WO2024079830A1 - Piping unit for cryogenic fluid transfer - Google Patents

Piping unit for cryogenic fluid transfer Download PDF

Info

Publication number
WO2024079830A1
WO2024079830A1 PCT/JP2022/038129 JP2022038129W WO2024079830A1 WO 2024079830 A1 WO2024079830 A1 WO 2024079830A1 JP 2022038129 W JP2022038129 W JP 2022038129W WO 2024079830 A1 WO2024079830 A1 WO 2024079830A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
cover
piping unit
single pipe
cryogenic fluid
Prior art date
Application number
PCT/JP2022/038129
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 武田
貴志 下垣
晴彦 冨永
まり子 ▲高▼須賀
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2022/038129 priority Critical patent/WO2024079830A1/en
Publication of WO2024079830A1 publication Critical patent/WO2024079830A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • This disclosure relates to a piping unit used to transport cryogenic fluids.
  • a double-walled vacuum insulated pipe as a pipe for transporting liquefied gases such as liquefied natural gas and liquefied hydrogen (see, for example, Patent Document 1).
  • This double walled pipe has an inner pipe covered by an outer pipe with a thermal insulation layer in between, so it has high thermal insulation properties and can effectively suppress the temperature rise of the low-temperature liquefied gas flowing inside the inner pipe.
  • double-wall piping is used for the piping that transports cryogenic liquefied gas
  • single-wall piping is used for the piping through which cryogenic liquefied gas does not flow.
  • a shutoff valve is installed at the connection between the double and single pipes to block the flow of liquefied gas.
  • the single pipe section also becomes deeply cooled through the shutoff valve due to heat transfer from the liquefied gas in the double pipe. This can cause liquefied oxygen to be generated around the deeply cooled single pipe, so this needs to be prevented.
  • the objective of this disclosure is to solve the above problems by using a simple configuration to prevent the generation of liquefied oxygen around a single-wall gas transport pipe connected via a shutoff valve to a double-wall cryogenic fluid transport pipe.
  • the present disclosure provides a piping unit for transporting a cryogenic fluid, comprising: A double pipe including an inner pipe through which a cryogenic fluid passes and an outer pipe covering the outside of the inner pipe and forming a first vacuum insulation layer between the inner pipe and an outer pipe; A single pipe connected to one end of the inner pipe; a shutoff valve interposed between the double pipe and the single pipe, the shutoff valve having a primary side connected to the double pipe and a secondary side connected to the single pipe; a cover that covers a portion of the single pipe that is exposed from the valve body of the shutoff valve and forms a second vacuum insulation layer between the single pipe and the cover; Equipped with.
  • FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to an embodiment of the present disclosure.
  • FIG. 2 is a vertical cross-sectional view showing a schematic configuration of a modified example of the embodiment of FIG. 1 in which the cover has a different form.
  • FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to an embodiment of the present disclosure.
  • FIG. 2 is a vertical cross-sectional view showing a schematic configuration of a modified example of the embodiment of FIG. 1 in which the cover has a different form.
  • FIG. 2 is a vertical cross-sectional view showing a schematic configuration of another modified example having a different cover in the embodiment of FIG. 1 .
  • FIG. 2 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to a modified example of the embodiment of FIG. 1, in which a cover is provided with a cover expansion/contraction allowing portion. 1.
  • FIG. 4 is an enlarged longitudinal sectional view showing an example of the shape of a cover used in another modified example of the embodiment shown in FIG. 1.
  • FIG. 4 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to another modified example of the embodiment of FIG. 1.
  • FIG. 4 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to another modified example of the embodiment of FIG.
  • FIG. 1 shows a piping unit 1 for transferring cryogenic fluid according to one embodiment of the present disclosure.
  • this piping unit 1 for transferring cryogenic fluid will simply be referred to as "piping unit 1."
  • the piping unit 1 is applied when a double pipe employing a vacuum insulation structure is connected to a single pipe.
  • the piping unit 1 includes a double pipe 3, a single pipe 5 separate from the double pipe 3, a shutoff valve 7 connecting the double pipe 3 and the single pipe 5, and a cover 11 that covers the portion of the shutoff valve 7 in the single pipe 5 that is exposed from the valve box 9.
