WO2024080685A1 - Micro metal molded article and manufacturing method therefor - Google Patents

Micro metal molded article and manufacturing method therefor Download PDF

Info

Publication number
WO2024080685A1
WO2024080685A1 PCT/KR2023/015479 KR2023015479W WO2024080685A1 WO 2024080685 A1 WO2024080685 A1 WO 2024080685A1 KR 2023015479 W KR2023015479 W KR 2023015479W WO 2024080685 A1 WO2024080685 A1 WO 2024080685A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
micro metal
conductive
metal molding
micro
Prior art date
Application number
PCT/KR2023/015479
Other languages
French (fr)
Korean (ko)
Inventor
안범모
박승호
변성현
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Publication of WO2024080685A1 publication Critical patent/WO2024080685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys

Definitions

  • the present invention relates to micro metal moldings and methods for manufacturing the same.
  • Micro metal moldings are used in various fields such as semiconductors and displays.
  • the micro metal molding is interposed between a connection object such as a semiconductor device and a circuit board and is directly or indirectly electrically connected to the connection object and functions as a current path.
  • micro metal moldings are used when flip chip bonding a connection object such as a semiconductor chip or when bonding a connection object such as a micro LED to a circuit board to transmit current to a connection object such as a semiconductor chip or micro LED. It is used for authorization. Alternatively, micro metal moldings are also used in inspection devices (for example, probe cards or test sockets) that inspect connected objects such as semiconductor packages.
  • Micro metal moldings are manufactured in sizes ranging from a few ⁇ m to hundreds of ⁇ m, and the number of pieces that need to be aligned is large, making it difficult to align them one by one.
  • micro metal moldings are made by coating the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) with a conductive metal material such as gold (Au) or silver (Ag) and aligning it using magnetic force. method is being used.
  • a rubber type test socket is a structure in which conductive particles are placed inside silicone rubber, a rubber material.
  • Micro metal moldings When stress is applied by placing a connection object (for example, a semiconductor package) and closing the socket, the micro metal moldings strongly press against each other and the conductivity decreases. It is a structure that is raised and electrically connected.
  • Micro metal moldings are used by coating the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) with a conductive metal material such as gold (Au) or silver (Ag).
  • the method of manufacturing this involves filling the inside of a mold with silicone rubber and micro metal moldings, applying a magnetic field with magnetic force lines in the up and down directions so that the conductive particles are oriented and aligned in the thickness direction, and then separating them from the mold after hardening. It is accomplished through Through this, small-sized micro metal moldings are aligned in the direction of magnetic force lines, allowing them to function as a current path between the circuit board and the connection object.
  • micro metal moldings are used by coating the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) with a conductive metal material such as gold (Au) or silver (Ag), the magnetic metal body is Due to high electrical resistance, current flows only through the surface of the conductive particles, which causes the problem of deterioration of current characteristics.
  • the magnetic metal body is coated with a conductive metal material, the bonding force between the micro metal moldings is weak, which has the disadvantage of requiring high pressing force to ensure surface contact between the micro metal moldings.
  • Patent Document 1 Registered Patent Publication No. 10-0671910
  • Patent Document 2 Registered Patent Publication No. 10-0741228
  • the present invention was developed to solve the problems of the prior art described above.
  • the present invention provides a magnetic region and a conductive region so that the conductive parts of adjacent micro metal moldings are oriented toward each other when the magnetic portions of adjacent micro metal moldings are oriented by magnetic force lines.
  • the purpose is to provide differentiated micro metal moldings.
  • the micro metal molding according to the present invention is a three-dimensional micro metal molding having a vertical side wall, and includes a magnetic portion; and a conductive part, wherein the magnetic part and the conductive part are spatially divided based on the dividing surface.
  • the magnetic portion and the conductive portion have the same height in the longitudinal direction.
  • nano-concave-convex pattern is provided on the divided surface.
  • the side wall is provided with a nano-concavo-convex pattern.
  • the magnetic portion is provided inside the conductive portion, so the side surface of the magnetic portion is not exposed to the outside.
  • the conductive portion includes a first conductive portion located inside the magnetic portion in the width direction and a second conductive portion located outside the magnetic portion in the width direction, and the dividing surface is between the first conductive portion and the magnetic portion. It includes a first split surface and a second split surface between the second conductive part and the magnetic part.
  • each magnetic part is provided to be spaced apart within the conductive part.
  • the conductive portion forms the outer peripheral surface.
  • the conductive portion and the magnetic portion form an outer peripheral surface.
  • it includes an insertion portion that is concave inward in the width direction.
  • the magnetic part is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these
  • the conductive part is made of rhodium (Rd), platinum (Pt), or iridium. It is formed of a metal selected from (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), copper (Cu), or alloys containing these.
  • the method for manufacturing a micro metal molding includes forming a first internal space in a mold; plating a first metal layer in the first internal space; forming a second internal space in the mold by contacting the first metal layer; plating a second metal layer in the second internal space; and removing the mold, wherein one of the first metal layer and the second metal layer becomes a magnetic part and the other one becomes a conductive part.
  • the mold is an anodized film formed by anodizing a metal base material and then removing the metal base material.
  • the present invention provides a micro metal molding in which magnetic regions and conductive regions are separated so that the conductive portions of adjacent micro metal moldings are oriented toward each other when the magnetic portions of adjacent micro metal moldings are oriented by magnetic force lines.
  • FIG. 1A and 1B are views showing a micro metal molding according to a first preferred embodiment of the present invention, where FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view taken along line A-A' of FIG. 1A.
  • Figure 2 is a perspective view including an enlarged view of a portion of a micro metal molding according to a first preferred embodiment of the present invention.
  • 3A to 6B are views showing each manufacturing method of a micro metal molding according to a first preferred embodiment of the present invention.
  • FIGS. 7A and 7B are views showing a micro metal molding according to a modification of the first preferred embodiment of the present invention, where FIG. 7A is a perspective view and FIG. 7B is a cross-sectional view taken along line A-A' of FIG. 7A.
  • FIGS. 8A and 8B are views showing a micro metal molding according to a second preferred embodiment of the present invention, where FIG. 8A is a perspective view and FIG. 8B is a cross-sectional view taken along line A-A' of FIG. 8A.
  • Figure 9 is a perspective view including an enlarged view of a portion of a micro metal molding according to a second preferred embodiment of the present invention.
  • FIGS. 10A and 10B are views showing a micro metal molding according to a modification of the second preferred embodiment of the present invention, where FIG. 10A is a perspective view and FIG. 10B is a cross-sectional view taken along line A-A' of FIG. 10A.
  • FIGS. 11A and 11B are views showing a micro metal molding according to a third preferred embodiment of the present invention, where FIG. 11A is a perspective view and FIG. 11B is a cross-sectional view taken along line A-A' of FIG. 11A.
  • Figure 12 is a perspective view including an enlarged view of a portion of a micro metal molding according to a third preferred embodiment of the present invention.
  • FIGS. 13A and 13B are views showing a micro metal molding according to a modification of the third preferred embodiment of the present invention, where FIG. 13A is a perspective view and FIG. 13B is a cross-sectional view taken along line A-A' of FIG. 13A.
  • Figure 14 is a perspective view including an enlarged view of a portion of a micro metal molding according to a modified example of the third preferred embodiment of the present invention.
  • FIGS. 15A to 15C are perspective views of a micro metal molding according to a fourth preferred embodiment of the present invention.
  • FIG. 15A is a diagram showing a circular cross-section
  • FIG. 15B is a diagram showing a rectangular cross-section
  • 15c is a diagram showing a triangular cross section.
  • Figure 16 is a perspective view including an enlarged view of a portion of a micro metal molding according to a fourth preferred embodiment of the present invention.
  • FIGS. 17A and 17B are views showing a micro metal molding according to a fifth preferred embodiment of the present invention.
  • FIG. 17A is a view showing two split surfaces between the magnetic portion and the conductive portion
  • FIG. 17b is a view showing the magnetic portion and the conductive portion.
  • a drawing showing that there is one dividing surface between the sound part and the conductive part.
  • Figure 18 is a perspective view including an enlarged view of a portion of a micro metal molding according to a fifth preferred embodiment of the present invention.
  • FIG. 1A and 1B are views showing a micro metal molding 1 according to a first preferred embodiment of the present invention, where FIG. 1A is a perspective view, FIG. 1B is a cross-sectional view A-A' of FIG. 1A, and FIG. 2 is a view. It is a perspective view including an enlarged view of a part of the micro metal molding (1) according to the first preferred embodiment of the present invention, and FIGS. 3A to 6B show the micro metal molding (1) according to the first preferred embodiment of the present invention. It is a drawing showing each manufacturing method, and FIGS. 7A and 7B are drawings showing a micro metal molding (1) according to a modification of the first preferred embodiment of the present invention. FIG. 7A is a perspective view, and FIG. 7B is a view of FIG. 7A. This is a cross-sectional view of ‘A-A’.
  • the micro metal molding 1 performs the function of applying electricity to the connection object.
  • the micro metal molding 1 is interposed between the circuit board and the connection object and can be directly or indirectly electrically connected to the connection object and function as a current path.
  • This micro metal molding (1) is used when bonding a connection object to a circuit board and is used to apply a current to the connection object.
  • the micro metal molding 1 may be provided in a test device (for example, a probe card or test socket) that tests a connection object and function as a current path when the test device applies electricity to the connection object.
  • connection object may include a semiconductor device, a memory chip, a microprocessor chip, a logic chip, a light emitting device, or a combination thereof.
  • connected objects include logic LSIs (such as ASICs, FPGAs, and ASSPs), microprocessors (such as CPUs and GPUs), memory (DRAM, hybrid memory cubes (HMCs), magnetic RAMs (MRAMs), and phase-processing memory (PCMs).
  • logic LSIs such as ASICs, FPGAs, and ASSPs
  • microprocessors such as CPUs and GPUs
  • DRAM dynamic random access memory
  • HMCs hybrid memory cubes
  • MRAMs magnetic RAMs
  • PCMs phase-processing memory
  • LED Change Memory
  • ReRAM Resistive RAM
  • FeRAM FeRAM
  • flash memory flash memory
  • semiconductor light emitting devices including LED, mini LED, micro LED, etc.
  • power devices analog IC (DC-AC converter and (such as insulated gate bipolar transistors (IGBTs)), MEMS (such as acceleration sensors, pressure sensors, oscillators, and gyroscope sensors), wireless devices (such as GPS, FM, NFC, RFEM, MMIC, and WLAN), discrete devices, Includes BSI, CIS, camera module, CMOS, passive devices, GAW filter, RF filter, RF IPD, APE and BB.
  • the micro metal molding 1 according to the first preferred embodiment of the present invention is provided in a three-dimensional shape with vertical side walls.
  • the micro metal molding (1) has a height (H) in the height direction and a width (W) in the width direction.
  • the micro metal molding 1 may be configured in a cylindrical shape with a diameter (W) and a height (H).
  • the height (H) of the micro metal molding (1) ranges from 1 ⁇ m to 500 ⁇ m. More preferably, the height (H) of the micro metal molding 1 is in the range of 10 ⁇ m or more and 200 ⁇ m or less.
  • the micro metal molding 1 includes a magnetic portion 10 and a conductive portion 20.
  • the magnetic portion 10 is formed of a metal material that exhibits magnetism.
  • the magnetic portion 10 is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these.
  • the conductive portion 20 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), and copper (Cu). It is formed from metals selected from alloys containing these metals.
  • the conductive portion 20 may include a first metal layer selected from rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph) or an alloy thereof, and gold (Au). ), silver (Ag), copper (Cu), or an alloy thereof may be formed by stacking a plurality of different metal layers in the height direction.
  • the first metal layer is a metal with relatively high rigidity or wear resistance compared to the second metal layer
  • the second metal layer is a metal with relatively high electrical conductivity compared to the first metal layer.
  • the magnetic portion 10 and the conductive portion 20 are spatially divided based on the dividing surface 30.
  • the dividing surface 30 refers to the boundary between the magnetic part 10 and the conductive part 20.
  • the magnetic portion 10 and the conductive portion 20 have the same height (H) in the height direction.
  • the height H of the magnetic portion 10 in the longitudinal direction is equal to the height H of the conductive portion 20 in the longitudinal direction. Since the magnetic portion 10 and the conductive portion 20 are separated based on the split surface 30, the height H of the split surface 30 is equal to the height H of the magnetic portion 10 and the conductive portion 20. are formed at the same height.
  • the magnetic portion 10 is configured in a cylindrical shape. However, as in the modified example described later, the magnetic portion 10 may be configured in various shapes.
  • the magnetic part 10 is provided inside the conductive part 20, and the conductive part 20 is located on the circumferential surface of the magnetic part 10, so the side surface of the magnetic part 10 is not exposed to the outside.
  • the conductive portion 20 forms the outer peripheral surface of the micro metal molding (1).
  • the magnetic portion 10 is provided inside the conductive portion 20 as the magnetic portion 10 penetrates the interior of the conductive portion 20 . Since the top and bottom surfaces of the magnetic portion 10 are not covered by the conductive portion 20 and the side surfaces of the magnetic portion 10 are covered by the conductive portion 20, the force that the magnetic force lines exert on the magnetic portion 10 is magnetic. The force in the upward and downward directions of the vocal part 10 becomes the main force.
  • the height H of the magnetic portion 10 is formed to be greater than the width of the magnetic portion 10. Therefore, when the micro metal molding 1 is oriented and aligned by applying a magnetic field having magnetic force lines, the magnetic portion 10 is oriented so that its height (H) direction is parallel to the direction of the magnetic force lines. As a result, the plurality of micro metal moldings 1 are oriented with a certain direction, so that the conductive parts 20 of the micro metal moldings 1 come into surface contact more easily.
  • the magnetic portions 10 of each micro metal molding 1 are oriented in the direction of the magnetic force lines, and the conductive portions 20 of adjacent micro metal moldings are oriented in the direction of the magnetic force lines. ) are electrically connected by making surface contact with each other.
  • the micro according to an embodiment of the present invention is different in that the magnetic portions 10 are attracted and oriented by magnetic force lines, and the conductive portions 20 around the magnetic portion 10 are electrically connected by making surface contact with each other.
  • the area of the magnetic portion 10 is smaller than the area of the conductive portion 20. More specifically, the circular cross-sectional area of the magnetic portion 10 is formed to be smaller than the strip-shaped cross-sectional area of the conductive portion 20. Therefore, when the micro metal molding 1 is oriented by the magnetic portion 10, the contact area between the conductive portions 20 is increased to form a smooth current path.
  • the micro metal molding 1 is provided with a nano uneven pattern 50 on its side wall.
  • the nano-irregular pattern 50 is formed by repeating the ridges 51 and valleys 53 along the circumferential direction of the micro metal molding 1.
  • the ridges 51 and valleys 53 of the nano-irregular pattern 50 are micro It is formed to extend long in the height direction of the metal molding (1).
  • the height direction of the micro metal molding 1 refers to the direction in which the metal filler grows during electroplating.
  • the peak 51 of the nano-irregular pattern 50 has a flat top and the valley 53 has a concave shape on the inside.
  • the depth of the valley 53 ranges from 20 nm to 1 ⁇ m, and the width of the valley 53 also ranges from 20 nm to 1 ⁇ m. Since the nano-irregularity pattern 50 is due to the pores 101 formed during the manufacture of the mold 100 made of an anodic oxide film, the width and depth of the grooves 53 of the nano-irregularity pattern 50 are determined by the mold of the anodic oxide film material ( It has a value less than or equal to the range of the diameter of the pore 101 of 100).
