WO2024080158A1 - Cryogenic power generation apparatus and cryogenic power generation system - Google Patents

Cryogenic power generation apparatus and cryogenic power generation system Download PDF

Info

Publication number
WO2024080158A1
WO2024080158A1 PCT/JP2023/035595 JP2023035595W WO2024080158A1 WO 2024080158 A1 WO2024080158 A1 WO 2024080158A1 JP 2023035595 W JP2023035595 W JP 2023035595W WO 2024080158 A1 WO2024080158 A1 WO 2024080158A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner casing
power generation
heat medium
cold energy
energy power
Prior art date
Application number
PCT/JP2023/035595
Other languages
French (fr)
Japanese (ja)
Inventor
晃 川波
亮 ▲高▼田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024080158A1 publication Critical patent/WO2024080158A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the present disclosure relates to a cold energy power generation device and a cold energy power generation system.
  • This application claims priority based on Japanese Patent Application No. 2022-164632, filed with the Japan Patent Office on October 13, 2022, the contents of which are incorporated herein by reference.
  • Liquefied gas for example, liquefied natural gas
  • liquefied natural gas is liquefied for the purpose of transportation and storage, and when it is supplied to destinations such as city gas and thermal power plants, it is heated and vaporized using a heat medium such as seawater.
  • a heat medium such as seawater.
  • the ORC Organic Rankine Cycle
  • the ORC is known as a cold energy power generation cycle that uses liquefied natural gas.
  • a low-temperature working fluid with a boiling point lower than that of water circulating in a closed loop is cooled and condensed with liquefied natural gas in a condenser, then pressurized by a pump, heated and evaporated in an evaporator using seawater or other heat sources, and this steam is introduced into a cold energy power generation turbine to generate power.
  • Patent Document 1 discloses a cold energy power generation device in which a turbine and a generator are arranged coaxially within the same casing in order to reduce the size of the device.
  • the generator is arranged in the center of the shaft, and the turbine and thrust bearing are arranged on one side of the generator.
  • This disclosure was made in consideration of the above-mentioned problems, and aims to provide a cold energy power generation device that can suppress a decline in generator performance by reducing windage loss (loss) in the thrust bearing.
  • the cold energy power generation device is a cold energy power generation device provided in a heat medium circulation line configured to circulate a heat medium for heating liquefied gas, and includes a generator including a rotor shaft, a motor rotor supported on the outer peripheral surface of the rotor shaft, and a motor stator arranged opposite the motor rotor, an inner casing that houses the generator, an outer casing that is arranged on the outer peripheral side of the inner casing and defines a heat medium flow path between the inner casing and the outer casing, a first stage turbine device that is arranged in the heat medium flow path and is arranged on one side of the rotor shaft in the axial direction relative to the generator, a second stage turbine device that is arranged in the heat medium flow path and is arranged on the other side of the rotor shaft in the axial direction relative to the generator, and on the inner peripheral side of the inner casing,
  • the second stage turbine device includes a journal bearing device arranged on the other side of the generator
  • the cold energy power generation device disclosed herein can reduce the pressure inside the inner casing at the position where the thrust bearing device is located, and by reducing the windage loss caused by the thrust bearing device, it is possible to suppress a decrease in generator performance.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a cold energy power generation system including a cold energy power generation device according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view of a cold energy generating device according to an embodiment of the present disclosure.
  • 2 is an enlarged cross-sectional view of the second stage turbine and its surroundings of a cold energy power generation device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the AA cross section of the cold energy power generation device shown in FIG. 2.
  • 3 is a schematic diagram of the cross section BB of the cold energy power generation device shown in FIG. 2.
  • expressions indicating that things are in an equal state such as “identical,””equal,” and “homogeneous,” not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
  • expressions describing shapes such as a rectangular shape or a cylindrical shape do not only represent rectangular shapes or cylindrical shapes in the strict geometric sense, but also represent shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
  • the expressions “comprise”, “include”, or “have” a certain element are not exclusive expressions excluding the presence of other elements.
  • the same components are denoted by the same reference numerals and the description thereof may be omitted.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a cold energy power generation system including a cold energy power generation device according to an embodiment of the present disclosure.
  • the cold energy power generation system 100 is a cold energy power generation system 100 for recovering cold energy contained in a liquefied gas as electric power via a heat medium for heating the liquefied gas.
  • the cold energy power generation system 100 is installed, for example, on a water-borne floating structure 10A or a land-based liquefied gas base 10B, although there is no particular limitation thereto.
  • the water floating structure 10A is a structure that can float on the water.
  • the water floating structure 10A has a propulsion device configured to drive a thruster such as a propeller, and includes ships that can move on their own by driving the propulsion device, and floats that do not have a propulsion device.
  • the water floating structure 10A stores liquid liquefied gas, which is heated and vaporized by seawater or the like, and is then flowed into an engine (not shown) to obtain propulsion force. When the liquefied gas is vaporized, the cold energy is not dumped into the seawater by the cold energy power generation system 100, but is instead recovered as electricity by the cold energy power generation device 1 described below.
  • the land-based liquefied gas base 10B receives and stores the liquefied gas transported by the LNG carrier. Then, when it is to be supplied to a liquefied gas supply destination such as a city gas or thermal power plant, the liquefied gas is heated using seawater or the like to return it to gas. When the liquefied gas is vaporized, the cold energy generated by the cold energy power generation system 100 is not dumped into seawater, but is instead recovered as electricity by the cold energy power generation device 1, which will be described later.
  • the cold energy power generation system 100 of the present disclosure will be described as being installed on a ship 10 that uses liquefied gas as fuel, one of the above-mentioned floating structures 10A.
  • the cold energy power generation system 100 includes a cold energy power generation device 1, a liquefied gas supply line 2, a condenser 3, a heating fluid supply line 4, a cold energy pump 5, an evaporator 7, and a heat medium circulation line 9.
  • the cold energy power generation device 1, the condenser 3, the cold energy pump 5, and the evaporator 7 are each connected by the heat medium circulation line 9.
  • the liquefied gas supply line 2 is connected to the condenser 3.
  • the heating fluid supply line 4 is connected to the evaporator 7.
  • the heat medium circulation line 9, the liquefied gas supply line 2, and the heating fluid supply line 4 each include a flow path, such as a pipe, through which a fluid flows.
  • the cold energy power generation system 100 is configured to be driven by the heat medium circulating through the heat medium circulation line 9 while changing its state to liquid or gas.
  • the heat medium circulation line 9 is configured to circulate a heat medium with a lower freezing point than water.
  • liquefied natural gas LNG
  • propane is used as a specific example of a heat medium flowing through the heat medium circulation line 9.
  • the present disclosure is also applicable to liquefied gases other than liquefied natural gas (such as liquefied hydrogen), and is also applicable to cases where a heat medium other than propane, such as R1234yf or R1234ze, is used as the heat medium flowing through the heat medium circulation line 9.
  • the condenser 3 is configured to condense the working fluid (heat medium) by heat exchange between the heat medium and the liquefied gas.
  • a heating side pipe connected to the heat medium circulation line 9 and into which the heat medium circulating through the heat medium circulation line 9 flows, and a heated side pipe connected to the liquefied gas supply line 2 and into which the liquefied gas flowing through the liquefied gas supply line 2 flows.
  • the heat medium flowing through the heating side pipe and the liquefied gas flowing through the heated side pipe are configured to exchange heat.
  • the heat medium is cooled and condensed by heat exchange, and the liquefied gas is heated.
  • the liquefied gas supply line 2 upstream of the condenser 3 is connected to a liquefied gas pump 22 , and the further upstream side of the liquefied gas pump 22 is connected to a liquefied gas storage device 21 .
  • the liquefied gas in liquid form stored in the liquefied gas storage device 21 is sent to the liquefied gas supply line 2, flows through the liquefied gas supply line 2 from the upstream side to the downstream side, and is supplied to the condenser 3.
  • the liquefied gas vaporized by heat exchange inside the condenser 3 flows through the heated side pipe, and then flows through the liquefied gas supply line 2 again, and is supplied as fuel to the engine (not shown) of the ship 10 installed downstream of the condenser 3.
  • the cold heat pump 5 is configured to boost the pressure of the heat medium supplied from the condenser 3.
  • the heat medium circulates through the heat medium circulation line 9.
  • the heat medium flows from the condenser 3 to the cold heat pump 5, from the cold heat pump 5 to the evaporator 7, from the evaporator 7 to the cold energy power generation device 1, and from the cold energy power generation device 1 to the condenser 3.
  • the cold/heat pump 5 may be of any type as long as it can boost the pressure of the heat medium.
  • a turbo pump centrifugal pump, mixed flow pump, axial flow pump, etc.
  • a positive displacement pump reciprocating pump, rotary pump
  • a special pump submersible motor pump
  • the evaporator 7 is configured to evaporate the heat medium by heat exchange between the heat medium pressurized by the cold heat pump 5 and the heating fluid introduced from outside the cold heat power generation system 100.
  • the heat medium flowing through the heat medium heated side pipe and the heating fluid flowing through the heat medium heating side pipe are configured to exchange heat.
  • the heat medium is heated and evaporated by heat exchange, and the heating fluid is cooled.
  • the heating fluid supply line 4 upstream of the evaporator 7 is connected to a heating fluid pump 42.
  • the heating fluid supply line 4 further upstream of the heating fluid pump 42 is connected to a heating fluid supply source so that heating fluid is introduced from outside the cold energy power generation system 100.
  • the heating fluid is sent from the heating fluid supply source to the heating fluid supply line 4, flows through the heating fluid supply line 4 from the upstream side to the downstream side, and is supplied to the evaporator 7.
  • the heating fluid cooled by heat exchange inside the evaporator 7 flows through the heat medium heating side pipe, and then flows through the heating fluid supply line 4 again, and is discharged to the outside of the cold energy power generation system 100.
  • heating fluid may be any fluid that heats the heat medium circulating through the heat medium circulation line 9 as a heat medium in the evaporator 7, and may be steam, hot water, seawater, engine cooling water, or water at room temperature.
  • the heating fluid can preferably be water that is easily available on the ship 10 (e.g., outside ship water such as seawater, or engine cooling water that cools the engine of the ship 10).
  • the cold energy power generation device 1 is configured to be driven by a gaseous heat medium generated in an evaporator 7 .
  • the cold energy power generation device 1 also has a generator 8.
  • the generator 8 is driven by a rotor shaft 11 of the cold energy power generation device 1, which will be described later, being rotated by the gaseous heat medium generated in the evaporator 7.
  • the gaseous heat medium that has driven the cold energy power generation device 1 flows through a heat medium circulation line 9 toward the above-mentioned condenser 3, which is installed downstream of the cold energy power generation device 1.
  • FIG. 2 is a schematic cross-sectional view of the cold energy power generation device 1 according to an embodiment of the present disclosure.
  • Fig. 3 is an enlarged cross-sectional view of the second stage turbine device 24 and its surroundings of the cold energy power generation device 1 according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic view of the A-A cross section of the cold energy power generation device shown in Fig. 2.
  • the upstream side in the flow direction of the heat medium in the cold energy power generation device 1 may be simply referred to as the upstream side
  • the downstream side in the flow direction of the heat medium in the cold energy power generation device 1 may be simply referred to as the downstream side.
  • the radial direction of the cold energy power generation device 1 may simply be referred to as the radial direction
  • the circumferential direction of the cold energy power generation device 1 may simply be referred to as the circumferential direction
  • the direction along the axis CA of the cold energy generating device 1 may be simply referred to as the axial direction.
  • the cold energy power generation device 1 in some embodiments includes a rotor shaft 11, a generator 8, a casing 6, a first stage turbine device 23, a second stage turbine device 24, a first journal bearing device 103, a second journal bearing device 104, and a thrust bearing device 102.
  • the rotor shaft 11 includes a shaft portion 111 having a longitudinal direction along the axis CA of the cold energy power generation device 1, a one-side disk portion 113A extending along the radial direction of the rotor shaft 11 on one side (upstream side) of the shaft portion 111 and supporting a first stage rotor blade 23B described later, and a other-side disk portion 113B extending along the radial direction of the rotor shaft 11 on the other side (downstream side) of the shaft portion 111 and supporting a second stage rotor blade 24B described later.
  • the axis of the rotor shaft 11 coincides with the axis CA of the cold energy power generation device 1 and the axis of the casing 6.
  • the axis of the rotor shaft 11 coincides with the horizontal direction, and the center of one end of the shaft portion 111 and the center of the other end of the shaft portion 111 are located at the same height level in the vertical direction.
  • the one-side disk portion 113A and the other-side disk portion 113B are fixed to the shaft portion 111 with nuts, and protrude radially outward from the outer surface of the shaft portion 111 in a circular plate shape.
  • the portion of the shaft portion 111 to which the one-side disk portion 113A and the other-side disk portion 113B are attached is formed with a smaller diameter than the other portions.
  • the generator 8 is configured to include a motor rotor 81 supported on the outer circumferential surface of the rotor shaft 11 , and a motor stator 82 disposed opposite the motor rotor 81 .
  • the motor rotor 81 is integrally formed on the outer circumferential surface of the rotor shaft 11, and the two have an integral structure.
  • the motor rotor 81 and the rotor shaft 11 may be formed separately, and the motor rotor 81 may be supported on the outer circumferential surface of the rotor shaft.
  • the motor stator 82 is supported on an inner circumferential surface 611 of the inner casing 61 described later, and is disposed radially outward of the motor rotor 81.
  • the casing 6 is composed of an inner casing 61 that houses the rotor shaft 11 and an outer casing 62 that is arranged on the outer periphery of the inner casing 61 and houses the inner casing 61 .
  • the inner casing 61 has a longitudinal direction along the axial direction of the cold energy power generation device 1, and is disposed between the first stage rotor blades 23B and the second stage rotor blades 24B in the axial direction of the cold energy power generation device 1.
  • a space 610 is formed inside the inner casing 61, and houses the shaft portion 111 and the generator 8 (in the illustrated example, the motor rotor 81 and the motor stator 82).
  • a heat medium flow path 63 is defined between the inner casing 61 and the outer casing 62.
  • the heat medium flow path 63 is defined between an outer peripheral surface 612 of the inner casing 61 and an inner peripheral surface 621 of the outer casing 62, and is configured to extend along the axial direction of the rotor shaft 11 from the upstream of the first stage stator vanes 23A to the downstream of the second stage rotor blades 24B.
  • the heat medium flow path 63 has a longitudinal direction along the axial direction of the cold-heat power generation device 1 and has an annular cross section surrounding the periphery of the inner casing 61.
  • the heat medium flow path 63 is configured to guide the heat medium from one side to the other side between the outer casing 62 and the inner casing 61.
  • a one-side cover 66A is disposed on one side (upstream side) of the inner casing 61, and a other-side cover 66B is disposed on the other side (downstream side).
  • the one-side cover 66A is disposed on one side of the inner casing body 61A so as to cover one end of the shaft portion 111 on one side in the axial direction of the first stage rotor blades 23B.
  • the other-side cover 66B is disposed on the other side of the inner casing body 61A so as to cover the other end of the shaft portion 111 on the other side in the axial direction of the second stage rotor blades 24B.
  • the heat medium flow path 63 extends to one side of the inner casing 61 by a space defined between the one-side cover 66A and the outer casing 62. Similarly, the heat medium flow path 63 extends to the other side of the inner casing 61 by a space defined between the other-side cover 66B and the outer casing 62.
  • a one-side inlet passage 64A for introducing the heat medium from one side along the axial direction into the heat medium passage 63 is formed on one side of the heat medium passage 63.
  • the one-side inlet passage 64A is defined by an inner surface of an inlet casing 65A connected to one side of the outer casing 62 on one axial side of the inner casing 61.
  • a second discharge passage 64B is formed on the other side of the heat medium passage 63 for discharging the heat medium from the heat medium passage 63 to the other side in the axial direction.
  • the second discharge passage 64B is defined by an inner surface of an outlet casing 65B connected to the other side of the outer casing 62 on the other axial side of the inner casing 61.
  • the heat medium introduced into the heat medium passage 63 from the one-side inlet passage 64A passes through the first-stage stator vanes 23A, and then acts on the first-stage rotor blades 23B to impart a rotational force to the rotor shaft 11, thereby driving the first-stage turbine device 23.
  • the heat medium passes through the first-stage rotor blades 23B, it exchanges heat with the heat generated in the generator 8 (motor rotor 81, motor stator 82) housed in the space 610 formed inside the inner casing 61 while flowing through the heat medium passage 63.
  • the heat generated in the generator 8 is absorbed by the heat medium flowing through the heat medium passage 63.
  • the generator 8 is cooled, and the heat medium flowing through the heat medium passage 63 is heated.
