WO2024080118A1 - Liquid drop ejection method and liquid drop ejection device - Google Patents

Liquid drop ejection method and liquid drop ejection device Download PDF

Info

Publication number
WO2024080118A1
WO2024080118A1 PCT/JP2023/034698 JP2023034698W WO2024080118A1 WO 2024080118 A1 WO2024080118 A1 WO 2024080118A1 JP 2023034698 W JP2023034698 W JP 2023034698W WO 2024080118 A1 WO2024080118 A1 WO 2024080118A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
droplet ejection
nozzle
electrostatic
nozzles
Prior art date
Application number
PCT/JP2023/034698
Other languages
French (fr)
Japanese (ja)
Inventor
和広 村田
Original Assignee
株式会社Sijテクノロジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sijテクノロジ filed Critical 株式会社Sijテクノロジ
Publication of WO2024080118A1 publication Critical patent/WO2024080118A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field

Definitions

  • the present invention relates to a droplet ejection method and a droplet ejection device.
  • Patent Document 1 discloses an electrostatic ejection inkjet recording device.
  • the cross section of the structure formed generally has an arc shape because it is affected by the surface tension of the ink used as the droplet and the wettability of the substrate.
  • One of the objectives of the present invention is to form structures with new cross-sectional shapes using an electrostatic ejection inkjet head.
  • a droplet ejection method including: using a multi-nozzle head including a plurality of electrostatic droplet ejection nozzles arranged at a predetermined nozzle interval in a first direction and ejecting droplets; ejecting a first droplet from a first electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to a first droplet ejection position on a target object; scanning the multi-nozzle head in the first direction at a predetermined scanning speed; ejecting a second droplet from a second electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to the first droplet ejection position; and ejecting a first droplet from the first electrostatic droplet ejection nozzle to the second droplet ejection position, wherein a shape of a first structure formed by the first droplet and the second droplet at the first droplet ejection position is different from a shape of
  • the predetermined nozzle spacing may be 20 ⁇ m or more and 500 ⁇ m or less.
  • the predetermined scanning speed may be greater than or equal to 0.00001 meters per second and less than or equal to 1 meter per second.
  • the viscosity of the solvent in the droplets may be 0.1 cps or more and 10,000 cps or less.
  • the amount of droplets ejected from the electrostatic droplet ejection nozzle at one time may be 0.00001 picoliters or more and 50 picoliters or less.
  • the multiple electrostatic droplet ejection nozzles may include three or more electrostatic droplet ejection nozzles.
  • the first structure and the second structure are connected to form a third structure, and the third structure may have a rectangular cross-sectional shape when viewed from the first direction.
  • the end of the third structure may have an arc-shaped cross-sectional shape when viewed from a second direction intersecting the first direction.
  • a droplet ejection device including a multi-nozzle head including a plurality of electrostatic droplet ejection nozzles arranged at a predetermined nozzle interval in a first direction for ejecting droplets, and a control unit that ejects a first droplet from a first electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to a first droplet ejection position on a target object, scans the multi-nozzle head in the first direction at a predetermined scanning speed, ejects a second droplet from a second electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to the first droplet ejection position, and ejects the first droplet from the first electrostatic droplet ejection nozzle to the second droplet ejection position.
  • the predetermined nozzle spacing may be greater than or equal to 20 ⁇ m and less than or equal to 500 ⁇ m.
  • the plurality of electrostatic droplet ejection nozzles may include three or more electrostatic droplet ejection nozzles.
  • control unit may control the scanning speed based on the material of the droplets.
  • FIG. 1 is a schematic diagram of a droplet ejection device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a multi-nozzle head.
  • FIG. 2 is an enlarged plan view of a portion of the multi-nozzle head.
  • FIG. 2 is an enlarged top view of a droplet ejection nozzle.
  • FIG. 2 is an enlarged cross-sectional view of a droplet ejection nozzle.
  • 1A to 1C are diagrams illustrating a method for discharging droplets.
  • FIG. 4 is a schematic diagram of a discharged droplet.
  • FIG. 4 is a schematic diagram of a discharged droplet.
  • 1A to 1C are diagrams illustrating a method for discharging droplets.
  • FIG. 4 is a schematic diagram of a discharged droplet.
  • FIG. 4 is a schematic diagram of a discharged droplet.
  • FIG. 4 is a schematic diagram of a discharged droplet.
  • FIG. 2 is a schematic diagram of a structure according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a structure according to one embodiment of the present invention.
  • FIG. 2 is a plan view of a multi-nozzle head.
  • 3 is a functional block diagram of a control unit of the droplet ejection device according to the embodiment of the present invention.
  • FIG. 1 is an example of a dataset.
  • FIG. 4 is a photograph of a multi-nozzle head attached to a mounting portion in this embodiment.
  • 1 is a plan view of a structure formed in this example. 1 is a cross-sectional profile image of a structure formed in this example.
  • FIG. 2 is a schematic diagram of a structure according to one embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a droplet ejection device 100 according to one embodiment of the present invention.
  • the droplet ejection device 100 includes a control unit 110, a memory unit 120, a power supply unit 125, a drive unit 130, a mounting unit 140, an ink supply unit 145, a multi-nozzle head 150, a display unit 170, an operation unit 180, an adjustment unit 190, an object holding unit 200, and a housing 210.
  • the control unit 110, the memory unit 120, the power supply unit 125, the drive unit 130, the mounting unit 140, the ink supply unit 145, the multi-nozzle head 150, the display unit 170, the operation unit 180, the adjustment unit 190, and the object holding unit 200 are electrically connected by a wiring bus and are provided inside the housing 210.
  • the display unit 170, the operation unit 180, and the adjustment unit 190 do not necessarily have to be provided.
  • the control unit 110 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or other arithmetic processing circuit.
  • the control unit 110 uses a preset droplet ejection program to control the droplet ejection process by the multi-nozzle head 150.
  • the storage unit 120 functions as a database that stores the droplet ejection program and various information used in the droplet ejection program.
  • the storage unit 120 is made of a memory, an SSD, or a memory-capable element.
  • the power supply unit 125 applies a voltage to the multi-nozzle head 150 based on a signal input from the control unit 110.
  • the power supply unit 125 applies a pulsed voltage (1000V in this example) to the multi-nozzle head 150.
  • the voltage is not limited to a pulsed voltage, and a constant voltage may be applied all the time.
  • the driving unit 130 is composed of driving members such as a motor, a belt, and gears. Based on instructions from the control unit 110, the driving unit 130 moves the multi-nozzle head 150 in one direction (in this example, the second direction D2) relative to the object 220. The driving unit 130 may also move the object holding unit 200.
  • the mounting unit 140 mounts the multi-nozzle head 150.
  • the mounting unit 140 mounts the multi-nozzle head 150 by adhering to the plate portion of the multi-nozzle head 150.
  • the mounting unit 140 may mount the multi-nozzle head 150 using a jig, adhesive, or the like.
  • the ink supply unit 145 (also called an ink tank or ink cartridge) is provided away from the mounting unit 140.
  • the ink supply unit 145 stores ink.
  • the ink supply unit 145 supplies the stored ink to the multi-nozzle head 150. It is preferable to use ink made of a solvent and a solute or pigment, and more preferably, the solute or pigment component is based on an inorganic substance or metal, and even more preferably, it is preferable to use ultrafine metal particle ink.
  • the multi-nozzle head 150 is provided away from the ink supply unit 145.
  • the configuration of the multi-nozzle head 150 will be described later.
  • the display unit 170 displays control information (text information or image information) based on the control of the control unit 110. At this time, the display unit 170 may display the control information via a GUI (Graphical User Interface). The display unit 170 may also display information about the multi-nozzle head 150.
  • control information text information or image information
  • GUI Graphic User Interface
  • the operation unit 180 includes operable members.
  • the operation unit 180 includes buttons, levers, and a numeric keypad.
  • the operation unit 180 is used to perform operations such as moving up, down, left, right, pressing, or rotating, or to input numerical values, and information based on the operations is acquired by the control unit 110.
  • the display unit 170 may be used as a touch panel.
  • the adjustment unit 190 may adjust the position and inclination of the multi-nozzle head 150. Specifically, the adjustment unit 190 can adjust the inclination of the tip 153a of the droplet ejection nozzle 153 of the multi-nozzle head 150 and the orientation of the multi-nozzle head.
  • the adjustment unit 190 may use a ⁇ stage or a goniostage.
  • the object holding unit 200 has the function of holding the object 220.
  • a stage is used as the object holding unit 200.
  • the mechanism by which the object holding unit 200 holds the object 220 There are no particular limitations on the mechanism by which the object holding unit 200 holds the object 220, and a general holding mechanism is used.
  • the object 220 is vacuum-adsorbed to the object holding unit 200.
  • the object holding unit 200 may hold the object 220 using a fixture.
  • Fig. 2A is a plan view of the multi-nozzle head 150.
  • Fig. 2B is an enlarged plan view of a portion of the multi-nozzle head.
  • Fig. 3A is an enlarged top view of the droplet ejection nozzle.
  • Fig. 3B is an enlarged cross-sectional view of the droplet ejection nozzle.
  • the multi-nozzle head 150 includes a plate portion 151 and multiple droplet ejection nozzles 153 (also called electrostatic droplet ejection nozzles).
  • the plate portion 151 is formed in a plate shape.
  • the plate portion 151 extends in the first direction D1.
  • the plate portion 151 is made of a metal material such as stainless steel.
  • the droplet discharge nozzles 153 are provided on one surface of the plate portion 151.
  • the droplet discharge nozzles 153 are arranged in a line in the first direction D1.
  • the droplet discharge nozzles 153-1, 153-2, ..., 153-(N-1), and 153-N are provided on the plate portion 151.
  • N is a natural number equal to or greater than 3.
  • the multi-nozzle head 150 includes 10 droplet discharge nozzles 153.
  • droplet discharge nozzles 153-1 also referred to as the first electrostatic droplet discharge nozzle
