WO2024080214A1 - METHOD FOR PRODUCING α-OLEFIN POLYMER - Google Patents

METHOD FOR PRODUCING α-OLEFIN POLYMER Download PDF

Info

Publication number
WO2024080214A1
WO2024080214A1 PCT/JP2023/036302 JP2023036302W WO2024080214A1 WO 2024080214 A1 WO2024080214 A1 WO 2024080214A1 JP 2023036302 W JP2023036302 W JP 2023036302W WO 2024080214 A1 WO2024080214 A1 WO 2024080214A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
olefin polymer
producing
group
compound
Prior art date
Application number
PCT/JP2023/036302
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 阪口
潤 小比類巻
幸太 大場
清和 片山
正実 金丸
佳奈子 鮫島
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024080214A1 publication Critical patent/WO2024080214A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation

Definitions

  • the present invention relates to a method for producing ⁇ -olefin polymers.
  • lubricants for automobiles and industrial machines are desired to have low fuel consumption, energy saving, and long life, and synthetic lubricants having better viscosity characteristics (high viscosity index), low temperature characteristics (low temperature fluidity), and oxidation stability than conventionally used poly- ⁇ -olefins are desired.
  • Conventional poly- ⁇ -olefin synthetic lubricants include, for example, a method of polymerizing 1-decene or 1-decene and 1-dodecene using aluminum chloride or aluminum bromide as a catalyst (Patent Document 1).
  • Patent Document 1 a method of polymerizing 1-decene or 1-decene and 1-dodecene using aluminum chloride or aluminum bromide as a catalyst
  • Patent Document 1 a method of polymerizing 1-decene or 1-decene and 1-dodecene using aluminum chloride or aluminum bromide as a catalyst
  • Patent Document 1 a method of polymerizing 1-decene or 1-decen
  • Patent Document 2 discloses a method for efficiently producing ⁇ -olefin polymers and hydrogenated ⁇ -olefin polymers using a small amount of catalyst.
  • An object of the present invention is to provide a process for producing an ⁇ -olefin polymer, which is capable of producing an ⁇ -olefin polymer having excellent low-temperature fluidity.
  • a manufacturing method that includes a step of mixing a specific metallocene catalyst with multiple raw material monomers to obtain a catalyst mixture before the step of polymerizing ⁇ -olefins.
  • a method for producing an ⁇ -olefin polymer comprising: Step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it to a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in number of carbon atoms by two or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture; and Step 2 of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • Step 1 A method for producing an ⁇ -olefin polymer, comprising: Step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it to a cation, an organometallic compound (C),
  • ⁇ 2> The method for producing an ⁇ -olefin polymer according to the above ⁇ 1>, wherein the ionic compound (B) is a tetraphenylborate which may have a substituent, and the organometallic compound (C) is an organoaluminum compound (C1).
  • ⁇ 3> The method for producing an ⁇ -olefin polymer according to the above item ⁇ 1> or ⁇ 2>, wherein the plurality of raw material monomers (D) are 1-octene (D1) and 1-dodecene (D2).
  • ⁇ 4> The method for producing an ⁇ -olefin polymer according to the above ⁇ 3>, wherein the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in the step 1 is 4:6 to 6:4 in terms of molar ratio.
  • ⁇ 5> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 4>, wherein in step 1, a ratio [D/A] of the total of the plurality of raw material monomers (D) to the metallocene compound (A) is 40 to 300 in terms of a molar ratio.
  • ⁇ 6> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 5>, further comprising mixing a solvent in the step 1.
  • ⁇ 7> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 6>, wherein in step 1, mixing is carried out at 50° C. or lower for 30 minutes or longer.
  • ⁇ 8> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 7>, wherein in step 2, an ⁇ -olefin and an organoaluminum compound (C2) are mixed, and then a catalyst mixture is mixed therewith to polymerize the ⁇ -olefin.
  • C2 organoaluminum compound
  • ⁇ 9> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 8>, wherein in step 2, an ⁇ -olefin and an organoaluminum compound (C2) are mixed, then a catalyst mixture is mixed, and then the temperature is raised to 80° C. or higher to polymerize the ⁇ -olefin.
  • ⁇ 10> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 9>, wherein a ratio of the multiple raw material monomers (D) in the ⁇ -olefin used in the step 2 is 90 to 100 mol %.
  • ⁇ 11> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 3> to ⁇ 10>, wherein a ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in the step 2 is 4:6 to 6:4 in terms of a molar ratio.
  • ⁇ 12> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 11>, wherein the metallocene compound (A) is a doubly bridged metallocene compound.
  • X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • M represents a transition metal of Groups 4 to 6 of the periodic table.
  • n is an integer of 1 to 3.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms.
  • L represents an atom of Group 14 of the periodic table.
  • ⁇ 16> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 15>, wherein the polymerization in the step 2 is carried out in a reaction vessel having a capacity of 800 L or more.
  • ⁇ 17> The method for producing an ⁇ -olefin polymer according to any one of the above ⁇ 1> to ⁇ 16>, wherein the obtained ⁇ -olefin polymer has a kinematic viscosity at 40° C. of 350 to 500 cSt and a pour point of ⁇ 50° C. or lower.
  • An ⁇ -olefin polymer which satisfies the following formula (1) and has a kinematic viscosity at 40° C.
  • ⁇ -olefin polymer obtained by a process having the following steps 1 and 2: Step 1: a step of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in carbon number by 2 or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture.
  • Step 1 a step of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in carbon number by 2 or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1)
  • Step 2 a step of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • a method for producing a lubricating oil comprising a step of mixing an ⁇ -olefin polymer obtained by the method according to any one of the above ⁇ 1> to ⁇ 17>, or the ⁇ -olefin polymer according to any one of the above ⁇ 18> to ⁇ 22>, with at least one additive selected from the group consisting of an extreme pressure agent, an oiliness agent, an antiwear agent, an antioxidant, a metal deactivator, a rust inhibitor, and an antifoaming agent.
  • the present invention provides a method for producing an ⁇ -olefin polymer that can produce an ⁇ -olefin polymer with excellent low-temperature fluidity.
  • the resulting ⁇ -olefin polymer has excellent low-temperature fluidity and can therefore be suitably used as a lubricant.
  • the present invention provides a method for producing an ⁇ -olefin polymer, comprising: a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in number of carbon atoms by two or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture; and a step 2 of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • A metallocene compound
  • B ionic compound
  • C organometallic compound
  • D a plurality of raw material monomers
  • D a plurality of raw material monomers
  • E3 which is at least one selected from the group consisting of alcohols (E1), phenol
  • Step 1 is a step of obtaining a catalyst mixture by mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to be converted into a cation, an organometallic compound (C), a plurality of raw material monomers (D) each having a carbon number differing by two or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3).
  • Examples of the metallocene compound (A) include an unbridged metallocene compound, a single-bridged metallocene compound, and a double-bridged metallocene compound.
  • a double-bridged metallocene compound is preferred, and a double-bridged metallocene compound represented by the following general formula (I) is more preferred.
  • R a and R b each independently represent a linking group represented by the following general formula -[L(R 1 )(R 2 )] n -.
  • X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • M represents a transition metal of Groups 4 to 6 of the periodic table.
  • n is an integer of 1 to 3.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms.
  • L represents an atom of Group 14 of the periodic table.
  • X1 and X2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • M represents a transition metal of Groups 4 to 6 of the periodic table, and is preferably zirconium, titanium, or hafnium.
  • R a and R b are each independently a linking group represented by -[L(R 1 )(R 2 )] n -, and are preferably -C(R 1 )(R 2 )-, -Si(R 1 )(R 2 )-, -C(R 1 )(R 2 )-C(R 1 )(R 2 )- or -Si(R 1 )(R 2 )-Si(R 1 )(R 2 )-.
  • n is an integer from 1 to 3.
  • R1 and R2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • L represents an atom of Group 14 of the periodic table, and is preferably a carbon atom or a silicon atom.
  • the doubly bridged metallocene compound represented by the general formula (I) include (1,1'-ethylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-isopropylidene)(2,2'- Examples of such compounds include dichlorides such as (1,1'-isopropylidene)(2,2'-isopropylidene)bis(3-methylcyclopentadienyl)zirconium dichloride, as well as dimethyl, diethyl, dihydr
  • the ionic compound (B) is not limited as long as it is an ionic compound capable of reacting with the metallocene compound (A) to be converted into a cation.
  • the ionic compound (B) is preferably a compound represented by the following general formula (V) or a compound represented by the following general formula (VI), and more preferably a compound represented by the following general formula (V). ([L 1 ⁇ R 3 ] k+ ) a ([Z] ⁇ ) b ... (V) ([L 2 ] k+ ) a ([Z] ⁇ ) b ... (VI)
  • L1 represents a Lewis base
  • R3 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group, and an arylalkyl group.
  • L1 include amines such as ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N,N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N,N-dimethylaniline, p-nitro-N,N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, esters such as ethyl benzoate, nitriles such as acetonitrile, benzonitrile, etc.
  • R3 include a hydrogen atom, a methyl group, an ethyl group, a benzyl group, a trityl group, etc.
  • L2 represents M1 , R4R5M2 , R63C or R7M2 .
  • R4 and R5 each independently represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group
  • R6 represents an alkyl group having 1 to 20 carbon atoms or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group and an arylalkyl group.
  • R7 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
  • M 1 includes an element of Groups 1 to 3 and 11 to 13 of the periodic table
  • M 2 represents an element of Groups 7 to 12 of the periodic table.
  • R 4 and R 5 include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
  • R 6 include a phenyl group, a p-tolyl group, and a p-methoxyphenyl group
  • R 7 include tetraphenylporphyrin and phthalocyanine.
  • M 1 include Li, Na, K, Ag, and Cu
  • specific examples of M 2 include Mn, Fe, Co, Ni, and Zn.
  • k is the ionic valence of [L 1 -R 3 ] and [L 2 ] and is an integer of 1 to 3
  • a is an integer of 1 or more
  • b (k ⁇ a).
  • [Z] - represents a non-coordinating anion [Z 1 ] - or [Z 2 ] - .
  • [Z 1 ] - represents an anion in which a plurality of groups are bonded to an element, that is, [M 3 G 1 G 2 ... G f ] - .
  • M 3 represents an element of Groups 5 to 15 of the periodic table, preferably an element of Groups 13 to 15 of the periodic table.
  • G 1 to G f each represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, a halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, an acyloxy group or an organic metalloid group having 1 to 20 carbon atoms, or a heteroatom-containing hydrocarbon group having 2 to 20 carbon atoms.
  • G 1 to G f may form a ring.
  • f represents an integer of [(the valence of the central metal M 3 ) + 1].
  • [Z 2 ] ⁇ represents a conjugate base of a single Br ⁇ nsted acid or a combination of a Br ⁇ nsted acid and a Lewis acid having a logarithm of the reciprocal of the acid dissociation constant (pKa) of ⁇ 10 or less, or a conjugate base of an acid generally defined as a superacid.
  • a Lewis base may be coordinated.
  • M 3 include B, Al, Si, P, As, Sb, etc., and preferably B and Al.
  • G 1 and G 2 to G f include dialkylamino groups such as dimethylamino and diethylamino, alkoxy groups or aryloxy groups such as methoxy, ethoxy, n-propoxy, and phenoxy, hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t-butylphenyl, and 3,5-dimethylphenyl, halogen atoms such as fluorine, chlorine, bromine, Examples of iodine and heteroatom-containing hydrocarbon groups include
  • non-coordinating anions that is, the conjugate base [Z 2 ] ⁇ of a single Bronsted acid or a combination of a Bronsted acid and a Lewis acid having a pKa of ⁇ 10 or less
  • trifluoromethanesulfonate anion CF 3 SO 3 ) ⁇
  • bis(trifluoromethanesulfonyl)methyl anion bis(trifluoromethanesulfonyl)benzyl anion, bis(trifluoromethanesulfonyl)amide
  • perchlorate anion (ClO 4 ) ⁇ trifluoroacetate anion (CF 3 COO) ⁇ , hexafluoroantimony anion (SbF 6 ) ⁇
  • fluorosulfonate anion (FSO 3 ) ⁇ chlorosulfonate anion (ClSO 3 ) ⁇
  • the ionic compound (B) is preferably a tetraphenylborate salt which may have a substituent.
  • Specific examples of the ionic compound (B) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl(tri-n-butyl)ammonium tetraphenylborate, benzyl(tri-n-butyl)ammonium tetraphenylborate, dimethyldiphenylammonium tetraphenylborate, triphenyl(methyl)ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, benzylpyridinium tetraphenyl
  • the organometallic compound (C) is preferably at least one selected from the group consisting of organoaluminum compounds and organozinc compounds, and more preferably an organoaluminum compound (C1).
  • organoaluminum compound a compound represented by the general formula (VII) is used. (R 8 ) v AlQ 3-v ...
  • R8 is an alkyl group having 1 to 10 carbon atoms
  • Q is a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom
  • v is an integer of 1 to 3 or 1.5.
  • organozinc compound a compound represented by the general formula (VIII) is used. (R 9 ) u ZnP 2-u ...
  • R9 represents an alkyl group having 1 to 10 carbon atoms
  • P represents an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom
  • u represents an integer of 1 or 2.
  • organoaluminum compounds represented by the general formula (VII) include trimethylaluminum, triethylaluminum, tri-normal propylaluminum, triisopropylaluminum, tri-normal butylaluminum, triisobutylaluminum, triheptylaluminum, trioctylaluminum, diisobutylaluminum hydride, diethylaluminum hydride, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride, and ethylaluminum sesquichloride, with triisobutylaluminum being preferred.
  • organozinc compound represented by the general formula (VIII) examples include dimethylzinc, diethylzinc, dibutylzinc, dioctylzinc, and the like.
  • the organometallic compound (C) may be used alone or in combination of two or more kinds.
  • the molar ratio of the metallocene compound (A) to the ionic compound (B) is preferably 10:1 to 1:100, more preferably 2:1 to 1:10.
  • the molar ratio of the metallocene compound (A) to the organometallic compound (C) is preferably 1:1 to 1:10,000, more preferably 1:10 to 1:1,000.
  • the ionic compound (B) and the organometallic compound (C) can each be used alone or in combination of two or more kinds. When two or more kinds are used in combination, it is preferable from the viewpoint of catalytic activity that the total ratio of the two or more kinds is within the above range.
  • the multiple raw material monomers (D) used in step 1 are ⁇ -olefins having different carbon numbers of 2 or more, and are included in the ⁇ -olefins polymerized in step 2.
  • ⁇ -olefins with carbon numbers differing by 2 or more in this step an ⁇ -olefin polymer with excellent low-temperature fluidity can be obtained.
  • the multiple raw material monomers (D) are preferably ⁇ -olefins having 3 to 30 carbon atoms, more preferably ⁇ -olefins having 6 to 20 carbon atoms, and even more preferably ⁇ -olefins having 8 to 16 carbon atoms.
  • the multiple raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, 1-docosene, 1-tricosene, 1-tetracosene,
  • Examples of the raw material monomers (D) include 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene.
  • the raw material monomers (D) are two or more of these monomers differing in carbon number by two or more.
  • the raw material monomers (D) are preferably at least two monomers selected from the group consisting of 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene, and more preferably 1-octene (D1) and 1-dodecene (D2).
  • the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in step 1 is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5 (45:55 to 55:45) in terms of molar ratio.
  • the multiple raw material monomers (D) have a carbon number difference of 2 or more between the first raw material monomer and the second raw material monomer, and the difference in the carbon number between the first raw material monomer and the second raw material monomer is 2 or more, preferably 3 or more, and more preferably 4 or more.
  • the difference in the carbon number between the first raw material monomer and the second raw material monomer is preferably 6 or less, more preferably 5 or less, and even more preferably 4.
  • At least two kinds of raw material monomers (D) are used, but three or more kinds may be used. When three or more kinds are used, at least two of them have different carbon numbers by 2 or more.
  • the number of raw material monomers (D) is preferably two.
  • the raw material monomers (D) may be used as they are in the polymerization reaction, but it is more preferable to treat them with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
  • the ratio [D/A] of the total of the multiple raw material monomers (D) to the metallocene compound (A), in terms of molar ratio, is preferably 1 to 1000, and more preferably 40 to 300.
  • the amount of the multiple raw material monomers (D) used within the above range is preferably 0.1 to 30 volume %, more preferably 0.5 to 20 volume %, even more preferably 0.5 to 15 volume %, still more preferably 0.6 to 12 volume %, and even more preferably 0.6 to 10 volume %, based on the catalyst mixture obtained in step 1.
  • the amount of the multiple raw material monomers (D) used within the above range the low-temperature fluidity of the ⁇ -olefin polymer can be improved.
  • the component (E) in step 1 is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3), and is preferably an alcohol (E1).
  • component (E) particularly alcohols (E1)
  • the low-temperature fluidity of the ⁇ -olefin polymer can be further improved.
  • the reason for this is unclear, but is thought to be as follows. It is presumed that activated and inactivated forms coexist in the catalyst solution in step 1, and it is believed that, particularly in the catalyst solution to which alcohols (E1) have been added, the alcohols act on the activated structure to form a protective structure, thereby suppressing the generation of inactivated forms and contributing to improved catalyst activity.
  • this protective structure By becoming an activated form with this protective structure, it becomes easier for multiple raw material monomers having different molecular weights to act on each other, and it becomes easier for structural units derived from multiple raw material monomers to be randomly arranged, and it is believed that the obtained polymer has excellent low-temperature fluidity.
  • the alcohol (E1) is preferably an alcohol having 1 to 20 carbon atoms, more preferably an alcohol having 1 to 8 carbon atoms, and even more preferably an alcohol having 1 to 6 carbon atoms.
  • Specific examples of the alcohol include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, 1-pentyl alcohol, 2-pentyl alcohol, 3-methyl-1-butyl alcohol, 1-hexyl alcohol, cyclohexyl alcohol, 1-heptyl alcohol, 1-octyl alcohol, 2-ethylhexyl alcohol, triphenylmethanol, 1,2-ethanediol, 1,2-propanediol, benzyl alcohol, ⁇ -methylbenzyl alcohol, and the like, and is preferably tertiary butyl alcohol.
  • the alcohol (E1) may be used alone or in combination of
  • the phenol (E2) is preferably a phenol having 6 to 20 ring carbon atoms, more preferably a phenol having 6 to 14 ring carbon atoms, and even more preferably a phenol having 6 to 12 ring carbon atoms.
  • Specific examples of the phenol include phenol, catechol, cresol, naphthol, 4-phenylphenol, thymol, and bisphenol A.
  • the phenol (E2) may be used alone or in combination of two or more.
  • R 10 and R 11 are each independently a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and the total number of carbon atoms of R 10 and R 11 is preferably 8 or less.
  • the ether compound examples include dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, dioctyl ether, didecyl ether, methyl normal butyl ether, methyl isobutyl ether, methyl tertiary butyl ether, ethyl normal butyl ether, ethyl isobutyl ether, ethyl tertiary butyl ether, methyl phenyl ether, chloromethyl methyl ether, chloromethyl ethyl ether, bromomethyl methyl ether, 2,2-dichloroethyl methyl ether, 2-chloroethyl methyl ether, 2-bromoethyl methyl ether, 2-chloroethyl ethyl ether, ⁇ , ⁇ -dichloromethyl methyl ether, 1-chloro-2,2,2-trifluoroethyl
  • the ratio (usage ratio) of the metallocene compound (A) to the component (E) [A/E] is preferably 10:1 to 1:100, more preferably 1:1 to 1:50, and even more preferably 1:1 to 1:30, in terms of molar ratio.
  • the ratio of the organometallic compound (C) to the component (E) is preferably less than 1, and the molar ratio of the organometallic compound (C) to the component (E) is preferably 10:9 to 1000:1.
  • the alcohol (E1) which is the component (E) is generally added in large quantities as a terminator after the polymerization reaction. Surprisingly, in the present invention, activity can be improved by adding a small amount of the component (E) before polymerization.
  • a solvent may be further mixed, and it is preferable to mix a solvent from the viewpoint of uniformly mixing each component of the catalyst mixture.
  • the solvent that can be used in step 1 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons.
  • aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and are preferably toluene or xylene, and more preferably toluene.
  • alicyclic hydrocarbon examples include cyclopentane, cyclohexane, and methylcyclohexane.
  • Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
  • halogenated hydrocarbons include chloroform and dichloromethane.
  • the solvent may be used alone or in combination of two or more kinds.
  • the amount of the solvent used is not particularly limited, but is preferably an amount that results in a concentration of the metallocene compound (A) of 0.1 to 10 mmol/L, more preferably an amount that results in a concentration of 0.5 to 5 mmol/L, and even more preferably an amount that results in a concentration of 1 to 3 mmol/L.
  • Step 1 is the step of mixing the above components to obtain a catalyst mixture.
  • mixing is preferably carried out at 50° C. or lower for 30 minutes or longer.
  • the temperature when the above components are mixed is preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower.
  • the lower limit is preferably 0° C. or higher, and more preferably 10° C. or higher.
  • the time for mixing the above components is preferably 30 minutes or more, more preferably 30 minutes to 10 hours, and even more preferably 1 to 7 hours. That is, in step 1, mixing is preferably carried out for 30 minutes or more at 50° C. or lower.
  • Step 2 is a step of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • the production process of the present invention is for obtaining an ⁇ -olefin polymer by polymerizing an ⁇ -olefin
  • the ⁇ -olefin used in step 2 is a raw material for the ⁇ -olefin polymer.
  • the ⁇ -olefin used in step 2 contains the plurality of raw material monomers (D).
  • the ⁇ -olefin used in step 2 is preferably an ⁇ -olefin having 3 to 30 carbon atoms, more preferably an ⁇ -olefin having 6 to 20 carbon atoms, and even more preferably an ⁇ -olefin having 8 to 14 carbon atoms.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene.
  • examples of the raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, and 1-hexene. D1) and 1-dodecene (D2).
  • the ratio of 1-octene (D1) to 1-dodecene (D2) used in step 2 [D1/D2] is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5 (45:55 to 55:45) in terms of molar ratio.
  • the ratio of the multiple raw material monomers (D) in the ⁇ -olefin used in step 2 is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, even more preferably 90 to 100 mol %, and still more preferably 95 to 100 mol %.
  • the ⁇ -olefin used in step 2 may be composed only of the multiple raw material monomers (D), or may be composed only of 1-octene (D1) and 1-dodecene (D2).
  • the ⁇ -olefin used in step 2 contains the plurality of raw material monomers (D) and therefore at least two types are used, but three or more types may be used, and two types are preferred.
  • the ⁇ -olefin used in step 2 may be used as it is in the polymerization reaction, but it is more preferable to treat it with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
  • the amount of ⁇ -olefin used as the raw material is preferably 200 kg or more, more preferably 300 kg or more, even more preferably 400 kg or more, and even more preferably 500 kg or more.
  • the polymerization method is not particularly limited, and any method such as bulk polymerization, solution polymerization, suspension polymerization, slurry polymerization, and gas phase polymerization may be used.
  • the polymerization temperature is preferably 0 to 200°C, more preferably 30 to 150°C, even more preferably 40 to 120°C, and still more preferably 80 to 120°C.
  • the ratio of the catalyst to the raw material ⁇ -olefin that is, the molar ratio of the ⁇ -olefin used in step 2 to the metallocene compound (A) used in step 1 [ ⁇ -olefin/metallocene compound (A)] is preferably 1 to 10 8 , more preferably 100 to 10 6 .
  • the polymerization time is preferably 5 minutes to 20 hours, and the reaction pressure is preferably 0 to 0.2 MPaG, where "MPaG" represents "MPa (gauge pressure)."
  • the polymerization is preferably performed without a solvent, but a solvent may be used.
  • the solvent that can be used in step 2 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons.
  • aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and toluene or xylene is preferable, and toluene is more preferable.
  • the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclohexane.
  • Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
  • halogenated hydrocarbons include chloroform and dichloromethane.
  • the solvent may be used alone or in combination of two or more kinds.
  • step 2 when polymerizing ⁇ -olefins, it is preferable to add hydrogen because the activity is improved by adding hydrogen.
  • the hydrogen partial pressure is preferably 0.2 MPaG or less, and more preferably 0.1 MPaG or less.
  • the lower limit of the hydrogen partial pressure is 0.01 MPaG.
  • Step 2 is a step of polymerizing an ⁇ -olefin using the catalyst mixture, and in step 2, it is preferable to mix the ⁇ -olefin with an organoaluminum compound (C2), and then mix the catalyst mixture to polymerize the ⁇ -olefin.
  • the organoaluminum compound (C2) used here is the same as the organoaluminum compound (C1) used in step 1, and the preferred compounds are also the same. It is more preferable that the organoaluminum compound (C2) and the organoaluminum compound (C1) are the same compound.
  • step 2 it is more preferable to mix the ⁇ -olefin with the organoaluminum compound (C2), then mix the catalyst mixture, and then raise the temperature to 80° C. or higher to polymerize the ⁇ -olefin.
  • the preferred polymerization temperature is as described above, and is preferably 80 to 120° C.
  • the molecular weight of the ⁇ -olefin polymer can be adjusted by adjusting the type, amount of each catalyst component used, reaction amount, polymerization temperature, and solvent.
  • the polymerization in step 2 is preferably carried out in a reaction vessel having a capacity of 700 L or more, more preferably in a reaction vessel having a capacity of 800 L or more, and even more preferably in a reaction vessel having a capacity of 1000 L or more. It is believed that by increasing the reaction scale, the effect of the reactor wall on the catalytic activity is reduced, and the obtained ⁇ -olefin polymer has better low-temperature fluidity.
  • Methods for removing the monomer and oligomer components include, for example, distillation.
  • the ⁇ -olefin polymer obtained in step 2 may be used as it is as a lubricant, a lubricant base oil, or an additive for a lubricant, but it is preferable to further hydrogenate it.
  • the ⁇ -olefin polymer obtained by the production method of the present invention includes hydrogenated ⁇ -olefin polymers, and the ⁇ -olefin polymer of the present invention described below also includes hydrogenated ⁇ -olefin polymers. Hydrogenation can improve stability.
  • the reaction conditions for the hydrogenation step may be general hydrogenation reaction conditions, but the preferred conditions are as follows. In this hydrogenation step, a commonly used gas phase hydrogenation method can be used.
  • the reaction temperature is preferably 60 to 100°C and the hydrogen pressure is preferably 0.1 to 1 MPa.
  • the reaction temperature is preferably 100 to 250°C and the hydrogen pressure is preferably 0.1 to 20 MPa.
  • the amount of catalyst is preferably 0.05 to 50 mass% relative to the polymer obtained in step 2, and the reaction time is preferably 2 to 48 hours.
  • the hydrogenation reaction proceeds quickly by using the hydrogenation catalyst, but additional operations such as temperature increase or pressure increase may be performed even after significant absorption of hydrogen has ceased in order to completely hydrogenate the remaining trace amounts of raw material.
  • the ⁇ -olefin polymer obtained by the above production method has excellent low-temperature fluidity. That is, the present invention also includes an ⁇ -olefin polymer obtained by a method including a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert to a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in carbon number by 2 or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture, and a step 2 of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • the plurality of raw material monomers (D) are preferably 1-octene (D1) and 1-dodecene (D2).
  • the present invention also includes an ⁇ -olefin polymer that satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less. (Pour point (°C)) ⁇ 0.0090 ⁇ (40°C kinematic viscosity (cSt)) ⁇ 52 (1)
  • the ⁇ -olefin polymer obtained by the above production method is preferably an ⁇ -olefin polymer which satisfies the above formula (1) and has a 40° C. kinetic viscosity of 350 cSt or more and 1500 cSt or less, and more preferably satisfies the following formula (3), and even more preferably satisfies the following formula (4).
  • An ⁇ -olefin polymer having a 40° C. kinematic viscosity of 350 cSt or more and 1500 cSt or less and satisfying the above formulae has excellent low-temperature fluidity.
  • the kinetic viscosity is measured in accordance with JIS K 2283.
  • the ⁇ -olefin polymer preferably has a kinematic viscosity at 40° C. of 350 to 500 cSt and a pour point of ⁇ 50° C. or lower.
  • the above-mentioned ⁇ -olefin polymer is preferably an ⁇ -olefin polymer satisfying the following formula (2): (Pour point (°C)) ⁇ 0.3 ⁇ (viscosity index) ⁇ 103 (2)
  • the ⁇ -olefin polymer satisfying the formula (2) is preferably an ⁇ -olefin polymer satisfying the following formula (5), and more preferably an ⁇ -olefin polymer satisfying the following formula (6).
  • the ⁇ -olefin polymer obtained by the production method is preferably an ⁇ -olefin polymer satisfying the formula (2), and more preferably an ⁇ -olefin polymer satisfying the following formula (5), and even more preferably an ⁇ -olefin polymer satisfying the following formula (6).
  • the viscosity index (VI) of the ⁇ -olefin polymer is preferably not more than 220, more preferably not more than 200, and even more preferably not more than 180.
  • the lower limit is preferably 100 or more.
  • the viscosity index is determined by calculation in accordance with JIS K 2283 from the kinematic viscosity measured in accordance with JIS K 2283.
  • the obtained ⁇ -olefin polymer preferably satisfies the above-mentioned requirements. Specific examples are shown below.
  • the obtained ⁇ -olefin polymer preferably satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less. (Pour point (°C)) ⁇ 0.0090 ⁇ (40°C kinematic viscosity (cSt)) ⁇ 52 (1)
  • kinematic viscosity of 350 cSt or more and 1500 cSt or less preferably satisfies the following formula (3), and more preferably satisfies the following formula (4).
  • An ⁇ -olefin polymer having a 40° C. kinematic viscosity of 350 cSt or more and 1500 cSt or less and satisfying the above formulae has excellent low-temperature fluidity.
  • the kinematic viscosity is measured in accordance with JIS K 2283.
  • the ⁇ -olefin polymer obtained preferably has a 40° C. kinematic viscosity of 350 to 500 cSt and a pour point of ⁇ 50° C. or lower.
  • the obtained ⁇ -olefin polymer preferably satisfies the following formula (2): (Pour point (°C)) ⁇ 0.3 ⁇ (viscosity index) ⁇ 103 (2)
  • the ⁇ -olefin polymer satisfying formula (2) obtained by the method for producing an ⁇ -olefin polymer of the present invention is preferably an ⁇ -olefin polymer satisfying the following formula (5), and more preferably an ⁇ -olefin polymer satisfying the following formula (6): (Pour point (°C)) ⁇ 0.3 ⁇ (Viscosity index) ⁇ 104 (5) (Pour point (°C)) ⁇ 0.3 ⁇ (Viscosity index) ⁇ 105 (6)
  • the viscosity index (VI) of the ⁇ -olefin polymer is preferably not more than 220, more preferably not more than 200, and even more preferably not more than 180. The lower limit is preferably 100 or more.
  • the viscosity index is determined by
  • the ⁇ -olefin polymer preferably contains a structural unit derived from 1-octene and a structural unit derived from 1-dodecene.
  • the total ratio of the constituent units derived from 1-octene and the constituent units derived from 1-dodecene in the ⁇ -olefin polymer is preferably 90 to 100 mol %.
  • the molar ratio of the constituent units derived from 1-octene to the constituent units derived from 1-dodecene in the ⁇ -olefin polymer is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5 (45:55 to 55:45).
  • the present invention also includes lubricating oils containing the above-mentioned ⁇ -olefin polymers, and lubricating oils containing the ⁇ -olefin polymers obtained by the above-mentioned production method.
  • additives can be used in the lubricating oil of the present invention as long as the effects of the present invention are not impaired.
  • additives include extreme pressure agents, oiliness agents, antiwear agents, antioxidants, metal deactivators, rust inhibitors and antifoam agents.
  • the method for producing the lubricating oil is preferably a method for producing a lubricating oil that includes a step of mixing the ⁇ -olefin polymer obtained by the method described above or the ⁇ -olefin polymer with at least one additive selected from the group consisting of extreme pressure agents, oiliness agents, antiwear agents, antioxidants, metal deactivators, rust inhibitors, and antifoaming agents.
  • the extreme pressure agent examples include sulfur-based extreme pressure agents, phosphorus-based extreme pressure agents, extreme pressure agents containing sulfur and metal, and extreme pressure agents containing phosphorus and metal. These extreme pressure agents can be used alone or in combination of two or more.
  • the extreme pressure agent may be any agent that contains sulfur atoms and/or phosphorus atoms in the molecule and can exhibit load resistance and wear resistance.
  • the amount of the extreme pressure agent blended is usually about 0.01 to 30 mass %, and preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil, from the standpoint of blending effect and economy.
  • oily agents examples include fatty alcohols, fatty acids and fatty acid metal salts and other fatty acid compounds, polyol esters, sorbitan esters, glycerides and other ester compounds, and fatty amines and other amine compounds.
  • the amount of the oiliness agent to be added is usually about 0.1 to 30 mass %, and preferably 0.5 to 10 mass %, based on the total amount of the lubricating oil, from the viewpoint of the effect of the addition.
  • anti-wear agents include sulfur-containing compounds such as zinc dialkyldithiophosphate (ZnDTP), zinc phosphate, disulfides, sulfurized olefins, sulfurized oils and fats, sulfurized esters, thiocarbonates, thiocarbamates, and polysulfides; phosphorus-containing compounds such as phosphites, phosphates, phosphonates, and amine salts or metal salts thereof; and sulfur- and phosphorus-containing anti-wear agents such as thiophosphites, thiophosphates, thiophosphonates, and amine salts or metal salts thereof.
  • the amount of the anti-wear agent blended is usually about 0.01 to 30 mass %, and more preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil, from the viewpoints of blending effect and economy.
  • the antioxidant is preferably at least one selected from the group consisting of phenol-based antioxidants, amine-based antioxidants, and zinc dialkyldithiophosphates, more preferably at least one selected from the group consisting of phenol-based antioxidants and amine-based antioxidants, and even more preferably a phenol-based antioxidant.
  • phenol-based antioxidants tetrakis[methylene-3-(3',5-di-t-butyl-4'-hydroxyphenyl)propionate]methane is preferred.
  • a plurality of these antioxidants may be used in combination, or one of these antioxidants may be used in combination with an antioxidant having a peroxide decomposition function.
  • Antioxidants having a peroxide decomposition function include organic sulfur-based antioxidants, and zinc dialkyldithiophosphate has both a radical scavenging function and a peroxide decomposition function.
  • the amount of the antioxidant contained in the lubricating oil of the present invention is preferably 0.1 mass% or more, more preferably 0.2 mass% or more, even more preferably 0.3 mass% or more, and even more preferably 0.4 mass% or more, based on the total amount of the lubricating oil. It is preferably 10 mass% or less, and may be 5 mass% or less, or may be 3 mass% or less.
  • metal deactivators examples include benzotriazole and thiadiazole. From the viewpoint of the compounding effect, the preferred compounding amount of the metal deactivator is usually about 0.01 to 10 mass% based on the total amount of the lubricating oil, and preferably 0.01 to 1 mass%.
  • rust inhibitors examples include metal sulfonates and succinic acid esters. From the viewpoint of compounding effectiveness, the amount of rust inhibitor to be added is usually about 0.01 to 10 mass% based on the total amount of lubricating oil, and preferably 0.05 to 5 mass%.
  • defoamers examples include methylsilicone oil, fluorosilicone oil, polyacrylate, etc. From the viewpoint of compounding effect, the amount of defoamer to be added is usually about 0.0005 to 0.01 mass% based on the total amount of lubricating oil.
  • the content of the ⁇ -olefin polymer of the present invention in the lubricating oil is preferably 55% by mass or more, more preferably 60% by mass or more, and even more preferably 80% by mass or more. It may also be 100% by mass or less, and may consist of only the ⁇ -olefin polymer of the present invention. When it is within the above range, the effects of the present invention are fully exerted, and low fuel consumption, energy saving, and long life can be achieved.
  • Example 1 A 30 L stainless steel vessel was charged with 18.9 kg of toluene that had been dehydrated to a water content of 10 ppm or less under a nitrogen atmosphere, 0.89 kg of triisobutylaluminum (C1) (20% toluene solution), 0.0198 kg of tertiary butyl alcohol (E1), 30 mmol of (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)-bis(cyclopentadienyl)zirconium dichloride (A), 36 mmol of N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (B), 0.08 kg of 1-octene (D1), and 0.12 kg of 1-dodecene (D2), and the mixture was stirred at room temperature (25°C) for 2 hours to obtain a catalyst mixture.
  • C1 triisobutylaluminum
  • E1 tertiary butyl alcohol
  • Step 2 A stainless steel reaction vessel with an internal volume of 1.2 m 3 (1200 L) was thoroughly dried and purged with nitrogen, after which 345 kg of 1-dodecene (D2) and 230 kg of 1-octene (D1) were introduced, followed by 0.19 kg of triisobutylaluminum (C2) (20% toluene solution), and the temperature was raised to 95° C. Hydrogen at 0.2 MPaG was introduced, and the catalyst mixture obtained in step 1 was continuously introduced at a rate of 0.4 kg per hour. After the start of introduction of the catalyst mixture, the internal temperature was maintained at 103° C. to carry out the reaction.
  • D2 1-dodecene
  • D1 1-octene
  • C2 triisobutylaluminum
  • reaction liquid A small amount of the reaction liquid was withdrawn during the reaction, and the conversion was measured, and the reaction was stopped when the conversion reached 90%. Distillation was carried out under reduced pressure of 50 Pa and 250° C. to remove residual monomers, etc., to obtain an ⁇ -olefin polymer.
  • Example 2 A catalyst mixture was obtained in the same manner as in Example 1, except that in step 1 of Example 1, the amount of triisobutylaluminum (20% toluene solution) was changed to 1.2 kg, the amount of tert-butyl alcohol was changed to 0.0440 kg, the amount of 1-octene was changed to 0.586 kg, and the amount of 1-dodecene was changed to 0.880 kg. Using the obtained catalyst mixture, step 2 and the hydrogenation step were performed in the same manner as in Example 1, to obtain an ⁇ -olefin polymer.
  • Comparative Example 1 (Step 1) In a 500 mL glass Schlenk flask, 334 mL of special grade toluene that had been dehydrated to 10 ppm or less of water was added under a nitrogen atmosphere, 40 mL of 1-octene, 24 mmol of triisobutylaluminum (2 mmol/mL toluene solution; 12 mL), and 14.4 mmol of tertiary butyl alcohol were added and stirred at room temperature for 1 hour.
  • Step 2 A stainless steel autoclave with an internal volume of 30 L was thoroughly dried and purged with nitrogen, after which 8.0 kg (10.5 L) and 5.4 kg (7.5 L) of 1-dodecene and 1-octene were introduced, respectively, followed by 5.4 mmol of triisobutylaluminum, and the temperature was raised to 95°C. Hydrogen was introduced at 0.02 MPaG, and the catalyst mixture obtained in step 1 was continuously introduced at a rate of 36 mL per hour using a plunger pump. After the start of catalyst introduction, the internal temperature was maintained at 102°C and the reaction was carried out for 5 hours. A small amount of the reaction liquid was withdrawn during the reaction, and the conversion rate was measured.
  • a thin-film distillation apparatus (special model molecular distillation apparatus MS-300, high vacuum exhaust apparatus DS-212Z, manufactured by Shibata Scientific Co., Ltd.) to remove low molecular weight components having a carbon number of 24 or less, to obtain an ⁇ -olefin polymer.
  • ⁇ -olefin polymer obtained in step 2 was placed in a stainless steel autoclave with an internal volume of 1 liter, and 1% by mass of a stabilized nickel catalyst (SN750 manufactured by Sakai Chemical Industry Co., Ltd.) was added thereto, followed by reaction for 6 hours at 130° C. under hydrogen of 2 MPa. After completion of the reaction, the temperature was cooled to about 80° C., and the contents were then removed, and the catalyst component was filtered and separated at about 70° C. using a 2 ⁇ m filter, to obtain a colorless and transparent hydrogenated ⁇ -olefin polymer.
  • SN750 manufactured by Sakai Chemical Industry Co., Ltd.
  • the ⁇ -olefin polymers obtained in the examples have a very low pour point and excellent low-temperature fluidity compared to the ⁇ -olefin polymers of the comparative examples, despite having a similar 40°C kinetic viscosity. This shows that the ⁇ -olefin polymers of the present invention also have excellent performance when used as lubricants. By using the ⁇ -olefin polymers of the present invention as lubricants, it is possible to achieve lower fuel consumption, energy savings, and longer life.