  • the piping unit 1 is used in liquefied gas storage facilities, such as liquefied gas storage ships and land-based liquefied gas storage bases.
  • liquefied gas storage ship refers to a ship that has the function of storing liquefied gas.
  • liquefied gas storage ships also include, for example, liquefied gas fuel ships and bunkering ships that supply liquefied gas to other ships.
  • liquefied gas storage facilities are not limited to ships as long as they have the structure and function to store liquefied gas, and may be, for example, land-based liquefied gas storage facilities or plants that use liquefied gas.
  • the double pipe 3 is configured as a vacuum insulated pipe having a double structure. That is, the double pipe 3 is configured from an inner pipe 15 through which the cryogenic fluid passes, and an outer pipe 17 that covers the outside of the inner pipe 15. A first vacuum insulation layer 19 is formed in the radial gap between the inner pipe 15 and the outer pipe 17.
  • the cryogenic fluid transferred by the double pipe 3 is, for example, a liquefied gas such as liquefied nitrogen (LN 2 , approximately ⁇ 200° C.), liquefied hydrogen (LH 2 , approximately ⁇ 250° C.), or liquefied helium (LHe, approximately ⁇ 270° C.).
  • liquefied hydrogen is transferred through the double pipe 3.
  • the cryogenic fluid referred to in this specification includes not only liquefied gas, but also cryogenic vaporized gas generated from liquefied gas.
  • the piping unit 1 of the present disclosure can be applied to equipment that transfers not only liquefied gas, but also cryogenic vaporized gas.
  • the single pipe 5 is connected to one end of the inner pipe 15.
  • the single pipe 5 is a pipe that transports a relatively high-temperature fluid, for example, to the extent that liquefied oxygen is not generated on the pipe surface.
  • a shutoff valve 7 is interposed between the double pipe 3 and the single pipe 5.
  • the double pipe 3 is connected to the primary side of the shutoff valve 7, and the single pipe 5 is connected to the secondary side.
  • the piping unit 1 may also be operated differently from the typical operation, in which the cryogenic fluid flows from the single pipe 5 side to the double pipe 3 side.
  • the side of the shutoff valve 7 to which the double pipe 3 is connected is called the primary side
  • the side to which the single pipe 5 is connected is called the secondary side.
  • the double pipe 3 and the single pipe 5 are connected to the valve box 9 of the shutoff valve 7.
  • the valve box 9 is joined to the double pipe 3 and the single pipe 5 by welding.
  • the method of joining the valve box 9 to the pipes 3 and 5 is not limited to welding, and any method such as flange connection or screw connection can be used.
  • Inside the valve box 9, a valve body for adjusting the shutoff or flow rate, a valve shaft for operating the valve body, etc. are arranged inside the valve box 9, a valve body for adjusting the shutoff or flow rate, a valve shaft for operating the valve body, etc. are arranged inside the valve box 9, a valve body for adjusting the shutoff or flow rate, a valve shaft for operating the valve body, etc. are arranged inside the valve box 9, a valve body for adjusting the shutoff or flow rate, a valve shaft for operating the valve body, etc. are arranged inside the valve box 9, a valve body for adjusting the shutoff or flow rate, a valve shaft for operating the valve body, etc. are arranged inside
  • the primary side of the shutoff valve 7 is in contact with the cryogenic fluid in the double pipe 3, so the cold heat from this cryogenic fluid is transferred to the shutoff valve 7 and the portion of the single pipe 5 on the secondary side surrounding the shutoff valve 7, causing it to become deeply cooled.
  • "deep cooling" of the pipe surface means that the temperature of the pipe surface becomes extremely low.
  • liquefied oxygen may be generated if the pipe is exposed to the outside air.
  • liquefied oxygen may be generated on the pipe surface at temperatures below -183°C.
  • a cover 11 is provided that covers the portion of the single pipe 5 that is exposed from the valve box 9 of the shutoff valve 7, and forms a second vacuum insulation layer 21 between the single pipe 5.
  • the second vacuum insulation layer 21 is also formed between the single pipe 5 and the cover 11 on the secondary side of the shutoff valve 7.