  • the heated heat medium acts on the second stage rotor blades 24B to impart a rotational force to the rotor shaft 11, thereby driving the second stage turbine device 24.
  • the heat medium heated by heat exchange with the generator 8 in the heat medium flow path 63 flows into the second stage turbine device 24, and this heated heat medium drives the second stage turbine device 24.
  • the heat medium that has flowed through the second stage turbine device 24 is discharged from the heat medium flow path 63 to the other side discharge path 64B and flows out to the outside of the cold energy power generation device 1.
  • the first stage turbine device 23 is disposed in the heat medium flow path 63.
  • the first stage turbine device 23 is configured to include a first stage rotor blade 23B provided on one side of the rotor shaft 11 relative to the motor rotor 81, and a first stage stator blade 23A supported by an inner circumferential surface 621 of the outer casing 62 or the inner casing 61 on one side of the rotor shaft 11 relative to the first stage rotor blade 23B.
  • the first stage rotor blades 23B are attached to the outer circumferential surface of the one-side disk portion 113A described above with a gap therebetween in the circumferential direction.
  • the first stage stator vanes 23A are supported by the inner circumferential surface 621 of the outer casing 62 and are provided on the inner circumferential surface 621 with a gap therebetween in the circumferential direction. In other embodiments, the first stage stator vanes 23A may be supported by the inner casing 61 and provided with a gap therebetween in the circumferential direction, or may be supported by both the inner circumferential surface 621 of the outer casing 62 and the inner casing 61.
  • the second stage turbine device 24 is disposed in the heat medium flow path 63.
  • the second stage turbine device 24 is configured to include second stage stator vanes 24A supported on the inner circumferential surface 621 of the outer casing 62 or the outer circumferential surface 612 of the inner casing 61 on the other side of the rotor shaft 11 from the motor rotor 81, and second stage rotor blades 24B provided on the other side of the rotor shaft 11 from the second stage stator vanes 24A.
  • the second stage rotor blades 24B are attached to the outer peripheral surface of the above-mentioned other-side disk portion 113B with a gap therebetween in the circumferential direction.
  • the second stage stator vanes 24A are supported by the inner peripheral surface 621 of the outer casing 62 and are provided on the inner peripheral surface 621 with a gap therebetween in the circumferential direction.
  • the second stage stator vanes 24A may be supported by the outer peripheral surface 612 of the inner casing 61 and provided on the outer peripheral surface 612 with a gap therebetween in the circumferential direction, or may be supported by both the inner peripheral surface 621 of the outer casing 62 and the outer peripheral surface 612 of the inner casing 61.
  • the first journal bearing device 103 is disposed inside the inner casing 61 on the other side of the generator 8, and includes a main bearing 103A and an auxiliary bearing 103B.
  • a main bearing 103A and an auxiliary bearing 103B that rotatably support the rotor shaft 11 are housed in a space 610 formed inside the inner casing 61.
  • the main bearing 103A is disposed on the other side of the motor rotor 81.
  • the auxiliary bearing 103B is disposed further on the other side of the main bearing 103A.
  • the first journal bearing device 103 may include only the main bearing 103A.
  • the second journal bearing device 104 is disposed inside the inner casing 61 on one side of the generator 8, and includes a main bearing 104A and an auxiliary bearing 104B.
  • a main bearing 104A and an auxiliary bearing 104B that rotatably support the rotor shaft 11 are housed in a space 610 formed inside the inner casing 61.
  • the main bearing 104A is disposed on one side of the motor rotor 81.
  • the auxiliary bearing 104B is disposed further on one side of the main bearing 104A.
  • the second journal bearing device 104 may include only the main bearing 104A.
  • the second journal bearing device 104 may not be provided.
  • the main bearings 103A, 104A may be magnetic bearings
  • the auxiliary bearings 103B, 104B may be ball bearings.
  • these auxiliary bearings 103B, 104B support the rotor shaft 11, preventing contact between the main bearings 103A, 104A and the rotor shaft 11.
  • the thrust bearing device 102 is disposed on one side of the first journal bearing device 103 inside the inner casing 61.
  • the thrust bearing device 102 is configured to include a one-side thrust bearing 102A and an other-side thrust bearing 102B disposed in a space 610 formed inside the inner casing 61, and receives the axial load (thrust force) of the rotor shaft 11. 2 and 3 , in the illustrated embodiment, the rotor shaft 11 further includes a thrust collar 112 extending radially inside the inner casing 61 on one side of the first journal bearing device 103 and on the other side of the generator 8.
  • the one-side thrust bearing 102A abuts against one side surface 112A, which is a side surface on one side of the thrust collar 112 provided on the rotor shaft 11.
  • the other-side thrust bearing 102B abuts against another side surface 112B, which is a side surface on the other side of the thrust collar 112.
  • the thrust bearing device 102 and the thrust collar 112 may be disposed inside the inner casing 61 on one side of the generator 8 .
  • the thrust bearing device 102 (the one-side thrust bearing 102A and the other-side thrust bearing 102B) may be configured by a magnetic bearing.
  • a radial gap 241 connected to the heat medium flow path 63 downstream of the second stage stator vane 24A is defined between the other-side end face 613, which is the other-side end face of the inner casing 61, and the other-side disk portion 113B.
  • the radial gap 241 is connected between the second stage stator vane 24A and the second stage rotor blade 24B in the heat medium flow passage 63, and has an annular cross section surrounding the rotor shaft 11.
  • the radial gap 241 has a uniform width in the axial direction, and extends along the radial direction.
  • the inner casing 61 is formed with at least one pressure equalizing passage 40 for communicating between a first space 614 on one side of the first journal bearing device 103 inside the inner casing 61 and the radial gap 241.
  • the pressure equalizing passage 40 includes a first space side opening 40A opening into the first space 614, a radial gap side opening 40B opening into the other side end face 613, a radial passage 401 extending along the radial direction from the first space side opening 40A, an axial passage 402 connecting to the radial passage 401 and extending in the axial direction of the rotor shaft 11, and a other side passage 403 connecting the axial passage 402 and the radial gap side opening 40B.
  • the other side passage 403 extends such that the distance from the axis of the rotor shaft 11 increases as it moves from the radial gap side opening 40B toward one side.
  • the first space side opening 40A is located radially outward from the radially inner end 102B1 of the other thrust bearing 102B, which is a stationary member. Therefore, the heat medium that flows from the upstream to the downstream of the thrust bearing device 102 can be introduced into the first space side opening 40A without being affected by the rotation of the rotor shaft 11.
  • the radial flow passages 401, the axial flow passages 402, and the other-side flow passages 403 each have a circular cross-sectional shape, and extend so that the flow passage areas are constant.
  • the radial flow passages 401, the axial flow passages 402, and the other-side flow passages 403 are also formed to have the same flow passage areas.
  • the heat medium introduced into the heat medium flow passage 63 from the one-side inlet passage 64A passes through the first-stage stator vanes 23A and the first-stage rotor blades 23B of the first-stage turbine device 23 and is introduced into the second-stage turbine device 24.
  • the heat medium introduced into the second-stage turbine device 24 passes through the second-stage stator vanes 24A and the second-stage rotor blades 24B of the second-stage turbine device and is discharged from the other-side discharge passage 64B. Further, a part of the heat medium leaks and flows into the inside of the inner casing 61, not into the heat medium flow passage 63.
  • the heat medium that has flowed into the inner casing 61 flows through the first space 614 and the pressure equalizing flow passage 40 in this order inside the inner casing 61, and flows into the radial gap 241 from the radial gap side opening 40B.
  • the pressure in the heat medium flow passage 63 downstream of the second stage stator vane 24A is lower than the inlet of the heat medium flow passage 63 because the heat medium passes through the first stage stator vane 23A, the first stage moving blade 23B, and the second stage stator vane 24A in that order.
  • the pressure in the heat medium flow passage 63 downstream of the second stage stator vane 24A is also lower than the pressure in the radial gap 241 of the heat medium that has passed through the inside of the inner casing 61.
  • the heat medium that has passed through the inner casing 61 and flowed into the radial gap 241 flows from the radial inside to the radial outside of the radial gap 241 and flows out into the heat medium flow passage 63 downstream of the second stage stator vane 24A. Then, the pressure inside the inner casing 61 decreases, and the pressure around the thrust bearing device 102 also decreases, reducing windage loss (loss) due to the thrust bearing device 102 and suppressing a decrease in generator performance.
  • the pressure inside the inner casing 61 is lower downstream due to pressure losses caused by the second journal bearing device 104, motor rotor 81, motor stator 82, etc.
  • the thrust bearing device 102 is disposed on the other side (downstream) of the generator 8, so the pressure around the thrust bearing device 102 is lowered, further reducing windage loss caused by the thrust bearing device 102 and suppressing deterioration of generator performance.
  • the first space 614 may also be formed on the other side of the thrust bearing device 102.
  • the pressure equalizing passage 40 communicates between the first space 614 and the radial gap 241 without passing through the radial outside of the thrust bearing device 102, which has a larger diameter. Therefore, the outer diameter of the inner casing 61 can be made smaller than when the pressure equalizing passage 40 passes through the radial outside of the thrust bearing device 102, and the entire cold energy power generation device 1 can be simplified.
  • multiple pressure equalizing channels 40 may be formed at intervals in the circumferential direction.
  • the multiple pressure equalizing channels 40 may be arranged at equal intervals in the circumferential direction.
  • the cross-sectional shape of the pressure equalizing channel 40 is circular, but it may be non-circular, such as elliptical or rectangular.
  • FIG. 5 is a schematic diagram of the cross section of the cold energy power generation device 1 shown in FIG. 2 taken along the line BB.
  • the other-side disk portion 113B has a through hole 50 that communicates the radial gap 241 and a space 615 on the other side of the second stage rotor blade 24B.
  • the pressure downstream of the second stage rotor blade 24B is lower than the pressure in the radial gap 241 defined upstream of the second stage rotor blade 24B. Therefore, by the through hole 50 connecting the radial gap 241 to the space downstream of the second stage rotor blade 24B, the heat medium in the radial gap 241 can flow out to the space 615, lowering the pressure inside the inner casing 61 in which the thrust bearing device 102 is disposed. This reduces the windage loss caused by the thrust bearing device 102.
  • the through hole 50 is also formed opposite the radial gap opening 40B. Therefore, the heat medium flowing out from the radial gap opening 40B of the pressure equalizing passage 40 can flow through the through hole 50 of the other side disk portion 113B into the space 615, thereby reducing the pressure inside the inner casing 61.
  • a plurality of through holes 50 may be formed at intervals in the circumferential direction.
  • the plurality of through holes 50 may be arranged at equal intervals in the circumferential direction.
  • the cross-sectional shape of the through hole 50 is circular, but it may be non-circular, for example, elliptical or rectangular.
  • the first space side opening 40A and the radial gap side opening 40B for the same pressure equalizing passage 40 are located on the same axial cross section including the axis of the rotor shaft 11.
  • the pressure equalizing passage 40 is formed without rotating around the axis CA of the cold energy power generation device 1. With this configuration, the pressure equalizing passage 40 can be easily formed in the inner casing 61.
  • the cold energy power generation device 1 further includes a seal portion 26 that seals between the rotor shaft 11 and the inner casing 61 on the other side of the first stage turbine device 23 and on one side of the generator 8.
  • the seal portion 26 seals the gap between the inner peripheral surface 611 of the inner casing 61 and the outer peripheral surface of the shaft portion 111 of the rotor shaft 11 on the other side of the first stage turbine device 23 and on one side of the generator 8.
  • the seal portion 26 may include a mechanical seal, or may include a labyrinth seal that is provided by machining the shaft portion 111 or the inner casing 61 to have projections and recesses.
  • the cold energy power generation device 1 described above does not include a member for sealing between the rotor shaft 11 and the inner casing 61 on the other side of the generator 8 inside the inner casing 61, as shown in Figures 2 and 3.
  • a sealing member such as a mechanical seal or labyrinth seal like the above-mentioned seal portion 26 is not provided on the other side of the generator 8 inside the inner casing 61.
  • a cold energy power generation device (1) includes: A cold energy power generation device (1) provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas, A rotor shaft (11); a generator (8) including a motor rotor (81) supported on an outer circumferential surface of the rotor shaft (11) and a motor stator (82) arranged opposite the motor rotor (81); an inner casing (61) that houses the generator (8); an outer casing (62) disposed on an outer circumferential side of the inner casing (61) and defining a heat medium flow path (63) between the outer casing (62) and the inner casing (61); a first stage turbine device (23) disposed in the heat medium flow path (63) and disposed on one side of the generator (8) in the axial direction of the rotor shaft (11); a second stage turbine device (24) disposed in the heat medium flow path (63) and disposed on the other side of the generator (8) in the axial direction of the rotor shaft (11); a journal
  • a radial gap is defined that is connected to the downstream side of the second stage stator vane in the heat medium flow passage, and at least one pressure equalizing passage is formed in the inner casing for communicating the radial gap with a first space on one side of the journal bearing device inside the inner casing.
  • the heat medium passes through the pressure equalizing passage from the first space, flows from the inside to the outside in the radial gap in the radial direction, and flows out into the heat medium flow passage.
  • the heat transfer medium flows through a heat transfer medium flow passage defined between the inner casing and the outer casing in the order of the first stage turbine device and the second stage turbine device.
  • the pressure in the radial gap defined downstream of the second stage stator vane is lower than the pressure upstream of the second stage stator vane. Therefore, by connecting the first space and the radial gap through the pressure equalizing passage, the pressure inside the inner casing in which the thrust bearing device is disposed can be reduced, thereby reducing windage loss of the thrust bearing device and suppressing deterioration of generator performance.
  • a cold energy power generation device (1) is the cold energy power generation device according to (1),
  • the thrust bearing device (102) is disposed on the other side of the generator (8).
  • the pressure on the other side of the generator is lower than the pressure on one side of the generator.
  • the thrust bearing device is positioned on the other side of the generator, which reduces the pressure in the area where the thrust bearing device is positioned, and reduces windage loss caused by the thrust bearing device.
  • a cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to (2),
  • the first space (614) is defined on the other side of the thrust bearing device (102).
  • the pressure equalizing passage communicates with the first space and the radial gap without passing through the radial outside of the thrust bearing device, which has a larger diameter. Therefore, the outer diameter of the inner casing body can be made smaller than when the pressure equalizing passage passes through the radial outside of the thrust bearing device, and the entire cold energy power generation device can be simplified.
  • a cold energy power generation device (1) is the cold energy power generation device according to (3),
  • the journal bearing device (103) includes a main bearing (103A) and an auxiliary bearing (103B).
  • a cold energy power generation device (1) is the cold energy power generation device according to any one of (1) to (4),
  • the disk portion (113B) has at least one through hole (50) penetrating in the axial direction of the rotor shaft (11).
  • the pressure downstream of the second stage rotor blades is lower than the pressure in the radial gap defined upstream of the second stage rotor blades. Therefore, with this configuration, the through holes connect the radial gap to the space downstream of the second stage rotor blades, allowing the heat medium in the radial gap to flow out into the space, thereby lowering the pressure inside the inner casing in which the thrust bearing device is located. This makes it possible to reduce windage loss caused by the thrust bearing device 102.
  • a cold energy power generation device (1) is the cold energy power generation device according to any one of (1) to (5),
  • the turbine further includes a seal portion (26) for sealing between the rotor shaft (11) and the inner casing (61) on the other side of the first stage turbine device (23) and on the one side of the generator (8).
  • the heat medium leaking from the high pressure region of the first stage turbine device into the inner casing can be sealed off, so the pressure inside the inner casing can be kept lower than when no seal member is provided, thereby reducing the thrust force acting on the rotor shaft and the windage loss (loss) caused by the thrust bearing device inside the inner casing.
  • the heat medium that has passed through the first stage rotor blades since it is possible to prevent the heat medium that has passed through the first stage rotor blades from leaking into the inside of the inner casing body, it is possible to prevent a decrease in the heat medium flowing through the heat medium flow passage compared to a case in which a sealing member is not provided, and it is possible to improve the efficiency of the second stage turbine device.
  • a cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to (6), On the other side of the generator (8) inside the inner casing (61), no sealing member is provided between the rotor shaft (11) and the inner casing (61).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Provided is a cryogenic power generation apparatus which is provided with a thrust bearing device placed on one side in the axial direction of a rotor shaft as compared to a first journal bearing device in the inner circumferential side of an inner casing, and in which: a radial-direction gap connected to a heat medium channel is formed between a disk and the other end surface which is the end surface on the other end of the inner casing; and, in the inner casing, at least one uniform pressure channel that connects the radial-direction gap and a first space located on the one side as compared to the first journal bearing device inside the inner casing is formed.

