外流动,在较高转速下离心作用不会抑制润滑油的外流,相反能够促进润滑油更充分地浸润柔性花键3,在高 载荷工况下发挥更好的润滑效果。
在优选实施例中,环形流道4与润滑油流道6相连的区域配置为由叶片一侧到润滑油流道6截面积逐渐扩大的锥形腔5,在倾角α的作用下,润滑油更多地聚集在锥形腔5中靠近润滑油流道6,能够避免润滑油过度分散,提高润滑效率。
在优选实施例中,轴内管10外壁设置有多道环形的限流槽11,限流槽11在环形流道4中限定出曲折的径向流道,能够对润滑油的流动起到阻碍与约束的作用,将润滑油限制在靠近润滑油流道6的区域中。在进一步优选的实施例中,限流槽11设置在相对润滑油流道6靠近叶片的一侧,倾角α与限流槽11的共同作用能够防止润滑油由靠近发电机一侧反流至靠近叶片一侧,进一步提高润滑油的集中度,改善润滑效果,提高润滑油的利用率。
在优选实施例中,太阳轴1与空心轴2之间进一步设置有与柔性花键3的花键齿间间隙相连通的容纳腔12,容纳腔12能够容纳较多的润滑油,在太阳轴1与空心轴2完全静止时,位于下方的容纳腔12中的润滑油能够对柔性花键3保持浸润,这样在风电机由静止启动或低速转动时,离心作用不足以驱动润滑油快速经润滑油流道6进入腔体7对柔性花键3进行润滑,容纳腔12中的滑油仍然能够确保柔性花键3得到充分润滑,避免花键在低速转动工况下发生磨损。
在优选实施例中,润滑油的供油管路(未示出)设置在轴内管10内部,润滑油经供油管路通过设置在轴内管10表面的溢油孔(未示出)注入到环形流道4内部。在进一步的优选实施例中,溢油孔4设置在相对柔性花键3靠近叶片一侧,使得注入的润滑油可以在倾角α的作用下依靠重力流动至润滑油流道6处。在进一步的优选实施例中,润滑油的储油箱(未示出)与油泵(未示出)设置在风电机箱体8内部,油泵与供油管路相接通,将储油箱中的润滑油泵入输油管路,并经过溢油孔注入环形流道4。
在可选实施例中,空心轴2与轴内管10之间设置有环形密封结构9例如油封,环形密封结构9能够防止润滑油沿轴内管10继续流向发电机一侧,提高润滑油的利用效率。在风电机正常运转时,环形密封结构9随空心轴2一起转动,与其接触的润滑油在离心作用下沿径向流入润滑油流道6,因此环形密封结构9处能够稳定地保持较好的密封效果。
根据本发明另一个方面的实施例,提供一种风电机齿轮箱,该齿轮箱采用前述任一实施例中的风电机齿轮箱润滑装置来对齿轮箱中的柔性花键进行润滑,在高转速工况下也能够保持花键齿得到充分润滑,能够有效减轻花键磨损,提高齿 轮箱的使用寿命,降低风电机的维护成本。
上述实施例的目的在于结合附图对本发明作出详细说明以便本领域技术人员能够理解本发明的技术构思,在本发明权利要求的范围内,对所涉及的零件结构进行优化或等效替换,以及在不发生结构与原理冲突的条件下对不同实施例中的实施方式进行结合,均落入本发明的保护范围。

Claims (11)

  1. 一种风电机齿轮箱润滑装置,包括主动轴和从动轴,所述主动轴与从动轴配置为通过柔性连接件相连的空心轴,其特征在于,所述风电机齿轮箱润滑装置还包括轴内管,所述轴内管贯穿设置于所述主动轴和从动轴内部并与风电机箱体固定连接,所述轴内管外壁与所述主动轴的内壁围成环形流道,所述环形流道内提供润滑油;所述环形流道与所述柔性连接件之间设置有润滑油流道,以容许所述润滑油由所述环形流道进入所述柔性连接件的连接件齿间。
  2. 根据权利要求1所述的风电机齿轮箱润滑装置,其特征在于,所述环形流道至少部分配置为锥形腔,所述锥形腔包括靠近风电机叶片一侧的第一端和与所述润滑油流道连通的第二端,从所述第一端到第二端所述锥形腔的截面积逐渐扩大,所述锥形腔用于将所述环形流道内的润滑油集中在所述润滑油流道附近。
  3. 根据权利要求1或2所述的风电机齿轮箱润滑装置,其特征在于,所述轴内管外壁设置有多道环形限流槽用于抑制润滑油在所述环形流道内的轴向流动。
  4. 根据权利要求3所述的风电机齿轮箱润滑装置,其特征在于,所述限流槽设置在相对所述润滑油流道靠近风电机叶片的一侧。
  5. 根据权利要求1或2所述的风电机齿轮箱润滑装置,其特征在于,所述主动轴与从动轴之间设置有与所述柔性连接件的间隙相连的容纳腔用于容纳润滑油。
  6. 根据权利要求1或2所述的风电机齿轮箱润滑装置,其特征在于,所述轴内管内设置有供油管路,所述供油管路通过设置在所述轴内管表面的溢油孔与所述环形流道接通以注入润滑油。
  7. 根据权利要求6所述的风电机齿轮箱润滑装置,其特征在于,所述溢油孔设置在相对所述柔性连接件靠近风电机叶片的一侧。
  8. 根据权利要求6所述的风电机齿轮箱润滑装置,其特征在于,所述风电机箱体内设置有储油箱和油泵,所述油泵用于将所述储油箱中的所述润滑油泵入所述供油管路。
  9. 根据权利要求1或2所述的风电机齿轮箱润滑装置,其特征在于,所述 从动轴与所述轴内管之间设置有密封结构,用于防止润滑油泄漏。
  10. 根据权利要求1或2所述的风电机齿轮箱润滑装置,其特征在于,所述柔性连接件是柔性花键。
  11. 一种风电机齿轮箱,其特征在于,采用如权利要求1至10其中任一所述的风电机齿轮箱润滑装置来对齿轮箱中的柔性连接件进行润滑。
PCT/CN2023/125802 2022-10-21 2023-10-20 一种风电机齿轮箱润滑装置及齿轮箱 WO2024083253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211295089.XA CN117948409A (zh) 2022-10-21 2022-10-21 一种风电机齿轮箱润滑装置及齿轮箱
CN202211295089.X 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024083253A1 true WO2024083253A1 (zh) 2024-04-25

