WO2024080040A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024080040A1
WO2024080040A1 PCT/JP2023/032391 JP2023032391W WO2024080040A1 WO 2024080040 A1 WO2024080040 A1 WO 2024080040A1 JP 2023032391 W JP2023032391 W JP 2023032391W WO 2024080040 A1 WO2024080040 A1 WO 2024080040A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
precoder
transmission
full power
codebook
Prior art date
Application number
PCT/JP2023/032391
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024080040A1 publication Critical patent/WO2024080040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • up to four layers of uplink (UL) Multi-Input Multi-Output (MIMO) transmission are supported.
  • MIMO Multi-Input Multi-Output
  • support for UL transmission with a number of layers greater than four is being considered to achieve higher spectral efficiency.
  • maximum 6-rank transmission using 6 antenna ports, maximum 6- or 8-rank transmission using 8 antenna ports, etc. are being considered.
  • one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control UL full power transmission using more than four antenna ports.
  • a terminal has a transmission unit that transmits power amplifier (PA) configuration-related information, and a control unit that determines a precoder that uses more than four antenna ports when a mode that determines a precoder for full power transmission in a manner different from full power modes 0/1/2 is set.
  • PA power amplifier
  • UL full power transmission using more than four antenna ports can be appropriately controlled.
  • FIG. 1 shows an example of a table of precoding matrices W for single-layer (rank-1) transmission using four antenna ports when the transform precoder is disabled in Rel.
  • 16 NR. 2 shows an example of a table of precoding matrices W for two-layer (rank-2) transmission using four antenna ports when the transform precoder is disabled in Rel.
  • 16 NR. 3 is a diagram showing an example of a table of precoding matrices W for 3-layer (rank 3) transmission using 4 antenna ports when the transform precoder is disabled in Rel.
  • 16 NR. 4 is a diagram showing an example of a table of precoding matrices W for 4-layer (rank 4) transmission using 4 antenna ports when the transform precoder is disabled in Rel. 16 NR.
  • FIG. 5 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission.
  • 6A and 6B are diagrams illustrating an example of a TPMI group.
  • 7 is a diagram showing an example of the correspondence between the field values of the precoding information and the number of layers, and the number of layers and the TPMI in Rel. 16 NR.
  • FIG. 8 is a diagram showing an example of an antenna layout for eight antenna ports.
  • FIG. 9 is a diagram illustrating an example of a PA configuration corresponding to the PA configuration related information in the first embodiment.
  • FIG. 10 is a diagram illustrating an example of a PA configuration corresponding to the PA configuration related information in the first embodiment.
  • FIG. 11 is a diagram illustrating an example of a PA configuration corresponding to the PA configuration related information in the first embodiment.
  • 12A to 12E are diagrams showing an example of a precoder capable of full power transmission in full power mode 3 according to the second embodiment.
  • FIG. 13 is a diagram illustrating an example of a precoder capable of full power transmission in full power mode 3 according to the second embodiment.
  • FIG. 14 is a diagram showing an example of precoder determination based on the value of the precoding information field and the correspondence between the number of layers and the TPMI according to the third embodiment.
  • 15A and 15B are diagrams illustrating an example of precoder determination based on the corresponding relationship of values of the precoding information field according to the third embodiment.
  • FIG. 16 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 17 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 19 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of a vehicle according to an embodiment.
  • a terminal (user terminal, User Equipment (UE)) may receive information (SRS configuration information, for example, parameters in the RRC control element "SRS-Config") used to transmit a measurement reference signal (for example, a Sounding Reference Signal (SRS)).
  • SRS configuration information for example, parameters in the RRC control element "SRS-Config"
  • SRS-Config parameters in the RRC control element "SRS-Config”
  • the UE may receive at least one of information regarding one or more SRS resource sets (SRS resource set information, e.g., the RRC control element "SRS-ResourceSet”) and information regarding one or more SRS resources (SRS resource information, e.g., the RRC control element "SRS-Resource”).
  • SRS resource set information e.g., the RRC control element "SRS-ResourceSet
  • SRS resource information e.g., the RRC control element "SRS-Resource”
  • An SRS resource set may relate to (group together) a number of SRS resources.
  • Each SRS resource may be identified by an SRS Resource Indicator (SRI) or SRS Resource Identifier (ID).
  • SRI SRS Resource Indicator
  • ID SRS Resource Identifier
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • the SRS resource type may indicate any of periodic SRS (P-SRS), semi-persistent SRS (SP-SRS), and aperiodic CSI (A-SRS).
  • P-SRS periodic SRS
  • SP-SRS semi-persistent SRS
  • A-SRS aperiodic CSI
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation) and transmit A-SRS based on an SRS request in the DCI.
  • the usage may be, for example, beam management (beamManagement), codebook (CB), noncodebook (NCB), antenna switching, etc.
  • the SRS for codebook or noncodebook usage may be used to determine a precoder for codebook-based or noncodebook-based uplink shared channel (Physical Uplink Shared Channel (PUSCH)) transmission based on the SRI.
  • PUSCH Physical Uplink Shared Channel
  • the UE may determine a precoder (precoding matrix) for PUSCH transmission based on the SRI, a Transmitted Rank Indicator (TRI), and a Transmitted Precoding Matrix Indicator (TPMI).
  • a precoder for PUSCH transmission based on the SRI.
  • the SRS resource information may include an SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmit comb, SRS resource mapping (e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, spatial relationship information of SRS, etc.
  • SRS resource ID SRS-ResourceId
  • SRS port number SRS port number
  • SRS port number SRS port number
  • transmit comb e.g., transmit comb
  • SRS resource mapping e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.
  • SRS resource mapping e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.
  • the spatial relationship information of the SRS may indicate spatial relationship information between a specific reference signal and the SRS.
  • the specific reference signal may be at least one of a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Channel State Information Reference Signal (CSI-RS), and an SRS (e.g., another SRS).
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • CSI-RS Channel State Information Reference Signal
  • SRS e.g., another SRS.
  • the SS/PBCH block may be referred to as a Synchronization Signal Block (SSB).
  • SSB Synchronization Signal Block
  • the spatial relationship information of the SRS may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the above-mentioned specified reference signal.
  • the SSB index, SSB resource ID, and SSB Resource Indicator may be read as interchangeable.
  • the CSI-RS index, CSI-RS resource ID, and CSI-RS Resource Indicator may be read as interchangeable.
  • the SRS index, SRS resource ID, and SRI may be read as interchangeable.
  • the spatial relationship information of the SRS may include a serving cell index, a BWP index (BWP ID), etc., corresponding to the above-mentioned specified reference signal.
  • the UE may transmit the SRS resource using the same spatial domain filter (spatial domain transmit filter) as the spatial domain filter for receiving the SSB or CSI-RS (spatial domain receive filter).
  • the UE may assume that the UE receive beam for the SSB or CSI-RS and the UE transmit beam for the SRS are the same.
  • the UE may transmit the target SRS resource using the same spatial domain filter (spatial domain transmission filter) as the spatial domain filter (spatial domain transmission filter) for transmitting the reference SRS.
  • the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
  • the UE may determine the spatial relationship of the PUSCH scheduled by the DCI (e.g., DCI format 0_1) based on the value of a specific field (e.g., an SRS resource identifier (SRI) field) in the DCI. Specifically, the UE may use spatial relationship information of the SRS resource (e.g., the RRC information element "spatialRelationInfo") determined based on the value of the specific field (e.g., SRI) for PUSCH transmission.
  • a specific field e.g., an SRS resource identifier (SRI) field
  • the UE when using codebook-based transmission for PUSCH, the UE is configured by RRC with a codebook-use SRS resource set having up to two SRS resources, and one of the up to two SRS resources may be indicated by DCI (1-bit SRI field).
  • the transmission beam for PUSCH is specified by the SRI field.
  • the UE may determine the TPMI and number of layers (transmission rank) for the PUSCH based on the precoding information and number of layers field (for simplicity, also called the precoding information field).
  • the UE may select a precoder based on the TPMI, number of layers, etc. from an uplink codebook for the same number of SRS ports as the number of SRS ports indicated by the upper layer parameter "nrofSRS-Ports" set for the SRS resource specified by the SRI field.
  • the UE when non-codebook-based transmission is used for PUSCH, the UE is configured by RRC with a non-codebook-used SRS resource set having up to four SRS resources, and one or more of the up to four SRS resources may be indicated by DCI (2-bit SRI field).
  • the UE may determine the number of layers (transmission rank) for the PUSCH based on the SRI field. For example, the UE may determine that the number of SRS resources specified by the SRI field is the same as the number of layers for the PUSCH. The UE may also calculate a precoder for the SRS resources.
  • the transmission beam of the PUSCH may be calculated based on (the measurement of) the configured associated CSI-RS. Otherwise, the transmission beam of the PUSCH may be specified by the SRI.
  • the UE may be configured to use codebook-based PUSCH transmission or non-codebook-based PUSCH transmission by a higher layer parameter "txConfig" indicating a transmission scheme.
  • the parameter may indicate a value of "codebook” or "nonCodebook.”
  • codebook-based PUSCH (codebook-based PUSCH transmission, codebook-based transmission) may refer to PUSCH when "codebook" is configured as the transmission scheme in the UE.
  • non-codebook-based PUSCH (non-codebook-based PUSCH transmission, non-codebook-based transmission) may refer to PUSCH when "non-codebook" is configured as the transmission scheme in the UE.
  • the UE may determine a precoder for PUSCH transmission based on the SRI, TRI, TPMI, etc. in the case of codebook (CB) based transmission.
  • the SRI, TRI, TPMI, etc. may be notified to the UE using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or by the parameter "srs-ResourceIndicator" included in the RRC information element "ConfiguredGrantConfig" of the configured grant PUSCH.
  • TRI and TPMI may be specified by the "Precoding information and number of layers" field of the DCI.
  • the UE may report UE capability information regarding the precoder type, and the base station may set the precoder type based on the UE capability information by higher layer signaling.
  • the UE capability information may be information on the precoder type used by the UE in PUSCH transmission (e.g., may be represented by the RRC parameter "pusch-TransCoherence").
  • the UE may determine the precoder to be used for PUSCH transmission based on precoder type information (e.g., the RRC parameter "codebookSubset") included in PUSCH configuration information notified by higher layer signaling (e.g., the "PUSCH-Config" information element of RRC signaling).
  • precoder type information e.g., the RRC parameter "codebookSubset” included in PUSCH configuration information notified by higher layer signaling (e.g., the "PUSCH-Config" information element of RRC signaling).
  • the UE may set a subset of the PMI specified by the TPMI using the codebookSubset.
  • the precoder type may be specified by any one of full coherent, partial coherent, and non-coherent, or a combination of at least two of these (e.g., may be expressed by parameters such as "fullyAndPartialAndNonCoherent” or "partialAndNonCoherent”).
  • the RRC parameter "pusch-TransCoherence” indicating the UE capability may indicate full coherence, partial coherence, or noncoherence.
  • the RRC parameter “codebookSubset” may indicate "fullAndPartialAndNonCoherent,” “partialAndNonCoherent,” or “noncoherent.”
  • Fully coherent may mean that all antenna ports used for transmission are synchronized (may be expressed as being able to align the phase, being able to control the phase for each coherent antenna port, being able to apply a precoder appropriately for each coherent antenna port, etc.).
  • Partially coherent may mean that some of the antenna ports used for transmission are synchronized, but those some ports cannot be synchronized with other ports.
  • Non-coherent may mean that the antenna ports used for transmission cannot be synchronized.
  • a UE that supports a fully coherent precoder type may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports a partially coherent precoder type may be assumed to support a non-coherent precoder type.
  • a non-coherent UE, a partially coherent UE, and a fully coherent UE may be interchangeably read as a UE having non-coherent capabilities, a UE having partially coherent capabilities, and a UE having fully coherent capabilities, respectively.
  • non-coherent UE, partially coherent UE, and fully coherent UE may be interchangeably interpreted as UEs for which the codebook subsets "non-coherent,” “partial and non-coherent,” and “fully and partially and non-coherent” are set in a higher layer, respectively.
  • Non-coherent UE, partially coherent UE, and fully coherent UE may be interpreted interchangeably as UEs capable of transmitting using a non-coherent codebook, a partially coherent codebook, and a fully coherent codebook, respectively.
  • precoder type coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, etc. may be interpreted as interchangeable.
  • the UE may determine, from multiple precoders (which may also be called precoding matrices, codebooks, etc.) for CB-based transmission, a precoding matrix corresponding to a TPMI index obtained from a DCI (e.g., DCI format 0_1; same below) that schedules an UL transmission.
  • precoders which may also be called precoding matrices, codebooks, etc.
  • Figure 1-4 shows an example of the association between codebook subsets and TPMI indexes.
  • Figure 1 corresponds to a table of precoding matrices W for single-layer (rank 1) transmission using 4 antenna ports in Rel. 16 NR when transform precoding (also called transform precoder) is disabled.
  • Figure 1 shows the corresponding Ws in ascending order of TPMI index from left to right (similar to Figures 2-4).
  • the correspondence (which may be called a table) showing the TPMI index and the corresponding W as shown in Figure 1-4 is also called a codebook.
  • a part of this codebook is also called a codebook subset.
  • the UE is notified of a TPMI between 0 and 27 for single-layer transmission. If the codebook subset is partial and non-coherent, the UE is configured with a TPMI between 0 and 11 for single-layer transmission. If the codebook subset is non-coherent, the UE is configured with a TPMI between 0 and 3 for single-layer transmission.
  • Figures 2-4 correspond to tables of precoding matrices W for 2-4 layer (rank 2-4) transmission using 4 antenna ports in Rel. 16 NR when transform precoding is disabled.
  • the TPMIs that the UE is notified of for layer 2 transmission are 0 to 21 (codebook subsets are full, partial and non-coherent), 0 to 13 (precoder type is partial and non-coherent) or 0 to 5 (precoder type is non-coherent).
  • the TPMI that the UE is notified of for layer 3 transmission is 0 to 6 (codebook subset full, partial and non-coherent), 0 to 2 (precoder type partial and non-coherent) or 0 (precoder type non-coherent).
  • the TPMI that the UE is notified of for layer 4 transmission is 0 to 4 (codebook subset full, partial and non-coherent), 0 to 2 (precoder type partial and non-coherent) or 0 (precoder type non-coherent).
  • a precoding matrix in which only one element per column is non-zero may be called a non-coherent codebook.
  • a precoding matrix in which a certain number of elements per column (greater than one, but not all elements in the column) are non-zero may be called a partially coherent codebook.
  • a precoding matrix in which all elements per column are non-zero may be called a fully coherent codebook.
  • the noncoherent codebook and the partially coherent codebook may be called an antenna selection precoder, an antenna port selection precoder, etc.
  • the noncoherent codebook noncoherent precoder
  • the partially coherent codebook partially coherent precoder
  • an x-port x is an integer greater than 1 selection precoder, an x-port port selection precoder, etc.
  • the fully coherent codebook may be called a non-antenna selection precoder, an all-port precoder, etc.
  • a codebook precoding matrix
  • RRC parameter "codebookSubset” “fullyAndPartialAndNonCoherent”
  • the transmission power of the PUSCH is allocated equally to each antenna port.
  • the transmission power may be smaller (full power transmission may not be possible) than in the case of a single port.
  • UE capability 1 Supports (or has) a PA (full rated PA) capable of outputting the maximum rated power in each Tx chain
  • PA full rated PA
  • UE Capability 2 None of the transmit chains support fully rated PA
  • UE Capability 3 A subset of the transmit chain supports fully rated PA.
  • a UE having at least one of the UE capabilities 1-3 may mean that it supports full power UL transmission.
  • the UE may report capability information indicating that it supports UL full power transmission capability to the network (NW) (e.g., a base station) in addition to the UE capabilities 1-3.
  • the UE may be configured by the network to support full power transmission.
  • Figure 5 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission.
  • Figure 5 shows only the PA and transmit antenna ports (which may be read as transmit antennas) as the UE configuration in a simplified manner. Note that an example is shown in which the number of PAs and transmit antenna ports is four, but this is not limited to this.
  • P indicates the UE maximum output power [dBm]
  • P PA indicates the PA maximum output power [dBm].
  • P may be, for example, 23 dBm for a UE of power class 3, and 26 dBm for a UE of power class 2.
  • P PA ⁇ P is assumed, but the embodiment of the present disclosure may be applied when P PA >P.
  • UE capability 1 is expected to be a high-cost configuration to implement, but allows full-power transmission using any one or more antenna ports. Note that UE capability 1 may also indicate the ability to support mode 0.
  • the UE capability 2 configuration includes only non-fully-rated PAs and is expected to be inexpensive to implement, but because full power transmission is not possible using only one antenna port, it is necessary to control the phase, amplitude, etc. of the signal input to each PA.
  • the UE capability 3 configuration is intermediate between the UE capability 1 configuration and the UE capability 2 configuration. There is a mixture of antenna ports capable of full power transmission (transmit antennas #0 and #2 in this example) and antenna ports that cannot (transmit antennas #1 and #3 in this example).
  • the indexes and the number of antenna ports capable of full power transmission in UE capability 3 are not limited to these.
  • P PA P/2 for non-fully-rated PA, but the value of P PA is not limited to this.
  • a UE that supports UE capability 2 or 3 will be configured to operate in at least one of two modes (modes 1 and 2) for full power transmission.
  • mode 1 may be a mode (e.g., may be referred to as a first full power transmission mode) in which the UE is configured such that one or more SRS resources included in one SRS resource set of usage "codebook" have the same SRS port number.
  • a UE operating in mode 1 may transmit full power using all antenna ports (with a non-antenna selection precoder).
  • UEs operating in Mode 1 may be configured by the network to use a subset of TPMIs that combine ports within one layer to achieve full power transmission.
  • New codebook subsets may be introduced only for rank values that are not available for full power transmission, including precoders for TPMIs that correspond to "fullyAndPartialAndNonCoherent" as defined in Rel. 15 NR.
  • mode 2 may be a mode (e.g., may be called a second full power transmission mode) in which the UE is configured such that one or more SRS resources included in one SRS resource set of usage "codebook" have different SRS port numbers.
  • a UE operating in mode 2 may transmit at full power using some antenna ports rather than all antenna ports.
  • Mode 2 UEs operating in Mode 2 may transmit PUSCH and SRS in the same manner, regardless of whether antenna virtualization is used or not.
  • Mode 2 UEs may be notified of a set of TPMIs to achieve full power transmission to support SRS resources for more than one port.
  • two or three SRS resources may be configured per SRS resource set (maximum two in Rel. 15 NR).
  • mode 1 Compared to mode 2, mode 1 has the advantage that the required SRI field size is smaller (full power transmission is possible with one SRS resource).
  • mode 2 Compared to mode 1, mode 2 has the advantage that it can dynamically switch between single-port transmission and multi-port transmission using DCI. In addition, since full-power transmission is possible on some antenna ports, it is possible to transmit at full power using only antennas with fully-rated PA, or only coherent antennas, for example.
  • Full power mode 0 may also be referred to simply as full power.
  • a UE may report one or more of the following UE capability information indicating support for mode 0 (ul-FullPwrMode-r16), UE capability information indicating support for mode 1 (ul-FullPwrMode1-r16), and UE capability information indicating support for mode 2 (ul-FullPwrMode2-MaxSRS-ResInSet-r16, ul-FullPwrMode2-SRSConfig-diffNumSRSPorts-r16, etc.).
  • the UE will report UE capability information (ul-FullPwrMode2-TPMIGroup-r16, which may be referred to as TPMI group capability information) regarding a TPMI set (which may be referred to as a TPMI group) capable of full power transmission in relation to mode 2.
  • UE capability information ul-FullPwrMode2-TPMIGroup-r16, which may be referred to as TPMI group capability information
  • Figures 6A and 6B are diagrams showing an example of a TPMI group.
  • Figure 6A shows a PA configuration and a precoding matrix (precoder) for each rank corresponding to the TPMI group when the number of transmit antenna ports is 4. If there are multiple precoders capable of full power transmission for the same rank, full power transmission is possible for any of the multiple precoders for that rank.
  • the number of columns in each matrix may represent the number of layers.
  • Figure 6B shows an example of TPMI groups assumed for a UE with four transmit antenna ports.
  • a non-coherent UE with four transmit antenna ports may correspond to any of G0-G3.
  • a partially coherent UE with four transmit antenna ports may correspond to any of G0-G6.
  • the UE may determine the mode to be used for PUSCH transmission based on higher layer signaling (e.g., RRC signaling), physical layer signaling (e.g., DCI), or a combination of these.
  • higher layer signaling e.g., RRC signaling
  • physical layer signaling e.g., DCI
  • the UE may set or indicate the mode of PUSCH transmission by UL full power transmission mode information (ul-FullPowerTransmission-r16) in higher layer parameters (e.g., PUSCH configuration information (PUSCH-Config information element)).
  • the UE may perform PUSCH full power transmission according to mode 0. If the UL full power transmission mode information set in the UE indicates fullpowerMode1, the UE may perform PUSCH full power transmission according to mode 1. If the UL full power transmission mode information set in the UE is fullpowerMode2, the UE may perform PUSCH full power transmission according to mode 2.