Description

冷熱発電装置、及び冷熱発電システムCold energy power generation device and cold energy power generation system
 本開示は、冷熱発電装置、及び冷熱発電システムに関する。
 本願は、2022年10月13日に日本国特許庁に出願された特願2022-164632号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a cold energy power generation device and a cold energy power generation system.
This application claims priority based on Japanese Patent Application No. 2022-164632, filed with the Japan Patent Office on October 13, 2022, the contents of which are incorporated herein by reference.
 液化ガス(例えば、液化天然ガス)は、輸送や貯蔵を目的として液化され、都市ガスや火力発電などの供給先に供給するに際して、海水などの熱媒体で昇温して気化させることが行われる。液化ガスを気化させる際に、冷熱エネルギーを海水に捨てるのではなく電力として回収する冷熱発電がある。 Liquefied gas (for example, liquefied natural gas) is liquefied for the purpose of transportation and storage, and when it is supplied to destinations such as city gas and thermal power plants, it is heated and vaporized using a heat medium such as seawater. When vaporizing liquefied gas, there is a type of cold energy generation in which the cold energy is recovered as electricity rather than being dumped into seawater.
 液化天然ガスを用いた冷熱発電サイクルとしては、ORC(Organic Rankine Cycle)が知られている。ORCは、クローズドループ内を循環する、水よりも沸点の低い低温の作動流体を、凝縮器(復水器)にて液化天然ガスで冷却、凝縮させた後に、ポンプにより昇圧し、蒸発器にて海水などを熱源として加熱して蒸発させ、この蒸気を冷熱発電用タービンに導入して動力を得るサイクルプロセスである。 The ORC (Organic Rankine Cycle) is known as a cold energy power generation cycle that uses liquefied natural gas. In the ORC, a low-temperature working fluid with a boiling point lower than that of water circulating in a closed loop is cooled and condensed with liquefied natural gas in a condenser, then pressurized by a pump, heated and evaporated in an evaporator using seawater or other heat sources, and this steam is introduced into a cold energy power generation turbine to generate power.
 特許文献1には、冷熱発電装置の小型化のために、同一ケーシング内にタービンと発電機を同軸上に配置した冷熱発電装置が開示されている。この冷熱発電装置では、軸の中央部に発電機が配置され、発電機よりも一方側にタービン、およびスラスト軸受が配置されている。 Patent Document 1 discloses a cold energy power generation device in which a turbine and a generator are arranged coaxially within the same casing in order to reduce the size of the device. In this cold energy power generation device, the generator is arranged in the center of the shaft, and the turbine and thrust bearing are arranged on one side of the generator.
中国実用新案第210660229号明細書Chinese Utility Model No. 210660229
 特許文献1に示す従来の構成では、スラスト軸受は、ケーシングの内部における発電機よりも上流側に配置され、スラスト軸受が配置される場所は高圧となる。そのため、冷熱用発電タービンは、スラスト軸受において回転による風損(ロス)が生じ、発電機性能が低下する虞がある。 In the conventional configuration shown in Patent Document 1, the thrust bearing is located upstream of the generator inside the casing, and the location where the thrust bearing is located is subject to high pressure. As a result, windage loss occurs due to rotation in the thrust bearing of the cold energy power generation turbine, which may result in reduced generator performance.
 本開示は、上述する問題点に鑑みてなされたもので、スラスト軸受における風損(ロス)を低減させることで、発電機性能の低下を抑制することができる冷熱発電装置を提供することを目的とする。 This disclosure was made in consideration of the above-mentioned problems, and aims to provide a cold energy power generation device that can suppress a decline in generator performance by reducing windage loss (loss) in the thrust bearing.
 上記目的を達成するため、本開示に係る冷熱発電装置は、液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ラインに設けられた冷熱発電装置であって、ロータシャフトと、前記ロータシャフトの外周面に支持されるモータロータと、前記モータロータに対向して配置されるモータステータと、を含む発電機と、前記発電機を収容する内側ケーシングと、前記内側ケーシングの外周側に配置され、前記内側ケーシングとの間に熱媒体流路を画定する外側ケーシングと、前記熱媒体流路に配置され、前記発電機よりも前記ロータシャフトの軸方向における一方側に配置された第1段タービン装置と、前記熱媒体流路に配置され、前記発電機よりも前記ロータシャフトの軸方向における他方側に配置された第2段タービン装置と、前記内側ケーシングの内周側において、前記発電機よりも前記他方側に配置されたジャーナル軸受装置と、前記内側ケーシングの内周面において、前記ジャーナル軸受装置よりも前記一方側に配置されたスラスト軸受装置と、を備え、前記第2段タービン装置は、第2段静翼と、前記第2段静翼よりも前記他方側に設けられた第2段動翼と、を含み、前記ロータシャフトは、径方向に沿って延在し前記第2段タービン装置の第2段動翼を支持するディスク部を含み、前記内側ケーシングの前記他方側の端面である他方側端面と前記ディスク部との間には、前記第2段静翼よりも前記他方側の前記熱媒体流路に接続される径方向隙間が画成され、前記内側ケーシングには、前記内側ケーシングの内部における前記ジャーナル軸受装置よりも前記一方側の第1空間と前記径方向隙間とを連通する少なくとも1つの均圧流路が形成される。 In order to achieve the above object, the cold energy power generation device according to the present disclosure is a cold energy power generation device provided in a heat medium circulation line configured to circulate a heat medium for heating liquefied gas, and includes a generator including a rotor shaft, a motor rotor supported on the outer peripheral surface of the rotor shaft, and a motor stator arranged opposite the motor rotor, an inner casing that houses the generator, an outer casing that is arranged on the outer peripheral side of the inner casing and defines a heat medium flow path between the inner casing and the outer casing, a first stage turbine device that is arranged in the heat medium flow path and is arranged on one side of the rotor shaft in the axial direction relative to the generator, a second stage turbine device that is arranged in the heat medium flow path and is arranged on the other side of the rotor shaft in the axial direction relative to the generator, and on the inner peripheral side of the inner casing, The second stage turbine device includes a journal bearing device arranged on the other side of the generator and a thrust bearing device arranged on the one side of the journal bearing device on the inner peripheral surface of the inner casing, the second stage turbine device includes a second stage stator vane and a second stage rotor blade provided on the other side of the second stage stator vane, the rotor shaft includes a disk portion extending along the radial direction and supporting the second stage rotor blade of the second stage turbine device, a radial gap is defined between the other end face, which is the end face on the other side of the inner casing, and the disk portion, which is connected to the heat medium flow path on the other side of the second stage stator vane, and the inner casing has at least one pressure equalizing flow path that communicates between a first space on the one side of the journal bearing device inside the inner casing and the radial gap.
 本開示の冷熱発電装置によれば、スラスト軸受装置が配置される位置の内側ケーシング内部の圧力を下げることができ、スラスト軸受装置による風損(ロス)を低減させることで、発電機性能の低下を抑制することができる。 The cold energy power generation device disclosed herein can reduce the pressure inside the inner casing at the position where the thrust bearing device is located, and by reducing the windage loss caused by the thrust bearing device, it is possible to suppress a decrease in generator performance.
本開示の一実施形態にかかる冷熱発電装置を備える冷熱発電システムの全体構成を概略的に示す概略構成図である。1 is a schematic diagram illustrating an overall configuration of a cold energy power generation system including a cold energy power generation device according to an embodiment of the present disclosure. 本開示の一実施形態にかかる冷熱発電装置の概略断面図である。1 is a schematic cross-sectional view of a cold energy generating device according to an embodiment of the present disclosure. 本開示の一実施形態にかかる冷熱発電装置の第2段タービンまわりの拡大断面図である。2 is an enlarged cross-sectional view of the second stage turbine and its surroundings of a cold energy power generation device according to an embodiment of the present disclosure. FIG. 図2に示した冷熱発電装置のA-A断面の概略図である。3 is a schematic diagram of the AA cross section of the cold energy power generation device shown in FIG. 2. 図2に示した冷熱発電装置のB-B断面の概略図である。3 is a schematic diagram of the cross section BB of the cold energy power generation device shown in FIG. 2.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of components described as the embodiments or shown in the drawings are merely illustrative examples and are not intended to limit the scope of the present disclosure.
For example, expressions expressing relative or absolute configuration, such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""center,""concentric," or "coaxial," not only express such a configuration strictly, but also express a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
For example, expressions indicating that things are in an equal state, such as "identical,""equal," and "homogeneous," not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
For example, expressions describing shapes such as a rectangular shape or a cylindrical shape do not only represent rectangular shapes or cylindrical shapes in the strict geometric sense, but also represent shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
On the other hand, the expressions "comprise", "include", or "have" a certain element are not exclusive expressions excluding the presence of other elements.
In addition, the same components are denoted by the same reference numerals and the description thereof may be omitted.
(冷熱発電システム)
 図1は、本開示の一実施形態にかかる冷熱発電装置を備える冷熱発電システムの全体構成を概略的に示す概略構成図である。
(Cold energy power generation system)
FIG. 1 is a schematic diagram illustrating an overall configuration of a cold energy power generation system including a cold energy power generation device according to an embodiment of the present disclosure.
 本実施形態の一実施形態に係る冷熱発電システム100は、液化ガスを加熱するための熱媒体を介して、液化ガスが有する冷熱エネルギーを電力として回収するための冷熱発電システム100である。
 冷熱発電システム100は、特に限定されないが、例えば以下に説明する水上浮遊構造体10Aまたは陸用の液化ガス基地10Bに設置される。
The cold energy power generation system 100 according to one embodiment of the present invention is a cold energy power generation system 100 for recovering cold energy contained in a liquefied gas as electric power via a heat medium for heating the liquefied gas.
The cold energy power generation system 100 is installed, for example, on a water-borne floating structure 10A or a land-based liquefied gas base 10B, although there is no particular limitation thereto.
 水上浮遊構造体10Aは、水上に浮遊可能な構造体である。水上浮遊構造体10Aは、プロペラなどの推進器を駆動させるように構成された推進装置を有し、推進装置を駆動させることで自走可能な船舶や、推進装置を有さない浮体を含むものである。水上浮遊構造体10Aにおいては、液状の液化ガスを貯留しており、液状の液化ガスを海水などで暖めて気化させ、不図示のエンジンに流入させて推進力を得ている。液化ガスを気化させる際に、冷熱発電システム100により冷熱エネルギーを海水に捨てるのではなく、後述する冷熱発電装置1によって電力として回収する。 The water floating structure 10A is a structure that can float on the water. The water floating structure 10A has a propulsion device configured to drive a thruster such as a propeller, and includes ships that can move on their own by driving the propulsion device, and floats that do not have a propulsion device. The water floating structure 10A stores liquid liquefied gas, which is heated and vaporized by seawater or the like, and is then flowed into an engine (not shown) to obtain propulsion force. When the liquefied gas is vaporized, the cold energy is not dumped into the seawater by the cold energy power generation system 100, but is instead recovered as electricity by the cold energy power generation device 1 described below.
 陸用の液化ガス基地10Bでは、LNG運搬船が輸送した液化ガスを受け入れ、貯蔵する。そして、都市ガスや火力発電所などの液化ガスの供給先に供給する際に、液化ガスを海水などで暖めてガスに戻すことが行われる。液化ガスを気化させる際に、冷熱発電システム100により冷熱エネルギーを海水に捨てるのではなく、後述する冷熱発電装置1によって電力として回収する。 The land-based liquefied gas base 10B receives and stores the liquefied gas transported by the LNG carrier. Then, when it is to be supplied to a liquefied gas supply destination such as a city gas or thermal power plant, the liquefied gas is heated using seawater or the like to return it to gas. When the liquefied gas is vaporized, the cold energy generated by the cold energy power generation system 100 is not dumped into seawater, but is instead recovered as electricity by the cold energy power generation device 1, which will be described later.
 ここで、以下の実施例では、本開示の冷熱発電システム100が、上述した水上浮遊構造体10Aのうち、液化ガスを燃料とする船舶10に設置される場合を例に挙げて説明する。 In the following embodiment, the cold energy power generation system 100 of the present disclosure will be described as being installed on a ship 10 that uses liquefied gas as fuel, one of the above-mentioned floating structures 10A.
 冷熱発電システム100は、図1に示されるように、冷熱発電装置1と、液化ガス供給ライン2と、凝縮器3と、加熱流体供給ライン4と、冷熱用ポンプ5と、蒸発器7と、熱媒体循環ライン9と、を備えている。冷熱発電装置1と、凝縮器3と、冷熱用ポンプ5と、蒸発器7とは、熱媒体循環ライン9によってそれぞれ接続されている。また、液化ガス供給ライン2は、凝縮器3に接続されている。また、加熱流体供給ライン4は、蒸発器7に接続されている。熱媒体循環ライン9、液化ガス供給ライン2および加熱流体供給ライン4のそれぞれは、例えば管路など流体が流通する流路を含むものである。そして、熱媒体が液体や気体に状態変化をしながら熱媒体循環ライン9内を循環することで、冷熱発電システム100が駆動されるように構成されている。 As shown in FIG. 1, the cold energy power generation system 100 includes a cold energy power generation device 1, a liquefied gas supply line 2, a condenser 3, a heating fluid supply line 4, a cold energy pump 5, an evaporator 7, and a heat medium circulation line 9. The cold energy power generation device 1, the condenser 3, the cold energy pump 5, and the evaporator 7 are each connected by the heat medium circulation line 9. The liquefied gas supply line 2 is connected to the condenser 3. The heating fluid supply line 4 is connected to the evaporator 7. The heat medium circulation line 9, the liquefied gas supply line 2, and the heating fluid supply line 4 each include a flow path, such as a pipe, through which a fluid flows. The cold energy power generation system 100 is configured to be driven by the heat medium circulating through the heat medium circulation line 9 while changing its state to liquid or gas.
 熱媒体循環ライン9は、水よりも凝固点の低い熱媒体を循環させるように構成されている。以下、液化ガスの具体例として液化天然ガス(LNG)を、熱媒体循環ライン9を流れる熱媒体の具体例としてプロパンを例に挙げて説明するが、本開示は、液化天然ガス以外の液化ガス(液化水素など)も適用可能であり、また、プロパン以外の熱媒体、例えばR1234yfやR1234zeなどを熱媒体循環ライン9に流れる熱媒体とした場合にも適用可能である。 The heat medium circulation line 9 is configured to circulate a heat medium with a lower freezing point than water. Below, liquefied natural gas (LNG) is used as a specific example of a liquefied gas, and propane is used as a specific example of a heat medium flowing through the heat medium circulation line 9. However, the present disclosure is also applicable to liquefied gases other than liquefied natural gas (such as liquefied hydrogen), and is also applicable to cases where a heat medium other than propane, such as R1234yf or R1234ze, is used as the heat medium flowing through the heat medium circulation line 9.
 凝縮器3は、熱媒体と液化ガスとが熱交換することで作動流体(熱媒体)を凝縮させるように構成されている。凝縮器3の内部には、熱媒体循環ライン9に接続され熱媒体循環ライン9を循環する熱媒体が流入する加熱側管路と、液化ガス供給ライン2に接続され液化ガス供給ライン2を流れる液化ガスが流入する被加熱側管路が設けられている。そして、加熱側管路を流れる熱媒体と被加熱側管路を流れる液化ガスとが熱交換するように構成されている。凝縮器3において、熱交換により熱媒体は冷却され凝縮し、液化ガスは加熱される。 The condenser 3 is configured to condense the working fluid (heat medium) by heat exchange between the heat medium and the liquefied gas. Inside the condenser 3, there are a heating side pipe connected to the heat medium circulation line 9 and into which the heat medium circulating through the heat medium circulation line 9 flows, and a heated side pipe connected to the liquefied gas supply line 2 and into which the liquefied gas flowing through the liquefied gas supply line 2 flows. The heat medium flowing through the heating side pipe and the liquefied gas flowing through the heated side pipe are configured to exchange heat. In the condenser 3, the heat medium is cooled and condensed by heat exchange, and the liquefied gas is heated.
 凝縮器3よりも上流側の液化ガス供給ライン2は、液化ガス用ポンプ22に接続され、液化ガス用ポンプ22のさらに上流側は液化ガス貯留装置21に接続されている。
 液化ガス用ポンプ22の駆動により、液化ガス貯留装置21に貯留されている液体状の液化ガスは、液化ガス供給ライン2に送られ、液化ガス供給ライン2を上流側から下流側に向かって流れ、凝縮器3へと供給される。そして、凝縮器3の内部における熱交換により気化された液化ガスは、被加熱側管路を流れた後、再び液化ガス供給ライン2を流れ、凝縮器3の下流側に設置される船舶10のエンジン(不図示)へ燃料として供給される。
The liquefied gas supply line 2 upstream of the condenser 3 is connected to a liquefied gas pump 22 , and the further upstream side of the liquefied gas pump 22 is connected to a liquefied gas storage device 21 .
By driving the liquefied gas pump 22, the liquefied gas in liquid form stored in the liquefied gas storage device 21 is sent to the liquefied gas supply line 2, flows through the liquefied gas supply line 2 from the upstream side to the downstream side, and is supplied to the condenser 3. The liquefied gas vaporized by heat exchange inside the condenser 3 flows through the heated side pipe, and then flows through the liquefied gas supply line 2 again, and is supplied as fuel to the engine (not shown) of the ship 10 installed downstream of the condenser 3.
 冷熱用ポンプ5は、凝縮器3から供給された熱媒体を昇圧するように構成されている。熱媒体循環ライン9に接続される冷熱用ポンプ5が駆動することにより、熱媒体循環ライン9を熱媒体が循環する。熱媒体は、凝縮器3から冷熱用ポンプ5へ、冷熱用ポンプ5から蒸発器7へ、蒸発器7から冷熱発電装置1へ、冷熱発電装置1から凝縮器3へと流れる。 The cold heat pump 5 is configured to boost the pressure of the heat medium supplied from the condenser 3. When the cold heat pump 5 connected to the heat medium circulation line 9 is driven, the heat medium circulates through the heat medium circulation line 9. The heat medium flows from the condenser 3 to the cold heat pump 5, from the cold heat pump 5 to the evaporator 7, from the evaporator 7 to the cold energy power generation device 1, and from the cold energy power generation device 1 to the condenser 3.