  • the shutoff valve 7 in this embodiment is provided with a vacuum jacket 23 that covers the valve box 9, and the cover 11 is formed by the single pipe side end 23a of the vacuum jacket 23 and a cylindrical member 25 connected to this single pipe side end 23a.
  • one end of the vacuum jacket 23 on the single pipe 5 side extends beyond the valve box 9 in the axial direction toward the single pipe side, and the cover 11 is formed by the single pipe side end 23a, which is a part of the vacuum jacket 23 that extends beyond the valve box 9, and the cylindrical member 25.
  • the cylindrical member 25 constituting the cover 11 can be configured, for example, as a single pipe arranged outside the single pipe 5.
  • the cylindrical member 25 can be formed as a single pipe having the same material and/or pipe diameter as the outer pipe 17 of the double pipe 3.
  • the end of the cylindrical member 25 opposite the shutoff valve 7 is closed by a lid portion 25a.
  • the cylindrical member 25 has an approximately cylindrical shape.
  • the cylindrical member 25 may be configured from multiple divided cylinders, for example, two divided cylinders, or three or more divided cylinders.
  • the shape of the cylindrical member 25 is not limited to a cylindrical shape, and may be another cylindrical shape, such as a rectangular cylinder.
  • cover 11 refers to an element that covers the portion of the single pipe 5 that is exposed from the valve box 9 of the shutoff valve 7 and forms a second vacuum insulation layer 21 between the single pipe 5, as described above, regardless of the form of the element that covers the single pipe 5, such as the specific form of the vacuum jacket 23 in the example of Figure 1 and/or the positional relationship between the vacuum jacket 23 and the tubular member 25.
  • the cover 11 is formed by the single pipe side end 23a of the vacuum jacket 23 and the tubular member 25.
  • the end of the tubular member 25 opposite the shutoff valve 7 is closed by the lid portion 25a.
  • the cover 11 is formed by the single pipe side end 23a of the vacuum jacket 23 of FIG. 2A.
  • the end of the single pipe side end 23a opposite the shutoff valve 7 is closed by the lid portion 23b of the vacuum jacket 23.
  • FIG. 2B as another modified example, when the tubular member 25 is provided so as to cover the single pipe side end 23a of the vacuum jacket 23 as well, the covering portion 25b of the tubular member 25 that covers the exposed portion of the single pipe 5 becomes the cover 11.
  • the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are in communication with each other. Specifically, the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are in communication with each other through the space between the valve box 9 of the shutoff valve 7 and the vacuum jacket 23. If a partition wall is provided between these vacuum insulation layers 19 and 12, the partition wall may be cooled deeply due to heat transfer from the cryogenic fluid on the primary side of the shutoff valve 7, and as a result, the surface of the cover 11 connected to the partition wall may be cooled deeply. Therefore, by configuring the first and second vacuum insulation layers 19 and 21 to be in communication with each other, it is possible to suppress the cover 11 from being cooled deeply.
  • the first vacuum insulation layer 19 and the second vacuum insulation layer 21 can be evacuated simultaneously using a common vacuum pump, making it easy to manage the vacuum. However, it is not essential that the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are in communication with each other.
  • the axial length L1 of the cover 11 is longer than the length L2 from the axial position P of the fluid communication blocking portion on the double pipe side of the shutoff valve 7 to the axial end 9a on the single pipe 5 side of the valve box 9.
  • the "fluid communication blocking portion” may vary depending on the specific structure of the shutoff valve 7, but in the case of the above-mentioned globe valve, it is the downstream end of the primary flow path when the valve body is closed.
  • the axial position P is shown at approximately the center position in the axial direction of the valve box 9, but may be a different position depending on the specific structure of the shutoff valve 7.
  • the axial length L1 of the cover 11 may be, for example, 250 mm or more. With this configuration, the cover 11 can cover a portion of the single pipe 5 that is sufficiently distant from the position P, which is the starting point of deep cooling, and the generation of liquid oxygen due to deep cooling of the pipe surface can be more reliably prevented.
  • the axial length L1 of the cover 11 is not limited to this example.
  • the single pipe 5 has a pipe expansion/contraction allowing portion 31 that allows changes in axial length in the portion covered by the cover 11.