Abstract

The present invention relates to a method for producing an α-olefin polymer, the method comprising: step 1 for obtaining a catalyst mixture by mixing a metallocene compound (A), an ionic compound (B) that can be converted to cations through reaction with the metallocene compound (A), an organometallic compound (C), a plurality of raw material monomers (D) at least two of which have different carbon atom numbers, and a component (E) that is at least one selected from the group consisting of alcohols (E1), phenols (E2), and ether compounds (E3); and step 2 for polymerizing α-olefin containing the plurality of raw material monomers (D) by using the catalyst mixture.

Description

α-オレフィン重合体の製造方法Method for producing α-olefin polymer
 本発明は、α-オレフィン重合体の製造方法に関する。 The present invention relates to a method for producing α-olefin polymers.
 近年、環境への配慮から、自動車や工業用機械用の潤滑油には低燃費化・省エネルギー化、長寿命化が望まれており、従来用いられてきたポリα-オレフィン等に比べて、より優れた粘度特性(高い粘度指数)、低温特性(低温流動性)、酸化安定性を有する合成潤滑油が要望されている。従来のポリα-オレフィン系合成潤滑油としては、例えば、塩化アルミニウムあるいは臭化アルミニウムを触媒に用い、1-デセンや1-デセンと1-ドデセンを重合させる方法が挙げられる(特許文献1)。しかしながら、得られたα-オレフィン重合体は粘度指数や流動点、耐久性が十分なものではなかった。
 近年、メタロセン触媒を用いて高性能なα-オレフィン重合体を製造する試みがなされている。特許文献2には、少量の触媒量でα-オレフィン重合体及び水添α-オレフィン重合体を効率よく製造する方法が開示されている。
In recent years, in consideration of the environment, lubricants for automobiles and industrial machines are desired to have low fuel consumption, energy saving, and long life, and synthetic lubricants having better viscosity characteristics (high viscosity index), low temperature characteristics (low temperature fluidity), and oxidation stability than conventionally used poly-α-olefins are desired. Conventional poly-α-olefin synthetic lubricants include, for example, a method of polymerizing 1-decene or 1-decene and 1-dodecene using aluminum chloride or aluminum bromide as a catalyst (Patent Document 1). However, the obtained α-olefin polymers were not sufficient in terms of viscosity index, pour point, or durability.
In recent years, attempts have been made to produce high-performance α-olefin polymers using metallocene catalysts. Patent Document 2 discloses a method for efficiently producing α-olefin polymers and hydrogenated α-olefin polymers using a small amount of catalyst.
特表2008-528709号公報JP 2008-528709 A 国際公開第2014/142206号International Publication No. 2014/142206
 前記のように、低燃費化・省エネルギー化、長寿命化のためには、α-オレフィン系合成潤滑油に、より低温での流動性が求められる。しかし、従来の方法で得られたα-オレフィン重合体では低温流動性が不十分であった。
 そのため、これまで以上に低温での流動性に優れるα-オレフィン重合体を得る方法が求められていた。
 本発明の目的は、低温流動性に優れるα-オレフィン重合体を得ることができるα-オレフィン重合体の製造方法を提供することである。
As described above, in order to achieve low fuel consumption, energy saving, and long life, α-olefin synthetic lubricating oils are required to have good fluidity at low temperatures, but the α-olefin polymers obtained by conventional methods have insufficient low-temperature fluidity.
Therefore, there has been a demand for a method for obtaining an α-olefin polymer having superior fluidity at low temperatures.
An object of the present invention is to provide a process for producing an α-olefin polymer, which is capable of producing an α-olefin polymer having excellent low-temperature fluidity.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、α-オレフィンを重合する工程の前に、特定のメタロセン触媒と複数の原料モノマーとを混合して触媒混合物を得る工程を設けた製造方法によって前記の課題を解決することを見出した。 As a result of extensive research into solving the above problems, the inventors discovered that the above problems could be solved by a manufacturing method that includes a step of mixing a specific metallocene catalyst with multiple raw material monomers to obtain a catalyst mixture before the step of polymerizing α-olefins.
 すなわち、本発明は、以下の<1>~<24>に関する。
<1>メタロセン化合物(A)と、メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程1、及び前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程2を有する、α-オレフィン重合体の製造方法。
<2>前記イオン性化合物(B)が、置換基を有していてもよいテトラフェニルホウ酸塩であり、前記有機金属化合物(C)が、有機アルミニウム化合物(C1)である、上記<1>に記載のα-オレフィン重合体の製造方法。
<3>前記複数の原料モノマー(D)が、1-オクテン(D1)と1-ドデセン(D2)である、上記<1>又は<2>に記載のα-オレフィン重合体の製造方法。
<4>工程1で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]が、モル比で4:6~6:4である、上記<3>に記載のα-オレフィン重合体の製造方法。
<5>工程1において、メタロセン化合物(A)に対する前記複数の原料モノマー(D)の合計の比率[D/A]が、モル比で40~300である、上記<1>~<4>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<6>工程1において、更に溶媒を混合する、上記<1>~<5>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<7>工程1において、50℃以下で30分間以上混合するものである、上記<1>~<6>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<8>工程2において、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、α-オレフィンを重合するものである、上記<1>~<7>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<9>工程2において、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、次に80℃以上に昇温し、α-オレフィンを重合するものである、上記<1>~<8>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<10>工程2で用いられるα-オレフィン中の複数の原料モノマー(D)の比率が、90~100モル%である、上記<1>~<9>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<11>工程2で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]が、モル比で4:6~6:4である、上記<3>~<10>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<12>メタロセン化合物(A)が、二架橋メタロセン化合物である、上記<1>~<11>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<13>メタロセン化合物(A)が、下記一般式(I)で表される二架橋メタロセン化合物である、上記<1>~<12>のいずれか1つに記載のα-オレフィン重合体の製造方法。
Figure JPOXMLDOC01-appb-C000002

(式中、R及びRは、それぞれ独立に、下記一般式-[L(R)(R)]-で表わされる連結基である。X及びXは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、またはハロゲン原子、ケイ素原子、酸素原子、イオウ原子、窒素原子およびリン原子から選ばれる一種以上の原子を含有する炭素数1~20の有機基を示す。Mは周期表第4~6族の遷移金属を示す。nは1~3の整数である。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基を示す。Lは周期表第14族の原子を示す。)
<14>メタロセン化合物(A)と(E)成分との比率[A/E]が、モル比で10:1~1:100である、上記<1>~<13>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<15>工程2におけるα-オレフィンの量が400kg以上である、上記<1>~<14>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<16>工程2の重合を800L以上の容量を有する反応容器で行う、上記<1>~<15>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<17>得られるα-オレフィン重合体の40℃動粘度が350~500cStであり、かつ流動点が-50℃以下である、上記<1>~<16>のいずれか1つに記載のα-オレフィン重合体の製造方法。
<18>下記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下である、α-オレフィン重合体。
  (流動点(℃))≦0.0090×(40℃動粘度(cSt))-52   (1)
<19>40℃動粘度が350~500cStであり、かつ流動点が-50℃以下である、上記<17>に記載のα-オレフィン重合体。
<20>下記式(2)を満たし、粘度指数が220以下である、上記<18>又は<19>に記載のα-オレフィン重合体。
  (流動点(℃))≦0.3×(粘度指数)-103   (2)
<21>下記工程1及び工程2を有する方法によって得られる、α-オレフィン重合体。
 工程1:メタロセン化合物(A)と、前記メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程
 工程2:前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程
<22>下記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下である、上記<21>に記載のα-オレフィン重合体。
  (流動点(℃))≦0.0090×(40℃動粘度(cSt))-52   (1)
<23>上記<1>~<17>のいずれか1つに記載の方法で得られたα-オレフィン重合体、又は上記<18>~<22>のいずれか1つに記載のα-オレフィン重合体を含有する、潤滑油。
<24>上記<1>~<17>のいずれか1つに記載の方法で得られたα-オレフィン重合体、又は上記<18>~<22>のいずれか1つに記載のα-オレフィン重合体と、極圧剤、油性剤、耐摩耗剤、酸化防止剤、金属不活性化剤、防錆剤及び消泡剤からなる群より選ばれる少なくとも1つの添加剤とを混合する工程を有する、潤滑油の製造方法。
That is, the present invention relates to the following <1> to <24>.
<1> A method for producing an α-olefin polymer, comprising: Step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it to a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in number of carbon atoms by two or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture; and Step 2 of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
<2> The method for producing an α-olefin polymer according to the above <1>, wherein the ionic compound (B) is a tetraphenylborate which may have a substituent, and the organometallic compound (C) is an organoaluminum compound (C1).
<3> The method for producing an α-olefin polymer according to the above item <1> or <2>, wherein the plurality of raw material monomers (D) are 1-octene (D1) and 1-dodecene (D2).
<4> The method for producing an α-olefin polymer according to the above <3>, wherein the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in the step 1 is 4:6 to 6:4 in terms of molar ratio.
<5> The method for producing an α-olefin polymer according to any one of the above <1> to <4>, wherein in step 1, a ratio [D/A] of the total of the plurality of raw material monomers (D) to the metallocene compound (A) is 40 to 300 in terms of a molar ratio.
<6> The method for producing an α-olefin polymer according to any one of the above <1> to <5>, further comprising mixing a solvent in the step 1.
<7> The method for producing an α-olefin polymer according to any one of the above <1> to <6>, wherein in step 1, mixing is carried out at 50° C. or lower for 30 minutes or longer.
<8> The method for producing an α-olefin polymer according to any one of the above <1> to <7>, wherein in step 2, an α-olefin and an organoaluminum compound (C2) are mixed, and then a catalyst mixture is mixed therewith to polymerize the α-olefin.
<9> The method for producing an α-olefin polymer according to any one of the above <1> to <8>, wherein in step 2, an α-olefin and an organoaluminum compound (C2) are mixed, then a catalyst mixture is mixed, and then the temperature is raised to 80° C. or higher to polymerize the α-olefin.
<10> The method for producing an α-olefin polymer according to any one of the above <1> to <9>, wherein a ratio of the multiple raw material monomers (D) in the α-olefin used in the step 2 is 90 to 100 mol %.
<11> The method for producing an α-olefin polymer according to any one of the above <3> to <10>, wherein a ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in the step 2 is 4:6 to 6:4 in terms of a molar ratio.
<12> The method for producing an α-olefin polymer according to any one of the above <1> to <11>, wherein the metallocene compound (A) is a doubly bridged metallocene compound.
<13> The method for producing an α-olefin polymer according to any one of the above <1> to <12>, wherein the metallocene compound (A) is a doubly bridged metallocene compound represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000002

(In the formula, R a and R b each independently represent a linking group represented by the following general formula -[L(R 1 )(R 2 )] n -. X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. M represents a transition metal of Groups 4 to 6 of the periodic table. n is an integer of 1 to 3. R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms. L represents an atom of Group 14 of the periodic table.)
<14> The method for producing an α-olefin polymer according to any one of the above <1> to <13>, wherein the ratio [A/E] of the metallocene compound (A) to the component (E) is 10:1 to 1:100 in terms of molar ratio.
<15> The method for producing an α-olefin polymer according to any one of the above <1> to <14>, wherein the amount of the α-olefin in the step 2 is 400 kg or more.
<16> The method for producing an α-olefin polymer according to any one of the above <1> to <15>, wherein the polymerization in the step 2 is carried out in a reaction vessel having a capacity of 800 L or more.
<17> The method for producing an α-olefin polymer according to any one of the above <1> to <16>, wherein the obtained α-olefin polymer has a kinematic viscosity at 40° C. of 350 to 500 cSt and a pour point of −50° C. or lower.
<18> An α-olefin polymer which satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1,500 cSt or less:
(Pour point (°C))≦0.0090×(40°C kinematic viscosity (cSt))−52 (1)
<19> The α-olefin polymer according to the above <17>, having a kinetic viscosity at 40° C. of 350 to 500 cSt and a pour point of −50° C. or lower.
<20> The α-olefin polymer according to the above <18> or <19>, which satisfies the following formula (2) and has a viscosity index of 220 or less:
(Pour point (°C))≦0.3 × (viscosity index) −103 (2)
<21> An α-olefin polymer obtained by a process having the following steps 1 and 2:
Step 1: a step of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in carbon number by 2 or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture. Step 2: a step of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture. <22> An α-olefin polymer according to the above <21>, which satisfies the following formula (1) and has a kinetic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less.
(Pour point (°C))≦0.0090×(40°C kinematic viscosity (cSt))−52 (1)
<23> A lubricating oil containing an α-olefin polymer obtained by the method according to any one of the above <1> to <17>, or the α-olefin polymer according to any one of the above <18> to <22>.
<24> A method for producing a lubricating oil, comprising a step of mixing an α-olefin polymer obtained by the method according to any one of the above <1> to <17>, or the α-olefin polymer according to any one of the above <18> to <22>, with at least one additive selected from the group consisting of an extreme pressure agent, an oiliness agent, an antiwear agent, an antioxidant, a metal deactivator, a rust inhibitor, and an antifoaming agent.
 本発明によれば、低温流動性に優れるα-オレフィン重合体を得ることができるα-オレフィン重合体の製造方法を提供することができる。得られるα-オレフィン重合体は、低温流動性に優れるため、潤滑油として好適に用いることができる。 The present invention provides a method for producing an α-olefin polymer that can produce an α-olefin polymer with excellent low-temperature fluidity. The resulting α-olefin polymer has excellent low-temperature fluidity and can therefore be suitably used as a lubricant.
[α-オレフィン重合体の製造方法]
 本発明は、メタロセン化合物(A)と、上記メタロセン化合物と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程1、及び前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程2を有する、α-オレフィン重合体の製造方法である。
 以下に、本発明について詳細に説明する。
[Production method of α-olefin polymer]
The present invention provides a method for producing an α-olefin polymer, comprising: a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in number of carbon atoms by two or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture; and a step 2 of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
The present invention will be described in detail below.
[工程1]
 工程1は、メタロセン化合物(A)と、上記メタロセン化合物と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程である。
[Step 1]
Step 1 is a step of obtaining a catalyst mixture by mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to be converted into a cation, an organometallic compound (C), a plurality of raw material monomers (D) each having a carbon number differing by two or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3).
<メタロセン化合物(A)>
 メタロセン化合物(A)としては、無架橋メタロセン化合物、単架橋メタロセン化合物、及び二架橋メタロセン化合物が挙げられ、好ましくは二架橋メタロセン化合物であり、より好ましくは下記一般式(I)で表される二架橋メタロセン化合物である。
Figure JPOXMLDOC01-appb-C000003

(式中、R及びRは、それぞれ独立に、下記一般式-[L(R)(R)]-で表わされる連結基である。X及びXは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、またはハロゲン原子、ケイ素原子、酸素原子、イオウ原子、窒素原子およびリン原子から選ばれる一種以上の原子を含有する炭素数1~20の有機基を示す。Mは周期表第4~6族の遷移金属を示す。nは1~3の整数である。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基を示す。Lは周期表第14族の原子を示す。)
<Metallocene Compound (A)>
Examples of the metallocene compound (A) include an unbridged metallocene compound, a single-bridged metallocene compound, and a double-bridged metallocene compound. A double-bridged metallocene compound is preferred, and a double-bridged metallocene compound represented by the following general formula (I) is more preferred.
Figure JPOXMLDOC01-appb-C000003

