WO2024082401A1 - 氦气成因资源评价方法及装置 - Google Patents

氦气成因资源评价方法及装置 Download PDF

Info

Publication number
WO2024082401A1
WO2024082401A1 PCT/CN2022/138085 CN2022138085W WO2024082401A1 WO 2024082401 A1 WO2024082401 A1 WO 2024082401A1 CN 2022138085 W CN2022138085 W CN 2022138085W WO 2024082401 A1 WO2024082401 A1 WO 2024082401A1
Authority
WO
WIPO (PCT)
Prior art keywords
helium
source rock
helium source
rock
content
Prior art date
Application number
PCT/CN2022/138085
Other languages
English (en)
French (fr)
Inventor
吴义平
窦立荣
吴晓智
陶士振
王建君
王青
李谦
黄飞
Original Assignee
中国石油天然气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团有限公司 filed Critical 中国石油天然气集团有限公司
Publication of WO2024082401A1 publication Critical patent/WO2024082401A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the technical field of helium resource evaluation, and in particular to a helium-genetic resource evaluation method, a helium-genetic resource evaluation device, a machine-readable storage medium, and a processor.
  • Helium is called "golden gas".
  • the inventors found that due to the difficulty in determining the thickness of the helium source rock, the migration coefficient and the mantle source rock, there is currently no mature helium generation method at home and abroad to carry out helium resource evaluation methods.
  • the inventors found that although the helium percentage method is accurate in calculation, it depends on the number and quality of helium data points and the accuracy of natural gas reserves.
  • the calculation error of the resource volume is large.
  • the inventors also found that although helium and natural gas are accumulated in the same enclosure, due to the completely different mechanisms of helium generation and hydrocarbon generation, there is no correlation between the migration coefficients of natural gas and helium, and the migration and accumulation of helium reservoirs has its own laws.
  • the present application proposes a helium origin resource evaluation method that overcomes the above problems or at least partially solves the above problems.
  • the purpose of the embodiments of the present application is to provide a helium-genetic resource evaluation method, a helium-genetic resource evaluation device, a machine-readable storage medium, and a processor.
  • the method can achieve effective evaluation of helium resources and has an important guiding role in conducting research on helium accumulation and enrichment laws.
  • the first aspect of the present application provides a method for evaluating helium genesis resources, the method comprising:
  • the amount of helium accumulation resources is determined based on the migration and accumulation coefficient and the total amount of helium generated by the helium source rock.
  • determining the volume of the helium source rock in the target area includes:
  • the volume of the helium source rock is determined based on the thickness of the helium source rock and the distribution area of the helium source rock.
  • determining the bottom depth of the helium source rock in the target area includes: determining the bottom depth of the helium source rock in the target area based on a preset temperature.
  • the bottom depth of the helium source rock in the target area is determined based on the preset temperature, including:
  • the stratum depth corresponding to the preset temperature is determined as the bottom depth of the helium source rock, and the helium source rock includes granite and volcanic rock.
  • the temperature range of the preset temperature is: 220°C ⁇ 240°C.
  • the bottom depth of the helium source rock in the target area, the top depth of the helium source rock, and the distribution area of the helium source rock are determined, including:
  • the bottom depth of the helium source rock, the top depth of the helium source rock and the distribution area of the helium source rock in the target area are determined based on seismic data and drilling data.
  • the helium source rock includes coal seams and mud shale.
  • the distribution area of the helium source rock is determined based on the seismic data and the drilling data, including:
  • the distribution area of the helium source rocks is calculated by the small surface element integration method based on seismic data and drilling data.
  • the formation depth corresponding to the preset temperature is determined as the bottom depth of the helium source rock by formula (1):
  • H bottom (t preset temperature - t surface temperature ) / K + 50 (1);
  • Hbottom represents the bottom depth of the helium source rock, in meters
  • tSurface temperature represents the surface temperature in °C
  • K represents the geothermal gradient, with the unit of °C/100m.
  • the thickness of the helium source rock is determined based on the bottom depth of the helium source rock and the top depth of the helium source rock by formula (2):
  • h represents the thickness of the helium source rock, in meters
  • Hbottom represents the bottom depth of the helium source rock, in m
  • Htop represents the top depth of the helium source rock, in meters.
  • the volume of the helium source rock is determined based on the thickness of the helium source rock and the distribution area of the helium source rock by formula (3):
  • V h ⁇ S (3)
  • V represents the volume of the helium source rock, in m 3 ;
  • h represents the thickness of the helium source rock, in meters
  • S represents the area of helium source rock distribution, in m 2 .
  • the content of the undecayed parent isotope in the helium source rock is determined based on the density of the helium source rock, the content of the radioactive element in the helium source rock, and the volume of the helium source rock by formula (4):
  • v represents the volume of the helium source rock, in m 3 ;
  • ⁇ source rock represents the density of the helium source rock, in t/m 3 ;
  • x represents the content of radioactive elements in the helium source rock, in mol/g.
  • the content of the decayed daughter isotope in the helium source rock is determined by formula (5) based on the absolute age of the helium source rock, the decay constant of the radioactive element in the helium source rock, and the content of the undecayed parent isotope in the helium source rock:
  • D represents the content of decayed daughter isotopes in the helium source rock, in mol
  • represents the decay constant of the isotope of the radioactive element in the helium source rock, dimensionless
  • t represents the absolute geological age of the helium source rock, in millions of years
  • v represents the volume of the helium source rock, in m 3 ;
  • ⁇ source rock represents the density of the helium source rock, in t/m 3 ;
  • x represents the content of radioactive elements in the helium source rock, in mol/g.
  • the radioactive elements in the helium source rock include: 238U and 232Th;
  • the amount of helium in the helium source rock is determined based on the content of the decayed daughter isotope in the helium source rock using formula (6):
  • n D ⁇ 8/238 (6)
  • the amount of helium in the helium source rock is determined based on the content of the decayed daughter isotope in the helium source rock using formula (7):
  • n D ⁇ 6/232 (7)
  • n represents the amount of helium in the helium source rock
  • D represents the content of the decayed daughter isotope in the helium source rock.
  • the total amount of helium generated by the helium source rock is determined based on the amount of helium in the helium source rock by using formula (8):
  • V Hesheng n ⁇ M / ⁇ he (8)
  • V Hesheng represents the total amount of generated helium, i.e., the amount of generated helium resources, in m 3 ;
  • n the amount of helium in the helium source rock
  • M represents the molar mass of the total amount of generated helium
  • ⁇ he represents the density of helium, and its value is 0.1786 g/L.
  • the migration and accumulation coefficient of helium in the helium source rock in the target area is determined by formula (9):
  • ⁇ 1 is the helium expulsion rate of the helium source rock, in %
  • ⁇ 2 is the degassing rate of water-soluble helium, in %.
  • the helium accumulation resource amount is determined based on the migration and accumulation coefficient and the total helium generation amount of the helium source rock through formula (10):
  • V he ju ⁇ ⁇ V he sheng (10);
  • V he represents the helium accumulation, i.e. the helium accumulation resource, in m 3 ;
  • represents the transport and aggregation coefficient, in %
  • V helium represents the total amount of helium generated, with the unit of m 3 .
  • the helium includes 3He and 4He, and the method further includes:
  • the resource amounts of mantle-derived helium and crust-derived helium are determined by the ratio of 3He/4He.
  • a second aspect of the present application provides a helium-genesis resource evaluation device, the device comprising:
  • An acquisition module is used to obtain the absolute age of the helium source rock in the target area, the density of the helium source rock, the content of the radioactive elements in the helium source rock, and the decay constant of the radioactive elements in the helium source rock;
  • a first determination module is used to determine the volume of the helium source rock in the target area
  • a second determination module is used to determine the content of undecayed parent isotopes in the helium source rock based on the density of the helium source rock, the content of radioactive elements in the helium source rock, and the volume of the helium source rock;
  • a third determination module is used to determine the content of decayed daughter isotopes in the helium source rock based on the absolute age of the helium source rock, the decay constant of the radioactive elements in the helium source rock, and the content of the undecayed parent isotopes in the helium source rock;
  • a fourth determination module is used to determine the amount of helium in the helium source rock based on the content of the decayed daughter isotope in the helium source rock;
  • a fifth determination module configured to determine the total amount of helium generated by the helium source rock based on the amount of helium in the helium source rock;
  • the sixth determination module is used to determine the migration and accumulation coefficient of helium in the helium source rock in the target area
  • the seventh determination module is used to determine the amount of helium accumulation resources based on the migration and accumulation coefficient and the total amount of helium generated by the helium source rock.
  • the first determining module includes:
  • a bottom depth determination module used to determine the bottom depth of the helium source rock in the target area based on a preset temperature
  • a top surface depth and distribution area determination module used to determine the top surface depth of the helium source rock and the distribution area of the helium source rock in the target area;
  • a thickness determination module used to determine the thickness of the helium source rock based on the bottom depth of the helium source rock and the top depth of the helium source rock;
  • the volume determination module is used to determine the volume of the helium source rock based on the thickness of the helium source rock and the distribution area of the helium source rock.