Family

ID=90737025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125802 WO2024083253A1 (zh) 2022-10-21 2023-10-20 一种风电机齿轮箱润滑装置及齿轮箱

Country Status (2)

Country Link
CN (1) CN117948409A (zh)
WO (1) WO2024083253A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202203380U (zh) * 2011-08-24 2012-04-25 重庆齿轮箱有限责任公司 风电增速齿轮箱太阳轮花键润滑结构
JP2017075627A (ja) * 2015-10-13 2017-04-20 トヨタ自動車株式会社 スプライン継手
CN212564335U (zh) * 2020-06-10 2021-02-19 重庆齿轮箱有限责任公司 一种花键副的润滑冷却结构及潮流能发电增速箱
CN216975712U (zh) * 2022-03-17 2022-07-15 南京高速齿轮制造有限公司 一种风电齿轮箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202203380U (zh) * 2011-08-24 2012-04-25 重庆齿轮箱有限责任公司 风电增速齿轮箱太阳轮花键润滑结构
JP2017075627A (ja) * 2015-10-13 2017-04-20 トヨタ自動車株式会社 スプライン継手
CN212564335U (zh) * 2020-06-10 2021-02-19 重庆齿轮箱有限责任公司 一种花键副的润滑冷却结构及潮流能发电增速箱
CN216975712U (zh) * 2022-03-17 2022-07-15 南京高速齿轮制造有限公司 一种风电齿轮箱

Also Published As

Publication number Publication date
CN117948409A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
EP2570663A2 (en) Drivetrain and method for lubricating bearing in wind turbine
JP5620519B2 (ja) 航空機タービンエンジン用二重反転プロペラシステム
US10100918B2 (en) Device with a torque-proof first structural component and a second structural component that is connected at least in certain parts in a rotatable manner to the first structural component
US10208624B2 (en) Lubrication of journal bearing during clockwise and counter-clockwise rotation
CN105889476B (zh) 变速箱润滑***
US10041579B2 (en) Device with a torque-proof first structural component and a second structural component that is connected at least in certain parts in a rotatable manner to the first structural component
US8939258B2 (en) Wind turbine for generating electric power
CN202560432U (zh) 冷却塔用带轴承自循环润滑***水轮机
CN111439362A (zh) 一种磁液复合悬浮轴承支撑的环形电力推进器
CN112628146A (zh) 一种立式结构的多级双吸泵
US20200291819A1 (en) Bowed rotor prevention system for turbomachinery
US11085421B2 (en) Planet carrier of a wind turbine gearbox with improved lubricant path
CN113623009A (zh) 一种高速透平转子结构
WO2024083253A1 (zh) 一种风电机齿轮箱润滑装置及齿轮箱
CN207333648U (zh) 非接触零泄漏的密封环及其密封装置
CN113811675B (zh) 涡轮机的减速器
CN109736951B (zh) 微小型燃气轮机转子***的轴承润滑及密封***
CN109899503B (zh) 风电增速箱花键连接润滑冷却***
CN109538745A (zh) 电动商用车电机与变速箱的连接花键润滑结构
CN209557628U (zh) 电动商用车电机与变速箱的连接花键润滑结构
CN112963360A (zh) 一种轴系稳定的竖井贯流泵
CN112128246B (zh) 一种轴向小孔常压供水动静压螺旋槽推力轴承
CN114484245A (zh) 一种应用于高速电机的喷油润滑密封结构
CN202176705U (zh) 风电齿轮箱行星部件中润滑结构的改进
CN103791039B (zh) 轴承用脂润滑风电复合行星齿轮箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879238

Country of ref document: EP

Kind code of ref document: A1