(In the formula, R a and R b each independently represent a linking group represented by the following general formula -[L(R 1 )(R 2 )] n -. X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. M represents a transition metal of Groups 4 to 6 of the periodic table. n is an integer of 1 to 3. R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms. L represents an atom of Group 14 of the periodic table.)
 式(I)において、X及びXは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、またはハロゲン原子、ケイ素原子、酸素原子、イオウ原子、窒素原子およびリン原子から選ばれる一種以上の原子を含有する炭素数1~20の有機基を示す。
 Mは周期表第4~6族の遷移金属を示し、好ましくはジルコニウム、チタン、又はハフニウムである。
 R及びRは、それぞれ独立に、-[L(R)(R)]-で表わされる連結基であり、好ましくは、-C(R)(R)-、-Si(R)(R)-、-C(R)(R)-C(R)(R)-又は-Si(R)(R)-Si(R)(R)-である。
 nは1~3の整数である。
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基を示し、好ましくは水素原子または炭素数1~4の炭化水素基であり、より好ましくは水素原子または炭素数1~4のアルキル基である。
 Lは周期表第14族の原子を示し、好ましくは炭素原子又はケイ素原子である。
In formula (I), X1 and X2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
M represents a transition metal of Groups 4 to 6 of the periodic table, and is preferably zirconium, titanium, or hafnium.
R a and R b are each independently a linking group represented by -[L(R 1 )(R 2 )] n -, and are preferably -C(R 1 )(R 2 )-, -Si(R 1 )(R 2 )-, -C(R 1 )(R 2 )-C(R 1 )(R 2 )- or -Si(R 1 )(R 2 )-Si(R 1 )(R 2 )-.
n is an integer from 1 to 3.
R1 and R2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
L represents an atom of Group 14 of the periodic table, and is preferably a carbon atom or a silicon atom.
 前記一般式(I)で表される二架橋メタロセン化合物の具体例としては、(1,1’-エチレン)(2,2’-エチレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-エチレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-イソプロピリデン)(2,2’-ジメチルシリレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-イソプロピリデン)(2,2’-イソプロピリデン)ビス(3-メチルシクロペンタジエニル)ジルコニウムジクロリド等のジクロル体及び上記化合物のジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体が挙げられ、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビスシクロペンタジエニルジルコニウムジクロリドが好ましい。
 また、上記化合物のジルコニウムを、チタン又はハフニウムに置き換えた化合物が挙げられる。
 メタロセン化合物(A)は、一種用いてもよく、二種以上を組み合わせて用いてもよい。
Specific examples of the doubly bridged metallocene compound represented by the general formula (I) include (1,1'-ethylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-isopropylidene)(2,2'- Examples of such compounds include dichlorides such as (1,1'-isopropylidene)(2,2'-isopropylidene)bis(3-methylcyclopentadienyl)zirconium dichloride, as well as dimethyl, diethyl, dihydro, diphenyl and dibenzyl forms of the above compounds, with (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)biscyclopentadienylzirconium dichloride being preferred.
Further, compounds in which zirconium in the above compounds is replaced with titanium or hafnium can be mentioned.
The metallocene compound (A) may be used alone or in combination of two or more kinds.
<イオン性化合物(B)>
 イオン性化合物(B)は、前記メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物であれば、制限はないが、好ましくは下記一般式(V)で表される化合物又は下記一般式(VI)で表される化合物であり、より好ましくは下記一般式(V)で表される化合物である。
   ([L-Rk+([Z] ・・・(V)
   ([Lk+([Z]    ・・・(VI)
<Ionic Compound (B)>
The ionic compound (B) is not limited as long as it is an ionic compound capable of reacting with the metallocene compound (A) to be converted into a cation. The ionic compound (B) is preferably a compound represented by the following general formula (V) or a compound represented by the following general formula (VI), and more preferably a compound represented by the following general formula (V).
([L 1 −R 3 ] k+ ) a ([Z] ) b ... (V)
([L 2 ] k+ ) a ([Z] ) b ... (VI)
 一般式(V)において、Lはルイス塩基を示し、Rは水素原子、炭素数1~20のアルキル基、または、アリール基、アルキルアリール基およびアリールアルキル基から選ばれる炭素数6~20の炭化水素基を示す。 In general formula (V), L1 represents a Lewis base, and R3 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group, and an arylalkyl group.
 ここで、Lの具体例としては、アンモニア、メチルアミン、アニリン、ジメチルアミン、ジエチルアミン、N-メチルアニリン、ジフェニルアミン、N,N-ジメチルアニリン、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、メチルジフェニルアミン、ピリジン、p-ブロモ-N,N-ジメチルアニリン、p-ニトロ-N,N-ジメチルアニリンなどのアミン類、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル、ベンゾニトリルなどのニトリル類などを挙げることができる。Rの具体例としては、水素原子、メチル基、エチル基、ベンジル基、トリチル基などを挙げることができる。 Specific examples of L1 include amines such as ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N,N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N,N-dimethylaniline, p-nitro-N,N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, esters such as ethyl benzoate, nitriles such as acetonitrile, benzonitrile, etc. Specific examples of R3 include a hydrogen atom, a methyl group, an ethyl group, a benzyl group, a trityl group, etc.
 一般式(VI)において、LはM、R、R C又はRを表す。R及びRは、それぞれ独立に、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基を示し、Rは炭素数1~20のアルキル基、または、アリール基、アルキルアリール基およびアリールアルキル基から選ばれる炭素数6~20の炭化水素基を示す。Rはテトラフェニルポルフィリン、フタロシアニン等の大環状配位子を示す。
 Mは、周期律表第1~3、11~13族元素を含むものであり、Mは、周期律表第7~12族元素を示す。
In general formula (VI), L2 represents M1 , R4R5M2 , R63C or R7M2 . R4 and R5 each independently represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, R6 represents an alkyl group having 1 to 20 carbon atoms or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group and an arylalkyl group. R7 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
M 1 includes an element of Groups 1 to 3 and 11 to 13 of the periodic table, and M 2 represents an element of Groups 7 to 12 of the periodic table.
 ここで、R、Rの具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げることができる。Rの具体例としては、フェニル基、p-トリル基、p-メトキシフェニル基等を挙げることができ、Rの具体例としては、テトラフェニルポルフィリン、フタロシアニンなどを挙げることができる。また、Mの具体例としては、Li、Na、K、Ag、Cuなどを挙げることができ、Mの具体例としては、Mn、Fe、Co、Ni、Znなどを挙げることができる。 Here, specific examples of R 4 and R 5 include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, and a pentamethylcyclopentadienyl group. Specific examples of R 6 include a phenyl group, a p-tolyl group, and a p-methoxyphenyl group, and specific examples of R 7 include tetraphenylporphyrin and phthalocyanine. Specific examples of M 1 include Li, Na, K, Ag, and Cu, and specific examples of M 2 include Mn, Fe, Co, Ni, and Zn.
 一般式(V)および(VI)において、kは[L-R]、[L]のイオン価数で1~3の整数、aは1以上の整数、b=(k×a)である。
 [Z]は、非配位性アニオン[Z又は[Zを表す。
 [Zは複数の基が元素に結合したアニオン、すなわち[M・・・Gを表す。ここで、Mは周期律表第5~15族元素、好ましくは周期律表第13~15族元素を示す。G~Gはそれぞれ水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~40のジアルキルアミノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~40のアルキルアリール基、炭素数7~40のアリールアルキル基、炭素数1~20のハロゲン置換炭化水素基、炭素数1~20のアシルオキシ基又は有機メタロイド基又は炭素数2~20のヘテロ原子含有炭化水素基を示す。G~Gのうち二つ以上が環を形成してもよい。fは[(中心金属Mの原子価)+1]の整数を示す。
 [Zは酸解離定数の逆数の対数(pKa)が-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、又は一般的に超強酸と定義される酸の共役塩基を示す。また、ルイス塩基が配位していてもよい。
In formulae (V) and (VI), k is the ionic valence of [L 1 -R 3 ] and [L 2 ] and is an integer of 1 to 3, a is an integer of 1 or more, and b=(k×a).
[Z] - represents a non-coordinating anion [Z 1 ] - or [Z 2 ] - .
[Z 1 ] - represents an anion in which a plurality of groups are bonded to an element, that is, [M 3 G 1 G 2 ... G f ] - . Here, M 3 represents an element of Groups 5 to 15 of the periodic table, preferably an element of Groups 13 to 15 of the periodic table. G 1 to G f each represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, a halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, an acyloxy group or an organic metalloid group having 1 to 20 carbon atoms, or a heteroatom-containing hydrocarbon group having 2 to 20 carbon atoms. Two or more of G 1 to G f may form a ring. f represents an integer of [(the valence of the central metal M 3 ) + 1].
[Z 2 ] represents a conjugate base of a single Brønsted acid or a combination of a Brønsted acid and a Lewis acid having a logarithm of the reciprocal of the acid dissociation constant (pKa) of −10 or less, or a conjugate base of an acid generally defined as a superacid. A Lewis base may be coordinated.
 ここで、[Z、すなわち[M・・・Gにおいて、Mの具体例としては、B、Al、Si、P、As、Sbなど、好ましくはB及びAlを挙げることができる。また、G、G~Gの具体例としては、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基など、アルコキシ基又はアリールオキシ基として、メトキシ基、エトキシ基、n-プロポキシ基、フェノキシ基など、炭化水素基として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基、n-エイコシル基、フェニル基、p-トリル基、ベンジル基、4-t-ブチルフェニル基、3,5-ジメチルフェニル基など、ハロゲン原子として、フッ素、塩素、臭素、ヨウ素、ヘテロ原子含有炭化水素基として、p-フルオロフェニル基、3,5-ジフルオロフェニル基、ペンタクロロフェニル基、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基、3,5-ビス(トリフルオロメチル)フェニル基、ビス(トリメチルシリル)メチル基など、有機メタロイド基として、ペンタメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニルホウ素基などを挙げることができる。 Here, in [Z 1 ] - , that is, [M 3 G 1 G 2 ... G f ] - , specific examples of M 3 include B, Al, Si, P, As, Sb, etc., and preferably B and Al. Specific examples of G 1 and G 2 to G f include dialkylamino groups such as dimethylamino and diethylamino, alkoxy groups or aryloxy groups such as methoxy, ethoxy, n-propoxy, and phenoxy, hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t-butylphenyl, and 3,5-dimethylphenyl, halogen atoms such as fluorine, chlorine, bromine, Examples of iodine and heteroatom-containing hydrocarbon groups include a p-fluorophenyl group, a 3,5-difluorophenyl group, a pentachlorophenyl group, a 3,4,5-trifluorophenyl group, a pentafluorophenyl group, a 3,5-bis(trifluoromethyl)phenyl group, and a bis(trimethylsilyl)methyl group; and examples of organic metalloid groups include a pentamethylantimony group, a trimethylsilyl group, a trimethylgermyl group, a diphenylarsine group, a dicyclohexylantimony group, and a diphenylboron group.
 また、非配位性のアニオン、すなわちpKaが-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基[Zの具体例としては、トリフルオロメタンスルホン酸アニオン(CFSO、ビス(トリフルオロメタンスルホニル)メチルアニオン、ビス(トリフルオロメタンスルホニル)ベンジルアニオン、ビス(トリフルオロメタンスルホニル)アミド、過塩素酸アニオン(ClO、トリフルオロ酢酸アニオン(CFCOO)、ヘキサフルオロアンチモンアニオン(SbF、フルオロスルホン酸アニオン(FSO、クロロスルホン酸アニオン(ClSO、フルオロスルホン酸アニオン/5-フッ化アンチモン(FSO/SbF、フルオロスルホン酸アニオン/5-フッ化ヒ素(FSO/AsF、トリフルオロメタンスルホン酸/5-フッ化アンチモン(CFSO/SbFなどを挙げることができる。 Specific examples of non-coordinating anions, that is, the conjugate base [Z 2 ] of a single Bronsted acid or a combination of a Bronsted acid and a Lewis acid having a pKa of −10 or less, include trifluoromethanesulfonate anion (CF 3 SO 3 ) , bis(trifluoromethanesulfonyl)methyl anion, bis(trifluoromethanesulfonyl)benzyl anion, bis(trifluoromethanesulfonyl)amide, perchlorate anion (ClO 4 ) , trifluoroacetate anion (CF 3 COO) , hexafluoroantimony anion (SbF 6 ) , fluorosulfonate anion (FSO 3 ) , chlorosulfonate anion (ClSO 3 ) , fluorosulfonate anion/antimony 5-fluoride (FSO 3 /SbF 5 ) , fluorosulfonate anion/arsenic 5-fluoride (FSO 3 /AsF 5 ) , trifluoromethanesulfonic acid/5-antimony fluoride (CF 3 SO 3 /SbF 5 ) − , and the like.
 イオン性化合物(B)は、好ましくは、置換基を有していてもよいテトラフェニルホウ酸塩である。イオン性化合物(B)の具体例としては、テトラフェニルホウ酸トリエチルアンモニウム、テトラフェニルホウ酸トリ-n-ブチルアンモニウム、テトラフェニルホウ酸トリメチルアンモニウム、テトラフェニルホウ酸テトラエチルアンモニウム、テトラフェニルホウ酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニルホウ酸ベンジル(トリ-n-ブチル)アンモニウム、テトラフェニルホウ酸ジメチルジフェニルアンモニウム、テトラフェニルホウ酸トリフェニル(メチル)アンモニウム、テトラフェニルホウ酸トリメチルアニリニウム、テトラフェニルホウ酸メチルピリジニウム、テトラフェニルホウ酸ベンジルピリジニウム、テトラフェニルホウ酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸テトラ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸テトラエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ベンジル(トリ-n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニル(メチル)アンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルピリジニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ベンジルピリジニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸ベンジル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸メチル(4-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニルホスホニウム、テトラキス[ビス(3,5-ジトリフルオロメチル)フェニル]ホウ酸ジメチルアニリニウム、テトラフェニルホウ酸フェロセニウム、テトラフェニルホウ酸銀、テトラフェニルホウ酸トリチル、テトラフェニルホウ酸テトラフェニルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)ホウ酸フェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸(1,1’-ジメチルフェロセニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸銀、テトラキス(ペンタフルオロフェニル)ホウ酸トリチル、テトラキス(ペンタフルオロフェニル)ホウ酸リチウム、テトラキス(ペンタフルオロフェニル)ホウ酸ナトリウム、テトラキス(ペンタフルオロフェニル)ホウ酸テトラフェニルポルフィリンマンガン、テトラフルオロホウ酸銀、ヘキサフルオロリン酸銀、ヘキサフルオロヒ素酸銀、過塩素酸銀、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀などが挙げられる。これらのなかでも、イオン性化合物(B)は、好ましくはテトラキス(ペンタフルオロフェニル)ホウ酸ジメチルアニリニウムである。
 イオン性化合物(B)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
The ionic compound (B) is preferably a tetraphenylborate salt which may have a substituent. Specific examples of the ionic compound (B) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl(tri-n-butyl)ammonium tetraphenylborate, benzyl(tri-n-butyl)ammonium tetraphenylborate, dimethyldiphenylammonium tetraphenylborate, triphenyl(methyl)ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, benzylpyridinium tetraphenylborate, methyl(2-cyanopyridinium) tetraphenylborate, and tetrakis(pentafluorophenyl)borate. Triethylammonium, tri-n-butylammonium tetrakis(pentafluorophenyl)borate, triphenylammonium tetrakis(pentafluorophenyl)borate, tetra-n-butylammonium tetrakis(pentafluorophenyl)borate, tetraethylammonium tetrakis(pentafluorophenyl)borate, benzyl(tri-n-butyl)ammonium tetrakis(pentafluorophenyl)borate, methyldiphenylammonium tetrakis(pentafluorophenyl)borate, triphenyl(methyl)ammonium tetrakis(pentafluorophenyl)borate, methylanilinium tetrakis(pentafluorophenyl)borate, dimethylanilinium tetrakis(pentafluorophenyl)borate, (pentafluorophenyl) trimethylanilinium borate, tetrakis(pentafluorophenyl) methylpyridinium borate, tetrakis(pentafluorophenyl) benzylpyridinium borate, tetrakis(pentafluorophenyl) methylborate(2-cyanopyridinium), tetrakis(pentafluorophenyl) benzylborate(2-cyanopyridinium), tetrakis(pentafluorophenyl) methylborate(4-cyanopyridinium), tetrakis(pentafluorophenyl) triphenylphosphonium borate, tetrakis[bis(3,5-ditrifluoromethyl)phenyl] dimethylanilinium borate, ferrocenium tetraphenylborate, silver tetraphenylborate, trityl tetraphenylborate, tetraphenylborate Examples of the ionic compound (B) include manganese tetraphenylporphyrin, ferrocenium tetrakis(pentafluorophenyl)borate, (1,1'-dimethylferrocenium tetrakis(pentafluorophenyl)borate, decamethylferrocenium tetrakis(pentafluorophenyl)borate, silver tetrakis(pentafluorophenyl)borate, trityl tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate, sodium tetrakis(pentafluorophenyl)borate, manganese tetraphenylporphyrin tetrakis(pentafluorophenyl)borate, silver tetrafluoroborate, silver hexafluorophosphate, silver hexafluoroarsenate, silver perchlorate, silver trifluoroacetate, and silver trifluoromethanesulfonate. Among these, the ionic compound (B) is preferably dimethylanilinium tetrakis(pentafluorophenyl)borate.
The ionic compound (B) may be used alone or in combination of two or more kinds.
<有機金属化合物(C)>
 有機金属化合物(C)は、好ましくは有機アルミニウム化合物及び有機亜鉛化合物からなる群より選ばれる少なくとも1つであり、より好ましくは有機アルミニウム化合物(C1)である。
 有機アルミニウム化合物としては、一般式(VII)で示される化合物が用いられる。
   (RAlQ3-v  ・・・(VII)
(式中、Rは炭素数1~10のアルキル基、Qは水素原子、炭素数1~20のアルコキシ基,炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数または1.5である。)
 有機亜鉛化合物としては、一般式(VIII)で示される化合物が用いられる。
   (RZnP2-u  ・・・(VIII)
(式中、Rは炭素数1~10のアルキル基、Pは炭素数1~20のアルコキシ基,炭素数6~20のアリール基又はハロゲン原子を示し、uは1~2の整数である。)
<Organometallic Compound (C)>
The organometallic compound (C) is preferably at least one selected from the group consisting of organoaluminum compounds and organozinc compounds, and more preferably an organoaluminum compound (C1).
As the organoaluminum compound, a compound represented by the general formula (VII) is used.
(R 8 ) v AlQ 3-v ... (VII)
(In the formula, R8 is an alkyl group having 1 to 10 carbon atoms, Q is a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom, and v is an integer of 1 to 3 or 1.5.)
As the organozinc compound, a compound represented by the general formula (VIII) is used.
(R 9 ) u ZnP 2-u ... (VIII)
(In the formula, R9 represents an alkyl group having 1 to 10 carbon atoms, P represents an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom, and u represents an integer of 1 or 2.)
 前記一般式(VII)で示される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリイソプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリヘプチルアルミニウム、トリオクチルアルミニウム、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、エチルアルミニウムセスキクロリド等が挙げられ、トリイソブチルアルミニウムが好ましい。 Specific examples of organoaluminum compounds represented by the general formula (VII) include trimethylaluminum, triethylaluminum, tri-normal propylaluminum, triisopropylaluminum, tri-normal butylaluminum, triisobutylaluminum, triheptylaluminum, trioctylaluminum, diisobutylaluminum hydride, diethylaluminum hydride, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride, and ethylaluminum sesquichloride, with triisobutylaluminum being preferred.
 前記一般式(VIII)で示される有機亜鉛化合物の具体例としては、ジメチル亜鉛、ジエチル亜鉛、ジブチル亜鉛、ジオクチル亜鉛等を挙げることができる。
 有機金属化合物(C)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
Specific examples of the organozinc compound represented by the general formula (VIII) include dimethylzinc, diethylzinc, dibutylzinc, dioctylzinc, and the like.
The organometallic compound (C) may be used alone or in combination of two or more kinds.
 本発明においてメタロセン化合物(A)とイオン性化合物(B)との使用割合は、モル比で、好ましくは10:1~1:100、より好ましくは2:1~1:10である。メタロセン化合物(A)と有機金属化合物(C)は、好ましくはモル比で1:1~1:10,000、より好ましくは1:10~1:1,000である。また、イオン性化合物(B)、有機金属化合物(C)はそれぞれ1種類又は二種以上組み合わせて用いることもできる。二種以上組み合わせて用いる場合にも、二種以上の合計での使用割合が上記の範囲内であることが触媒活性の観点から好ましい。 In the present invention, the molar ratio of the metallocene compound (A) to the ionic compound (B) is preferably 10:1 to 1:100, more preferably 2:1 to 1:10. The molar ratio of the metallocene compound (A) to the organometallic compound (C) is preferably 1:1 to 1:10,000, more preferably 1:10 to 1:1,000. The ionic compound (B) and the organometallic compound (C) can each be used alone or in combination of two or more kinds. When two or more kinds are used in combination, it is preferable from the viewpoint of catalytic activity that the total ratio of the two or more kinds is within the above range.