  • the UE may scale (e.g., multiply or divide) the linear value of the PUSCH transmission power determined based on the path loss, Transmit Power Control (TPC) commands, etc., by a certain coefficient s. This coefficient may be called a power scaling coefficient.
  • the UE may scale the linear value of the PUSCH transmission power using the factor s and divide the scaled value evenly across the non-zero PUSCH antenna ports.
  • the UE may apply the determined (or assumed) factor s to the precoding matrix to transmit the PUSCH at full power.
  • a non-zero PUSCH antenna port may refer to an antenna port that has a non-zero PUSCH transmission power, or may refer to an antenna port whose value is not zero (e.g., 1, j) among the antenna ports whose transmission is indicated by the precoding matrix (codebook subset).
  • a mode 1 UE is specified by DCI to perform 4-port 1-layer transmission as shown in Figure 4.
  • the mode 1 UE may be specified with a TPMI index of 13, in which case it can perform full power transmission
  • the mode 1 UE is a partially coherent UE, it may be specified with a TPMI index of 12-15, in which case it can perform full power transmission.
  • TPMI which may also be called a full power TPMI
  • the number of SRS ports is the number of SRS ports associated with the SRS resource if only one SRS resource is configured in the SRS resource set of the codebook, and may correspond to the number of SRS ports of the SRS resource indicated by the SRI if more than one SRS resource is configured in the SRS resource set of the codebook.
  • the partially coherent mode 2 UE that reported G4 in Figure 6B performs 4-port 1-layer transmission in Figure 4
  • non-full power transmission can be performed for TPMI indexes 8-11 (similar to Rel. 15).
  • a mode 0 UE is specified by DCI to perform 4-port 1-layer transmission as shown in Figure 4.
  • 1/ ⁇ (number of non-zero PUSCH antenna ports of W) (1 for a noncoherent precoder and 1/ ⁇ 2 for a partially coherent precoder) is applied as the corresponding amplitude value of W (coefficient part of W (1/2)).
  • the above s 1 is applied.
  • the UE may determine the TPMI and number of layers (transmission rank) for a PUSCH based on the precoding information field of a DCI (e.g., DCI format 0_1/0_2) that schedules the PUSCH.
  • a DCI e.g., DCI format 0_1/0_2
  • the number of bits in the precoding information field may be determined (or may vary) based on the setting of whether to enable or disable the transform precoder for PUSCH (e.g., upper layer parameter transformPrecoder), the setting of the codebook subset for PUSCH (e.g., upper layer parameter codebookSubset), the setting of the maximum number of layers for PUSCH (e.g., upper layer parameter maxRank), the setting of uplink full power transmission for PUSCH (e.g., upper layer parameter ul-FullPowerTransmission), the number of antenna ports for PUSCH, etc.
  • the transform precoder for PUSCH e.g., upper layer parameter transformPrecoder
  • the setting of the codebook subset for PUSCH e.g., upper layer parameter codebookSubset
  • the maximum number of layers for PUSCH e.g., upper layer parameter maxRank
  • the setting of uplink full power transmission for PUSCH e.g., upper layer parameter ul-FullPowerTransmission
  • Figure 7 is a diagram showing an example of the correspondence between the field values of the precoding information and the number of layers, and the number of layers and TPMI in Rel. 16 NR.
  • the correspondence in this example is for four antenna ports when the transform precoder is disabled, the maximum rank (maxRank) is set to 2, 3 or 4, and uplink full power transmission is not set or is set to full power mode 2 (fullpowerMode2) or is set to full power (fullpower), but is not limited to this.
  • fullRank full rank
  • fullpowerMode2 full power mode 2
  • fullpower full power
  • the precoding information field is 6 bits when a fully coherent (fullyAndPartialAndNonCoherent) codebook subset is configured in the UE, 5 bits when a partially coherent (partialAndNonCoherent) codebook subset is configured, and 4 bits when a noncoherent (nonCoherent) codebook subset is configured.
  • the number of layers and TPMI corresponding to a certain precoding information field value may be the same (common) regardless of the codebook subset configured in the UE.
  • the precoding information field may be 0 bits for a non-codebook-based PUSCH. Also, the precoding information field may be 0 bits for a codebook-based PUSCH with one antenna port.
  • Figure 8 is a diagram showing an example of an antenna layout with 8 antenna ports.
  • Ng is the number of antenna groups.
  • M is the number of antennas (or antenna elements) in the first dimension, and N is the number of antennas (or antenna elements) in the second dimension.
  • the first and second dimensions are, for example, the horizontal and vertical directions.
  • An antenna group may be referred to as a coherent group.
  • a coherent group may include one or more coherent ports.
  • a partially coherent UE may have multiple coherent groups.
  • Antenna ports within a coherent group may be coherent.
  • Antenna ports between different coherent groups may not be coherent.
  • Each coherent group may correspond to a different transmit panel/transmit chain/SRS resource set/RS resource set/spatial relation info/joint Transmission Configuration Indication state/UL TCI state/received TRP.
  • the SRS resource set may specifically correspond to an SRS resource set for codebook or non-codebook use.
  • each coherent group may correspond to a different received TRP.
  • the coherent groups may be called coherent antenna groups, port groups, antenna sets, etc.
  • the UE may report the supported antenna groups/antenna configuration information/coherent number as UE capability information.
  • the UE may also configure the coherent groups (e.g., the number of coherent groups, the number of ports included in each coherent group) by higher layer signaling.
  • the antenna layout is not limited to the example shown in Figure 8.
  • the number of panels on which the antennas are arranged, the orientation of the panels, the coherency of each panel/antenna (fully coherent, partially coherent, non-coherent, etc.), the antenna arrangement in a particular direction (horizontal, vertical, etc.), and the polarized antenna configuration (single polarization, cross polarization, number of polarization planes, etc.) may differ from this example.
  • dG-H and dG-V represent the horizontal and vertical spacing between the centers of adjacent antenna groups, respectively.
  • Rel. 15/16 NR supported the transmission of one codeword (CW) in one PUSCH
  • Rel. 18 NR it is being considered that a UE will transmit more than one CW in one PUSCH. For example, support for 2CW transmission for ranks 5-8, and support for 2CW transmission for ranks 2-8 are being considered.
  • simultaneous UL transmission e.g., PUSCH transmission
  • simultaneous PUSCH transmission of multiple beams/panels may correspond to PUSCH transmission with a number of layers greater than four, or may correspond to PUSCH transmission with a number of layers less than four.
  • precoding matrices for UL transmissions using more than four antenna ports are being considered.
  • a codebook for eight-port transmissions (which may be called an 8 TX UL codebook, etc.) is being considered.
  • the inventors have therefore come up with a method for appropriately performing UL full power transmission using more than four antenna ports. According to one aspect of the present disclosure, flexible control of full power transmission is possible.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • TRP
  • the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be read as interchangeable.
  • ID spatial relationship information
  • TCI state and TCI may be read as interchangeable.
  • the number of layers for PUSCH transmission in the following embodiments may be greater than 4 or less than 4.
  • PUSCH transmission of two CWs in this disclosure may be performed with a number of layers of 4 or less (e.g., 2).
  • the maximum number of layers is not limited to 4 or more, and may be less than 4.
  • the PUSCH transmission in the following embodiments may or may not assume the use of multiple panels (it may be applied regardless of the panels).
  • mode 0, 1, and 2 UEs refer to UEs in which UL full power transmission mode information indicating fullpower, fullpowerMode1, and fullpowerMode2 is set, respectively, but is not limited to this.
  • fullpower, fullpowerMode1, and fullpowerMode2 may be named differently (e.g., fullpower-r17, fullpowerMode1-r17, and fullpowerMode2-r17).
  • UL full power transmission mode information may be a different parameter (e.g., ul-FullPowerTransmission-r17) instead of ul-FullPowerTransmission-r16.
  • the UE performing full power transmission is assumed to be a partially coherent/non-coherent UE, but may also be a UE configured with a different coherent type.
  • TPMI and TPMI index may be interchangeable.
  • Port and antenna port may be interchangeable.
  • 8TX (8 transmissions) may mean 8 ports and 8 antenna ports.
  • Port/antenna port may mean a port/antenna port for UL (e.g., SRS/PUSCH) transmission.
  • SRS resource set and resource set may be interchangeable.
  • Coherent group and SRS resource set may be interchangeable.
  • 8TX This disclosure mainly describes 8TX, but the same applies to 5TX, 6TX, 7TX, 8 or more TX, 4 or less TX, etc. in the same way as for 8TX.
  • “8” may be read as “n (n is any integer)", and in this case, the number of layers/ports, etc. described assuming the maximum value of “8” can be appropriately read as assuming the maximum value of "n” by a person skilled in the art.
  • the number "8" in the following embodiments may be interpreted as any number greater than 4 (e.g., 6, 10, 12, 16, ...), or any number less than or equal to 4 (e.g., 1, 2, 3, 4).
  • the rank, transmission rank, number of layers, and number of antenna ports may be interchangeable.
  • the application of one codeword and the number of layers being four or less may be interchangeable.
  • the application of two codewords and the number of layers being greater than four may be interchangeable.
  • a table may be read interchangeably as one or more tables.
  • the DCI in the following embodiments may refer to a DCI that schedules at least one of PUSCH and PDSCH (e.g., DCI format 0_x, 1_x (where x is an integer)).
  • the following embodiments are based on codebook-based transmission (PUSCH), but are not limited to this and may also be applied to non-codebook-based transmission (PUSCH).
  • the first embodiment relates to capability information related to the PA configuration (PA architecture).
  • the UE may report information related to the PA configuration for each UE/antenna group/panel (hereinafter also referred to as PA configuration related information).
  • the PA configuration related information does not have to correspond to TPMI group capability information.
  • the PA configuration related information may include information regarding at least one of the following: For each UE/antenna group/panel, whether the UE has fully rated PA for all antenna ports or not; For each UE/antenna group/panel, whether the UE does not have a fully rated PA for any antenna port; For each UE/antenna group/panel, whether the UE has (some) fully rated PA for some antenna ports; Number of antenna ports with (or associated with) fully rated PA per UE/antenna group/panel; Number of antenna ports with (or associated with) non-fully-rated PA per UE/antenna group/panel; Index of antenna ports that have (or are associated with) fully rated PA per UE/antenna group/panel; Index of antenna ports having (or associated with) non-fully-rated PA per UE/antenna group/panel; For antenna ports with non-fully rated PA, the power level of the port.
  • the information on the power level of the port may indicate a difference from a specific power value (e.g., maximum power, UE maximum output power, PA maximum output power of one or more PAs, etc.).
  • the difference may be expressed in absolute value, relative value, or degree.
  • the power level information may indicate at least one of whether the power of the port is 3 dB lower, 6 dB lower, or X dB (X is a real number) or more lower than the maximum power.
  • the power level information may also indicate an association between a power level indication and a port index.
  • the information regarding the value of X, the association between the power level instruction and the port index, etc. may be specified in advance in a standard, may be determined based on the UE capabilities, or may be notified by the base station.
  • PA configuration related information may be reported by any coherent type UE or may be reported only by UEs of a specific coherent type.
  • the specific coherent type may be, for example, a partial/non-coherent UE.
  • an 8TX UE may only support a specific PA configuration.
  • the UE may report the supported PA configuration related information as UE capabilities.
  • the above-mentioned PA configuration related information may be determined/restricted based on the reported supported PA configuration.
  • FIG. 9 is a diagram showing an example of a PA configuration corresponding to the PA configuration related information in the first embodiment.
  • This example shows the PA configuration of a UE that indicates, as the PA configuration related information, that it has a fully rated PA for all antenna ports.
  • the maximum output power of the fully rated PA is 23 dBm, which is the maximum UE power of a power class 3 UE, but this is not limited to this.
  • each of the eight antenna ports has a fully rated PA, and full power transmission is possible at each.
  • FIG. 10 is a diagram showing an example of a PA configuration corresponding to PA configuration related information in the first embodiment.
  • This example shows the PA configuration of a UE, which indicates, as PA configuration related information, that ports with indexes 0, 1, 4, and 5 have fully-rated PAs, and ports with indexes 2, 3, 6, and 7 have non-fully-rated PAs (here, PAs with output power 3 dB lower than the maximum power).
  • the sets of indexes ⁇ 0, 1 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 4, 5 ⁇ , and ⁇ 6, 7 ⁇ may each constitute an antenna group.
  • FIG. 11 is a diagram showing an example of a PA configuration corresponding to PA configuration related information in the first embodiment.
  • This example shows the PA configuration of a UE, which indicates, as PA configuration related information, that for antenna group #0, ports with indexes 0 and 1 have fully rated PAs and ports with indexes 4 and 5 have non-fully rated PAs (here, PAs with output power 3 dB lower than the maximum power), and that for antenna group #1, ports with indexes 2 and 3 have fully rated PAs and ports with indexes 6 and 7 have non-fully rated PAs (here, PAs with output power 6 dB lower than the maximum power).
  • the UE may report the (smallest) set of antenna port indexes that can achieve full power as the PA configuration related information. For example, for the PA configuration in FIG. 10, the UE may report a total of six index sets, ⁇ 0 ⁇ , ⁇ 1 ⁇ , ⁇ 4 ⁇ , ⁇ 5 ⁇ , ⁇ 2, 3 ⁇ , and ⁇ 6, 7 ⁇ , as the PA configuration related information.
  • the NW that receives the PA configuration related information can understand that the UE can achieve full power transmission for the above six sets, and can also achieve full power transmission for any combination of the above six sets of indexes (e.g., ⁇ 0, 1 ⁇ , ⁇ 0, 2, 3 ⁇ , etc.).
  • Second Embodiment A second embodiment relates to a new full power mode for 8TX UEs, which may for example be called fullpowerMode3.
  • the UE may be configured with full power mode 3.
  • the UE may be notified by the network of information on precoders (or additional precoders) capable of full power transmission for each rank. This information may be called precoder information for full power transmission.
  • the NW may determine the precoder information for full power transmission based on the PA configuration related information of the first embodiment.
  • the precoder information for full power transmission may include antenna port indices available for the precoder.
  • the antenna port indices may be a combination of indices or may be indices for each column/layer of the precoding matrix.
  • the antenna port indices may be notified for each UE/antenna group/panel.
  • the value of the element in the precoder corresponding to the available antenna port index may be a specific value (e.g., 1) or may be set by higher layer signaling for each UE/antenna group/panel.
  • the specific value may be different for each UE/antenna group/panel.
  • the precoder amplitude or power scaling factor (s) may be fixed to 1 or may be a predefined/predefined value set by higher layer signaling.
  • the precoder amplitude may be 1/ ⁇ (number of non-zero PUSCH antenna ports in W).
  • FIGS. 12A-12E are diagrams showing an example of a precoder capable of full power transmission in full power mode 3 in the second embodiment.
  • the UE may determine a precoder based on a port index specified by the NW and perform the above transmission based on the precoder.
  • Figure 12B shows the above precoder, a 1-port selection precoder or a 2-port selection precoder, when the NW indicates port index ⁇ 0 ⁇ (left side of the figure) or ⁇ 0, 1 ⁇ (right side of the figure) for rank 1.
  • FIG. 12C shows the above precoder when the NW indicates port indexes ⁇ 0,1 ⁇ in the first column and port indexes ⁇ 2,3 ⁇ in the second column for rank 2.
  • the ascending order of the precoder row indexes does not have to correspond one-to-one to the ascending order of the port indexes.
  • the precoder row indexes 0-7 are associated with antenna port indexes 0, 1, 4, 5, 2, 3, 6, and 7, respectively.
  • Information regarding the association between the precoder row indexes and the port indexes may be specified in advance in a standard, may be determined based on UE capabilities, or may be notified from the base station. If there is no particular notification, the ascending order of the precoder row indexes may correspond one-to-one to the ascending order of the port indexes.
  • FIG. 12D shows the above precoder when the NW indicates port indices ⁇ 0, 1, 2, 3 ⁇ for rank 2.
  • the port index may be applied commonly to each column of the precoder.
  • the port index may be applied commonly to multiple ranks (in other words, the precoders for multiple ranks may all be determined based on a common port index that is indicated).
  • FIG. 12E shows the above precoder when the NW indicates port index ⁇ 0 ⁇ in the first column, port index ⁇ 1 ⁇ in the second column, port index ⁇ 4, 5 ⁇ in the third column, port index ⁇ 2 ⁇ in the fourth column, port index ⁇ 3 ⁇ in the fifth column, and port index ⁇ 6, 7 ⁇ in the sixth column for rank 6.
  • the port indexes corresponding to the precoder in this example may be notified to a UE that has reported, for example, as the PA configuration related information of the first embodiment, that ports with indexes 0, 1, 2, and 3 have fully rated PAs and ports with indexes 4, 5, 6, and 7 have non-fully rated PAs (here, PAs with output power 3 dB lower than maximum power).
  • the precoder information for full power transmission may indicate information (e.g., an instruction for phase matching) regarding co-phasing between different antenna groups for forming a precoder.
  • information e.g., an instruction for phase matching
  • phase matching, phase compensation, phase adjustment, phase difference, phase relationship, etc. may be interpreted as interchangeable.
  • the UE may treat a precoder corresponding to an existing TPMI table that satisfies the combination per column/per layer (in other words, has a non-zero value for the port index) as a precoder for full power transmission.
  • the UE may or may not recalculate the amplitude of the precoder. The determination of the amplitude may be the same as in the case of the TPMI index for the precoder information for full power transmission described below.
  • the precoder information for full power transmission may include a TPMI index in the TPMI table.
  • the UE may or may not recalculate the amplitude of the precoder corresponding to the specified TPMI index (it may use it without change). The recalculation may be calculated as 1/ ⁇ (number of non-zero PUSCH antenna ports in precoder W).
  • whether or not to recalculate the precoder amplitude may be set in the UE by higher layer signaling, or may be determined based on the UE capabilities.
  • FIG. 13 is a diagram showing an example of a precoder capable of full power transmission in full power mode 3 in the second embodiment.
  • full power mode 3 may correspond to a mode in which a precoder for full power transmission is controlled based on the PA configuration related information of the first embodiment.
  • Full power mode 3 may correspond to a mode in which a precoder for full power transmission is determined not based on the TPMI index.
  • Full power mode 3 may correspond to a mode in which a precoder for full power transmission is determined in a manner different from full power modes 0/1/2 (although based on the TPMI index).
  • the NW can flexibly configure the precoder in the UE to enable full power transmission.
  • the third embodiment relates to the content specified by the precoding information field.
  • the UE in full power mode 3, in order to specify a precoder corresponding to an existing TPMI table based on a notified port index or TPMI index, the UE may specify the number of layers and the TPMI index for each rank based on the correspondence of the existing precoding information field (e.g., a table showing the correspondence between the value of the precoding information field and the number of layers and the TPMI).
  • existing precoding information field e.g., a table showing the correspondence between the value of the precoding information field and the number of layers and the TPMI.
  • the UE identifies the number of layers and the TPMI index based on the precoding information field notified by the DCI and the above-mentioned existing correspondence relationship, and if the TPMI index corresponds to the TPMI index indicated by the precoder information for full power transmission in the above-mentioned second embodiment, full power transmission may be performed using the precoder corresponding to the TPMI index to which the recalculation shown in the second embodiment has been applied.
  • bit size of the TPMI/RI indication (or precoding information field) for full power mode 3 may be the same as when full power mode is not set.
  • a UE in which full power mode 3 is configured but the precoder information for full power transmission does not indicate a TPMI index may perform full power transmission by applying the recalculation shown in the second embodiment to a precoder corresponding to an arbitrary TPMI index.
  • FIG. 14 is a diagram showing an example of precoder determination based on the correspondence between the value of the precoding information field and the number of layers and TPMI for the third embodiment.
  • the illustrated table is an example of the above correspondence for a maximum rank of 6.
  • a value of 26 in the precoding information field indicates a number of layers of 6 (which may be a set of 3+3 number of layers.
  • the correspondence in FIG. 14 may be used when an existing value (e.g., partialAndNonCoherent) is set as the codebook subset, or when a value indicating a new codebook subset is set. The same may be true in embodiment 3.2 described below.
  • an existing value e.g., partialAndNonCoherent
  • the new codebook subset may include at least one of a codebook subset for only a fully coherent precoder and a codebook subset for only a partially coherent precoder.
  • the new codebook subset may include a codebook subset for only a non-coherent precoder.
  • the new codebook subset may mean a codebook subset for single coherency (or single coherence).
  • a fully coherent UE may be configured with configuration information indicating a codebook subset for a fully coherent precoder only (e.g., an RRC parameter "codebookSubset” indicating "fully coherent” or "fully coherent only”).
  • configuration information indicating a codebook subset for a fully coherent precoder only (e.g., an RRC parameter "codebookSubset” indicating "fully coherent” or "fully coherent only”).
  • a partially coherent UE may be configured with configuration information indicating a codebook subset for only a partially coherent precoder (e.g., an RRC parameter "codebookSubset” indicating "partialCoherent” or “partialCoherentOnly”).
  • configuration information indicating a codebook subset for only a partially coherent precoder (e.g., an RRC parameter "codebookSubset” indicating "partialCoherent” or "partialCoherentOnly”).