 冷熱用ポンプ5は、熱媒体を昇圧できればよく、その形式は特に限定されない。例えば、ターボ形ポンプ(遠心ポンプ、斜流ポンプ、軸流ポンプなど)や容積形ポンプ(往復形ポンプ、回転形ポンプ)、特殊形ポンプ(水中モータポンプ)など、実施形態に合わせて形式を適宜選択できる。 The cold/heat pump 5 may be of any type as long as it can boost the pressure of the heat medium. For example, a turbo pump (centrifugal pump, mixed flow pump, axial flow pump, etc.), a positive displacement pump (reciprocating pump, rotary pump), a special pump (submersible motor pump), or other type may be appropriately selected according to the embodiment.
 蒸発器7は、冷熱用ポンプ5により昇圧された熱媒体と、冷熱発電システム100の外部から導入された加熱流体とが熱交換することで熱媒体を蒸発させるように構成されている。蒸発器7の内部には、冷熱用ポンプ5により昇圧された熱媒体が流入し、熱媒体循環ライン9に接続される熱媒体被加熱側管路と、加熱流体供給ライン4に接続され、冷熱発電システム100の外部から導入される加熱流体が流入する熱媒体加熱側管路が設けられている。そして、熱媒体被加熱側管路を流れる熱媒体と熱媒体加熱側管路を流れる加熱流体とが熱交換するように構成されている。蒸発器7において、熱交換により熱媒体は加熱され蒸発し、加熱流体は冷却される。 The evaporator 7 is configured to evaporate the heat medium by heat exchange between the heat medium pressurized by the cold heat pump 5 and the heating fluid introduced from outside the cold heat power generation system 100. Inside the evaporator 7, there are a heat medium heated side pipe connected to the heat medium circulation line 9 into which the heat medium pressurized by the cold heat pump 5 flows, and a heat medium heating side pipe connected to the heating fluid supply line 4 into which the heating fluid introduced from outside the cold heat power generation system 100 flows. The heat medium flowing through the heat medium heated side pipe and the heating fluid flowing through the heat medium heating side pipe are configured to exchange heat. In the evaporator 7, the heat medium is heated and evaporated by heat exchange, and the heating fluid is cooled.
 蒸発器7よりも上流側の加熱流体供給ライン4は、加熱流体用ポンプ42に接続されている。加熱流体供給ライン4における加熱流体用ポンプ42のさらに上流側は、冷熱発電システム100の外部から加熱流体が導入されるように、加熱流体の供給源と接続されている。
 加熱流体用ポンプ42の駆動により、加熱流体の供給源から加熱流体が加熱流体供給ライン4に送られ、加熱流体供給ライン4を上流側から下流側に向かって流れ、蒸発器7へと供給される。そして、蒸発器7の内部における熱交換により冷却された加熱流体は、熱媒体加熱側管路を流れた後、再び加熱流体供給ライン4を流れ、冷熱発電システム100の外部へ排出される。
The heating fluid supply line 4 upstream of the evaporator 7 is connected to a heating fluid pump 42. The heating fluid supply line 4 further upstream of the heating fluid pump 42 is connected to a heating fluid supply source so that heating fluid is introduced from outside the cold energy power generation system 100.
By driving the heating fluid pump 42, the heating fluid is sent from the heating fluid supply source to the heating fluid supply line 4, flows through the heating fluid supply line 4 from the upstream side to the downstream side, and is supplied to the evaporator 7. Then, the heating fluid cooled by heat exchange inside the evaporator 7 flows through the heat medium heating side pipe, and then flows through the heating fluid supply line 4 again, and is discharged to the outside of the cold energy power generation system 100.
 上述した「加熱流体」は、蒸発器7において熱媒として熱媒体循環ライン9を循環する熱媒体を加熱させる流体であればよく、蒸気や温水、海水や、エンジン冷却水、常温の水であってもよい。
 冷熱発電システム100が船舶10に搭載される場合には、加熱流体は、船舶10において入手が容易な水(例えば、海水などの船外水や、船舶10のエンジンを冷却したエンジン冷却水など)を好適に利用することが出来る。
The above-mentioned “heating fluid” may be any fluid that heats the heat medium circulating through the heat medium circulation line 9 as a heat medium in the evaporator 7, and may be steam, hot water, seawater, engine cooling water, or water at room temperature.
When the cold energy power generation system 100 is installed on a ship 10, the heating fluid can preferably be water that is easily available on the ship 10 (e.g., outside ship water such as seawater, or engine cooling water that cools the engine of the ship 10).
 冷熱発電装置1は、蒸発器7で生成された気体状の熱媒体によって駆動されるように構成されている。
 また、冷熱発電装置1は発電機8を有している。そして、蒸発器7で生成された気体状の熱媒体によって後述する冷熱発電装置1のロータシャフト11が回転することで、発電機8を駆動するように構成されている。冷熱発電装置1を駆動した気体状の熱媒体は、冷熱発電装置1の下流側に設置される上述した凝縮器3に向かって熱媒体循環ライン9を流れる。
The cold energy power generation device 1 is configured to be driven by a gaseous heat medium generated in an evaporator 7 .
The cold energy power generation device 1 also has a generator 8. The generator 8 is driven by a rotor shaft 11 of the cold energy power generation device 1, which will be described later, being rotated by the gaseous heat medium generated in the evaporator 7. The gaseous heat medium that has driven the cold energy power generation device 1 flows through a heat medium circulation line 9 toward the above-mentioned condenser 3, which is installed downstream of the cold energy power generation device 1.
(冷熱発電装置の構成)
 図2は、本開示の一実施形態にかかる冷熱発電装置1の概略断面図である。図3は、本開示の一実施形態にかかる冷熱発電装置1の第2段タービン装置24まわりの拡大断面図である。図4は、図2に示した冷熱発電装置のA-A断面の概略図である。
 以下、冷熱発電装置1における熱媒体の流れ方向における上流側を単に上流側と表すことがあり、冷熱発電装置1における熱媒体の流れ方向における下流側を単に下流側と表すことがある。
 また、冷熱発電装置1の径方向を単に径方向と表し、冷熱発電装置1の周方向を単に周方向と表すことがある。
 また、冷熱発電装置1の軸線CAに沿った方向を単に軸方向と表すことがある。
(Configuration of cold energy power generation device)
Fig. 2 is a schematic cross-sectional view of the cold energy power generation device 1 according to an embodiment of the present disclosure. Fig. 3 is an enlarged cross-sectional view of the second stage turbine device 24 and its surroundings of the cold energy power generation device 1 according to an embodiment of the present disclosure. Fig. 4 is a schematic view of the A-A cross section of the cold energy power generation device shown in Fig. 2.
Hereinafter, the upstream side in the flow direction of the heat medium in the cold energy power generation device 1 may be simply referred to as the upstream side, and the downstream side in the flow direction of the heat medium in the cold energy power generation device 1 may be simply referred to as the downstream side.
Furthermore, the radial direction of the cold energy power generation device 1 may simply be referred to as the radial direction, and the circumferential direction of the cold energy power generation device 1 may simply be referred to as the circumferential direction.
Furthermore, the direction along the axis CA of the cold energy generating device 1 may be simply referred to as the axial direction.
 幾つかの実施形態にかかる冷熱発電装置1は、図2に示されるように、ロータシャフト11と、発電機8と、ケーシング6と、第1段タービン装置23と、第2段タービン装置24と、第1ジャーナル軸受装置103と、第2ジャーナル軸受装置104と、スラスト軸受装置102を備えている。 As shown in FIG. 2, the cold energy power generation device 1 in some embodiments includes a rotor shaft 11, a generator 8, a casing 6, a first stage turbine device 23, a second stage turbine device 24, a first journal bearing device 103, a second journal bearing device 104, and a thrust bearing device 102.
(ロータシャフト)
 図示した実施形態では、ロータシャフト11は、冷熱発電装置1の軸線CAに沿って長手方向を有するシャフト部111と、シャフト部111の一方側(上流側)においてロータシャフト11の径方向に沿って延在し、後述する第1段動翼23Bを支持する一方側ディスク部113Aと、シャフト部111の他方側(下流側)においてロータシャフト11の径方向に沿って延在し、後述する第2段動翼24Bを支持する他方側ディスク部113Bと、を含む。ロータシャフト11の軸線は、冷熱発電装置1の軸線CA、およびケーシング6の軸線と一致している。
 また、図2に示される実施形態では、ロータシャフト11の軸線が水平方向と一致しており、シャフト部111の一方側の端部の中心と、シャフト部111の他方側の端部の中心とが、鉛直方向において同じ高さレベルに配置されている。
(Rotor shaft)
In the illustrated embodiment, the rotor shaft 11 includes a shaft portion 111 having a longitudinal direction along the axis CA of the cold energy power generation device 1, a one-side disk portion 113A extending along the radial direction of the rotor shaft 11 on one side (upstream side) of the shaft portion 111 and supporting a first stage rotor blade 23B described later, and a other-side disk portion 113B extending along the radial direction of the rotor shaft 11 on the other side (downstream side) of the shaft portion 111 and supporting a second stage rotor blade 24B described later. The axis of the rotor shaft 11 coincides with the axis CA of the cold energy power generation device 1 and the axis of the casing 6.
In addition, in the embodiment shown in Figure 2, the axis of the rotor shaft 11 coincides with the horizontal direction, and the center of one end of the shaft portion 111 and the center of the other end of the shaft portion 111 are located at the same height level in the vertical direction.
 一方側ディスク部113Aおよび他方側ディスク113Bは、シャフト部111にナットで固定されており、シャフト部111の外面から径方向外側に円板状に突出している。シャフト部111のうち、一方側ディスク部113Aおよび他方側ディスク113Bが取り付けられている部分は、他の部分よりも小径に形成されている。 The one-side disk portion 113A and the other-side disk portion 113B are fixed to the shaft portion 111 with nuts, and protrude radially outward from the outer surface of the shaft portion 111 in a circular plate shape. The portion of the shaft portion 111 to which the one-side disk portion 113A and the other-side disk portion 113B are attached is formed with a smaller diameter than the other portions.
(発電機)
 発電機8は、ロータシャフト11の外周面に支持されるモータロータ81と、モータロータ81に対向して配置されるモータステータ82を含むように構成されている。
 図示した実施形態では、モータロータ81はロータシャフト11の外周面に一体的に形成されており、両者は一体構造をなしている。ただし、モータロータ81とロータシャフト11とが別体に形成され、ロータシャフトの外周面にモータロータ81が支持されるように構成されていても良い。モータステータ82は、後述する内側ケーシング61の内周面611に支持されており、モータロータ81よりも径方向における外側に配置されている。
(Generator)
The generator 8 is configured to include a motor rotor 81 supported on the outer circumferential surface of the rotor shaft 11 , and a motor stator 82 disposed opposite the motor rotor 81 .
In the illustrated embodiment, the motor rotor 81 is integrally formed on the outer circumferential surface of the rotor shaft 11, and the two have an integral structure. However, the motor rotor 81 and the rotor shaft 11 may be formed separately, and the motor rotor 81 may be supported on the outer circumferential surface of the rotor shaft. The motor stator 82 is supported on an inner circumferential surface 611 of the inner casing 61 described later, and is disposed radially outward of the motor rotor 81.
(ケーシング)
 ケーシング6は、ロータシャフト11を収容する内側ケーシング61と、内側ケーシング61の外周側に配置され、内側ケーシング61を収容する外側ケーシング62により構成されている。
(casing)
The casing 6 is composed of an inner casing 61 that houses the rotor shaft 11 and an outer casing 62 that is arranged on the outer periphery of the inner casing 61 and houses the inner casing 61 .
 内側ケーシング61は、冷熱発電装置1の軸方向に沿って長手方向を有し、冷熱発電装置1の軸方向における第1段動翼23Bと第2段動翼24Bとの間に配置されている。内側ケーシング61の内部には空間610が形成されており、シャフト部111や発電機8(図示例では、モータロータ81およびモータステータ82)が収容される。 The inner casing 61 has a longitudinal direction along the axial direction of the cold energy power generation device 1, and is disposed between the first stage rotor blades 23B and the second stage rotor blades 24B in the axial direction of the cold energy power generation device 1. A space 610 is formed inside the inner casing 61, and houses the shaft portion 111 and the generator 8 (in the illustrated example, the motor rotor 81 and the motor stator 82).
 また、内側ケーシング61と外側ケーシング62との間には、熱媒体流路63が画定される。熱媒体流路63は、内側ケーシング61の外周面612と外側ケーシング62の内周面621との間に画定され、第1段静翼23Aの上流から第2段動翼24Bの下流に至るまでロータシャフト11の軸方向に沿って延在するように構成されている。
 図示した実施形態では、熱媒体流路63は、冷熱発電装置1の軸方向に沿って長手方向を有するとともに、内側ケーシング61の周囲を囲む環状断面を有している。そして、外側ケーシング62と内側ケーシング61との間で、熱媒体を一方側から他方側に導くように構成されている。
Further, a heat medium flow path 63 is defined between the inner casing 61 and the outer casing 62. The heat medium flow path 63 is defined between an outer peripheral surface 612 of the inner casing 61 and an inner peripheral surface 621 of the outer casing 62, and is configured to extend along the axial direction of the rotor shaft 11 from the upstream of the first stage stator vanes 23A to the downstream of the second stage rotor blades 24B.
In the illustrated embodiment, the heat medium flow path 63 has a longitudinal direction along the axial direction of the cold-heat power generation device 1 and has an annular cross section surrounding the periphery of the inner casing 61. The heat medium flow path 63 is configured to guide the heat medium from one side to the other side between the outer casing 62 and the inner casing 61.
 図示した実施形態では、内側ケーシング61の一方側(上流側)には一方側カバー66Aが、他方側(下流側)には他方側カバー66Bが配置されている。一方側カバー66Aは、第1段動翼23Bよりも軸方向における一方側においてシャフト部111の一方側の端部を覆うように、内側ケーシング本体61Aの一方側に配置されている。また、他方側カバー66Bは、第2段動翼24Bよりも軸方向における他方側においてシャフト部111の他方側の端部を覆うように、内側ケーシング本体61Aの他方側に配置されている。 In the illustrated embodiment, a one-side cover 66A is disposed on one side (upstream side) of the inner casing 61, and a other-side cover 66B is disposed on the other side (downstream side). The one-side cover 66A is disposed on one side of the inner casing body 61A so as to cover one end of the shaft portion 111 on one side in the axial direction of the first stage rotor blades 23B. The other-side cover 66B is disposed on the other side of the inner casing body 61A so as to cover the other end of the shaft portion 111 on the other side in the axial direction of the second stage rotor blades 24B.
 熱媒体流路63は、一方側カバー66Aと外側ケーシング62との間に画定される空間により、内側ケーシング61の一方側に延在している。同様に、熱媒体流路63は、他方側カバー66Bと外側ケーシング62との間に画定される空間により、内側ケーシング61の他方側に延在している。 The heat medium flow path 63 extends to one side of the inner casing 61 by a space defined between the one-side cover 66A and the outer casing 62. Similarly, the heat medium flow path 63 extends to the other side of the inner casing 61 by a space defined between the other-side cover 66B and the outer casing 62.
 また、熱媒体流路63の一方側には、熱媒体流路63に一方側から軸方向に沿って熱媒体を導入するための一方側導入路64Aが形成されている。一方側導入路64Aは、内側ケーシング61よりも軸方向の一方側において、外側ケーシング62の一方側に接続されている入口ケーシング65Aの内面によって画定されている。
 また、熱媒体流路63の他方側には、熱媒体流路63から他方側に軸方向に沿って熱媒体を排出するための他方側排出路64Bが形成されている。他方側排出路64Bは、内側ケーシング61よりも軸方向の他方側において、外側ケーシング62の他方側に接続されている出口ケーシング65Bの内面によって画定されている。
Further, a one-side inlet passage 64A for introducing the heat medium from one side along the axial direction into the heat medium passage 63 is formed on one side of the heat medium passage 63. The one-side inlet passage 64A is defined by an inner surface of an inlet casing 65A connected to one side of the outer casing 62 on one axial side of the inner casing 61.
Further, a second discharge passage 64B is formed on the other side of the heat medium passage 63 for discharging the heat medium from the heat medium passage 63 to the other side in the axial direction. The second discharge passage 64B is defined by an inner surface of an outlet casing 65B connected to the other side of the outer casing 62 on the other axial side of the inner casing 61.
 そして、一方側導入路64Aから熱媒体流路63に導入された熱媒体は、第1段静翼23Aを通過した後、第1段動翼23Bへ作用してロータシャフト11に回転力を付与することで、第1段タービン装置23を駆動させる。第1段動翼23Bを通過した熱媒体は、熱媒体流路63を流れる間に、内側ケーシング61の内部に形成された空間610に収容されている発電機8(モータロータ81、モータステータ82)において発生する熱と熱交換を行う。つまり、発電機8において発生した熱を、熱媒体流路63を流れる熱媒体が吸収する。これにより、発電機8は冷却され、熱媒体流路63を流れる熱媒体は加熱される。 The heat medium introduced into the heat medium passage 63 from the one-side inlet passage 64A passes through the first-stage stator vanes 23A, and then acts on the first-stage rotor blades 23B to impart a rotational force to the rotor shaft 11, thereby driving the first-stage turbine device 23. As the heat medium passes through the first-stage rotor blades 23B, it exchanges heat with the heat generated in the generator 8 (motor rotor 81, motor stator 82) housed in the space 610 formed inside the inner casing 61 while flowing through the heat medium passage 63. In other words, the heat generated in the generator 8 is absorbed by the heat medium flowing through the heat medium passage 63. As a result, the generator 8 is cooled, and the heat medium flowing through the heat medium passage 63 is heated.
 加熱された熱媒体は、第2段静翼24Aを通過した後、第2段動翼24Bへ作用してロータシャフト11に回転力を付与することで、第2段タービン装置24を駆動させる。つまり、第2段タービン装置24には、熱媒体流路63において発電機8との熱交換により加熱された熱媒体が流れ込み、この加熱された熱媒体が第2段タービン装置24を駆動させるようになっている。第2段タービン装置24を流れた熱媒体は、熱媒体流路63から他方側排出路64Bに排出され、冷熱発電装置1の外部に流出する。 After passing through the second stage stator vanes 24A, the heated heat medium acts on the second stage rotor blades 24B to impart a rotational force to the rotor shaft 11, thereby driving the second stage turbine device 24. In other words, the heat medium heated by heat exchange with the generator 8 in the heat medium flow path 63 flows into the second stage turbine device 24, and this heated heat medium drives the second stage turbine device 24. The heat medium that has flowed through the second stage turbine device 24 is discharged from the heat medium flow path 63 to the other side discharge path 64B and flows out to the outside of the cold energy power generation device 1.
(第1段タービン装置)
 第1段タービン装置23は、熱媒体流路63に配置されている。第1段タービン装置23は、モータロータ81よりもロータシャフト11の一方側に設けられた第1段動翼23Bと、第1段動翼23Bよりもロータシャフト11の一方側において、外側ケーシング62の内周面621又は内側ケーシング61に支持された第1段静翼23Aを含むように構成されている。
 図示した実施形態では、第1段動翼23Bは、上述した一方側ディスク部113Aの外周面に、周方向に間隔をあけて取り付けられている。また、第1段静翼23Aは、外側ケーシング62の内周面621に支持されており、内周面621に周方向に間隔をあけて設けられている。また、他の実施形態では、第1段静翼23Aは、内側ケーシング61に支持されて、周方向に間隔をあけて設けられていてもよく、外側ケーシング62の内周面621と内側ケーシング61の両方に支持されていてもよい。
(First stage turbine unit)
The first stage turbine device 23 is disposed in the heat medium flow path 63. The first stage turbine device 23 is configured to include a first stage rotor blade 23B provided on one side of the rotor shaft 11 relative to the motor rotor 81, and a first stage stator blade 23A supported by an inner circumferential surface 621 of the outer casing 62 or the inner casing 61 on one side of the rotor shaft 11 relative to the first stage rotor blade 23B.