<炭素数が2以上異なる複数の原料モノマー(D)>
 工程1において、用いられる複数の原料モノマー(D)は、炭素数が2以上異なるα-オレフィンであり、工程2で重合されるα-オレフィンに含まれる。
 本工程で炭素数が2以上異なるα-オレフィンを用いることで、低温流動性に優れるα-オレフィン重合体が得られる。炭素数が2以上異なるα-オレフィンを触媒混合物を得る際に用いることで、低温流動性に優れるα-オレフィン重合体が得られる理由は定かではないが、α-オレフィン重合体の分子末端に複数の原料モノマーを由来とする構成単位がランダムに配列するために低温流動性に優れるものと考えられる。
<Multiple Raw Material Monomers (D) with Different Carbon Numbers of 2 or More>
The multiple raw material monomers (D) used in step 1 are α-olefins having different carbon numbers of 2 or more, and are included in the α-olefins polymerized in step 2.
By using α-olefins with carbon numbers differing by 2 or more in this step, an α-olefin polymer with excellent low-temperature fluidity can be obtained. Although the reason why an α-olefin polymer with excellent low-temperature fluidity can be obtained by using α-olefins with carbon numbers differing by 2 or more when obtaining a catalyst mixture is unclear, it is believed that the excellent low-temperature fluidity is due to the random arrangement of structural units derived from a plurality of raw material monomers at the molecular terminals of the α-olefin polymer.
 複数の原料モノマー(D)としては、好ましくは炭素数3~30のα-オレフィンであり、より好ましくは炭素数6~20のα-オレフィンであり、更に好ましくは炭素数8~16のα-オレフィンである。具体的には、複数の原料モノマー(D)としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-イコセン、1-ヘンイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン等が挙げられ、複数の原料モノマー(D)は、これらのうち炭素数が2以上異なる2つ以上であり、複数の原料モノマー(D)としては、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンからなる群より選ばれる少なくとも2つが好ましく、より好ましくは、1-オクテン(D1)と1-ドデセン(D2)である。
 複数の原料モノマー(D)が、1-オクテン(D1)と1-ドデセン(D2)を含む場合、工程1で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]は、モル比で、好ましくは3:7~7:3であり、より好ましくは4:6~6:4であり、更に好ましくは4.5:5.5~5.5:4.5(45:55~55:45)である。
The multiple raw material monomers (D) are preferably α-olefins having 3 to 30 carbon atoms, more preferably α-olefins having 6 to 20 carbon atoms, and even more preferably α-olefins having 8 to 16 carbon atoms. Specifically, the multiple raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, 1-docosene, 1-tricosene, 1-tetracosene, Examples of the raw material monomers (D) include 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene. The raw material monomers (D) are two or more of these monomers differing in carbon number by two or more. The raw material monomers (D) are preferably at least two monomers selected from the group consisting of 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene, and more preferably 1-octene (D1) and 1-dodecene (D2).
When the multiple raw material monomers (D) include 1-octene (D1) and 1-dodecene (D2), the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in step 1 is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5 (45:55 to 55:45) in terms of molar ratio.
 複数の原料モノマー(D)は、第1の原料モノマーと第2の原料モノマーの炭素数が2以上異なるが、第1の原料モノマーと第2の原料モノマーの炭素数の差は2以上であり、好ましくは3以上であり、より好ましくは4以上である。第1の原料モノマーと第2の原料モノマーの炭素数の差は、好ましくは6以下であり、より好ましくは5以下であり、更に好ましくは4である。 The multiple raw material monomers (D) have a carbon number difference of 2 or more between the first raw material monomer and the second raw material monomer, and the difference in the carbon number between the first raw material monomer and the second raw material monomer is 2 or more, preferably 3 or more, and more preferably 4 or more. The difference in the carbon number between the first raw material monomer and the second raw material monomer is preferably 6 or less, more preferably 5 or less, and even more preferably 4.
 複数の原料モノマー(D)は、少なくとも2種を使用するが、3種以上使用してもよい。3種以上使用する場合は、そのうちの少なくとも2種の炭素数が2以上異なる。複数の原料モノマー(D)は、好ましくは2種である。
 複数の原料モノマー(D)はそのまま重合反応に使用しても良いが、活性アルミナ、モレキュラーシーブ等の吸着剤で処理して使用すると不純物が除去され、活性が向上しより好ましい。
At least two kinds of raw material monomers (D) are used, but three or more kinds may be used. When three or more kinds are used, at least two of them have different carbon numbers by 2 or more. The number of raw material monomers (D) is preferably two.
The raw material monomers (D) may be used as they are in the polymerization reaction, but it is more preferable to treat them with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
 工程1において、メタロセン化合物(A)に対する前記複数の原料モノマー(D)の合計の比率[D/A]が、モル比で、好ましくは1~1000であり、より好ましくは40~300である。複数の原料モノマー(D)の使用量を上記範囲とすることで、α-オレフィン重合体の低温流動性を向上させることができる。
 工程1における複数の原料モノマー(D)の使用量は、工程1で得られる触媒混合物に対して、好ましくは0.1~30体積%であり、より好ましくは0.5~20体積%であり、更に好ましくは0.5~15体積%であり、より更に好ましくは0.6~12体積%であり、より更に好ましくは0.6~10体積%である。複数の原料モノマー(D)の使用量を上記範囲とすることで、α-オレフィン重合体の低温流動性を向上させることができる。
In step 1, the ratio [D/A] of the total of the multiple raw material monomers (D) to the metallocene compound (A), in terms of molar ratio, is preferably 1 to 1000, and more preferably 40 to 300. By setting the amount of the multiple raw material monomers (D) used within the above range, the low-temperature fluidity of the α-olefin polymer can be improved.
The amount of the multiple raw material monomers (D) used in step 1 is preferably 0.1 to 30 volume %, more preferably 0.5 to 20 volume %, even more preferably 0.5 to 15 volume %, still more preferably 0.6 to 12 volume %, and even more preferably 0.6 to 10 volume %, based on the catalyst mixture obtained in step 1. By setting the amount of the multiple raw material monomers (D) used within the above range, the low-temperature fluidity of the α-olefin polymer can be improved.
<(E)成分>
 工程1における(E)成分は、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種であり、好ましくはアルコール類(E1)である。
 (E)成分、特にアルコール類(E1)を用いることで、α-オレフィン重合体の低温流動性をより向上させることができる。その理由は定かではないが、次のように考えられる。工程1における触媒液中では、活性化体と不活性化体が共存していると推定されるが、特にアルコール類(E1)を添加した触媒液では、アルコール類が活性体構造に作用し、保護構造を形成することで、不活性化体の生成を抑制し、触媒の活性向上に寄与すると考えられる。この保護構造を持った活性化体になることで、異なった分子量を有する複数の原料モノマーのいずれもが作用しやくすくなり、より複数の原料モノマーを由来とする構成単位がランダムに配列しやすくなり、得られる重合体は低温流動性に優れるものと考えられる。
<Component (E)>
The component (E) in step 1 is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3), and is preferably an alcohol (E1).
By using component (E), particularly alcohols (E1), the low-temperature fluidity of the α-olefin polymer can be further improved. The reason for this is unclear, but is thought to be as follows. It is presumed that activated and inactivated forms coexist in the catalyst solution in step 1, and it is believed that, particularly in the catalyst solution to which alcohols (E1) have been added, the alcohols act on the activated structure to form a protective structure, thereby suppressing the generation of inactivated forms and contributing to improved catalyst activity. By becoming an activated form with this protective structure, it becomes easier for multiple raw material monomers having different molecular weights to act on each other, and it becomes easier for structural units derived from multiple raw material monomers to be randomly arranged, and it is believed that the obtained polymer has excellent low-temperature fluidity.
(アルコール類(E1))
 アルコール類(E1)は、好ましくは炭素数1~20のアルコールであり、より好ましくは炭素数1~8のアルコールであり、さらに好ましくは炭素数1~6のアルコールである。アルコール類の具体例としては、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、1-ブチルアルコール、2-ブチルアルコール、イソブチルアルコール、ターシャリーブチルアルコール、1-ペンチルアルコール、2-ペンチルアルコール、3-メチル-1-ブチルアルコール、1-ヘキシルアルコール、シクロヘキシルアルコール、1-ヘプチルアルコール、1-オクチルアルコール、2-エチルヘキシルアルコール、トリフェニルメタノール、1,2-エタンジオール、1,2-プロパンジオール、ベンジルアルコール、α-メチルベンジルアルコール等が挙げられ、好ましくはターシャリーブチルアルコールである。アルコール類(E1)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
(Alcohols (E1))
The alcohol (E1) is preferably an alcohol having 1 to 20 carbon atoms, more preferably an alcohol having 1 to 8 carbon atoms, and even more preferably an alcohol having 1 to 6 carbon atoms. Specific examples of the alcohol include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, 1-pentyl alcohol, 2-pentyl alcohol, 3-methyl-1-butyl alcohol, 1-hexyl alcohol, cyclohexyl alcohol, 1-heptyl alcohol, 1-octyl alcohol, 2-ethylhexyl alcohol, triphenylmethanol, 1,2-ethanediol, 1,2-propanediol, benzyl alcohol, α-methylbenzyl alcohol, and the like, and is preferably tertiary butyl alcohol. The alcohol (E1) may be used alone or in combination of two or more kinds.
(フェノール類(E2))
 フェノール類(E2)は、好ましくは環形成炭素数が6~20のフェノールであり、より好ましくは環形成炭素数が6~14のフェノールであり、さらに好ましくは環形成炭素数が6~12のフェノールである。フェノール類の具体例としては、フェノール、カテコール、クレゾール、ナフトール、4-フェニルフェノール、チモール、ビスフェノールA等が挙げられる。フェノール類(E2)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
(Phenols (E2))
The phenol (E2) is preferably a phenol having 6 to 20 ring carbon atoms, more preferably a phenol having 6 to 14 ring carbon atoms, and even more preferably a phenol having 6 to 12 ring carbon atoms. Specific examples of the phenol include phenol, catechol, cresol, naphthol, 4-phenylphenol, thymol, and bisphenol A. The phenol (E2) may be used alone or in combination of two or more.
(エーテル化合物(E3))
 エーテル化合物(E3)は、一般式R10-O-R11で表した場合、R10及びR11は、それぞれ独立に、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基であり、R10及びR11の総炭素数が8個以下のものが好適に用いられる。
(Ether compound (E3))
When the ether compound (E3) is represented by the general formula R 10 -O-R 11 , R 10 and R 11 are each independently a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and the total number of carbon atoms of R 10 and R 11 is preferably 8 or less.
 エーテル化合物の具体的な化合物としてはジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジオクチルエーテル、ジデシルエーテル、メチルノルマルブチルエーテル、メチルイソブチルエーテル、メチルターシャリーブチルエーテル、エチルノルマルブチルエーテル、エチルイソブチルエーテル、エチルターシャリーブチルエーテル、メチルフェニルエーテル、クロロメチルメチルエーテル、クロロメチルエチルエーテル、ブロモメチルメチルエーテル、2,2-ジクロロエチルメチルエーテル、2-クロロエチルメチルエーテル、2-ブロモエチルメチルエーテル、2-ブロモエチルエチルエーテル、2-クロロエチルエチルエーテル、α,α-ジクロロメチルメチルエーテル、1-クロロ-2,2,2-トリフルオロエチルジフルオロメチルエーテル、2-クロロ-1,1,2-トリフルオロエチルジフルオロメチルエーテル、ジフルオロメチル-2,2,2-トリフルオロエチルエーテル、2-クロロ-1,1,2-トリフルオロエチルメチルエーテル、2,2-ジクロロ-1,1-ジフルオロエチルメチルエーテル、2-ブロモ-1,1,2-トリフルオロエチルエチルエーテル、2-クロロ-1,1,2-トリフルオロエチルエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、ヘプタフルオロプロピル-1,2,2,2-テトラフルオロエチルエーテル、n-ブチル-1,1,2,2-テトラフルオロエチルエーテル、4-ブロモフェニルトリフルオロメチルエーテル、テトラヒドロフルフリルクロリド、2-ブロモフラン、3-ブロモフラン、パーフルオロ-2-ブチルテトラヒドロフラン、ビス(4-フルオロフェニル)エーテル、2-ブロモエチルエーテル、2-クロロエチルエーテル、1,2-ジクロロエチルエチルエーテル、ペンタフルオロアニソール、2,3,5,6-ペンタフルオロアニソール、2,4,6-トリブロモアニソール、2,3,4-トリクロルアニソール、2,4,6-トリクロルアニソール、2,4,5-トリフルオロアニソール、2-ブロモ-4-フルオロアニソール、4-ブロモ-2-フルオロアニソール、2,4-ジブロモアニソール、α,4-ジクロロアニソール、2,3-ジクロロアニソール、2,4-ジフルオロアニソール、2-ブロモアニソール、2-クロロアニソール、2-フルオロアニソール、2-ヨードアニソール、ベンジル-3-ブロモプロピルエーテル等が挙げられる。エーテル化合物(E3)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
 (E)成分としては(E1)~(E3)からなる群より選択されるものを単独又は二種以上組み合わせて用いることができる。
Specific examples of the ether compound include dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, dioctyl ether, didecyl ether, methyl normal butyl ether, methyl isobutyl ether, methyl tertiary butyl ether, ethyl normal butyl ether, ethyl isobutyl ether, ethyl tertiary butyl ether, methyl phenyl ether, chloromethyl methyl ether, chloromethyl ethyl ether, bromomethyl methyl ether, 2,2-dichloroethyl methyl ether, 2-chloroethyl methyl ether, 2-bromoethyl methyl ether, 2-chloroethyl ethyl ether, α,α-dichloromethyl methyl ether, 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, 2-chloro-1,1,2-trifluoroethyl difluoromethyl ether, difluoromethyl-2,2,2-trifluoroethyl ether, 2-chloro-1,1,2-trifluoroethyl methyl ether, 2,2-dichloro-1,1-difluoroethyl methyl ether, 2-bromo-1,1,2-trifluoroethyl ethyl ether, 2-chloro-1, 1,2-trifluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, heptafluoropropyl-1,2,2,2-tetrafluoroethyl ether, n-butyl-1,1,2,2-tetrafluoroethyl ether, 4-bromophenyl trifluoromethyl ether, tetrahydrofurfuryl chloride, 2-bromofuran, 3-bromofuran, perfluoro-2-butyltetrahydrofuran, bis(4-fluorophenyl)ether, 2-bromoethyl ether, 2-chloroethyl ether, 1,2-dichloroethyl ether, pentafluoro 2,3,5,6-pentafluoroanisole, 2,4,6-tribromoanisole, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, 2,4,5-trifluoroanisole, 2-bromo-4-fluoroanisole, 4-bromo-2-fluoroanisole, 2,4-dibromoanisole, α,4-dichloroanisole, 2,3-dichloroanisole, 2,4-difluoroanisole, 2-bromoanisole, 2-chloroanisole, 2-fluoroanisole, 2-iodoanisole, benzyl-3-bromopropyl ether, etc. The ether compound (E3) may be used alone or in combination of two or more kinds.
As the component (E), one or more members selected from the group consisting of (E1) to (E3) can be used alone or in combination.
 メタロセン化合物(A)と(E)成分との比率(使用割合)[A/E]は、モル比で、好ましくは10:1~1:100であり、より好ましくは1:1~1:50であり、さらに好ましくは1:1~1:30である。有機金属化合物(C)と(E)成分との使用割合は、有機金属化合物(C)に対して(E)成分のモル比が1未満であることが好ましく、有機金属化合物(C)と(E)成分とのモル比が10:9~1000:1であることが好ましい。(E)成分であるアルコール類(E1)は一般的には重合反応の後に停止剤として多量に添加されることが多い。本発明では意外にも少量の(E)成分を重合前に添加することで活性を向上することができる。 The ratio (usage ratio) of the metallocene compound (A) to the component (E) [A/E] is preferably 10:1 to 1:100, more preferably 1:1 to 1:50, and even more preferably 1:1 to 1:30, in terms of molar ratio. The ratio of the organometallic compound (C) to the component (E) is preferably less than 1, and the molar ratio of the organometallic compound (C) to the component (E) is preferably 10:9 to 1000:1. The alcohol (E1) which is the component (E) is generally added in large quantities as a terminator after the polymerization reaction. Surprisingly, in the present invention, activity can be improved by adding a small amount of the component (E) before polymerization.
<溶媒>
 工程1において、更に溶媒を混合してもよく、触媒混合物の各成分を均一に混合する観点から、溶媒を混合することが好ましい。
 工程1で用いることができる溶媒としては、芳香族炭化水素、脂環式炭化水素、脂肪族炭化水素及びハロゲン化炭化水素からなる群より選ばれる少なくとも1つが好ましく、芳香族炭化水素がより好ましい。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン等が挙げられ、トルエン又はキシレンが好ましく、トルエンがより好ましい。
 脂環式炭化水素としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。
 脂肪族炭化水素としては、ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。
 ハロゲン化炭化水素としては、クロロホルム、ジクロロメタン等が挙げられる。
 溶媒は、一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
<Solvent>
In step 1, a solvent may be further mixed, and it is preferable to mix a solvent from the viewpoint of uniformly mixing each component of the catalyst mixture.
The solvent that can be used in step 1 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons. Examples of aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and are preferably toluene or xylene, and more preferably toluene.
Examples of the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclohexane.
Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
Examples of halogenated hydrocarbons include chloroform and dichloromethane.
The solvent may be used alone or in combination of two or more kinds.
 溶媒の使用量は、特に限定されないが、メタロセン化合物(A)の濃度が、0.1~10mmol/Lとなる量が好ましく、0.5~5mmol/Lとなる量がより好ましく、1~3mmol/Lとなる量が更に好ましい。 The amount of the solvent used is not particularly limited, but is preferably an amount that results in a concentration of the metallocene compound (A) of 0.1 to 10 mmol/L, more preferably an amount that results in a concentration of 0.5 to 5 mmol/L, and even more preferably an amount that results in a concentration of 1 to 3 mmol/L.
<混合>
 工程1は、上記成分を混合して触媒混合物を得る工程である。
 工程1において、好ましくは、50℃以下で30分間以上混合する。
 上記成分を混合する際の温度は、好ましくは50℃以下であり、より好ましくは40℃以下であり、更に好ましくは30℃以下である。下限値としては、好ましくは0℃以上であり、より好ましくは10℃以上である。
 上記成分を混合する際の時間は、好ましくは30分間以上であり、より好ましくは30分間~10時間であり、更に好ましくは1~7時間である。
 つまり、工程1において、好ましくは、50℃以下で30分間以上混合するものである。混合する際の温度と時間を上記の範囲にすることによって、低温流動性に優れるα-オレフィン重合体を得ることができる。
<Mixing>
Step 1 is the step of mixing the above components to obtain a catalyst mixture.
In step 1, mixing is preferably carried out at 50° C. or lower for 30 minutes or longer.
The temperature when the above components are mixed is preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower. The lower limit is preferably 0° C. or higher, and more preferably 10° C. or higher.
The time for mixing the above components is preferably 30 minutes or more, more preferably 30 minutes to 10 hours, and even more preferably 1 to 7 hours.
That is, in step 1, mixing is preferably carried out for 30 minutes or more at 50° C. or lower. By setting the mixing temperature and time within the above ranges, an α-olefin polymer having excellent low-temperature fluidity can be obtained.
[工程2]
 工程2は、前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程である。
[Step 2]
Step 2 is a step of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
 本発明の製造方法は、α-オレフィンを重合して、α-オレフィン重合体を得るものであるため、工程2で用いられるα-オレフィンは、α-オレフィン重合体の原料である。
 工程2で用いられるα-オレフィンは、前記複数の原料モノマー(D)を含有する。
Since the production process of the present invention is for obtaining an α-olefin polymer by polymerizing an α-olefin, the α-olefin used in step 2 is a raw material for the α-olefin polymer.
The α-olefin used in step 2 contains the plurality of raw material monomers (D).
<α-オレフィン>
 工程2で用いられるα-オレフィンとしては、好ましくは炭素数3~30のα-オレフィンであり、より好ましくは炭素数6~20のα-オレフィンであり、更に好ましくは炭素数8~14のα-オレフィンである。具体的には、α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-イコセン、1-ヘンイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン等が挙げられる。また、複数の原料モノマー(D)としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-イコセン、1-ヘンイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン等が挙げられ、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンからなる群より選ばれる少なくとも2つが好ましく、より好ましくは、1-オクテン(D1)と1-ドデセン(D2)である。
 工程2で用いられるα-オレフィンが、1-オクテン(D1)と1-ドデセン(D2)を含む場合、工程2で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]は、モル比で、好ましくは3:7~7:3であり、より好ましくは4:6~6:4であり、更に好ましくは4.5:5.5~5.5:4.5(45:55~55:45)である。