  • the UE may specify a precoder for full power transmission for each rank based on a value of a precoding information field that is not used in the correspondence relationship of the existing precoding information field (e.g., a value corresponding to "Reserved" or a larger value not specified in the existing correspondence relationship). That is, the value of the precoding information field may indicate not only a set of the number of layers and the TPMI index, but also a precoder (and the number of layers) corresponding to the precoder information for full power transmission notified from the NW for any layer.
  • a precoding information field e.g., a value corresponding to "Reserved" or a larger value not specified in the existing correspondence relationship. That is, the value of the precoding information field may indicate not only a set of the number of layers and the TPMI index, but also a precoder (and the number of layers) corresponding to the precoder information for full power transmission notified from the NW for any layer.
  • the UE may assume that the value of the precoding information field corresponding to the precoder for full power transmission is not inserted in the original table, but is placed at the end of the original table based on the layer order and the precoder/antenna port order based on the configuration from the NW.
  • FIGS. 15A and 15B are diagrams showing an example of precoder determination based on the correspondence between values of the precoding information field for the third embodiment.
  • the correspondence shown in FIG. 14 can be used as the existing correspondence for the maximum rank 6.
  • a UE in which full power mode 3 is set and precoder information for full power transmission is set may interpret the precoding information field of the DCI based on the correspondence relationship in FIG. 15A or 15B, rather than the correspondence relationship in FIG. 14.
  • FIG. 15A corresponds to the case in which the NW has not set precoder information for full power transmission for ranks 5/6 (only precoder information for full power transmission for ranks 1-4 has been set)
  • FIG. 15B corresponds to the case in which the NW has only set precoder information for full power transmission for ranks 1-6.
  • the DCI size may relate to the precoders configured by the precoder information for full power transmission of each layer for different correspondences to different maximum ranks.
  • restrictions on the correspondences may be applied.
  • the UE may not expect more than Z1 additional precoders for full power transmission per rank to be configured, or more than Z2 precoders for full power transmission for all ranks to be configured.
  • Z1/Z2/M may be predefined, may be determined based on UE capabilities, or may be set in the UE by higher layer signaling.
  • the UE can appropriately identify the precoder for full power transmission based on the precoding information field.
  • the fourth embodiment relates to SRS resource configuration for a non-codebook-based PUSCH when full power mode 3 is configured.
  • the content/number of SRS resources configured for non-codebook-based PUSCH when full power mode 3 is configured may be configured in the same way as when full power mode 3 is not configured.
  • up to two SRS resources may be configured in one SRS resource set related to the use of "nonCodeBook", and the number of SRS ports (nrofSRS-Port) of these SRS resources may be set to the same value.
  • the content/number of SRS resource settings for non-codebook-based PUSCH when full power mode 3 is set may be different from when full power mode 3 is not set.
  • up to X SRS resources may be configured in one SRS resource set related to the "nonCodeBook" usage.
  • different spatial relationships/TCI states may be configured for SRS resources in one SRS resource set associated with a "nonCodeBook" application.
  • the same number of SRS ports may be set for all SRS resources in one SRS resource set related to the "nonCodeBook" use, or different numbers of SRS ports may be set for multiple SRS resources.
  • Whether the number of ports of the SRS resources in the X/Y/SRS resource set is the same or different may be predefined, may be determined based on the UE capabilities, or may be configured in the UE by higher layer signaling.
  • the above embodiment 4.1 may be applied to the SRS resource configuration for the non-codebook-based PUSCH when full power mode 0/1 is set. Also, the above embodiment 4.2 may be applied to the SRS resource configuration for the non-codebook-based PUSCH when full power mode 2 is set.
  • the UE can appropriately determine the SRS resource configuration for the non-codebook-based PUSCH when full power mode 3 is configured.
  • a UE/base station using (referring to/performing processing based on) a table does not necessarily mean using the table itself, but may also mean using an array, list, function, etc. that includes information that conforms to the table.
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • any information is received from the BS by the UE
  • physical layer signaling e.g., DCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • PDCCH Physical Downlink Control Channel
  • PDSCH reference signal
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting specific processing/operations/control/information for at least one of the above embodiments; Supporting 8TX UL transmissions; Supported coherent groups, ⁇ PA configuration related information, - Support full power mode 3.
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating enabling 8TX UL transmission, information indicating enabling full power mode 3, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • [Appendix 1] A transmitter for transmitting power amplifier (PA) configuration related information; A terminal having a control unit that determines a precoder that uses more than four antenna ports when a mode that determines a precoder for full power transmission in a manner different from full power mode 0/1/2 is set.
  • PA configuration related information is not capability information indicating a Transmitted Precoding Matrix Indicator (TPMI) group.
  • TPMI Transmitted Precoding Matrix Indicator
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 16 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 17 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140.
  • the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver 120 may receive power amplifier (PA) configuration related information from the user terminal 20.
  • the transceiver 120 may transmit to the user terminal 20 setting information for a mode that determines a precoder for full power transmission in a manner different from full power modes 0/1/2 (e.g., an RRC parameter indicating full power mode 3).
  • PA power amplifier
  • the user terminal 18 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230.
  • the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver unit 220 may transmit information related to the configuration of a power amplifier (PA).
  • the control unit 210 may determine the precoder using more than four antenna ports when a mode is set that determines a precoder for full power transmission in a manner different from the full power mode 0/1/2 (when the full power mode is set).
  • the PA configuration related information does not have to be capability information indicating a Transmitted Precoding Matrix Indicator (TPMI) group (it may be information different from TPMI group capability information).
  • TPMI Transmitted Precoding Matrix Indicator
  • the transceiver unit 220 may receive information indicating antenna port indexes available for the precoder (precoder information for full power transmission).
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 19 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 20 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
  • the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of the present invention is to properly control UL full power transmission with more than 4 antenna ports. According to an aspect of the present invention, a terminal includes a transmission unit transmitting Power Amplifier (PA) configuration related information, and a control unit determining a precoder for full power transmission which uses more than four antenna ports when a mode for determining the precoder is configured using a method different from a full power mode 0/1/2.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
 Rel.15 NRでは、4レイヤまでの上りリンク(Uplink(UL))Multi Input Multi Output(MIMO)送信がサポートされる。将来のNRについて、より高いスペクトル効率を実現するために、4より大きいレイヤ数のUL送信をサポートすることが検討されている。例えば、Rel.18 NRに向けて、6アンテナポートを用いた最大6ランク送信、8アンテナポートを用いた最大6又は8ランク送信などが検討されている。 In Rel. 15 NR, up to four layers of uplink (UL) Multi-Input Multi-Output (MIMO) transmission are supported. For future NR, support for UL transmission with a number of layers greater than four is being considered to achieve higher spectral efficiency. For example, for Rel. 18 NR, maximum 6-rank transmission using 6 antenna ports, maximum 6- or 8-rank transmission using 8 antenna ports, etc. are being considered.
 しかしながら、4より多いアンテナポート(4つより多い数のアンテナポート)を用いるULフルパワー送信については、まだ検討が進んでいない。適切なフルパワー送信の制御方法を規定しなければ、通信スループットの増大が抑制されるおそれがある。 However, there has been little progress in studying UL full power transmission using more than four antenna ports (a number of antenna ports greater than four). Unless an appropriate method for controlling full power transmission is specified, there is a risk that the increase in communication throughput will be restricted.
 そこで、本開示は、4より多いアンテナポートを用いるULフルパワー送信を適切に制御できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control UL full power transmission using more than four antenna ports.
 本開示の一態様に係る端末は、パワーアンプ(Power Amplifier(PA))構成関連情報を送信する送信部と、フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードが設定される場合に、4つより多い数のアンテナポートを用いる前記プリコーダを決定する制御部と、を有する。 A terminal according to one embodiment of the present disclosure has a transmission unit that transmits power amplifier (PA) configuration-related information, and a control unit that determines a precoder that uses more than four antenna ports when a mode that determines a precoder for full power transmission in a manner different from full power modes 0/1/2 is set.
 本開示の一態様によれば、4より多いアンテナポートを用いるULフルパワー送信を適切に制御できる。 According to one aspect of the present disclosure, UL full power transmission using more than four antenna ports can be appropriately controlled.
図1は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルの一例を示す図である。1 shows an example of a table of precoding matrices W for single-layer (rank-1) transmission using four antenna ports when the transform precoder is disabled in Rel. 16 NR. 図2は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いた2レイヤ(ランク2)送信用のプリコーディング行列Wのテーブルの一例を示す図である。2 shows an example of a table of precoding matrices W for two-layer (rank-2) transmission using four antenna ports when the transform precoder is disabled in Rel. 16 NR. 図3は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いた3レイヤ(ランク3)送信用のプリコーディング行列Wのテーブルの一例を示す図である。3 is a diagram showing an example of a table of precoding matrices W for 3-layer (rank 3) transmission using 4 antenna ports when the transform precoder is disabled in Rel. 16 NR. 図4は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いた4レイヤ(ランク4)送信用のプリコーディング行列Wのテーブルの一例を示す図である。4 is a diagram showing an example of a table of precoding matrices W for 4-layer (rank 4) transmission using 4 antenna ports when the transform precoder is disabled in Rel. 16 NR. 図5は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。FIG. 5 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission. 図6A及び6Bは、TPMIグループの一例を示す図である。6A and 6B are diagrams illustrating an example of a TPMI group. 図7は、Rel.16 NRにおける、プリコーディング情報及びレイヤ数のフィールド値と、レイヤ数及びTPMIとの対応関係の一例を示す図である。7 is a diagram showing an example of the correspondence between the field values of the precoding information and the number of layers, and the number of layers and the TPMI in Rel. 16 NR. 図8は、8アンテナポートのアンテナレイアウトの一例を示す図である。FIG. 8 is a diagram showing an example of an antenna layout for eight antenna ports. 図9は、第1の実施形態におけるPA構成関連情報に対応するPA構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a PA configuration corresponding to the PA configuration related information in the first embodiment. 図10は、第1の実施形態におけるPA構成関連情報に対応するPA構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a PA configuration corresponding to the PA configuration related information in the first embodiment. 図11は、第1の実施形態におけるPA構成関連情報に対応するPA構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a PA configuration corresponding to the PA configuration related information in the first embodiment. 図12A-12Eは、第2の実施形態におけるフルパワーモード3におけるフルパワー送信可能なプリコーダの一例を示す図である。12A to 12E are diagrams showing an example of a precoder capable of full power transmission in full power mode 3 according to the second embodiment. 図13は、第2の実施形態におけるフルパワーモード3におけるフルパワー送信可能なプリコーダの一例を示す図である。FIG. 13 is a diagram illustrating an example of a precoder capable of full power transmission in full power mode 3 according to the second embodiment. 図14は、第3の実施形態に関するプリコーディング情報フィールドの値と、レイヤ数及びTPMIとの対応関係に基づくプリコーダ決定の一例を示す図である。FIG. 14 is a diagram showing an example of precoder determination based on the value of the precoding information field and the correspondence between the number of layers and the TPMI according to the third embodiment. 図15A及び15Bは、第3の実施形態に関するプリコーディング情報フィールドの値の対応関係に基づくプリコーダ決定の一例を示す図である。15A and 15B are diagrams illustrating an example of precoder determination based on the corresponding relationship of values of the precoding information field according to the third embodiment. 図16は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 16 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図17は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 17 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図18は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図19は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 19 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図20は、一実施形態に係る車両の一例を示す図である。FIG. 20 is a diagram illustrating an example of a vehicle according to an embodiment.
(SRS、PUSCHの送信の制御)
 Rel.15 NRにおいて、端末(ユーザ端末(user terminal)、User Equipment(UE))は、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
(Control of SRS and PUSCH transmission)
In Rel. 15 NR, a terminal (user terminal, User Equipment (UE)) may receive information (SRS configuration information, for example, parameters in the RRC control element "SRS-Config") used to transmit a measurement reference signal (for example, a Sounding Reference Signal (SRS)).
 具体的には、UEは、1つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも1つを受信してもよい。 Specifically, the UE may receive at least one of information regarding one or more SRS resource sets (SRS resource set information, e.g., the RRC control element "SRS-ResourceSet") and information regarding one or more SRS resources (SRS resource information, e.g., the RRC control element "SRS-Resource").
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。 An SRS resource set may relate to (group together) a number of SRS resources. Each SRS resource may be identified by an SRS Resource Indicator (SRI) or SRS Resource Identifier (ID).
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。 The SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的CSI(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。 Here, the SRS resource type may indicate any of periodic SRS (P-SRS), semi-persistent SRS (SP-SRS), and aperiodic CSI (A-SRS). Note that the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation) and transmit A-SRS based on an SRS request in the DCI.
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook(CB))、ノンコードブック(noncodebook(NCB))、アンテナスイッチングなどであってもよい。コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。 Furthermore, the usage (RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse") may be, for example, beam management (beamManagement), codebook (CB), noncodebook (NCB), antenna switching, etc. The SRS for codebook or noncodebook usage may be used to determine a precoder for codebook-based or noncodebook-based uplink shared channel (Physical Uplink Shared Channel (PUSCH)) transmission based on the SRI.
 例えば、UEは、コードブックベース送信(codebook-based transmission)の場合、SRI、送信ランクインディケーター(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列インディケーター(Transmitted Precoding Matrix Indicator(TPMI))に基づいて、PUSCH送信のためのプリコーダ(プリコーディング行列)を決定してもよい。UEは、ノンコードブックベース送信(non-codebook-based transmission)の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。 For example, in the case of codebook-based transmission, the UE may determine a precoder (precoding matrix) for PUSCH transmission based on the SRI, a Transmitted Rank Indicator (TRI), and a Transmitted Precoding Matrix Indicator (TPMI). In the case of non-codebook-based transmission, the UE may determine a precoder for PUSCH transmission based on the SRI.
 SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。 The SRS resource information may include an SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmit comb, SRS resource mapping (e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, spatial relationship information of SRS, etc.
 SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、所定の参照信号とSRSとの間の空間関係情報を示してもよい。当該所定の参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。 The spatial relationship information of the SRS (e.g., the RRC information element "spatialRelationInfo") may indicate spatial relationship information between a specific reference signal and the SRS. The specific reference signal may be at least one of a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Channel State Information Reference Signal (CSI-RS), and an SRS (e.g., another SRS). The SS/PBCH block may be referred to as a Synchronization Signal Block (SSB).
 SRSの空間関係情報は、上記所定の参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。 The spatial relationship information of the SRS may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the above-mentioned specified reference signal.
 なお、本開示において、SSBインデックス、SSBリソースID及びSSB Resource Indicator(SSBRI)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCSI-RS Resource Indicator(CRI)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。 In addition, in this disclosure, the SSB index, SSB resource ID, and SSB Resource Indicator (SSBRI) may be read as interchangeable. Also, the CSI-RS index, CSI-RS resource ID, and CSI-RS Resource Indicator (CRI) may be read as interchangeable. Also, the SRS index, SRS resource ID, and SRI may be read as interchangeable.
 SRSの空間関係情報は、上記所定の参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。 The spatial relationship information of the SRS may include a serving cell index, a BWP index (BWP ID), etc., corresponding to the above-mentioned specified reference signal.
 UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。 When spatial relationship information regarding an SSB or CSI-RS and an SRS is configured for a certain SRS resource, the UE may transmit the SRS resource using the same spatial domain filter (spatial domain transmit filter) as the spatial domain filter for receiving the SSB or CSI-RS (spatial domain receive filter). In this case, the UE may assume that the UE receive beam for the SSB or CSI-RS and the UE transmit beam for the SRS are the same.
 UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。 When spatial relationship information regarding a certain SRS (target SRS) resource is configured between another SRS (reference SRS) and the SRS (target SRS), the UE may transmit the target SRS resource using the same spatial domain filter (spatial domain transmission filter) as the spatial domain filter (spatial domain transmission filter) for transmitting the reference SRS. In other words, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
 UEは、DCI(例えば、DCIフォーマット0_1)内の所定フィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによってスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該所定フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。 The UE may determine the spatial relationship of the PUSCH scheduled by the DCI (e.g., DCI format 0_1) based on the value of a specific field (e.g., an SRS resource identifier (SRI) field) in the DCI. Specifically, the UE may use spatial relationship information of the SRS resource (e.g., the RRC information element "spatialRelationInfo") determined based on the value of the specific field (e.g., SRI) for PUSCH transmission.
 Rel.15/16 NRでは、PUSCHに対し、コードブックベース送信を用いる場合、UEは、最大2個のSRSリソースを有する用途がコードブックのSRSリソースセットを、RRCによって設定され、当該最大2個のSRSリソースの1つをDCI(1ビットのSRIフィールド)によって指示されてもよい。PUSCHの送信ビームは、SRIフィールドによって指定されることになる。 In Rel. 15/16 NR, when using codebook-based transmission for PUSCH, the UE is configured by RRC with a codebook-use SRS resource set having up to two SRS resources, and one of the up to two SRS resources may be indicated by DCI (1-bit SRI field). The transmission beam for PUSCH is specified by the SRI field.
 UEは、プリコーディング情報及びレイヤ数フィールド(簡単のため、プリコーディング情報フィールドとも呼ぶ)に基づいて、PUSCHのためのTPMI及びレイヤ数(送信ランク)を判断してもよい。UEは、上記SRIフィールドによって指定されたSRSリソースのために設定された上位レイヤパラメータの「nrofSRS-Ports」によって示されるSRSポート数と同じポート数についての上りリンク用のコードブックから、上記TPMI、レイヤ数などに基づいてプリコーダを選択してもよい。 The UE may determine the TPMI and number of layers (transmission rank) for the PUSCH based on the precoding information and number of layers field (for simplicity, also called the precoding information field). The UE may select a precoder based on the TPMI, number of layers, etc. from an uplink codebook for the same number of SRS ports as the number of SRS ports indicated by the upper layer parameter "nrofSRS-Ports" set for the SRS resource specified by the SRI field.
 Rel.15/16 NRでは、PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、最大4個のSRSリソースを有する用途がノンコードブックのSRSリソースセットを、RRCによって設定され、当該最大4個のSRSリソースの1つ以上をDCI(2ビットのSRIフィールド)によって指示されてもよい。 In Rel. 15/16 NR, when non-codebook-based transmission is used for PUSCH, the UE is configured by RRC with a non-codebook-used SRS resource set having up to four SRS resources, and one or more of the up to four SRS resources may be indicated by DCI (2-bit SRI field).
 UEは、上記SRIフィールドに基づいて、PUSCHのためのレイヤ数(送信ランク)を決定してもよい。例えば、UEは、上記SRIフィールドによって指定されるSRSリソースの数が、PUSCHのためのレイヤ数と同じであると判断してもよい。また、UEは、上記SRSリソースのプリコーダを算出してもよい。 The UE may determine the number of layers (transmission rank) for the PUSCH based on the SRI field. For example, the UE may determine that the number of SRS resources specified by the SRI field is the same as the number of layers for the PUSCH. The UE may also calculate a precoder for the SRS resources.
 当該SRSリソース(又は当該SRSリソースが属するSRSリソースセット)に関連するCSI-RS(associated CSI-RSと呼ばれてもよい)が上位レイヤで設定されている場合、PUSCHの送信ビームは当該設定された関連するCSI-RS(の測定)に基づいて算出されてもよい。そうでない場合、PUSCHの送信ビームはSRIによって指定されてもよい。 If the CSI-RS (which may be called associated CSI-RS) associated with the SRS resource (or the SRS resource set to which the SRS resource belongs) is configured by a higher layer, the transmission beam of the PUSCH may be calculated based on (the measurement of) the configured associated CSI-RS. Otherwise, the transmission beam of the PUSCH may be specified by the SRI.
 なお、UEは、コードブックベースPUSCH送信を用いるかノンコードブックベースPUSCH送信を用いるかを、送信スキームを示す上位レイヤパラメータ「txConfig」によって設定されてもよい。当該パラメータは、「コードブック(codebook)」又は「ノンコードブック(nonCodebook)」の値を示してもよい。 The UE may be configured to use codebook-based PUSCH transmission or non-codebook-based PUSCH transmission by a higher layer parameter "txConfig" indicating a transmission scheme. The parameter may indicate a value of "codebook" or "nonCodebook."
 本開示において、コードブックベースPUSCH(コードブックベースPUSCH送信、コードブックベース送信)は、UEに送信スキームとして「コードブック」を設定された場合のPUSCHを意味してもよい。本開示において、ノンコードブックベースPUSCH(ノンコードブックベースPUSCH送信、ノンコードブックベース送信)は、UEに送信スキームとして「ノンコードブック」を設定された場合のPUSCHを意味してもよい。 In this disclosure, codebook-based PUSCH (codebook-based PUSCH transmission, codebook-based transmission) may refer to PUSCH when "codebook" is configured as the transmission scheme in the UE. In this disclosure, non-codebook-based PUSCH (non-codebook-based PUSCH transmission, non-codebook-based transmission) may refer to PUSCH when "non-codebook" is configured as the transmission scheme in the UE.
(コードブック(CB)ベース送信におけるPUSCHプリコーダの決定)
 上述したように、UEは、コードブック(CB)ベース送信の場合、SRI、TRI、TPMIなどに基づいて、PUSCH送信のためのプリコーダを決定してもよい。
(Determination of PUSCH precoder in codebook (CB) based transmission)
As mentioned above, the UE may determine a precoder for PUSCH transmission based on the SRI, TRI, TPMI, etc. in the case of codebook (CB) based transmission.