  • the mold 100 made of an anodic oxide film includes numerous pores 101, and at least a portion of the mold 100 made of an anodic oxide film is etched to form a second internal space 120, and the second internal space 120 is formed. Since the conductive portion 20 is formed internally by electroplating, the side of the conductive portion 20 is provided with a nano-concavo-convex pattern 50 that is formed while contacting the pores of the mold 10 made of an anodized film.
  • the above nano-irregularity pattern 50 has the effect of increasing the surface area on the side of the micro metal molding 1. Through the configuration of the nano-concavo-convex pattern 50 formed on the side of the micro metal molding 1, heat generated in the micro metal molding 1 can be quickly dissipated, thereby suppressing the temperature rise of the micro metal molding 1. There will be.
  • the direction of the peaks 51 and valleys 53 of the nano-irregular pattern 50 provided on the side wall of the micro metal molding 1 is parallel to the height direction of the micro metal molding 1. For this reason, when the micro metal molding 1 is aligned by magnetic force lines in a fluid, the nano-irregular pattern 50 provided on the side wall of the micro metal molding 1 is parallel to the direction of the magnetic force line, so that the micro metal molding 1 The micro metal molding (1) is transported with minimal flow resistance.
  • the micro metal molding 1 is also provided with a nano-irregular pattern 50 on its divided surface 30.
  • the nano-irregular pattern 50 provided on the split surface 30 is formed by repeating peaks 51 and valleys 53 along the circumferential direction of the split surface 30.
  • the mountain 51 has a flat top and the valley 53 has a concave interior.
  • the depth of the valley 53 ranges from 20 nm to 1 ⁇ m, and the width of the valley 53 also ranges from 20 nm to 1 ⁇ m.
  • the peaks 51 of the magnetic portion 10 on the split surface 30 become the valleys 53 of the conductive portion 20, and the valleys 53 of the magnetic portion 10 on the split surface 30 become the conductive portion ( 20) becomes mountain (51).
  • At least a portion of the mold 100 made of an anodic oxide film is etched to form a first internal space 110, a magnetic part 10 is formed inside the first internal space 110 by electroplating, and the magnetic part 10 is formed by electroplating.
  • a mold 10 made of an anodic oxide film is formed on the side of the dividing surface 30.
  • a nano-irregular pattern 50 formed while contacting the pores is provided.
  • the nano-irregularity pattern 50 as described above has the effect of increasing the surface area on the side of the split surface 30.
  • the bonding force between the magnetic portion 10 and the conductive portion 20 is improved through the configuration of the nano-concavo-convex pattern 50 formed on the side of the split surface 30.
  • the conductive portion 20 of the micro metal molding 1 may be provided inside the magnetic portion 10 so that the side of the conductive portion 20 is not exposed to the outside. do.
  • the conductive portion 20 is located on the outer side in the width direction rather than the magnetic portion 10. The configuration of the first embodiment is more preferable.
  • a method of manufacturing a micro metal molding (1) includes forming a first internal space (110) in a mold (100); plating a first metal layer 111 in the first internal space 110; Forming a second internal space 120 in contact with the first metal layer 111 in the mold 100; plating a second metal layer 121 in the second internal space 120; and removing the mold 100, wherein one of the first metal layer 111 and the second metal layer 121 becomes the magnetic portion 10 and the other becomes the conductive portion 20.
  • 3A to 6B are views showing each manufacturing method of a micro metal molding according to a first preferred embodiment of the present invention.
  • FIG. 3A is a plan view showing the first internal space 110 of the mold 10
  • FIG. 3B is a cross-sectional view taken along line A-A' of FIG. 3A.
  • the mold 100 is made of an anodic oxide film material.
  • the anodic oxide film has a thermal expansion coefficient of 2 ⁇ 3ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even if the manufacturing environment for the micro metal molding 1 is a high temperature environment, the precise micro metal molding 1 can be manufactured without thermal deformation.
  • the anodic oxide mold 10 made of an anodic oxide material it is possible to demonstrate the effect of realizing precise shapes and fine shapes, which were limited in realizing them with molds made of photoresist.
  • the mold 100 used in the manufacturing method of the micro metal molding 1 according to the first preferred embodiment of the present invention is a mold 100 made of an anodized film material.
  • the anodic oxide film refers to a film formed when the base metal is anodized, and the pore 101 refers to a hole formed during the process of anodizing the base metal to form an anodic oxide film.
  • the base metal is aluminum (Al) or an aluminum alloy
  • an anodic oxide film of aluminum oxide Al 2 0 3
  • the base metal is not limited to this and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or alloys thereof.
  • the anodic oxide film formed as above does not have pores 101 formed vertically inside.
  • the first internal space 110 may be formed by wet etching the anodic oxide film mold 100.
  • a photo resist is provided on the upper surface of the anodic oxide film mold 100 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution and is removed, thereby forming the first internal space 110. .
  • a lower seed layer 130 is provided on the lower surface of the anodic oxide film mold 100.
  • the lower seed layer 130 may be provided on the lower surface of the anodic oxide film mold 100 before forming the first internal space 110 in the anodic oxide film mold 100.
  • a support substrate (not shown) is formed on the lower part of the anodic oxide film mold 100 to improve the handling of the anodic oxide film mold 100.
  • the lower seed layer 130 may be formed on the upper surface of the support substrate, and the anodic oxide mold 100 in which the first internal space 110 is formed may be used by combining it with the support substrate.
  • the lower seed layer 130 may be made of copper (Cu) and may be formed by a deposition method.
  • FIG. 4A is a plan view showing the formation of the first metal layer 111 by performing an electroplating process in the first internal space 110
  • FIG. 4B is a cross-sectional view taken along line A-A' of FIG. 4A.
  • the first metal layer 111 is formed in the first internal space 110 by plating using the lower seed layer 130.
  • the first metal layer 111 may be the magnetic portion 10 or the conductive portion 20, and in the first preferred embodiment of the present invention, it is the magnetic portion 10.
  • the magnetic portion 10 is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these.
  • FIG. 5A is a plan view showing the second internal space 120 formed in contact with the first metal layer 111 in the mold 100
  • FIG. 5B is a cross-sectional view taken along line A-A' of FIG. 5A.
  • the second internal space 120 may be formed by wet etching the anodic oxide film mold 100. To this end, a photo resist is provided on the upper surface of the anodic oxide film mold 100 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution and is removed, thereby forming the second internal space 120. .
  • the first metal layer 111 is located in the center of the second internal space 120. In other words, the second internal space 120 is formed around the first metal layer 111.
  • FIG. 6A is a plan view showing the second metal layer 121 plated in the second internal space 120
  • FIG. 6B is a cross-sectional view taken along line A-A' of FIG. 6A.
  • the second metal layer 121 is formed in the second internal space 120 by plating using the lower seed layer 130.
  • the second metal layer 121 may be the magnetic portion 10 or the conductive portion 20, and in the first preferred embodiment of the present invention, the second metal layer 121 is the conductive portion 20.
  • the conductive portion 20 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), and copper (Cu). It is formed from metals selected from alloys containing these metals.
  • the conductive portion 20 may include a first metal layer selected from rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph) or an alloy thereof, and gold (Au). ), silver (Ag), copper (Cu), or an alloy thereof may be formed by stacking a plurality of different metal layers in the height direction.
  • the first metal layer is a metal with relatively high rigidity or wear resistance compared to the second metal layer
  • the second metal layer is a metal with relatively high electrical conductivity compared to the first metal layer.
  • the step of removing the mold 100 is performed.
  • the mold 100 and the lower seed layer 130 are removed to obtain the micro metal molding (1).
  • FIGS. 7A and 7B are views showing a micro metal molding 1 according to a modification of the first preferred embodiment of the present invention, where FIG. 7A is a perspective view and FIG. 7B is a cross-sectional view taken along line A-A' of FIG. 7A.
  • the micro metal molding 1 is different from the micro metal molding 1 according to the first embodiment in that it has a rectangular parallelepiped shape.
  • the magnetic portion 10 also has a rectangular parallelepiped shape.
  • the shape of the micro metal molding 1 and the magnetic portion 10 is not limited to this, and may be configured in various shapes as long as it has a three-dimensional shape with vertical side walls.
  • FIGS. 8A and 8B are views showing a micro metal molding (1) according to a second preferred embodiment of the present invention.
  • FIG. 8A is a perspective view
  • FIG. 8B is a cross-sectional view A-A' of FIG. 8A
  • FIG. 9 is a view. This is a perspective view including an enlarged view of a part of the micro metal molding (1) according to the second preferred embodiment of the invention.
  • the conductive portion 20 of the micro metal molding 1 is located inside the first conductive portion 21 in the width direction of the magnetic portion 10 and outside the magnetic portion 10 in the width direction. It includes a second conductive portion 23, and the split surface 30 includes the first split surface 31 between the first conductive portion 21 and the magnetic portion 10, the second conductive portion 23, and the magnetic portion. It includes a second dividing surface 33 between the parts 10.
  • the magnetic portion 10 and the first conductive portion 21 are spatially divided based on the first split surface 31, and the magnetic portion 10 and the second conductive portion 23 are spaced apart from the second split surface 33. The space is divided based on
  • the magnetic portion 10 and the first and second conductive portions 21 and 23 have the same height (H) in the height direction.
  • the longitudinal height H of the magnetic portion 10 is equal to the longitudinal height H of the first and second conductive portions 21 and 23.
  • the magnetic portion 10 is provided between the first conductive portion 21 and the second conductive portion 24 and has a closed strip shape.
  • the magnetic part 10 is provided inside the second conductive part 23, and the second conductive part 23 is located on the circumferential surface of the magnetic part 10, so the side of the magnetic part 10 is not exposed to the outside. .
  • the magnetic portion 10 of the micro metal molding 1 has a first magnetic portion located inside the width direction of the conductive portion 20 and a first magnetic portion located outside the width direction of the conductive portion 20. It includes a second magnetic portion, and the split surface 30 includes a first split surface 31 between the first magnetic portion and the conductive portion 20 and a second split surface between the second magnetic portion and the conductive portion 10 ( 33).
  • the conductive portion 20 is located on the outer side in the width direction rather than the magnetic portion 10. The configuration of the second embodiment is more preferable.
  • a nano-irregular pattern 50 is formed on the outer peripheral surface and the first and second split surfaces 31 and 33 of the micro metal molding 1.
  • FIGS. 10A and 10B are views showing a micro metal molding 1 according to a modified example of the second preferred embodiment of the present invention.
  • FIG. 10A is a perspective view
  • FIG. 10B is a cross-sectional view taken along line A-A' of FIG. 10A.
  • the micro metal molding 1 is different from the micro metal molding 1 according to the first embodiment in that it has a rectangular parallelepiped shape.
  • the magnetic portion 10 also has a rectangular parallelepiped shape.
  • the shape of the micro metal molding 1 and the magnetic portion 10 is not limited to this, and may be configured in various shapes as long as it has a three-dimensional shape with vertical side walls.
  • FIGS. 11A and 11B are views showing a micro metal molding (1) according to a third preferred embodiment of the present invention.
  • FIG. 11A is a perspective view
  • FIG. 11B is a cross-sectional view taken along line A-A' of FIG. 11A
  • FIG. 12 is a view. This is a perspective view including an enlarged view of a part of the micro metal molding (1) according to the third preferred embodiment of the invention.
  • the micro metal molding 1 according to the third embodiment includes a plurality of magnetic parts 10, and each magnetic part 10 is provided to be spaced apart from each other inside the conductive part 20.
  • At least two magnetic parts 10 are provided, and each magnetic part 10 is spaced apart from each other.
  • a metal constituting the conductive portion 20 is provided between the magnetic portion 10 and the magnetic portion 10 .
  • Each magnetic part 10 and the conductive part 20 are spatially divided based on the dividing surface 30.
  • the magnetic portion 10 and the conductive portion 20 have the same height (H) in the height direction.
  • the height H of the magnetic portion 10 in the longitudinal direction is equal to the height H of the conductive portion 20 in the longitudinal direction.
  • the magnetic portion 10 is configured in a cylindrical shape.
  • the magnetic part 10 is provided inside the conductive part 20, and the conductive part 20 is located on the circumferential surface of the magnetic part 10, so the side surface of the magnetic part 10 is not exposed to the outside.
  • a nano-irregular pattern 50 is formed on the outer peripheral surface and the divided surface 30 of the micro metal molding 1.
  • FIGS. 13A and 13B are views showing a micro metal molding (1) according to a modification of the third preferred embodiment of the present invention.
  • FIG. 13A is a perspective view
  • FIG. 13B is a cross-sectional view taken along line A-A' of FIG. 13A
  • FIG. 14 is a perspective view including an enlarged view of a portion of a micro metal molding according to a modified example of the third preferred embodiment of the present invention.
  • the micro metal molding 1 is different from the micro metal molding 1 according to the first embodiment in that it has a rectangular parallelepiped shape.
  • the magnetic portion 10 also has a rectangular parallelepiped shape.
  • the shape of the micro metal molding 1 and the magnetic portion 10 is not limited to this, and may be configured in various shapes as long as it has a three-dimensional shape with vertical side walls.
  • FIGS. 15A to 15C are perspective views of a micro metal molding 1 according to a fourth preferred embodiment of the present invention.
  • FIG. 15A is a diagram showing a circular cross-section
  • FIG. 15B is a diagram showing a rectangular cross-section
  • 15C is a diagram showing that the cross-section is triangular
  • FIG. 16 is a perspective view including an enlarged view of a part of the micro metal molding 1 according to the fourth preferred embodiment of the present invention.
  • the magnetic portion 10 and the conductive portion 20 of the micro metal molding 1 according to the fourth embodiment form the outer peripheral surface of the micro metal molding 1. While the micro metal molding 1 according to the first to third embodiments has only the conductive portion 20 forming the outer peripheral surface, the micro metal molding 1 according to the fourth embodiment has the conductive portion 20 and the There is a difference in composition in that the components 10 together form the outer peripheral surface.
  • the magnetic portion 10 and the conductive portion 20 are divided based on the split surface 30, and the magnetic portion 10 is provided on one side of the split surface 30, and the split surface 30 ) A conductive portion 20 is provided on the other side. Meanwhile, a plurality of split surfaces 30 may be provided, and in this case, the magnetic portion 10 and the conductive portion 20 may be divided based on each split surface 30.
  • a nano-irregular pattern 50 is formed on the outer peripheral surface and the divided surface 30 of the micro metal molding 1.
  • the cross-section of the micro metal molding 1 may be circular as shown in FIG. 15A, square as shown in FIG. 15B, or triangular as shown in FIG. 15C.
  • the cross-sectional shape of the micro metal molding 1 is not limited to this, and various shapes are possible.
  • FIGS. 17A and 17B are diagrams showing a micro metal molding 1 according to a fifth preferred embodiment of the present invention.
  • FIG. 17A shows two split surfaces 30 between the magnetic portion 10 and the conductive portion 20.
  • 17b is a view showing that there is one split surface 30 between the magnetic part and the conductive part
  • Figure 18 is a micro metal molding according to the fifth preferred embodiment of the present invention ( This is a perspective view including an enlarged view of part of 1).
  • the micro metal molding 1 according to the fifth embodiment includes an insertion portion 40 that is concave inward in the width direction.
  • the height of the insertion portion 40 is formed to be the same height (H) as the height (H) of the micro metal molding (1).
  • a magnetic portion 10 or a conductive portion 20 may be provided on both sides of the insertion portion 40. As shown in FIG. 17A, conductive portions 20 are provided on both sides of the insertion portion 40, and each conductive portion 20 and magnetic portion 10 are space-divided by a dividing surface 30. do.
  • the magnetic portion 10 may be provided on one side of the insertion portion 40 and the conductive portion 20 may be provided on the other side. As shown in FIG. 17B, a magnetic portion 10 is provided on one side of the insertion portion 40 and a conductive portion 20 is provided on the other side.