In the illustrated embodiment, the first stage rotor blades 23B are attached to the outer circumferential surface of the one-side disk portion 113A described above with a gap therebetween in the circumferential direction. The first stage stator vanes 23A are supported by the inner circumferential surface 621 of the outer casing 62 and are provided on the inner circumferential surface 621 with a gap therebetween in the circumferential direction. In other embodiments, the first stage stator vanes 23A may be supported by the inner casing 61 and provided with a gap therebetween in the circumferential direction, or may be supported by both the inner circumferential surface 621 of the outer casing 62 and the inner casing 61.
(第2段タービン装置)
 第2段タービン装置24は、熱媒体流路63に配置されている。第2段タービン装置24は、モータロータ81よりもロータシャフト11の他方側において、外側ケーシング62の内周面621又は内側ケーシング61の外周面612に支持された第2段静翼24Aと、第2段静翼24Aよりもロータシャフト11の他方側に設けられた第2段動翼24Bを含むように構成されている。
 図示した実施形態では、第2段動翼24Bは、上述した他方側ディスク部113Bの外周面に、周方向に間隔をあけて取り付けられている。また、第2段静翼24Aは、外側ケーシング62の内周面621に支持されており、内周面621に周方向に間隔をあけて設けられている。また、他の実施形態では、第2段静翼24Aは、内側ケーシング61の外周面612に支持されて、外周面612に周方向に間隔をあけて設けられていてもよく、外側ケーシング62の内周面621と内側ケーシング61の外周面612の両方に支持されていてもよい。
(Second stage turbine unit)
The second stage turbine device 24 is disposed in the heat medium flow path 63. The second stage turbine device 24 is configured to include second stage stator vanes 24A supported on the inner circumferential surface 621 of the outer casing 62 or the outer circumferential surface 612 of the inner casing 61 on the other side of the rotor shaft 11 from the motor rotor 81, and second stage rotor blades 24B provided on the other side of the rotor shaft 11 from the second stage stator vanes 24A.
In the illustrated embodiment, the second stage rotor blades 24B are attached to the outer peripheral surface of the above-mentioned other-side disk portion 113B with a gap therebetween in the circumferential direction. The second stage stator vanes 24A are supported by the inner peripheral surface 621 of the outer casing 62 and are provided on the inner peripheral surface 621 with a gap therebetween in the circumferential direction. In another embodiment, the second stage stator vanes 24A may be supported by the outer peripheral surface 612 of the inner casing 61 and provided on the outer peripheral surface 612 with a gap therebetween in the circumferential direction, or may be supported by both the inner peripheral surface 621 of the outer casing 62 and the outer peripheral surface 612 of the inner casing 61.
(第1ジャーナル軸受装置)
 第1ジャーナル軸受装置103は、内側ケーシング61の内部において発電機8よりも他方側に配置され、主軸受103Aおよび補助軸受103Bを含む。
 図示した実施形態では、内側ケーシング61の内部に形成された空間610に、ロータシャフト11を回転可能に支持する主軸受103Aおよび補助軸受103Bが収容されている。主軸受103Aは、モータロータ81よりも他方側に配置されている。補助軸受103Bは、主軸受103Aよりもさらに他方側に配置されている。
 なお、第1ジャーナル軸受装置103として主軸受103Aのみが含まれていてもよい。
(First journal bearing device)
The first journal bearing device 103 is disposed inside the inner casing 61 on the other side of the generator 8, and includes a main bearing 103A and an auxiliary bearing 103B.
In the illustrated embodiment, a main bearing 103A and an auxiliary bearing 103B that rotatably support the rotor shaft 11 are housed in a space 610 formed inside the inner casing 61. The main bearing 103A is disposed on the other side of the motor rotor 81. The auxiliary bearing 103B is disposed further on the other side of the main bearing 103A.
It should be noted that the first journal bearing device 103 may include only the main bearing 103A.
(第2ジャーナル軸受装置)
 第2ジャーナル軸受装置104は、内側ケーシング61の内部において発電機8よりも一方側に配置され、主軸受104Aおよび補助軸受104Bを含む。
図示した実施形態では、内側ケーシング61の内部に形成された空間610に、ロータシャフト11を回転可能に支持する主軸受104Aおよび補助軸受104Bが収容されている。主軸受104Aは、モータロータ81よりも一方側に配置されている。補助軸受104Bは、主軸受104Aよりもさらに一方側に配置されている。なお、第2ジャーナル軸受装置104として主軸受104Aのみが含まれていてもよい。また、第1ジャーナル軸受装置103のみでロータシャフト11を回転可能に軸支できるように構成された冷熱発電装置1の場合には、第2ジャーナル軸受装置104は備えなくてもよい。
(Second journal bearing device)
The second journal bearing device 104 is disposed inside the inner casing 61 on one side of the generator 8, and includes a main bearing 104A and an auxiliary bearing 104B.
In the illustrated embodiment, a main bearing 104A and an auxiliary bearing 104B that rotatably support the rotor shaft 11 are housed in a space 610 formed inside the inner casing 61. The main bearing 104A is disposed on one side of the motor rotor 81. The auxiliary bearing 104B is disposed further on one side of the main bearing 104A. Note that the second journal bearing device 104 may include only the main bearing 104A. In addition, in the case of a cold energy power generation device 1 configured so that the rotor shaft 11 can be rotatably supported by only the first journal bearing device 103, the second journal bearing device 104 may not be provided.
 一実施形態では、主軸受103A、104Aは、磁気軸受によって構成されていてもよく、補助軸受103B、104Bは、玉軸受によって構成されていてもよい。冷熱発電装置1が停止、あるいはトラブルでトリップした際に、これら補助軸受103B、104Bがロータシャフト11を支持することで、主軸受103A、104Aとロータシャフト11との接触を防止する。 In one embodiment, the main bearings 103A, 104A may be magnetic bearings, and the auxiliary bearings 103B, 104B may be ball bearings. When the cold energy power generation device 1 stops or trips due to a problem, these auxiliary bearings 103B, 104B support the rotor shaft 11, preventing contact between the main bearings 103A, 104A and the rotor shaft 11.
(スラスト軸受装置)
 スラスト軸受装置102は、内側ケーシング61の内部において第1ジャーナル軸受装置103よりも一方側に配置されている。スラスト軸受装置102は、内側ケーシング61の内部に形成された空間610に配置された一方側スラスト軸受102Aと、他方側スラスト軸受102Bとを含むように構成され、ロータシャフト11の軸方向の荷重(スラスト力)を受け止めている。
 図示した実施形態では、図2および図3に示されるように、ロータシャフト11は、内側ケーシング61の内部において第1ジャーナル軸受装置103よりも一方側、且つ、発電機8よりも他方側において、径方向に沿って延在するスラストカラー112をさらに含む。一方側スラスト軸受102Aは、ロータシャフト11に設けられているスラストカラー112における一方側の側面である一方側面112Aに当接している。他方側スラスト軸受102Bは、スラストカラー112における他方側の側面である他方側面112Bに当接している。
 また、他の実施形態では、スラスト軸受装置102およびスラストカラー112は、内側ケーシング61の内部において発電機8よりも一方側に配置されていてもよい。
 なお、スラスト軸受装置102(一方側スラスト軸受102A、および他方側スラスト軸受102B)は、磁気軸受によって構成されていてもよい。
(Thrust bearing device)
The thrust bearing device 102 is disposed on one side of the first journal bearing device 103 inside the inner casing 61. The thrust bearing device 102 is configured to include a one-side thrust bearing 102A and an other-side thrust bearing 102B disposed in a space 610 formed inside the inner casing 61, and receives the axial load (thrust force) of the rotor shaft 11.
2 and 3 , in the illustrated embodiment, the rotor shaft 11 further includes a thrust collar 112 extending radially inside the inner casing 61 on one side of the first journal bearing device 103 and on the other side of the generator 8. The one-side thrust bearing 102A abuts against one side surface 112A, which is a side surface on one side of the thrust collar 112 provided on the rotor shaft 11. The other-side thrust bearing 102B abuts against another side surface 112B, which is a side surface on the other side of the thrust collar 112.
In addition, in another embodiment, the thrust bearing device 102 and the thrust collar 112 may be disposed inside the inner casing 61 on one side of the generator 8 .
The thrust bearing device 102 (the one-side thrust bearing 102A and the other-side thrust bearing 102B) may be configured by a magnetic bearing.
(径方向隙間)
 また、図3に示されるように、内側ケーシング61の他方側の端面である他方側端面613と他方側ディスク部113Bとの間には、第2段静翼24Aよりも下流側の熱媒体流路63に接続される径方向隙間241が画成されている。
 図示した実施形態では、径方向隙間241は、熱媒体流路63における第2段静翼24Aと第2段動翼24Bとの間に接続され、ロータシャフト11の周囲を囲む環状断面を有している。また、径方向隙間241は、軸方向に均一の幅を有しており、径方向に沿って延在している。
(Radial clearance)
As shown in FIG. 3, a radial gap 241 connected to the heat medium flow path 63 downstream of the second stage stator vane 24A is defined between the other-side end face 613, which is the other-side end face of the inner casing 61, and the other-side disk portion 113B.
In the illustrated embodiment, the radial gap 241 is connected between the second stage stator vane 24A and the second stage rotor blade 24B in the heat medium flow passage 63, and has an annular cross section surrounding the rotor shaft 11. Moreover, the radial gap 241 has a uniform width in the axial direction, and extends along the radial direction.
(均圧流路)
 そして、幾つかの実施形態にかかる冷熱発電装置1では、図3に示されるように、内側ケーシング61には、内側ケーシング61の内部における第1ジャーナル軸受装置103よりも一方側の第1空間614と、径方向隙間241と、を連通するための少なくとも1つの均圧流路40が形成されている。
 図示した実施形態では、均圧流路40は、図3に示されるように、第1空間614に開口する第1空間側開口40Aと、他方側端面613に開口する径方向隙間側開口40Bと、第1空間側開口40Aから径方向に沿って延在する径方向流路401と、径方向流路401に接続しロータシャフト11の軸方向に延在する軸方向流路402と、軸方向流路402と径方向隙間側開口40Bを接続する他方側流路403を含む。他方側流路403は、径方向隙間側開口40Bから一方側に向かうにつれて、ロータシャフト11の軸線との距離が大きくなるように延在している。
(Pressure equalizing flow path)
In some embodiments of the cold-energy generating device 1, as shown in FIG. 3, the inner casing 61 is formed with at least one pressure equalizing passage 40 for communicating between a first space 614 on one side of the first journal bearing device 103 inside the inner casing 61 and the radial gap 241.
3, the pressure equalizing passage 40 includes a first space side opening 40A opening into the first space 614, a radial gap side opening 40B opening into the other side end face 613, a radial passage 401 extending along the radial direction from the first space side opening 40A, an axial passage 402 connecting to the radial passage 401 and extending in the axial direction of the rotor shaft 11, and a other side passage 403 connecting the axial passage 402 and the radial gap side opening 40B. The other side passage 403 extends such that the distance from the axis of the rotor shaft 11 increases as it moves from the radial gap side opening 40B toward one side.
 第1空間側開口40Aは、静止部材である他方側スラスト軸受102Bの径方向内側の端部102B1に対して、径方向外側に位置している。そのため、ロータシャフト11の回転に影響を受けることなく、スラスト軸受装置102の上流から下流へ流出した熱媒体を、第1空間側開口40Aに導入することができる。 The first space side opening 40A is located radially outward from the radially inner end 102B1 of the other thrust bearing 102B, which is a stationary member. Therefore, the heat medium that flows from the upstream to the downstream of the thrust bearing device 102 can be introduced into the first space side opening 40A without being affected by the rotation of the rotor shaft 11.
 また、径方向流路401、軸方向流路402および他方側流路403は、各断面形状が円形であって、それぞれの流路面積が一定となるように延在している。また、径方向流路401、軸方向流路402および他方側流路403の流路面積は同じに形成されている。 The radial flow passages 401, the axial flow passages 402, and the other-side flow passages 403 each have a circular cross-sectional shape, and extend so that the flow passage areas are constant. The radial flow passages 401, the axial flow passages 402, and the other-side flow passages 403 are also formed to have the same flow passage areas.
 本開示に係る冷熱発電装置1によれば、一方側導入路64Aから熱媒体流路63に導入された熱媒体は、第1段タービン装置23の第1段静翼23Aおよび第1段動翼23Bを通過して第2段タービン装置24に導入される。第2段タービン装置24に導入された熱媒体は、第2段タービン装置の第2段静翼24Aおよび第2段動翼24Bを通過して他方側排出路64Bから排出される。
 また、熱媒体は、その一部が漏れ流れとして熱媒体流路63ではなく、内側ケーシング61の内部に流入する。内側ケーシング61に流入した熱媒体は、内側ケーシング61の内部を、第1空間614、均圧流路40の順に流れ、径方向隙間側開口40Bから径方向隙間241に流入する。
According to the cold energy power generation device 1 according to the present disclosure, the heat medium introduced into the heat medium flow passage 63 from the one-side inlet passage 64A passes through the first-stage stator vanes 23A and the first-stage rotor blades 23B of the first-stage turbine device 23 and is introduced into the second-stage turbine device 24. The heat medium introduced into the second-stage turbine device 24 passes through the second-stage stator vanes 24A and the second-stage rotor blades 24B of the second-stage turbine device and is discharged from the other-side discharge passage 64B.
Further, a part of the heat medium leaks and flows into the inside of the inner casing 61, not into the heat medium flow passage 63. The heat medium that has flowed into the inner casing 61 flows through the first space 614 and the pressure equalizing flow passage 40 in this order inside the inner casing 61, and flows into the radial gap 241 from the radial gap side opening 40B.
 第2段静翼24Aの下流側における熱媒体流路63の圧力は、熱媒体流路63において熱媒体が第1段静翼23A、第1段動翼23B、第2段静翼24Aの順に通過するので、熱媒体流路63の入口部よりも低くなる。また、第2段静翼24Aの下流側における熱媒体流路63の圧力は、内側ケーシング61の内部を通過した熱媒体の径方向隙間241における圧力よりも低くなる。そのため、内側ケーシング61を通過して径方向隙間241に流入した熱媒体は、径方向隙間241の径方向の内側から外側に向かって流れ、第2段静翼24Aの下流側の熱媒体流路63に流出する。そして、内側ケーシング61の内部の圧力が低下し、スラスト軸受装置102の周辺の圧力も下がり、スラスト軸受装置102による風損(ロス)を低減させることができ、発電機性能の低下を抑制することができる。 The pressure in the heat medium flow passage 63 downstream of the second stage stator vane 24A is lower than the inlet of the heat medium flow passage 63 because the heat medium passes through the first stage stator vane 23A, the first stage moving blade 23B, and the second stage stator vane 24A in that order. The pressure in the heat medium flow passage 63 downstream of the second stage stator vane 24A is also lower than the pressure in the radial gap 241 of the heat medium that has passed through the inside of the inner casing 61. Therefore, the heat medium that has passed through the inner casing 61 and flowed into the radial gap 241 flows from the radial inside to the radial outside of the radial gap 241 and flows out into the heat medium flow passage 63 downstream of the second stage stator vane 24A. Then, the pressure inside the inner casing 61 decreases, and the pressure around the thrust bearing device 102 also decreases, reducing windage loss (loss) due to the thrust bearing device 102 and suppressing a decrease in generator performance.
 内側ケーシング61の内部の圧力は、第2ジャーナル軸受装置104、モータロータ81、モータステータ82などによる圧力損失により、下流の方が低くなる。本実施形態では、スラスト軸受装置102を発電機8よりも他方側(下流側)に配置しているので、スラスト軸受装置102の周辺の圧力が下がり、スラスト軸受装置102による風損(ロス)をさらに低減させることができ、発電機性能の低下を抑制することができる。 The pressure inside the inner casing 61 is lower downstream due to pressure losses caused by the second journal bearing device 104, motor rotor 81, motor stator 82, etc. In this embodiment, the thrust bearing device 102 is disposed on the other side (downstream) of the generator 8, so the pressure around the thrust bearing device 102 is lowered, further reducing windage loss caused by the thrust bearing device 102 and suppressing deterioration of generator performance.
 また、第1空間614は、スラスト軸受装置102よりも他方側に形成されていてもよい。 The first space 614 may also be formed on the other side of the thrust bearing device 102.
 このような構成によれば、均圧流路40は、径が大きいスラスト軸受装置102の径方向外側を通過することなく、第1空間614と径方向隙間241とを連通する。したがって、均圧流路40がスラスト軸受装置102の径方向外側を通過する場合と比べて、内側ケーシング61の外径を小さくすることができ、冷熱発電装置1全体の装置を簡素化することができる。 With this configuration, the pressure equalizing passage 40 communicates between the first space 614 and the radial gap 241 without passing through the radial outside of the thrust bearing device 102, which has a larger diameter. Therefore, the outer diameter of the inner casing 61 can be made smaller than when the pressure equalizing passage 40 passes through the radial outside of the thrust bearing device 102, and the entire cold energy power generation device 1 can be simplified.
 なお、均圧流路40は、図4に示したように、周方向に間隔をあけて複数形成されていてもよい。この場合、複数の均圧流路40は、周方向において等間隔に配置されていてもよい。また、図4において、均圧流路40の断面形状は円形であるが、例えば、楕円形や矩形などの非円形であってもよい。 In addition, as shown in FIG. 4, multiple pressure equalizing channels 40 may be formed at intervals in the circumferential direction. In this case, the multiple pressure equalizing channels 40 may be arranged at equal intervals in the circumferential direction. In addition, in FIG. 4, the cross-sectional shape of the pressure equalizing channel 40 is circular, but it may be non-circular, such as elliptical or rectangular.
 図5は、図2に示した冷熱発電装置1のB-B断面の概略図である。
 幾つかの実施形態では、図5に示されるように、他方側ディスク部113Bは、径方向隙間241と、第2段動翼24Bよりも他方側の空間615とを連通する貫通孔50を有する。
FIG. 5 is a schematic diagram of the cross section of the cold energy power generation device 1 shown in FIG. 2 taken along the line BB.
In some embodiments, as shown in FIG. 5, the other-side disk portion 113B has a through hole 50 that communicates the radial gap 241 and a space 615 on the other side of the second stage rotor blade 24B.
 第2段動翼24Bよりも下流側の圧力は、第2段動翼24Bよりも上流側に画成される径方向隙間241の圧力と比べて低くなる。したがって、貫通孔50が径方向隙間241と第2段動翼24Bよりも下流側の空間とを連通することで、径方向隙間241の熱媒体を空間615に流出させ、スラスト軸受装置102が配置される内側ケーシング61の内部の圧力を下げることができる。これにより、スラスト軸受装置102による風損(ロス)を低減させることができる。 The pressure downstream of the second stage rotor blade 24B is lower than the pressure in the radial gap 241 defined upstream of the second stage rotor blade 24B. Therefore, by the through hole 50 connecting the radial gap 241 to the space downstream of the second stage rotor blade 24B, the heat medium in the radial gap 241 can flow out to the space 615, lowering the pressure inside the inner casing 61 in which the thrust bearing device 102 is disposed. This reduces the windage loss caused by the thrust bearing device 102.
 また、貫通孔50は、径方向隙間側開口40Bに対向して形成されている。したがって、均圧流路40の径方向隙間側開口40Bから流出した熱媒体は、他方側ディスク部113Bの貫通孔50を通って空間615に流出することができ、内側ケーシング61の内部の圧力を下げることができる。 The through hole 50 is also formed opposite the radial gap opening 40B. Therefore, the heat medium flowing out from the radial gap opening 40B of the pressure equalizing passage 40 can flow through the through hole 50 of the other side disk portion 113B into the space 615, thereby reducing the pressure inside the inner casing 61.