  • a third aspect of the present application provides a processor configured to execute the above-mentioned helium origin resource evaluation method.
  • a fourth aspect of the present application provides a machine-readable storage medium having instructions stored thereon, which, when executed by a processor, configure the processor to execute the above-mentioned helium origin resource evaluation method.
  • the present application proposes a method, device, storage medium and processor for evaluating helium-induced resources.
  • the method determines the amount of helium in the helium source rock by the content of decayed daughter isotopes in the helium source rock, and then determines the total amount of helium generated by the helium source rock based on the amount of helium in the helium source rock. Finally, the amount of helium accumulation resources is determined based on the migration and accumulation coefficient of helium in the helium source rock.
  • the present application can achieve effective evaluation of helium resources through the above method, which has an important guiding role in conducting research on the law of helium accumulation and enrichment.
  • FIG1 schematically shows an application environment diagram of a helium origin resource evaluation method according to an embodiment of the present application
  • FIG2 schematically shows an overall flow chart of a helium-derived resource evaluation method according to an embodiment of the present application
  • FIG3 schematically shows a flow chart of calculating the volume of helium source rock in a target area in a helium genetic resource evaluation method according to an embodiment of the present application
  • FIG4 schematically shows a graph showing the variation of Henry constants of He, N 2 and CH 4 with temperature according to an embodiment of the present application
  • FIG5 schematically shows a schematic diagram of the effective thickness of helium source rock according to an embodiment of the present application
  • FIG6 schematically shows a helium reservoir formation mode and process diagram according to an embodiment of the present application
  • FIG7 schematically shows a structural block diagram of a helium-genesis resource evaluation device according to an embodiment of the present application
  • FIG8 schematically shows an internal structure diagram of a computer device according to an embodiment of the present application.
  • the helium origin resource evaluation method provided in the present application can be applied in the application environment shown in FIG1 .
  • the terminal 102 communicates with the server 104 through a network.
  • the terminal 102 can be, but is not limited to, various personal computers, laptops, smart phones, tablet computers, and portable wearable devices, and the server 104 can be implemented as an independent server or a server cluster composed of multiple servers.
  • FIG2 schematically shows a flow chart of a helium-genetic resource evaluation method according to an embodiment of the present application.
  • a helium-genetic resource evaluation method is provided. This embodiment mainly uses the method applied to the terminal 102 (or server 104) in FIG1 as an example, and includes the following steps:
  • Step 110 obtaining the absolute age of the helium source rock in the target area, the density of the helium source rock, the content of the radioactive elements in the helium source rock, and the decay constant of the radioactive elements in the helium source rock.
  • the target area refers to the helium resource research area.
  • the helium source rock includes granite, volcanic rock and sedimentary rock.
  • the age of granite or volcanic rock can be determined by measuring the isotopic age of zircon U-Pb in the rock.
  • the age of sedimentary rock is mainly determined by measuring the age of paleontology in the rock.
  • the density of helium source rock is generally a constant, such as the density of granite is 2.3g/ cm3 .
  • the radioactive elements in the helium source rock include: uranium ( 235U , 238U ) and thorium ( 232Th ).
  • the content of radioactive elements such as uranium or thorium in the helium source rock can be determined by collecting representative helium source rock samples at different levels and different structural parts. The content of uranium or thorium can be measured multiple times, and the error of the same sample is less than 5%, and the average value is calculated.
  • the decay constant of 235 U is 9.8485 ⁇ 10 -10 /a
  • the decay constant of 238 U is 1.55125 ⁇ 10 -10 /a
  • the decay constant of 232 Th is 4.9745 ⁇ 10 -11 /a.
  • Step 120 determining the volume of the helium source rock in the target area.
  • FIG3 schematically shows a flow chart of calculating the volume of helium source rock in a target area in a helium-genetic resource evaluation method according to an embodiment of the present application.
  • the volume of the helium source rock in the target area is determined by steps 121 to 124:
  • Step 121 determining the bottom depth of the helium source rock in the target area based on a preset temperature.
  • the bottom depth of the helium source rock can be determined according to the formation depth corresponding to 220°C to 240°C.
  • FIG4 schematically shows the curves of the variation of the Henry constants of He, N2 and CH4 with temperature according to the embodiment of the present application.
  • the solubility and partial pressure of helium (He) at 180°C are basically consistent with those of methane (CH4) and nitrogen (N2), and the potential for further release of helium basically disappears.
  • the release potential of the helium source rock tends to zero. Therefore, in this embodiment, the formation depth corresponding to 220°C to 240°C in the study area is determined as the lower limit depth of helium source rocks such as granite and volcanic rocks, that is, the bottom boundary depth of the helium source rock.
  • FIG5 schematically shows a schematic diagram of the effective thickness of helium source rock according to an embodiment of the present application.
  • the bottom depth of the helium source rock can be calculated by formula (1):
  • H bottom (t preset temperature - t surface temperature ) / K + 50 (1);
  • Hbottom represents the bottom depth of the helium source rock, in meters
  • tPreset Temperature represents the preset temperature, and the value range of tPreset Temperature is 220°C ⁇ 240°C.
  • tSurface temperature represents the surface temperature in °C
  • K represents the geothermal gradient, with the unit of °C/100m.
  • the bottom depth of the helium source rock can be determined based on seismic data and drilling data.
  • Step 122 determining the top surface depth of the helium source rock in the target area and the distribution area of the helium source rock.
  • the top depth of the helium source rock and the distribution area of the helium source rock can be determined by seismic data and drilling data.
  • the distribution area of the helium source rock can be obtained by small surface element integration method.
  • Step 123 Determine the thickness of the helium source rock based on the bottom depth of the helium source rock and the top depth of the helium source rock.
  • the thickness of the helium source rock can be calculated by formula (2):
  • h represents the thickness of the helium source rock, in meters
  • Hbottom represents the bottom depth of the helium source rock, in m
  • Htop represents the top depth of the helium source rock, in meters.
  • Step 124 determine the volume of the helium source rock based on the thickness of the helium source rock and the distribution area of the helium source rock.
  • volume of the helium source rock can be calculated by formula (3):
  • V h ⁇ S (3)
  • V represents the volume of the helium source rock, in m 3 ;
  • h represents the thickness of the helium source rock, in meters
  • S represents the distribution area of helium source rock, in m 2 .
  • This embodiment proposes a helium generation method based on Henry's law, which solves the key difficulty in determining the thickness parameters of helium source rocks.
  • the lower limit of the conventional method helium source rock adopts a subjective inference method, and the thickness of the underground helium source rock is inferred according to the outcrop thickness of the helium source rock.
  • the thickness of the underground helium source rock varies greatly, resulting in inaccurate volume calculations of the helium source rock.
  • This application is guided by the helium reservoir theory, and takes the helium "death line" of 220°C-240°C as the lower limit temperature of the helium source rock depth, and takes the depth corresponding to this temperature as the lower limit of the depth of the helium source rock, thereby determining the thickness of the helium source rock, effectively improving the accuracy of the helium source rock volume and helium generation resources, and reducing the error by 10%.
  • This embodiment effectively solves the problem that the thickness of the helium source rock in the prior art is difficult to determine.
  • Step 130 determining the content of undecayed parent isotopes in the helium source rock based on the density of the helium source rock, the content of radioactive elements in the helium source rock, and the volume of the helium source rock.
  • the content of the undecayed parent isotope in the helium source rock can be calculated by (4):
  • V represents the volume of the helium source rock, in m 3 ;
  • ⁇ source rock represents the density of the helium source rock, in t/m 3 ;
  • x represents the content of radioactive elements in the helium source rock, in mol/g.
  • Step 140 determining the content of decayed daughter isotopes in the helium source rock based on the absolute age of the helium source rock, the decay constant of the radioactive elements in the helium source rock, and the content of undecayed parent isotopes in the helium source rock.
  • the content of the decayed daughter isotope in the helium source rock can be calculated by (5):
  • D represents the content of decayed daughter isotopes in the helium source rock, in mol
  • represents the decay constant of the isotope of the radioactive element in the helium source rock, dimensionless
  • t represents the absolute geological age of the helium source rock, in millions of years
  • v represents the volume of the helium source rock, in m 3 ;
  • ⁇ source rock represents the density of the helium source rock, in t/m 3 ;
  • x represents the content of radioactive elements in the helium source rock, in mol/g.
  • Step 150 determining the amount of helium in the helium source rock based on the content of the decayed daughter isotopes in the helium source rock.
  • the radioactive elements in the helium source rock include: 238U and 232Th;
  • n D ⁇ 8/238 (6)
  • n D ⁇ 6/232 (7)
  • n represents the amount of helium in the helium source rock
  • D represents the content of the decayed daughter isotope in the helium source rock.
  • Step 160 Determine the total amount of helium generated by the helium source rock based on the amount of helium in the helium source rock.