  • the single pipe 5 has a bellows as the pipe expansion/contraction allowing portion 31.
  • the pipe expansion/contraction allowing portion 31 may be configured to allow, for example, radial displacement in addition to changes in the axial length of the single pipe 5. This configuration can prevent high stress from occurring in the connection portion between the single pipe 5 and the cover 11, and can prevent deformation and damage.
  • a pipe expansion/contraction allowing portion 31 such as a bellows, the heat transfer distance of the inner pipe 5 inside the cover 11 is increased, so that the transfer of cold to the outside of the cover 11 can be more effectively prevented.
  • the expansion and contraction allowance portion that allows the change in the axial length can be provided in at least one of the cover 11 and the portion of the single pipe 5 covered by the cover 11.
  • the cover 11 may be provided with a cover expansion and contraction allowance portion 33 that allows the change in the axial length.
  • the cover 11 has a bellows as the cover expansion and contraction allowance portion 33.
  • the cover expansion and contraction allowance portion 33 may be configured to allow, for example, radial displacement in addition to the change in the axial length of the cover 11.
  • the cover expansion and contraction allowance portion 33 is effective in allowing thermal contraction of the inner pipe 15 and absorbing the thermal contraction difference between the inner pipe and the outer pipe. With this configuration, it is possible to suppress the occurrence of high stress in the connection portion between the single pipe 5 and the cover 11, and to suppress deformation and damage. When such an expansion and contraction allowance portion is provided in the cover 11, inspection is easier than when it is provided in the single pipe 5 covered by the cover 11.
  • the cover 11 may have a curved shape in the lid portion 25a on the side opposite the valve box 9.
  • the lid portion 25a is curved so as to smoothly reduce in diameter from the peripheral wall of the cover 11 toward the single pipe 5.
  • FIG. 3 shows an example in which the lid portion 25a of the cover 11 has the above-mentioned curved shape instead of providing the pipe expansion and contraction allowance portion 31 in the piping unit 1 shown in FIG. 1, but in addition to providing either or both of the pipe expansion and contraction allowance portion 31 and the cover expansion and contraction allowance portion 33, the lid portion 25a of the cover 11 may have the above-mentioned curved shape.
  • the piping unit 1 is provided with a temperature measuring device 35 that measures the temperature of the single pipe 5.
  • the temperature measuring device 35 has a temperature sensor element 35a that detects the temperature of the detection target, and the temperature sensor element 35a is disposed at the end 5a of the portion of the single pipe 5 that is covered by the cover 11.
  • the temperature measuring device 35 may include, in appropriate locations, various circuits for performing necessary processing such as signal conversion processing and arithmetic processing on the obtained detected amount, memory for storing information required for these processes, a power supply element such as a battery or a power supply circuit for receiving power from an external source, and a transmission circuit for transmitting the output signal to the outside via a wired or wireless connection.
  • various circuits for performing necessary processing such as signal conversion processing and arithmetic processing on the obtained detected amount
  • memory for storing information required for these processes
  • a power supply element such as a battery or a power supply circuit for receiving power from an external source
  • a transmission circuit for transmitting the output signal to the outside via a wired or wireless connection.
  • an additional shutoff valve 37 may be provided in the portion of the single pipe 5 exposed from the cover 11.
  • the portion of the single pipe 5 exposed from the cover 11 may be covered with a heat insulating material 39.
  • a heat insulating material 39 By configuring in this manner, the single pipe 5 can be appropriately insulated when a cryogenic fluid is temporarily flowed from the double pipe 5 to the single pipe 5.
  • the area covered with the heat insulating material 39 can be determined arbitrarily according to the temperature of the pipe surface, etc.
  • a vacuum insulation panel can be used as the heat insulating material 39.
  • the heat insulating material 39 may be a powder instead of a panel-shaped member.
  • the material used as the heat insulating material 39 is not particularly limited, but may be, for example, an organic polymer material such as polyurethane foam or polyethylene foam, or an inorganic material such as perlite.
  • the additional shutoff valve 37 shown in FIG. 5 and the insulation material 39 shown in FIG. 6 can be combined with any of the modified configurations described above.