  • 153-2 also referred to as the second electrostatic droplet discharge nozzle
  • ..., 153-(N-1), and 153-N they will be described as the droplet discharge nozzles 153.
  • a metallic material such as nickel is used for the droplet discharge nozzles 153.
  • the droplet discharge nozzles 153 have a tapered shape.
  • the plate portion 151 has a through hole 151o having an inner diameter r151o larger than the inner diameter r153a of the discharge port (opening portion 153ao of the tip portion 153a of the droplet discharge nozzle 153) of the droplet discharge nozzle 153 in a portion corresponding to the droplet discharge nozzle 153 (overlapping portion).
  • the inner diameter of the through hole 151o of the plate portion 151 may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the inner diameter of the tip portion 153a of the droplet discharge nozzle 153 may be several hundred nm or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 15 ⁇ m or less, and more preferably 5 ⁇ m or more and 12 ⁇ m or less.
  • a voltage may be applied to the droplet discharge nozzle 153, a voltage may be applied to the plate portion 151 (or the ink supply portion 145), or a voltage may be applied to the ink.
  • an electrode may be provided.
  • the electrodes may be made of tungsten, nickel, molybdenum, titanium, gold, silver, copper, platinum, or the like. In this case, multiple electrodes may be provided so that a voltage is applied uniformly to the entire plate portion 151.
  • a voltage may be applied to a jig that holds the multi-nozzle head 150.
  • adjacent droplet ejection nozzles 153 have a predetermined interval (distance S1 between nozzles). From the viewpoint of controlling the shape of the structure to be formed, it is desirable that the distance S1 between adjacent nozzles is 20 ⁇ m or more and 500 ⁇ m or less. In this example, the distance S1 between each droplet ejection nozzle 153 is 200 ⁇ m.
  • the shape of the structure can be controlled based on the size of the ejected droplets and the distance between adjacent nozzles.
  • FIGS. 4 to 9 are schematic diagrams showing the droplet ejection method in the droplet ejection device.
  • the multi-nozzle head 150 described above is used to scan the multi-nozzle head 150 in the first direction D1 in which the droplet ejection nozzles 153 are arranged. From the viewpoint of the drying speed of the droplets, it is desirable that the scanning speed of the multi-nozzle head 150 is 0.00001 m/sec or more and 1 m/sec or less.
  • a first droplet 157-1 is ejected from the first droplet ejection nozzle 153-1 of the multiple droplet ejection nozzles 153 to the first droplet ejection position P1 using ink supplied by the ink supply unit 145.
  • the amount of droplet ejection is 0.00001 picoliters or more and 50 picoliters or less.
  • more particles in the ink remain at the ends of the first droplet 157-1 compared to the center portion during the drying process of the first droplet 157-1 (for example, the coffee ring phenomenon). This forms a structure in which the ends of the first droplet 157-1 are raised, as shown in FIG. 6.
  • the second droplet discharge nozzle 153-2 moves to the first droplet discharge position P1 in accordance with the scanning of the multi-nozzle head 150 in the first direction D1.
  • the second droplet 157-2 is discharged from the second droplet discharge nozzle 153-2 to the first droplet discharge position P1.
  • a structure is formed in which the end of the second droplet 157-2 is raised, and ink particles accumulate in the central groove formed by the first droplet 157-1 as shown in FIG. 9 (the first structure 158-1 is formed).
  • the first droplet 157-1 is ejected from the first droplet ejection nozzle 153-1 using ink supplied from the ink supply unit 145 at the second droplet ejection position P2, which is provided in the direction in which the multi-nozzle head 150 moves (first direction D1) with respect to the first droplet ejection position P1, as shown in FIG. 10.
  • the structure (158-1) formed at the first droplet ejection position P1 and the structure (2nd structure 158-2) formed at the second droplet ejection position P2 have different shapes depending on the number of ejected droplets.
  • the first structure 158-1 and the second structure 158-2 approach a rectangle (trapezoid) as the number of droplet ejections increases.
  • a predetermined number of times is exceeded, the shape of the first structure 158-1 and the shape of the second structure 158-2 may become the same.
  • first structure 158-1 and the second structure 158-2 are connected when a predetermined condition is satisfied. Specifically, when the distance between the first droplet discharge position P1 and the second droplet discharge position P2 is equal to or less than a predetermined distance, the first structure 158-1 and the second structure 158-2 are connected (a third structure is formed). The same applies to the droplet discharge positions after the second droplet discharge position P2.
  • the third droplet ejection nozzle 153-3 and subsequent droplet ejection nozzles 153 which are arranged in the opposite direction of the first direction D1 from the second droplet ejection nozzle 153-2, also eject droplets sequentially to the first droplet ejection position P1 and the second droplet ejection position P2. The same applies to the droplet ejection positions after the second droplet ejection position P2, which are arranged in the first direction D1.
  • FIG. 11A is a schematic cross-sectional view of the structure 159 formed in this embodiment when viewed from a first direction D1.
  • FIG. 11B is a schematic cross-sectional view of the structure 159 when viewed from a second direction D2.
  • droplets are repeatedly ejected at each droplet ejection position, so that the groove in the center is filled while the side edges have a curved shape.
  • a linear structure having a rectangular (trapezoidal) cross-sectional shape when viewed from the first direction D1 is formed without going through a lithography process.
  • the droplet size is smaller and the drying speed is faster than droplets discharged from a piezoelectric type inkjet nozzle. Also, in this embodiment, the distance between adjacent electrostatic discharge type droplet discharge nozzles and the scanning speed are controlled. Furthermore, droplets are discharged multiple times at the same droplet discharge position. This forms a linear structure having a rectangular cross-sectional shape as described above.
  • this embodiment it is possible to form a structure having a new cross-sectional shape that has not been seen before using an electrostatic ejection inkjet head. Since the structure has such a shape, it can also be used as a partition wall, and structures formed by inkjet printing can be used for new purposes.
  • Second Embodiment a droplet ejection device different from that in the first embodiment will be described. Specifically, an example of a multi-nozzle head in which droplet ejection nozzles are arranged two-dimensionally will be described. For convenience of explanation, some members will be omitted.
  • FIG. 12 is a schematic top view of the multi-nozzle head 150A.
  • the droplet ejection nozzles 153 are arranged in a first direction D1 and may also be arranged in a second direction D2.
  • multiple linear structures can be formed by ejecting droplets while scanning in the first direction.
  • FIG. 13 shows the internal configuration of the control unit 110B. It is a functional block diagram.
  • the control unit 110B has an acquisition unit 111, a setting unit 113, and a drive control unit 115.
  • the acquisition unit 111 acquires data input by the user via the operation unit 180 or data stored in the storage unit 120.
  • FIG. 14 is an example of a data set 500 acquired by the acquisition unit 111.
  • the data set 500 includes a material name 500a, a material viscosity 500b, an adjacent nozzle distance 500c, a temperature 500d, and a discharge amount 500e. Note that the data set 500 may not include some of the data.
  • the setting unit 113 sets the scanning speed of the multi-nozzle head 150 based on the data set 500 acquired by the acquisition unit 111.
  • the drive control unit 115 controls the drive unit 130 using the set scanning speed.
  • FIG. 15 is a flowchart for setting the scanning speed of the multi-nozzle head 150 when ejecting droplets.
  • control unit 110 acquires information about the multi-nozzle head 150 and information about the material (S110, S120).
  • the information about the multi-nozzle head 150 and information about the material are input by the user via the operation unit 180 or are acquired from the storage unit 120.
  • the acquired information is processed as an input data set as shown in FIG. 13.
  • control unit 110 sets the scanning speed of the multi-nozzle head 150 based on the acquired information about the multi-nozzle head 150 and information about the material (S130). At this time, the control unit 110 may select from a group of previously prepared scanning speed data for the information about the multi-nozzle head 150 and the information about the material. The control unit 110 may also perform machine learning based on previously acquired teacher data to set the scanning speed.
  • the control unit 110 outputs the set scanning speed information to the driving unit 130 and drives the driving unit 130 (S140).
  • the user can input material information to set the optimal multi-nozzle head scanning speed for forming a structure with a rectangular cross-sectional shape.
  • the control unit 110 may set the ejection amount of droplets along with the scanning speed of the multi-nozzle head 150.
  • Figure 16 is a photograph of an example multi-nozzle head.
  • Figure 17 is a photograph of the multi-nozzle head attached to the attachment section.
  • the multi-nozzle head used to form the structure in this example is provided with 5 rows x 20 (100) droplet ejection nozzles. In this case, one line is drawn by five nozzles.
  • Figure 18 is a plan view of the structure formed in this example.
  • Figure 19 is a cross-sectional profile image of the structure formed in this example.
  • the pattern line width of the structure is 36.485 ⁇ m. As shown in Figure 19, it was confirmed that the structure had a rectangular cross-sectional shape.
  • the droplet ejection device may include an inspection device.
  • the inspection device inspects the inclination of the multi-nozzle head 150 mounted on the mounting unit 140.
  • the inspection device can inspect the inclination of the tip 153a of the adjacent droplet ejection nozzle 153 in the multi-nozzle head 150 and the shape of the pattern.
  • an imaging device or a step gauge is used for the inspection device.
  • a CCD (Charge Coupled Device) type camera or a CMOS (Complementary Metal Oxide Semiconductor) type camera may be used as the imaging device.
  • Information acquired by the inspection device may be sent to the control unit 110 and the memory unit 120 to control the scanning speed.
  • the inclination between the adjacent droplet ejection nozzles 153 may be adjusted according to the shape of the pattern.
  • FIG. 20 is a schematic diagram of structure 159C.
  • Structure 159C has a rectangular cross-sectional shape when viewed from the first direction D1, but as shown in FIG. 20, the ends of structure 159C may have an arc cross-sectional shape when viewed from the second direction D2, depending on the number of droplets ejected, if the number of droplets ejected is less than the center of structure 159C.