Abstract

The present invention provides a micro metal molded article in which the magnetic areas and conductive areas are separated such that when the magnetic parts of adjacent micro metal molded articles are oriented by magnetic lines of force, the conductive parts of the adjacent micro metal molded articles are also oriented towards each other.

Description

마이크로 금속 성형물 및 이의 제조방법Micro metal molding and manufacturing method thereof
본 발명은 마이크로 금속 성형물 및 이의 제조방법에 관한 것이다.The present invention relates to micro metal moldings and methods for manufacturing the same.
마이크로 금속 성형물은 반도체, 디스플레이 분야에서 다양하게 이용되고 있다. Micro metal moldings are used in various fields such as semiconductors and displays.
마이크로 금속 성형물은 반도체 소자와 같은 접속 대상물과 회로 기판 사이에 개재되어 접속 대상물과 직접적으로 또는 간접적으로 전기적으로 연결되어 전류 통로로서 기능한다. The micro metal molding is interposed between a connection object such as a semiconductor device and a circuit board and is directly or indirectly electrically connected to the connection object and functions as a current path.
이러한 마이크로 금속 성형물은 반도체 칩과 같은 접속 대상물을 플립칩(flip chip)본딩할 때 사용되거나 마이크로 LED와 같은 접속 대상물을 회로기판에 본딩할 때 사용되어 반도체 칩이나 마이크로 LED와 같은 접속 대상물에 전류를 인가하는데 이용된다. 또는 마이크로 금속 성형물은 반도체 패키지와 같은 접속 대상물을 검사하는 검사장치(예를 들어 프로브 카드 또는 테스트 소켓)에도 이용된다. These micro metal moldings are used when flip chip bonding a connection object such as a semiconductor chip or when bonding a connection object such as a micro LED to a circuit board to transmit current to a connection object such as a semiconductor chip or micro LED. It is used for authorization. Alternatively, micro metal moldings are also used in inspection devices (for example, probe cards or test sockets) that inspect connected objects such as semiconductor packages.
마이크로 금속 성형물은 크기가 수㎛에서 수백㎛의 크기로 제작되고 정렬해야 하는 개수도 많아 이들을 일일이 정렬하는 것이 곤란한 점이 있다. 정렬의 용이성을 위해, 마이크로 금속성형물은 니켈(Ni), 코발트(Co) 등의 자성을 갖는 금속 바디에 금(Au), 은(Ag) 등의 전도성 금속 재료로 표면 코팅하고 자력을 이용하여 정렬하는 방식이 사용되고 있다. 일례로 러버 타입 테스트 소켓이 있다. 러버 타입 테스트 소켓은, 고무 소재인 실리콘 러버 내부에 도전성 입자를 배치한 구조로, 접속 대상물(예를 들어, 반도체 패키지)을 올리고 소켓을 닫아 응력이 가해지면 마이크로 금속 성형물들이 서로를 강하게 누르면서 전도도가 높아져 전기적으로 연결되는 구조이다. 마이크로 금속 성형물은 니켈(Ni), 코발트(Co) 등의 자성을 갖는 금속 바디에 금(Au), 은(Ag) 등의 전도성 금속 재료로 표면 코팅하여 사용된다. 이를 제조하는 방법은, 금형 내부에 실리콘 러버와 마이크로 금속 성형물을 충진하고 상하방향으로 자력선을 갖는 자장을 작용시켜 도전성 입자가 두께 방향으로 배향되어 정렬되도록 함과 아울러 경화시킨 후 금형에서 분리시키는 과정을 통해 이루어진다. 이를 통해 작은 크기의 마이크로 금속 성형물을 자력선 방향으로 정렬시킴으로써, 회로기판과 접속 대상물 사이에서 전류 통로로서 기능할 수 있도록 한다. Micro metal moldings are manufactured in sizes ranging from a few ㎛ to hundreds of ㎛, and the number of pieces that need to be aligned is large, making it difficult to align them one by one. For ease of alignment, micro metal moldings are made by coating the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) with a conductive metal material such as gold (Au) or silver (Ag) and aligning it using magnetic force. method is being used. An example is a rubber type test socket. The rubber-type test socket is a structure in which conductive particles are placed inside silicone rubber, a rubber material. When stress is applied by placing a connection object (for example, a semiconductor package) and closing the socket, the micro metal moldings strongly press against each other and the conductivity decreases. It is a structure that is raised and electrically connected. Micro metal moldings are used by coating the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) with a conductive metal material such as gold (Au) or silver (Ag). The method of manufacturing this involves filling the inside of a mold with silicone rubber and micro metal moldings, applying a magnetic field with magnetic force lines in the up and down directions so that the conductive particles are oriented and aligned in the thickness direction, and then separating them from the mold after hardening. It is accomplished through Through this, small-sized micro metal moldings are aligned in the direction of magnetic force lines, allowing them to function as a current path between the circuit board and the connection object.
하지만, 내부 마이크로 금속 성형물들끼리 접촉하는 부분은 점 접점으로 한정되어 있기 때문에 집중 하중이 발생되며, 도전성 입자의 도금이 쉽게 손상되고 형상이 쉽게 변형되고 마모된다. However, since the contact areas between the internal micro metal moldings are limited to point contacts, a concentrated load is generated, and the plating of the conductive particles is easily damaged and the shape is easily deformed and worn.
또한, 마이크로 금속 성형물은 니켈(Ni), 코발트(Co) 등의 자성을 갖는 금속 바디에 금(Au), 은(Ag) 등의 전도성 금속 재료로 표면 코팅하여 사용되기 때문에, 자성의 금속 바디는 전기 저항이 높아 도전성 입자의 표면을 통해서만 전류가 흐르게 되고 이로 인해 전류 특성이 저하되는 문제가 발생한다. In addition, since micro metal moldings are used by coating the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) with a conductive metal material such as gold (Au) or silver (Ag), the magnetic metal body is Due to high electrical resistance, current flows only through the surface of the conductive particles, which causes the problem of deterioration of current characteristics.
또한 자성을 갖는 금속 바디가 전도성 금속 재료에 의해 코팅되어 있기 때문에 마이크로 금속 성형물들간의 결합력이 약하여 마이크로 금속 성형물들간의 표면 접촉을 확실히 하기 위해 높은 가압력으로 가압해야 하는 단점이 있다.In addition, because the magnetic metal body is coated with a conductive metal material, the bonding force between the micro metal moldings is weak, which has the disadvantage of requiring high pressing force to ensure surface contact between the micro metal moldings.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 등록번호 제10-0671910호의 등록특허공보(Patent Document 1) Registered Patent Publication No. 10-0671910
(특허문헌 2) 등록번호 제10-0741228호의 등록특허공보(Patent Document 2) Registered Patent Publication No. 10-0741228
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명은 인접한 마이크로 금속 성형물의 자성부들이 자력선에 의해 배향될 때 인접한 마이크로 금속 성형물의 도전부들이 서로 배향되도록 자성영역과 도전영역이 구분된 마이크로 금속 성형물을 제공하는 것을 그 목적으로 한다.The present invention was developed to solve the problems of the prior art described above. The present invention provides a magnetic region and a conductive region so that the conductive parts of adjacent micro metal moldings are oriented toward each other when the magnetic portions of adjacent micro metal moldings are oriented by magnetic force lines. The purpose is to provide differentiated micro metal moldings.
상술한 목적을 달성하기 위하여, 본 발명에 따른 마이크로 금속 성형물은, 수직한 측벽을 가지는 3차원 형상의 마이크로 금속 성형물로서, 자성부; 및 도전부를 포함하고, 상기 자성부와 상기 도전부는 분할면을 기준으로 공간 분할된다.In order to achieve the above-mentioned object, the micro metal molding according to the present invention is a three-dimensional micro metal molding having a vertical side wall, and includes a magnetic portion; and a conductive part, wherein the magnetic part and the conductive part are spatially divided based on the dividing surface.
또한, 상기 자성부와 상기 도전부는 길이 방향으로 동일 높이를 가진다.Additionally, the magnetic portion and the conductive portion have the same height in the longitudinal direction.
또한, 상기 분할면에 나노 요철 패턴을 구비한다.Additionally, a nano-concave-convex pattern is provided on the divided surface.
또한, 상기 측벽에 나노 요철 패턴을 구비한다.Additionally, the side wall is provided with a nano-concavo-convex pattern.
또한, 상기 자성부는 상기 도전부의 내부에 구비되어 상기 자성부의 측면은 외부에 노출되지 않는다.Additionally, the magnetic portion is provided inside the conductive portion, so the side surface of the magnetic portion is not exposed to the outside.
또한, 상기 도전부는 상기 자성부의 폭 방향 내부에 위치하는 제1도전부와 상기 자성부의 폭 방향 외부에 위치하는 제2도전부를 포함하고, 상기 분할면은 상기 제1도전부와 상기 자성부 사이의 제1분할면과 상기 제2도전부와 상기 자성부 사이의 제2분할면을 포함한다.In addition, the conductive portion includes a first conductive portion located inside the magnetic portion in the width direction and a second conductive portion located outside the magnetic portion in the width direction, and the dividing surface is between the first conductive portion and the magnetic portion. It includes a first split surface and a second split surface between the second conductive part and the magnetic part.
또한, 상기 자성부는 복수 개 구비되되, 각각의 자성부는 상기 도전부의 내부에서 이격되어 구비된다.In addition, a plurality of magnetic parts are provided, and each magnetic part is provided to be spaced apart within the conductive part.
또한, 상기 도전부가 외주면을 형성한다.Additionally, the conductive portion forms the outer peripheral surface.
또한, 상기 도전부와 상기 자성부가 외주면을 형성한다.Additionally, the conductive portion and the magnetic portion form an outer peripheral surface.
또한, 폭 방향 내측으로 오목하게 파인 삽입부를 포함한다. In addition, it includes an insertion portion that is concave inward in the width direction.
또한, 상기 자성부는 니켈(Ni), 코발트(Co), 망간(Mn), 철(Fe)이나 이들을 포함하는 합금 중에서 선택된 금속으로 형성되고, 상기 도전부는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들을 포함하는 합금 중에서 선택된 금속으로 형성된다.In addition, the magnetic part is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these, and the conductive part is made of rhodium (Rd), platinum (Pt), or iridium. It is formed of a metal selected from (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), copper (Cu), or alloys containing these.
한편, 본 발명에 따른 마이크로 금속 성형물의 제조방법은, 몰드에 제1내부 공간을 형성하는 단계; 상기 제1내부 공간에 제1금속층을 도금하는 단계; 상기 몰드에 상기 제1금속층과 접하여 제2내부 공간을 형성하는 단계; 상기 제2내부 공간에 제2금속층을 도금하는 단계; 및 상기 몰드를 제거하는 단계;를 포함하되, 상기 제1금속층 및 상기 제2금속층 중 하나는 자성부가 되고, 다른 하나는 도전부가 된다.Meanwhile, the method for manufacturing a micro metal molding according to the present invention includes forming a first internal space in a mold; plating a first metal layer in the first internal space; forming a second internal space in the mold by contacting the first metal layer; plating a second metal layer in the second internal space; and removing the mold, wherein one of the first metal layer and the second metal layer becomes a magnetic part and the other one becomes a conductive part.
또한, 상기 몰드는 금속 모재를 양극산화한 후 상기 금속 모재를 제거하여 형성된 양극산화막이다.Additionally, the mold is an anodized film formed by anodizing a metal base material and then removing the metal base material.
본 발명은 인접한 마이크로 금속 성형물의 자성부들이 자력선에 의해 배향될 때 인접한 마이크로 금속 성형물의 도전부들이 서로 배향되도록 자성영역과 도전영역이 구분된 마이크로 금속 성형물을 제공한다.The present invention provides a micro metal molding in which magnetic regions and conductive regions are separated so that the conductive portions of adjacent micro metal moldings are oriented toward each other when the magnetic portions of adjacent micro metal moldings are oriented by magnetic force lines.
도 1a 및 도 1b는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 1a는 사시도이고, 도 1b는 도 1a의 A-A'단면도.1A and 1B are views showing a micro metal molding according to a first preferred embodiment of the present invention, where FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view taken along line A-A' of FIG. 1A.
도 2는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도.Figure 2 is a perspective view including an enlarged view of a portion of a micro metal molding according to a first preferred embodiment of the present invention.
도 3a 내지 도 6b는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물의 각 제조방법을 도시한 도면. 3A to 6B are views showing each manufacturing method of a micro metal molding according to a first preferred embodiment of the present invention.
도 7a 및 도 7b는 본 발명의 바람직한 제1실시예의 변형례에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 7a는 사시도이고, 도 7b는 도 7a의 A-A'단면도.FIGS. 7A and 7B are views showing a micro metal molding according to a modification of the first preferred embodiment of the present invention, where FIG. 7A is a perspective view and FIG. 7B is a cross-sectional view taken along line A-A' of FIG. 7A.
도 8a 및 도 8b는 본 발명의 바람직한 제2실시예에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 8a는 사시도이고, 도 8b는 도 8a의 A-A'단면도.FIGS. 8A and 8B are views showing a micro metal molding according to a second preferred embodiment of the present invention, where FIG. 8A is a perspective view and FIG. 8B is a cross-sectional view taken along line A-A' of FIG. 8A.
도 9는 본 발명의 바람직한 제2실시예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도.Figure 9 is a perspective view including an enlarged view of a portion of a micro metal molding according to a second preferred embodiment of the present invention.
도 10a 및 도 10b는 본 발명의 바람직한 제2실시예의 변형례에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 10a는 사시도이고, 도 10b는 도 10a의 A-A'단면도.FIGS. 10A and 10B are views showing a micro metal molding according to a modification of the second preferred embodiment of the present invention, where FIG. 10A is a perspective view and FIG. 10B is a cross-sectional view taken along line A-A' of FIG. 10A.
도 11a 및 도 11b는 본 발명의 바람직한 제3실시예에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 11a는 사시도이고, 도 11b는 도 11a의 A-A'단면도.FIGS. 11A and 11B are views showing a micro metal molding according to a third preferred embodiment of the present invention, where FIG. 11A is a perspective view and FIG. 11B is a cross-sectional view taken along line A-A' of FIG. 11A.
도 12는 본 발명의 바람직한 제3실시예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도.Figure 12 is a perspective view including an enlarged view of a portion of a micro metal molding according to a third preferred embodiment of the present invention.
도 13a 및 도 13b는 본 발명의 바람직한 제3실시예의 변형례에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 13a는 사시도이고, 도 13b는 도 13a의 A-A'단면도.FIGS. 13A and 13B are views showing a micro metal molding according to a modification of the third preferred embodiment of the present invention, where FIG. 13A is a perspective view and FIG. 13B is a cross-sectional view taken along line A-A' of FIG. 13A.
도 14는 본 발명의 바람직한 제3실시예의 변형예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도.Figure 14 is a perspective view including an enlarged view of a portion of a micro metal molding according to a modified example of the third preferred embodiment of the present invention.
도 15a 내지 도 15c는 본 발명의 바람직한 제4실시예에 따른 마이크로 금속 성형물의 사시도로서, 도 15a는 단면이 원형인 것을 도시한 도면이고, 도 15b는 단면이 사각형인 것을 도시한 도면이고, 도 15c는 단면이 삼각형인 것을 도시한 도면.FIGS. 15A to 15C are perspective views of a micro metal molding according to a fourth preferred embodiment of the present invention. FIG. 15A is a diagram showing a circular cross-section, and FIG. 15B is a diagram showing a rectangular cross-section. 15c is a diagram showing a triangular cross section.
도 16는 본 발명의 바람직한 제4실시예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도.Figure 16 is a perspective view including an enlarged view of a portion of a micro metal molding according to a fourth preferred embodiment of the present invention.
도 17a 및 도 17b는 본 발명의 바람직한 제5실시예에 따른 마이크로 금속 성형물을 도시한 도면으로서 도 17a는 자성부와 도전부 사이에 2개의 분할면이 있는 것을 도시한 도면이고, 도 17b는 자성부와 도전부 사이에 1개의 분할면이 있는 것을 도시한 도면.FIGS. 17A and 17B are views showing a micro metal molding according to a fifth preferred embodiment of the present invention. FIG. 17A is a view showing two split surfaces between the magnetic portion and the conductive portion, and FIG. 17b is a view showing the magnetic portion and the conductive portion. A drawing showing that there is one dividing surface between the sound part and the conductive part.
도 18은 본 발명의 바람직한 제5실시예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도.Figure 18 is a perspective view including an enlarged view of a portion of a micro metal molding according to a fifth preferred embodiment of the present invention.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following merely illustrates the principles of the invention. Therefore, those skilled in the art will be able to invent various devices that embody the principles of the invention and are included in the concept and scope of the invention, although not clearly described or shown herein. In addition, all conditional terms and embodiments listed in this specification are, in principle, expressly intended only for the purpose of ensuring that the inventive concept is understood, and should be understood as not limiting to the embodiments and conditions specifically listed as such. .