 貫通孔50は、図5に示したように、周方向に間隔をあけて複数形成されていてもよい。この場合、複数の貫通孔50は、周方向に等間隔に配置されていてもよい。また、図5において、貫通孔50の断面形状は円形であるが、例えば、楕円形や矩形などの非円形であってもよい。 As shown in FIG. 5, a plurality of through holes 50 may be formed at intervals in the circumferential direction. In this case, the plurality of through holes 50 may be arranged at equal intervals in the circumferential direction. Also, in FIG. 5, the cross-sectional shape of the through hole 50 is circular, but it may be non-circular, for example, elliptical or rectangular.
 図示した実施形態では、同一の均圧流路40に対する第1空間側開口40Aと径方向隙間側開口40Bは、ロータシャフト11の軸線を含む同一の軸方向断面上に存在している。つまり、均圧流路40は、冷熱発電装置1の軸線CAに対して旋回することなく形成されている。このような構成によれば、内側ケーシング61に均圧流路40を容易に形成することができる。 In the illustrated embodiment, the first space side opening 40A and the radial gap side opening 40B for the same pressure equalizing passage 40 are located on the same axial cross section including the axis of the rotor shaft 11. In other words, the pressure equalizing passage 40 is formed without rotating around the axis CA of the cold energy power generation device 1. With this configuration, the pressure equalizing passage 40 can be easily formed in the inner casing 61.
 図2に示されるように、冷熱発電装置1は、第1段タービン装置23よりも他方側、且つ、発電機8よりも一方側において、ロータシャフト11と内側ケーシング61との間をシールするシール部26をさらに備える。 As shown in FIG. 2, the cold energy power generation device 1 further includes a seal portion 26 that seals between the rotor shaft 11 and the inner casing 61 on the other side of the first stage turbine device 23 and on one side of the generator 8.
 図示した実施形態では、シール部26は、第1段タービン装置23よりも他方側、且つ、発電機8よりも一方側において、内側ケーシング61の内周面611とロータシャフト11のシャフト部111の外周面との間の隙間をシールしている。シール部26は、メカニカルシールを含んでいてもよいし、シャフト部111又は内側ケーシング61に凹凸加工して設けられるラビリンスシールを含んでいてもよい。 In the illustrated embodiment, the seal portion 26 seals the gap between the inner peripheral surface 611 of the inner casing 61 and the outer peripheral surface of the shaft portion 111 of the rotor shaft 11 on the other side of the first stage turbine device 23 and on one side of the generator 8. The seal portion 26 may include a mechanical seal, or may include a labyrinth seal that is provided by machining the shaft portion 111 or the inner casing 61 to have projections and recesses.
 このような構成によれば、第1段タービン装置23の高圧領域から内側ケーシング61の内部にリークする熱媒体をシールすることができるため、シール部材を設けない場合と比べて、内側ケーシング61の内部の圧力を低く維持することができる。これにより、内側ケーシング61の内部において発生するスラスト軸受装置102による風損(ロス)を低減させることができる。
 また、第1段動翼23Bを通過した熱媒体が内側ケーシング61の内部へリークすることを抑制できるため、シール部材を設けない場合と比べて、熱媒体流路63を流れる熱媒体の減少を抑制することができ、第2段タービン装置24の効率を向上させることができる。
According to this configuration, it is possible to seal off the heat medium leaking from the high pressure region of the first stage turbine device 23 into the inside of the inner casing 61, so that the pressure inside the inner casing 61 can be kept lower than when no seal member is provided. This makes it possible to reduce windage loss caused by the thrust bearing device 102 inside the inner casing 61.
In addition, since the heat medium that has passed through the first stage rotor blades 23B can be prevented from leaking into the inside of the inner casing 61, a reduction in the heat medium flowing through the heat medium flow path 63 can be suppressed compared to a case in which a sealing member is not provided, and the efficiency of the second stage turbine device 24 can be improved.
 幾つかの実施形態では、上述した冷熱発電装置1は、図2および図3に示されるように、内側ケーシング61の内部における発電機8よりも他方側において、ロータシャフト11と内側ケーシング61との間をシールする部材は備えられていない。すなわち、内側ケーシング61の内部における発電機8よりも他方側において、上述したシール部26のようなメカニカルシールやラビリンスシールなどのシール部材は設けられていない。 In some embodiments, the cold energy power generation device 1 described above does not include a member for sealing between the rotor shaft 11 and the inner casing 61 on the other side of the generator 8 inside the inner casing 61, as shown in Figures 2 and 3. In other words, a sealing member such as a mechanical seal or labyrinth seal like the above-mentioned seal portion 26 is not provided on the other side of the generator 8 inside the inner casing 61.
 このような構成によれば、熱媒体が内側ケーシング61の内部から第2段タービン装置24の低圧領域へのリークの妨げとなるシール部材が備えられていないため、シール部材を設けた場合と比べて、内側ケーシング61の内部の圧力を低く維持することができる。これにより、ロータシャフト11に作用するスラスト力や、内側ケーシング61の内部において発生するスラスト軸受装置102による風損(ロス)を低減させることができる。 With this configuration, since no sealing member is provided to prevent the heat medium from leaking from inside the inner casing 61 to the low pressure region of the second stage turbine device 24, the pressure inside the inner casing 61 can be kept lower than when a sealing member is provided. This reduces the thrust force acting on the rotor shaft 11 and the windage loss (loss) caused by the thrust bearing device 102 inside the inner casing 61.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 This disclosure is not limited to the above-described embodiments, but also includes modifications to the above-described embodiments and appropriate combinations of these embodiments.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in the above-mentioned embodiments can be understood, for example, as follows:
(1)一の態様に係る冷熱発電装置(1)は、
 液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ラインに設けられた冷熱発電装置(1)であって、
 ロータシャフト(11)と、
 前記ロータシャフト(11)の外周面に支持されるモータロータ(81)と、前記モータロータ(81)に対向して配置されるモータステータ(82)と、を含む発電機(8)と、
 前記発電機(8)を収容する内側ケーシング(61)と、
 前記内側ケーシング(61)の外周側に配置され、前記内側ケーシング(61)との間に熱媒体流路(63)を画定する外側ケーシング(62)と、
 前記熱媒体流路(63)に配置され、前記発電機(8)よりも前記ロータシャフト(11)の軸方向における一方側に配置された第1段タービン装置(23)と、
 前記熱媒体流路(63)に配置され、前記発電機(8)よりも前記ロータシャフト(11)の軸方向における他方側に配置された第2段タービン装置(24)と、
 前記内側ケーシング(61)の内周側において、前記発電機(8)よりも前記他方側に配置されたジャーナル軸受装置(第1ジャーナル軸受装置103)と、
 前記内側ケーシング(61)の内周側において、前記ジャーナル軸受装置(103)よりも前記一方側に配置されたスラスト軸受装置(102)と、を備え、
 前記第2段タービン装置(24)は、第2段静翼(24A)と、前記第2段静翼(24A)よりも前記他方側に設けられた第2段動翼(24B)と、を含み、
 前記ロータシャフト(11)は、径方向に沿って延在し前記第2段タービン装置(24)の前記第2段動翼(24B)を支持するディスク部(113B)を含み、
 前記内側ケーシング(61)の前記他方側の端面である他方側端面(613)と前記ディスク部(113B)との間には、前記第2段静翼(24A)よりも前記他方側の前記熱媒体流路(63)に接続される径方向隙間(241)が画成され、
 前記内側ケーシング(61)には、前記内側ケーシング(61)の内部における前記ジャーナル軸受装置(103)よりも一方側の第1空間(614)と前記径方向隙間(241)とを連通する少なくとも1つの均圧流路(40)が形成される。
(1) A cold energy power generation device (1) according to one aspect includes:
A cold energy power generation device (1) provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas,
A rotor shaft (11);
a generator (8) including a motor rotor (81) supported on an outer circumferential surface of the rotor shaft (11) and a motor stator (82) arranged opposite the motor rotor (81);
an inner casing (61) that houses the generator (8);
an outer casing (62) disposed on an outer circumferential side of the inner casing (61) and defining a heat medium flow path (63) between the outer casing (62) and the inner casing (61);
a first stage turbine device (23) disposed in the heat medium flow path (63) and disposed on one side of the generator (8) in the axial direction of the rotor shaft (11);
a second stage turbine device (24) disposed in the heat medium flow path (63) and disposed on the other side of the generator (8) in the axial direction of the rotor shaft (11);
a journal bearing device (first journal bearing device 103) disposed on the other side of the generator (8) on the inner peripheral side of the inner casing (61);
a thrust bearing device (102) disposed on the one side of the journal bearing device (103) on the inner peripheral side of the inner casing (61),
The second stage turbine device (24) includes a second stage stator vane (24A) and a second stage rotor blade (24B) provided on the other side of the second stage stator vane (24A),
The rotor shaft (11) includes a disk portion (113B) extending along a radial direction and supporting the second stage rotor blades (24B) of the second stage turbine device (24),
a radial gap (241) connected to the heat medium flow passage (63) on the other side of the second stage stator vane (24A) is defined between the other side end face (613) which is the other side end face of the inner casing (61) and the disk portion (113B),
At least one pressure equalizing passage (40) is formed in the inner casing (61) which connects a first space (614) on one side of the journal bearing device (103) inside the inner casing (61) with the radial gap (241).
 本開示に係る冷熱発電装置によれば、熱媒体流路における第2段静翼よりも下流側に接続される径方向隙間が画成され、内側ケーシングには、内側ケーシングの内部におけるジャーナル軸受装置よりも一方側の第1空間と、径方向隙間と、を連通するための少なくとも1つの均圧流路が形成される。熱媒体は、第1空間から均圧流路を通過し、径方向隙間の径方向の内側から外側に向かって流れ、熱媒体流路に流出する。
 熱媒体は内側ケーシングと外側ケーシングとの間に画定される熱媒体流路内を、第1段タービン装置、第2段タービン装置の順で流れる。つまり、第2段静翼よりも下流側に画成される径方向隙間の圧力は、第2段静翼よりも上流側の圧力と比べて低くなる。
 したがって、均圧流路が第1空間と径方向隙間とを連通することで、スラスト軸受装置が配置される内側ケーシングの内部の圧力を下げることができる。そのため、スラスト軸受装置の風損(ロス)を低減させることができ、発電機性能の低下を抑制することができる。
According to the cold energy power generation device of the present disclosure, a radial gap is defined that is connected to the downstream side of the second stage stator vane in the heat medium flow passage, and at least one pressure equalizing passage is formed in the inner casing for communicating the radial gap with a first space on one side of the journal bearing device inside the inner casing. The heat medium passes through the pressure equalizing passage from the first space, flows from the inside to the outside in the radial gap in the radial direction, and flows out into the heat medium flow passage.
The heat transfer medium flows through a heat transfer medium flow passage defined between the inner casing and the outer casing in the order of the first stage turbine device and the second stage turbine device. In other words, the pressure in the radial gap defined downstream of the second stage stator vane is lower than the pressure upstream of the second stage stator vane.
Therefore, by connecting the first space and the radial gap through the pressure equalizing passage, the pressure inside the inner casing in which the thrust bearing device is disposed can be reduced, thereby reducing windage loss of the thrust bearing device and suppressing deterioration of generator performance.
(2)別の態様に係る冷熱発電装置(1)は、(1)に記載の冷熱発電装置であって、
 前記スラスト軸受装置(102)は、前記発電機(8)よりも前記他方側に配置される。
(2) A cold energy power generation device (1) according to another aspect is the cold energy power generation device according to (1),
The thrust bearing device (102) is disposed on the other side of the generator (8).
 内側ケーシング本体の内部において、発電機よりも他方側の圧力は、発電機よりも一方側の圧力と比べて低くなる。このような構成によれば、スラスト軸受装置が、発電機よりも他方側に配置されることで、スラスト軸受装置が配置される領域の圧力を低減することができ、スラスト軸受装置による風損(ロス)を低減させることができる。 Inside the inner casing body, the pressure on the other side of the generator is lower than the pressure on one side of the generator. With this configuration, the thrust bearing device is positioned on the other side of the generator, which reduces the pressure in the area where the thrust bearing device is positioned, and reduces windage loss caused by the thrust bearing device.
(3)さらに別の態様に係る冷熱発電装置(1)は、(2)に記載の冷熱発電装置であって、
 前記第1空間(614)は、前記スラスト軸受装置(102)よりも前記他方側に画成される。
(3) A cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to (2),
The first space (614) is defined on the other side of the thrust bearing device (102).
 このような構成によれば、均圧流路は、径が大きいスラスト軸受装置の径方向外側を通過することなく、第1空間と径方向隙間とを連通する。したがって、均圧流路がスラスト軸受装置の径方向外側を通過する場合と比べて、内側ケーシング本体の外径を小さくすることができ、冷熱発電装置全体の装置を簡素化することができる。 With this configuration, the pressure equalizing passage communicates with the first space and the radial gap without passing through the radial outside of the thrust bearing device, which has a larger diameter. Therefore, the outer diameter of the inner casing body can be made smaller than when the pressure equalizing passage passes through the radial outside of the thrust bearing device, and the entire cold energy power generation device can be simplified.
(4)さらに別の態様に係る冷熱発電装置(1)は、(3)に記載の冷熱発電装置であって、
 前記ジャーナル軸受装置(103)は、主軸受(103A)と、補助軸受(103B)を含む。
(4) A cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to (3),
The journal bearing device (103) includes a main bearing (103A) and an auxiliary bearing (103B).
 このような構成によれば、冷熱発電装置の停止、あるいはトラブルにより、主軸受がロータシャフトを支持できなくなった場合でも補助軸受により支持することができる。 With this configuration, even if the main bearing is no longer able to support the rotor shaft due to a shutdown of the cold energy power generation device or a malfunction, the rotor shaft can still be supported by the auxiliary bearing.
(5)さらに別の態様に係る冷熱発電装置(1)は、(1)乃至(4)の何れかに記載の冷熱発電装置であって、
 前記ディスク部(113B)は、前記ロータシャフト(11)の軸方向に貫通する少なくとも1つの貫通孔(50)を有する。
(5) A cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to any one of (1) to (4),
The disk portion (113B) has at least one through hole (50) penetrating in the axial direction of the rotor shaft (11).
 第2段動翼よりも下流側の圧力は、第2段動翼よりも上流側に画成される径方向隙間の圧力と比べて低くなる。したがって、このような構成によれば、貫通孔が径方向隙間と第2段動翼よりも下流側の空間とを連通することで、径方向隙間の熱媒体を空間に流出させ、スラスト軸受装置が配置される内側ケーシングの内部の圧力を下げることができる。これにより、スラスト軸受装置102による風損(ロス)を低減させることができる。 The pressure downstream of the second stage rotor blades is lower than the pressure in the radial gap defined upstream of the second stage rotor blades. Therefore, with this configuration, the through holes connect the radial gap to the space downstream of the second stage rotor blades, allowing the heat medium in the radial gap to flow out into the space, thereby lowering the pressure inside the inner casing in which the thrust bearing device is located. This makes it possible to reduce windage loss caused by the thrust bearing device 102.
(6)さらに別の態様に係る冷熱発電装置(1)は、(1)乃至(5)の何れかに記載の冷熱発電装置であって、
 前記第1段タービン装置(23)より前記他方側、且つ、前記発電機(8)より前記一方側において、前記ロータシャフト(11)と前記内側ケーシング(61)との間をシールするシール部(26)をさらに備える。
(6) A cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to any one of (1) to (5),
The turbine further includes a seal portion (26) for sealing between the rotor shaft (11) and the inner casing (61) on the other side of the first stage turbine device (23) and on the one side of the generator (8).
 このような構成によれば、第1段タービン装置の高圧領域から内側ケーシングの内部にリークする熱媒体をシールすることができるため、シール部材を設けない場合と比べて、内側ケーシングの内部の圧力を低く維持することができる。これにより、ロータシャフトに作用するスラスト力や、内側ケーシングの内部において発生するスラスト軸受装置による風損(ロス)を低減させることができる。
 また、第1段動翼を通過した熱媒体が内側ケーシング本体の内部へリークすることを抑制できるため、シール部材を設けない場合と比べて、熱媒体流路を流れる熱媒体の減少を抑制することができ、第2段タービン装置の効率を向上させることができる。
According to this configuration, the heat medium leaking from the high pressure region of the first stage turbine device into the inner casing can be sealed off, so the pressure inside the inner casing can be kept lower than when no seal member is provided, thereby reducing the thrust force acting on the rotor shaft and the windage loss (loss) caused by the thrust bearing device inside the inner casing.
In addition, since it is possible to prevent the heat medium that has passed through the first stage rotor blades from leaking into the inside of the inner casing body, it is possible to prevent a decrease in the heat medium flowing through the heat medium flow passage compared to a case in which a sealing member is not provided, and it is possible to improve the efficiency of the second stage turbine device.
(7)さらに別の態様に係る冷熱発電装置(1)は、(6)に記載の冷熱発電装置であって、
 前記内側ケーシング(61)の内部における前記発電機(8)よりも前記他方側において、前記ロータシャフト(11)と前記内側ケーシング(61)との間をシールする部材は備えられていない。
(7) A cold energy power generation device (1) according to yet another aspect is the cold energy power generation device according to (6),
On the other side of the generator (8) inside the inner casing (61), no sealing member is provided between the rotor shaft (11) and the inner casing (61).
 このような構成によれば、熱媒体が内側ケーシングの内部から第2段タービン装置の低圧領域へのリークの妨げとなるシール部材が備えられていないため、シール部材を設けた場合と比べて、内側ケーシングの内部の圧力を低く維持することができる。これにより、ロータシャフトに作用するスラスト力や、内側ケーシング本体の内部において発生するスラスト軸受装置による風損(ロス)を低減させることができる。 With this configuration, since no sealing member is provided to prevent the heat medium from leaking from inside the inner casing to the low-pressure region of the second stage turbine device, the pressure inside the inner casing can be kept lower than when a sealing member is provided. This reduces the thrust force acting on the rotor shaft and the windage loss (loss) caused by the thrust bearing device inside the inner casing body.
1 冷熱発電装置
2 液化ガス供給ライン
3 凝縮器
4 加熱流体供給ライン
5 冷熱用ポンプ
6 ケーシング
61 内側ケーシング
62 外側ケーシング
7 蒸発器
8 発電機
81 モータロータ
82 モータステータ
9 熱媒体循環ライン
10 船舶
10A 水上浮遊構造体
10B 液化ガス基地
11 ロータシャフト
111 シャフト部
112 スラストカラー
112A 一方側面
112B 他方側面
113A 一方側ディスク部
113B 他方側ディスク部
21 液化ガス貯留装置
22 液化ガス用ポンプ
23 第1段タービン装置
23A 第1段静翼
23B 第1段動翼
24 第2段タービン装置
24A 第2段静翼
24B 第2段動翼
241 径方向隙間
26 シール部
40 均圧流路
40A 第1空間側開口
40B 径方向隙間側開口
401 径方向流路
402 軸方向流路
403 他方側流路
42 加熱流体用ポンプ
50 貫通孔
63 熱媒体流路
64A 一方側導入路
64B 他方側排出路
65A 入口ケーシング
65B 出口ケーシング
66A 一方側カバー
66B 他方側カバー
100 冷熱発電システム
102 スラスト軸受装置
102A 一方側スラスト軸受
102B 他方側スラスト軸受
102B1 端部
103 第1ジャーナル軸受装置
103A 主軸受
103B 補助軸受
104 第2ジャーナル軸受装置
104A 主軸受
104B 補助軸受
610 空間
611 内周面
612 外周面
613 他方側端面
615 他方側の空間
616 周方向隙間
621 内周面
CA 軸線