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

This liquid drop ejection method comprises: using a multi-nozzle head including a plurality of electrostatic liquid drop ejection nozzles that are disposed at a prescribed nozzle interval in a first direction and eject liquid drops; ejecting a first liquid drop from a first electrostatic liquid drop ejection nozzle of the plurality of electrostatic liquid drop ejection nozzles at a first liquid drop ejection position of the target object; scanning the multi-nozzle head in the first direction at a prescribed scanning speed; ejecting a second liquid drop from a second liquid drop ejection nozzle of the plurality of electrostatic liquid drop ejection nozzles at the first liquid drop ejection position; and ejecting a first liquid drop from the first liquid drop ejection nozzle at a second liquid drop ejection position. The shape of a first structure formed by the first liquid drop and the second liquid drop at the first position and the shape of a second structure formed by the first liquid drop at the second position differ.

Description

液滴吐出方法および液滴吐出装置Droplet ejection method and droplet ejection device
 本発明は、液滴吐出方法および液滴吐出装置に関する。 The present invention relates to a droplet ejection method and a droplet ejection device.
 近年、インクジェット印刷技術の工業用プロセスへの応用が行われている。例えば、液晶ディスプレー用のカラーフィルター製造工程などはその一例である。インクジェット印刷技術として、従来は機械的圧力や振動により液滴を吐出する、いわゆるピエゾ型ヘッドが多く使用されてきていたが、より微細な液滴を吐出できる静電吐出型インクジェットヘッドが注目されている。特許文献1には、静電吐出型インクジェット記録装置について開示されている。 In recent years, inkjet printing technology has been applied to industrial processes. One example is the manufacturing process of color filters for liquid crystal displays. Conventionally, so-called piezo-type heads that eject droplets using mechanical pressure or vibration have been widely used in inkjet printing technology, but electrostatic ejection inkjet heads that can eject finer droplets have been attracting attention. Patent Document 1 discloses an electrostatic ejection inkjet recording device.
特開平10-34967号公報Japanese Patent Application Laid-Open No. 10-34967
 一方で、従来の静電吐出型インクジェットヘッドを用いて液滴を吐出する場合、一つの液滴吐出位置に対して一つの液滴が吐出される。このとき、形成される構造体の断面は、液滴として用いられたインクの表面張力、基板の濡れ性などの影響を受けるため、一般的に円弧形状を有する。 On the other hand, when droplets are ejected using a conventional electrostatic ejection inkjet head, one droplet is ejected to one droplet ejection position. In this case, the cross section of the structure formed generally has an arc shape because it is affected by the surface tension of the ink used as the droplet and the wettability of the substrate.
 本発明は、静電吐出型インクジェットヘッドを用いて、新たな断面形状を有する構造体を形成することを目的の一つとする。 One of the objectives of the present invention is to form structures with new cross-sectional shapes using an electrostatic ejection inkjet head.
 本発明の一実施形態によれば、第1方向に所定のノズル間隔で配置され液滴を吐出する複数の静電型液滴吐出ノズル、を含むマルチノズルヘッドを用いることと、前記複数の静電型液滴吐出ノズルのうち第1静電型液滴吐出ノズルから対象物の第1液滴吐出位置に第1液滴を吐出することと、前記マルチノズルヘッドを所定の走査速度で前記第1方向に走査することと、前記複数の静電型液滴吐出ノズルのうち第2静電型液滴吐出ノズルから前記第1液滴吐出位置に第2液滴を吐出することと、前記第1静電型液滴吐出ノズルから第2液滴吐出位置に第1液滴を吐出することを含み、前記第1液滴吐出位置において前記第1液滴および前記第2液滴により形成された第1構造体の形状と、前記第2液滴吐出位置において前記第1液滴により形成された第2構造体の形状は異なる、液滴吐出方法が提供される。 According to one embodiment of the present invention, there is provided a droplet ejection method including: using a multi-nozzle head including a plurality of electrostatic droplet ejection nozzles arranged at a predetermined nozzle interval in a first direction and ejecting droplets; ejecting a first droplet from a first electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to a first droplet ejection position on a target object; scanning the multi-nozzle head in the first direction at a predetermined scanning speed; ejecting a second droplet from a second electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to the first droplet ejection position; and ejecting a first droplet from the first electrostatic droplet ejection nozzle to the second droplet ejection position, wherein a shape of a first structure formed by the first droplet and the second droplet at the first droplet ejection position is different from a shape of a second structure formed by the first droplet at the second droplet ejection position.
 上記液滴吐出方法において、前記所定のノズル間隔は、20μm以上500μm以下であってもよい。 In the above droplet ejection method, the predetermined nozzle spacing may be 20 μm or more and 500 μm or less.
 上記液滴吐出方法において、前記所定の走査速度は、0.00001メートル毎秒以上1メートル毎秒以下であってもよい。 In the above droplet ejection method, the predetermined scanning speed may be greater than or equal to 0.00001 meters per second and less than or equal to 1 meter per second.
 上記液滴吐出方法において、前記液滴のうち溶媒の粘度は、0.1cps以上10000cps以下であってもよい。 In the above droplet ejection method, the viscosity of the solvent in the droplets may be 0.1 cps or more and 10,000 cps or less.
 上記液滴吐出方法において、前記静電型液滴吐出ノズルからの1回あたりの吐出量は、0.00001ピコリットル以上50ピコリットル以下であってもよい。 In the above droplet ejection method, the amount of droplets ejected from the electrostatic droplet ejection nozzle at one time may be 0.00001 picoliters or more and 50 picoliters or less.
 上記液滴吐出方法において、複数の静電型液滴吐出ノズルは、3個以上の静電型液滴吐出ノズルを含んでもよい。 In the above droplet ejection method, the multiple electrostatic droplet ejection nozzles may include three or more electrostatic droplet ejection nozzles.
 上記液滴吐出方法において、所定の条件を満たすとき、前記第1構造体および前記第2構造体が連結されて第3構造体が形成され、前記第3構造体は、前記第1方向から見たときに矩形の断面形状を有してもよい。 In the above droplet ejection method, when a predetermined condition is satisfied, the first structure and the second structure are connected to form a third structure, and the third structure may have a rectangular cross-sectional shape when viewed from the first direction.
 上記液滴吐出方法において、前記第3構造体の端部は、前記第1方向と交差する第2方向から見たときに円弧の断面形状を有してもよい。 In the above droplet ejection method, the end of the third structure may have an arc-shaped cross-sectional shape when viewed from a second direction intersecting the first direction.
 本発明の一実施形態によれば、第1方向に所定のノズル間隔に配置され液滴を吐出するための複数の静電型液滴吐出ノズル、を含むマルチノズルヘッドと、前記複数の静電型液滴吐出ノズルのうち第1静電型液滴吐出ノズルから対象物の第1液滴吐出位置に第1液滴を吐出し、前記マルチノズルヘッドを所定の走査速度で前記第1方向に走査し、前記複数の静電型液滴吐出ノズルのうち第2静電型液滴吐出ノズルから前記第1液滴吐出位置に第2液滴を吐出し、前記第1静電型液滴吐出ノズルから第2液滴吐出位置に第1液滴を吐出する制御部と、を含む、液滴吐出装置が提供される。 According to one embodiment of the present invention, there is provided a droplet ejection device including a multi-nozzle head including a plurality of electrostatic droplet ejection nozzles arranged at a predetermined nozzle interval in a first direction for ejecting droplets, and a control unit that ejects a first droplet from a first electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to a first droplet ejection position on a target object, scans the multi-nozzle head in the first direction at a predetermined scanning speed, ejects a second droplet from a second electrostatic droplet ejection nozzle of the plurality of electrostatic droplet ejection nozzles to the first droplet ejection position, and ejects the first droplet from the first electrostatic droplet ejection nozzle to the second droplet ejection position.
 上記液滴吐出装置において、前記所定のノズル間隔は、20μm以上500μm以下であってもよい。 In the droplet ejection device, the predetermined nozzle spacing may be greater than or equal to 20 μm and less than or equal to 500 μm.
 上記液滴吐出装置において、前記複数の静電型液滴吐出ノズルは、3個以上の静電型液滴吐出ノズルを含んでもよい。 In the above droplet ejection device, the plurality of electrostatic droplet ejection nozzles may include three or more electrostatic droplet ejection nozzles.
 上記液滴吐出装置において、前記制御部は、前記液滴の材料に基づいて、前記走査速度を制御してもよい。 In the droplet ejection device, the control unit may control the scanning speed based on the material of the droplets.
 本発明の一実施形態を用いることにより、静電吐出型インクジェットヘッドを用いて、新たな断面形状を有する構造体を形成することができる。 By using one embodiment of the present invention, it is possible to form structures with new cross-sectional shapes using an electrostatic ejection inkjet head.