  • the piping unit 1 can be provided with various valves and measuring instruments as necessary.
  • a vacuum gauge can be provided at any location that communicates with the second vacuum insulation layer 21 formed by the cover 11.
  • the piping unit 1 is used for transporting liquefied hydrogen. Since liquefied hydrogen has a lower temperature than liquefied oxygen, there are great advantages to using the piping unit 1 described above. However, as described above, the piping unit 1 according to this embodiment can also be used for transporting things other than liquefied hydrogen.
  • the piping unit 1 includes a double pipe 3 having an inner pipe 15 through which a cryogenic fluid passes and an outer pipe 17 that covers the outside of the inner pipe 15 and forms a first vacuum insulation layer 19 between the inner pipe 15, a single pipe 5 separate from the double pipe 3, a shutoff valve 7 that connects the double pipe 3 and the single pipe 5, and a cover 11 that covers the portion of the single pipe 5 exposed from the valve box 9 of the shutoff valve 7 and forms a second vacuum insulation layer 21 between the single pipe 5.
  • the cover 11 covers the portion of the single pipe 5 that extends a predetermined length from the valve box of the shutoff valve 7, thereby preventing the deeply cooled portion of the single pipe from being exposed to the outside air.
  • the piping unit 1 according to the second aspect of this embodiment may be the piping unit according to the first aspect, in which the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are connected to each other.
  • the first vacuum insulation layer 19 and the second vacuum insulation layer 21 can be evacuated using a common vacuum pump, making it easy to manage the vacuum.
  • the piping unit 1 according to the third aspect of this embodiment may be the piping unit according to the first or second aspect, in which the axial length L1 of the cover 11 is longer than the length L2 from the axial position P of the fluid communication cut-off portion on the double pipe 3 side of the shutoff valve 7 to the axial end 9a of the valve box 9 on the single pipe 5 side.
  • the cover 11 can cover the single pipe 5 up to a portion sufficiently away from the position P, which is the starting point of deep cooling, and the generation of liquid oxygen due to deep cooling of the pipe surface can be more reliably prevented.
  • the piping unit 1 according to the fourth aspect of this embodiment may be a piping unit according to any one of the first to third aspects, in which at least one of the cover 11 and the portion of the single pipe 5 covered by the cover 11 has an expansion/contraction allowing portion that allows for a change in axial length, i.e., the cover expansion/contraction allowing portion 33 and/or the pipe expansion/contraction allowing portion 31.
  • This configuration can prevent high stress from occurring at the connection portion between the single pipe 5 and the cover 11, and can prevent deformation and damage.
  • the pipe expansion/contraction allowing portion 31 is provided, the heat transfer distance in the single pipe 5 increases, so that the transfer of cold to the outside of the cover 11 can be more effectively prevented.
  • the piping unit 1 according to the fifth aspect of this embodiment may be a piping unit according to any one of the first to fourth aspects, in which an additional shutoff valve 37 is provided in the portion of the single pipe 5 exposed from the cover 11. With this configuration, the flow of the cryogenic fluid can be shut off more reliably.
  • the piping unit 1 according to the sixth aspect of this embodiment may be a piping unit according to any one of the first to fifth aspects, in which a temperature sensor element 35a for detecting the temperature of the single pipe 5 is disposed at the end of the portion of the single pipe 5 that is covered by the cover 11.
  • a temperature sensor element 35a for detecting the temperature of the single pipe 5 is disposed at the end of the portion of the single pipe 5 that is covered by the cover 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Provided is a piping unit (1) for cryogenic fluid transfer, the piping unit comprising: double piping (3) having an inner pipe (15) through which cryogenic fluid is passed, and an outer pipe (17) that covers the outside of the inner pipe (15) and forms a first vacuum insulation layer (19) together with the inner pipe (15); single piping (5) that is separate from the double piping (3); and a shutoff valve (7) that connects the double piping (3) and the single piping (5), wherein the piping unit is provided with a cover (11) that covers a portion of the single piping (5) that protrudes from a valve box (9) of the shutoff valve (7), the cover (11) forming a second vacuum insulation layer (21) together with the single piping (5).