 SRI、TRI、TPMIなどは、下りリンク制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。 The SRI, TRI, TPMI, etc. may be notified to the UE using Downlink Control Information (DCI). The SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or by the parameter "srs-ResourceIndicator" included in the RRC information element "ConfiguredGrantConfig" of the configured grant PUSCH.
 TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。 TRI and TPMI may be specified by the "Precoding information and number of layers" field of the DCI.
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(例えば、RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。 The UE may report UE capability information regarding the precoder type, and the base station may set the precoder type based on the UE capability information by higher layer signaling. The UE capability information may be information on the precoder type used by the UE in PUSCH transmission (e.g., may be represented by the RRC parameter "pusch-TransCoherence").
 UEは、上位レイヤシグナリングによって通知されるPUSCH設定情報(例えば、RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(例えば、RRCパラメータ「codebookSubset」)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。 The UE may determine the precoder to be used for PUSCH transmission based on precoder type information (e.g., the RRC parameter "codebookSubset") included in PUSCH configuration information notified by higher layer signaling (e.g., the "PUSCH-Config" information element of RRC signaling). The UE may set a subset of the PMI specified by the TPMI using the codebookSubset.
 なお、プリコーダタイプは、完全コヒーレント(フルコヒーレント(full coherent)、fully coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。 The precoder type may be specified by any one of full coherent, partial coherent, and non-coherent, or a combination of at least two of these (e.g., may be expressed by parameters such as "fullyAndPartialAndNonCoherent" or "partialAndNonCoherent").
 例えば、UE能力を示すRRCパラメータ「pusch-TransCoherence」は、完全コヒーレント(fullCoherent)、部分コヒーレント(partialCoherent)又はノンコヒーレント(nonCoherent)を示してもよい。また、RRCパラメータ「codebookSubset」は、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」又は「ノンコヒーレント(nonCoherent)」を示してもよい。 For example, the RRC parameter "pusch-TransCoherence" indicating the UE capability may indicate full coherence, partial coherence, or noncoherence. The RRC parameter "codebookSubset" may indicate "fullAndPartialAndNonCoherent," "partialAndNonCoherent," or "noncoherent."
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、コヒーレントなアンテナポート毎に位相制御できる、コヒーレントなアンテナポート毎にプリコーダを適切にかけることができる、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。 Fully coherent may mean that all antenna ports used for transmission are synchronized (may be expressed as being able to align the phase, being able to control the phase for each coherent antenna port, being able to apply a precoder appropriately for each coherent antenna port, etc.). Partially coherent may mean that some of the antenna ports used for transmission are synchronized, but those some ports cannot be synchronized with other ports. Non-coherent may mean that the antenna ports used for transmission cannot be synchronized.
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。 Note that a UE that supports a fully coherent precoder type may be assumed to support partially coherent and non-coherent precoder types. A UE that supports a partially coherent precoder type may be assumed to support a non-coherent precoder type.
 本開示において、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントに関する能力を有するUE、部分コヒーレントに関する能力を有するUE、完全コヒーレントに関する能力を有するUEと互いに読み替えられてもよい。 In this disclosure, a non-coherent UE, a partially coherent UE, and a fully coherent UE may be interchangeably read as a UE having non-coherent capabilities, a UE having partially coherent capabilities, and a UE having fully coherent capabilities, respectively.
 また、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれ「ノンコヒーレント(nonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」のコードブックサブセットを上位レイヤで設定されたUEと互いに読み替えられてもよい。 Furthermore, non-coherent UE, partially coherent UE, and fully coherent UE may be interchangeably interpreted as UEs for which the codebook subsets "non-coherent," "partial and non-coherent," and "fully and partially and non-coherent" are set in a higher layer, respectively.
 ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントコードブック、部分コヒーレントコードブック及び完全コヒーレントコードブックを用いて送信できるUEと互いに読み替えられてもよい。 Non-coherent UE, partially coherent UE, and fully coherent UE may be interpreted interchangeably as UEs capable of transmitting using a non-coherent codebook, a partially coherent codebook, and a fully coherent codebook, respectively.
 本開示において、プリコーダタイプ、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどは、互いに読み替えられてもよい。 In this disclosure, precoder type, coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, etc. may be interpreted as interchangeable.
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCI(例えば、DCIフォーマット0_1。以下同様)から得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。 The UE may determine, from multiple precoders (which may also be called precoding matrices, codebooks, etc.) for CB-based transmission, a precoding matrix corresponding to a TPMI index obtained from a DCI (e.g., DCI format 0_1; same below) that schedules an UL transmission.
 図1-4は、コードブックサブセットとTPMIインデックスとの関連付けの一例を示す図である。図1は、Rel.16 NRにおける、トランスフォームプリコーディング(transform precoding)(トランスフォームプリコーダと呼ばれてもよい)が無効な場合の4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルに該当する。図1は、左から右へとTPMIインデックスの昇順に、対応するWが示されている(図2-4も同様である)。 Figure 1-4 shows an example of the association between codebook subsets and TPMI indexes. Figure 1 corresponds to a table of precoding matrices W for single-layer (rank 1) transmission using 4 antenna ports in Rel. 16 NR when transform precoding (also called transform precoder) is disabled. Figure 1 shows the corresponding Ws in ascending order of TPMI index from left to right (similar to Figures 2-4).
 図1-4に示すようなTPMIインデックスと対応するWを示す対応関係(テーブルと呼ばれてもよい)は、コードブックとも呼ばれる。このコードブックの一部が、コードブックサブセットとも呼ばれる。 The correspondence (which may be called a table) showing the TPMI index and the corresponding W as shown in Figure 1-4 is also called a codebook. A part of this codebook is also called a codebook subset.
 図1において、コードブックサブセット(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、コードブックサブセットが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。コードブックサブセットが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。 In FIG. 1, if the codebook subset is full, partial, and non-coherent, the UE is notified of a TPMI between 0 and 27 for single-layer transmission. If the codebook subset is partial and non-coherent, the UE is configured with a TPMI between 0 and 11 for single-layer transmission. If the codebook subset is non-coherent, the UE is configured with a TPMI between 0 and 3 for single-layer transmission.
 図2-4はそれぞれ、Rel.16 NRにおける、トランスフォームプリコーディングが無効な場合の4アンテナポートを用いた2-4レイヤ(ランク2-4)送信用のプリコーディング行列Wのテーブルに該当する。 Figures 2-4 correspond to tables of precoding matrices W for 2-4 layer (rank 2-4) transmission using 4 antenna ports in Rel. 16 NR when transform precoding is disabled.
 図2によれば、UEが2レイヤ送信に対して通知されるTPMIは、0から21まで(コードブックサブセットが完全及び部分及びノンコヒーレント)、0から13まで(プリコーダタイプが部分及びノンコヒーレント)又は0から5まで(プリコーダタイプがノンコヒーレント)である。 According to Figure 2, the TPMIs that the UE is notified of for layer 2 transmission are 0 to 21 (codebook subsets are full, partial and non-coherent), 0 to 13 (precoder type is partial and non-coherent) or 0 to 5 (precoder type is non-coherent).
 図3によれば、UEが3レイヤ送信に対して通知されるTPMIは、0から6まで(コードブックサブセットが完全及び部分及びノンコヒーレント)、0から2まで(プリコーダタイプが部分及びノンコヒーレント)又は0(プリコーダタイプがノンコヒーレント)である。 According to Figure 3, the TPMI that the UE is notified of for layer 3 transmission is 0 to 6 (codebook subset full, partial and non-coherent), 0 to 2 (precoder type partial and non-coherent) or 0 (precoder type non-coherent).
 図4によれば、UEが4レイヤ送信に対して通知されるTPMIは、0から4まで(コードブックサブセットが完全及び部分及びノンコヒーレント)、0から2まで(プリコーダタイプが部分及びノンコヒーレント)又は0(プリコーダタイプがノンコヒーレント)である。 According to Figure 4, the TPMI that the UE is notified of for layer 4 transmission is 0 to 4 (codebook subset full, partial and non-coherent), 0 to 2 (precoder type partial and non-coherent) or 0 (precoder type non-coherent).
 なお、列ごとに要素が1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。列ごとに要素が特定の数(1つより大きいが、列における全ての要素数ではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。列ごとに要素が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。 Note that a precoding matrix in which only one element per column is non-zero may be called a non-coherent codebook. A precoding matrix in which a certain number of elements per column (greater than one, but not all elements in the column) are non-zero may be called a partially coherent codebook. A precoding matrix in which all elements per column are non-zero may be called a fully coherent codebook.
 ノンコヒーレントコードブック及び部分コヒーレントコードブックは、アンテナ選択プリコーダ(antenna selection precoder)、アンテナポート選択プリコーダなどと呼ばれてもよい。例えば、ノンコヒーレントコードブック(ノンコヒーレントプリコーダ)は、1ポート選択プリコーダ、1ポートのポート選択プリコーダ(1-port port selection precoder)などと呼ばれてもよい。また、部分コヒーレントコードブック(部分コヒーレントプリコーダ)は、xポート(xは1より大きい整数)選択プリコーダ、xポートのポート選択プリコーダなどと呼ばれてもよい。完全コヒーレントコードブックは、非アンテナ選択プリコーダ(non-antenna selection precoder)、全ポートプリコーダなどと呼ばれてもよい。 The noncoherent codebook and the partially coherent codebook may be called an antenna selection precoder, an antenna port selection precoder, etc. For example, the noncoherent codebook (noncoherent precoder) may be called a 1-port selection precoder, a 1-port port selection precoder, etc. Furthermore, the partially coherent codebook (partially coherent precoder) may be called an x-port (x is an integer greater than 1) selection precoder, an x-port port selection precoder, etc. The fully coherent codebook may be called a non-antenna selection precoder, an all-port precoder, etc.
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。 In the present disclosure, a partially coherent codebook may refer to a codebook (precoding matrix) corresponding to a TPMI specified by DCI for codebook-based transmission by a UE configured with a partially coherent codebook subset (e.g., RRC parameter "codebookSubset" = "partialAndNonCoherent"), excluding a codebook corresponding to a TPMI specified by DCI for a UE configured with a non-coherent codebook subset (e.g., RRC parameter "codebookSubset" = "nonCoherent") (i.e., in the case of single-layer transmission with four antenna ports, the codebook for TPMI = 4 to 11).
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。 In the present disclosure, a fully coherent codebook may refer to a codebook (precoding matrix) corresponding to a TPMI specified by DCI for codebook-based transmission by a UE configured with a fully coherent codebook subset (e.g., RRC parameter "codebookSubset" = "fullyAndPartialAndNonCoherent"), excluding a codebook corresponding to a TPMI specified by DCI for a UE configured with a partially coherent codebook subset (e.g., RRC parameter "codebookSubset" = "partialAndNonCoherent") (i.e., in the case of single-layer transmission with four antenna ports, the codebook for TPMI = 12 to 27).
(フルパワーUL送信)
 Rel.15 NRの仕様によれば、PUSCHの送信電力は各アンテナポートに均等に割り当てられる。UEが複数のポートを用いてコードブックベース送信する場合に、一部のコードブック(具体的には、部分コヒーレント/ノンコヒーレントコードブック)を利用すると、シングルポートの場合と比べて送信電力が小さくなる(フルパワー送信ができない)場合がある。
(Full power UL transmission)
According to the Rel.15 NR specification, the transmission power of the PUSCH is allocated equally to each antenna port. When a UE uses multiple ports for codebook-based transmission, if a part of the codebook (specifically, a partially coherent/non-coherent codebook) is used, the transmission power may be smaller (full power transmission may not be possible) than in the case of a single port.
 例えば、図1のテーブルでは、インデックス12から27に該当する完全コヒーレントコードブックの送信電力を1(=(1/2)*4)とおくと、インデックス4から11に該当する部分コヒーレントコードブックの送信電力は1/2(=(1/2)*2)であり、インデックス0から3に該当するノンコヒーレントコードブックの送信電力は1/4(=(1/2)*1)である。 For example, in the table of FIG. 1, if the transmission power of the fully coherent codebook corresponding to indexes 12 to 27 is 1 (=(1/2) 2 *4), the transmission power of the partially coherent codebook corresponding to indexes 4 to 11 is 1/2 (=(1/2) 2 *2), and the transmission power of the noncoherent codebook corresponding to indexes 0 to 3 is 1/4 (=(1/2) 2 *1).
 コードブックを用いる場合でも、フルパワーUL送信を適切に行うことが好ましい。Rel.16 NRでは、複数のパワーアンプ(Power Amplifier(PA))を用いたコードブックベースのフルパワーUL送信に関連する以下のUE能力1-3が規定された:
・UE能力1:各送信チェイン(Tx chain)において最大定格電力を出力可能なPA(フルレイテッドPA(full rated PA))をサポートする(又は有する)、
・UE能力2:送信チェインのいずれもフルレイテッドPAをサポートしない、
・UE能力3:送信チェインのサブセット(一部)がフルレイテッドPAをサポートする。
It is preferable to perform full power UL transmission properly even when a codebook is used. In Rel. 16 NR, the following UE capabilities 1-3 related to codebook-based full power UL transmission with multiple power amplifiers (PAs) were specified:
UE capability 1: Supports (or has) a PA (full rated PA) capable of outputting the maximum rated power in each Tx chain;
UE Capability 2: None of the transmit chains support fully rated PA;
UE Capability 3: A subset of the transmit chain supports fully rated PA.
 なお、当該UE能力1-3の少なくとも1つを有するUEは、UL送信のフルパワーをサポートしていることを意味してもよい。UEは、UE能力1-3とは別に、ULフルパワー送信能力をサポートしていることを示す能力情報を、ネットワーク(Network(NW))(例えば、基地局)に報告してもよい。UEは、フルパワー送信をサポートすることをネットワークから設定されてもよい。 Note that a UE having at least one of the UE capabilities 1-3 may mean that it supports full power UL transmission. The UE may report capability information indicating that it supports UL full power transmission capability to the network (NW) (e.g., a base station) in addition to the UE capabilities 1-3. The UE may be configured by the network to support full power transmission.
 図5は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。図5は、UEの構成としてPA及び送信アンテナポート(送信アンテナで読み替えられてもよい)のみを簡略的に示している。なお、PA及び送信アンテナポートの数がそれぞれ4である例を示すが、これに限られない。 Figure 5 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission. Figure 5 shows only the PA and transmit antenna ports (which may be read as transmit antennas) as the UE configuration in a simplified manner. Note that an example is shown in which the number of PAs and transmit antenna ports is four, but this is not limited to this.
 なお、PはUE最大出力電力[dBm]を示し、PPAはPA最大出力電力[dBm]を示す。なお、Pは、例えばパワークラス3のUEでは23dBm、パワークラス2のUEでは26dBmであってもよい。本開示ではPPA≦Pを想定するが、PPA>Pの場合に本開示の実施形態が適用されてもよい。 Note that P indicates the UE maximum output power [dBm], and P PA indicates the PA maximum output power [dBm]. Note that P may be, for example, 23 dBm for a UE of power class 3, and 26 dBm for a UE of power class 2. In the present disclosure, P PA ≦P is assumed, but the embodiment of the present disclosure may be applied when P PA >P.
 UE能力1の構成は、実装が高コストになると想定されるが、1つ以上の任意のアンテナポートを用いてフルパワー送信が可能である。なお、UE能力1は、モード0をサポートする能力を示してもよい。 UE capability 1 is expected to be a high-cost configuration to implement, but allows full-power transmission using any one or more antenna ports. Note that UE capability 1 may also indicate the ability to support mode 0.
 UE能力2の構成は、ノンフルレイテッドPAのみを含み、安価に実装できると期待されるが、アンテナポートを1つだけ用いてもフルパワー送信できないため、各PAに入力される信号の位相、振幅などを制御することが求められる。 The UE capability 2 configuration includes only non-fully-rated PAs and is expected to be inexpensive to implement, but because full power transmission is not possible using only one antenna port, it is necessary to control the phase, amplitude, etc. of the signal input to each PA.
 UE能力3の構成は、UE能力1の構成及びUE能力2の構成の中間である。フルパワー送信可能なアンテナポート(本例では送信アンテナ#0及び#2)と可能でないアンテナポート(本例では送信アンテナ#1及び#3)が混在している。 The UE capability 3 configuration is intermediate between the UE capability 1 configuration and the UE capability 2 configuration. There is a mixture of antenna ports capable of full power transmission (transmit antennas #0 and #2 in this example) and antenna ports that cannot (transmit antennas #1 and #3 in this example).
 なお、UE能力3のフルパワー送信可能なアンテナポートのインデックス、数などは、これに限定されない。また、本例では、ノンフルレイテッドPAのPPA=P/2と想定するが、PPAの値はこれに限られない。 Note that the indexes and the number of antenna ports capable of full power transmission in UE capability 3 are not limited to these. In addition, in this example, it is assumed that P PA =P/2 for non-fully-rated PA, but the value of P PA is not limited to this.
 ところで、UE能力2又は3をサポートするUEが、フルパワー送信の動作について2つのモード(モード1、2)の少なくとも一方を設定されることが検討されている。 Incidentally, it is being considered that a UE that supports UE capability 2 or 3 will be configured to operate in at least one of two modes (modes 1 and 2) for full power transmission.
 ここで、モード1は、用途(usage)が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、同じSRSポート数を有するようにUEが設定されるモード(例えば、第1のフルパワー送信モードと呼ばれてもよい)であってもよい。モード1で動作するUEは、全アンテナポートを用いて(非アンテナ選択プリコーダを用いて)フルパワー送信してもよい。 Here, mode 1 may be a mode (e.g., may be referred to as a first full power transmission mode) in which the UE is configured such that one or more SRS resources included in one SRS resource set of usage "codebook" have the same SRS port number. A UE operating in mode 1 may transmit full power using all antenna ports (with a non-antenna selection precoder).
 モード1で動作するUEは、フルパワー送信を実現するための1レイヤ内のポートを結合するTPMIのサブセットを用いるように、ネットワークから設定されてもよい。Rel.15 NRで定義される「fullyAndPartialAndNonCoherent」に対応するTPMIのプリコーダを含み、フルパワー送信に利用できないランク値にのみ、新たなコードブックサブセットが導入されてもよい。 UEs operating in Mode 1 may be configured by the network to use a subset of TPMIs that combine ports within one layer to achieve full power transmission. New codebook subsets may be introduced only for rank values that are not available for full power transmission, including precoders for TPMIs that correspond to "fullyAndPartialAndNonCoherent" as defined in Rel. 15 NR.
 一方、モード2は、用途(usage)が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、異なるSRSポート数を有するようにUEが設定されるモード(例えば、第2のフルパワー送信モードと呼ばれてもよい)であってもよい。モード2で動作するUEは、全アンテナポートではなく一部のアンテナポートを用いてフルパワー送信してもよい。 On the other hand, mode 2 may be a mode (e.g., may be called a second full power transmission mode) in which the UE is configured such that one or more SRS resources included in one SRS resource set of usage "codebook" have different SRS port numbers. A UE operating in mode 2 may transmit at full power using some antenna ports rather than all antenna ports.
 モード2で動作するUEは、アンテナ仮想化が用いられるか否かに関わらず、PUSCH及びSRSを同じ方法で送信してもよい。モード2のUEに対しては、1ポートより多いSRSリソースをサポートするために、フルパワー送信を実現するためのTPMIのセットが通知されてもよい。モード2の場合、1つのSRSリソースセットにつき、2又は3個のSRSリソースが設定されてもよい(Rel.15 NRでは、最大2個)。 UEs operating in Mode 2 may transmit PUSCH and SRS in the same manner, regardless of whether antenna virtualization is used or not. Mode 2 UEs may be notified of a set of TPMIs to achieve full power transmission to support SRS resources for more than one port. For Mode 2, two or three SRS resources may be configured per SRS resource set (maximum two in Rel. 15 NR).
 モード1はモード2に比べて、必要なSRIフィールドのサイズが小さくて良いという利点がある(1SRSリソースでフルパワー送信が可能である)。 Compared to mode 2, mode 1 has the advantage that the required SRI field size is smaller (full power transmission is possible with one SRS resource).
 モード2はモード1に比べて、シングルポート送信とマルチポート送信をDCIによって動的に切り替えできるという利点がある。また、一部のアンテナポートでフルパワー送信できるため、例えばフルレイテッドPAを有するアンテナのみを用いてフルパワー送信したり、コヒーレントなアンテナのみを用いてフルパワー送信したりできる。 Compared to mode 1, mode 2 has the advantage that it can dynamically switch between single-port transmission and multi-port transmission using DCI. In addition, since full-power transmission is possible on some antenna ports, it is possible to transmit at full power using only antennas with fully-rated PA, or only coherent antennas, for example.
 以上のモード0、1及び2は、それぞれフルパワーモード0、1、2と呼ばれてもよい。フルパワーモード0は、単にフルパワーと呼ばれることもある。 The above modes 0, 1, and 2 may be referred to as full power modes 0, 1, and 2, respectively. Full power mode 0 may also be referred to simply as full power.