  • the total amount of helium generated by the helium source rock is calculated by formula (8):
  • V Hesheng n ⁇ M / ⁇ he (8)
  • V Hesheng represents the total amount of generated helium, i.e., the amount of generated helium resources, in m 3 ;
  • n the amount of helium in the helium source rock
  • M represents the molar mass of the total amount of generated helium
  • ⁇ he represents the density of helium, and its value is 0.1786 g/L.
  • V Hesheng represents the helium resources in the study area, that is, the total amount of helium generated by the helium source rock, in units of m 3 ;
  • represents the decay constant of uranium or thorium isotopes in the study area, dimensionless;
  • t represents the absolute geological age of the helium source rock in the study area, in millions of years;
  • ⁇ source rock represents the density of the helium source rock in the study area, in t/m 3 ; for example, the density of granite is 2.5 t/m 3 ;
  • ⁇ he represents the density of helium in the study area, which is 0.1786 g/L;
  • v represents the volume of the helium source rock in the study area, in m 3 ;
  • x represents the content of uranium or thorium in the helium source rock in the study area, in g/mol.
  • Step 170 determining the migration and accumulation coefficient of helium in the helium source rock in the target area.
  • FIG6 schematically shows a helium accumulation mode and process diagram according to an embodiment of the present application.
  • this embodiment determines the helium source rock helium expulsion rate and the water-soluble helium degassing rate under different accumulation modes according to the tectonic activity period and helium expulsion characteristics of the study area, and the migration and accumulation coefficient can be obtained by multiplying the two.
  • different accumulation modes refer to the aggregation forms of helium from different sources in different closures: according to the gas composition, it is divided into helium-containing nitrogen reservoirs, helium-containing CO2 reservoirs, helium-containing natural gas reservoirs, etc.; according to the type of closure, it is divided into anticlines, faults and lithology; according to the source, it is divided into mantle source, crust source or mixed source, etc.
  • the ratio of the volume of helium source rock that has been degassed to the volume of all helium source rock is the helium source rock degassing rate.
  • the migration and accumulation coefficient of helium in the helium source rock in the target area is calculated by formula (9):
  • ⁇ 1 is the helium expulsion rate of the helium source rock, in %
  • ⁇ 2 is the degassing rate of water-soluble helium, in %.
  • the helium source rock helium expulsion rate ⁇ 1 is calculated by the ratio of the volume of the helium source rock that has expelled helium to the volume of the total helium source rock.
  • the water-soluble helium content and the helium content of the gas reservoir in the measuring scale area are known, and the accumulated helium volume and the volume of the water-soluble helium are calculated.
  • the ratio of the two is the water-soluble helium degassing rate ⁇ 2.
  • Step 180 Determine the amount of helium accumulation resources based on the migration and accumulation coefficient and the total amount of helium generated by the helium source rock.
  • the total amount of all helium generated by granite, igneous rocks, sedimentary rocks, etc. in the study area is multiplied by the migration and accumulation coefficient to obtain the geological resources of helium in the study area.
  • the helium accumulation resource amount is calculated by formula (10):
  • V he ju ⁇ ⁇ V he sheng (10);
  • V he represents the helium accumulation, i.e. the helium accumulation resource, in m 3 ;
  • represents the transport and aggregation coefficient, in %
  • V helium represents the total amount of helium generated, with the unit of m 3 .
  • the helium gas includes 3 He and 4 He
  • the method further includes:
  • Shell source helium value standard: 3 He/ 4 He 2.0 ⁇ 10 -8 ;
  • the standard for the value of mixed crust-mantle helium is: 1.1 ⁇ 10 -8 ⁇ 3 He/ 4 He ⁇ 2.0 ⁇ 10 -8 .
  • the helium includes 3 He and 4 He
  • the method further includes: calculating the resource amount of mantle-derived helium and crust-derived helium by the 3 He/ 4 He ratio according to the binary composite formula, and the formula for calculating the ratio of crust-derived helium is as follows:
  • I4He 1 - I3He (12);
  • He represents the proportion of mantle-derived helium in helium, and the unit is %L;
  • He represents the proportion of shell-derived helium in helium, in %L;
  • R represents the measured helium volume, in m 3 ;
  • R c represents the volume of shell source helium, in m 3 ;
  • R m represents the volume of mantle-derived helium, with the unit of m 3 .
  • FIG2 is a flow chart of a helium genesis resource evaluation method in one embodiment. It should be understood that, although the various steps in the flow chart of FIG2 are displayed in sequence as indicated by the arrows, these steps are not necessarily performed in sequence in the order indicated by the arrows. Unless otherwise clearly stated herein, there is no strict order restriction on the execution of these steps, and these steps can be performed in other orders.
  • steps in FIG2 may include a plurality of sub-steps or a plurality of stages, and these sub-steps or stages are not necessarily performed at the same time, but can be performed at different times, and the execution order of these sub-steps or stages is not necessarily performed in sequence, but can be performed in turn or alternately with other steps or at least a portion of the sub-steps or stages of other steps.
  • FIG7 schematically shows a structural block diagram of a helium genesis resource evaluation device according to an embodiment of the present application.
  • a helium origin resource evaluation device 200 comprising an acquisition module 210, a first determination module 220, a second determination module 230, a third determination module 240, a fourth determination module 250, a fifth determination module 260, a sixth determination module 270 and a seventh determination module 280, wherein:
  • An acquisition module 210 is used to acquire the absolute age of the helium source rock in the target area, the density of the helium source rock, the content of the radioactive elements in the helium source rock, and the decay constant of the radioactive elements in the helium source rock;
  • a first determination module 220 is used to determine the volume of the helium source rock in the target area
  • a second determination module 230 is used to determine the content of the undecayed parent isotope in the helium source rock based on the density of the helium source rock, the content of the radioactive element in the helium source rock, and the volume of the helium source rock;
  • the third determination module 240 is used to determine the content of the decayed daughter isotope in the helium source rock based on the absolute age of the helium source rock, the decay constant of the radioactive element in the helium source rock, and the content of the undecayed parent isotope in the helium source rock;
  • a fourth determination module 250 is used to determine the amount of helium in the helium source rock based on the content of the decayed daughter isotope in the helium source rock;
  • a fifth determination module 260 is used to determine the total amount of helium generated by the helium source rock based on the amount of helium in the helium source rock;
  • the sixth determination module 270 is used to determine the migration and accumulation coefficient of helium in the helium source rock in the target area;
  • the seventh determination module 280 is used to determine the amount of helium accumulation resources based on the migration and accumulation coefficient and the total amount of helium generated by the helium source rock.
  • the first determining module 220 includes:
  • a bottom depth determination module used to determine the bottom depth of the helium source rock in the target area based on a preset temperature
  • a top surface depth and distribution area determination module used to determine the top surface depth of the helium source rock and the distribution area of the helium source rock in the target area;
  • a thickness determination module used to determine the thickness of the helium source rock based on the bottom depth of the helium source rock and the top depth of the helium source rock;
  • the volume determination module is used to determine the volume of the helium source rock based on the thickness of the helium source rock and the distribution area of the helium source rock.
  • the helium genesis resource evaluation device includes a processor and a memory.
  • the acquisition module 210, the first determination module 220, the second determination module 230, the third determination module 240, the fourth determination module 250, the fifth determination module 260, the sixth determination module 270 and the seventh determination module 280 are all stored in the memory as program units, and the processor executes the above program modules stored in the memory to implement corresponding functions.
  • the processor includes a kernel, and the kernel calls the corresponding program unit from the memory.
  • One or more kernels can be set, and the helium origin resource evaluation method is implemented by adjusting kernel parameters.
  • the memory may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash RAM, and the memory includes at least one memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • An embodiment of the present application provides a storage medium on which a program is stored.
  • the program is executed by a processor, the above-mentioned helium origin resource evaluation method is implemented.
  • FIG8 schematically shows an internal structure diagram of a computer device according to an embodiment of the present application.
  • a computer device which may be a terminal, and its internal structure diagram may be shown in FIG8.
  • the computer device includes a processor A01, a network interface A02, a display screen A04, an input device A05, and a memory (not shown in the figure) connected via a system bus.
  • the processor A01 of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes an internal memory A03 and a non-volatile storage medium A06.
  • the non-volatile storage medium A06 stores an operating system B01 and a computer program B02.
  • the internal memory A03 provides an environment for the operation of the operating system B01 and the computer program B02 in the non-volatile storage medium A06.
  • the network interface A02 of the computer device is used to communicate with an external terminal via a network connection.
  • the computer program is executed by the processor A01, a method for evaluating helium genesis resources is implemented.
  • the display screen A04 of the computer device may be a liquid crystal display screen or an electronic ink display screen
  • the input device A05 of the computer device may be a touch layer covered on the display screen, or a key, trackball or touchpad provided on the housing of the computer device, or an external keyboard, touchpad or mouse, etc.
  • FIG. 8 is merely a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
  • the helium origin resource evaluation device provided in the present application can be implemented in the form of a computer program, and the computer program can be run on a computer device as shown in FIG8.