Description

極低温流体移送用配管ユニットPiping unit for transferring cryogenic fluids
 本開示は、極低温流体の移送に用いられる配管ユニットに関する。 This disclosure relates to a piping unit used to transport cryogenic fluids.
 従来、液化天然ガスや液化水素といった液化ガスを移送するための配管として、二重構造の真空断熱管を用いることが提案されている(例えば、特許文献1参照)。この二重管は、内管を、断熱層を介して外管が覆う構造を有しているので、高い断熱性が得られ、内管内を流れる低温の液化ガスの温度上昇を効果的に抑制することができる。  It has been proposed to use a double-walled vacuum insulated pipe as a pipe for transporting liquefied gases such as liquefied natural gas and liquefied hydrogen (see, for example, Patent Document 1). This double walled pipe has an inner pipe covered by an outer pipe with a thermal insulation layer in between, so it has high thermal insulation properties and can effectively suppress the temperature rise of the low-temperature liquefied gas flowing inside the inner pipe.
特開2022-101284号公報JP 2022-101284 A
 一般的に、液化ガス設備において極低温の液化ガスを移送する配管には二重構造の配管が用いられるのに対し、極低温の液化ガスが流れない配管には一重構造の配管が用いられる。これらの二重配管と一重配管との接続箇所には、液化ガスの流れを遮断する遮断弁が介装される。この場合、二重配管内の液化ガスからの伝熱により、遮断弁を介して一重配管部分も深冷化する。これにより、深冷化した一重配管の周辺において液化酸素が発生する可能性があるので、これを防止する必要がある。 Generally, in liquefied gas facilities, double-wall piping is used for the piping that transports cryogenic liquefied gas, while single-wall piping is used for the piping through which cryogenic liquefied gas does not flow. A shutoff valve is installed at the connection between the double and single pipes to block the flow of liquefied gas. In this case, the single pipe section also becomes deeply cooled through the shutoff valve due to heat transfer from the liquefied gas in the double pipe. This can cause liquefied oxygen to be generated around the deeply cooled single pipe, so this needs to be prevented.
 本開示の目的は、上記の課題を解決するために、二重構造を有する極低温流体移送用配管に遮断弁を介して接続された一重構造のガス移送用配管において、簡易な構成で、配管周辺における液化酸素の生成を防止することにある。 The objective of this disclosure is to solve the above problems by using a simple configuration to prevent the generation of liquefied oxygen around a single-wall gas transport pipe connected via a shutoff valve to a double-wall cryogenic fluid transport pipe.
 上記目的を達成するために、本開示に係る極低温流体移送用配管ユニットは、
 極低温流体を通過させる内管と、前記内管の外側を覆い、前記内管との間に第1真空断熱層を形成する外管とを有する二重配管と、
 前記内管の一端部に接続された一重配管と、
 前記二重配管と前記一重配管との間に介装された遮断弁であって、その一次側に前記二重配管が接続され、二次側に前記一重配管が接続されている遮断弁と、
 前記一重配管における、前記遮断弁の弁箱から露出した部分を覆って、前記一重配管との間に第2真空断熱層を形成するカバーと、
を備える。
In order to achieve the above object, the present disclosure provides a piping unit for transporting a cryogenic fluid, comprising:
A double pipe including an inner pipe through which a cryogenic fluid passes and an outer pipe covering the outside of the inner pipe and forming a first vacuum insulation layer between the inner pipe and an outer pipe;
A single pipe connected to one end of the inner pipe;
a shutoff valve interposed between the double pipe and the single pipe, the shutoff valve having a primary side connected to the double pipe and a secondary side connected to the single pipe;
a cover that covers a portion of the single pipe that is exposed from the valve body of the shutoff valve and forms a second vacuum insulation layer between the single pipe and the cover;
Equipped with.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本開示に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本開示に含まれる。 Any combination of at least two of the features disclosed in the claims and/or the specification and/or the drawings is included in the present disclosure. In particular, any combination of two or more of the claims is included in the present disclosure.