 
1 Cold energy power generation device 2 Liquefied gas supply line 3 Condenser 4 Heating fluid supply line 5 Cold energy pump 6 Casing 61 Inner casing 62 Outer casing 7 Evaporator 8 Generator 81 Motor rotor 82 Motor stator 9 Heat medium circulation line 10 Ship 10A Water floating structure 10B Liquefied gas base 11 Rotor shaft 111 Shaft section 112 Thrust collar 112A One side 112B Other side 113A One side disk section 113B Other side disk section 21 Liquefied gas storage device 22 Liquefied gas pump 23 First stage turbine device 23A First stage stator blade 23B First stage rotor blade 24 Second stage turbine device 24A Second stage stator blade 24B Second stage rotor blade 241 Radial gap 26 Seal section 40 Pressure equalizing flow path 40A First space side opening 40B Radial gap side opening 401 Radial flow path 402 Axial flow path 403 Other-side flow passage 42 Heating fluid pump 50 Through hole 63 Heat medium flow passage 64A One-side inlet passage 64B Other-side discharge passage 65A Inlet casing 65B Outlet casing 66A One-side cover 66B Other-side cover 100 Cold energy power generation system 102 Thrust bearing device 102A One-side thrust bearing 102B Other-side thrust bearing 102B1 End portion 103 First journal bearing device 103A Main bearing 103B Auxiliary bearing 104 Second journal bearing device 104A Main bearing 104B Auxiliary bearing 610 Space 611 Inner circumferential surface 612 Outer circumferential surface 613 Other-side end face 615 Other-side space 616 Circumferential gap 621 Inner circumferential surface CA Axis