  • the memory of the computer device can store various program modules constituting the helium origin resource evaluation device, such as the acquisition module 210, the first determination module 220, the second determination module 230, the third determination module 240, the fourth determination module 250, the fifth determination module 260, the sixth determination module 270, and the seventh determination module 280 shown in FIG7.
  • the computer program composed of various program modules enables the processor to execute the steps of the helium origin resource evaluation method of each embodiment of the present application described in this specification.
  • the computer device shown in Figure 8 can execute step 110 through the acquisition module 210 in the helium origin resource evaluation device shown in Figure 7, the computer device can execute step 120 through the first determination module 220, the computer device can execute step 130 through the second determination module 230, the computer device can execute step 140 through the third determination module 240, the computer device can execute step 150 through the fourth determination module 250, the computer device can execute step 160 through the fifth determination module 260, the computer device can execute step 170 through the sixth determination module 270, and the computer device can execute step 180 through the seventh determination module 280.
  • the embodiment of the present application provides a device, which includes a processor, a memory, and a program stored in the memory and executable on the processor.
  • the processor executes the program, the following steps are implemented:
  • Step 110 obtaining the absolute age of the helium source rock in the target area, the density of the helium source rock, the content of the radioactive elements in the helium source rock, and the decay constant of the radioactive elements in the helium source rock;
  • Step 120 determining the volume of the helium source rock in the target area
  • Step 130 determining the content of the undecayed parent isotope in the helium source rock based on the density of the helium source rock, the content of the radioactive element in the helium source rock, and the volume of the helium source rock;
  • Step 140 determining the content of decayed daughter isotopes in the helium source rock based on the absolute age of the helium source rock, the decay constant of the radioactive elements in the helium source rock, and the content of the undecayed parent isotopes in the helium source rock;
  • Step 150 determining the amount of helium in the helium source rock based on the content of the decayed daughter isotope in the helium source rock;
  • Step 160 determining the total amount of helium generated by the helium source rock based on the amount of helium in the helium source rock;
  • Step 170 determining the migration and accumulation coefficient of helium in the helium source rock in the target area
  • Step 180 Determine the amount of helium accumulation resources based on the migration and accumulation coefficient and the total amount of helium generated by the helium source rock.
  • step 120 includes:
  • Step 121 determining the bottom depth of the helium source rock in the target area based on a preset temperature
  • Step 122 determining the top surface depth of the helium source rock in the target area and the distribution area of the helium source rock;
  • Step 123 determining the thickness of the helium source rock based on the bottom depth of the helium source rock and the top depth of the helium source rock;
  • Step 124 determine the volume of the helium source rock based on the thickness of the helium source rock and the distribution area of the helium source rock.
  • determining the bottom depth of the helium source rock in the target area includes:
  • the bottom depth of the helium source rock in the target area is determined based on the preset temperature.
  • the step of determining the bottom depth of the helium source rock in the target area based on the preset temperature includes:
  • the stratum depth corresponding to the preset temperature is determined as the bottom depth of the helium source rock, and the helium source rock includes granite and volcanic rock.
  • the preset temperature ranges from 220°C to 240°C.
  • the determining of the bottom depth of the helium source rock in the target area, the top depth of the helium source rock, and the distribution area of the helium source rock includes:
  • the bottom depth of the helium source rock, the top depth of the helium source rock and the distribution area of the helium source rock in the target area are determined based on seismic data and drilling data.
  • the helium source rock includes coal seams and mud shale.
  • the determining the distribution area of the helium source rock based on seismic data and drilling data includes:
  • the distribution area of the helium source rocks is calculated by the small surface element integration method based on seismic data and drilling data.
  • the formation depth corresponding to the preset temperature is determined as the bottom depth of the helium source rock by formula (1):
  • H bottom (t preset temperature - t surface temperature ) / K + 50 (1);
  • Hbottom represents the bottom depth of the helium source rock, in meters
  • tSurface temperature represents the surface temperature in °C
  • K represents the geothermal gradient, with the unit of °C/100m.
  • the thickness of the helium source rock is determined based on the bottom depth of the helium source rock and the top depth of the helium source rock by formula (2):
  • h represents the thickness of the helium source rock, in meters
  • Hbottom represents the bottom depth of the helium source rock, in m
  • Htop represents the top depth of the helium source rock, in meters.
  • the volume of the helium source rock is determined based on the thickness of the helium source rock and the distribution area of the helium source rock by formula (3):
  • V h ⁇ S (3)
  • V represents the volume of the helium source rock, in m 3 ;
  • h represents the thickness of the helium source rock, in meters
  • S represents the distribution area of helium source rock, in m 2 .
  • the content of the undecayed parent isotope in the helium source rock is determined based on the density of the helium source rock, the content of the radioactive element in the helium source rock, and the volume of the helium source rock by formula (4):
  • v represents the volume of the helium source rock, in m 3 ;
  • ⁇ source rock represents the density of the helium source rock, in t/m 3 ;
  • x represents the content of radioactive elements in the helium source rock, in mol/g.
  • the content of the decayed daughter isotope in the helium source rock is determined by formula (5) based on the absolute age of the helium source rock, the decay constant of the radioactive element in the helium source rock, and the content of the undecayed parent isotope in the helium source rock:
  • D represents the content of decayed daughter isotopes in the helium source rock, in mol
  • represents the decay constant of the isotope of the radioactive element in the helium source rock, dimensionless
  • t represents the absolute geological age of the helium source rock, in millions of years
  • v represents the volume of the helium source rock, in m 3 ;
  • ⁇ source rock represents the density of the helium source rock, in t/m 3 ;
  • x represents the content of radioactive elements in the helium source rock, in mol/g.
  • the radioactive elements in the helium source rock include: 238U and 232Th;
  • the amount of helium in the helium source rock is determined based on the content of the decayed daughter isotope in the helium source rock using formula (6):
  • n D ⁇ 8/238 (6)
  • the amount of helium in the helium source rock is determined based on the content of the decayed daughter isotope in the helium source rock using formula (7):
  • n D ⁇ 6/232 (7)
  • n represents the amount of helium in the helium source rock
  • D represents the content of the decayed daughter isotope in the helium source rock.
  • the total amount of helium generated by the helium source rock is determined based on the amount of helium in the helium source rock by using formula (8):
  • V Hesheng n ⁇ M / ⁇ he (8)
  • V Hesheng represents the total amount of generated helium, i.e., the amount of generated helium resources, in m 3 ;
  • n the amount of helium in the helium source rock
  • M represents the molar mass of the total amount of generated helium
  • ⁇ he represents the density of helium, which is 0.1786 g/L.
  • the migration and accumulation coefficient of helium in the helium source rock in the target area is determined by formula (9):
  • ⁇ 1 is the helium expulsion rate of the helium source rock, in %
  • ⁇ 2 is the degassing rate of water-soluble helium, in %.
  • the helium accumulation resource amount is determined based on the migration and accumulation coefficient and the total helium generation amount of the helium source rock by formula (10):
  • V he ju ⁇ ⁇ V he sheng (10);
  • V he represents the helium accumulation, that is, the helium accumulation resource, in m 3 ;
  • represents the transport and aggregation coefficient, in %
  • V helium represents the total amount of helium generated, with the unit of m 3 .
  • the helium includes 3He and 4He
  • the method further includes: determining the resource amount of mantle-derived helium and crust-derived helium through the ratio of 3He/4He according to a binary composite formula.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information.