本発明の一実施形態に係る液滴吐出装置の概略図である。1 is a schematic diagram of a droplet ejection device according to an embodiment of the present invention. マルチノズルヘッドの平面図である。FIG. 2 is a plan view of a multi-nozzle head. マルチノズルヘッドの一部を拡大した平面図である。FIG. 2 is an enlarged plan view of a portion of the multi-nozzle head. 液滴吐出ノズルを拡大した上面図である。FIG. 2 is an enlarged top view of a droplet ejection nozzle. 液滴吐出ノズルを拡大した断面図である。FIG. 2 is an enlarged cross-sectional view of a droplet ejection nozzle. 液滴を吐出する方法を説明する図である。1A to 1C are diagrams illustrating a method for discharging droplets. 吐出された液滴の模式図である。FIG. 4 is a schematic diagram of a discharged droplet. 吐出された液滴の模式図である。FIG. 4 is a schematic diagram of a discharged droplet. 液滴を吐出する方法を説明する図である。1A to 1C are diagrams illustrating a method for discharging droplets. 吐出された液滴の模式図である。FIG. 4 is a schematic diagram of a discharged droplet. 吐出された液滴の模式図である。FIG. 4 is a schematic diagram of a discharged droplet. 吐出された液滴の模式図である。FIG. 4 is a schematic diagram of a discharged droplet. 本発明の一実施形態における構造体の模式図である。FIG. 2 is a schematic diagram of a structure according to one embodiment of the present invention. 本発明の一実施形態における構造体の模式図である。FIG. 2 is a schematic diagram of a structure according to one embodiment of the present invention. マルチノズルヘッドの平面図である。FIG. 2 is a plan view of a multi-nozzle head. 本発明の一実施形態に係る液滴吐出装置の制御部の機能ブロック図である。3 is a functional block diagram of a control unit of the droplet ejection device according to the embodiment of the present invention. FIG. データセットの一例である。1 is an example of a dataset. 本発明の一実施形態に係る液滴吐出方法のフロー図である。FIG. 2 is a flow diagram of a droplet ejection method according to an embodiment of the present invention. 本実施例におけるマルチノズルヘッドの写真である。3 is a photograph of a multi-nozzle head in this embodiment. 本実施例において装着部に装着されたマルチノズルヘッドの写真である。4 is a photograph of a multi-nozzle head attached to a mounting portion in this embodiment. 本実施例において形成された構造体の平面写真である。1 is a plan view of a structure formed in this example. 本実施例において形成された構造体の断面プロファイル画像である。1 is a cross-sectional profile image of a structure formed in this example. 本発明の一実施形態における構造体の模式図である。FIG. 2 is a schematic diagram of a structure according to one embodiment of the present invention.
 以下、本出願で開示される発明の各実施形態について、図面を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な形態で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Each embodiment of the invention disclosed in this application will be described below with reference to the drawings. However, the present invention can be embodied in various forms without departing from the spirit of the invention, and should not be interpreted as being limited to the description of the embodiments exemplified below.
 なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、B等を付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。 In the drawings referred to in this embodiment, identical parts or parts having similar functions are given the same or similar symbols (symbols consisting of only a number followed by A, B, etc.), and repeated explanations may be omitted. Also, for the sake of explanation, the dimensional ratios in the drawings may differ from the actual ratios, and some components may be omitted from the drawings.
 さらに、本発明の詳細な説明において、ある構成物と他の構成物の傾き関係を規定する際、「上に」「下に」とは、ある構成物の直上あるいは直下に傾きする場合のみでなく、特に断りの無い限りは、間にさらに他の構成物を介在する場合を含むものとする。 Furthermore, in the detailed description of the present invention, when defining the inclination relationship between a certain component and another component, "above" and "below" do not only mean a component that is inclined directly above or below the other component, but also include a case where there is another component between them, unless otherwise specified.
<第1実施形態>
(1-1.液滴吐出装置100の構成)
 図1は、本発明の一実施形態に係る液滴吐出装置100の概略図である。
First Embodiment
(1-1. Configuration of Droplet Discharge Device 100)
FIG. 1 is a schematic diagram of a droplet ejection device 100 according to one embodiment of the present invention.
 液滴吐出装置100は、制御部110、記憶部120、電源部125、駆動部130、装着部140、インク供給部145、マルチノズルヘッド150、表示部170、操作部180、調整部190、対象物保持部200、および筐体210を含む。制御部110、記憶部120、電源部125、駆動部130、装着部140、インク供給部145、マルチノズルヘッド150、表示部170、操作部180、調整部190、および対象物保持部200は、配線バスにより電気的に接続されるとともに、筐体210の内側に設けられる。なお、本実施形態において、表示部170、操作部180、および調整部190は、必ずしも設けられなくてもよい。 The droplet ejection device 100 includes a control unit 110, a memory unit 120, a power supply unit 125, a drive unit 130, a mounting unit 140, an ink supply unit 145, a multi-nozzle head 150, a display unit 170, an operation unit 180, an adjustment unit 190, an object holding unit 200, and a housing 210. The control unit 110, the memory unit 120, the power supply unit 125, the drive unit 130, the mounting unit 140, the ink supply unit 145, the multi-nozzle head 150, the display unit 170, the operation unit 180, the adjustment unit 190, and the object holding unit 200 are electrically connected by a wiring bus and are provided inside the housing 210. Note that in this embodiment, the display unit 170, the operation unit 180, and the adjustment unit 190 do not necessarily have to be provided.
 制御部110は、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはその他の演算処理回路を含む。制御部110は、あらかじめ設定された液滴吐出用プログラムを用いて、マルチノズルヘッド150による液滴吐出処理を制御する。 The control unit 110 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or other arithmetic processing circuit. The control unit 110 uses a preset droplet ejection program to control the droplet ejection process by the multi-nozzle head 150.
 記憶部120は、液滴吐出用プログラム、および液滴吐出用プログラムで用いられる各種情報を記憶するデータベースとしての機能を有する。記憶部120には、メモリ、SSD、または記憶可能な素子が用いられる。 The storage unit 120 functions as a database that stores the droplet ejection program and various information used in the droplet ejection program. The storage unit 120 is made of a memory, an SSD, or a memory-capable element.
 電源部125は、制御部110から入力される信号をもとに、マルチノズルヘッド150に電圧を印加する。この例では、電源部125は、マルチノズルヘッド150に対してパルス状の電圧(この例では、1000V)を印加する。なお、パルス電圧に限定されず、一定の電圧が常時印加されてもよい。 The power supply unit 125 applies a voltage to the multi-nozzle head 150 based on a signal input from the control unit 110. In this example, the power supply unit 125 applies a pulsed voltage (1000V in this example) to the multi-nozzle head 150. Note that the voltage is not limited to a pulsed voltage, and a constant voltage may be applied all the time.
 駆動部130は、モータ、ベルト、ギアなどの駆動部材により構成される。駆動部130は、制御部110からの指示に基づき、対象物220に対してマルチノズルヘッド150を相対的に一つの方向(この例では、第2方向D2)に移動させる。なお、駆動部130は、対象物保持部200を移動させてもよい。 The driving unit 130 is composed of driving members such as a motor, a belt, and gears. Based on instructions from the control unit 110, the driving unit 130 moves the multi-nozzle head 150 in one direction (in this example, the second direction D2) relative to the object 220. The driving unit 130 may also move the object holding unit 200.
 装着部140は、マルチノズルヘッド150を装着する。この例では、装着部140は、マルチノズルヘッド150のプレート部と接着することにより、マルチノズルヘッド150を装着する。このとき、装着部140は、治具および接着剤などを用いてマルチノズルヘッド150を装着してもよい。 The mounting unit 140 mounts the multi-nozzle head 150. In this example, the mounting unit 140 mounts the multi-nozzle head 150 by adhering to the plate portion of the multi-nozzle head 150. At this time, the mounting unit 140 may mount the multi-nozzle head 150 using a jig, adhesive, or the like.
 インク供給部145(インクタンクまたはインクカートリッジともいう)は、装着部140から離れて設けられる。インク供給部145は、インクを貯蔵する。インク供給部145は、貯蔵されたインクをマルチノズルヘッド150にインクを供給する。インクには、溶媒と溶質ないし顔料からなるインクが用いられることが望ましく、さらに好ましくは、溶質ないし顔料成分が、無機物質ないし、金属をベースとするもので、より好ましくは、金属超微粒子インクが用いられることが望ましい。 The ink supply unit 145 (also called an ink tank or ink cartridge) is provided away from the mounting unit 140. The ink supply unit 145 stores ink. The ink supply unit 145 supplies the stored ink to the multi-nozzle head 150. It is preferable to use ink made of a solvent and a solute or pigment, and more preferably, the solute or pigment component is based on an inorganic substance or metal, and even more preferably, it is preferable to use ultrafine metal particle ink.
 マルチノズルヘッド150は、インク供給部145から離れて設けられる。マルチノズルヘッド150の構成については後述する。 The multi-nozzle head 150 is provided away from the ink supply unit 145. The configuration of the multi-nozzle head 150 will be described later.
 表示部170は、制御部110の制御に基づいて、制御情報(文字情報または画像情報)を表示する。このとき、表示部170は、GUI(Graphical User Interface)を介して制御情報を表示してもよい。また、表示部170は、マルチノズルヘッド150の情報を表示してもよい。 The display unit 170 displays control information (text information or image information) based on the control of the control unit 110. At this time, the display unit 170 may display the control information via a GUI (Graphical User Interface). The display unit 170 may also display information about the multi-nozzle head 150.