Claims (8)

  1.  液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ラインに設けられた冷熱発電装置であって、
     ロータシャフトと、
     前記ロータシャフトの外周面に支持されるモータロータと、前記モータロータに対向して配置されるモータステータと、を含む発電機と、
     前記発電機を収容する内側ケーシングと、
     前記内側ケーシングの外周側に配置され、前記内側ケーシングとの間に熱媒体流路を画定する外側ケーシングと、
     前記熱媒体流路に配置され、前記発電機よりも前記ロータシャフトの軸方向における一方側に配置された第1段タービン装置と、
     前記熱媒体流路に配置され、前記発電機よりも前記ロータシャフトの軸方向における他方側に配置された第2段タービン装置と、
     前記内側ケーシングの内周側において、前記発電機よりも前記他方側に配置されたジャーナル軸受装置と、
     前記内側ケーシングの内周側において、前記ジャーナル軸受装置よりも前記一方側に配置されたスラスト軸受装置と、を備え、
     前記第2段タービン装置は、第2段静翼と、前記第2段静翼よりも前記他方側に設けられた第2段動翼と、を含み、
     前記ロータシャフトは、径方向に沿って延在し前記第2段タービン装置の前記第2段動翼を支持するディスク部を含み、
     前記内側ケーシングの前記他方側の端面である他方側端面と前記ディスク部との間には、前記第2段静翼よりも前記他方側の前記熱媒体流路に接続される径方向隙間が画成され、
     前記内側ケーシングには、前記内側ケーシングの内部における前記ジャーナル軸受装置よりも前記一方側の第1空間と前記径方向隙間とを連通する少なくとも1つの均圧流路が形成される、
    冷熱発電装置。
    A cold energy power generation device provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas,
    A rotor shaft;
    a generator including a motor rotor supported on an outer circumferential surface of the rotor shaft and a motor stator disposed opposite to the motor rotor;
    an inner casing that houses the generator;
    an outer casing disposed on an outer circumferential side of the inner casing and defining a heat medium flow path between the outer casing and the inner casing;
    a first stage turbine device disposed in the heat medium flow path and disposed on one side of the generator in the axial direction of the rotor shaft;
    a second stage turbine device disposed in the heat medium flow path and disposed on the other side of the rotor shaft in the axial direction relative to the generator;
    a journal bearing device disposed on the other side of the generator on an inner peripheral side of the inner casing;
    a thrust bearing device disposed on the one side of the journal bearing device on an inner peripheral side of the inner casing,
    the second stage turbine device includes a second stage stator vane and a second stage rotor blade provided on the other side of the second stage stator vane,
    the rotor shaft includes a disk portion extending along a radial direction and supporting the second stage rotor blades of the second stage turbine device;
    a radial gap connected to the heat medium flow path on the other side of the second stage vane is defined between the disk portion and a second end face of the inner casing,
    At least one pressure equalizing passage is formed in the inner casing, the pressure equalizing passage communicating a first space on the one side of the journal bearing device inside the inner casing with the radial gap.
    Cold energy power generation equipment.
  2.  前記スラスト軸受装置は、前記発電機よりも前記他方側に配置される、
    請求項1に記載の冷熱発電装置。
    The thrust bearing device is disposed on the other side of the generator.
    The cold energy power generation device according to claim 1 .
  3.  前記第1空間は、前記スラスト軸受装置よりも前記他方側に画成される、
    請求項2に記載の冷熱発電装置。
    The first space is defined on the other side of the thrust bearing device.
    The cold energy power generation device according to claim 2 .
  4.  前記ジャーナル軸受装置は、主軸受と、補助軸受を含む、
    請求項3に記載の冷熱発電装置。
    The journal bearing device includes a main bearing and an auxiliary bearing.
    The cold energy power generation device according to claim 3 .
  5.  前記ディスク部は、前記ロータシャフトの軸方向に貫通する少なくとも1つの貫通孔を有する、
    請求項1乃至4の何れか1項に記載の冷熱発電装置。
    The disk portion has at least one through hole penetrating in the axial direction of the rotor shaft.
    The cold energy power generating device according to any one of claims 1 to 4.
  6.  前記第1段タービン装置より前記他方側、且つ、前記発電機より前記一方側において、前記ロータシャフトと前記内側ケーシングとの間をシールするシール部をさらに備える、
    請求項1乃至4の何れか1項に記載の冷熱発電装置。
    a seal portion that seals between the rotor shaft and the inner casing on the other side of the first stage turbine device and on the one side of the generator,
    The cold energy power generating device according to any one of claims 1 to 4.
  7.  前記内側ケーシングの内部における前記発電機よりも前記他方側において、前記ロータシャフトと前記内側ケーシングとの間をシールする部材は備えられていない、
    請求項6に記載の冷熱発電装置。
    a member for sealing between the rotor shaft and the inner casing is not provided on the other side of the generator inside the inner casing;
    The cold energy power generation device according to claim 6 .
  8.  請求項1乃至4の何れか1項に記載の冷熱発電装置を備える冷熱発電システム。

     
    A cold energy power generation system comprising the cold energy power generation device according to any one of claims 1 to 4.

PCT/JP2023/035595 2022-10-13 2023-09-29 Cryogenic power generation apparatus and cryogenic power generation system WO2024080158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-164632 2022-10-13
JP2022164632A JP2024057758A (en) 2022-10-13 2022-10-13 Cold energy power generation device and cold energy power generation system

Publications (1)

Publication Number Publication Date
WO2024080158A1 true WO2024080158A1 (en) 2024-04-18

Family

ID=90669111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035595 WO2024080158A1 (en) 2022-10-13 2023-09-29 Cryogenic power generation apparatus and cryogenic power generation system

Country Status (2)

Country Link
JP (1) JP2024057758A (en)
WO (1) WO2024080158A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143101A (en) * 1982-02-22 1983-08-25 Toshiba Corp Steam turbine
JPS58156101U (en) * 1982-04-14 1983-10-18 株式会社日立製作所 gas bearing expansion turbine
JP2006230145A (en) * 2005-02-18 2006-08-31 Ebara Corp Submerged turbine generator
JP2010001894A (en) * 2008-06-17 2010-01-07 Snecma Turbomachine with long lasting position-holding system
JP2012241604A (en) * 2011-05-19 2012-12-10 Chiyoda Kako Kensetsu Kk Composite power generation system
JP2017194042A (en) * 2016-04-22 2017-10-26 三菱重工サーマルシステムズ株式会社 Turbocompressor, and turbo refrigerating device comprising the same
US20200059179A1 (en) * 2017-04-27 2020-02-20 Anax Holdings, Llc System and method for electricity production from pressure reduction of natural gas
CN210660229U (en) * 2019-11-13 2020-06-02 重庆江增船舶重工有限公司 High-speed expander of inflation electricity generation integral type
CN112431640A (en) * 2020-11-11 2021-03-02 中国船舶重工集团公司第七一一研究所 Pipeline type process gas pressure energy recovery power receiving and transmitting device and process gas pressure reduction pipeline
WO2021229897A1 (en) * 2020-05-11 2021-11-18 日揮グローバル株式会社 Temperature adjustment system and temperature adjustment method
CN114867931A (en) * 2021-11-09 2022-08-05 三菱重工船用机械株式会社 Turbine for cold energy power generation and cold energy power generation system provided with same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143101A (en) * 1982-02-22 1983-08-25 Toshiba Corp Steam turbine
JPS58156101U (en) * 1982-04-14 1983-10-18 株式会社日立製作所 gas bearing expansion turbine
JP2006230145A (en) * 2005-02-18 2006-08-31 Ebara Corp Submerged turbine generator
JP2010001894A (en) * 2008-06-17 2010-01-07 Snecma Turbomachine with long lasting position-holding system
JP2012241604A (en) * 2011-05-19 2012-12-10 Chiyoda Kako Kensetsu Kk Composite power generation system
JP2017194042A (en) * 2016-04-22 2017-10-26 三菱重工サーマルシステムズ株式会社 Turbocompressor, and turbo refrigerating device comprising the same
US20200059179A1 (en) * 2017-04-27 2020-02-20 Anax Holdings, Llc System and method for electricity production from pressure reduction of natural gas
CN210660229U (en) * 2019-11-13 2020-06-02 重庆江增船舶重工有限公司 High-speed expander of inflation electricity generation integral type
WO2021229897A1 (en) * 2020-05-11 2021-11-18 日揮グローバル株式会社 Temperature adjustment system and temperature adjustment method
CN112431640A (en) * 2020-11-11 2021-03-02 中国船舶重工集团公司第七一一研究所 Pipeline type process gas pressure energy recovery power receiving and transmitting device and process gas pressure reduction pipeline
CN114867931A (en) * 2021-11-09 2022-08-05 三菱重工船用机械株式会社 Turbine for cold energy power generation and cold energy power generation system provided with same

Also Published As

Publication number Publication date
JP2024057758A (en) 2024-04-25

Similar Documents

Publication Publication Date Title
US9476428B2 (en) Ultra high pressure turbomachine for waste heat recovery
US7948105B2 (en) Turboalternator with hydrodynamic bearings
US20130168972A1 (en) Waste heat recovery systems
RU2592691C2 (en) Expanding turbine operating on basis of cryogenic liquid
WO2023084619A1 (en) Cryogenic power generation turbine and cryogenic power generation system comprising cryogenic power generation turbine
WO2024080158A1 (en) Cryogenic power generation apparatus and cryogenic power generation system
US20180328210A1 (en) Super-Critical C02 Expander
CN113790089A (en) Low-temperature waste heat power generation system
JP2014020330A (en) Turbine
JP2015028323A (en) Steam turbine system and steam turbine power generation plant
JP7471164B2 (en) Turbines for cold energy generation
CN106368752A (en) Ammonia turbine device used for ocean temperature difference power generation
WO2022014333A1 (en) Turbine for cryogenic power generation
JP7382907B2 (en) Turbine for cold power generation
JP7474660B2 (en) Power recovery system and floating structure
EP2074289B1 (en) Steam power plant
KR102077731B1 (en) Generator with one-body type rotor and turbine and generating cycle system including the same
CN111749734A (en) Supercritical temperature power generation system or power system
CN114542187B (en) Axial-flow outer rotor type magnetic levitation ORC organic working medium expansion generator
TWI781860B (en) Turbo device and circulatory system
CN115199348B (en) Magnetic-gas composite thrust control system and method for organic Rankine cycle generator set
WO2024075438A1 (en) Refrigeration system
JP2023178158A (en) binary power generation system
JP2015048783A (en) Rotary equipment rotor and rotary equipment
KR20230172879A (en) Turbo generator in the form of a combination of a turbine and a generator rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877163

Country of ref document: EP

Kind code of ref document: A1