 Rel.16 NRでは、UEは、モード0をサポートすることを示すUE能力情報(ul-FullPwrMode-r16)、モード1をサポートすることを示すUE能力情報(ul-FullPwrMode1-r16)及びモード2をサポートすることを示すUE能力情報(ul-FullPwrMode2-MaxSRS-ResInSet-r16、ul-FullPwrMode2-SRSConfig-diffNumSRSPorts-r16など)の1つ又は複数を報告してもよい。 In Rel. 16 NR, a UE may report one or more of the following UE capability information indicating support for mode 0 (ul-FullPwrMode-r16), UE capability information indicating support for mode 1 (ul-FullPwrMode1-r16), and UE capability information indicating support for mode 2 (ul-FullPwrMode2-MaxSRS-ResInSet-r16, ul-FullPwrMode2-SRSConfig-diffNumSRSPorts-r16, etc.).
 また、UEは、モード2に関連してフルパワー送信が可能なTPMIセット(TPMIグループと呼ばれてもよい)に関するUE能力情報(ul-FullPwrMode2-TPMIGroup-r16。TPMIグループ能力情報と呼ばれてもよい)を報告したりすることが検討されている。 It is also being considered that the UE will report UE capability information (ul-FullPwrMode2-TPMIGroup-r16, which may be referred to as TPMI group capability information) regarding a TPMI set (which may be referred to as a TPMI group) capable of full power transmission in relation to mode 2.
 図6A及び6Bは、TPMIグループの一例を示す図である。図6Aは、送信アンテナポート数が4の場合の、TPMIグループに対応する、PA構成及び各ランクのためのプリコーディング行列(プリコーダ)を示す。同じランクに関してフルパワー送信可能なプリコーダが複数ある場合、当該ランクに関しては当該複数のプリコーダのいずれでもフルパワー送信が可能である。各行列における列の数は、レイヤ数を表してもよい。 Figures 6A and 6B are diagrams showing an example of a TPMI group. Figure 6A shows a PA configuration and a precoding matrix (precoder) for each rank corresponding to the TPMI group when the number of transmit antenna ports is 4. If there are multiple precoders capable of full power transmission for the same rank, full power transmission is possible for any of the multiple precoders for that rank. The number of columns in each matrix may represent the number of layers.
 図6Bは、4送信アンテナポートのUEに想定されるTPMIグループの一例を示す。4送信アンテナポートのノンコヒーレントUEは、G0-G3のいずれかに対応し得る。また、4送信アンテナポートの部分コヒーレントUEは、G0-G6のいずれかに対応し得る。 Figure 6B shows an example of TPMI groups assumed for a UE with four transmit antenna ports. A non-coherent UE with four transmit antenna ports may correspond to any of G0-G3. A partially coherent UE with four transmit antenna ports may correspond to any of G0-G6.
 なお、UEは、上位レイヤシグナリング(例えば、RRCシグナリング)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせに基づいて、PUSCH送信に用いるモードを決定してもよい。言い換えると、UEは、PUSCH送信のモードを、上位レイヤパラメータ(例えば、PUSCH設定情報(PUSCH-Config情報要素))におけるULフルパワー送信モード情報(ul-FullPowerTransmission-r16)によって設定又は指示されてもよい。 The UE may determine the mode to be used for PUSCH transmission based on higher layer signaling (e.g., RRC signaling), physical layer signaling (e.g., DCI), or a combination of these. In other words, the UE may set or indicate the mode of PUSCH transmission by UL full power transmission mode information (ul-FullPowerTransmission-r16) in higher layer parameters (e.g., PUSCH configuration information (PUSCH-Config information element)).
 UEに設定されるULフルパワー送信モード情報がfullpowerを示す場合、当該UEはモード0に従ってPUSCHフルパワー送信を行ってもよい。UEに設定されるULフルパワー送信モード情報がfullpowerMode1を示す場合、当該UEはモード1に従ってPUSCHフルパワー送信を行ってもよい。UEに設定されるULフルパワー送信モード情報がfullpowerMode2である場合、当該UEはモード2に従ってPUSCHフルパワー送信を行ってもよい。 If the UL full power transmission mode information set in the UE indicates fullpower, the UE may perform PUSCH full power transmission according to mode 0. If the UL full power transmission mode information set in the UE indicates fullpowerMode1, the UE may perform PUSCH full power transmission according to mode 1. If the UL full power transmission mode information set in the UE is fullpowerMode2, the UE may perform PUSCH full power transmission according to mode 2.
 PUSCH設定情報に含まれるコードブックサブセットがノンコヒーレント又は部分コヒーレントであり(RRCパラメータ「codebookSubset」=「nonCoherent」又は「partialAndNonCoherent」)、当該PUSCH設定情報にフルパワー送信を示すパラメータULフルパワー送信モード情報(ul-FullPowerTransmission-r16)が含まれる場合、UEは、パスロス、送信電力制御(Transmit Power Control(TPC))コマンドなどに基づいて決定されるPUSCH送信電力のリニア値を、ある係数sによってスケール(例えば、乗算、除算)してもよい。当該係数は、パワースケーリング係数と呼ばれてもよい。 If the codebook subset included in the PUSCH configuration information is noncoherent or partially coherent (RRC parameter "codebookSubset" = "nonCoherent" or "partialAndNonCoherent") and the PUSCH configuration information includes parameter UL full power transmission mode information (ul-FullPowerTransmission-r16) indicating full power transmission, the UE may scale (e.g., multiply or divide) the linear value of the PUSCH transmission power determined based on the path loss, Transmit Power Control (TPC) commands, etc., by a certain coefficient s. This coefficient may be called a power scaling coefficient.
 UEは、上記係数sを用いて上記PUSCH送信電力のリニア値をスケールした値を、非ゼロPUSCHアンテナポートにわたって均等に分けてもよい。UEは、決定(又は想定)した係数sをプリコーディング行列に適用して、PUSCHをフルパワー送信してもよい。 The UE may scale the linear value of the PUSCH transmission power using the factor s and divide the scaled value evenly across the non-zero PUSCH antenna ports. The UE may apply the determined (or assumed) factor s to the precoding matrix to transmit the PUSCH at full power.
 例えば、ULフルパワー送信モード情報によってモード1が設定されるUE(モード1 UEとも呼ぶ)は、用途がコードブックのSRSリソースセットの各SRSリソースが1より多いSRSポートを有する場合、s=(非ゼロPUSCHアンテナポート(non-zero PUSCH antenna port)の数/1つのSRSリソースにおいて当該UEによってサポートされる最大のSRSポート数)と導出してもよい。 For example, a UE configured with mode 1 by the UL full power transmission mode information (also referred to as a mode 1 UE) may derive s = (number of non-zero PUSCH antenna ports/maximum number of SRS ports supported by the UE in one SRS resource) when each SRS resource in the SRS resource set whose usage is codebook has more than one SRS port.
 ここで、非ゼロPUSCHアンテナポートとは、非ゼロPUSCH送信電力を有するアンテナポートを意味してもよく、プリコーディング行列(コードブックサブセット)によって送信が示されるアンテナポートのうち、値がゼロでない(例えば、1、j)アンテナポートを意味してもよい。 Here, a non-zero PUSCH antenna port may refer to an antenna port that has a non-zero PUSCH transmission power, or may refer to an antenna port whose value is not zero (e.g., 1, j) among the antenna ports whose transmission is indicated by the precoding matrix (codebook subset).
 例えば、モード1 UEが、図4の4ポート1レイヤ送信を行うことをDCIによって指定されるケースを考える。Rel.16 NRでは、当該モード1 UEがノンコヒーレントUEである場合、TPMIインデックス=13を指定されてもよく、この場合フルパワー送信を実施でき、また、当該モード1 UEが部分コヒーレントUEである場合、TPMIインデックス=12-15を指定されてもよく、この場合フルパワー送信を実施できる。 For example, consider the case where a mode 1 UE is specified by DCI to perform 4-port 1-layer transmission as shown in Figure 4. In Rel. 16 NR, if the mode 1 UE is a non-coherent UE, it may be specified with a TPMI index of 13, in which case it can perform full power transmission, and if the mode 1 UE is a partially coherent UE, it may be specified with a TPMI index of 12-15, in which case it can perform full power transmission.
 ULフルパワー送信モード情報によってモード2が設定されるUE(モード2 UEとも呼ぶ)は、上記TPMIグループとして報告したTPMI(フルパワーTPMIと呼ばれてもよい)に対応するプリコーダについて、s=1を適用してもよい。例えば、図6BのG4を報告した部分コヒーレントのモード2 UEが、図4の4ポート1レイヤ送信を行うことをDCIによって指定されるケースを考える。 A UE in which mode 2 is set by the UL full power transmission mode information (also called a mode 2 UE) may apply s=1 to the precoder corresponding to the TPMI (which may also be called a full power TPMI) reported as the above TPMI group. For example, consider a case in which a partially coherent mode 2 UE that reports G4 in FIG. 6B is instructed by DCI to perform 4-port 1-layer transmission in FIG. 4.
 このケースにおいて、図6AのG4についてのフルパワーTPMIに対応するTPMIインデックス4-7のいずれかが当該DCIによって指定される場合には、モード2 UEは、TPMIインデックス4-7に対応するWの振幅の値(Wの係数部分(1/2))として(言い換えると、1/2の代わりに)、1/√(Wの非ゼロPUSCHアンテナポート数)(この場合、1/√2)を適用する。また、上記s=1を適用する。これにより、モード2 UEは、TPMIインデックス4-7についてフルパワー送信を実施できる。 In this case, if any of TPMI indexes 4-7 corresponding to the full power TPMI for G4 in FIG. 6A is specified by the DCI, the Mode 2 UE applies 1/√(number of non-zero PUSCH antenna ports of W) (1/√2 in this case) as the amplitude value of W (coefficient part (1/2) of W) corresponding to TPMI index 4-7 (in other words, instead of 1/2). Also, apply s=1 above. This allows the Mode 2 UE to perform full power transmission for TPMI indexes 4-7.
 また、モード2 UEは、上記フルパワーTPMI以外の残りのTPMI(remaining TPMI)に対応するプリコーダについては、s=(非ゼロPUSCHアンテナポートの数/SRSポート数)と導出してもよい。ここで、当該SRSポート数は、もし用途がコードブックのSRSリソースセットに1つだけSRSリソースが設定される場合には、当該SRSリソースに関連するSRSポート数であり、もし用途がコードブックのSRSリソースセットに1つより多いSRSリソースが設定される場合には、SRIによって示されるSRSリソースのSRSポート数に該当してもよい。上記図6BのG4を報告した部分コヒーレントのモード2 UEが、図4の4ポート1レイヤ送信を行うケースでは、TPMIインデックス8-11については(Rel.15と同様に)ノンフルパワー送信を実施できる。 In addition, for the precoder corresponding to the remaining TPMI other than the full power TPMI, the mode 2 UE may derive s = (number of non-zero PUSCH antenna ports/number of SRS ports). Here, the number of SRS ports is the number of SRS ports associated with the SRS resource if only one SRS resource is configured in the SRS resource set of the codebook, and may correspond to the number of SRS ports of the SRS resource indicated by the SRI if more than one SRS resource is configured in the SRS resource set of the codebook. In the case where the partially coherent mode 2 UE that reported G4 in Figure 6B performs 4-port 1-layer transmission in Figure 4, non-full power transmission can be performed for TPMI indexes 8-11 (similar to Rel. 15).
 ULフルパワー送信モード情報によってモード0が設定されるUE(モード0 UEとも呼ぶ)は、s=1を適用してもよい。 UEs for which mode 0 is configured by the UL full power transmission mode information (also called mode 0 UEs) may apply s=1.
 例えば、モード0 UEが、図4の4ポート1レイヤ送信を行うことをDCIによって指定されるケースを考える。Rel.16 NRでは、当該モード0 UEがノンコヒーレント/部分コヒーレントプリコーダ(TPMIインデックス=0-11)のいずれかがDCIによって指定される場合には、対応するWの振幅の値(Wの係数部分(1/2))として、1/√(Wの非ゼロPUSCHアンテナポート数)(ノンコヒーレントプリコーダの場合1であり、部分コヒーレントプリコーダの場合1/√2である)を適用する。また、上記s=1を適用する。 For example, consider the case where a mode 0 UE is specified by DCI to perform 4-port 1-layer transmission as shown in Figure 4. In Rel. 16 NR, if the mode 0 UE is specified by DCI to use either a noncoherent/partially coherent precoder (TPMI index = 0-11), 1/√(number of non-zero PUSCH antenna ports of W) (1 for a noncoherent precoder and 1/√2 for a partially coherent precoder) is applied as the corresponding amplitude value of W (coefficient part of W (1/2)). In addition, the above s = 1 is applied.
(プリコーディング情報フィールド)
 上述したように、UEは、PUSCHをスケジュールするDCI(例えば、DCIフォーマット0_1/0_2)のプリコーディング情報フィールドに基づいて、当該PUSCHのためのTPMI及びレイヤ数(送信ランク)を判断してもよい。
(Precoding Information Field)
As described above, the UE may determine the TPMI and number of layers (transmission rank) for a PUSCH based on the precoding information field of a DCI (e.g., DCI format 0_1/0_2) that schedules the PUSCH.
 コードブックベースPUSCHに関して、プリコーディング情報フィールドのビット数は、PUSCHのためのトランスフォームプリコーダの有効無効の設定(例えば、上位レイヤパラメータtransformPrecoder)、PUSCHのためのコードブックサブセットの設定(例えば、上位レイヤパラメータcodebookSubset)、PUSCHのための最大レイヤ数の設定(例えば、上位レイヤパラメータmaxRank)、PUSCHのための上りリンクフルパワー送信の設定(例えば、上位レイヤパラメータul-FullPowerTransmission)、PUSCHのためのアンテナポート数などに基づいて判断されてもよい(変動してもよい)。 For codebook-based PUSCH, the number of bits in the precoding information field may be determined (or may vary) based on the setting of whether to enable or disable the transform precoder for PUSCH (e.g., upper layer parameter transformPrecoder), the setting of the codebook subset for PUSCH (e.g., upper layer parameter codebookSubset), the setting of the maximum number of layers for PUSCH (e.g., upper layer parameter maxRank), the setting of uplink full power transmission for PUSCH (e.g., upper layer parameter ul-FullPowerTransmission), the number of antenna ports for PUSCH, etc.
 図7は、Rel.16 NRにおける、プリコーディング情報及びレイヤ数のフィールド値と、レイヤ数及びTPMIとの対応関係の一例を示す図である。本例の対応関係は、トランスフォームプリコーダが無効に設定され、最大ランク(maxRank)が2、3又は4に設定され、かつ上りリンクフルパワー送信が設定されない又はフルパワーモード2(fullpowerMode2)に設定される又はフルパワー(fullpower)に設定される場合の、4アンテナポート用の対応関係であるが、これに限られない。なお、図示される「インデックスにマップされるビットフィールド」がプリコーディング情報及びレイヤ数のフィールド値を示すことは当業者であれば当然理解できる。 Figure 7 is a diagram showing an example of the correspondence between the field values of the precoding information and the number of layers, and the number of layers and TPMI in Rel. 16 NR. The correspondence in this example is for four antenna ports when the transform precoder is disabled, the maximum rank (maxRank) is set to 2, 3 or 4, and uplink full power transmission is not set or is set to full power mode 2 (fullpowerMode2) or is set to full power (fullpower), but is not limited to this. Note that it will be obvious to those skilled in the art that the illustrated "bit field mapped to index" indicates the field values of the precoding information and the number of layers.
 図7では、プリコーディング情報フィールドは、UEに完全コヒーレント(fullyAndPartialAndNonCoherent)のコードブックサブセットが設定される場合には6ビット、部分コヒーレント(partialAndNonCoherent)のコードブックサブセットが設定される場合には5ビット、ノンコヒーレント(nonCoherent)のコードブックサブセットが設定される場合には4ビットである。 In FIG. 7, the precoding information field is 6 bits when a fully coherent (fullyAndPartialAndNonCoherent) codebook subset is configured in the UE, 5 bits when a partially coherent (partialAndNonCoherent) codebook subset is configured, and 4 bits when a noncoherent (nonCoherent) codebook subset is configured.
 なお、図7に示されるように、あるプリコーディング情報フィールドの値に対応するレイヤ数及びTPMIは、UEに設定されるコードブックサブセットに関わらず同じ(共通)であってもよい。例えば、図7において、プリコーディング情報フィールドの値=0-11が示すレイヤ数及びTPMIは、完全コヒーレント(fullyAndPartialAndNonCoherent)、部分コヒーレント(partialAndNonCoherent)及びノンコヒーレント(nonCoherent)のコードブックサブセットについて同じであってもよい。また、図7において、プリコーディング情報フィールドの値=0-31が示すレイヤ数及びTPMIは、完全コヒーレント(fullyAndPartialAndNonCoherent)及び部分コヒーレント(partialAndNonCoherent)のコードブックサブセットについて同じであってもよい。 Note that, as shown in FIG. 7, the number of layers and TPMI corresponding to a certain precoding information field value may be the same (common) regardless of the codebook subset configured in the UE. For example, in FIG. 7, the number of layers and TPMI indicated by the precoding information field value = 0-11 may be the same for the fully coherent (fullyAndPartialAndNonCoherent), partial coherent (partialAndNonCoherent) and noncoherent codebook subsets. Also, in FIG. 7, the number of layers and TPMI indicated by the precoding information field value = 0-31 may be the same for the fully coherent (fullyAndPartialAndNonCoherent) and partial coherent (partialAndNonCoherent) codebook subsets.
 なお、プリコーディング情報フィールドは、ノンコードブックベースPUSCHに関しては0ビットであってもよい。また、プリコーディング情報フィールドは、1アンテナポートのコードブックベースPUSCHに関しては0ビットであってもよい。 Note that the precoding information field may be 0 bits for a non-codebook-based PUSCH. Also, the precoding information field may be 0 bits for a codebook-based PUSCH with one antenna port.
(4より多いアンテナポートの送信)
 Rel.15/16 NRでは、4レイヤまでの上りリンク(Uplink(UL))Multi Input Multi Output(MIMO)送信がサポートされる。将来の無線通信システムについて、より高いスペクトル効率を実現するために、4より大きいレイヤ数のUL送信をサポートすることが検討されている。例えば、Rel.18 NRに向けて、6アンテナポートを用いた最大6ランク送信、8アンテナポートを用いた最大6又は8ランク送信などが検討されている。
(Transmission on more than four antenna ports)
In Rel. 15/16 NR, up to four layers of uplink (UL) Multi-Input Multi-Output (MIMO) transmission are supported. For future wireless communication systems, support for UL transmission with a number of layers greater than four is being considered in order to achieve higher spectral efficiency. For example, for Rel. 18 NR, maximum 6-rank transmission using 6 antenna ports, maximum 6- or 8-rank transmission using 8 antenna ports, etc. are being considered.
 図8は、8アンテナポートのアンテナレイアウトの一例を示す図である。Ngはアンテナグループ数である。Mは、第1の次元のアンテナ(又はアンテナ素子)の数であり、Nは、第2の次元のアンテナ(又はアンテナ素子)数である。第1の次元、第2の次元は、例えば水平方向、垂直方向である。Pは、偏波面の数である。P=2の場合交差偏波アンテナとなる。 Figure 8 is a diagram showing an example of an antenna layout with 8 antenna ports. Ng is the number of antenna groups. M is the number of antennas (or antenna elements) in the first dimension, and N is the number of antennas (or antenna elements) in the second dimension. The first and second dimensions are, for example, the horizontal and vertical directions. P is the number of polarization planes. When P=2, it becomes a cross-polarized antenna.
 アンテナグループは、コヒーレントグループと呼ばれてもよい。コヒーレントグループは、1つ以上のコヒーレントなポートを含んでもよい。例えば、部分コヒーレントUEは、複数のコヒーレントグループを有してもよい。コヒーレントグループ内のアンテナポート間はコヒーレントであってもよい。異なるコヒーレントグループ間のアンテナポート間はコヒーレントでなくてもよい。 An antenna group may be referred to as a coherent group. A coherent group may include one or more coherent ports. For example, a partially coherent UE may have multiple coherent groups. Antenna ports within a coherent group may be coherent. Antenna ports between different coherent groups may not be coherent.
 各コヒーレントグループは、それぞれ異なる送信パネル/送信チェイン(Tx chain)/SRSリソースセット/RSリソースセット/空間関係情報(spatial relation info)/joint Transmission Configuration Indication state(ジョイントTCI状態)/UL TCI状態/受信TRPに対応しても良い。ここで、SRSリソースセットは、特に用途がコードブック又はノンコードブックのSRSリソースセットに該当してもよい。また、各コヒーレントグループは、それぞれ別の受信TRPに対応しても良い。また、コヒーレントグループは、コヒーレントアンテナグループ、ポートグループ、アンテナセットなどと呼ばれても良い。 Each coherent group may correspond to a different transmit panel/transmit chain/SRS resource set/RS resource set/spatial relation info/joint Transmission Configuration Indication state/UL TCI state/received TRP. Here, the SRS resource set may specifically correspond to an SRS resource set for codebook or non-codebook use. Also, each coherent group may correspond to a different received TRP. Also, the coherent groups may be called coherent antenna groups, port groups, antenna sets, etc.