  • Information can be computer readable instructions, data structures, program modules or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种氦气成因资源评价方法、装置、处理器及存储介质,属于氦气成因资源评价技术领域。所述方法包括:确定目标区域的氦源岩中已衰变的子体同位素的含量;基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;确定目标区域的氦源岩中氦气的运聚系数;基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量。通过上述方法能够实现氦气资源的有效评价,对于开展氦气成藏和富集规律研究具有重要指导作用。

Description

氦气成因资源评价方法及装置 技术领域
本申请涉及氦气资源评价技术领域,具体涉及一种氦气成因资源评价方法、一种氦气成因资源评价装置、一种机器可读存储介质及一种处理器。
背景技术
氦气被称为“黄金气体”。发明人发现,由于氦源岩的厚度、运聚系数以及幔源岩的难以确定,目前国内外尚没有成熟的生氦法来开展氦气资源评价方法。发明人发现,氦气百分含量法虽然计算准确,但其依赖于氦气数据点的数量和质量、天然气储量的准确性。同时在成因法计算资源量时候,由于氦源岩的厚度、运聚系数以及幔源岩的难以确定,资源量的计算误差很大。发明人还发现,尽管氦气与天然气聚集在同一圈闭中,由于生氦和生烃机制完全不同,天然气与氦气的运聚系数不存在相关性,氦气藏的运聚有其自身的规律。
鉴于上述问题,本申请提出了克服上述问题或者至少部分地解决上述问题的一种氦气成因资源评价方法。
发明内容
本申请实施例的目的是提供一种氦气成因资源评价方法、一种氦气成因资源评价装置、一种机器可读存储介质及一种处理器。所述方法能够实现氦气资源的有效评价,对于开展氦气成藏和富集规律研究具有重要指导作用。
为了实现上述目的,本申请第一方面提供一种氦气成因资源评价方法,所述方法包括:
获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数;
确定目标区域的氦源岩的体积;
基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量;
基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量;
基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;
基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;
确定目标区域的氦源岩中氦气的运聚系数;
基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量。
其中,所述确定目标区域的氦源岩的体积,包括:
基于预设温度确定目标区域的氦源岩的底界深度;
确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积;
基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度;
基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积。
在本申请实施例中,所述确定目标区域的氦源岩的底界深度,包括:基于预设温度确定目标区域的氦源岩的底界深度。
在本申请实施例中,所述基于预设温度确定目标区域的氦源岩的底界深度,包括:
将预设温度所对应的地层深度确定为氦源岩的底界深度,所述氦源岩包括:花岗岩和火山岩。
在本申请实施例中,所述预设温度的温度范围为:220℃~240℃。
在本申请实施例中,所述确定目标区域的氦源岩的底界深度、氦源岩的顶面深度以及氦源岩的分布面积,包括:
基于地震资料和钻井资料确定目标区域的氦源岩的底界深度、氦源岩的顶面深度以及氦源岩的分布面积,所述氦源岩包括:煤层、泥页岩。
在本申请实施例中,基于地震资料和钻井资料确定氦源岩的分布面积,包括:
对于厚度不稳定或者分布不连续的氦源岩,基于地震资料和钻井资料,通过小面元积分法求取氦源岩的分布面积。
在本申请实施例中,通过(1)式,将预设温度所对应的地层深度确定为氦源岩的底界深度:
H =(t 预设温度-t 地表温度)/K+50(1);
式中,H 表示氦源岩的底界深度,单位为m;
t 地表温度表示地表温度,单位为℃;
K表示地温梯度,单位为℃/100m。
在本申请实施例中,通过(2)式,基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度:
h=H -H (2);
式中,h表示氦源岩的厚度,单位为m;
H 表示氦源岩的底界深度,单位为m;
H 表示氦源岩的顶面深度,单位为m。
在本申请实施例中,通过(3)式,基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积:
V=h×S(3);
式中,V表示氦源岩的体积,单位为m 3
h表示氦源岩的厚度,单位为m;
S表示氦源岩分布的面积,单位为m 2
在本申请实施例中,通过(4)式,基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量:
P=v×ρ 源岩×x(4);
式中,P表示氦源岩中未衰变的母体同位素的含量,单位为mol;
v表示氦源岩的体积,单位为m 3
ρ 源岩表示氦源岩的密度,单位为t/m 3
x表示氦源岩中放射性元素的含量,单位为mol/g。
在本申请实施例中,通过(5)式,基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量:
Figure PCTCN2022138085-appb-000001
式中,D表示氦源岩中已衰变的子体同位素的含量,单位为mol;
λ表示氦源岩中放射性元素的同位素的衰变常数,无量纲;
t表示氦源岩的绝对地质年龄,单位为百万年;
v表示氦源岩的体积,单位为m 3
ρ 源岩表示氦源岩的密度,单位为t/m 3
x表示氦源岩中放射性元素的含量,单位为mol/g。
在本申请实施例中,氦源岩中的放射性元素包括:238U和232Th;
针对238U衰变,通过(6)式,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量:
n=D×8/238(6);
针对232Th衰变,通过(7)式,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量:
n=D×6/232(7);
式中,n表示氦源岩中氦气的物质的量,D表示氦源岩中已衰变的子体同位素的含量。
在本申请实施例中,通过(8)式,基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量:
V He生=n×M/ρ he(8);
式中,V He生表示生氦总量,即生氦资源量,单位为m 3
n表示氦源岩中氦气的物质的量;
M表示生氦总量的摩尔质量;
ρ he表示氦气的密度,取值0.1786g/L。
在本申请实施例中,通过(9)式,确定目标区域的氦源岩中氦气的运聚系数:
Φ=Φ1×Φ2     (9);
式中,Φ1为氦源岩排氦率,单位为%;Φ2为水溶氦脱气率,单位为%。
在本申请实施例中,通过(10)式,基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量:
V he聚=Φ×V he生(10);
式中,V he聚表示氦气聚集量,即氦气聚集资源量,单位为m 3
Φ表示运聚系数,单位为%;
V he生表示生氦总量,单位为m 3
在本申请实施例中,所述氦气包括3He和4He,所述方法还包括:
根据二元复合公式,通过3He/4He的比值,确定幔源氦气和壳源氦气的资源量。
本申请第二方面提供一种氦气成因资源评价装置,所述装置包括:
获取模块,用于获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数;
第一确定模块,用于确定目标区域的氦源岩的体积;
第二确定模块,用于基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量;
第三确定模块,用于基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量;
第四确定模块,用于基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;
第五确定模块,用于基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;
第六确定模块,用于确定目标区域的氦源岩中氦气的运聚系数;
第七确定模块,用于基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量。
其中,所述第一确定模块,包括:
底界深度确定模块,用于基于预设温度确定目标区域的氦源岩的底界深度;
顶面深度以及分布面积确定模块,用于确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积;
厚度确定模块,用于基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度;
体积确定模块,用于基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积。
本申请第三方面提供一种处理器,被配置成执行上述的氦气成因资源评价方法。
本申请第四方面提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得所述处理器被配置成执行上述的氦气成因资源评价方法。
与现有技术相比,本发明的上述技术方案具有如下有益效果:
本申请提出的一种氦气成因资源评价方法、装置、存储介质及处理器,所述方法通过氦源岩中已衰变的子体同位素的含量确定出氦源岩中氦气的物质的量,然后基于氦源岩中氦气的物质的量确定出氦源岩的生氦总量,最后基于氦源岩中氦气的运聚系数,确定氦气聚集资源量。本申请通过上述方法能够实现氦气资源的有效评价,对于开展氦气成藏和富集规律研究具有重要指导作用。
本申请实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请实施例,但并不构成对本申请实施例的限制。在附图中:
图1示意性示出了根据本申请实施例的氦气成因资源评价方法的应用环境示意图;
图2示意性示出了根据本申请实施例的氦气成因资源评价方法的整体流程示意图;
图3示意性示出了根据本申请实施例的氦气成因资源评价方法中,计算目标区域的氦源岩的体积的流程示意图;
图4示意性示出了根据本申请实施例的He、N 2和CH 4亨利常数随温度的变化曲线图;
图5示意性示出了根据本申请实施例的氦源岩有效厚度示意图;
图6示意性示出了根据本申请实施例的氦气成藏模式及过程示意图;
图7示意性示出了根据本申请实施例的氦气成因资源评价装置的结构框图;
图8示意性示出了根据本申请实施例的计算机设备的内部结构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请实施例,并不用于限制本申请实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提供的氦气成因资源评价方法,可以应用于如图1所示的应用环境中。其中,终端102通过网络与服务器104通过网络进行通信。其中,终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
图2示意性示出了根据本申请实施例的氦气成因资源评价方法的流程示意图。如图2所示,在本申请一实施例中,提供了一种氦气成因资源评价方法,本实施例主要以该方法应用于上述图1中的终端102(或服务器104)来举例说明,包括以下步骤:
步骤110,获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数。
在本实施例中,目标区域指的是氦气资源研究区域。在本实施例中,氦源岩包括花岗岩、火山岩和沉积岩等。花岗岩或者火山岩的年龄,可以根据测定岩石中锆石U-Pb的同位素年龄确定。沉积岩的年龄主要通过测定岩石中古生物年代确定。氦源岩的密度一般是常数,如花岗岩的密度为2.3g/cm 3。氦源岩中放射性元素包括:铀( 235U、 238U)和钍( 232Th)。可以通过采集不同层次、不同构造部位具有代表性的氦源岩样品,来测定氦源岩中铀或者钍等放射性元素的含量,可以多次测量铀或者钍的含量,同一样品误差小于5%,求取平均值。 235U的衰变常数为9.8485×10 -10/a, 238U的衰变常数为1.55125×10 -10/a, 232Th的衰变常数为4.9745×10 -11/a。