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.The above-mentioned purpose, features and advantages will become clearer through the following detailed description in relation to the attached drawings, and accordingly, those skilled in the art in the technical field to which the invention pertains will be able to easily implement the technical idea of the invention. .
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 본 명세서에서 사용한 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "구비하다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Embodiments described herein will be explained with reference to cross-sectional views and/or perspective views, which are ideal illustrations of the present invention. The thicknesses of films and regions shown in these drawings are exaggerated for effective explanation of technical content. The form of the illustration may be modified depending on manufacturing technology and/or tolerance. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in form produced according to the manufacturing process. Technical terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “comprise” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in this specification, but are intended to indicate the presence of one or more other It should be understood that this does not exclude in advance the possibility of the presence or addition of features, numbers, steps, operations, components, parts, or combinations thereof.
이하 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
제1실시예 Embodiment 1
도 1a 및 도 1b는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 1a는 사시도이고, 도 1b는 도 1a의 A-A'단면도이고, 도 2는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)의 일부를 확대한 확대도를 포함한 사시도이며, 도 3a 내지 도 6b는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)의 각 제조방법을 도시한 도면이고, 도 7a 및 도 7b는 본 발명의 바람직한 제1실시예의 변형례에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 7a는 사시도이고, 도 7b는 도 7a의 A-A'단면도이다.1A and 1B are views showing a micro metal molding 1 according to a first preferred embodiment of the present invention, where FIG. 1A is a perspective view, FIG. 1B is a cross-sectional view A-A' of FIG. 1A, and FIG. 2 is a view. It is a perspective view including an enlarged view of a part of the micro metal molding (1) according to the first preferred embodiment of the present invention, and FIGS. 3A to 6B show the micro metal molding (1) according to the first preferred embodiment of the present invention. It is a drawing showing each manufacturing method, and FIGS. 7A and 7B are drawings showing a micro metal molding (1) according to a modification of the first preferred embodiment of the present invention. FIG. 7A is a perspective view, and FIG. 7B is a view of FIG. 7A. This is a cross-sectional view of ‘A-A’.
본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)은 접속 대상물에 전기를 인가하는 기능을 수행한다. 마이크로 금속 성형물(1)은 회로 기판과 접속 대상물 사이에 개재되어 접속 대상물과 직접적으로 또는 간접적으로 전기적으로 연결되어 전류 통로로서 기능할 수 있다. 이러한 마이크로 금속 성형물(1)은 접속 대상물을 회로기판에 본딩할 때 사용되어 접속 대상물에 전류를 인가하는데 이용된다. 또는 마이크로 금속 성형물(1)은 접속 대상물을 검사하는 검사장치(예를 들어, 프로브 카드 또는 테스트 소켓)에 구비되어 검사 장치가 접속 대상물에 전기를 인가할 때 전류 통로서 기능할 수 있다. The micro metal molding 1 according to the first preferred embodiment of the present invention performs the function of applying electricity to the connection object. The micro metal molding 1 is interposed between the circuit board and the connection object and can be directly or indirectly electrically connected to the connection object and function as a current path. This micro metal molding (1) is used when bonding a connection object to a circuit board and is used to apply a current to the connection object. Alternatively, the micro metal molding 1 may be provided in a test device (for example, a probe card or test socket) that tests a connection object and function as a current path when the test device applies electricity to the connection object.
여기서, 접속 대상물은 반도체 소자, 메모리 칩, 마이크로 프로세서 칩, 로직 칩, 발광소자, 혹은 이들의 조합을 포함할 수 있다. 예를 들어, 접속 대상물은 로직 LSI(ASIC, FPGA 및 ASSP과 같은), 마이크로프로세서(CPU 및 GPU와 같은), 메모리(DRAM, HMC(Hybrid Memory Cube), MRAM(Magnetic RAM), PCM(Phase-Change Memory), ReRAM(Resistive RAM), FeRAM(강유전성 RAM) 및 플래쉬 메모리(NAND flash)), 반도체 발광소자(LED, 미니 LED, 마이크로 LED 등 포함), 전력 장치, 아날로그IC(DC-AC 컨버터 및 절연 게이트 2극 트랜지스터(IGBT)와 같은), MEMS(가속 센서, 압력 센서, 진동기 및 지로 센서와 같은), 무배선 장치(GPS, FM, NFC, RFEM, MMIC 및 WLAN과 같은), 별개 장치, BSI, CIS, 카메라 모듈, CMOS, 수동 장치, GAW 필터, RF 필터, RF IPD, APE 및 BB를 포함한다.Here, the connection object may include a semiconductor device, a memory chip, a microprocessor chip, a logic chip, a light emitting device, or a combination thereof. For example, connected objects include logic LSIs (such as ASICs, FPGAs, and ASSPs), microprocessors (such as CPUs and GPUs), memory (DRAM, hybrid memory cubes (HMCs), magnetic RAMs (MRAMs), and phase-processing memory (PCMs). Change Memory), ReRAM (Resistive RAM), FeRAM (ferroelectric RAM) and flash memory (NAND flash)), semiconductor light emitting devices (including LED, mini LED, micro LED, etc.), power devices, analog IC (DC-AC converter and (such as insulated gate bipolar transistors (IGBTs)), MEMS (such as acceleration sensors, pressure sensors, oscillators, and gyroscope sensors), wireless devices (such as GPS, FM, NFC, RFEM, MMIC, and WLAN), discrete devices, Includes BSI, CIS, camera module, CMOS, passive devices, GAW filter, RF filter, RF IPD, APE and BB.
본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)은 수직한 측벽을 가지는 3차원 형상으로 제공된다. 마이크로 금속 성형물(1)은 높이 방향으로 높이(H)를 가지고 폭 방향으로 폭(W)를 가진다. 여기서 마이크로 금속 성형물(1)은 지름(W)과 높이(H)를 가지는 원기둥 형상으로 구성될 수 있다. 마이크로 금속 성형물(1)의 높이(H)는 1㎛이상 500㎛이하의 범위를 가진다. 보다 바람직하게는, 마이크로 금속 성형물(1)의 높이(H)는 10㎛이상 200㎛이하의 범위를 가진다. The micro metal molding 1 according to the first preferred embodiment of the present invention is provided in a three-dimensional shape with vertical side walls. The micro metal molding (1) has a height (H) in the height direction and a width (W) in the width direction. Here, the micro metal molding 1 may be configured in a cylindrical shape with a diameter (W) and a height (H). The height (H) of the micro metal molding (1) ranges from 1 ㎛ to 500 ㎛. More preferably, the height (H) of the micro metal molding 1 is in the range of 10 ㎛ or more and 200 ㎛ or less.
마이크로 금속 성형물(1)은 자성부(10)와 도전부(20)를 포함한다. 자성부(10)는 자성을 나타내는 금속 재료로 형성된다. 예를 들어 자성부(10)는 니켈(Ni), 코발트(Co), 망간(Mn), 철(Fe)이나 이들을 포함하는 합금 중에서 선택된 금속으로 형성된다. The micro metal molding 1 includes a magnetic portion 10 and a conductive portion 20. The magnetic portion 10 is formed of a metal material that exhibits magnetism. For example, the magnetic portion 10 is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these.
도전부(20)는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들을 포함하는 합금 중에서 선택된 금속으로 형성된다. 또는 도전부(20)는 로듐(Rd), 백금 (Pt), 이리듐(Ir), 팔라듐(Pd), 텅스텐(W), 인(Ph)이나 이들의 합금 중에서 선택된 제1금속층과, 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금 중에서 선택된 제2금속층을 포함하여 복수개의 이종의 금속층이 높이 방향으로 적층되어 형성될 수 있다. 제1금속층은 제2금속층에 비해 강성 또는 내마모성이 상대적으로 높은 금속이고, 제2금속층은 제1금속층에 비해 전기 전도도가 상대적으로 높은 금속이다. The conductive portion 20 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), and copper (Cu). It is formed from metals selected from alloys containing these metals. Alternatively, the conductive portion 20 may include a first metal layer selected from rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph) or an alloy thereof, and gold (Au). ), silver (Ag), copper (Cu), or an alloy thereof may be formed by stacking a plurality of different metal layers in the height direction. The first metal layer is a metal with relatively high rigidity or wear resistance compared to the second metal layer, and the second metal layer is a metal with relatively high electrical conductivity compared to the first metal layer.
자성부(10)와 도전부(20)는 분할면(30)을 기준으로 공간 분할된다. 분할면(30)는 자성부(10)와 도전부(20) 사이의 경계면을 의미한다. The magnetic portion 10 and the conductive portion 20 are spatially divided based on the dividing surface 30. The dividing surface 30 refers to the boundary between the magnetic part 10 and the conductive part 20.
자성부(10)와 도전부(20)는 높이 방향으로 동일 높이(H)를 가진다. 다시 말해, 자성부(10)의 길이 방향의 높이(H)는 도전부(20)의 길이 방향의 높이(H)와 동일하다. 분할면(30)을 기준으로 자성부(10)와 도전부(20)가 구분되므로 분할면(30)의 높이(H)는 자성부(10)와 도전부(20)의 높이(H)와 동일 높이로 형성된다. The magnetic portion 10 and the conductive portion 20 have the same height (H) in the height direction. In other words, the height H of the magnetic portion 10 in the longitudinal direction is equal to the height H of the conductive portion 20 in the longitudinal direction. Since the magnetic portion 10 and the conductive portion 20 are separated based on the split surface 30, the height H of the split surface 30 is equal to the height H of the magnetic portion 10 and the conductive portion 20. are formed at the same height.
자성부(10)는 원기둥 형상으로 구성된다. 다만 후술하는 변형례에서와 같이 자성부(10)는 다양한 형상으로 구성될 수 있다. The magnetic portion 10 is configured in a cylindrical shape. However, as in the modified example described later, the magnetic portion 10 may be configured in various shapes.
자성부(10)는 도전부(20)의 내부에 구비되어 자성부(10)의 둘레면에는 도전부(20)가 위치함으로써 자성부(10)의 측면은 외부에 노출되지 않는다. 도전부(20)는 마이크로 금속 성형물(1)의 외주면을 형성한다. 자성부(10)가 도전부(20)의 내부를 관통하듯이 자성부(10)는 도전부(20)의 내부에 구비된다. 자성부(10)의 상,하면은 도전부(20)에 의해 커버되지 않고, 자성부(10)의 측면은 도전부(20)에 커버되므로, 자력선이 자성부(10)에 미치는 힘은 자성부(10)의 상, 하 방향의 힘이 주된 힘이 된다. The magnetic part 10 is provided inside the conductive part 20, and the conductive part 20 is located on the circumferential surface of the magnetic part 10, so the side surface of the magnetic part 10 is not exposed to the outside. The conductive portion 20 forms the outer peripheral surface of the micro metal molding (1). The magnetic portion 10 is provided inside the conductive portion 20 as the magnetic portion 10 penetrates the interior of the conductive portion 20 . Since the top and bottom surfaces of the magnetic portion 10 are not covered by the conductive portion 20 and the side surfaces of the magnetic portion 10 are covered by the conductive portion 20, the force that the magnetic force lines exert on the magnetic portion 10 is magnetic. The force in the upward and downward directions of the vocal part 10 becomes the main force.
자성부(10)의 높이(H)는 자성부(10)의 폭보다 크게 형성된다. 따라서 자력선을 갖는 자장을 작용시켜 마이크로 금속 성형물(1)을 배향시켜 정렬할 때, 자성부(10)는 그 높이(H)방향이 자력선의 방향과 평행하도록 배향된다. 그 결과 복수개의 마이크로 금속 성형물(1)들은 일정한 방향성을 가지면서 배향되므로 마이크로 금속 성형물(1)의 도전부(20)들이 보다 쉽게 면 접촉하게 된다.The height H of the magnetic portion 10 is formed to be greater than the width of the magnetic portion 10. Therefore, when the micro metal molding 1 is oriented and aligned by applying a magnetic field having magnetic force lines, the magnetic portion 10 is oriented so that its height (H) direction is parallel to the direction of the magnetic force lines. As a result, the plurality of micro metal moldings 1 are oriented with a certain direction, so that the conductive parts 20 of the micro metal moldings 1 come into surface contact more easily.
자력선을 갖는 자장을 작용시켜 마이크로 금속 성형물(1)을 배향시켜 정렬할 때, 각각의 마이크로 금속 성형물(1)의 자성부(10)들은 자력선 방향으로 배향되고 인접하는 마이크로 금속 성형물의 도전부(20)들이 서로 면 접촉을 함으로써 전기적으로 연결된다. 이처럼, 니켈(Ni), 코발트(Co) 등의 자성을 갖는 금속 바디에 금(Au), 은(Ag) 등의 전도성 금속 재료로 표면 코팅한 종래 기술과 달리, 본 발명의 실시예에 따른 마이크로 금속 성형물(1)들은 자성부(10)들이 자력선에 이끌려 배향되면서 자성부(10) 주변의 도전부(20)들이 서로 면 접촉함으로써 전기적으로 연결된다는 점에서 차이가 있다. When orienting and aligning the micro metal moldings 1 by applying a magnetic field having magnetic force lines, the magnetic portions 10 of each micro metal molding 1 are oriented in the direction of the magnetic force lines, and the conductive portions 20 of adjacent micro metal moldings are oriented in the direction of the magnetic force lines. ) are electrically connected by making surface contact with each other. In this way, unlike the prior art in which the surface of a magnetic metal body such as nickel (Ni) or cobalt (Co) is coated with a conductive metal material such as gold (Au) or silver (Ag), the micro according to an embodiment of the present invention The metal moldings 1 are different in that the magnetic portions 10 are attracted and oriented by magnetic force lines, and the conductive portions 20 around the magnetic portion 10 are electrically connected by making surface contact with each other.
자성부(10)의 면적은 도전부(20)의 면적보다 작다. 보다 구체적으로 자성부(10)의 원형의 단면적은 도전부(20)의 띠 모양의 단면적보다 작게 형성된다. 따라서 자성부(10)에 의해 마이크로 금속 성형물(1)이 배향될 때, 도전부(20)간의 접촉 면적이 크도록 함으로써 원활한 전류 패스를 형성하게 된다. The area of the magnetic portion 10 is smaller than the area of the conductive portion 20. More specifically, the circular cross-sectional area of the magnetic portion 10 is formed to be smaller than the strip-shaped cross-sectional area of the conductive portion 20. Therefore, when the micro metal molding 1 is oriented by the magnetic portion 10, the contact area between the conductive portions 20 is increased to form a smooth current path.
마이크로 금속 성형물(1)은, 그 측벽에 나노 요철 패턴(50)을 구비한다. 나노 요철 패턴(50)은 산(51)과 골(53)이 마이크로 금속 성형물(1)의 둘레 방향을 따라 반복되어 형성된다 나노 요철 패턴(50)의 산(51)과 골(53)은 마이크로 금속 성형물(1)의 높이 방향으로 길게 연장되어 형성된다. 여기서 마이크로 금속 성형물(1)의 높이 방향은 전기 도금 시 금속 충진물이 성장하는 방향을 의미한다. The micro metal molding 1 is provided with a nano uneven pattern 50 on its side wall. The nano-irregular pattern 50 is formed by repeating the ridges 51 and valleys 53 along the circumferential direction of the micro metal molding 1. The ridges 51 and valleys 53 of the nano-irregular pattern 50 are micro It is formed to extend long in the height direction of the metal molding (1). Here, the height direction of the micro metal molding 1 refers to the direction in which the metal filler grows during electroplating.
나노 요철 패턴(50)의 산(51)은 그 정상이 평평한 형태로 구성되고 골(53)은 내부로 오목한 형태로 구성된다. 골(53)의 깊이는 20㎚ 이상 1㎛이하의 범위를 가지며, 골(53)의 폭 역시 20㎚ 이상 1㎛이하의 범위를 가진다. 나노 요철 패턴(50)은 양극산화막 재질의 몰드(100)의 제조시 형성된 포어(101)에 기인한 것이기 때문에 나노 요철 패턴(50)의 골(53)의 폭과 깊이는 양극산화막 재질의 몰드(100)의 포어(101)의 직경의 범위 이하의 값을 가진다. 양극산화막 재질의 몰드(100)는 수많은 포어(101)들을 포함하고 이러한 양극산화막 재질의 몰드(100)의 적어도 일부를 에칭하여 제2내부 공간(120)을 형성하고, 제2내부 공간(120) 내부로 전기 도금으로 도전부(20)를 형성하므로, 도전부(20)의 측면에는 양극산화막 재질의 몰드(10)의 포어와 접촉하면서 형성되는 나노 요철 패턴(50)가 구비되는 것이다. The peak 51 of the nano-irregular pattern 50 has a flat top and the valley 53 has a concave shape on the inside. The depth of the valley 53 ranges from 20 nm to 1㎛, and the width of the valley 53 also ranges from 20 nm to 1㎛. Since the nano-irregularity pattern 50 is due to the pores 101 formed during the manufacture of the mold 100 made of an anodic oxide film, the width and depth of the grooves 53 of the nano-irregularity pattern 50 are determined by the mold of the anodic oxide film material ( It has a value less than or equal to the range of the diameter of the pore 101 of 100). The mold 100 made of an anodic oxide film includes numerous pores 101, and at least a portion of the mold 100 made of an anodic oxide film is etched to form a second internal space 120, and the second internal space 120 is formed. Since the conductive portion 20 is formed internally by electroplating, the side of the conductive portion 20 is provided with a nano-concavo-convex pattern 50 that is formed while contacting the pores of the mold 10 made of an anodized film.
위와 같은 나노 요철 패턴(50)은, 마이크로 금속 성형물(1)의 측면에 있어서 표면적으로 크게 할 수 있는 효과를 가진다. 마이크로 금속 성형물(1)의 측면에 형성되는 나노 요철 패턴(50)의 구성을 통해, 마이크로 금속 성형물(1)에서 발생한 열을 빠르게 방출할 수 있으므로 마이크로 금속 성형물(1)의 온도 상승을 억제할 수 있게 된다. The above nano-irregularity pattern 50 has the effect of increasing the surface area on the side of the micro metal molding 1. Through the configuration of the nano-concavo-convex pattern 50 formed on the side of the micro metal molding 1, heat generated in the micro metal molding 1 can be quickly dissipated, thereby suppressing the temperature rise of the micro metal molding 1. There will be.