 UEは、UE能力情報として、サポートするアンテナグループ/アンテナ配置情報/コヒーレント数を報告してもよい。また、UEは、上位レイヤシグナリングによって、コヒーレントグループ(例えば、コヒーレントグループの数、各コヒーレントグループに含まれるポート数)を設定されてもよい。 The UE may report the supported antenna groups/antenna configuration information/coherent number as UE capability information. The UE may also configure the coherent groups (e.g., the number of coherent groups, the number of ports included in each coherent group) by higher layer signaling.
 なお、アンテナレイアウトは、図8に示す例には限定されない。例えば、アンテナが配置されるパネルの数、パネルの向き、各パネル/アンテナのコヒーレンシー(完全コヒーレント、部分コヒーレント、ノンコヒーレントなど)、特定の方向(水平、垂直など)のアンテナ配列、偏波アンテナ構成(単一偏波、交差偏波、偏波面の数など)は、本例とは異なってもよい。dG-H、dG-Vは、それぞれ隣接するアンテナグループの中心間の水平間隔、垂直間隔を表す。 Note that the antenna layout is not limited to the example shown in Figure 8. For example, the number of panels on which the antennas are arranged, the orientation of the panels, the coherency of each panel/antenna (fully coherent, partially coherent, non-coherent, etc.), the antenna arrangement in a particular direction (horizontal, vertical, etc.), and the polarized antenna configuration (single polarization, cross polarization, number of polarization planes, etc.) may differ from this example. dG-H and dG-V represent the horizontal and vertical spacing between the centers of adjacent antenna groups, respectively.
 また、Rel.15/16 NRでは、1つのPUSCHにおける1つのコードワード(Codeword(CW))の送信がサポートされていたところ、Rel.18 NRにむけて、UEが、1つのPUSCHにおける1つより多いCWを送信することが検討されている。例えば、ランク5-8のための2CW送信のサポート、ランク2-8のための2CW送信のサポートなどが検討されている。 In addition, while Rel. 15/16 NR supported the transmission of one codeword (CW) in one PUSCH, for Rel. 18 NR, it is being considered that a UE will transmit more than one CW in one PUSCH. For example, support for 2CW transmission for ranks 5-8, and support for 2CW transmission for ranks 2-8 are being considered.
 また、Rel.15及びRel.16のUEにおいては、ある時間においては1つのみのビーム/パネルがUL送信に用いられると想定されるが、Rel.17以降においては、ULのスループット及び信頼性(reliability)の改善のために、1以上のTRPに対して、複数ビーム/複数パネルの同時UL送信(例えば、PUSCH送信)が検討されている。なお、複数ビーム/複数パネルの同時PUSCH送信は、4より大きいレイヤ数のPUSCH送信に該当してもよいし、4以下のレイヤ数のPUSCH送信に該当してもよい。 In addition, in Rel. 15 and Rel. 16 UEs, it is assumed that only one beam/panel is used for UL transmission at a given time, but in Rel. 17 and later, simultaneous UL transmission (e.g., PUSCH transmission) of multiple beams/panels for one or more TRPs is being considered to improve UL throughput and reliability. Note that simultaneous PUSCH transmission of multiple beams/panels may correspond to PUSCH transmission with a number of layers greater than four, or may correspond to PUSCH transmission with a number of layers less than four.
 また、4より多いアンテナポート(4つより多い数のアンテナポート)を用いるUL送信についてのプリコーディング行列が検討されている。例えば、8ポート送信についてのコードブック(8送信ULコードブック(8 TX UL codebook)などと呼ばれてもよい)が検討されている。 Also, precoding matrices for UL transmissions using more than four antenna ports (a number of antenna ports greater than four) are being considered. For example, a codebook for eight-port transmissions (which may be called an 8 TX UL codebook, etc.) is being considered.
 8送信ULコードブックは、図1-4に類似して、複数のコードブックサブセットに対応するTPMIインデックスと、8アンテナポートを用いるiレイヤ(iは、整数であり、例えばi=1、2、…、8)送信のための対応するプリコーディング行列Wを含んでもよい。 The 8-transmit UL codebook may include TPMI indices corresponding to multiple codebook subsets and corresponding precoding matrices W for i-layer (i is an integer, e.g., i=1, 2, ..., 8) transmissions using 8 antenna ports, similar to Figures 1-4.
 また、8送信ULコードブックについて、プリコーディング情報フィールドの値と、レイヤ数及びTPMIとの新たな対応関係(例えば、図7の対応関係とは異なる対応関係)を規定することが検討されている。 In addition, for the 8-transmission UL codebook, it is being considered to specify a new correspondence between the value of the precoding information field and the number of layers and TPMI (e.g., a correspondence different from that shown in Figure 7).
 一方で、4より多いアンテナポート(4つより多い数のアンテナポート)を用いるULフルパワー送信については、まだ検討が進んでいない。これまでの規格に関する議論では、8送信ULコードブックについても既存のモード0/1/2の制御をベースとしており、仕様の複雑化が問題となるおそれがある。適切なフルパワー送信の制御方法を規定しなければ、通信スループットの増大が抑制されるおそれがある。 On the other hand, there has been no progress in considering UL full power transmission using more than four antenna ports (a number of antenna ports greater than four). In discussions on standards to date, the 8-transmission UL codebook has also been based on the existing mode 0/1/2 control, and there is a risk that the complexity of the specifications will become an issue. Unless an appropriate method for controlling full power transmission is specified, there is a risk that the increase in communication throughput will be restricted.
 そこで、本発明者らは、4より多いアンテナポートを用いるULフルパワー送信を適切に行うための方法を着想した。本開示の一態様によれば、フルパワー送信に関する柔軟な制御が可能である。 The inventors have therefore come up with a method for appropriately performing UL full power transmission using more than four antenna ports. According to one aspect of the present disclosure, flexible control of full power transmission is possible.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied independently or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, terms such as notify, activate, deactivate, indicate (or indicate), select, configure, update, and determine may be read as interchangeable. In this disclosure, terms such as support, control, capable of control, operate, and capable of operating may be read as interchangeable.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, the terms panel, UE panel, panel group, beam, beam group, precoder, Uplink (UL) transmitting entity, Transmission/Reception Point (TRP), base station, Spatial Relation Information (SRI), spatial relation, SRS Resource Indicator (SRI), Control Resource Set (CONTROLLER RESOLUTION SET (CORESET)), Physical Downlink Shared Channel (PDSCH), Codeword (CW), Transport Block (TB), Reference Signal (RS), Antenna Port (e.g., DeModulation Reference Signal (DMRS)) port), Antenna Port group (e.g., DMRS port group), group (e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (e.g., reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read as interchangeable.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Furthermore, the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be read as interchangeable. "Spatial relationship information" may be read as "set of spatial relationship information", "one or more pieces of spatial relationship information", etc. TCI state and TCI may be read as interchangeable.
 以下の実施形態において、「複数」及び「2つ」は互いに読み替えられてもよい。 In the following embodiments, "multiple" and "two" may be interpreted interchangeably.
 以下の実施形態におけるPUSCH送信のレイヤ数は、4より大きくてもよいし、4以下でもよい。例えば、本開示における2つのCWのPUSCH送信は、4以下のレイヤ数(例えば、2)で行われてもよい。また、最大レイヤ数も、4以上に限られず、4未満が適用されてもよい。 The number of layers for PUSCH transmission in the following embodiments may be greater than 4 or less than 4. For example, PUSCH transmission of two CWs in this disclosure may be performed with a number of layers of 4 or less (e.g., 2). In addition, the maximum number of layers is not limited to 4 or more, and may be less than 4.
 また、以下の実施形態におけるPUSCH送信は、複数パネルを用いることを前提としてもよいし、前提としなくてもよい(パネルに関わらず適用されてもよい)。 Furthermore, the PUSCH transmission in the following embodiments may or may not assume the use of multiple panels (it may be applied regardless of the panels).
 本開示において、モード0、1及び2 UEは、それぞれ、fullpower、fullpowerMode1及びfullpowerMode2を示すULフルパワー送信モード情報を設定されるUEを意味するが、これに限られない。本開示において、fullpower、fullpowerMode1及びfullpowerMode2などは、別の名称(例えば、fullpower-r17、fullpowerMode1-r17及びfullpowerMode2-r17など)であってもよい。また、本開示において、ULフルパワー送信モード情報は、ul-FullPowerTransmission-r16でなく別のパラメータ(例えば、ul-FullPowerTransmission-r17)であってもよい。 In this disclosure, mode 0, 1, and 2 UEs refer to UEs in which UL full power transmission mode information indicating fullpower, fullpowerMode1, and fullpowerMode2 is set, respectively, but is not limited to this. In this disclosure, fullpower, fullpowerMode1, and fullpowerMode2 may be named differently (e.g., fullpower-r17, fullpowerMode1-r17, and fullpowerMode2-r17). Also, in this disclosure, UL full power transmission mode information may be a different parameter (e.g., ul-FullPowerTransmission-r17) instead of ul-FullPowerTransmission-r16.
 以下の実施形態におけるフルパワー送信を行うUEは、部分コヒーレント/ノンコヒーレントUEであることを想定するが、別のコヒーレントタイプを設定されるUEであってもよい。 In the following embodiments, the UE performing full power transmission is assumed to be a partially coherent/non-coherent UE, but may also be a UE configured with a different coherent type.
 本開示において、TPMI、TPMIインデックスは、互いに読み替えられてもよい。ポート、アンテナポートは、互いに読み替えられてもよい。8TX(8送信)は、8ポート、8アンテナポートを意味してもよい。ポート/アンテナポートは、UL(例えばSRS/PUSCH)送信用のポート/アンテナポートを意味してもよい。本開示において、SRSリソースセット、リソースセットは互いに読み替えられてもよい。コヒーレントグループ、SRSリソースセットは、互いに読み替えられてもよい。 In the present disclosure, TPMI and TPMI index may be interchangeable. Port and antenna port may be interchangeable. 8TX (8 transmissions) may mean 8 ports and 8 antenna ports. Port/antenna port may mean a port/antenna port for UL (e.g., SRS/PUSCH) transmission. In the present disclosure, SRS resource set and resource set may be interchangeable. Coherent group and SRS resource set may be interchangeable.
 本開示では、主に8TXについて記載するが、5TX、6TX、7TX、8以上のTX、4以下のTXなどについても、8TXの場合と同様に適用されてもよい。以下の実施形態における「8」は「n(nは任意の整数)」で読み替えられてもよく、この場合、最大値が「8」であることを想定して説明したレイヤ数/ポート数などは、当業者であれば、最大値が「n」であることを想定して適切に読み替えることができる。 This disclosure mainly describes 8TX, but the same applies to 5TX, 6TX, 7TX, 8 or more TX, 4 or less TX, etc. in the same way as for 8TX. In the following embodiments, "8" may be read as "n (n is any integer)", and in this case, the number of layers/ports, etc. described assuming the maximum value of "8" can be appropriately read as assuming the maximum value of "n" by a person skilled in the art.
 例えば、以下の実施形態における「8」という数は、4より大きい任意の数(例えば、6、10、12、16、…)で読み替えられてもよいし、4以下の任意の数(例えば、1、2、3、4)で読み替えられてもよい。 For example, the number "8" in the following embodiments may be interpreted as any number greater than 4 (e.g., 6, 10, 12, 16, ...), or any number less than or equal to 4 (e.g., 1, 2, 3, 4).
 なお、本開示において、「…の能力を有する」は、「…の能力をサポートする/報告する」と互いに読み替えられてもよい。 Note that in this disclosure, "having the ability to..." may be interpreted interchangeably as "supporting/reporting the ability to...".
 本開示において、ランク、送信ランク、レイヤ数、アンテナポート数は、互いに読み替えられてもよい。また、1つのコードワードが適用されることと、レイヤ数が4レイヤ以下であることとは、互いに読み替えられてもよい。2つのコードワードが適用されることと、レイヤ数が4レイヤより大きいこととは、互いに読み替えられてもよい。 In the present disclosure, the rank, transmission rank, number of layers, and number of antenna ports may be interchangeable. In addition, the application of one codeword and the number of layers being four or less may be interchangeable. The application of two codewords and the number of layers being greater than four may be interchangeable.
 本開示において、テーブルは1つ又は複数のテーブルと互いに読み替えられてもよい。 In this disclosure, a table may be read interchangeably as one or more tables.
 また、以下の実施形態におけるDCIは、PUSCH及びPDSCHの少なくとも一方をスケジュールするDCI(例えば、DCIフォーマット0_x、1_x(ここで、xは整数))を意味してもよい。また、以下の実施形態は、コードブックベースド送信(PUSCH)を前提とするが、これに限られず、ノンコードブックベースド送信(PUSCH)に適用されてもよい。 In addition, the DCI in the following embodiments may refer to a DCI that schedules at least one of PUSCH and PDSCH (e.g., DCI format 0_x, 1_x (where x is an integer)). In addition, the following embodiments are based on codebook-based transmission (PUSCH), but are not limited to this and may also be applied to non-codebook-based transmission (PUSCH).
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、PA構成(PAアーキテクチャ)に関連する能力情報に関する。
(Wireless communication method)
First Embodiment
The first embodiment relates to capability information related to the PA configuration (PA architecture).
 第1の実施形態において、UEは、UE/アンテナグループ/パネルごとのPA構成に関連する情報(以下、PA構成関連情報とも呼ぶ)を報告してもよい。PA構成関連情報は、TPMIグループ能力情報には該当しなくてもよい。 In the first embodiment, the UE may report information related to the PA configuration for each UE/antenna group/panel (hereinafter also referred to as PA configuration related information). The PA configuration related information does not have to correspond to TPMI group capability information.
 PA構成関連情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・UE/アンテナグループ/パネルごとに、UEがすべてのアンテナポートに対するフルレイテッドPAを有するか否か、
 ・UE/アンテナグループ/パネルごとに、UEがいずれのアンテナポートに対してもフルレイテッドPAを有しないか否か、
 ・UE/アンテナグループ/パネルごとに、UEが一部のアンテナポートに対して(一部の)フルレイテッドPAを有するか否か、
 ・UE/アンテナグループ/パネルごとの、フルレイテッドPAを有する(又はフルレイテッドPAに関連付けられる)アンテナポートの数、
 ・UE/アンテナグループ/パネルごとの、非フルレイテッドPA(ノンフルレイテッドPA)を有する(又はノンフルレイテッドPAに関連付けられる)アンテナポートの数、
 ・UE/アンテナグループ/パネルごとの、フルレイテッドPAを有する(又はフルレイテッドPAに関連付けられる)アンテナポートのインデックス、
 ・UE/アンテナグループ/パネルごとの、非フルレイテッドPA(ノンフルレイテッドPA)を有する(又はノンフルレイテッドPAに関連付けられる)アンテナポートのインデックス、
 ・ノンフルレイテッドPAを有するアンテナポートについて、ポートの電力レベル。
The PA configuration related information may include information regarding at least one of the following:
For each UE/antenna group/panel, whether the UE has fully rated PA for all antenna ports or not;
For each UE/antenna group/panel, whether the UE does not have a fully rated PA for any antenna port;
For each UE/antenna group/panel, whether the UE has (some) fully rated PA for some antenna ports;
Number of antenna ports with (or associated with) fully rated PA per UE/antenna group/panel;
Number of antenna ports with (or associated with) non-fully-rated PA per UE/antenna group/panel;
Index of antenna ports that have (or are associated with) fully rated PA per UE/antenna group/panel;
Index of antenna ports having (or associated with) non-fully-rated PA per UE/antenna group/panel;
For antenna ports with non-fully rated PA, the power level of the port.
 なお、ポートの電力レベルに関する情報(以下、電力レベル情報とも呼ぶ)は、特定の電力値(例えば、最大電力、UE最大出力電力、1つ以上のPAのうちのPA最大出力電力など)からの差異を示してもよい。当該差異は、絶対値、相対値、程度で表されてもよい。例えば、電力レベル情報は、ポートの電力が、最大電力より3dB低いか、6dB低いか、X dB(Xは実数)以上低いか、などの少なくとも1つを示してもよい。 In addition, the information on the power level of the port (hereinafter also referred to as power level information) may indicate a difference from a specific power value (e.g., maximum power, UE maximum output power, PA maximum output power of one or more PAs, etc.). The difference may be expressed in absolute value, relative value, or degree. For example, the power level information may indicate at least one of whether the power of the port is 3 dB lower, 6 dB lower, or X dB (X is a real number) or more lower than the maximum power.
 また、電力レベル情報は、電力レベル指示とポートインデックスとの間の関連付けを示してもよい。例えば、電力レベル情報は、ポート0、1、4及び5が電力レベル指示=“00”であることを示し、ポート2及び3が電力レベル指示=“01”であることを示し、ポート6及び7が電力レベル指示=“10”であることを示してもよい。ここで、電力レベル指示=“00”は最大電力を、電力レベル指示=“01”は最大電力から3dB 低いことを、電力レベル指示=“10”は最大電力から6dB 低いことを、それぞれ示してもよい。 The power level information may also indicate an association between a power level indication and a port index. For example, the power level information may indicate that ports 0, 1, 4, and 5 have a power level indication="00", ports 2 and 3 have a power level indication="01", and ports 6 and 7 have a power level indication="10". Here, a power level indication="00" may indicate maximum power, a power level indication="01" may indicate 3 dB below maximum power, and a power level indication="10" may indicate 6 dB below maximum power.
 なお、上記Xの値、電力レベル指示とポートインデックスとの間の関連付けなどに関する情報は、予め規格において規定されてもよいし、UE能力に基づいて決定されてもよいし、基地局から通知されてもよい。 In addition, the information regarding the value of X, the association between the power level instruction and the port index, etc. may be specified in advance in a standard, may be determined based on the UE capabilities, or may be notified by the base station.
 PA構成関連情報は、任意のコヒーレントタイプのUEによって報告されてもよいし、特定のコヒーレントタイプのUEのみによって報告されてもよい。当該特定のコヒーレントタイプは、例えば、部分/ノンコヒーレントUEであってもよい。 PA configuration related information may be reported by any coherent type UE or may be reported only by UEs of a specific coherent type. The specific coherent type may be, for example, a partial/non-coherent UE.
 なお、8TX UEは特定のPA構成のみをサポートしてもよい。UEは、サポートするPA構成関連情報をUE能力として報告してもよい。上述のPA構成関連情報は、報告される、サポートするPA構成に基づいて決定/制限されてもよい。 Note that an 8TX UE may only support a specific PA configuration. The UE may report the supported PA configuration related information as UE capabilities. The above-mentioned PA configuration related information may be determined/restricted based on the reported supported PA configuration.
 図9は、第1の実施形態におけるPA構成関連情報に対応するPA構成の一例を示す図である。本例は、PA構成関連情報として、すべてのアンテナポートに対するフルレイテッドPAを有することを示したUEのPA構成を示す。本例(及び以降の図面)では、フルレイテッドPAの最大出力電力は、パワークラス3UEの最大UE電力である23dBmであると想定して説明するが、これに限られない。本例では、8アンテナポートそれぞれがフルレイテッドPAを有し、それぞれにおいてフルパワー送信可能である。 FIG. 9 is a diagram showing an example of a PA configuration corresponding to the PA configuration related information in the first embodiment. This example shows the PA configuration of a UE that indicates, as the PA configuration related information, that it has a fully rated PA for all antenna ports. In this example (and in the following drawings), it is assumed that the maximum output power of the fully rated PA is 23 dBm, which is the maximum UE power of a power class 3 UE, but this is not limited to this. In this example, each of the eight antenna ports has a fully rated PA, and full power transmission is possible at each.
 図10は、第1の実施形態におけるPA構成関連情報に対応するPA構成の一例を示す図である。本例は、PA構成関連情報として、インデックス0、1、4及び5のポートがフルレイテッドPAを有し、インデックス2、3、6及び7のポートが非フルレイテッドPA(ここでは、最大電力より3dB低い出力電力を有するPA)を有することを示したUEのPA構成を示す。なお、例えばインデックスが{0、1}、{2、3}、{4、5}、{6、7}の組は、それぞれアンテナグループを構成してもよい。 FIG. 10 is a diagram showing an example of a PA configuration corresponding to PA configuration related information in the first embodiment. This example shows the PA configuration of a UE, which indicates, as PA configuration related information, that ports with indexes 0, 1, 4, and 5 have fully-rated PAs, and ports with indexes 2, 3, 6, and 7 have non-fully-rated PAs (here, PAs with output power 3 dB lower than the maximum power). Note that, for example, the sets of indexes {0, 1}, {2, 3}, {4, 5}, and {6, 7} may each constitute an antenna group.
 図11は、第1の実施形態におけるPA構成関連情報に対応するPA構成の一例を示す図である。本例は、PA構成関連情報として、アンテナグループ#0についてインデックス0及び1のポートがフルレイテッドPAを有し、インデックス4及び5のポートが非フルレイテッドPA(ここでは、最大電力より3dB低い出力電力を有するPA)を有することを示し、アンテナグループ#1についてインデックス2及び3のポートがフルレイテッドPAを有し、インデックス6及び7のポートが非フルレイテッドPA(ここでは、最大電力より6dB低い出力電力を有するPA)を有することを示したUEのPA構成を示す。 FIG. 11 is a diagram showing an example of a PA configuration corresponding to PA configuration related information in the first embodiment. This example shows the PA configuration of a UE, which indicates, as PA configuration related information, that for antenna group #0, ports with indexes 0 and 1 have fully rated PAs and ports with indexes 4 and 5 have non-fully rated PAs (here, PAs with output power 3 dB lower than the maximum power), and that for antenna group #1, ports with indexes 2 and 3 have fully rated PAs and ports with indexes 6 and 7 have non-fully rated PAs (here, PAs with output power 6 dB lower than the maximum power).