 操作部180は、操作可能な部材を含む。例えば、操作部180には、ボタン、レバーおよびテンキーなどが用いられる。操作部180を用いて上下左右への移動、押圧、または回転などの動作、または数値の入力がなされることにより、その動作に基づく情報が制御部110に取得される。なお、表示部170が操作部180の機能を有する場合には、表示部170はタッチパネルとして用いられてもよい。 The operation unit 180 includes operable members. For example, the operation unit 180 includes buttons, levers, and a numeric keypad. The operation unit 180 is used to perform operations such as moving up, down, left, right, pressing, or rotating, or to input numerical values, and information based on the operations is acquired by the control unit 110. Note that if the display unit 170 has the functions of the operation unit 180, the display unit 170 may be used as a touch panel.
 調整部190は、マルチノズルヘッド150の位置および傾きを調整してもよい。具体的には、調整部190は、マルチノズルヘッド150の液滴吐出ノズル153の先端部153aの傾き、マルチノズルヘッドの向きを調整することができる。調整部190には、θステージ、ゴニオステージが用いられてもよい。 The adjustment unit 190 may adjust the position and inclination of the multi-nozzle head 150. Specifically, the adjustment unit 190 can adjust the inclination of the tip 153a of the droplet ejection nozzle 153 of the multi-nozzle head 150 and the orientation of the multi-nozzle head. The adjustment unit 190 may use a θ stage or a goniostage.
 対象物保持部200は、対象物220を保持する機能を有する。対象物保持部200は、この例ではステージが用いられる。対象物保持部200が対象物220を保持する機構は特に制限されず、一般的な保持機構が用いられる。この例では、対象物220は、対象物保持部200に真空吸着している。なお、これに限定されず、対象物保持部200は固定具を用いて対象物220を保持してもよい。 The object holding unit 200 has the function of holding the object 220. In this example, a stage is used as the object holding unit 200. There are no particular limitations on the mechanism by which the object holding unit 200 holds the object 220, and a general holding mechanism is used. In this example, the object 220 is vacuum-adsorbed to the object holding unit 200. However, this is not limited to this, and the object holding unit 200 may hold the object 220 using a fixture.
(1-2.マルチノズルヘッド150の構成)
 以下に、マルチノズルヘッドの構成について詳細に説明する。図2Aは、マルチノズルヘッド150の平面図である。図2Bは、マルチノズルヘッドの一部を拡大した平面図である。図3Aは、液滴吐出ノズルを拡大した上面図である。図3Bは、液滴吐出ノズルを拡大した断面図である。
(1-2. Configuration of multi-nozzle head 150)
The configuration of the multi-nozzle head will be described in detail below. Fig. 2A is a plan view of the multi-nozzle head 150. Fig. 2B is an enlarged plan view of a portion of the multi-nozzle head. Fig. 3A is an enlarged top view of the droplet ejection nozzle. Fig. 3B is an enlarged cross-sectional view of the droplet ejection nozzle.
 図2Aおよび図2Bに示すように、マルチノズルヘッド150は、プレート部151および複数の液滴吐出ノズル153(静電型液滴吐出ノズルともいう)を含む。 As shown in Figures 2A and 2B, the multi-nozzle head 150 includes a plate portion 151 and multiple droplet ejection nozzles 153 (also called electrostatic droplet ejection nozzles).
 プレート部151は、板状に設けられる。プレート部151は、第1方向D1に延びる。プレート部151には、ステンレスなどの金属材料が用いられる。 The plate portion 151 is formed in a plate shape. The plate portion 151 extends in the first direction D1. The plate portion 151 is made of a metal material such as stainless steel.
 液滴吐出ノズル153は、プレート部151の一面に設けられる。液滴吐出ノズル153は、第1方向D1に並んで配置される。本実施形態では、液滴吐出ノズル153-1、153-2、・・・、153-(N-1)、153-Nがプレート部151に設けられる。Nは、3以上の自然数である。この例では、マルチノズルヘッド150は、10個の液滴吐出ノズル153を含む。なお、液滴吐出ノズル153-1(第1静電型液滴吐出ノズルともいう)、153-2(第2静電型液滴吐出ノズルともいう)、・・・、153-(N-1)、153-Nを分けて説明する必要がない場合には、液滴吐出ノズル153として説明する。液滴吐出ノズル153には、ニッケルなどの金属材料が用いられる。図3Aおよび図3Bに示すように、液滴吐出ノズル153は、先細る形状を有する。 The droplet discharge nozzles 153 are provided on one surface of the plate portion 151. The droplet discharge nozzles 153 are arranged in a line in the first direction D1. In this embodiment, the droplet discharge nozzles 153-1, 153-2, ..., 153-(N-1), and 153-N are provided on the plate portion 151. N is a natural number equal to or greater than 3. In this example, the multi-nozzle head 150 includes 10 droplet discharge nozzles 153. Note that when it is not necessary to separately describe the droplet discharge nozzles 153-1 (also referred to as the first electrostatic droplet discharge nozzle), 153-2 (also referred to as the second electrostatic droplet discharge nozzle), ..., 153-(N-1), and 153-N, they will be described as the droplet discharge nozzles 153. A metallic material such as nickel is used for the droplet discharge nozzles 153. As shown in Figures 3A and 3B, the droplet discharge nozzles 153 have a tapered shape.
 プレート部151は、液滴吐出ノズル153と対応する部分(重畳する部分)に液滴吐出ノズル153の吐出口(液滴吐出ノズル153の先端部153aの開孔部153ao)の内径r153aよりも大きい内径r151oを有する貫通孔151oを有する。プレート部151の貫通孔151oの内径は、1μm以上100μm以下であってもよい。液滴吐出ノズル153の先端部153aの内径は、数百nm以上50μm以下、好ましくは1μm以上15μm以下、より好ましくは5μm以上12μm以下であってもよい。本実施形態において、液滴吐出ノズル153に電圧を印加してもよいし、プレート部151(またはインク供給部145)に電圧を印加してもよいし、インクに電圧を印加してもよい。プレート部151および液滴吐出ノズル153に電圧を印加する場合、電極が設けられてもよい。電極には、タングステン、ニッケル、モリブデン、チタン、金、銀、銅、白金などが設けられてもよい。このとき、プレート部151の全体に均一に電圧が印加されるように、複数の電極が設けられてもよい。また、本実施形態では、液滴吐出ノズル153、プレート部151またはインクに対して電圧を印加する例を示したが、マルチノズルヘッド150を保持する治具に電圧が印加されてよい。 The plate portion 151 has a through hole 151o having an inner diameter r151o larger than the inner diameter r153a of the discharge port (opening portion 153ao of the tip portion 153a of the droplet discharge nozzle 153) of the droplet discharge nozzle 153 in a portion corresponding to the droplet discharge nozzle 153 (overlapping portion). The inner diameter of the through hole 151o of the plate portion 151 may be 1 μm or more and 100 μm or less. The inner diameter of the tip portion 153a of the droplet discharge nozzle 153 may be several hundred nm or more and 50 μm or less, preferably 1 μm or more and 15 μm or less, and more preferably 5 μm or more and 12 μm or less. In this embodiment, a voltage may be applied to the droplet discharge nozzle 153, a voltage may be applied to the plate portion 151 (or the ink supply portion 145), or a voltage may be applied to the ink. When a voltage is applied to the plate portion 151 and the droplet discharge nozzle 153, an electrode may be provided. The electrodes may be made of tungsten, nickel, molybdenum, titanium, gold, silver, copper, platinum, or the like. In this case, multiple electrodes may be provided so that a voltage is applied uniformly to the entire plate portion 151. In addition, although an example in which a voltage is applied to the droplet ejection nozzle 153, the plate portion 151, or the ink has been shown in this embodiment, a voltage may be applied to a jig that holds the multi-nozzle head 150.
 ここで、図2Bに示すように、隣接する液滴吐出ノズル153は、所定の間隔(ノズル間の距離S1)を有する。形成する構造体の形状を制御する観点から、隣接するノズル間距離S1は、20μm以上500μm以下であることが望ましい。この例では、各液滴吐出ノズル153間の距離S1は、200μmである。 As shown in FIG. 2B, adjacent droplet ejection nozzles 153 have a predetermined interval (distance S1 between nozzles). From the viewpoint of controlling the shape of the structure to be formed, it is desirable that the distance S1 between adjacent nozzles is 20 μm or more and 500 μm or less. In this example, the distance S1 between each droplet ejection nozzle 153 is 200 μm.
 本実施形態では、吐出された液滴の大きさと、隣接するノズル間距離に基づいて構造体の形状を制御することができる。 In this embodiment, the shape of the structure can be controlled based on the size of the ejected droplets and the distance between adjacent nozzles.
(1-3.液滴吐出方法)
 以下に、本実施形態における液滴吐出方法を説明する。図4乃至図9は、液滴吐出装置における液滴吐出方法の模式図である。
(1-3. Droplet Discharge Method)
A droplet ejection method according to this embodiment will be described below. Figures 4 to 9 are schematic diagrams showing the droplet ejection method in the droplet ejection device.
 まず、上述したマルチノズルヘッド150を用いて、液滴吐出ノズル153が配列された第1方向D1にマルチノズルヘッド150を走査する。マルチノズルヘッド150の走査速度は、液滴の乾燥速度の観点から0.00001m/sec以上1m/sec以下であることが望ましい。 First, the multi-nozzle head 150 described above is used to scan the multi-nozzle head 150 in the first direction D1 in which the droplet ejection nozzles 153 are arranged. From the viewpoint of the drying speed of the droplets, it is desirable that the scanning speed of the multi-nozzle head 150 is 0.00001 m/sec or more and 1 m/sec or less.