 工程2で用いられるα-オレフィン中の複数の原料モノマー(D)の比率は、好ましくは70~100モル%であり、より好ましくは80~100モル%であり、更に好ましくは90~100モル%であり、より更に好ましくは95~100モル%である。工程2で用いられるα-オレフィンは、複数の原料モノマー(D)のみからなっていてもよく、1-オクテン(D1)と1-ドデセン(D2)のみからなっていてもよい。
<α-Olefin>
The α-olefin used in step 2 is preferably an α-olefin having 3 to 30 carbon atoms, more preferably an α-olefin having 6 to 20 carbon atoms, and even more preferably an α-olefin having 8 to 14 carbon atoms. Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene. In addition, examples of the raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, and 1-hexene. D1) and 1-dodecene (D2).
When the α-olefin used in step 2 contains 1-octene (D1) and 1-dodecene (D2), the ratio of 1-octene (D1) to 1-dodecene (D2) used in step 2 [D1/D2] is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5 (45:55 to 55:45) in terms of molar ratio.
The ratio of the multiple raw material monomers (D) in the α-olefin used in step 2 is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, even more preferably 90 to 100 mol %, and still more preferably 95 to 100 mol %. The α-olefin used in step 2 may be composed only of the multiple raw material monomers (D), or may be composed only of 1-octene (D1) and 1-dodecene (D2).
 工程2で用いられるα-オレフィンは、前記複数の原料モノマー(D)を含有するため、少なくとも2種を使用するが、3種以上使用してもよい。好ましくは2種である。
 工程2で用いられるα-オレフィンはそのまま重合反応に使用しても良いが、活性アルミナ、モレキュラーシーブ等の吸着剤で処理して使用すると不純物が除去され、活性が向上しより好ましい。
The α-olefin used in step 2 contains the plurality of raw material monomers (D) and therefore at least two types are used, but three or more types may be used, and two types are preferred.
The α-olefin used in step 2 may be used as it is in the polymerization reaction, but it is more preferable to treat it with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
 工程2において、原料として用いられるα-オレフィンの量は、好ましくは200kg以上であり、より好ましくは300kg以上であり、更に好ましくは400kg以上であり、より更に好ましくは500kg以上である。反応スケールが大きくなることで、反応器壁による触媒活性への影響が少なくなり、得られるα-オレフィン重合体は、より低温流動性に優れるものとなると考えられる。 In step 2, the amount of α-olefin used as the raw material is preferably 200 kg or more, more preferably 300 kg or more, even more preferably 400 kg or more, and even more preferably 500 kg or more. By increasing the reaction scale, the effect of the reactor wall on the catalytic activity is reduced, and the obtained α-olefin polymer is considered to have better low-temperature fluidity.
<重合>
 工程2において、重合方法は特に制限されず、塊状重合法、溶液重合法、懸濁重合法、スラリー重合法、気相重合法、などのいずれの方法を用いてもよい。
 重合温度は、好ましくは0~200℃であり、より好ましくは30~150℃であり、更に好ましくは40~120℃であり、より更に好ましくは80~120℃である。
 原料のα-オレフィンに対する触媒の使用割合は、工程1で用いられるメタロセン化合物(A)に対する工程2で用いられるα-オレフィンのモル比[α-オレフィン/メタロセン化合物(A)]が、好ましくは1~10であり、より好ましくは100~10である。
 重合時間は、好ましくは5分間~20時間であり、反応圧力は、好ましくは0~0.2MPaGである。ここで、「MPaG」は「MPa(ゲージ圧)」を表す。
<Polymerization>
In step 2, the polymerization method is not particularly limited, and any method such as bulk polymerization, solution polymerization, suspension polymerization, slurry polymerization, and gas phase polymerization may be used.
The polymerization temperature is preferably 0 to 200°C, more preferably 30 to 150°C, even more preferably 40 to 120°C, and still more preferably 80 to 120°C.
The ratio of the catalyst to the raw material α-olefin, that is, the molar ratio of the α-olefin used in step 2 to the metallocene compound (A) used in step 1 [α-olefin/metallocene compound (A)], is preferably 1 to 10 8 , more preferably 100 to 10 6 .
The polymerization time is preferably 5 minutes to 20 hours, and the reaction pressure is preferably 0 to 0.2 MPaG, where "MPaG" represents "MPa (gauge pressure)."
 工程2においては、生産性の観点から、好ましくは無溶媒で重合を行うが、溶媒を用いてもよい。工程2で用いることができる溶媒としては、芳香族炭化水素、脂環式炭化水素、脂肪族炭化水素及びハロゲン化炭化水素からなる群より選ばれる少なくとも1つが好ましく、芳香族炭化水素がより好ましい。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン等が挙げられ、トルエン又はキシレンが好ましく、トルエンがより好ましい。
 脂環式炭化水素としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。
 脂肪族炭化水素としては、ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。
 ハロゲン化炭化水素としては、クロロホルム、ジクロロメタン等が挙げられる。
 溶媒は、一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
In step 2, from the viewpoint of productivity, the polymerization is preferably performed without a solvent, but a solvent may be used. The solvent that can be used in step 2 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons. Examples of aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and toluene or xylene is preferable, and toluene is more preferable.
Examples of the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclohexane.
Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
Examples of halogenated hydrocarbons include chloroform and dichloromethane.
The solvent may be used alone or in combination of two or more kinds.
 工程2において、α-オレフィンを重合する際に、水素を添加することで活性が向上するため、水素を添加することが好ましい。水素を用いる場合の水素分圧は、好ましくは0.2MPaG以下であり、より好ましくは0.1MPaG以下である。水素分圧の下限は、0.01MPaGである。 In step 2, when polymerizing α-olefins, it is preferable to add hydrogen because the activity is improved by adding hydrogen. When hydrogen is used, the hydrogen partial pressure is preferably 0.2 MPaG or less, and more preferably 0.1 MPaG or less. The lower limit of the hydrogen partial pressure is 0.01 MPaG.
 工程2は、前記触媒混合物を用いてα-オレフィンを重合する工程であるが、工程2においては、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、α-オレフィンを重合することが好ましい。ここで用いられる有機アルミニウム化合物(C2)は、工程1で用いられる有機アルミニウム化合物(C1)と同様であり、好ましい化合物も同様である。有機アルミニウム化合物(C2)と有機アルミニウム化合物(C1)は同一の化合物であることが更に好ましい。
 更に、工程2において、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、次に80℃以上に昇温し、α-オレフィンを重合することがより好ましい。好ましい重合温度は前記のとおりであり、80~120℃であることが好ましい。
Step 2 is a step of polymerizing an α-olefin using the catalyst mixture, and in step 2, it is preferable to mix the α-olefin with an organoaluminum compound (C2), and then mix the catalyst mixture to polymerize the α-olefin. The organoaluminum compound (C2) used here is the same as the organoaluminum compound (C1) used in step 1, and the preferred compounds are also the same. It is more preferable that the organoaluminum compound (C2) and the organoaluminum compound (C1) are the same compound.
Furthermore, in step 2, it is more preferable to mix the α-olefin with the organoaluminum compound (C2), then mix the catalyst mixture, and then raise the temperature to 80° C. or higher to polymerize the α-olefin. The preferred polymerization temperature is as described above, and is preferably 80 to 120° C.
 工程2において、各触媒成分の種類、使用量、反応量、重合温度、溶媒を調整することによって、α-オレフィン重合体の分子量を調節することができる。
 工程2の重合は、700L以上の容量を有する反応容器で行うことが好ましく、800L以上の容量を有する反応容器で行うことが好ましく、1000L以上の容量を有する反応容器で行うことが好ましい。反応スケールが大きくなることで、反応器壁による触媒活性への影響が少なくなり、得られるα-オレフィン重合体は、より低温流動性に優れるものとなると考えられる。
In step 2, the molecular weight of the α-olefin polymer can be adjusted by adjusting the type, amount of each catalyst component used, reaction amount, polymerization temperature, and solvent.
The polymerization in step 2 is preferably carried out in a reaction vessel having a capacity of 700 L or more, more preferably in a reaction vessel having a capacity of 800 L or more, and even more preferably in a reaction vessel having a capacity of 1000 L or more. It is believed that by increasing the reaction scale, the effect of the reactor wall on the catalytic activity is reduced, and the obtained α-olefin polymer has better low-temperature fluidity.
 工程2のあとにモノマーやオリゴマー成分を除去することが好ましい。除去方法としては、たとえば、蒸留等が挙げられる。 It is preferable to remove the monomer and oligomer components after step 2. Methods for removing the monomer and oligomer components include, for example, distillation.
<水素添加工程>
 工程2で得られたα-オレフィン重合体をそのまま潤滑油、潤滑油基油、潤滑油の添加剤として用いてもよいが、更に水素添加を行うことが好ましい。本発明の製造方法で得られるα-オレフィン重合体には水素添加α-オレフィン重合体が含まれ、後述の本発明のα-オレフィン重合体にも水素添加α-オレフィン重合体が含まれる。
 水素添加を行うことで、安定性を向上させることができる。
 水素添加工程の反応条件は、一般的な水素添加反応の条件で行えばよいが、好ましい条件は以下のとおりである。
 この水素添加工程では、一般に使用される気相水素化法を用いることができる。触媒に、パラジウム、白金などの貴金属触媒を用いた場合は、反応温度を60~100℃とし、水素圧を0.1~1MPaとすることが好ましい。ニッケル系触媒を用いた場合は、反応温度を100~250℃とし、水素圧を0.1~20MPaとすることが好ましい。触媒量は、いずれの系も、工程2で得られた重合体に対し、好ましくは0.05~50質量%であり、反応時間は、好ましくは2~48時間である。なお、水素添加反応は、前記の水素添加触媒を用いることで速やかに進行するが、水素の顕著な吸収が収まってからも、残存する微量の原料の水素添加を完全に行うため、昇温ないし昇圧などの追加操作を行ってもよい。
<Hydrogenation step>
The α-olefin polymer obtained in step 2 may be used as it is as a lubricant, a lubricant base oil, or an additive for a lubricant, but it is preferable to further hydrogenate it. The α-olefin polymer obtained by the production method of the present invention includes hydrogenated α-olefin polymers, and the α-olefin polymer of the present invention described below also includes hydrogenated α-olefin polymers.
Hydrogenation can improve stability.
The reaction conditions for the hydrogenation step may be general hydrogenation reaction conditions, but the preferred conditions are as follows.
In this hydrogenation step, a commonly used gas phase hydrogenation method can be used. When a precious metal catalyst such as palladium or platinum is used as the catalyst, the reaction temperature is preferably 60 to 100°C and the hydrogen pressure is preferably 0.1 to 1 MPa. When a nickel-based catalyst is used, the reaction temperature is preferably 100 to 250°C and the hydrogen pressure is preferably 0.1 to 20 MPa. In either system, the amount of catalyst is preferably 0.05 to 50 mass% relative to the polymer obtained in step 2, and the reaction time is preferably 2 to 48 hours. The hydrogenation reaction proceeds quickly by using the hydrogenation catalyst, but additional operations such as temperature increase or pressure increase may be performed even after significant absorption of hydrogen has ceased in order to completely hydrogenate the remaining trace amounts of raw material.
[α-オレフィン重合体]
 前記製造方法で得られたα-オレフィン重合体は、低温流動性に優れる。
 すなわち、本発明には、メタロセン化合物(A)と、前記メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程1、及び前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程2を有する方法によって得られるα-オレフィン重合体も含まれる。前記複数の原料モノマー(D)が、1-オクテン(D1)と1-ドデセン(D2)であることが好ましい。このような方法によって得られるα-オレフィン重合体は、低温流動性に優れる。
[α-Olefin polymer]
The α-olefin polymer obtained by the above production method has excellent low-temperature fluidity.
That is, the present invention also includes an α-olefin polymer obtained by a method including a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert to a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in carbon number by 2 or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture, and a step 2 of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture. The plurality of raw material monomers (D) are preferably 1-octene (D1) and 1-dodecene (D2). The α-olefin polymer obtained by such a method has excellent low-temperature fluidity.
 本発明には、下記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下であるα-オレフィン重合体も含まれる。
  (流動点(℃))≦0.0090×(40℃動粘度(cSt))-52   (1)
 前記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下であるα-オレフィン重合体は、好ましくは下記式(3)を満たし、より好ましくは下記式(4)を満たす。また、前記製造方法で得られたα-オレフィン重合体は、好ましくは、前記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下であるα-オレフィン重合体であり、より好ましくは、下記式(3)を満たし、更に好ましくは、下記式(4)を満たす。
  (流動点(℃))≦0.0095×(40℃動粘度(cSt))-54   (3)  (流動点(℃))≦0.0100×(40℃動粘度(cSt))-56   (4)
 40℃動粘度が350cSt以上、1500cSt以下であり、且つ、上記各式を満たすα-オレフィン重合体は、低温流動性に優れる。
 動粘度は、JIS K 2283に準拠し測定される。
The present invention also includes an α-olefin polymer that satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less.
(Pour point (°C))≦0.0090×(40°C kinematic viscosity (cSt))−52 (1)
An α-olefin polymer which satisfies the above formula (1) and has a 40° C. kinetic viscosity of 350 cSt or more and 1500 cSt or less preferably satisfies the following formula (3), and more preferably satisfies the following formula (4). Moreover, the α-olefin polymer obtained by the above production method is preferably an α-olefin polymer which satisfies the above formula (1) and has a 40° C. kinetic viscosity of 350 cSt or more and 1500 cSt or less, and more preferably satisfies the following formula (3), and even more preferably satisfies the following formula (4).
(Pour point (°C))≦0.0095×(40°C kinematic viscosity (cSt))−54 (3) (Pour point (°C))≦0.0100×(40°C kinematic viscosity (cSt))−56 (4)
An α-olefin polymer having a 40° C. kinematic viscosity of 350 cSt or more and 1500 cSt or less and satisfying the above formulae has excellent low-temperature fluidity.
The kinetic viscosity is measured in accordance with JIS K 2283.
 上記α-オレフィン重合体は、好ましくは、40℃動粘度が350~500cStであり、かつ流動点が-50℃以下である。
 上記α-オレフィン重合体は、好ましくは、下記式(2)を満たすα-オレフィン重合体である。
  (流動点(℃))≦0.3×(粘度指数)-103   (2)
 前記式(2)を満たすα-オレフィン重合体は、好ましくは、下記式(5)を満たすα-オレフィン重合体であり、より好ましくは下記式(6)を満たすα-オレフィン重合体である。また、前記製造方法で得られたα-オレフィン重合体は、好ましくは、前記式(2)を満たすα-オレフィン重合体であり、より好ましくは、下記式(5)を満たすα-オレフィン重合体であり、更に好ましくは下記式(6)を満たすα-オレフィン重合体である。
  (流動点(℃))≦0.3×(粘度指数)-104   (5)
  (流動点(℃))≦0.3×(粘度指数)-105   (6)
 また、α-オレフィン重合体の粘度指数(VI)は、好ましくは220以下であり、より好ましくは200以下であり、更に好ましくは180以下である。下限値は、好ましくは100以上である。
 粘度指数は、JIS K 2283に準拠し測定した動粘度より、JIS K 2283に準拠し計算して求められる。
The α-olefin polymer preferably has a kinematic viscosity at 40° C. of 350 to 500 cSt and a pour point of −50° C. or lower.
The above-mentioned α-olefin polymer is preferably an α-olefin polymer satisfying the following formula (2):
(Pour point (°C))≦0.3 × (viscosity index) −103 (2)
The α-olefin polymer satisfying the formula (2) is preferably an α-olefin polymer satisfying the following formula (5), and more preferably an α-olefin polymer satisfying the following formula (6). The α-olefin polymer obtained by the production method is preferably an α-olefin polymer satisfying the formula (2), and more preferably an α-olefin polymer satisfying the following formula (5), and even more preferably an α-olefin polymer satisfying the following formula (6).
(Pour point (°C))≦0.3×(Viscosity index)−104 (5)
(Pour point (°C))≦0.3×(Viscosity index)−105 (6)
The viscosity index (VI) of the α-olefin polymer is preferably not more than 220, more preferably not more than 200, and even more preferably not more than 180. The lower limit is preferably 100 or more.
The viscosity index is determined by calculation in accordance with JIS K 2283 from the kinematic viscosity measured in accordance with JIS K 2283.
 前記本発明のα-オレフィン重合体の製造方法は、好ましくは、得られるα-オレフィン重合体が上記要件を満たす。以下に具体的に示す。
 前記本発明のα-オレフィン重合体の製造方法は、好ましくは、得られるα-オレフィン重合体が、下記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下である。
  (流動点(℃))≦0.0090×(40℃動粘度(cSt))-52   (1)
 前記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下であるα-オレフィン重合体は、好ましくは、下記式(3)を満たし、より好ましくは下記式(4)を満たす。
  (流動点(℃))≦0.0095×(40℃動粘度(cSt))-54   (3)  (流動点(℃))≦0.0100×(40℃動粘度(cSt))-56   (4)
 40℃動粘度が350cSt以上、1500cSt以下であり、且つ、上記各式を満たすα-オレフィン重合体は、低温流動性に優れる。
 動粘度は、JIS K 2283に準拠し測定される。
In the above-mentioned method for producing an α-olefin polymer of the present invention, the obtained α-olefin polymer preferably satisfies the above-mentioned requirements. Specific examples are shown below.
In the method for producing an α-olefin polymer of the present invention, the obtained α-olefin polymer preferably satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less.
(Pour point (°C))≦0.0090×(40°C kinematic viscosity (cSt))−52 (1)
The α-olefin polymer satisfying the above formula (1) and having a 40° C. kinematic viscosity of 350 cSt or more and 1500 cSt or less preferably satisfies the following formula (3), and more preferably satisfies the following formula (4).
(Pour point (°C))≦0.0095×(40°C kinematic viscosity (cSt))−54 (3) (Pour point (°C))≦0.0100×(40°C kinematic viscosity (cSt))−56 (4)
An α-olefin polymer having a 40° C. kinematic viscosity of 350 cSt or more and 1500 cSt or less and satisfying the above formulae has excellent low-temperature fluidity.
The kinematic viscosity is measured in accordance with JIS K 2283.
 前記本発明のα-オレフィン重合体の製造方法は、好ましくは、得られるα-オレフィン重合体の、40℃動粘度が350~500cStであり、かつ流動点が-50℃以下である。
 前記本発明のα-オレフィン重合体の製造方法は、好ましくは、得られるα-オレフィン重合体が、下記式(2)を満たす。
  (流動点(℃))≦0.3×(粘度指数)-103   (2)
 前記本発明のα-オレフィン重合体の製造方法で得られる、式(2)を満たすα-オレフィン重合体は、好ましくは、下記式(5)を満たすα-オレフィン重合体であり、より好ましくは下記式(6)を満たすα-オレフィン重合体である。
  (流動点(℃))≦0.3×(粘度指数)-104   (5)
  (流動点(℃))≦0.3×(粘度指数)-105   (6)
 また、α-オレフィン重合体の粘度指数(VI)は、好ましくは220以下であり、より好ましくは200以下であり、更に好ましくは180以下である。下限値は、好ましくは100以上である。
 粘度指数は、JIS K 2283に準拠し測定した動粘度より、JIS K 2283に準拠し計算して求められる。
In the above-mentioned process for producing an α-olefin polymer of the present invention, the α-olefin polymer obtained preferably has a 40° C. kinematic viscosity of 350 to 500 cSt and a pour point of −50° C. or lower.
In the method for producing an α-olefin polymer of the present invention, the obtained α-olefin polymer preferably satisfies the following formula (2):
(Pour point (°C))≦0.3 × (viscosity index) −103 (2)
The α-olefin polymer satisfying formula (2) obtained by the method for producing an α-olefin polymer of the present invention is preferably an α-olefin polymer satisfying the following formula (5), and more preferably an α-olefin polymer satisfying the following formula (6):
(Pour point (°C))≦0.3×(Viscosity index)−104 (5)
(Pour point (°C))≦0.3×(Viscosity index)−105 (6)
The viscosity index (VI) of the α-olefin polymer is preferably not more than 220, more preferably not more than 200, and even more preferably not more than 180. The lower limit is preferably 100 or more.
The viscosity index is determined by calculation in accordance with JIS K 2283 from the kinematic viscosity measured in accordance with JIS K 2283.
 前記α-オレフィン重合体は、好ましくは、1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位を含有する。