步骤120,确定目标区域的氦源岩的体积。
图3示意性示出了根据本申请实施例的氦气成因资源评价方法中,计算目标区域的氦源岩的体积的流程示意图。如图3所示,在本实施例中,所述目标区域的氦源岩的体积通过步骤121~步骤124确定:
步骤121,基于预设温度确定目标区域的氦源岩的底界深度。
示例性地,计算氦源岩的体积,首先,需要计算氦源岩的底界深度。
若氦源岩为花岗岩或者火山岩,则所述氦源岩的底界深度可以根据220℃~240℃所对应的地层深度确定。
图4示意性示出了根据本申请实施例的He、N 2和CH 4亨利常数随温度的变化曲线。如图4所示,依据亨利曲线,氦气(He)在180℃时与甲烷(CH4)、氮气(N2)溶解度、分压基本 趋于一致,再进一步释放氦气的潜力基本消失,240℃时氦源岩释放潜力趋于零,因此,本实施例将研究区220℃~240℃所对应的地层深度确定为花岗岩和火山岩等氦源岩的下限深度,即氦源岩的底界深度。
图5示意性示出了根据本申请实施例的氦源岩有效厚度示意图。
示例性地,若氦源岩为花岗岩或者火山岩,则氦源岩的底界深度可以通过(1)式计算:
H =(t 预设温度-t 地表温度)/K+50(1);
式中,H 表示氦源岩的底界深度,单位为m;
t 预设温度表示预设温度,t 预设温度的取值范围为220℃~240℃。
t 地表温度表示地表温度,单位为℃;
K表示地温梯度,单位为℃/100m。
若氦源岩为沉积岩,例如,煤层或者泥页岩,则所述氦源岩的底界深度可以根据地震资料和钻井资料确定。
步骤122,确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积。
在本实施例中,可以通过地震资料和钻井资料确定氦源岩的顶面深度以及氦源岩的分布面积。对于厚度不稳定或者分布不连续的氦源岩,可以通过小面元积分法求取氦源岩的分布面积。
步骤123,基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度。
示例性地,氦源岩的厚度可以通过(2)式计算:
h=H -H (2);
式中,h表示氦源岩的厚度,单位为m;
H 表示氦源岩的底界深度,单位为m;
H 表示氦源岩的顶面深度,单位为m。
步骤124,基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积。
示例性地,氦源岩的体积可以通过(3)式计算:
V=h×S(3);
式中,V表示氦源岩的体积,单位为m 3
h表示氦源岩的厚度,单位为m;
S表示氦源岩的分布面积,单位为m 2
本实施例提出基于亨利定律的生氦法,解决了氦源岩厚度参数确定的关键难点。常规方法氦源岩的下限采用主观推断法,根据氦源岩的露头厚度来推断地下氦源岩厚度,但地下氦源岩厚度变化大,导致氦源岩的体积计算不准确。本申请以氦气成藏理论为指导,将氦气“死亡线”220℃-240℃作为氦原岩深度的下限温度,将该温度对应的深度作为氦源岩的深度下限,由此确定氦源岩厚度,有效提高了氦源岩体积和生氦资源量准确性,误差下降10%。本实施例有效解决了现有技术中存在的氦源岩的厚度难以确定的问题。
步骤130,基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量。
在本实施例中,可以通过(4)计算氦源岩中未衰变的母体同位素的含量:
P=V×ρ 源岩×x(4);
式中,P表示氦源岩中未衰变的母体同位素的含量,单位为mol;
V表示氦源岩的体积,单位为m 3
ρ 源岩表示氦源岩的密度,单位为t/m 3
x表示氦源岩中放射性元素的含量,单位为mol/g。
步骤140,基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量。
在本实施例中,可以通过(5)计算氦源岩中已衰变的子体同位素的含量:
Figure PCTCN2022138085-appb-000002
式中,D表示氦源岩中已衰变的子体同位素的含量,单位为mol;
λ表示氦源岩中放射性元素的同位素的衰变常数,无量纲;
t表示氦源岩的绝对地质年龄,单位为百万年;
v表示氦源岩的体积,单位为m 3
ρ 源岩表示氦源岩的密度,单位为t/m 3
x表示氦源岩中放射性元素的含量,单位为mol/g。
步骤150,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量。
在本实施例中,氦源岩中的放射性元素包括:238U和232Th;
针对238U衰变,通过(6)式,计算氦源岩中氦气的物质的量:
n=D×8/238(6);
针对232Th衰变,通过(7)式,计算氦源岩中氦气的物质的量:
n=D×6/232(7);
式中,n表示氦源岩中氦气的物质的量,D表示氦源岩中已衰变的子体同位素的含量。
步骤160,基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量。
在本实施例中,通过(8)式,计算氦源岩的生氦总量:
V He生=n×M/ρ he(8);
式中,V He生表示生氦总量,即生氦资源量,单位为m 3
n表示氦源岩中氦气的物质的量;
M表示生氦总量的摩尔质量;
ρ he表示氦气的密度,取值0.1786g/L。
示例性地,针对238U衰变,通过(8.1)式,计算氦源岩的生氦总量:
Figure PCTCN2022138085-appb-000003
示例性地,针对232Th衰变,通过(8.2)式,计算氦源岩的生氦总量:
Figure PCTCN2022138085-appb-000004
式(9)-(10)中,V He生表示研究区生氦资源量,即氦源岩的生氦总量,单位为m 3
λ表示研究区铀或者钍同位素的衰变常数,无量纲;
t表示研究区氦源岩的绝对地质年龄,单位为百万年;
ρ 源岩表示研究区氦源岩的密度,单位为t/m 3;例如,花岗岩的密度取值2.5t/m 3
ρ he表示研究区氦气的密度,取值0.1786g/L;
v表示研究区氦源岩的体积,单位为m 3
x表示研究区氦源岩中铀或者钍的含量,单位为g/mol。
步骤170,确定目标区域的氦源岩中氦气的运聚系数。
图6示意性示出了根据本申请实施例的氦气成藏模式及过程示意图。如图6所示,本实施例根据研究区域构造活动期次和排氦特征,确定不同成藏模式下的氦源岩排氦率和水溶氦脱气率,两者相乘即可得到运聚系数。其中,不同成藏模式是指,不同来源的氦气在不同的圈闭中的聚集形式:按照气体成分,分为含氦氮气藏、含氦CO2气藏、含氦天然气藏等;按圈闭类型分为背斜、断层以及岩性;按照来源分为幔源、壳源或混源等等。
已经排氦的氦源岩与全部氦源岩体积之比即为氦源岩排氦率。通过测定刻度区已知水溶氦含量和气藏含氦量,计算已经聚集的氦气量与水溶氦的体积,两者之比即为水溶氦脱气率。
在本实施例中,通过(9)式,计算目标区域的氦源岩中氦气的运聚系数:
Φ=Φ1×Φ2      (9);
式中,Φ1为氦源岩排氦率,单位为%;Φ2为水溶氦脱气率,单位为%。
其中,氦源岩排氦率Φ1通过已经排氦的氦源岩与全部氦源岩体积之比来计算。测定刻度区已知水溶氦含量和气藏含氦量,计算已经聚集的氦气量与水溶氦的体积,两者之比即为水溶氦脱气率Φ2。
在不同的成藏模式下,氦气的初次运移和二次运移系数千差万别。已有的方法没有考虑不同成藏模式的差异,也没有给出具体的计算公式。本实施例将运聚系数与烃类成藏时间相匹配,解决运聚系数难以确定的问题。
步骤180,基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量。
本实施例根据研究区花岗岩、火成岩、沉积岩等所有生氦总量,与运聚系数相乘,即可得到研究区氦气地质资源量。
在本实施例中,通过(10)式,计算氦气聚集资源量:
V he聚=Φ×V he生(10);
式中,V he聚表示氦气聚集量,即氦气聚集资源量,单位为m 3
Φ表示运聚系数,单位为%;
V he生表示生氦总量,单位为m 3
在本实施例中,所述氦气包括 3He和 4He,所述方法还包括:
确定壳源氦和幔源氦中3He/4He的标准值,标准值如下:
壳源氦取值标准: 3He/ 4He=2.0×10 -8
幔源氦取值标准: 3He/ 4He=1.1×10 -8
壳幔混源氦取值标准:1.1×10 -83He/ 4He<2.0×10 -8
在本实施例中,所述氦气包括 3He和 4He,所述方法还包括:根据二元复合公式,通过 3He/ 4He比值计算幔源氦气和壳源氦气的资源量,壳源氦的比例计算公式如下:
Figure PCTCN2022138085-appb-000005
幔源氦资源量比例的计算公式如下:
I 4He=1-I 3He(12);
式中, 3He表示氦气中幔源氦气所占的比例,单位为%L;
4He表示氦气中壳源氦气所占的比例,单位为%L;
R表示实测氦气值体积,单位为m 3
R c表示壳源氦气体积,单位为m 3
R m表示幔源氦气体积,单位为m 3
图2为一个实施例中氦气成因资源评价方法的流程示意图。应该理解的是,虽然图2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
图7示意性示出了根据本申请实施例的氦气成因资源评价装置的结构框图。
在一个实施例中,如图7所示,提供了一种氦气成因资源评价装置200,包括获取模块210、第一确定模块220、第二确定模块230、第三确定模块240、第四确定模块250、第五确定模块260、第六确定模块270以及第七确定模块280,其中:
获取模块210,用于获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数;
第一确定模块220,用于确定目标区域的氦源岩的体积;
第二确定模块230,用于基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量;
第三确定模块240,用于基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量;
第四确定模块250,用于基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;
第五确定模块260,用于基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;
第六确定模块270,用于确定目标区域的氦源岩中氦气的运聚系数;
第七确定模块280,用于基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量。
其中,所述第一确定模块220,包括:
底界深度确定模块,用于基于预设温度确定目标区域的氦源岩的底界深度;
顶面深度以及分布面积确定模块,用于确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积;
厚度确定模块,用于基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度;
体积确定模块,用于基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积。
所述氦气成因资源评价装置包括处理器和存储器,上述获取模块210、第一确定模块220、第二确定模块230、第三确定模块240、第四确定模块250、第五确定模块260、第六确定模块270以及第七确定模块280等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序模块中实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现氦气成因资源评价方法。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本申请实施例提供了一种存储介质,其上存储有程序,该程序被处理器执行时实现上述氦气成因资源评价方法。