 次に、図4に示すように、複数の液滴吐出ノズル153のうち第1液滴吐出ノズル153-1から第1液滴吐出位置P1にインク供給部145より供給されたインクを用いて第1液滴157-1を吐出する。液滴の吐出量は、液滴の乾燥の観点から0.00001ピコリットル以上50ピコリットル以下であることが望ましい。このとき、図5に示すように、第1液滴157-1が乾燥する過程で第1液滴157-1の中央部に比べて端部にインク中の粒子が多く残存する(例えば、コーヒーリング現象)。これにより、図6に示すように第1液滴157-1の端部が盛り上がった構造体が形成される。 Next, as shown in FIG. 4, a first droplet 157-1 is ejected from the first droplet ejection nozzle 153-1 of the multiple droplet ejection nozzles 153 to the first droplet ejection position P1 using ink supplied by the ink supply unit 145. From the viewpoint of drying the droplets, it is desirable that the amount of droplet ejection is 0.00001 picoliters or more and 50 picoliters or less. At this time, as shown in FIG. 5, more particles in the ink remain at the ends of the first droplet 157-1 compared to the center portion during the drying process of the first droplet 157-1 (for example, the coffee ring phenomenon). This forms a structure in which the ends of the first droplet 157-1 are raised, as shown in FIG. 6.
 続いて、図7に示すように、マルチノズルヘッド150が第1方向D1へ走査されるのに合わせて、第2液滴吐出ノズル153-2が第1液滴吐出位置P1上に移動する。このとき、図8に示すように、第1液滴吐出位置P1に対して第2液滴吐出ノズル153-2から2滴目の第2液滴157-2が吐出される。第2液滴157-2においても同様に、第2液滴157-2端部が盛り上がった構造体が形成されつつ、図9に示すように第1液滴157-1によって形成された中央部の溝部分にインクの粒子が溜まる状態となる(第1構造体158-1が形成される。) Subsequently, as shown in FIG. 7, the second droplet discharge nozzle 153-2 moves to the first droplet discharge position P1 in accordance with the scanning of the multi-nozzle head 150 in the first direction D1. At this time, as shown in FIG. 8, the second droplet 157-2 is discharged from the second droplet discharge nozzle 153-2 to the first droplet discharge position P1. Similarly, for the second droplet 157-2, a structure is formed in which the end of the second droplet 157-2 is raised, and ink particles accumulate in the central groove formed by the first droplet 157-1 as shown in FIG. 9 (the first structure 158-1 is formed).
 また、第1液滴吐出位置P1に第2液滴吐出ノズル153-2が第2液滴を吐出するとき、第1液滴吐出位置P1を基準としてマルチノズルヘッド150が移動する方向(第1方向D1)に設けられた第2液滴吐出位置P2において、図10に示すように、第1液滴吐出ノズル153-1からインク供給部145より供給されたインクを用いて1滴目の第1液滴157-1が吐出される。このとき、第1液滴吐出位置P1に形成される構造体(第158-1)と、第2液滴吐出位置P2に形成される構造体(第2構造体158-2)とは、吐出された液滴の数に応じて形状が異なる。第1構造体158-1および第2構造体158-2は液滴の吐出の回数が多いほど矩形(台形)に近づいていく。所定の回数を超えたとき、第1構造体158-1の形状と、第2構造体158-2の形状は同じになってもよい。 When the second droplet ejection nozzle 153-2 ejects the second droplet at the first droplet ejection position P1, the first droplet 157-1 is ejected from the first droplet ejection nozzle 153-1 using ink supplied from the ink supply unit 145 at the second droplet ejection position P2, which is provided in the direction in which the multi-nozzle head 150 moves (first direction D1) with respect to the first droplet ejection position P1, as shown in FIG. 10. At this time, the structure (158-1) formed at the first droplet ejection position P1 and the structure (2nd structure 158-2) formed at the second droplet ejection position P2 have different shapes depending on the number of ejected droplets. The first structure 158-1 and the second structure 158-2 approach a rectangle (trapezoid) as the number of droplet ejections increases. When a predetermined number of times is exceeded, the shape of the first structure 158-1 and the shape of the second structure 158-2 may become the same.
 また、第1構造体158-1及び第2構造体158-2は、所定の条件を満たすときに連結される。具体的には、第1液滴吐出位置P1と第2液滴吐出位置P2との距離が所定の距離以下である時に、第1構造体158-1及び第2構造体158-2は連結される(第3構造体が形成される)。第2液滴吐出位置P2以降の液滴吐出位置も同様である。 Furthermore, the first structure 158-1 and the second structure 158-2 are connected when a predetermined condition is satisfied. Specifically, when the distance between the first droplet discharge position P1 and the second droplet discharge position P2 is equal to or less than a predetermined distance, the first structure 158-1 and the second structure 158-2 are connected (a third structure is formed). The same applies to the droplet discharge positions after the second droplet discharge position P2.
 第2液滴吐出ノズル153-2よりも第1方向D1の反対方向に設けられた第3液滴吐出ノズル153-3以降の液滴吐出ノズル153も第1液滴吐出位置P1および第2液滴吐出位置P2に順次液滴を吐出する。第1方向D1に設けられた、第2液滴吐出位置P2以降の液滴吐出位置も同様である。 The third droplet ejection nozzle 153-3 and subsequent droplet ejection nozzles 153, which are arranged in the opposite direction of the first direction D1 from the second droplet ejection nozzle 153-2, also eject droplets sequentially to the first droplet ejection position P1 and the second droplet ejection position P2. The same applies to the droplet ejection positions after the second droplet ejection position P2, which are arranged in the first direction D1.
 図11Aは、本実施形態において形成された構造体159を第1方向D1から見た時の断面模式図である。図11Bは、構造体159を第2方向D2から見た時の断面模式図である。本実施形態では、各液滴吐出位置に繰り返し液滴が吐出されることにより、側端部が反り立つような形状を有しつつ、中央部の溝が埋められる。この結果として、図11Aおよび図11Bに示すように、第1方向D1から見たときに、リソグラフィプロセスを経ずに矩形(台形)の断面形状を有する線状の構造体が形成される。 FIG. 11A is a schematic cross-sectional view of the structure 159 formed in this embodiment when viewed from a first direction D1. FIG. 11B is a schematic cross-sectional view of the structure 159 when viewed from a second direction D2. In this embodiment, droplets are repeatedly ejected at each droplet ejection position, so that the groove in the center is filled while the side edges have a curved shape. As a result, as shown in FIGS. 11A and 11B, a linear structure having a rectangular (trapezoidal) cross-sectional shape when viewed from the first direction D1 is formed without going through a lithography process.
 従来の液滴吐出方法では、静電吐出ノズルを用いる場合、一般にはシングルノズルが用いられていた。そのため、液滴吐出により形成される構造体は、円弧形状を有していた。また、ピエゾ型インクジェットノズルのように複数の液滴吐出ノズルが設けられたとしても、配列される方向に対して走査する場合、色ごとに異なる吐出位置にインク液滴が吐出されていた。 In conventional droplet ejection methods, when electrostatic ejection nozzles are used, a single nozzle is generally used. Therefore, the structure formed by droplet ejection has an arc shape. Even if multiple droplet ejection nozzles are provided, such as in a piezoelectric inkjet nozzle, ink droplets are ejected at different ejection positions for each color when scanning in the arrangement direction.
 一方、本実施形態の場合、静電吐出型のインクジェットノズルが用いられる関係上、ピエゾ型インクジェットノズルから吐出される液滴に比べて液滴のサイズが小さく、乾燥速度が速い。また、本実施形態の場合、隣接する静電吐出型の液滴吐出ノズル間の距離および走査速度が制御されている。さらに、同じ液滴吐出位置に複数回液滴が吐出される。これにより、上述のような矩形の断面形状を有する線状の構造体が形成される。 In the case of this embodiment, since an electrostatic discharge type inkjet nozzle is used, the droplet size is smaller and the drying speed is faster than droplets discharged from a piezoelectric type inkjet nozzle. Also, in this embodiment, the distance between adjacent electrostatic discharge type droplet discharge nozzles and the scanning speed are controlled. Furthermore, droplets are discharged multiple times at the same droplet discharge position. This forms a linear structure having a rectangular cross-sectional shape as described above.
 したがって、本実施形態を用いることにより、静電吐出型インクジェットヘッドを用いて従来にない新たな断面形状を有する構造体を形成することができる。構造体がこのような形状を有することにより、隔壁としても用いることができ、またインクジェットにより形成される構造体を新たな用途として用いることができる。 Therefore, by using this embodiment, it is possible to form a structure having a new cross-sectional shape that has not been seen before using an electrostatic ejection inkjet head. Since the structure has such a shape, it can also be used as a partition wall, and structures formed by inkjet printing can be used for new purposes.
<第2実施形態>
 本実施形態では、第1実施形態とは異なる液滴吐出装置について説明する。具体的には、2次元に液滴吐出ノズルが配列されたマルチノズルヘッドの例について説明する。なお、説明の関係上、適宜部材を省略して説明する。
Second Embodiment
In this embodiment, a droplet ejection device different from that in the first embodiment will be described. Specifically, an example of a multi-nozzle head in which droplet ejection nozzles are arranged two-dimensionally will be described. For convenience of explanation, some members will be omitted.
 図12は、マルチノズルヘッド150Aの上面模式図である。図12に示すように、液滴吐出ノズル153は、第1方向D1に配列されるとともに、第2方向D2にも配列されてもよい。この場合、第1方向に走査しながら液滴を吐出することにより、複数の線状の構造体を形成することができる。 FIG. 12 is a schematic top view of the multi-nozzle head 150A. As shown in FIG. 12, the droplet ejection nozzles 153 are arranged in a first direction D1 and may also be arranged in a second direction D2. In this case, multiple linear structures can be formed by ejecting droplets while scanning in the first direction.
<第3実施形態>
 本実施形態では、取得された液滴の情報に基づいて、マルチノズルヘッドの走査速度を設定する例について説明する。
Third Embodiment
In this embodiment, an example will be described in which the scanning speed of the multi-nozzle head is set based on acquired droplet information.