 前記α-オレフィン重合体中の1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位の合計の比率は、好ましくは、90~100モル%である。
The α-olefin polymer preferably contains a structural unit derived from 1-octene and a structural unit derived from 1-dodecene.
The total ratio of the constituent units derived from 1-octene and the constituent units derived from 1-dodecene in the α-olefin polymer is preferably 90 to 100 mol %.
 前記α-オレフィン重合体が、1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位を含有する場合、前記α-オレフィン重合体中の1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位の比率は、モル比で、好ましくは3:7~7:3であり、より好ましくは4:6~6:4であり、更に好ましくは4.5:5.5~5.5:4.5(45:55~55:45)である。 When the α-olefin polymer contains constituent units derived from 1-octene and constituent units derived from 1-dodecene, the molar ratio of the constituent units derived from 1-octene to the constituent units derived from 1-dodecene in the α-olefin polymer is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5 (45:55 to 55:45).
[潤滑油及び潤滑油の製造方法]
 前記α-オレフィン重合体を含有する潤滑油も本発明に含まれる。また、前記製造方法で得られたα-オレフィン重合体を含有する潤滑油も本発明に含まれる。
[Lubricant and method for producing the same]
The present invention also includes lubricating oils containing the above-mentioned α-olefin polymers, and lubricating oils containing the α-olefin polymers obtained by the above-mentioned production method.
 本発明の潤滑油には、本発明の効果を損なわない範囲で各種の添加剤を用いることができる。
 これら添加剤としては、極圧剤、油性剤、耐摩耗剤、酸化防止剤、金属不活性化剤、防錆剤及び消泡剤が挙げられる。
Various additives can be used in the lubricating oil of the present invention as long as the effects of the present invention are not impaired.
These additives include extreme pressure agents, oiliness agents, antiwear agents, antioxidants, metal deactivators, rust inhibitors and antifoam agents.
 したがって、前記潤滑油の製造方法としては、前記方法で得られたα-オレフィン重合体又は前記α-オレフィン重合体と、極圧剤、油性剤、耐摩耗剤、酸化防止剤、金属不活性化剤、防錆剤及び消泡剤からなる群より選ばれる少なくとも1つの添加剤とを混合する工程を有する潤滑油の製造方法が好ましい。 Therefore, the method for producing the lubricating oil is preferably a method for producing a lubricating oil that includes a step of mixing the α-olefin polymer obtained by the method described above or the α-olefin polymer with at least one additive selected from the group consisting of extreme pressure agents, oiliness agents, antiwear agents, antioxidants, metal deactivators, rust inhibitors, and antifoaming agents.
 極圧剤としては、硫黄系極圧剤、リン系極圧剤、硫黄及び金属を含む極圧剤、リン及び金属を含む極圧剤が挙げられる。これらの極圧剤は一種を単独で又は二種以上組み合わせて用いることができる。極圧剤としては、分子中に硫黄原子及び/又はリン原子を含み、耐荷重性や耐摩耗性を発揮しうるものであればよい。
 極圧剤の配合量は、配合効果及び経済性の点から、潤滑油全量基準で、通常0.01~30質量%程度であり、好ましくは0.01~10質量%である。
Examples of the extreme pressure agent include sulfur-based extreme pressure agents, phosphorus-based extreme pressure agents, extreme pressure agents containing sulfur and metal, and extreme pressure agents containing phosphorus and metal. These extreme pressure agents can be used alone or in combination of two or more. The extreme pressure agent may be any agent that contains sulfur atoms and/or phosphorus atoms in the molecule and can exhibit load resistance and wear resistance.
The amount of the extreme pressure agent blended is usually about 0.01 to 30 mass %, and preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil, from the standpoint of blending effect and economy.
 油性剤としては、脂肪族アルコール、脂肪酸や脂肪酸金属塩などの脂肪酸化合物、ポリオールエステル、ソルビタンエステル、グリセライドなどのエステル化合物、脂肪族アミンなどのアミン化合物などを挙げることができる。
 油性剤の配合量は、配合効果の点から、潤滑油全量基準で、通常0.1~30質量%程度であり、好ましくは0.5~10質量%である。
Examples of oily agents include fatty alcohols, fatty acids and fatty acid metal salts and other fatty acid compounds, polyol esters, sorbitan esters, glycerides and other ester compounds, and fatty amines and other amine compounds.
The amount of the oiliness agent to be added is usually about 0.1 to 30 mass %, and preferably 0.5 to 10 mass %, based on the total amount of the lubricating oil, from the viewpoint of the effect of the addition.
 耐摩耗剤としては、ジアルキルジチオリン酸亜鉛(ZnDTP)、リン酸亜鉛、ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類、チオカーバメート類、ポリサルファイド類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、及びこれらのアミン塩又は金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオリン酸エステル類、チオホスホン酸エステル類、及びこれらのアミン塩又は金属塩等の硫黄及びリン含有耐摩耗剤が挙げられる。
 耐摩耗剤の配合量は、配合効果および経済性の観点から潤滑油全量基準で、通常0.01~30質量%程度であり、より好ましくは0.01~10質量%である。
Examples of anti-wear agents include sulfur-containing compounds such as zinc dialkyldithiophosphate (ZnDTP), zinc phosphate, disulfides, sulfurized olefins, sulfurized oils and fats, sulfurized esters, thiocarbonates, thiocarbamates, and polysulfides; phosphorus-containing compounds such as phosphites, phosphates, phosphonates, and amine salts or metal salts thereof; and sulfur- and phosphorus-containing anti-wear agents such as thiophosphites, thiophosphates, thiophosphonates, and amine salts or metal salts thereof.
The amount of the anti-wear agent blended is usually about 0.01 to 30 mass %, and more preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil, from the viewpoints of blending effect and economy.
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、及びジアルキルジチオリン酸亜鉛からなる群より選ばれる少なくとも1種であることが好ましく、フェノール系酸化防止剤及びアミン系酸化防止剤からなる群より選ばれる少なくとも1種であることがより好ましく、フェノール系酸化防止剤が更に好ましい。
 フェノール系酸化防止剤のなかでも、テトラキス[メチレン-3-(3’,5-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンが好ましい。
 また、これらの酸化防止剤を複数組み合わせてもよく、これらの酸化防止剤と過酸化物分解機能を有する酸化防止剤を組み合わせてもよい。
 過酸化物分解機能を有する酸化防止剤としては有機硫黄系酸化防止剤があり、ジアルキルジチオリン酸亜鉛はラジカル捕捉機能と過酸化物分解機能をどちらも有している。
 本発明の潤滑油に含まれる酸化防止剤の量は、潤滑油全量基準で、好ましくは0.1質量%以上であり、より好ましくは0.2質量%以上であり、更に好ましくは0.3質量%以上であり、より更に好ましくは0.4質量%以上である。好ましくは10質量%以下であり、5質量%以下であってもよく、3質量%以下であってもよい。
The antioxidant is preferably at least one selected from the group consisting of phenol-based antioxidants, amine-based antioxidants, and zinc dialkyldithiophosphates, more preferably at least one selected from the group consisting of phenol-based antioxidants and amine-based antioxidants, and even more preferably a phenol-based antioxidant.
Among the phenolic antioxidants, tetrakis[methylene-3-(3',5-di-t-butyl-4'-hydroxyphenyl)propionate]methane is preferred.
Moreover, a plurality of these antioxidants may be used in combination, or one of these antioxidants may be used in combination with an antioxidant having a peroxide decomposition function.
Antioxidants having a peroxide decomposition function include organic sulfur-based antioxidants, and zinc dialkyldithiophosphate has both a radical scavenging function and a peroxide decomposition function.
The amount of the antioxidant contained in the lubricating oil of the present invention is preferably 0.1 mass% or more, more preferably 0.2 mass% or more, even more preferably 0.3 mass% or more, and even more preferably 0.4 mass% or more, based on the total amount of the lubricating oil. It is preferably 10 mass% or less, and may be 5 mass% or less, or may be 3 mass% or less.
 金属不活性化剤としては、ベンゾトリアゾール、チアジアゾール等が挙げられる。金属不活性化剤の好ましい配合量は、配合効果の点から、潤滑油全量基準で、通常0.01~10質量%程度であり、好ましくは0.01~1質量%である。 Examples of metal deactivators include benzotriazole and thiadiazole. From the viewpoint of the compounding effect, the preferred compounding amount of the metal deactivator is usually about 0.01 to 10 mass% based on the total amount of the lubricating oil, and preferably 0.01 to 1 mass%.
 防錆剤としては、金属系スルホネート、コハク酸エステルなどを挙げることができる。防錆剤の配合量は、配合効果の点から、潤滑油全量基準で、通常0.01~10質量%程度であり、好ましくは0.05~5質量%である。 Examples of rust inhibitors include metal sulfonates and succinic acid esters. From the viewpoint of compounding effectiveness, the amount of rust inhibitor to be added is usually about 0.01 to 10 mass% based on the total amount of lubricating oil, and preferably 0.05 to 5 mass%.
 消泡剤としては、メチルシリコーン油、フルオロシリコーン油、ポリアクリレート等が挙げられる。消泡剤の配合量は、配合効果の点から、潤滑油全量基準で、通常0.0005~0.01質量%程度である。 Examples of defoamers include methylsilicone oil, fluorosilicone oil, polyacrylate, etc. From the viewpoint of compounding effect, the amount of defoamer to be added is usually about 0.0005 to 0.01 mass% based on the total amount of lubricating oil.
 本発明のα-オレフィン重合体の含有量は、潤滑油中、好ましくは55質量%以上であり、より好ましくは60質量%以上であり、更に好ましくは80質量%以上である。また、100質量%以下であり、本発明のα-オレフィン重合体のみからなっていてもよい。前記範囲であると、本発明の効果が十分に発揮され、低燃費化・省エネルギー化、長寿命化を達成することができる。 The content of the α-olefin polymer of the present invention in the lubricating oil is preferably 55% by mass or more, more preferably 60% by mass or more, and even more preferably 80% by mass or more. It may also be 100% by mass or less, and may consist of only the α-olefin polymer of the present invention. When it is within the above range, the effects of the present invention are fully exerted, and low fuel consumption, energy saving, and long life can be achieved.
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
 α-オレフィン重合体の物性評価は以下の方法により行った。結果は表1に示す。
(1)40℃動粘度及び粘度指数
 動粘度は、JIS K 2283に準拠し測定した。粘度指数は、動粘度より、JIS K 2283に準拠し計算して求めた。
(2)流動点
 JIS K 2269に準拠し測定した。
The physical properties of the α-olefin polymer were evaluated by the following methods, and the results are shown in Table 1.
(1) 40°C Kinematic Viscosity and Viscosity Index Kinematic viscosity was measured in accordance with JIS K 2283. Viscosity index was calculated from kinematic viscosity in accordance with JIS K 2283.
(2) Pour point: Measured in accordance with JIS K 2269.
実施例1
(工程1)
 30Lのステンレス製容器に、窒素雰囲気下で、水分10ppm以下まで脱水したトルエン18.9kg、トリイソブチルアルミニウム(C1)(20%トルエン溶液)0.89kg、ターシャリーブチルアルコール(E1)0.0198kg、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド(A)30mmol、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(B)36mmol、1-オクテン(D1)0.08kg、1-ドデセン(D2)0.12kgを添加し、室温(25℃)で2時間撹拌し、触媒混合物を得た。
Example 1
(Step 1)
A 30 L stainless steel vessel was charged with 18.9 kg of toluene that had been dehydrated to a water content of 10 ppm or less under a nitrogen atmosphere, 0.89 kg of triisobutylaluminum (C1) (20% toluene solution), 0.0198 kg of tertiary butyl alcohol (E1), 30 mmol of (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)-bis(cyclopentadienyl)zirconium dichloride (A), 36 mmol of N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (B), 0.08 kg of 1-octene (D1), and 0.12 kg of 1-dodecene (D2), and the mixture was stirred at room temperature (25°C) for 2 hours to obtain a catalyst mixture.
(工程2)
 内容積1.2m3(1200L)のステンレス製反応容器を十分乾燥し、窒素置換の後に、1-ドデセン(D2)345kg、1-オクテン(D1)230kgを導入し、次にトリイソブチルアルミニウム(C2)(20%トルエン溶液)0.19kgを入れ、95℃に昇温した。水素0.2MPaGを導入し、工程1で得られた触媒混合物を1時間あたり0.4kgの速度で連続的に導入した。触媒混合物導入開始後内温を103℃に維持して反応させた。反応途中の反応液を少量抜き出し、転化率を測定し、転化率が90%に達したところで反応を停止した。
 50Pa、250℃の減圧蒸留を行い、残留モノマー等を除去して、α-オレフィン重合体を得た。
(Step 2)
A stainless steel reaction vessel with an internal volume of 1.2 m 3 (1200 L) was thoroughly dried and purged with nitrogen, after which 345 kg of 1-dodecene (D2) and 230 kg of 1-octene (D1) were introduced, followed by 0.19 kg of triisobutylaluminum (C2) (20% toluene solution), and the temperature was raised to 95° C. Hydrogen at 0.2 MPaG was introduced, and the catalyst mixture obtained in step 1 was continuously introduced at a rate of 0.4 kg per hour. After the start of introduction of the catalyst mixture, the internal temperature was maintained at 103° C. to carry out the reaction. A small amount of the reaction liquid was withdrawn during the reaction, and the conversion was measured, and the reaction was stopped when the conversion reached 90%.
Distillation was carried out under reduced pressure of 50 Pa and 250° C. to remove residual monomers, etc., to obtain an α-olefin polymer.
(水素添加工程)
 工程2で得られたα-オレフィン重合体に、ニッケル触媒を質量比で0.25質量%添加後、0.4MPaの水素のもと、150℃で6時間反応させた。反応終了後、触媒成分をろ過で除去し、無色透明な水素添加α-オレフィン重合体を得た。
(Hydrogenation process)
A nickel catalyst was added in an amount of 0.25% by mass to the α-olefin polymer obtained in step 2, and the mixture was reacted under hydrogen of 0.4 MPa at 150° C. for 6 hours. After completion of the reaction, the catalyst component was removed by filtration to obtain a colorless and transparent hydrogenated α-olefin polymer.
実施例2
 実施例1の工程1において、トリイソブチルアルミニウム(20%トルエン溶液)の量を1.2kgに、ターシャリーブチルアルコールの量を0.0440kgに、1-オクテンの量を0.586kgに、1-ドデセンの量を0.880kgに変更した以外は実施例1と同様にして、触媒混合物を得、得られた触媒混合物を用いて、実施例1と同様にして、工程2及び水素添加工程を行い、α-オレフィン重合体を得た。
Example 2
A catalyst mixture was obtained in the same manner as in Example 1, except that in step 1 of Example 1, the amount of triisobutylaluminum (20% toluene solution) was changed to 1.2 kg, the amount of tert-butyl alcohol was changed to 0.0440 kg, the amount of 1-octene was changed to 0.586 kg, and the amount of 1-dodecene was changed to 0.880 kg. Using the obtained catalyst mixture, step 2 and the hydrogenation step were performed in the same manner as in Example 1, to obtain an α-olefin polymer.
比較例1
(工程1)
 500mLのガラス製シュレンク瓶に、窒素雰囲気下で、水分10ppm以下まで脱水した特級トルエン 334mL、1-オクテン 40mL、トリイソブチルアルミニウム 24mmol(2mmol/mLのトルエン溶液;12mL)、ターシャリーブチルアルコール 14.4mmolを添加し、室温で1時間撹拌した。次に(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド 800μmol(40μmol/mLのトルエン溶液;20mL)及び粉末状のN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート 0.8mmol(640mg)を加えて室温で1時間撹拌し、触媒混合液を調製した(Zr濃度2mmol/L、全量400mL)。
Comparative Example 1
(Step 1)
In a 500 mL glass Schlenk flask, 334 mL of special grade toluene that had been dehydrated to 10 ppm or less of water was added under a nitrogen atmosphere, 40 mL of 1-octene, 24 mmol of triisobutylaluminum (2 mmol/mL toluene solution; 12 mL), and 14.4 mmol of tertiary butyl alcohol were added and stirred at room temperature for 1 hour. Next, 800 μmol of (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)-bis(cyclopentadienyl)zirconium dichloride (40 μmol/mL toluene solution; 20 mL) and 0.8 mmol (640 mg) of powdered N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate were added and stirred at room temperature for 1 hour to prepare a catalyst mixture (Zr concentration 2 mmol/L, total amount 400 mL).
(工程2)
 内容積30Lのステンレス製オートクレーブを十分乾燥し、窒素置換の後に、1-ドデセン及び1-オクテンをそれぞれ8.0kg(10.5L)、5.4kg(7.5L)導入し、次にトリイソブチルアルミニウム 5.4mmolを入れ、95℃に昇温した。水素0.02MPaGを導入し、工程1で得られた触媒混合液をプランジャーポンプを用いて1時間あたり36mLの速度で連続的に導入した。触媒導入開始後、内温を102℃に維持して5時間反応させた。反応途中の反応液を少量抜き出し、転化率を測定した。最終的に、導入した(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリドは504μmolで、共重合体への転化率は95.8質量%であった。
 反応液300mL程度を抜き出し、イオン交換水200mLを加え強く撹拌し、静置後、有機層を約1.0×10-4MPaの減圧下、200℃で蒸留を行い、トルエン、残留モノマー等を留去し、無色透明液体を得た。更に、薄膜蒸留装置(柴田科学株式会社製分子蒸留装置MS-300特型、高真空排気装置DS-212Z)を用いて2×10-5MPaの減圧下、180℃で薄膜蒸留を行い、炭素数24以下の低分子成分を取除き、α-オレフィン重合体を得た。
(Step 2)
A stainless steel autoclave with an internal volume of 30 L was thoroughly dried and purged with nitrogen, after which 8.0 kg (10.5 L) and 5.4 kg (7.5 L) of 1-dodecene and 1-octene were introduced, respectively, followed by 5.4 mmol of triisobutylaluminum, and the temperature was raised to 95°C. Hydrogen was introduced at 0.02 MPaG, and the catalyst mixture obtained in step 1 was continuously introduced at a rate of 36 mL per hour using a plunger pump. After the start of catalyst introduction, the internal temperature was maintained at 102°C and the reaction was carried out for 5 hours. A small amount of the reaction liquid was withdrawn during the reaction, and the conversion rate was measured. Finally, 504 μmol of (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)-bis(cyclopentadienyl)zirconium dichloride was introduced, and the conversion rate to copolymer was 95.8% by mass.
About 300 mL of the reaction liquid was extracted, 200 mL of ion-exchanged water was added, and the mixture was stirred vigorously. After standing, the organic layer was distilled at 200° C. under a reduced pressure of about 1.0×10 −4 MPa to remove toluene, residual monomers, etc., to obtain a colorless, transparent liquid. Further, thin-film distillation was performed at 180° C. under a reduced pressure of 2×10 −5 MPa using a thin-film distillation apparatus (special model molecular distillation apparatus MS-300, high vacuum exhaust apparatus DS-212Z, manufactured by Shibata Scientific Co., Ltd.) to remove low molecular weight components having a carbon number of 24 or less, to obtain an α-olefin polymer.
(水素添加工程)
 工程2で得られたα-オレフィン重合体を内容積1リットルのステンレス製オートクレーブに入れ、安定化ニッケル触媒(堺化学工業株式会社製 SN750)を質量比で1質量%添加後、2MPaの水素のもと、130℃で6時間反応させた。反応終了後、温度を80℃付近まで冷却した後、内容物を取り出し、2μmのフィルターを用いて70℃付近で触媒成分を濾過分離し、無色透明な水素添加α-オレフィン重合体を得た。
(Hydrogenation process)
The α-olefin polymer obtained in step 2 was placed in a stainless steel autoclave with an internal volume of 1 liter, and 1% by mass of a stabilized nickel catalyst (SN750 manufactured by Sakai Chemical Industry Co., Ltd.) was added thereto, followed by reaction for 6 hours at 130° C. under hydrogen of 2 MPa. After completion of the reaction, the temperature was cooled to about 80° C., and the contents were then removed, and the catalyst component was filtered and separated at about 70° C. using a 2 μm filter, to obtain a colorless and transparent hydrogenated α-olefin polymer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例で得られたα-オレフィン重合体は、比較例のα-オレフィン重合体に比べ、同様の40℃動粘度であるにもかかわらず、流動点が非常に低く、低温流動性に優れることがわかる。このことから、本発明のα-オレフィン重合体は、潤滑油として用いた際の性能にも優れることがわかる。本発明のα-オレフィン重合体を潤滑油として用いることで、低燃費化・省エネルギー化、長寿命化を達成することができる。 The α-olefin polymers obtained in the examples have a very low pour point and excellent low-temperature fluidity compared to the α-olefin polymers of the comparative examples, despite having a similar 40°C kinetic viscosity. This shows that the α-olefin polymers of the present invention also have excellent performance when used as lubricants. By using the α-olefin polymers of the present invention as lubricants, it is possible to achieve lower fuel consumption, energy savings, and longer life.