또한 마이크로 금속 성형물(1)의 측벽에 구비된 나노 요철 패턴(50)의 산(51)과 골(53)의 방향성은 마이크로 금속 성형물(1)의 높이 방향과 평행하다. 이로 인해, 마이크로 금속 성형물(1)을 유체 내에서 자력선에 의해 정렬할 때 마이크로 금속 성형물(1)의 측벽에 구비된 나노 요철 패턴(50)은 자력선의 방향과 평행하므로 마이크로 금속 성형물(1)의 유동 저항이 최소화되면서 마이크로 금속 성형물(1)이 이송된다. In addition, the direction of the peaks 51 and valleys 53 of the nano-irregular pattern 50 provided on the side wall of the micro metal molding 1 is parallel to the height direction of the micro metal molding 1. For this reason, when the micro metal molding 1 is aligned by magnetic force lines in a fluid, the nano-irregular pattern 50 provided on the side wall of the micro metal molding 1 is parallel to the direction of the magnetic force line, so that the micro metal molding 1 The micro metal molding (1) is transported with minimal flow resistance.
마이크로 금속 성형물(1)은, 그 분할면(30)에도 나노 요철 패턴(50)을 구비한다. 분할면(30)에 구비된 나노 요철 패턴(50)은 산(51)과 골(53)이 분할면(30)의 둘레 방향을 따라 반복되어 형성된다. 산(51)은 그 정상이 평평한 형태로 구성되고 골(53)은 내부로 오목한 형태로 구성된다. 골(53)의 깊이는 20㎚ 이상 1㎛이하의 범위를 가지며, 골(53)의 폭 역시 20㎚ 이상 1㎛이하의 범위를 가진다. 분할면(30)에서 자성부(10)의 산(51)은 도전부(20)의 골(53)이 되고, 분할면(30)에서 자성부(10)의 골(53)은 도전부(20)의 산(51)이 된다.The micro metal molding 1 is also provided with a nano-irregular pattern 50 on its divided surface 30. The nano-irregular pattern 50 provided on the split surface 30 is formed by repeating peaks 51 and valleys 53 along the circumferential direction of the split surface 30. The mountain 51 has a flat top and the valley 53 has a concave interior. The depth of the valley 53 ranges from 20 nm to 1㎛, and the width of the valley 53 also ranges from 20 nm to 1㎛. The peaks 51 of the magnetic portion 10 on the split surface 30 become the valleys 53 of the conductive portion 20, and the valleys 53 of the magnetic portion 10 on the split surface 30 become the conductive portion ( 20) becomes mountain (51).
양극산화막 재질의 몰드(100)의 적어도 일부를 에칭하여 제1내부 공간(110)을 형성하고, 제1내부 공간(110) 내부로 전기 도금으로 자성부(10)를 형성하고, 자성부(10)와 접하여 제2내부공간(120)을 형성하고 제2내부공간(120) 내부로 전기 도금으로 도전부(20)를 형성하므로, 분할면(30)의 측면에는 양극산화막 재질의 몰드(10)의 포어와 접촉하면서 형성되는 나노 요철 패턴(50)가 구비되는 것이다. 위와 같은 나노 요철 패턴(50)은, 분할면(30)의 측면에 있어서 표면적으로 크게 할 수 있는 효과를 가진다. 분할면(30)의 측면에 형성되는 나노 요철 패턴(50)의 구성을 통해, 자성부(10)와 도전부(20)의 결합력을 향상시킨다. At least a portion of the mold 100 made of an anodic oxide film is etched to form a first internal space 110, a magnetic part 10 is formed inside the first internal space 110 by electroplating, and the magnetic part 10 is formed by electroplating. ) to form a second internal space 120, and to form a conductive part 20 inside the second internal space 120 by electroplating, a mold 10 made of an anodic oxide film is formed on the side of the dividing surface 30. A nano-irregular pattern 50 formed while contacting the pores is provided. The nano-irregularity pattern 50 as described above has the effect of increasing the surface area on the side of the split surface 30. The bonding force between the magnetic portion 10 and the conductive portion 20 is improved through the configuration of the nano-concavo-convex pattern 50 formed on the side of the split surface 30.
한편, 제1실시예의 변형례로서, 마이크로 금속 성형물(1)의 도전부(20)는 자성부(10)의 내부에 구비되어 도전부(20)의 측면이 외부에 노출되지 않도록 하는 구성도 가능하다. 다만, 수많은 마이크로 금속 성형물(1)을 이용하여 도전 통로를 형성할 때 측부로 인접한 마이크로 금속 성형물(1)과의 도전성을 고려하면, 자성부(10)보다는 도전부(20)가 폭 방향 외측에 위치하는 제1실시예의 구성이 보다 바람직하다. Meanwhile, as a modification of the first embodiment, the conductive portion 20 of the micro metal molding 1 may be provided inside the magnetic portion 10 so that the side of the conductive portion 20 is not exposed to the outside. do. However, when forming a conductive passage using numerous micro metal moldings 1, considering the conductivity with the micro metal moldings 1 adjacent to the side, the conductive portion 20 is located on the outer side in the width direction rather than the magnetic portion 10. The configuration of the first embodiment is more preferable.
마이크로 금속 성형물(1)의 제조방법은, 몰드(100)에 제1내부 공간(110)을 형성하는 단계; 제1내부 공간(110)에 제1금속층(111)을 도금하는 단계; 몰드(100)에 제1금속층(111)과 접하여 제2내부 공간(120)을 형성하는 단계; 제2내부 공간(120)에 제2금속층(121)을 도금하는 단계; 및 몰드(100)를 제거하는 단계를 포함하되, 제1금속층(111) 및 제2금속층(121) 중 하나는 자성부(10)가 되고, 다른 하나는 도전부(20)가 된다.A method of manufacturing a micro metal molding (1) includes forming a first internal space (110) in a mold (100); plating a first metal layer 111 in the first internal space 110; Forming a second internal space 120 in contact with the first metal layer 111 in the mold 100; plating a second metal layer 121 in the second internal space 120; and removing the mold 100, wherein one of the first metal layer 111 and the second metal layer 121 becomes the magnetic portion 10 and the other becomes the conductive portion 20.
이하에서는 도면을 참조하여 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)의 제조방법에 대해 설명한다. 도 3a 내지 도 6b는 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물의 각 제조방법을 도시한 도면이다.Hereinafter, a method of manufacturing a micro metal molding 1 according to a first preferred embodiment of the present invention will be described with reference to the drawings. 3A to 6B are views showing each manufacturing method of a micro metal molding according to a first preferred embodiment of the present invention.
먼저, 도 3a 및 도 3b를 참조하면, 몰드(100)에 제1내부 공간(110)을 형성하는 단계를 수행한다. 도 3a는 제1내부 공간(110)이 몰드(10)를 도시한 평면도이고, 도 3b는 도 3a의 A-A'단면도이다.First, referring to FIGS. 3A and 3B, a step of forming the first internal space 110 in the mold 100 is performed. FIG. 3A is a plan view showing the first internal space 110 of the mold 10, and FIG. 3B is a cross-sectional view taken along line A-A' of FIG. 3A.
본 발명의 바람직한 실시예에서는 몰드(100)는 양극산화막 재질로 구성된다. 양극산화막은 2~3ppm/℃의 열팽창 계수를 갖는다. 이로 인해 고온의 환경에 노출될 경우, 온도에 의한 열변형이 적다. 따라서 마이크로 금속 성형물(1)의 제작 환경에 비록 고온 환경이라 하더라도 열 변형없이 정밀한 마이크로 금속 성형물(1)을 제작할 수 있다. 또한, 양극산화막 재질의 양극산화막 몰드(10)를 이용하면, 포토레지스트 재질의 몰드로는 구현하는데 한계가 있었던 형상의 정밀도, 미세 형상의 구현의 효과를 발휘할 수 있게 된다. 이상과 같은 이유로 본 발명의 바람직한 제1실시예에 따른 마이크로 금속 성형물(1)의 제조방법에 사용되는 몰드(100)는 양극산화막 재질의 몰드(100)이다.In a preferred embodiment of the present invention, the mold 100 is made of an anodic oxide film material. The anodic oxide film has a thermal expansion coefficient of 2~3ppm/℃. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even if the manufacturing environment for the micro metal molding 1 is a high temperature environment, the precise micro metal molding 1 can be manufactured without thermal deformation. In addition, by using the anodic oxide mold 10 made of an anodic oxide material, it is possible to demonstrate the effect of realizing precise shapes and fine shapes, which were limited in realizing them with molds made of photoresist. For the above reasons, the mold 100 used in the manufacturing method of the micro metal molding 1 according to the first preferred embodiment of the present invention is a mold 100 made of an anodized film material.
양극산화막은 모재 금속을 양극산화하였울때 형성된 막을 의미하고, 포어(101)는 모재 금속을 양극산화하여 양극산화막을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재 금속을 양극산화하면 모재 금속의 표면에 알루미늄 산화물(Al203) 재질의 양극산화막이 형성된다. 다만 모재 금속은 이에 한정되는 것은 아니며, Ta, Nb, Ti, Zr, Hf, Zn, W, Sb 또는 이들의 합금을 포함한다, 위와 같이 형성된 양극산화막은 수직적으로 내부에 포어(101)가 형성되지 않은 배리어층(102)과, 내부에 포어(101)가 형성된 다공층(103)으로 구분된다. 배리어층(102)과 다공층(103)을 갖는 양극산화막이 표면에 형성된 모재 금속에서, 모재 금속을 제거하게 되면, 알루미늄 산화물(Al203) 재질의 양극산화막만이 남게 된다. The anodic oxide film refers to a film formed when the base metal is anodized, and the pore 101 refers to a hole formed during the process of anodizing the base metal to form an anodic oxide film. For example, when the base metal is aluminum (Al) or an aluminum alloy, when the base metal is anodized, an anodic oxide film of aluminum oxide (Al 2 0 3 ) is formed on the surface of the base metal. However, the base metal is not limited to this and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or alloys thereof. The anodic oxide film formed as above does not have pores 101 formed vertically inside. It is divided into a barrier layer 102 without a barrier layer and a porous layer 103 with pores 101 formed therein. When the base metal is removed from a base metal on which an anodic oxide film having a barrier layer 102 and a porous layer 103 is formed on the surface, only an anodic oxide film made of aluminum oxide (Al 2 0 3 ) remains.
제1내부 공간(110)는 양극산화막 몰드(100)를 습식 에칭하여 형성될 수 있다. 이를 위해 양극산화막 몰드(100)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 제거됨에 따라 제1내부 공간(110)이 형성될 수 있다.The first internal space 110 may be formed by wet etching the anodic oxide film mold 100. For this purpose, a photo resist is provided on the upper surface of the anodic oxide film mold 100 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution and is removed, thereby forming the first internal space 110. .
양극산화막 몰드(100)의 하면에는 하부 시드층(130)이 구비된다. 하부 시드층(130)은 양극산화막 몰드(100)에 제1내부 공간(110)을 형성하기 이전에 양극산화막 몰드(100)의 하면에 구비될 수 있다. 한편 양극산화막 몰드(100)의 하부에는 지지기판(미도시)이 형성되어 양극산화막 몰드(100)의 취급성을 향상시킬 수 있다. 또한 이 경우 지지기판의 상면에 하부 시드층(130)을 형성하고 제1내부 공간(110)이 형성된 양극산화막 몰드(100)를 지지기판에 결합하여 사용할 수도 있다. 하부 시드층(130)은 구리(Cu)재질로 형성될 수 있고, 증착 방법에 의해 형성될 수 있다.A lower seed layer 130 is provided on the lower surface of the anodic oxide film mold 100. The lower seed layer 130 may be provided on the lower surface of the anodic oxide film mold 100 before forming the first internal space 110 in the anodic oxide film mold 100. Meanwhile, a support substrate (not shown) is formed on the lower part of the anodic oxide film mold 100 to improve the handling of the anodic oxide film mold 100. Also, in this case, the lower seed layer 130 may be formed on the upper surface of the support substrate, and the anodic oxide mold 100 in which the first internal space 110 is formed may be used by combining it with the support substrate. The lower seed layer 130 may be made of copper (Cu) and may be formed by a deposition method.
그 다음 제1내부 공간(110)에 제1금속층(111)을 도금하는 단계를 수행한다. 도 4a는 제1내부 공간(110)에 전기 도금 공정을 수행하여 제1금속층(111)을 형성한 것을 도시한 평면도이고, 도 4b는 도 4a의 A-A'단면도이다.Next, a step of plating the first metal layer 111 in the first internal space 110 is performed. FIG. 4A is a plan view showing the formation of the first metal layer 111 by performing an electroplating process in the first internal space 110, and FIG. 4B is a cross-sectional view taken along line A-A' of FIG. 4A.
하부 시드층(130)을 이용하여 도금하여 제1내부 공간(110)에 제1금속층(111)을 형성한다.The first metal layer 111 is formed in the first internal space 110 by plating using the lower seed layer 130.
제1금속층(111)은 자성부(10) 또는 도전부(20)일 수 있으며, 본 발명의 바람직한 제1실시예에서는 자성부(10)이다. 자성부(10)는 니켈(Ni), 코발트(Co), 망간(Mn), 철(Fe)이나 이들을 포함하는 합금 중에서 선택된 금속으로 형성된다.The first metal layer 111 may be the magnetic portion 10 or the conductive portion 20, and in the first preferred embodiment of the present invention, it is the magnetic portion 10. The magnetic portion 10 is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these.
그 다음 몰드(100)에 제1금속층(111)과 접하여 제2내부 공간(120)을 형성하는 단계를 수행한다. 도 5a는 몰드(100)에 제1금속층(111)과 접하여 제2내부 공간(120)을 형성한 것을 도시한 평면도이고, 도 5b는 도 5a의 A-A'단면도이다. Next, a step is performed to form a second internal space 120 in contact with the first metal layer 111 in the mold 100. FIG. 5A is a plan view showing the second internal space 120 formed in contact with the first metal layer 111 in the mold 100, and FIG. 5B is a cross-sectional view taken along line A-A' of FIG. 5A.
제2내부 공간(120)는 양극산화막 몰드(100)를 습식 에칭하여 형성될 수 있다. 이를 위해 양극산화막 몰드(100)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 제거됨에 따라 제2내부 공간(120)이 형성될 수 있다.The second internal space 120 may be formed by wet etching the anodic oxide film mold 100. To this end, a photo resist is provided on the upper surface of the anodic oxide film mold 100 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution and is removed, thereby forming the second internal space 120. .
제2내부 공간(120)의 중앙에 제1금속층(111)이 위치한다. 다시 말해 제1금속층(111)의 주변으로는 제2내부 공간(120)이 형성된다. The first metal layer 111 is located in the center of the second internal space 120. In other words, the second internal space 120 is formed around the first metal layer 111.
그 다음 제2내부 공간(120)에 제2금속층(121)을 도금하는 단계를 수행한다. 도 6a는 제2내부 공간(120)에 제2금속층(121)을 도금한 것을 도시한 평면도이고, 도 6b는 도 6a의 A-A'단면도이다. Next, a step of plating the second metal layer 121 in the second internal space 120 is performed. FIG. 6A is a plan view showing the second metal layer 121 plated in the second internal space 120, and FIG. 6B is a cross-sectional view taken along line A-A' of FIG. 6A.
하부 시드층(130)을 이용하여 도금하여 제2내부 공간(120)에 제2금속층(121)을 형성한다. 제2금속층(121)은 자성부(10) 또는 도전부(20)일 수 있으며, 본 발명의 바람직한 제1실시예에서는 도전부(20)이다. 도전부(20)는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들을 포함하는 합금 중에서 선택된 금속으로 형성된다. 또는 도전부(20)는 로듐(Rd), 백금 (Pt), 이리듐(Ir), 팔라듐(Pd), 텅스텐(W), 인(Ph)이나 이들의 합금 중에서 선택된 제1금속층과, 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금 중에서 선택된 제2금속층을 포함하여 복수개의 이종의 금속층이 높이 방향으로 적층되어 형성될 수 있다. 제1금속층은 제2금속층에 비해 강성 또는 내마모성이 상대적으로 높은 금속이고, 제2금속층은 제1금속층에 비해 전기 전도도가 상대적으로 높은 금속이다. The second metal layer 121 is formed in the second internal space 120 by plating using the lower seed layer 130. The second metal layer 121 may be the magnetic portion 10 or the conductive portion 20, and in the first preferred embodiment of the present invention, the second metal layer 121 is the conductive portion 20. The conductive portion 20 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), and copper (Cu). It is formed from metals selected from alloys containing these metals. Alternatively, the conductive portion 20 may include a first metal layer selected from rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph) or an alloy thereof, and gold (Au). ), silver (Ag), copper (Cu), or an alloy thereof may be formed by stacking a plurality of different metal layers in the height direction. The first metal layer is a metal with relatively high rigidity or wear resistance compared to the second metal layer, and the second metal layer is a metal with relatively high electrical conductivity compared to the first metal layer.
그 다음 몰드(100)를 제거하는 단계를 수행한다. 몰드(100)와 하부 시드층(130)을 제거하여 마이크로 금속 성형물(1)을 얻게 된다. Next, the step of removing the mold 100 is performed. The mold 100 and the lower seed layer 130 are removed to obtain the micro metal molding (1).
도 7a 및 도 7b는 본 발명의 바람직한 제1실시예의 변형례에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 7a는 사시도이고, 도 7b는 도 7a의 A-A'단면도이다.FIGS. 7A and 7B are views showing a micro metal molding 1 according to a modification of the first preferred embodiment of the present invention, where FIG. 7A is a perspective view and FIG. 7B is a cross-sectional view taken along line A-A' of FIG. 7A.
마이크로 금속 성형물(1)은 직육면체 형상으로 구성된다는 점에서 제1실시예에 따른 마이크로 금속 성형물(1)이 원기둥 형상으로 구성되는 것과 차이가 있다. 자성부(10) 역시 직육면체 형상으로 구성된다. The micro metal molding 1 is different from the micro metal molding 1 according to the first embodiment in that it has a rectangular parallelepiped shape. The magnetic portion 10 also has a rectangular parallelepiped shape.
다만 마이크로 금속 성형물(1)과 자성부(10)의 형상은 이에 한정되는 것은 아니고 수직한 측벽을 가지는 3차원 형상을 갖는 것이라면 다양한 형상으로 구성될 수 있다. However, the shape of the micro metal molding 1 and the magnetic portion 10 is not limited to this, and may be configured in various shapes as long as it has a three-dimensional shape with vertical side walls.
제2실시예Second embodiment