 図13は、制御部110Bの内部構成を示す。機能ブロック図である。制御部110Bは、取得部111、設定部113、および駆動制御部115を有する。 FIG. 13 shows the internal configuration of the control unit 110B. It is a functional block diagram. The control unit 110B has an acquisition unit 111, a setting unit 113, and a drive control unit 115.
 取得部111は、操作部180を介してユーザから入力されたデータ、または記憶部120に記憶されたデータを取得する。図14は、取得部111により取得されたデータセット500の一例である。図13に示すように、データセット500は、材料名500a、材料の粘度500b、隣接ノズル間隔500c、温度500d、吐出量500eを含む。なお、データセット500は、一部のデータを含まなくてもよい。 The acquisition unit 111 acquires data input by the user via the operation unit 180 or data stored in the storage unit 120. FIG. 14 is an example of a data set 500 acquired by the acquisition unit 111. As shown in FIG. 13, the data set 500 includes a material name 500a, a material viscosity 500b, an adjacent nozzle distance 500c, a temperature 500d, and a discharge amount 500e. Note that the data set 500 may not include some of the data.
 設定部113は、取得部111において取得されたデータセット500に基づいて、マルチノズルヘッド150の走査速度を設定する。 The setting unit 113 sets the scanning speed of the multi-nozzle head 150 based on the data set 500 acquired by the acquisition unit 111.
 駆動制御部115は、設定された走査速度を用いて駆動部130を制御する。 The drive control unit 115 controls the drive unit 130 using the set scanning speed.
 図15は、液滴吐出におけるマルチノズルヘッド150の走査速度を設定するためのフローチャートである。 FIG. 15 is a flowchart for setting the scanning speed of the multi-nozzle head 150 when ejecting droplets.
 まず、制御部110は、マルチノズルヘッド150に関する情報および材料に関する情報を取得する(S110,S120)。マルチノズルヘッド150に関する情報および材料に関する情報は、操作部180を介してユーザが入力することまたは記憶部120から取得される。取得された情報は、図13に示すように入力データセットとして処理される。 First, the control unit 110 acquires information about the multi-nozzle head 150 and information about the material (S110, S120). The information about the multi-nozzle head 150 and information about the material are input by the user via the operation unit 180 or are acquired from the storage unit 120. The acquired information is processed as an input data set as shown in FIG. 13.
 次に、制御部110は、取得されたマルチノズルヘッド150に関する情報および材料に関する情報に基づいて、マルチノズルヘッド150の走査速度を設定する(S130)。このとき、制御部110は、マルチノズルヘッド150に関する情報および材料に関する情報に対して、あらかじめ準備された走査速度のデータ群の中から選択してもよい。また、制御部110は、あらかじめ取得された教師データをもとに機械学習を行い、走査速度を設定してもよい。 Next, the control unit 110 sets the scanning speed of the multi-nozzle head 150 based on the acquired information about the multi-nozzle head 150 and information about the material (S130). At this time, the control unit 110 may select from a group of previously prepared scanning speed data for the information about the multi-nozzle head 150 and the information about the material. The control unit 110 may also perform machine learning based on previously acquired teacher data to set the scanning speed.
 制御部110は、設定された走査速度情報を駆動部130に出力し、駆動部130を駆動させる(S140)。 The control unit 110 outputs the set scanning speed information to the driving unit 130 and drives the driving unit 130 (S140).
 本実施形態を用いることにより、ユーザは、材料の情報を入力することにより、矩形の断面形状を有する構造体を形成するための最適なマルチノズルヘッドの走査速度を設定することができる。 By using this embodiment, the user can input material information to set the optimal multi-nozzle head scanning speed for forming a structure with a rectangular cross-sectional shape.
 なお、本実施形態では、吐出量が入力される例を示したが、本発明はこれに限定されない。制御部110は、マルチノズルヘッド150の走査速度とともに液滴の吐出量を設定してもよい。 In the present embodiment, an example has been shown in which the ejection amount is input, but the present invention is not limited to this. The control unit 110 may set the ejection amount of droplets along with the scanning speed of the multi-nozzle head 150.
 以下に、液滴吐出方法の実施例について説明する。 Below, an example of the droplet ejection method is described.
 図16は、一例のマルチノズルヘッドの写真である。図17は、マルチノズルヘッドが装着部に装着された写真である。また、本実施例において構造体を形成するために用いられたマルチノズルヘッドには、5列×20本(100本)の液滴吐出ノズルが設けられている。この場合、1つの線が5本のノズルによって描画される。 Figure 16 is a photograph of an example multi-nozzle head. Figure 17 is a photograph of the multi-nozzle head attached to the attachment section. The multi-nozzle head used to form the structure in this example is provided with 5 rows x 20 (100) droplet ejection nozzles. In this case, one line is drawn by five nozzles.
 図18は、本実施例において形成された構造体の平面写真である。図19は、本実施例において形成された構造体の断面プロファイル画像である。図19において、構造体のパターン線幅は、36.485μmである。また、図19に示すように、構造体は、矩形の断面形状を有することが確認された。 Figure 18 is a plan view of the structure formed in this example. Figure 19 is a cross-sectional profile image of the structure formed in this example. In Figure 19, the pattern line width of the structure is 36.485 μm. As shown in Figure 19, it was confirmed that the structure had a rectangular cross-sectional shape.
 以上より、本発明の一実施形態を用いることにより、矩形の断面形状を有する線状の構造体を形成することができる。 As described above, by using one embodiment of the present invention, it is possible to form a linear structure having a rectangular cross-sectional shape.
(変形例)
 本発明の思想の範疇において、当業者であれば、各種の変更例および修正例に想到し得るものであり、それら変更例および修正例についても本発明の範囲に属するものと了解される。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、各実施形態の組み合わせ若しくは設計変更を行ったもの、又は、処理の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
(Modification)
Within the scope of the concept of the present invention, a person skilled in the art may conceive of various modifications and alterations, and it is understood that such modifications and alterations also fall within the scope of the present invention. For example, those in which a person skilled in the art appropriately adds or deletes components, combines or modifies the designs of the above-mentioned embodiments, or adds, omits, or modifies the conditions of processes, are included in the scope of the present invention as long as they include the gist of the present invention.
 本発明の一実施形態において、液滴吐出装置は、検査装置を備えてもよい。検査装置は、装着部140に装着されたマルチノズルヘッド150の傾きを検査する。検査装置は、マルチノズルヘッド150における隣接する液滴吐出ノズル153の先端部153aの傾きおよびパターンの形状を検査することができる。この例では、検査装置には、撮像装置又は段差計が用いられる。具体的には、撮像装置として、CCD(Charge Coupled Device)方式のカメラまたはCMOS(Complementary Metal Oxide Semiconductor)方式のカメラが用いられてもよい。検査装置で取得された情報は、制御部110および記憶部120に送られ、走査速度を制御してもよい。または、パターンの形状に応じて、隣接する液滴吐出ノズル153と間の傾き(第1方向、第2方向、第3方向)を調整してもよい。 In one embodiment of the present invention, the droplet ejection device may include an inspection device. The inspection device inspects the inclination of the multi-nozzle head 150 mounted on the mounting unit 140. The inspection device can inspect the inclination of the tip 153a of the adjacent droplet ejection nozzle 153 in the multi-nozzle head 150 and the shape of the pattern. In this example, an imaging device or a step gauge is used for the inspection device. Specifically, a CCD (Charge Coupled Device) type camera or a CMOS (Complementary Metal Oxide Semiconductor) type camera may be used as the imaging device. Information acquired by the inspection device may be sent to the control unit 110 and the memory unit 120 to control the scanning speed. Alternatively, the inclination between the adjacent droplet ejection nozzles 153 (first direction, second direction, third direction) may be adjusted according to the shape of the pattern.
 本発明の第1実施形態の液滴吐出方法で形成された構造体は、第1方向D1および第2方向D2から見たときに矩形の断面形状を有する例を示したが、本発明はこれに限定されない。図20は、構造体159Cの模式図である。構造体159Cは、第1方向D1から見た時に矩形の断面形状を有するが、図20に示すように、第2方向D2から見たときに構造体159Cの端部は、液滴の吐出回数によっては、構造体159Cの中央に比べて液滴の吐出回数が少ない場合、円弧の断面形状を有してもよい。 The structure formed by the droplet ejection method of the first embodiment of the present invention has a rectangular cross-sectional shape when viewed from the first direction D1 and the second direction D2, but the present invention is not limited to this. FIG. 20 is a schematic diagram of structure 159C. Structure 159C has a rectangular cross-sectional shape when viewed from the first direction D1, but as shown in FIG. 20, the ends of structure 159C may have an arc cross-sectional shape when viewed from the second direction D2, depending on the number of droplets ejected, if the number of droplets ejected is less than the center of structure 159C.
100・・・液滴吐出装置,110・・・制御部,111・・・取得部,113・・・設定部,115・・・駆動制御部,120・・・記憶部,125・・・電源部,130・・・駆動部,140・・・装着部,145・・・インク供給部,150・・・マルチノズルヘッド,151・・・プレート部,151o・・・貫通孔,153・・・液滴吐出ノズル,153a・・・先端部,153ao・・・開孔部,157-1・・・第1液滴,157-2・・・第2液滴,158-1・・・第1構造体,158-2・・・第2構造体,159・・・構造体,160・・・検査装置,170・・・表示部,180・・・操作部,190・・・調整部,200・・・対象物保持部,210・・・筐体,220・・・対象物,500・・・データセット,500a・・・材料名,500b・・・粘度,500c・・・隣接ノズル間隔,500d・・・温度,500e・・・吐出量
 