Claims (24)

  1.  メタロセン化合物(A)と、
     メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物(B)と、
     有機金属化合物(C)と、
     炭素数が2以上異なる複数の原料モノマー(D)と、
     アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程1、及び
     前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程2を有する、α-オレフィン重合体の製造方法。
    A metallocene compound (A);
    an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it to a cation;
    An organometallic compound (C);
    A plurality of raw material monomers (D) having carbon numbers differing by two or more;
    A method for producing an α-olefin polymer, comprising: Step 1: mixing a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2), and ether compounds (E3) to obtain a catalyst mixture; and Step 2: polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  2.  前記イオン性化合物(B)が、置換基を有していてもよいテトラフェニルホウ酸塩であり、前記有機金属化合物(C)が、有機アルミニウム化合物(C1)である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, wherein the ionic compound (B) is a tetraphenylborate salt which may have a substituent, and the organometallic compound (C) is an organoaluminum compound (C1).
  3.  前記複数の原料モノマー(D)が、1-オクテン(D1)と1-ドデセン(D2)である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 1, wherein the multiple raw material monomers (D) are 1-octene (D1) and 1-dodecene (D2).
  4.  工程1で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]が、モル比で4:6~6:4である、請求項3に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 3, wherein the molar ratio [D1/D2] of 1-octene (D1) and 1-dodecene (D2) used in step 1 is 4:6 to 6:4.
  5.  工程1において、メタロセン化合物(A)に対する前記複数の原料モノマー(D)の合計の比率[D/A]が、モル比で40~300である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, wherein in step 1, the ratio [D/A] of the total of the multiple raw material monomers (D) to the metallocene compound (A) is 40 to 300 in molar ratio.
  6.  工程1において、更に溶媒を混合する、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, further comprising mixing a solvent in step 1.
  7.  工程1において、50℃以下で30分間以上混合するものである、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 1, in which in step 1, mixing is carried out at 50°C or less for 30 minutes or more.
  8.  工程2において、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、α-オレフィンを重合するものである、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, in which in step 2, the α-olefin and the organoaluminum compound (C2) are mixed, and then a catalyst mixture is mixed to polymerize the α-olefin.
  9.  工程2において、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、次に80℃以上に昇温し、α-オレフィンを重合するものである、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 1, in which in step 2, the α-olefin and the organoaluminum compound (C2) are mixed, then the catalyst mixture is mixed, and then the temperature is raised to 80°C or higher to polymerize the α-olefin.
  10.  工程2で用いられるα-オレフィン中の複数の原料モノマー(D)の比率が、90~100モル%である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, wherein the ratio of the multiple raw material monomers (D) in the α-olefin used in step 2 is 90 to 100 mol %.
  11.  工程2で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]が、モル比で4:6~6:4である、請求項3に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 3, wherein the molar ratio [D1/D2] of 1-octene (D1) and 1-dodecene (D2) used in step 2 is 4:6 to 6:4.
  12.  メタロセン化合物(A)が、二架橋メタロセン化合物である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, wherein the metallocene compound (A) is a dibridged metallocene compound.
  13.  メタロセン化合物(A)が、下記一般式(I)で表される二架橋メタロセン化合物である、請求項1に記載のα-オレフィン重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R及びRは、それぞれ独立に、下記一般式-[L(R)(R)]-で表わされる連結基である。X及びXは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、またはハロゲン原子、ケイ素原子、酸素原子、イオウ原子、窒素原子およびリン原子から選ばれる一種以上の原子を含有する炭素数1~20の有機基を示す。Mは周期表第4~6族の遷移金属を示す。nは1~3の整数である。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基を示す。Lは周期表第14族の原子を示す。)
    2. The method for producing an α-olefin polymer according to claim 1, wherein the metallocene compound (A) is a dibridged metallocene compound represented by the following general formula (I):
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, R a and R b each independently represent a linking group represented by the following general formula -[L(R 1 )(R 2 )] n -. X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. M represents a transition metal of Groups 4 to 6 of the periodic table. n is an integer of 1 to 3. R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms. L represents an atom of Group 14 of the periodic table.)
  14.  メタロセン化合物(A)と(E)成分との比率[A/E]が、モル比で10:1~1:100である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing an α-olefin polymer according to claim 1, wherein the ratio [A/E] of the metallocene compound (A) to the component (E) is 10:1 to 1:100 in molar ratio.
  15.  工程2におけるα-オレフィンの量が400kg以上である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 1, in which the amount of α-olefin in step 2 is 400 kg or more.
  16.  工程2の重合を800L以上の容量を有する反応容器で行う、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 1, in which the polymerization in step 2 is carried out in a reaction vessel having a capacity of 800 L or more.
  17.  得られるα-オレフィン重合体の、40℃動粘度が350~500cStであり、流動点が-50℃以下である、請求項1に記載のα-オレフィン重合体の製造方法。 The method for producing α-olefin polymers according to claim 1, in which the resulting α-olefin polymer has a kinetic viscosity at 40°C of 350 to 500 cSt and a pour point of -50°C or lower.
  18.  下記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下である、α-オレフィン重合体。
      (流動点(℃))≦0.0090×(40℃動粘度(cSt))-52   (1)
    The α-olefin polymer satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less.
    (Pour point (°C))≦0.0090×(40°C kinematic viscosity (cSt))−52 (1)
  19.  40℃動粘度が350~500cStであり、流動点が-50℃以下である、請求項18に記載のα-オレフィン重合体。 The α-olefin polymer according to claim 18, having a kinetic viscosity at 40°C of 350 to 500 cSt and a pour point of -50°C or lower.
  20.  下記式(2)を満たし、粘度指数が220以下である、請求項18に記載のα-オレフィン重合体。
      (流動点(℃))≦0.3×(粘度指数)-103   (2)
    19. The α-olefin polymer according to claim 18, which satisfies the following formula (2) and has a viscosity index of 220 or less:
    (Pour point (°C))≦0.3 × (viscosity index) −103 (2)
  21.  下記工程1及び工程2を有する方法によって得られる、α-オレフィン重合体。
     工程1:メタロセン化合物(A)と、前記メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程
     工程2:前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程
    An α-olefin polymer obtained by a process having the following steps 1 and 2:
    Step 1: A step of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound (A) to convert it to a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in carbon number by 2 or more, and a component (E) which is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture. Step 2: A step of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  22.  下記式(1)を満たし、40℃動粘度が350cSt以上、1500cSt以下である、請求項21に記載のα-オレフィン重合体。
      (流動点(℃))≦0.0090×(40℃動粘度(cSt))-52   (1)
    22. The α-olefin polymer according to claim 21, which satisfies the following formula (1) and has a kinematic viscosity at 40° C. of 350 cSt or more and 1500 cSt or less:
    (Pour point (°C))≦0.0090×(40°C kinematic viscosity (cSt))−52 (1)
  23.  請求項1~17のいずれか1つに記載の方法で得られたα-オレフィン重合体、又は請求項18~22のいずれか1つに記載のα-オレフィン重合体を含有する、潤滑油。 A lubricating oil containing an α-olefin polymer obtained by the method according to any one of claims 1 to 17, or an α-olefin polymer according to any one of claims 18 to 22.
  24.  請求項1~17のいずれか1つに記載の方法で得られたα-オレフィン重合体、又は請求項18~22のいずれか1つに記載のα-オレフィン重合体と、極圧剤、油性剤、耐摩耗剤、酸化防止剤、金属不活性化剤、防錆剤及び消泡剤からなる群より選ばれる少なくとも1つの添加剤とを混合する工程を有する、潤滑油の製造方法。 A method for producing a lubricating oil, comprising a step of mixing an α-olefin polymer obtained by the method according to any one of claims 1 to 17, or an α-olefin polymer according to any one of claims 18 to 22, with at least one additive selected from the group consisting of extreme pressure agents, oiliness agents, antiwear agents, antioxidants, metal deactivators, rust inhibitors, and antifoaming agents.
PCT/JP2023/036302 2022-10-14 2023-10-05 METHOD FOR PRODUCING α-OLEFIN POLYMER WO2024080214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165835 2022-10-14
JP2022165835 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080214A1 true WO2024080214A1 (en) 2024-04-18