다음으로, 본 발명에 따른 제2실시예에 대해 살펴본다. 단, 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명은 되도록이면 생략한다.Next, we will look at the second embodiment according to the present invention. However, the description will focus on characteristic components compared to the first embodiment, and descriptions of components that are the same or similar to the first embodiment will be omitted if possible.
도 8a 및 도 8b는 본 발명의 바람직한 제2실시예에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 8a는 사시도이고, 도 8b는 도 8a의 A-A'단면도이고, 도 9는 본 발명의 바람직한 제2실시예에 따른 마이크로 금속 성형물(1)의 일부를 확대한 확대도를 포함한 사시도이다. FIGS. 8A and 8B are views showing a micro metal molding (1) according to a second preferred embodiment of the present invention. FIG. 8A is a perspective view, FIG. 8B is a cross-sectional view A-A' of FIG. 8A, and FIG. 9 is a view. This is a perspective view including an enlarged view of a part of the micro metal molding (1) according to the second preferred embodiment of the invention.
제2실시예에 따른 마이크로 금속 성형물(1)의 도전부(20)는 자성부(10)의 폭 방향 내부에 위치하는 제1도전부(21)와 자성부(10)의 폭 방향 외부에 위치하는 제2도전부(23)를 포함하고, 분할면(30)은 제1도전부(21)와 자성부(10) 사이의 제1분할면(31)과 제2도전부(23)와 자성부(10) 사이의 제2분할면(33)을 포함한다. 자성부(10)와 제1도전부(21)는 제1분할면(31)을 기준으로 공간 분할되고, 자성부(10)와 제2도전부(23)는 제2분할면(33)을 기준으로 공간 분할된다. The conductive portion 20 of the micro metal molding 1 according to the second embodiment is located inside the first conductive portion 21 in the width direction of the magnetic portion 10 and outside the magnetic portion 10 in the width direction. It includes a second conductive portion 23, and the split surface 30 includes the first split surface 31 between the first conductive portion 21 and the magnetic portion 10, the second conductive portion 23, and the magnetic portion. It includes a second dividing surface 33 between the parts 10. The magnetic portion 10 and the first conductive portion 21 are spatially divided based on the first split surface 31, and the magnetic portion 10 and the second conductive portion 23 are spaced apart from the second split surface 33. The space is divided based on
자성부(10)와 제1,2도전부(21,23)는 높이 방향으로 동일 높이(H)를 가진다. 다시 말해, 자성부(10)의 길이 방향의 높이(H)는 제1,2도전부(21, 23)의 길이 방향의 높이(H)와 동일하다. The magnetic portion 10 and the first and second conductive portions 21 and 23 have the same height (H) in the height direction. In other words, the longitudinal height H of the magnetic portion 10 is equal to the longitudinal height H of the first and second conductive portions 21 and 23.
자성부(10)는 제1도전부(21)와 제2도전부(24) 사이에 구비되어 폐쇄형의 띠 형태로 구비된다. 자성부(10)는 제2도전부(23)의 내부에 구비되어 자성부(10)의 둘레면에는 제2도전부(23)가 위치함으로써 자성부(10)의 측면은 외부에 노출되지 않는다. The magnetic portion 10 is provided between the first conductive portion 21 and the second conductive portion 24 and has a closed strip shape. The magnetic part 10 is provided inside the second conductive part 23, and the second conductive part 23 is located on the circumferential surface of the magnetic part 10, so the side of the magnetic part 10 is not exposed to the outside. .
다만, 이에 대한 변형례로서, 마이크로 금속 성형물(1)의 자성부(10)는 도전부(20)의 폭 방향 내부에 위치하는 제1자성부와 도전부(20)의 폭 방향 외부에 위치하는 제2자성부를 포함하고, 분할면(30)은 제1자성부와 도전부(20) 사이의 제1분할면(31)과 제2자성부와 도전부(10) 사이의 제2분할면(33)을 포함하여 구성될 수 있다. 다만, 수많은 마이크로 금속 성형물(1)을 이용하여 도전 통로를 형성할 때 측부로 인접한 마이크로 금속 성형물(1)과의 도전성을 고려하면, 자성부(10)보다는 도전부(20)가 폭 방향 외측에 위치하는 제2실시예의 구성이 보다 바람직하다. However, as a modification to this, the magnetic portion 10 of the micro metal molding 1 has a first magnetic portion located inside the width direction of the conductive portion 20 and a first magnetic portion located outside the width direction of the conductive portion 20. It includes a second magnetic portion, and the split surface 30 includes a first split surface 31 between the first magnetic portion and the conductive portion 20 and a second split surface between the second magnetic portion and the conductive portion 10 ( 33). However, when forming a conductive passage using numerous micro metal moldings 1, considering the conductivity with the micro metal moldings 1 adjacent to the side, the conductive portion 20 is located on the outer side in the width direction rather than the magnetic portion 10. The configuration of the second embodiment is more preferable.
마이크로 금속 성형물(1)의 외주면과 제1,2분할면(31, 33)에는 나노 요철 패턴(50)이 형성된다.A nano-irregular pattern 50 is formed on the outer peripheral surface and the first and second split surfaces 31 and 33 of the micro metal molding 1.
도 10a 및 도 10b는 본 발명의 바람직한 제2실시예의 변형례에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 10a는 사시도이고, 도 10b는 도 10a의 A-A'단면도이다.FIGS. 10A and 10B are views showing a micro metal molding 1 according to a modified example of the second preferred embodiment of the present invention. FIG. 10A is a perspective view, and FIG. 10B is a cross-sectional view taken along line A-A' of FIG. 10A.
마이크로 금속 성형물(1)은 직육면체 형상으로 구성된다는 점에서 제1실시예에 따른 마이크로 금속 성형물(1)이 원기둥 형상으로 구성되는 것과 차이가 있다. 자성부(10) 역시 직육면체 형상으로 구성된다. The micro metal molding 1 is different from the micro metal molding 1 according to the first embodiment in that it has a rectangular parallelepiped shape. The magnetic portion 10 also has a rectangular parallelepiped shape.
다만 마이크로 금속 성형물(1)과 자성부(10)의 형상은 이에 한정되는 것은 아니고 수직한 측벽을 가지는 3차원 형상을 갖는 것이라면 다양한 형상으로 구성될 수 있다. However, the shape of the micro metal molding 1 and the magnetic portion 10 is not limited to this, and may be configured in various shapes as long as it has a three-dimensional shape with vertical side walls.
제3실시예Third embodiment
다음으로, 본 발명에 따른 제3실시예에 대해 살펴본다. 단, 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명은 되도록이면 생략한다.Next, we will look at the third embodiment according to the present invention. However, the description will focus on characteristic components compared to the first embodiment, and descriptions of components that are the same or similar to the first embodiment will be omitted if possible.
도 11a 및 도 11b는 본 발명의 바람직한 제3실시예에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 11a는 사시도이고, 도 11b는 도 11a의 A-A'단면도이고, 도 12는 본 발명의 바람직한 제3실시예에 따른 마이크로 금속 성형물(1)의 일부를 확대한 확대도를 포함한 사시도이다. FIGS. 11A and 11B are views showing a micro metal molding (1) according to a third preferred embodiment of the present invention. FIG. 11A is a perspective view, FIG. 11B is a cross-sectional view taken along line A-A' of FIG. 11A, and FIG. 12 is a view. This is a perspective view including an enlarged view of a part of the micro metal molding (1) according to the third preferred embodiment of the invention.
제3실시예에 따른 마이크로 금속 성형물(1)의 자성부(10)는 복수 개 구비되되, 각각의 자성부(10)는 도전부(20)의 내부에서 이격되어 구비된다.The micro metal molding 1 according to the third embodiment includes a plurality of magnetic parts 10, and each magnetic part 10 is provided to be spaced apart from each other inside the conductive part 20.
자성부(10)는 적어도 2개 이상 구비되되 각각의 자성부(10)는 서로 이격되어 구비된다. 다시 말해 자성부(10)와 자성부(10) 사이에는 도전부(20)를 구성하는 금속이 구비된다. At least two magnetic parts 10 are provided, and each magnetic part 10 is spaced apart from each other. In other words, a metal constituting the conductive portion 20 is provided between the magnetic portion 10 and the magnetic portion 10 .
각각의 자성부(10)와 도전부(20)는 분할면(30)을 기준으로 공간 분할된다. Each magnetic part 10 and the conductive part 20 are spatially divided based on the dividing surface 30.
자성부(10)와 도전부(20)는 높이 방향으로 동일 높이(H)를 가진다. 다시 말해, 자성부(10)의 길이 방향의 높이(H)는 도전부(20)의 길이 방향의 높이(H)와 동일하다. 자성부(10)는 원기둥 형상으로 구성된다. The magnetic portion 10 and the conductive portion 20 have the same height (H) in the height direction. In other words, the height H of the magnetic portion 10 in the longitudinal direction is equal to the height H of the conductive portion 20 in the longitudinal direction. The magnetic portion 10 is configured in a cylindrical shape.
자성부(10)는 도전부(20)의 내부에 구비되어 자성부(10)의 둘레면에는 도전부(20)가 위치함으로써 자성부(10)의 측면은 외부에 노출되지 않는다. The magnetic part 10 is provided inside the conductive part 20, and the conductive part 20 is located on the circumferential surface of the magnetic part 10, so the side surface of the magnetic part 10 is not exposed to the outside.
마이크로 금속 성형물(1)의 외주면과 분할면(30)에는 나노 요철 패턴(50)이 형성된다.A nano-irregular pattern 50 is formed on the outer peripheral surface and the divided surface 30 of the micro metal molding 1.
도 13a 및 도 13b는 본 발명의 바람직한 제3실시예의 변형례에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 13a는 사시도이고, 도 13b는 도 13a의 A-A'단면도이고, 도 14는 본 발명의 바람직한 제3실시예의 변형예에 따른 마이크로 금속 성형물의 일부를 확대한 확대도를 포함한 사시도이다. FIGS. 13A and 13B are views showing a micro metal molding (1) according to a modification of the third preferred embodiment of the present invention. FIG. 13A is a perspective view, FIG. 13B is a cross-sectional view taken along line A-A' of FIG. 13A, and FIG. 14 is a perspective view including an enlarged view of a portion of a micro metal molding according to a modified example of the third preferred embodiment of the present invention.
마이크로 금속 성형물(1)은 직육면체 형상으로 구성된다는 점에서 제1실시예에 따른 마이크로 금속 성형물(1)이 원기둥 형상으로 구성되는 것과 차이가 있다. 자성부(10) 역시 직육면체 형상으로 구성된다. The micro metal molding 1 is different from the micro metal molding 1 according to the first embodiment in that it has a rectangular parallelepiped shape. The magnetic portion 10 also has a rectangular parallelepiped shape.
다만 마이크로 금속 성형물(1)과 자성부(10)의 형상은 이에 한정되는 것은 아니고 수직한 측벽을 가지는 3차원 형상을 갖는 것이라면 다양한 형상으로 구성될 수 있다. However, the shape of the micro metal molding 1 and the magnetic portion 10 is not limited to this, and may be configured in various shapes as long as it has a three-dimensional shape with vertical side walls.
제4실시예Embodiment 4
다음으로, 본 발명에 따른 제4실시예에 대해 살펴본다. 단, 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명은 되도록이면 생략한다.Next, we will look at the fourth embodiment according to the present invention. However, the description will focus on characteristic components compared to the first embodiment, and descriptions of components that are the same or similar to the first embodiment will be omitted if possible.
도 15a 내지 도 15c는 본 발명의 바람직한 제4실시예에 따른 마이크로 금속 성형물(1)의 사시도로서, 도 15a는 단면이 원형인 것을 도시한 도면이고, 도 15b는 단면이 사각형인 것을 도시한 도면이고, 도 15c는 단면이 삼각형인 것을 도시한 도면이며, 도 16는 본 발명의 바람직한 제4실시예에 따른 마이크로 금속 성형물(1)의 일부를 확대한 확대도를 포함한 사시도이다.FIGS. 15A to 15C are perspective views of a micro metal molding 1 according to a fourth preferred embodiment of the present invention. FIG. 15A is a diagram showing a circular cross-section, and FIG. 15B is a diagram showing a rectangular cross-section. 15C is a diagram showing that the cross-section is triangular, and FIG. 16 is a perspective view including an enlarged view of a part of the micro metal molding 1 according to the fourth preferred embodiment of the present invention.
제4실시예에 따른 마이크로 금속 성형물(1)의 자성부(10)와 도전부(20)는 마이크로 금속 성형물(1)의 외주면을 형성한다. 제1내지 제3실시예에 따른 마이크로 금속 성형물(1)은 도전부(20)만이 외주면을 형성하는 구성인 반면에 제4실시예에 따른 마이크로 금속 성형물(1)은 도전부(20)와 자성부(10)가 함께 외주면을 형성하는 구성이라는 점에서 구성상의 차이가 있다. The magnetic portion 10 and the conductive portion 20 of the micro metal molding 1 according to the fourth embodiment form the outer peripheral surface of the micro metal molding 1. While the micro metal molding 1 according to the first to third embodiments has only the conductive portion 20 forming the outer peripheral surface, the micro metal molding 1 according to the fourth embodiment has the conductive portion 20 and the There is a difference in composition in that the components 10 together form the outer peripheral surface.
마이크로 금속 성형물(1)은 분할면(30)을 기준으로 자성부(10)와 도전부(20)가 면분할되어 분할면(30)의 일측에는 자성부(10)가 구비되고 분할면(30)의 타측에는 도전부(20)가 구비된다. 한편 분할면(30)은 복수개가 구비될 수 있으며, 이 경우 각각의 분할면(30)을 기준으로 자성부(10)와 도전부(20)가 면분할 될 수 있다. In the micro metal molding 1, the magnetic portion 10 and the conductive portion 20 are divided based on the split surface 30, and the magnetic portion 10 is provided on one side of the split surface 30, and the split surface 30 ) A conductive portion 20 is provided on the other side. Meanwhile, a plurality of split surfaces 30 may be provided, and in this case, the magnetic portion 10 and the conductive portion 20 may be divided based on each split surface 30.
마이크로 금속 성형물(1)의 외주면과 분할면(30)에는 나노 요철 패턴(50)이 형성된다.A nano-irregular pattern 50 is formed on the outer peripheral surface and the divided surface 30 of the micro metal molding 1.
마이크로 금속 성형물(1)은 그 단면이 형상이 도 15a에 도시된 바와 같이 원형일 수 있고, 도 15b에 도시된 바와 같이 사각형일 수 있으며, 도 15c에 도시된 바와 같이 삼각형일 수 있다. 다만 마이크로 금속 성형물(1)의 단면 형상은 이에 한정되는 것은 아니고, 다양한 형상이 가능하다. The cross-section of the micro metal molding 1 may be circular as shown in FIG. 15A, square as shown in FIG. 15B, or triangular as shown in FIG. 15C. However, the cross-sectional shape of the micro metal molding 1 is not limited to this, and various shapes are possible.
제5실시예Embodiment 5
다음으로, 본 발명에 따른 제4실시예에 대해 살펴본다. 단, 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명은 되도록이면 생략한다.Next, we will look at the fourth embodiment according to the present invention. However, the description will focus on characteristic components compared to the first embodiment, and descriptions of components that are the same or similar to the first embodiment will be omitted if possible.
도 17a 및 도 17b는 본 발명의 바람직한 제5실시예에 따른 마이크로 금속 성형물(1)을 도시한 도면으로서 도 17a는 자성부(10)와 도전부(20) 사이에 2개의 분할면(30)이 있는 것을 도시한 도면이고, 도 17b는 자성부와 도전부 사이에 1개의 분할면(30)이 있는 것을 도시한 도면이며, 도 18은 본 발명의 바람직한 제5실시예에 따른 마이크로 금속 성형물(1)의 일부를 확대한 확대도를 포함한 사시도이다.FIGS. 17A and 17B are diagrams showing a micro metal molding 1 according to a fifth preferred embodiment of the present invention. FIG. 17A shows two split surfaces 30 between the magnetic portion 10 and the conductive portion 20. 17b is a view showing that there is one split surface 30 between the magnetic part and the conductive part, and Figure 18 is a micro metal molding according to the fifth preferred embodiment of the present invention ( This is a perspective view including an enlarged view of part of 1).
제5실시예에 따른 마이크로 금속 성형물(1)은 폭 방향 내측으로 오목하게 파인 삽입부(40)를 포함한다. 삽입부(40)의 높이는 마이크로 금속 성형물(1)의 높이(H)와 동일 높이(H)로 형성된다. The micro metal molding 1 according to the fifth embodiment includes an insertion portion 40 that is concave inward in the width direction. The height of the insertion portion 40 is formed to be the same height (H) as the height (H) of the micro metal molding (1).
삽입부(40)를 기준으로 그 양측에 자성부(10) 또는 도전부(20)가 구비될 수 있다. 도 17a에 도시된 바와 같이, 삽입부(40)를 기준으로 그 양측에 도전부(20)가 구비되고 각각의 도전부(20)와 자성부(10)는 분할면(30)에 의해 공간 분할된다. A magnetic portion 10 or a conductive portion 20 may be provided on both sides of the insertion portion 40. As shown in FIG. 17A, conductive portions 20 are provided on both sides of the insertion portion 40, and each conductive portion 20 and magnetic portion 10 are space-divided by a dividing surface 30. do.
한편, 삽입부(40)를 기준으로 어느 한 측에는 자성부(10)가 구비되고 다른 한 측에는 도전부(20)가 구비될 수 있다. 도 17b에 도시된 바와 같이, 삽입부(40)를 기준으로 양측 중 일측에는 자성부(10)가 구비되고 타측에는 도전부(20)가 구비된다. Meanwhile, the magnetic portion 10 may be provided on one side of the insertion portion 40 and the conductive portion 20 may be provided on the other side. As shown in FIG. 17B, a magnetic portion 10 is provided on one side of the insertion portion 40 and a conductive portion 20 is provided on the other side.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although the present invention has been described with reference to preferred embodiments, those skilled in the art may modify the present invention in various ways without departing from the spirit and scope of the present invention as set forth in the following patent claims. Or, it can be carried out in modification.
[부호의 설명][Explanation of symbols]
1: 마이크로 금속 성형물1: Micro metal molding
10: 자성부10: Magnetic part
20: 도전부20: Challenge section
30: 분할면30: dividing plane
40: 삽입부40: Insertion part