100: droplet ejection device, 110: control unit, 111: acquisition unit, 113: setting unit, 115: drive control unit, 120: storage unit, 125: power supply unit, 130: drive unit, 140: mounting unit, 145: ink supply unit, 150: multi-nozzle head, 151: plate unit, 151o: through hole, 153: droplet ejection nozzle, 153a: tip portion, 153ao: opening portion, 157-1: first liquid droplet, 157-2... second droplet, 158-1... first structure, 158-2... second structure, 159... structure, 160... inspection device, 170... display unit, 180... operation unit, 190... adjustment unit, 200... object holder, 210... housing, 220... object, 500... data set, 500a... material name, 500b... viscosity, 500c... adjacent nozzle spacing, 500d... temperature, 500e... discharge amount

Claims (12)

  1.  第1方向に所定のノズル間隔で配置され液滴を吐出する複数の静電型液滴吐出ノズル、を含むマルチノズルヘッドを用いることと、
     前記複数の静電型液滴吐出ノズルのうち第1静電型液滴吐出ノズルから対象物の第1液滴吐出位置に第1液滴を吐出することと、
     前記マルチノズルヘッドを所定の走査速度で前記第1方向に走査することと、
     前記複数の静電型液滴吐出ノズルのうち第2静電型液滴吐出ノズルから前記第1液滴吐出位置に第2液滴を吐出することと、
     前記第1静電型液滴吐出ノズルから第2液滴吐出位置に第1液滴を吐出することと、を含み、
     前記第1液滴吐出位置において前記第1液滴および前記第2液滴により形成された第1構造体の形状と、前記第2液滴吐出位置において前記第1液滴により形成された第2構造体の形状とは異なる、
    液滴吐出方法。
    using a multi-nozzle head including a plurality of electrostatic droplet ejection nozzles arranged at a predetermined nozzle interval in a first direction and ejecting droplets;
    Discharging a first droplet from a first electrostatic droplet discharging nozzle among the plurality of electrostatic droplet discharging nozzles to a first droplet discharging position on a target object;
    scanning the multi-nozzle head in the first direction at a predetermined scanning speed;
    Discharging a second droplet from a second electrostatic droplet discharging nozzle of the plurality of electrostatic droplet discharging nozzles onto the first droplet discharging position;
    ejecting a first droplet from the first electrostatic droplet ejection nozzle to a second droplet ejection position;
    a shape of a first structure formed by the first droplet and the second droplet at the first droplet ejection position is different from a shape of a second structure formed by the first droplet at the second droplet ejection position;
    A droplet ejection method.
  2.  前記所定のノズル間隔は、20μm以上500μm以下である、
     請求項1に記載の液滴吐出方法。
    The predetermined nozzle interval is 20 μm or more and 500 μm or less.
    The droplet ejection method according to claim 1 .
  3.  前記所定の走査速度は、0.00001メートル毎秒以上1メートル毎秒以下である、
     請求項1に記載の液滴吐出方法。
    The predetermined scanning speed is greater than or equal to 0.00001 meters per second and less than or equal to 1 meter per second.
    The droplet ejection method according to claim 1 .
  4.  前記液滴のうち溶媒の粘度は、0.1cps以上100000cps以下である、
     請求項1に記載の液滴吐出方法。
    The viscosity of the solvent in the droplets is 0.1 cps or more and 100,000 cps or less.
    The droplet ejection method according to claim 1 .
  5.  前記静電型液滴吐出ノズルからの1回あたりの吐出量は、0.00001ピコリットル以上50ピコリットル以下である、
     請求項1に記載の液滴吐出方法。
    The amount of liquid discharged from the electrostatic droplet discharge nozzle per discharge is 0.00001 picoliters or more and 50 picoliters or less.
    The droplet ejection method according to claim 1 .
  6.  前記複数の静電型液滴吐出ノズルは、3個以上の静電型液滴吐出ノズルを含む、
     請求項1に記載の液滴吐出方法。
    The plurality of electrostatic droplet ejection nozzles include three or more electrostatic droplet ejection nozzles.
    The droplet ejection method according to claim 1 .
  7.  所定の条件を満たすとき、前記第1構造体および前記第2構造体が連結されて第3構造体が形成され、前記第3構造体は、前記第1方向から見たときに矩形の断面形状を有する、
     請求項1乃至6のいずれか一項に記載の液滴吐出方法。
    when a predetermined condition is satisfied, the first structure and the second structure are connected to form a third structure, and the third structure has a rectangular cross-sectional shape when viewed from the first direction.
    The droplet ejection method according to claim 1 .
  8.  前記第3構造体の端部は、前記第1方向と交差する第2方向から見たときに円弧の断面形状を有する、
     請求項7に記載の液滴吐出方法。
    an end portion of the third structure has a cross-sectional shape of a circular arc when viewed from a second direction intersecting the first direction;
    The droplet ejection method according to claim 7.
  9.  第1方向に所定のノズル間隔に配置され液滴を吐出するための複数の静電型液滴吐出ノズル、を含むマルチノズルヘッドと、
     前記複数の静電型液滴吐出ノズルのうち第1静電型液滴吐出ノズルから対象物の第1液滴吐出位置に第1液滴を吐出し、
     前記マルチノズルヘッドを所定の走査速度で前記第1方向に走査し、
     前記複数の静電型液滴吐出ノズルのうち第2静電型液滴吐出ノズルから前記第1液滴吐出位置に第2液滴を吐出し、
     前記第1静電型液滴吐出ノズルから第2液滴吐出位置に第1液滴を吐出する制御部と、を含む、
     液滴吐出装置。
    a multi-nozzle head including a plurality of electrostatic droplet ejection nozzles arranged at a predetermined nozzle interval in a first direction for ejecting droplets;
    Discharging a first droplet from a first electrostatic droplet discharge nozzle among the plurality of electrostatic droplet discharge nozzles to a first droplet discharge position on a target object;
    scanning the multi-nozzle head in the first direction at a predetermined scanning speed;
    A second droplet is discharged from a second electrostatic droplet discharge nozzle of the plurality of electrostatic droplet discharge nozzles to the first droplet discharge position;
    a control unit that discharges a first droplet from the first electrostatic droplet discharge nozzle to a second droplet discharge position,
    Droplet ejection device.
  10.  前記所定のノズル間隔は、20μm以上500μm以下である、
     請求項9に記載の液滴吐出装置。
    The predetermined nozzle interval is 20 μm or more and 500 μm or less.
    The droplet ejection device according to claim 9 .
  11.  前記複数の静電型液滴吐出ノズルは、3個以上の静電型液滴吐出ノズルを含む、
     請求項10に記載の液滴吐出装置。
    The plurality of electrostatic droplet ejection nozzles include three or more electrostatic droplet ejection nozzles.
    The droplet ejection device according to claim 10.
  12.  前記制御部は、前記液滴の材料に基づいて、前記走査速度を制御する、
     請求項9乃至11のいずれか一項に記載の液滴吐出装置。
     
    The control unit controls the scanning speed based on a material of the droplets.
    The droplet ejection device according to claim 9 .
PCT/JP2023/034698 2022-10-11 2023-09-25 Liquid drop ejection method and liquid drop ejection device WO2024080118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163524A JP2024056547A (en) 2022-10-11 2022-10-11 Droplet ejection method and droplet ejection device
JP2022-163524 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080118A1 true WO2024080118A1 (en) 2024-04-18

Family

ID=90669071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034698 WO2024080118A1 (en) 2022-10-11 2023-09-25 Liquid drop ejection method and liquid drop ejection device

Country Status (2)

Country Link
JP (1) JP2024056547A (en)
WO (1) WO2024080118A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849271A (en) * 1981-09-17 1983-03-23 Fuji Photo Film Co Ltd Ink jet printer
JP2002211011A (en) * 2001-01-17 2002-07-31 Ricoh Co Ltd Ink jet recorder and printer driver
JP2003182071A (en) * 2001-12-17 2003-07-03 Seiko Epson Corp Ink jet head and its manufacturing method, ink jet recorder and its manufacturing method, system and method for manufacturing color filter, and system and method for manufacturing electroluminescent substrate
JP2005305962A (en) * 2004-04-26 2005-11-04 Fuji Photo Film Co Ltd Inkjet recording method
JP2006253482A (en) * 2005-03-11 2006-09-21 Konica Minolta Holdings Inc Substrate for electrostatic suction ink jet, forming method of pattern and substrate with pattern
WO2020217755A1 (en) * 2019-04-25 2020-10-29 株式会社Sijテクノロジ Droplet delivery device and droplet delivery method
WO2021065435A1 (en) * 2019-10-02 2021-04-08 株式会社Sijテクノロジ Droplet discharging device and droplet discharging method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849271A (en) * 1981-09-17 1983-03-23 Fuji Photo Film Co Ltd Ink jet printer
JP2002211011A (en) * 2001-01-17 2002-07-31 Ricoh Co Ltd Ink jet recorder and printer driver
JP2003182071A (en) * 2001-12-17 2003-07-03 Seiko Epson Corp Ink jet head and its manufacturing method, ink jet recorder and its manufacturing method, system and method for manufacturing color filter, and system and method for manufacturing electroluminescent substrate
JP2005305962A (en) * 2004-04-26 2005-11-04 Fuji Photo Film Co Ltd Inkjet recording method
JP2006253482A (en) * 2005-03-11 2006-09-21 Konica Minolta Holdings Inc Substrate for electrostatic suction ink jet, forming method of pattern and substrate with pattern
WO2020217755A1 (en) * 2019-04-25 2020-10-29 株式会社Sijテクノロジ Droplet delivery device and droplet delivery method
WO2021065435A1 (en) * 2019-10-02 2021-04-08 株式会社Sijテクノロジ Droplet discharging device and droplet discharging method

Also Published As

Publication number Publication date
JP2024056547A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP5152058B2 (en) Droplet ejection head inspection method, droplet ejection head inspection apparatus, and droplet ejection apparatus
JP4437805B2 (en) Ink ejection apparatus and ink ejection control method
JP7153343B2 (en) Droplet ejection device and droplet ejection method
CN114423614B (en) Liquid droplet ejecting apparatus and liquid droplet ejecting method
JP4314813B2 (en) Droplet discharge head and droplet discharge apparatus
TWI305862B (en) Liquid crystal dropping apparatus and method, and liquid crystal panel producing
CN102222762A (en) Piezoelectric element, method for manufacturing the same, piezoelectric actuator and liquid ejecting head
JP2004141758A (en) Method of correcting dot position of droplet discharge device, alignment mask, droplet discharge method, electro-optical device and its production method, and an electronic equipment
WO2024080118A1 (en) Liquid drop ejection method and liquid drop ejection device
TW202415555A (en) Liquid droplet ejection method and liquid droplet ejection device
KR102381833B1 (en) Droplet discharging device and droplet discharging method
WO2023181683A1 (en) Droplet discharging device and droplet discharging method
WO2024075464A1 (en) Liquid droplet ejection device, liquid droplet ejection nozzle head, and liquid droplet ejection method
JP2010169890A (en) Line drawing apparatus and method for drawing line
JP6956387B2 (en) Printing method and printing equipment
WO2022270086A1 (en) Nozzle head, manufacturing method of nozzle head, and droplet discharging device
WO2017057063A1 (en) Nozzle plate, liquid ejection head using same, and recording device
TW202415554A (en) Liquid droplet ejection device, liquid droplet ejection nozzle head and liquid droplet ejection method
TW202342287A (en) Droplet ejection device and adjustment method for multi-nozzle head
JP2006154128A (en) Color filter manufacturing device and color filter manufacturing method
JP2004356128A (en) Liquid ejection production apparatus as well as substrate and device to be produced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877124

Country of ref document: EP

Kind code of ref document: A1