Family

ID=90669205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036302 WO2024080214A1 (en) 2022-10-14 2023-10-05 METHOD FOR PRODUCING α-OLEFIN POLYMER

Country Status (1)

Country Link
WO (1) WO2024080214A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082018A (en) * 2001-06-29 2003-03-19 Japan Polychem Corp Method for polymerizing olefin
WO2011093295A1 (en) * 2010-01-26 2011-08-04 出光興産株式会社 α-OLEFIN (CO)POLYMER, HYDROGENATED α-OLEFIN (CO)POLYMER AND LUBRICATING OIL COMPOSITION CONTAINING THE SAME
WO2014142206A1 (en) * 2013-03-14 2014-09-18 出光興産株式会社 METHODS FOR PRODUCING α-OLEFIN POLYMER AND HYDROGENATED α-OLEFIN POLYMER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082018A (en) * 2001-06-29 2003-03-19 Japan Polychem Corp Method for polymerizing olefin
WO2011093295A1 (en) * 2010-01-26 2011-08-04 出光興産株式会社 α-OLEFIN (CO)POLYMER, HYDROGENATED α-OLEFIN (CO)POLYMER AND LUBRICATING OIL COMPOSITION CONTAINING THE SAME
WO2014142206A1 (en) * 2013-03-14 2014-09-18 出光興産株式会社 METHODS FOR PRODUCING α-OLEFIN POLYMER AND HYDROGENATED α-OLEFIN POLYMER

Similar Documents

Publication Publication Date Title
US6583239B2 (en) Process for producing a polymer of an α-olefin and lubricant
US9023960B2 (en) Process for producing α-olefin polymer, α-olefin polymer, and lubricating oil composition
JP5745277B2 (en) Gear lubricant
US20140309151A1 (en) 1-octene/1-decene copolymer and lubricating-oil composition containing same
US20120302481A1 (en) Alpha-olefin (co)polymer, hydrogenated alpha-olefin (co)polymer and lubricating oil composition containing the same
US20140256997A1 (en) 1-octene, 1-decene, 1-dodecene ternary copolymer and lubricant composition containing same
US20140235909A1 (en) 1-decene/1-dodecene copolymer and lubricating-oil composition containing same
JP5357605B2 (en) Method for producing α-olefin polymer and lubricating oil
CA2905271C (en) Methods for producing a-olefin polymer and hydrogenated a-olefin polymer
US20120165580A1 (en) Process For Production of Polyolefins
WO2024080214A1 (en) METHOD FOR PRODUCING α-OLEFIN POLYMER
AU2012374047B2 (en) New catalysts for producing polyalpha-olefins
WO2013109371A1 (en) Process for production of liquid polyolefins
WO2014142207A1 (en) METHODS FOR PRODUCING α-OLEFIN POLYMER AND HYDROGENATED α-OLEFIN POLYMER