图8示意性示出了根据本申请实施例的计算机设备的内部结构图。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图8所示。该计算机设备包括通过***总线连接的处理器A01、网络接口A02、显示屏A04、输入装置A05和存储器(图中未示出)。其中,该计算机设备的处理器A01用于提供计算和控制能力。该计算机设备的存储器包括内存储器A03和非易失性存储介质A06。该非易失性存储介质A06存储有操作***B01和计算机程序B02。该内存储器A03为非易失性存储介质A06中的操作***B01和计算机程序B02的运行提供环境。该计算机设备的网络接口A02用于与外部的终端通过网络连接通信。该计算机程序被处理器A01执行时以实现一种氦气成因资源评价方法。该计算机设备的显示屏A04可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置A05可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本申请提供的氦气成因资源评价装置可以实现为一种计算机程序的形式,计算机程序可在如图8所示的计算机设备上运行。计算机设备的存储器中可存储组成该氦气成因资源评价装置的各个程序模块,比如,图7所示的获取模块210、第一确定模块220、第二确定模块230、第三确定模块240、第四确定模块250、第五确定模块260、第六确定模块270以及第七确定模块280。各个程序模块构成的计算机程序使得处理器执行本说明书中描述的本申请各个实施例的氦气成因资源评价方法中的步骤。
图8所示的计算机设备可以通过如图7所示的氦气成因资源评价装置中的获取模块210执行步骤110,计算机设备可通过第一确定模块220执行步骤120,计算机设备可通过第二确定模块230执行步骤130,计算机设备可通过第三确定模块240执行步骤140,计算机设备可通过第四确定模块250执行步骤150,计算机设备可通过第五确定模块260执行步骤160,计算机设备可通过第六确定模块270执行步骤170,计算机设备可通过第七确定模块280执行步骤180。
本申请实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现以下步骤:
步骤110,获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数;
步骤120,确定目标区域的氦源岩的体积;
步骤130,基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量;
步骤140,基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量;
步骤150,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;
步骤160,基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;
步骤170,确定目标区域的氦源岩中氦气的运聚系数;
步骤180,基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量。
在一个实施例中,所述步骤120,包括:
步骤121,基于预设温度确定目标区域的氦源岩的底界深度;
步骤122,确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积;
步骤123,基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度;
步骤124,基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积。
在一个实施例中,所述确定目标区域的氦源岩的底界深度,包括:
基于预设温度确定目标区域的氦源岩的底界深度。
在一个实施例中,所述基于预设温度确定目标区域的氦源岩的底界深度,包括:
将预设温度所对应的地层深度确定为氦源岩的底界深度,所述氦源岩包括:花岗岩和火山岩。
在一个实施例中,所述预设温度的温度范围为:220℃~240℃。
在一个实施例中,所述确定目标区域的氦源岩的底界深度、氦源岩的顶面深度以及氦源岩的分布面积,包括:
基于地震资料和钻井资料确定目标区域的氦源岩的底界深度、氦源岩的顶面深度以及氦源岩的分布面积,所述氦源岩包括:煤层、泥页岩。
在一个实施例中,所述基于地震资料和钻井资料确定氦源岩的分布面积,包括:
对于厚度不稳定或者分布不连续的氦源岩,基于地震资料和钻井资料,通过小面元积分法求取氦源岩的分布面积。
在一个实施例中,通过(1)式,将预设温度所对应的地层深度确定为氦源岩的底界深度:
H =(t 预设温度-t 地表温度)/K+50(1);
式中,H 表示氦源岩的底界深度,单位为m;
t 地表温度表示地表温度,单位为℃;
K表示地温梯度,单位为℃/100m。
在一个实施例中,通过(2)式,基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度:
h=H -H (2);
式中,h表示氦源岩的厚度,单位为m;
H 表示氦源岩的底界深度,单位为m;
H 表示氦源岩的顶面深度,单位为m。
在一个实施例中,通过(3)式,基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积:
V=h×S(3);
式中,V表示氦源岩的体积,单位为m 3
h表示氦源岩的厚度,单位为m;
S表示氦源岩的分布面积,单位为m 2
在一个实施例中,通过(4)式,基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量:
P=v×ρ 源岩×x(4);
式中,P表示氦源岩中未衰变的母体同位素的含量,单位为mol;
v表示氦源岩的体积,单位为m 3
ρ 源岩表示氦源岩的密度,单位为t/m 3
x表示氦源岩中放射性元素的含量,单位为mol/g。
在一个实施例中,通过(5)式,基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量:
Figure PCTCN2022138085-appb-000006
式中,D表示氦源岩中已衰变的子体同位素的含量,单位为mol;
λ表示氦源岩中放射性元素的同位素的衰变常数,无量纲;
t表示氦源岩的绝对地质年龄,单位为百万年;
v表示氦源岩的体积,单位为m 3
ρ 源岩表示氦源岩的密度,单位为t/m 3
x表示氦源岩中放射性元素的含量,单位为mol/g。
在一个实施例中,氦源岩中的放射性元素包括:238U和232Th;
针对238U衰变,通过(6)式,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量:
n=D×8/238(6);
针对232Th衰变,通过(7)式,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量:
n=D×6/232(7);
式中,n表示氦源岩中氦气的物质的量,D表示氦源岩中已衰变的子体同位素的含量。
在一个实施例中,通过(8)式,基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量:
V He生=n×M/ρ he(8);
式中,V He生表示生氦总量,即生氦资源量,单位为m 3
n表示氦源岩中氦气的物质的量;
M表示生氦总量的摩尔质量;
ρ he表示氦气的密度,取值0.1786g/L。
在一个实施例中,通过(9)式,确定目标区域的氦源岩中氦气的运聚系数:
Φ=Φ1×Φ2     (9);
式中,Φ1为氦源岩排氦率,单位为%;Φ2为水溶氦脱气率,单位为%。
在一个实施例中,通过(10)式,基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量:
V he聚=Φ×V he生(10);
式中,V he聚表示氦气聚集量,即氦气聚集资源量,单位为m 3
Φ表示运聚系数,单位为%;
V he生表示生氦总量,单位为m 3
在一个实施例中,所述氦气包括3He和4He,所述方法还包括:根据二元复合公式,通过3He/4He的比值,确定幔源氦气和壳源氦气的资源量。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和 载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种氦气成因资源评价方法,其特征在于,所述方法包括:
    获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数;
    确定目标区域的氦源岩的体积;
    基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量;
    基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量;
    基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;
    基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;
    确定目标区域的氦源岩中氦气的运聚系数;
    基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量;
    其中,所述确定目标区域的氦源岩的体积,包括:
    基于预设温度确定目标区域的氦源岩的底界深度;
    确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积;
    基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度;
    基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积。
  2. 根据权利要求1所述的方法,其特征在于,所述基于预设温度确定目标区域的氦源岩的底界深度,包括:
    将预设温度所对应的地层深度确定为氦源岩的底界深度,所述氦源岩包括:花岗岩和火山岩。
  3. 根据权利要求2所述的方法,其特征在于,所述预设温度的温度范围为:220℃~240℃。
  4. 根据权利要求1所述的方法,其特征在于,所述确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积,包括:
    基于地震资料和钻井资料确定氦源岩的顶面深度以及氦源岩的分布面积,所述氦源岩包括:煤层、泥页岩;
    其中,基于地震资料和钻井资料确定氦源岩的分布面积,包括:对于厚度不稳定或者分布不连续的氦源岩,基于地震资料和钻井资料,通过小面元积分法求取氦源岩的分布面积。
  5. 根据权利要求3所述的方法,其特征在于,通过(1)式,将预设温度所对应的地层深度确定为氦源岩的底界深度:
    H =(t 预设温度-t 地表温度)/K+50(1);
    式中,H 表示氦源岩的底界深度,单位为m;
    t 地表温度表示地表温度,单位为℃;
    K表示地温梯度,单位为℃/100m。
  6. 根据权利要求5所述的方法,其特征在于,通过(2)式,基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度:
    h=H -H (2);
    式中,h表示氦源岩的厚度,单位为m;
    H 表示氦源岩的底界深度,单位为m;
    H 表示氦源岩的顶面深度,单位为m。
  7. 根据权利要求6所述的方法,其特征在于,通过(3)式,基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的体积:
    V=h×S(3);
    式中,V表示氦源岩的体积,单位为m 3
    h表示氦源岩的厚度,单位为m;
    S表示氦源岩的分布面积,单位为m 2
  8. 根据权利要求7所述的方法,其特征在于,通过(5)式,基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量:
    Figure PCTCN2022138085-appb-100001
    式中,D表示氦源岩中已衰变的子体同位素的含量,单位为mol;
    v×ρ 源岩×x表示氦源岩中未衰变的母体同位素的含量;
    λ表示氦源岩中放射性元素的同位素的衰变常数,无量纲;
    t表示氦源岩的绝对地质年龄,单位为百万年;
    v表示氦源岩的体积,单位为m 3
    ρ 源岩表示氦源岩的密度,单位为t/m 3
    x表示氦源岩中放射性元素的含量,单位为mol/g。
  9. 根据权利要求8所述的方法,其特征在于,氦源岩中的放射性元素包括:238U和232Th;
    针对238U衰变,通过(6)式,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量:
    n=D×8/238(6);
    针对232Th衰变,通过(7)式,基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量:
    n=D×6/232(7);
    式中,n表示氦源岩中氦气的物质的量,D表示氦源岩中已衰变的子体同位素的含量。