Claims (13)

  1. 수직한 측벽을 가지는 3차원 형상의 마이크로 금속 성형물로서,A three-dimensional micro metal molding with vertical side walls,
    자성부; 및Magnetic part; and
    도전부를 포함하고,Contains a conductive part,
    상기 자성부와 상기 도전부는 분할면을 기준으로 공간 분할된, 마이크로 금속 성형물.A micro-metal molding in which the magnetic portion and the conductive portion are spatially divided based on a dividing surface.
  2. 제1항에 있어서,According to paragraph 1,
    상기 자성부와 상기 도전부는 길이 방향으로 동일 높이를 가지는, 마이크로 금속 성형물.A micro metal molding, wherein the magnetic portion and the conductive portion have the same height in the longitudinal direction.
  3. 제1항에 있어서,According to paragraph 1,
    상기 분할면에 나노 요철 패턴을 구비하는, 마이크로 금속 성형물.A micro metal molding having a nano-irregular pattern on the divided surface.
  4. 제1항에 있어서,According to paragraph 1,
    상기 측벽에 나노 요철 패턴을 구비하는, 마이크로 금속 성형물. A micro metal molding having a nano-concavo-convex pattern on the side wall.
  5. 제1항에 있어서,According to paragraph 1,
    상기 자성부는 상기 도전부의 내부에 구비되어 상기 자성부의 측면은 외부에 노출되지 않는, 마이크로 금속 성형물.A micro metal molding wherein the magnetic portion is provided inside the conductive portion and the side surface of the magnetic portion is not exposed to the outside.
  6. 제1항에 있어서,According to paragraph 1,
    상기 도전부는 상기 자성부의 폭 방향 내부에 위치하는 제1도전부와 상기 자성부의 폭 방향 외부에 위치하는 제2도전부를 포함하고,The conductive portion includes a first conductive portion located inside the magnetic portion in the width direction and a second conductive portion located outside the magnetic portion in the width direction,
    상기 분할면은 상기 제1도전부와 상기 자성부 사이의 제1분할면과 상기 제2도전부와 상기 자성부 사이의 제2분할면을 포함하는, 마이크로 금속 성형물.The split surface includes a first split surface between the first conductive part and the magnetic part and a second split surface between the second conductive part and the magnetic part.
  7. 제1항에 있어서,According to paragraph 1,
    상기 자성부는 복수 개 구비되되, 각각의 자성부는 상기 도전부의 내부에서 이격되어 구비되는, 마이크로 금속 성형물.A micro metal molding in which a plurality of magnetic parts are provided, and each magnetic part is provided to be spaced apart within the conductive part.
  8. 제1항에 있어서,According to paragraph 1,
    상기 도전부가 외주면을 형성하는, 마이크로 금속 성형물.A micro metal molding in which the conductive portion forms an outer peripheral surface.
  9. 제1항에 있어서,According to paragraph 1,
    상기 도전부와 상기 자성부가 외주면을 형성하는, 마이크로 금속 성형물.A micro metal molding in which the conductive portion and the magnetic portion form an outer peripheral surface.
  10. 제1항에 있어서,According to paragraph 1,
    폭 방향 내측으로 오목하게 파인 삽입부를 포함하는, 마이크로 금속 성형물.A micro metal molding comprising an insertion portion concave inward in the width direction.
  11. 제1항에 있어서,According to paragraph 1,
    상기 자성부는 니켈(Ni), 코발트(Co), 망간(Mn), 철(Fe)이나 이들을 포함하는 합금 중에서 선택된 금속으로 형성되고,The magnetic portion is formed of a metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), or an alloy containing these,
    상기 도전부는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들을 포함하는 합금 중에서 선택된 금속으로 형성된, 마이크로 금속 성형물.The conductive part includes rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), tungsten (W), phosphorus (Ph), gold (Au), silver (Ag), and copper (Cu). A micro metal molding formed of a metal selected from an alloy consisting of:
  12. 몰드에 제1내부 공간을 형성하는 단계;forming a first internal space in the mold;
    상기 제1내부 공간에 제1금속층을 도금하는 단계;plating a first metal layer in the first internal space;
    상기 몰드에 상기 제1금속층과 접하여 제2내부 공간을 형성하는 단계;forming a second internal space in the mold by contacting the first metal layer;
    상기 제2내부 공간에 제2금속층을 도금하는 단계; 및plating a second metal layer in the second internal space; and
    상기 몰드를 제거하는 단계;를 포함하되,Including, removing the mold,
    상기 제1금속층 및 상기 제2금속층 중 하나는 자성부가 되고, 다른 하나는 도전부가 되는, 마이크로 금속 성형물의 제조방법.A method of manufacturing a micro metal molding, wherein one of the first metal layer and the second metal layer becomes a magnetic part and the other becomes a conductive part.
  13. 제12항에 있어서,According to clause 12,
    상기 몰드는 금속 모재를 양극산화한 후 상기 금속 모재를 제거하여 형성된 양극산화막인, 마이크로 금속 성형물의 제조방법. The mold is a method of manufacturing a micro metal molding, wherein the mold is an anodized film formed by anodizing a metal base material and then removing the metal base material.
PCT/KR2023/015479 2022-10-13 2023-10-10 Micro metal molded article and manufacturing method therefor WO2024080685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220131122A KR20240051450A (en) 2022-10-13 2022-10-13 Micro Metal Product and Method for Manufacturing the Same
KR10-2022-0131122 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080685A1 true WO2024080685A1 (en) 2024-04-18