 なお、第1の実施形態におけるPA構成関連情報として、UEは、フルパワーを達成できるアンテナポートインデックスの(最小)組を報告してもよい。例えば、図10のPA構成について、UEは、PA構成関連情報として、{0}、{1}、{4}、{5}{2、3}、{6、7}の計6つのインデックスの組を報告してもよい。当該PA構成関連情報を受信したNWは、当該UEが上記6つの組についてフルパワー送信を達成でき、さらに上記6つの組を任意に組み合わせたインデックスの組(例えば、{0,1}、{0,2,3}など)もフルパワー送信を達成できると把握できる。 In the first embodiment, the UE may report the (smallest) set of antenna port indexes that can achieve full power as the PA configuration related information. For example, for the PA configuration in FIG. 10, the UE may report a total of six index sets, {0}, {1}, {4}, {5}, {2, 3}, and {6, 7}, as the PA configuration related information. The NW that receives the PA configuration related information can understand that the UE can achieve full power transmission for the above six sets, and can also achieve full power transmission for any combination of the above six sets of indexes (e.g., {0, 1}, {0, 2, 3}, etc.).
 以上説明した第1の実施形態によれば、例えば、既存のTPMIグループの報告より柔軟に、サポートするPA構成を報告できる。 According to the first embodiment described above, for example, it is possible to report supported PA configurations more flexibly than with existing TPMI group reports.
<第2の実施形態>
 第2の実施形態は、8TX UE向けの新しいフルパワーモードに関する。当該新しいフルパワーモードは、例えばフルパワーモード3(fullpowerMode3)と呼ばれてもよい。
Second Embodiment
A second embodiment relates to a new full power mode for 8TX UEs, which may for example be called fullpowerMode3.
 UEは、フルパワーモード3を設定されてもよい。UEは、ランクごとのフルパワー送信可能なプリコーダ(又は追加プリコーダ)の情報を、ネットワークから通知されてもよい。当該情報は、フルパワー送信向けプリコーダ情報と呼ばれてもよい。なお、NWは、第1の実施形態のPA構成関連情報に基づいて、フルパワー送信向けプリコーダ情報を決定してもよい。 The UE may be configured with full power mode 3. The UE may be notified by the network of information on precoders (or additional precoders) capable of full power transmission for each rank. This information may be called precoder information for full power transmission. The NW may determine the precoder information for full power transmission based on the PA configuration related information of the first embodiment.
 フルパワー送信向けプリコーダ情報は、上記プリコーダに使用可能なアンテナポートインデックスを含んでもよい。当該アンテナポートインデックスは、インデックスの組み合わせであってもよいし、プリコーディング行列の列ごと/レイヤごとのインデックスであってもよい。当該アンテナポートインデックスは、UE/アンテナグループ/パネルごとに通知されてもよい。 The precoder information for full power transmission may include antenna port indices available for the precoder. The antenna port indices may be a combination of indices or may be indices for each column/layer of the precoding matrix. The antenna port indices may be notified for each UE/antenna group/panel.
 利用可能なアンテナポートインデックスに対応するプリコーダ内の要素の値は、特定の値(例えば、1)であってもよいし、UE/アンテナグループ/パネルごとに上位レイヤシグナリングによって設定されてもよい。上記特定の値は、UE/アンテナグループ/パネルごとに異なってもよい。 The value of the element in the precoder corresponding to the available antenna port index may be a specific value (e.g., 1) or may be set by higher layer signaling for each UE/antenna group/panel. The specific value may be different for each UE/antenna group/panel.
 プリコーダの振幅又はパワースケーリング係数(s)は、1に固定されてもよいし、予め規定される/上位レイヤシグナリングで設定される値であってもよい。例えば、プリコーダの振幅は、1/√(W内の非ゼロPUSCHアンテナポート数)で求められてもよい。 The precoder amplitude or power scaling factor (s) may be fixed to 1 or may be a predefined/predefined value set by higher layer signaling. For example, the precoder amplitude may be 1/√(number of non-zero PUSCH antenna ports in W).
 図12A-12Eは、第2の実施形態におけるフルパワーモード3におけるフルパワー送信可能なプリコーダの一例を示す図である。UEは、あるランクのための送信を行う場合に、NWから指定されるポートインデックスに基づいてプリコーダを決定し、当該プリコーダに基づいて上記送信を行ってもよい。 FIGS. 12A-12E are diagrams showing an example of a precoder capable of full power transmission in full power mode 3 in the second embodiment. When transmitting for a certain rank, the UE may determine a precoder based on a port index specified by the NW and perform the above transmission based on the precoder.
 図12Aは、ランク1についてNWがポートインデックス{0}を示す場合の、上記プリコーダである1ポート選択プリコーダW=[1 0 0 0 0 0 0 0](Tは転置行列を示す。以下同様)を示す。 FIG. 12A illustrates a 1-port selection precoder W=[1 0 0 0 0 0 0 0] T (T represents a transposed matrix; the same applies below) which is the above precoder when NW represents port index {0} for rank 1.
 図12Bは、ランク1についてNWがポートインデックス{0}を示す場合(図左側)又は{0、1}(図右側)を示す場合の、上記プリコーダである1ポート選択プリコーダ又は2ポート選択プリコーダを示す。当該2ポート選択プリコーダの振幅は、1/√(W内の非ゼロPUSCHアンテナポート数)=1/√2として、パワースケーリング係数が1に固定されるように導出される。 Figure 12B shows the above precoder, a 1-port selection precoder or a 2-port selection precoder, when the NW indicates port index {0} (left side of the figure) or {0, 1} (right side of the figure) for rank 1. The amplitude of the 2-port selection precoder is derived as 1/√(number of non-zero PUSCH antenna ports in W) = 1/√2, with the power scaling factor fixed at 1.
 図12Cは、ランク2についてNWが1列目のポートインデックス{0,1}及び2列目のポートインデックス{2,3}を示す場合の、上記プリコーダを示す。なお、本例に示すように、プリコーダの行インデックスの昇順はポートインデックスの昇順に1対1に対応しなくてもよい。本例では、プリコーダの行インデックス0-7は、それぞれアンテナポートインデックス0、1、4、5、2、3、6、7の順に関連付けられている。プリコーダの行インデックスとポートインデックスとの間の関連付けに関する情報は、予め規格において規定されてもよいし、UE能力に基づいて決定されてもよいし、基地局から通知されてもよい。特に通知がない場合には、プリコーダの行インデックスの昇順はポートインデックスの昇順に1対1に対応してもよい。 FIG. 12C shows the above precoder when the NW indicates port indexes {0,1} in the first column and port indexes {2,3} in the second column for rank 2. Note that, as shown in this example, the ascending order of the precoder row indexes does not have to correspond one-to-one to the ascending order of the port indexes. In this example, the precoder row indexes 0-7 are associated with antenna port indexes 0, 1, 4, 5, 2, 3, 6, and 7, respectively. Information regarding the association between the precoder row indexes and the port indexes may be specified in advance in a standard, may be determined based on UE capabilities, or may be notified from the base station. If there is no particular notification, the ascending order of the precoder row indexes may correspond one-to-one to the ascending order of the port indexes.
 図12Dは、ランク2についてNWがポートインデックス{0,1,2,3}を示す場合の、上記プリコーダを示す。本例に示すように、ポートインデックスはプリコーダの各列に共通に適用されてもよい。また、ポートインデックスは複数のランクに共通に適用されてもよい(言い換えると、複数のランクのプリコーダは、いずれも指示される共通のートインデックスに基づいて決定されてもよい)。 FIG. 12D shows the above precoder when the NW indicates port indices {0, 1, 2, 3} for rank 2. As shown in this example, the port index may be applied commonly to each column of the precoder. Also, the port index may be applied commonly to multiple ranks (in other words, the precoders for multiple ranks may all be determined based on a common port index that is indicated).
 図12Eは、ランク6についてNWが1列目のポートインデックス{0}、2列目のポートインデックス{1}、3列目のポートインデックス{4,5}、4列目のポートインデックス{2}、5列目のポートインデックス{3}、6列目のポートインデックス{6,7}を示す場合の、上記プリコーダを示す。本例のプリコーダに対応するポートインデックスは、例えば第1の実施形態のPA構成関連情報として、インデックス0、1、2及び3のポートがフルレイテッドPAを有し、インデックス4、5、6及び7のポートが非フルレイテッドPA(ここでは、最大電力より3dB低い出力電力を有するPA)を有することを報告したUEに対して通知されてもよい。 FIG. 12E shows the above precoder when the NW indicates port index {0} in the first column, port index {1} in the second column, port index {4, 5} in the third column, port index {2} in the fourth column, port index {3} in the fifth column, and port index {6, 7} in the sixth column for rank 6. The port indexes corresponding to the precoder in this example may be notified to a UE that has reported, for example, as the PA configuration related information of the first embodiment, that ports with indexes 0, 1, 2, and 3 have fully rated PAs and ports with indexes 4, 5, 6, and 7 have non-fully rated PAs (here, PAs with output power 3 dB lower than maximum power).
 なお、フルパワー送信向けプリコーダ情報は、プリコーダの形成のための異なるアンテナグループ間の位相整合(co-phasing)に関する情報(例えば、位相整合の指示)を示してもよい。本開示において、位相整合、位相補償、位相調整、位相差、位相関係などは、互いに読み替えられてもよい。 Note that the precoder information for full power transmission may indicate information (e.g., an instruction for phase matching) regarding co-phasing between different antenna groups for forming a precoder. In this disclosure, phase matching, phase compensation, phase adjustment, phase difference, phase relationship, etc. may be interpreted as interchangeable.
 なお、フルパワー送信向けプリコーダ情報によって示される(列ごと/レイヤごとの)ポートインデックス(の複数の組み合わせ)に基づいて、UEは、列ごと/レイヤごとの当該組み合わせを満たす(言い換えると、当該ポートインデックスについてゼロ以外の値を有する)既存のTPMIテーブルに対応するプリコーダを、フルパワー送信用のプリコーダとして扱ってもよい。UEは、当該プリコーダの振幅を再計算してもよいし、しなくてもよい。当該振幅の決定については、次に述べる、フルパワー送信向けプリコーダ情報がTPMIインデックスの場合と同様であってもよい。 Note that, based on the port index (multiple combinations) (per column/per layer) indicated by the precoder information for full power transmission, the UE may treat a precoder corresponding to an existing TPMI table that satisfies the combination per column/per layer (in other words, has a non-zero value for the port index) as a precoder for full power transmission. The UE may or may not recalculate the amplitude of the precoder. The determination of the amplitude may be the same as in the case of the TPMI index for the precoder information for full power transmission described below.
 8Tx送信向けのTPMIテーブル(コードブック)が規定される場合、フルパワー送信向けプリコーダ情報は、当該TPMIテーブルにおけるTPMIインデックスを含んでもよい。UEは、指定されるTPMIインデックスに対応するプリコーダの振幅を、再計算してもよいし、しなくてもよい(変更しないで用いてもよい)。再計算は、1/√(プリコーダW内の非ゼロPUSCHアンテナポート数)で求められてもよい。 If a TPMI table (codebook) for 8Tx transmission is specified, the precoder information for full power transmission may include a TPMI index in the TPMI table. The UE may or may not recalculate the amplitude of the precoder corresponding to the specified TPMI index (it may use it without change). The recalculation may be calculated as 1/√(number of non-zero PUSCH antenna ports in precoder W).
 なお、第2の実施形態において、プリコーダの振幅の再計算を行うか否かは、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力に基づいて決定されてもよい。 In the second embodiment, whether or not to recalculate the precoder amplitude may be set in the UE by higher layer signaling, or may be determined based on the UE capabilities.
 図13は、第2の実施形態におけるフルパワーモード3におけるフルパワー送信可能なプリコーダの一例を示す図である。本例では、UEは、ランク1について、8TX送信向けのTPMIテーブルにおけるプリコーダW=1/√8*[1 0 0 0 1 0 0 0](図左側)に対応するTPMIインデックスをNWから通知される。この場合、UEは、パワースケーリング係数が1に固定されると想定して、当該プリコーダの振幅を、1/√(W内の非ゼロPUSCHアンテナポート数)=1/√2と再計算し、得られたプリコーダ(図右側)を、フルパワー送信に用いてもよい。 13 is a diagram showing an example of a precoder capable of full power transmission in full power mode 3 in the second embodiment. In this example, the UE is notified by the NW of a TPMI index corresponding to the precoder W=1/√8*[1 0 0 0 1 0 0 0] T (left side of the figure) in the TPMI table for 8TX transmission for rank 1. In this case, the UE may recalculate the amplitude of the precoder as 1/√(number of non-zero PUSCH antenna ports in W)=1/√2, assuming that the power scaling factor is fixed to 1, and use the resulting precoder (right side of the figure) for full power transmission.
 なお、フルパワーモード3は、第1の実施形態のPA構成関連情報に基づいてフルパワー送信のためのプリコーダが制御されるモードに該当してもよい。フルパワーモード3は、TPMIインデックスに基づかずにフルパワー送信のためのプリコーダを決定するモードに該当してもよい。フルパワーモード3は、(TPMIインデックスに基づくが)フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードに該当してもよい。 Note that full power mode 3 may correspond to a mode in which a precoder for full power transmission is controlled based on the PA configuration related information of the first embodiment. Full power mode 3 may correspond to a mode in which a precoder for full power transmission is determined not based on the TPMI index. Full power mode 3 may correspond to a mode in which a precoder for full power transmission is determined in a manner different from full power modes 0/1/2 (although based on the TPMI index).
 以上説明した第2の実施形態によれば、例えば、報告されたPA構成に基づいて、NWはフルパワー送信を有効にするために柔軟にプリコーダをUEに設定できる。 According to the second embodiment described above, for example, based on the reported PA configuration, the NW can flexibly configure the precoder in the UE to enable full power transmission.
<第3の実施形態>
 第3の実施形態は、プリコーディング情報フィールドによって特定される内容に関する。
Third Embodiment
The third embodiment relates to the content specified by the precoding information field.
[実施形態3.1]
 第2の実施形態で示したように、フルパワーモード3において、通知されたポートインデックス又はTPMIインデックスに基づいて、既存のTPMIテーブルに対応するプリコーダを指定するために、UEは、各ランクについて、既存のプリコーディング情報フィールドの対応関係(例えば、プリコーディング情報フィールドの値と、レイヤ数及びTPMIとの対応関係を示すテーブル)に基づいてレイヤ数及びTPMIインデックスを特定してもよい。なお、本開示において、「既存の」は、「8TX送信向けに規定される」と互いに読み替えられてもよい。
[Embodiment 3.1]
As shown in the second embodiment, in full power mode 3, in order to specify a precoder corresponding to an existing TPMI table based on a notified port index or TPMI index, the UE may specify the number of layers and the TPMI index for each rank based on the correspondence of the existing precoding information field (e.g., a table showing the correspondence between the value of the precoding information field and the number of layers and the TPMI). Note that in the present disclosure, "existing" may be read as "specified for 8TX transmission" interchangeably.
 つまり、UEは、DCIによって通知されるプリコーディング情報フィールド及び既存の上記対応関係に基づいてレイヤ数及びTPMIインデックスを特定し、当該TPMIインデックスが、上述の第2の実施形態におけるフルパワー送信向けプリコーダ情報によって示されるTPMIインデックスに該当する場合、第2の実施形態で示した再計算を適用した当該TPMIインデックスに対応するプリコーダを用いて、フルパワー送信を行ってもよい。 In other words, the UE identifies the number of layers and the TPMI index based on the precoding information field notified by the DCI and the above-mentioned existing correspondence relationship, and if the TPMI index corresponds to the TPMI index indicated by the precoder information for full power transmission in the above-mentioned second embodiment, full power transmission may be performed using the precoder corresponding to the TPMI index to which the recalculation shown in the second embodiment has been applied.
 この場合、フルパワーモード3のためのTPMI/RI指示(又はプリコーディング情報フィールド)のビットサイズは、フルパワーモードを設定しない場合と同じであってもよい。 In this case, the bit size of the TPMI/RI indication (or precoding information field) for full power mode 3 may be the same as when full power mode is not set.
 なお、フルパワーモード3が設定されるがフルパワー送信向けプリコーダ情報によってTPMIインデックスが示されないUEは、任意のTPMIインデックスに対応するプリコーダに第2の実施形態で示した再計算を適用して、フルパワー送信を行ってもよい。 Note that a UE in which full power mode 3 is configured but the precoder information for full power transmission does not indicate a TPMI index may perform full power transmission by applying the recalculation shown in the second embodiment to a precoder corresponding to an arbitrary TPMI index.
 図14は、第3の実施形態に関するプリコーディング情報フィールドの値と、レイヤ数及びTPMIとの対応関係に基づくプリコーダ決定の一例を示す図である。図示されるテーブルは、最大ランク6についての上記対応関係の一例である。例えば、プリコーディング情報フィールドの値=26は、レイヤ数6(レイヤ数の組3+3でもよい。例えばアンテナグループ#0を用いて3レイヤ、アンテナグループ#1を用いて3レイヤ)かつTPMIインデックス=10を示す。 FIG. 14 is a diagram showing an example of precoder determination based on the correspondence between the value of the precoding information field and the number of layers and TPMI for the third embodiment. The illustrated table is an example of the above correspondence for a maximum rank of 6. For example, a value of 26 in the precoding information field indicates a number of layers of 6 (which may be a set of 3+3 number of layers. For example, 3 layers using antenna group # 0 and 3 layers using antenna group #1) and a TPMI index of 10.
 ここで、フルパワーモード3が設定され、かつフルパワー送信向けプリコーダ情報によってTPMIインデックス=10が設定されるUEは、プリコーディング情報フィールドの値=26を指定されると、既存のTPMIテーブルにおけるTPMIインデックス=10に対応するプリコーダの振幅を再計算してフルパワー送信に用いる。一方で、当該UEは、プリコーディング情報フィールドの値=27を指定されると、既存のTPMIテーブルにおけるTPMIインデックス=11に対応するプリコーダをそのまま送信に用いる。 Here, when a UE in which full power mode 3 is set and TPMI index = 10 is set by the precoder information for full power transmission is specified with a value of 26 in the precoding information field, it recalculates the amplitude of the precoder corresponding to TPMI index = 10 in the existing TPMI table and uses it for full power transmission. On the other hand, when a value of 27 in the precoding information field is specified, the UE uses the precoder corresponding to TPMI index = 11 in the existing TPMI table for transmission as is.
 なお、図14の対応関係は、コードブックサブセットとして、既存の値(例えば、partialAndNonCoherent)が設定される場合に用いられてもよいし、新しいコードブックサブセットを示す値が設定される場合に用いられてもよい。後述の実施形態3.2でも同様であってもよい。 The correspondence in FIG. 14 may be used when an existing value (e.g., partialAndNonCoherent) is set as the codebook subset, or when a value indicating a new codebook subset is set. The same may be true in embodiment 3.2 described below.
 なお、新しいコードブックサブセットは、完全コヒーレントプリコーダのみのためのコードブックサブセット及び部分コヒーレントプリコーダのみのためのコードブックサブセットの少なくとも1つを含んでもよい。新しいコードブックサブセットは、ノンコヒーレントプリコーダのみのためのコードブックサブセットを含んでもよい。言い換えると、新しいコードブックサブセットは、単一コヒーレンシー(又は単一コヒーレント)のためのコードブックサブセットを意味してもよい。 Note that the new codebook subset may include at least one of a codebook subset for only a fully coherent precoder and a codebook subset for only a partially coherent precoder. The new codebook subset may include a codebook subset for only a non-coherent precoder. In other words, the new codebook subset may mean a codebook subset for single coherency (or single coherence).
 例えば、完全コヒーレントUEは、完全コヒーレントプリコーダのみのためのコードブックサブセットを示す設定情報(例えば、「完全コヒーレント(fullyCoherent)」又は「完全コヒーレントのみ(fullyCoherentOnly)」を示すRRCパラメータ「codebookSubset」)を設定されてもよい。 For example, a fully coherent UE may be configured with configuration information indicating a codebook subset for a fully coherent precoder only (e.g., an RRC parameter "codebookSubset" indicating "fully coherent" or "fully coherent only").
 また、部分コヒーレントUEは、部分コヒーレントプリコーダのみのためのコードブックサブセットを示す設定情報(例えば、「部分コヒーレント(partialCoherent)」又は「部分コヒーレントのみ(partialCoherentOnly)」を示すRRCパラメータ「codebookSubset」)を設定されてもよい。 Furthermore, a partially coherent UE may be configured with configuration information indicating a codebook subset for only a partially coherent precoder (e.g., an RRC parameter "codebookSubset" indicating "partialCoherent" or "partialCoherentOnly").