  10. 根据权利要求9所述的方法,其特征在于,通过(8)式,基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量:
    V He生=n×M/ρ he(8);
    式中,V He生表示生氦总量,即生氦资源量,单位为m 3
    n表示氦源岩中氦气的物质的量;
    M表示生氦总量的摩尔质量;
    ρ he表示氦气的密度,取值0.1786g/L。
  11. 根据权利要求10所述的方法,其特征在于,通过(9)式,确定目标区域的氦源岩中氦气的运聚系数:
    Φ=Φ1×Φ2  (9);
    式中,Φ1为氦源岩排氦率,单位为%;Φ2为水溶氦脱气率,单位为%;
    通过(10)式,基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量:
    V he聚=Φ×V he生(10);
    式中,V he聚表示氦气聚集量,即氦气聚集资源量,单位为m 3
    Φ表示运聚系数,单位为%;
    V he生表示生氦总量,单位为m 3
  12. 根据权利要求1所述的方法,其特征在于,所述氦气包括3He和4He,所述方法还包括:
    根据二元复合公式,通过3He/4He的比值,确定幔源氦气和壳源氦气的资源量。
  13. 一种氦气成因资源评价装置,其特征在于,所述装置包括:
    获取模块,用于获取目标区域的氦源岩的绝对年龄、氦源岩的密度、氦源岩中放射性元素的含量以及氦源岩中放射性元素的衰变常数;
    第一确定模块,用于确定目标区域的氦源岩的体积;
    第二确定模块,用于基于所述氦源岩的密度、所述氦源岩中放射性元素的含量以及所述氦源岩的体积,确定氦源岩中未衰变的母体同位素的含量;
    第三确定模块,用于基于所述氦源岩的绝对年龄、所述氦源岩中放射性元素的衰变常数以及所述氦源岩中未衰变的母体同位素的含量,确定氦源岩中已衰变的子体同位素的含量;
    第四确定模块,用于基于所述氦源岩中已衰变的子体同位素的含量确定氦源岩中氦气的物质的量;
    第五确定模块,用于基于所述氦源岩中氦气的物质的量确定氦源岩的生氦总量;
    第六确定模块,用于确定目标区域的氦源岩中氦气的运聚系数;
    第七确定模块,用于基于所述运聚系数和所述氦源岩的生氦总量确定氦气聚集资源量;
    其中,所述第一确定模块,包括:
    底界深度确定模块,用于基于预设温度确定目标区域的氦源岩的底界深度;
    顶面深度以及分布面积确定模块,用于确定目标区域的氦源岩的顶面深度以及氦源岩的分布面积;
    厚度确定模块,用于基于所述氦源岩的底界深度和氦源岩的顶面深度确定氦源岩的厚度;
    体积确定模块,用于基于所述氦源岩的厚度以及所述氦源岩的分布面积确定氦源岩的 体积。
  14. 一种处理器,其特征在于,被配置成执行根据权利要求1至12中任一项所述的氦气成因资源评价方法。
  15. 一种机器可读存储介质,该机器可读存储介质上存储有指令,其特征在于,该指令在被处理器执行时使得所述处理器被配置成执行根据权利要求1至12中任一项所述的氦气成因资源评价方法。
PCT/CN2022/138085 2022-10-17 2022-12-09 氦气成因资源评价方法及装置 WO2024082401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211271154.5A CN115685377B (zh) 2022-10-17 2022-10-17 氦气成因资源评价方法及装置
CN202211271154.5 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024082401A1 true WO2024082401A1 (zh) 2024-04-25

Family

ID=85066765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138085 WO2024082401A1 (zh) 2022-10-17 2022-12-09 氦气成因资源评价方法及装置

Country Status (2)

Country Link
CN (1) CN115685377B (zh)
WO (1) WO2024082401A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332553B (zh) * 2023-08-18 2024-03-29 中国地质大学(北京) 页岩储层氦气同位素参数获取方法、终端及介质
CN117250661B (zh) * 2023-09-19 2024-05-10 中国石油天然气股份有限公司 一种富氦气藏区带的评价方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378055A (en) * 1977-08-05 1983-03-29 Phillips Petroleum Company Analyzing for helium in drilling muds to locate geothermal reservoirs
US20180202264A1 (en) * 2016-02-08 2018-07-19 Rs Energy Group Topco, Inc. Method for estimating oil/gas production using statistical learning models
CN111308577A (zh) * 2020-03-17 2020-06-19 中国石油化工股份有限公司 一种针对氦气气藏定量勘探中地区参数的确定方法
CN111338001A (zh) * 2020-03-17 2020-06-26 中国石油化工股份有限公司 一种氦气气藏的勘探方法
CN114910976A (zh) * 2022-04-18 2022-08-16 中国科学院西北生态环境资源研究院 低勘探程度区氦气资源潜力地质评价方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019263755B2 (en) * 2018-05-03 2023-07-13 Chevron U.S.A. Inc. System and method for mapping hydrocarbon source rock using seismic attributes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378055A (en) * 1977-08-05 1983-03-29 Phillips Petroleum Company Analyzing for helium in drilling muds to locate geothermal reservoirs
US20180202264A1 (en) * 2016-02-08 2018-07-19 Rs Energy Group Topco, Inc. Method for estimating oil/gas production using statistical learning models
CN111308577A (zh) * 2020-03-17 2020-06-19 中国石油化工股份有限公司 一种针对氦气气藏定量勘探中地区参数的确定方法
CN111338001A (zh) * 2020-03-17 2020-06-26 中国石油化工股份有限公司 一种氦气气藏的勘探方法
CN114910976A (zh) * 2022-04-18 2022-08-16 中国科学院西北生态环境资源研究院 低勘探程度区氦气资源潜力地质评价方法

Also Published As

Publication number Publication date
CN115685377B (zh) 2023-05-19
CN115685377A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024082401A1 (zh) 氦气成因资源评价方法及装置
CA3053660C (en) Prediction method for shale oil and gas sweet spot region, computer device and computer readable storage medium
Crowley et al. Glacial cycles drive variations in the production of oceanic crust
Lu et al. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm
Sheng et al. CANDIE: A new version of the DieCAST ocean circulation model
Crawford et al. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity
Ricci et al. Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical example
US20130282286A1 (en) System and method for calibrating permeability for use in reservoir modeling
CN110133725A (zh) 地震岩石横波速度预测方法及装置
CN107944126A (zh) 一种确定水驱油藏含水率的方法及装置
CN103345002A (zh) 一种测井资料获取砂岩卤水层钾离子含量的方法
CN111413741A (zh) 一种砂岩型铀矿资源量计算方法和装置
US11988794B2 (en) Accommodating non-Darcian effects of slip flow and Knudsen diffusion on gas flow for use in reservoir simulations
CN103678883B (zh) 一种面向多源海洋环境监测数据的空间抽样方法
CN112946746B (zh) 用于提高薄煤层avo反演准确性的方法及装置
Qi et al. Meso‑Cenozoic lithospheric thermal structure and its significance in the evolution of the lithosphere in the Ordos Basin, WNCC, China
Coutinho et al. Conditioning multilayered geologic models to well-test and production-logging data using the ensemble Kalman filter
CN106960264A (zh) 低渗透砂砾岩地层压力预测方法及装置
US20230168409A1 (en) Hydrocarbon phase behavior modeling for compositional reservoir simulation
Zhang et al. Variations in seismic parameters for the earthquakes during loading and unloading periods in the Three Gorges Reservoir area
McMurry Periodicity of deep-focus earthquakes
CN110879920A (zh) 一种获取沉积盆地坳陷区古地表热流的方法、装置及***
Chen et al. The disparities in thickness between the thermal and seismic lithosphere beneath the global Precambrian cratons and its geodynamic implications
Ye et al. Coalbed methane enrichment prediction and resource estimation for the areas with different tectonic complexities
CN108254289B (zh) 一种确定页岩含气量的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962577

Country of ref document: EP

Kind code of ref document: A1