Family

ID=90669856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015479 WO2024080685A1 (en) 2022-10-13 2023-10-10 Micro metal molded article and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20240051450A (en)
WO (1) WO2024080685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052956A (en) * 2008-11-11 2010-05-20 이재학 Test socket with pillar particle
KR20120051699A (en) * 2009-07-16 2012-05-22 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Conductive particles, anisotropic conductive film, assembly, and connection method
KR101339166B1 (en) * 2012-06-18 2013-12-09 주식회사 아이에스시 Test socket with conductive powder having through-hole and fabrication method thereof
KR20200052025A (en) * 2018-11-06 2020-05-14 (주)티에스이 Conductive particle and data signal transmission connector having the same
KR20200111538A (en) * 2019-03-19 2020-09-29 주식회사 아이에스시 Conductive powder and connector for electrical connection including same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663799B2 (en) 2000-09-28 2003-12-16 Jsr Corporation Conductive metal particles, conductive composite metal particles and applied products using the same
US20060148285A1 (en) 2003-02-18 2006-07-06 Jsr Corporation Anisotropic conductive connector and probe member and wafer inspecting device and wafer inspecting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052956A (en) * 2008-11-11 2010-05-20 이재학 Test socket with pillar particle
KR20120051699A (en) * 2009-07-16 2012-05-22 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Conductive particles, anisotropic conductive film, assembly, and connection method
KR101339166B1 (en) * 2012-06-18 2013-12-09 주식회사 아이에스시 Test socket with conductive powder having through-hole and fabrication method thereof
KR20200052025A (en) * 2018-11-06 2020-05-14 (주)티에스이 Conductive particle and data signal transmission connector having the same
KR20200111538A (en) * 2019-03-19 2020-09-29 주식회사 아이에스시 Conductive powder and connector for electrical connection including same

Also Published As

Publication number Publication date
KR20240051450A (en) 2024-04-22

Similar Documents

Publication Publication Date Title
CN107078120B (en) Board structure and manufacturing method
CN104377138B (en) The semiconductor packages of molding with back side die metallization
TWI719292B (en) Electronic component and method of manufacturing the same
US9984961B2 (en) Chip-size, double side connection package and method for manufacturing the same
TW200421960A (en) Semiconductor device, and the manufacturing method of the same
CN109119410B (en) Method for manufacturing light emitting device
US20220369468A1 (en) Substrate structures and methods of manufacture
US20170317016A1 (en) Package with vertical interconnect between carrier and clip
WO2024080685A1 (en) Micro metal molded article and manufacturing method therefor
US9171804B2 (en) Method for fabricating an electronic component
Buttay et al. Packaging with double-side cooling capability for SiC devices, based on silver sintering
US9395404B2 (en) Method for testing semiconductor chips or semiconductor chip modules
WO2023146257A1 (en) Micro bumps and manufacturing method thereof
TW201027681A (en) Package substrate and fabrication method thereof
WO2023033442A1 (en) Method for manufacturing molded metal product
TW201802966A (en) Method of manufacturing semiconductor device
US20160126227A1 (en) Method for Attaching a Semiconductor Die to a Carrier
WO2023090746A1 (en) Electrically conductive contact pin and inspection device having same
WO2024080684A1 (en) Electroconductive contact pin
WO2023140617A1 (en) Electro-conductive contact pin and inspection device having same
WO2023191410A1 (en) Electro-conductive contact pin and inspection device including same
WO2022235055A1 (en) Anodized film structure
CN115427895A (en) Method and system for transferring alignment marks between substrate systems
KR20230153870A (en) Metal product and manufacturing method of the same
CN117577573A (en) Chip packaging auxiliary die, chip packaging method and packaged chip