[実施形態3.2]
 フルパワーモード3において、UEは、各ランクについて、既存のプリコーディング情報フィールドの対応関係において利用されていないプリコーディング情報フィールドの値(例えば、“Reserved”に対応する値、又は既存の対応関係で規定されないより大きな値)に基づいて、フルパワー送信向けプリコーダを特定してもよい。つまり、プリコーディング情報フィールドの値は、レイヤ数及びTPMIインデックスの組だけでなく、任意のレイヤについての、NWから通知されるフルパワー送信向けプリコーダ情報に対応するプリコーダ(及びレイヤ数)を示してもよい。
[Embodiment 3.2]
In full power mode 3, the UE may specify a precoder for full power transmission for each rank based on a value of a precoding information field that is not used in the correspondence relationship of the existing precoding information field (e.g., a value corresponding to "Reserved" or a larger value not specified in the existing correspondence relationship). That is, the value of the precoding information field may indicate not only a set of the number of layers and the TPMI index, but also a precoder (and the number of layers) corresponding to the precoder information for full power transmission notified from the NW for any layer.
 UEは、フルパワー送信向けプリコーダに対応するプリコーディング情報フィールドの値は、元のテーブルに挿入されるのではなく、レイヤの順序とNWからの設定に基づくプリコーダ/アンテナポートに関する順序に基づいて、元のテーブルの最後に配置されると想定してもよい。 The UE may assume that the value of the precoding information field corresponding to the precoder for full power transmission is not inserted in the original table, but is placed at the end of the original table based on the layer order and the precoder/antenna port order based on the configuration from the NW.
 図15A及び15Bは、第3の実施形態に関するプリコーディング情報フィールドの値の対応関係に基づくプリコーダ決定の一例を示す図である。ここでは、最大ランク6についての既存の対応関係として、図14で示した対応関係が利用できると想定する。 FIGS. 15A and 15B are diagrams showing an example of precoder determination based on the correspondence between values of the precoding information field for the third embodiment. Here, it is assumed that the correspondence shown in FIG. 14 can be used as the existing correspondence for the maximum rank 6.
 フルパワーモード3が設定され、かつフルパワー送信向けプリコーダ情報が設定されるUEは、図14の対応関係ではなく、図15A又は15Bの対応関係に基づいてDCIのプリコーディング情報フィールドを解釈してもよい。図15AはNWがランク5/6向けのフルパワー送信向けプリコーダ情報を設定しなかった(ランク1-4向けのフルパワー送信向けプリコーダ情報のみを設定した)場合に該当し、図15BはNWがランク1-6向けのフルパワー送信向けプリコーダ情報のみを設定した場合に該当する。 A UE in which full power mode 3 is set and precoder information for full power transmission is set may interpret the precoding information field of the DCI based on the correspondence relationship in FIG. 15A or 15B, rather than the correspondence relationship in FIG. 14. FIG. 15A corresponds to the case in which the NW has not set precoder information for full power transmission for ranks 5/6 (only precoder information for full power transmission for ranks 1-4 has been set), and FIG. 15B corresponds to the case in which the NW has only set precoder information for full power transmission for ranks 1-6.
 本例では、例えばランク1については2つのプリコーダがフルパワー送信向けプリコーダ情報によって設定され、これらはそれぞれプリコーディング情報フィールドの値=28及び29によって指定されてもよい。 In this example, for rank 1, for example, two precoders are configured by the precoder information for full power transmission, which may be specified by the values of the precoding information field = 28 and 29, respectively.
 本例では、例えばランク2については1つのプリコーダのみがフルパワー送信向けプリコーダ情報によって設定され、これはプリコーディング情報フィールドの値=30によって指定されてもよい。 In this example, for rank 2, for example, only one precoder is configured by the precoder information for full power transmission, which may be specified by the value of the precoding information field = 30.
 なお、DCIサイズは、異なる最大ランクに対する異なる対応関係について、各レイヤのフルパワー送信向けプリコーダ情報によって設定されるプリコーダに関係してもよい。ここで、対応関係について制限が適用されてもよい。例えば、UEは、ランクあたりZ1個より多い追加のフルパワー送信向けプリコーダが設定されること、又は全ランクについてZ2個より多いフルパワー送信向けプリコーダが設定されることを予期しなくてもよい。また、UEは、設定される追加のフルパワー送信向けプリコーダのために、DCIの(又はプリコーディング情報フィールドの)ビットサイズをMビット(例えば、M=0又は1)だけ増加させることを期待しなくてもよい。 Note that the DCI size may relate to the precoders configured by the precoder information for full power transmission of each layer for different correspondences to different maximum ranks. Here, restrictions on the correspondences may be applied. For example, the UE may not expect more than Z1 additional precoders for full power transmission per rank to be configured, or more than Z2 precoders for full power transmission for all ranks to be configured. Also, the UE may not expect to increase the bit size of the DCI (or the precoding information field) by M bits (e.g., M = 0 or 1) for the additional precoders for full power transmission that are configured.
 Z1/Z2/Mについては、予め規定されてもよいし、UE能力に基づいて決定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。 Z1/Z2/M may be predefined, may be determined based on UE capabilities, or may be set in the UE by higher layer signaling.
 以上説明した第3の実施形態によれば、UEが、プリコーディング情報フィールドに基づいて、フルパワー送信のためのプリコーダを適切に特定できる。 According to the third embodiment described above, the UE can appropriately identify the precoder for full power transmission based on the precoding information field.
<第4の実施形態>
 第4の実施形態は、フルパワーモード3が設定される場合のノンコードブックベースPUSCHのためのSRSリソース設定に関する。
Fourth Embodiment
The fourth embodiment relates to SRS resource configuration for a non-codebook-based PUSCH when full power mode 3 is configured.
 実施形態4.1において、フルパワーモード3が設定される場合のノンコードブックベースPUSCHのためのSRSリソース設定の内容/数は、フルパワーモード3が設定されない場合と同じように設定されてもよい。例えば、フルパワーモード3が設定される場合、「nonCodeBook」の用途に関連する1つのSRSリソースセットには最大2つのSRSリソースが設定され、かつ、これらのSRSリソースのSRSポート数(nrofSRS-Port)は同じ値が設定されてもよい。 In embodiment 4.1, the content/number of SRS resources configured for non-codebook-based PUSCH when full power mode 3 is configured may be configured in the same way as when full power mode 3 is not configured. For example, when full power mode 3 is configured, up to two SRS resources may be configured in one SRS resource set related to the use of "nonCodeBook", and the number of SRS ports (nrofSRS-Port) of these SRS resources may be set to the same value.
 実施形態4.2において、フルパワーモード3が設定される場合のノンコードブックベースPUSCHのためのSRSリソース設定の内容/数は、フルパワーモード3が設定されない場合とは異なってもよい。 In embodiment 4.2, the content/number of SRS resource settings for non-codebook-based PUSCH when full power mode 3 is set may be different from when full power mode 3 is not set.
 例えば、フルパワーモード3が設定される場合、「nonCodeBook」の用途に関連する1つのSRSリソースセットには最大X個(例えば、X=2又は4)のSRSリソースが設定されてもよい。 For example, when full power mode 3 is set, up to X SRS resources (e.g., X=2 or 4) may be configured in one SRS resource set related to the "nonCodeBook" usage.
 また、フルパワーモード3が設定される場合、「nonCodeBook」の用途に関連する1つのSRSリソースセットにおけるSRSリソースに対して、最大Y個(例えば、Y=2又は4)の異なる空間関係/TCI状態が設定されてもよい。 Furthermore, when full power mode 3 is configured, up to Y (e.g., Y=2 or 4) different spatial relationships/TCI states may be configured for SRS resources in one SRS resource set associated with a "nonCodeBook" application.
 また、フルパワーモード3が設定される場合、「nonCodeBook」の用途に関連する1つのSRSリソースセットにおける全てのSRSリソースに対して、同じSRSポート数が設定されてもよいし、複数のSRSリソースに対して、異なるSRSポート数が設定されてもよい。 In addition, when full power mode 3 is set, the same number of SRS ports may be set for all SRS resources in one SRS resource set related to the "nonCodeBook" use, or different numbers of SRS ports may be set for multiple SRS resources.
 X/Y/SRSリソースセット内のSRSリソースのポート数が同じか異なるか、については、予め規定されてもよいし、UE能力に基づいて決定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。 Whether the number of ports of the SRS resources in the X/Y/SRS resource set is the same or different may be predefined, may be determined based on the UE capabilities, or may be configured in the UE by higher layer signaling.
 なお、フルパワーモード0/1が設定される場合のノンコードブックベースPUSCHのためのSRSリソース設定に関して、上記実施形態4.1が適用されてもよい。また、フルパワーモード2が設定される場合のノンコードブックベースPUSCHのためのSRSリソース設定に関して、上記実施形態4.2が適用されてもよい。 Note that the above embodiment 4.1 may be applied to the SRS resource configuration for the non-codebook-based PUSCH when full power mode 0/1 is set. Also, the above embodiment 4.2 may be applied to the SRS resource configuration for the non-codebook-based PUSCH when full power mode 2 is set.
 以上説明した第4の実施形態によれば、UEが、フルパワーモード3が設定される場合のノンコードブックベースPUSCHのためのSRSリソース設定を適切に判断できる。 According to the fourth embodiment described above, the UE can appropriately determine the SRS resource configuration for the non-codebook-based PUSCH when full power mode 3 is configured.
<補足>
 本開示において、UE/基地局が、テーブルを用いる(/参照する/に基づく処理を行う)ことは、当該テーブルそれ自体を用いることを意味することに限られず、当該テーブルに従う情報を含む配列、リスト、関数などを用いることを意味してもよい。
<Additional Information>
In the present disclosure, a UE/base station using (referring to/performing processing based on) a table does not necessarily mean using the table itself, but may also mean using an array, list, function, etc. that includes information that conforms to the table.
 なお、本開示における「-rXX」は、3GPP Rel.XXで規定される又は規定される予定のパラメータであることを示す。本開示における任意のパラメータの名称は、例示される名称に限られない(例えば、「-rXX」がなくてもよいし、「-rXX」が付与されてもよいし、XXの数字又は文字が異なってもよい)。本開示が適用される3GPPのリリースは、Rel.18に限られない。 Note that "-rXX" in this disclosure indicates that the parameter is defined or will be defined in 3GPP Rel. XX. The name of any parameter in this disclosure is not limited to the exemplified names (for example, "-rXX" may not be present, "-rXX" may be added, or the numbers or letters of XX may be different). The 3GPP release to which this disclosure applies is not limited to Rel. 18.
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Notification of information to UE]
In the above-described embodiments, any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Information notification from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
 ・8TX UL送信をサポートすること、
 ・サポートするコヒーレントグループ、
 ・PA構成関連情報、
 ・フルパワーモード3をサポートすること。
The specific UE capabilities may indicate at least one of the following:
Supporting specific processing/operations/control/information for at least one of the above embodiments;
Supporting 8TX UL transmissions;
Supported coherent groups,
・PA configuration related information,
- Support full power mode 3.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 The specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、8TX UL送信を有効化することを示す情報、フルパワーモード3を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating enabling 8TX UL transmission, information indicating enabling full power mode 3, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may, for example, apply Rel. 15/16 operations.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 パワーアンプ(Power Amplifier(PA))構成関連情報を送信する送信部と、
 フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードが設定される場合に、4つより多い数のアンテナポートを用いる前記プリコーダを決定する制御部と、を有する端末。
[付記2]
 前記PA構成関連情報は、送信プリコーディング行列インディケーター(Transmitted Precoding Matrix Indicator(TPMI))グループを示す能力情報ではない付記1に記載の端末。
[付記3]
 前記プリコーダに使用可能なアンテナポートインデックスを示す情報を受信する受信部を有する付記1又は付記2に記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
A transmitter for transmitting power amplifier (PA) configuration related information;
A terminal having a control unit that determines a precoder that uses more than four antenna ports when a mode that determines a precoder for full power transmission in a manner different from full power mode 0/1/2 is set.
[Appendix 2]
The terminal according to Supplementary Note 1, wherein the PA configuration related information is not capability information indicating a Transmitted Precoding Matrix Indicator (TPMI) group.
[Appendix 3]
3. The terminal according to claim 1, further comprising a receiving unit for receiving information indicating an antenna port index available for the precoder.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
 図16は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 16 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1. A user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the multiple base stations 10. The user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 In addition, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which corresponds to the upper station, may be called an Integrated Access Backhaul (IAB) donor, and base station 12, which corresponds to a relay station, may be called an IAB node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10. The core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 The core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. In addition, communication with an external network (e.g., the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The radio access method may also be called a waveform. In the wireless communication system 1, other radio access methods (e.g., other single-carrier transmission methods, other multi-carrier transmission methods) may be used for the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In addition, in the wireless communication system 1, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted. In the wireless communication system 1, as the DL-RS, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, the SS, SSB, etc. may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), etc. may be transmitted as an uplink reference signal (UL-RS). Note that the DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
(基地局)
 図17は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
17 is a diagram showing an example of a configuration of a base station according to an embodiment. The base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc. The control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc. The control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120. The control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 120 (transmission processor 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal. The measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
 なお、送受信部120は、パワーアンプ(Power Amplifier(PA))構成関連情報をユーザ端末20から受信してもよい。送受信部120は、フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードの設定情報(例えば、フルパワーモード3を示すRRCパラメータ)を前記ユーザ端末20に送信してもよい。 The transceiver 120 may receive power amplifier (PA) configuration related information from the user terminal 20. The transceiver 120 may transmit to the user terminal 20 setting information for a mode that determines a precoder for full power transmission in a manner different from full power modes 0/1/2 (e.g., an RRC parameter indicating full power mode 3).
(ユーザ端末)
 図18は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
18 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230. Note that the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each include one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal. The measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 In addition, the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 なお、送受信部220は、パワーアンプ(Power Amplifier(PA))構成関連情報を送信してもよい。制御部210は、フルパワーモード0/1/2(が設定される場合)とは異なる方法でフルパワー送信のためのプリコーダを決定するモードが設定される場合に、4つより多い数のアンテナポートを用いる前記プリコーダを決定してもよい。 The transceiver unit 220 may transmit information related to the configuration of a power amplifier (PA). The control unit 210 may determine the precoder using more than four antenna ports when a mode is set that determines a precoder for full power transmission in a manner different from the full power mode 0/1/2 (when the full power mode is set).
 前記PA構成関連情報は、送信プリコーディング行列インディケーター(Transmitted Precoding Matrix Indicator(TPMI))グループを示す能力情報ではなくてもよい(TPMIグループ能力情報とは異なる情報であってもよい)。 The PA configuration related information does not have to be capability information indicating a Transmitted Precoding Matrix Indicator (TPMI) group (it may be information different from TPMI group capability information).
 送受信部220は、前記プリコーダに使用可能なアンテナポートインデックスを示す情報(フルパワー送信向けプリコーダ情報)を受信してもよい。 The transceiver unit 220 may receive information indicating antenna port indexes available for the precoder (precoder information for full power transmission).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図19は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 19 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In addition, in this disclosure, the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable. The hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be multiple processors. Furthermore, processing may be performed by one processor, or processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Furthermore, the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, at least a portion of the above-mentioned control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above embodiments. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium. Storage 1003 may also be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 A radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal. A different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively. Note that the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. The RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc. The MAC signaling may be notified, for example, using a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding," "precoder," "weight (precoding weight)," "Quasi-Co-Location (QCL)," "Transmission Configuration Indication state (TCI state)," "spatial relation," "spatial domain filter," "transmit power," "phase rotation," "antenna port," "antenna port group," "layer," "number of layers," "rank," "resource," "resource set," "resource group," "beam," "beam width," "beam angle," "antenna," "antenna element," and "panel" may be used interchangeably.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図20は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 20 is a diagram showing an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example. The steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle. The electronic control unit 49 may also be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices. The information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices. The driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the above-mentioned base station 10 or user terminal 20. The communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle. The information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the user terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink"). For example, the uplink channel, downlink channel, etc. may be read as the sidelink channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the base station 10 may be configured to have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 "Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 "Judgment" may also be considered to mean "deciding" to resolve, select, choose, establish, compare, etc. In other words, "judgment" may also be considered to mean "deciding" to take some kind of action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be interpreted as "assuming," "expecting," "considering," etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "accessed."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。  The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The invention disclosed herein can be implemented in modified and altered forms without departing from the spirit and scope of the invention as defined by the claims. Therefore, the description of the disclosure is intended as an illustrative example and does not impose any limiting meaning on the invention disclosed herein.
 本出願は、2022年10月13日出願の特願2022-165076に基づく。この内容は、すべてここに含めておく。 This application is based on Patent Application No. 2022-165076, filed on October 13, 2022, the contents of which are incorporated herein in their entirety.

Claims (5)

  1.  パワーアンプ(Power Amplifier(PA))構成関連情報を送信する送信部と、
     フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードが設定される場合に、4つより多い数のアンテナポートを用いる前記プリコーダを決定する制御部と、を有する端末。
    A transmitter for transmitting power amplifier (PA) configuration related information;
    A terminal having a control unit that determines a precoder that uses more than four antenna ports when a mode that determines a precoder for full power transmission in a manner different from full power mode 0/1/2 is set.
  2.  前記PA構成関連情報は、送信プリコーディング行列インディケーター(Transmitted Precoding Matrix Indicator(TPMI))グループを示す能力情報ではない請求項1に記載の端末。 The terminal according to claim 1, wherein the PA configuration related information is not capability information indicating a Transmitted Precoding Matrix Indicator (TPMI) group.
  3.  前記プリコーダに使用可能なアンテナポートインデックスを示す情報を受信する受信部を有する請求項1に記載の端末。 The terminal according to claim 1, comprising a receiver that receives information indicating antenna port indexes available for the precoder.
  4.  パワーアンプ(Power Amplifier(PA))構成関連情報を送信するステップと、
     フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードが設定される場合に、4つより多い数のアンテナポートを用いる前記プリコーダを決定するステップと、を有する端末の無線通信方法。
    transmitting power amplifier (PA) configuration related information;
    A wireless communication method for a terminal, comprising: when a mode for determining a precoder for full power transmission in a manner different from full power mode 0/1/2 is set, determining the precoder using more than four antenna ports.
  5.  パワーアンプ(Power Amplifier(PA))構成関連情報を端末から受信する受信部と、
     フルパワーモード0/1/2とは異なる方法でフルパワー送信のためのプリコーダを決定するモードの設定情報を前記端末に送信する送信部と、を有する基地局。
    A receiving unit that receives power amplifier (PA) configuration related information from a terminal;
    A base station comprising: a transmitting unit that transmits to the terminal setting information of a mode that determines a precoder for full power transmission by a method different from full power modes 0/1/2.
PCT/JP2023/032391 2022-10-13 2023-09-05 Terminal, wireless communication method, and base station WO2024080040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165076 2022-10-13
JP2022165076 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080040A1 true WO2024080040A1 (en) 2024-04-18

Family

ID=90669415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032391 WO2024080040A1 (en) 2022-10-13 2023-09-05 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024080040A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117194A1 (en) * 2019-12-12 2021-06-17 株式会社Nttドコモ Terminal and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117194A1 (en) * 2019-12-12 2021-06-17 株式会社Nttドコモ Terminal and wireless communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "SRI/TPMI Enhancement for 8TX UE", 3GPP TSG RAN WG1 #110 R1-2205822, 12 August 2022 (2022-08-12), XP052273752 *
QUALCOMM INCORPORATED: "Enhancements for 8 Tx UL transmissions", 3GPP TSG RAN WG1 #110B-E R1-2209973, 30 September 2022 (2022-09-30), XP052259445 *

Similar Documents

Publication Publication Date Title
WO2024080040A1 (en) Terminal, wireless communication method, and base station
WO2024095388A1 (en) Terminal, wireless communication method, and base station
WO2024069819A1 (en) Terminal, wireless communication method, and base station
WO2024095473A1 (en) Terminal, wireless communication method, and base station
WO2024095472A1 (en) Terminal, wireless communication method, and base station
WO2024029043A1 (en) Terminal, wireless communication method, and base station
WO2024029044A1 (en) Terminal, wireless communication method, and base station
WO2024028941A1 (en) Terminal, wireless communication method, and base station
WO2024100888A1 (en) Terminal, wireless communication method, and base station
WO2024085203A1 (en) Terminal, wireless communication method, and base station
WO2024085204A1 (en) Terminal, wireless communication method, and base station
WO2024034133A1 (en) Terminal, wireless communication method, and base station
WO2023218954A1 (en) Terminal, radio communication method, and base station
WO2023195163A1 (en) Terminal, radio communication method, and base station
WO2023210004A1 (en) Terminal, radio communication method, and base station
WO2023181366A1 (en) Terminal, radio communication method, and base station
WO2024009476A1 (en) Terminal, radio communication method, and base station
WO2024122035A1 (en) Terminal, wireless communication method, and base station
WO2023090339A1 (en) Terminal, wireless communication method, and base station
WO2024029029A1 (en) Terminal, wireless communication method, and base station
WO2023175785A1 (en) Terminal, wireless communication method, and base station
WO2023209990A1 (en) Terminal, wireless communication method, and base station
WO2024069927A1 (en) Terminal, wireless communication method, and base station
WO2023209991A1 (en) Terminal, wireless communication method, and base station
WO2023152903A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877047

Country of ref document: EP

Kind code of ref document: A1