 本開示は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本開示の範囲を定めるために利用されるべきものではない。本開示の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本開示の一実施形態に係る極低温流体移送用配管ユニットの概略構成を示す縦断面図である。 図1の実施形態において、カバーの態様が異なる一変形例の概略構成を示す縦断面図である。 図1の実施形態において、カバーの態様が異なる他の変形例の概略構成を示す縦断面図である。 図1の実施形態の一変形例に係る極低温流体移送用配管ユニットにおいて、カバーにカバー伸縮許容部が設けられた概略構成を示す縦断面図である。 図1の実施形態の他の変形例に用いられるカバーの形状の一例を拡大して示す縦断面図である。 図1の実施形態の他の変形例に係る極低温流体移送用配管ユニットの概略構成を示す縦断面図である。 図1の実施形態の他の変形例に係る極低温流体移送用配管ユニットの概略構成を示す縦断面図である。
The present disclosure will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and explanation, and should not be used to determine the scope of the present disclosure. The scope of the present disclosure is determined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
1 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to an embodiment of the present disclosure. FIG. 2 is a vertical cross-sectional view showing a schematic configuration of a modified example of the embodiment of FIG. 1 in which the cover has a different form. FIG. 2 is a vertical cross-sectional view showing a schematic configuration of another modified example having a different cover in the embodiment of FIG. 1 . FIG. 2 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to a modified example of the embodiment of FIG. 1, in which a cover is provided with a cover expansion/contraction allowing portion. 1. FIG. 4 is an enlarged longitudinal sectional view showing an example of the shape of a cover used in another modified example of the embodiment shown in FIG. 1. FIG. 4 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to another modified example of the embodiment of FIG. 1. FIG. 4 is a vertical cross-sectional view showing a schematic configuration of a cryogenic fluid transport piping unit according to another modified example of the embodiment of FIG.
 以下、本開示の実施形態について図面を参照しながら説明する。図1に、本開示の一実施形態に係る極低温流体移送用配管ユニット1を示す。以下、この極低温流体移送用配管ユニット1を、単に「配管ユニット1」という。配管ユニット1は、真空断熱構造を採用した二重配管と一重配管とが接続される場合に適用される。配管ユニット1は、二重配管3と、この二重配管3とは別体の一重配管5と、これら二重配管3と一重配管5とを接続する遮断弁7と、一重配管5における遮断弁7の弁箱9から露出した部分を覆うカバー11とを備える。 Embodiments of the present disclosure will now be described with reference to the drawings. FIG. 1 shows a piping unit 1 for transferring cryogenic fluid according to one embodiment of the present disclosure. Hereinafter, this piping unit 1 for transferring cryogenic fluid will simply be referred to as "piping unit 1." The piping unit 1 is applied when a double pipe employing a vacuum insulation structure is connected to a single pipe. The piping unit 1 includes a double pipe 3, a single pipe 5 separate from the double pipe 3, a shutoff valve 7 connecting the double pipe 3 and the single pipe 5, and a cover 11 that covers the portion of the shutoff valve 7 in the single pipe 5 that is exposed from the valve box 9.
 配管ユニット1は、例えば、液化ガス貯留船や陸上の液化ガス貯留基地といった液化ガス貯留設備において用いられる。本明細書において「液化ガス貯留船」とは、液化ガスを貯留する機能を有する船舶を指す。液化ガス運搬船以外にも、例えば液化ガス燃料船や、液化ガスを他の船舶に供給するバンカリング船等が液化ガス貯留船に含まれる。もっとも、液化ガス貯留設備は、液化ガスを貯留する構造、機能を有する設備であれば船舶に限定されず、例えば地上の液化ガス貯留設備や、液化ガスを利用するプラントであってよい。 The piping unit 1 is used in liquefied gas storage facilities, such as liquefied gas storage ships and land-based liquefied gas storage bases. In this specification, "liquefied gas storage ship" refers to a ship that has the function of storing liquefied gas. In addition to liquefied gas carriers, liquefied gas storage ships also include, for example, liquefied gas fuel ships and bunkering ships that supply liquefied gas to other ships. However, liquefied gas storage facilities are not limited to ships as long as they have the structure and function to store liquefied gas, and may be, for example, land-based liquefied gas storage facilities or plants that use liquefied gas.
 図1に示すように、二重配管3は、二重構造を有する真空断熱配管として構成されている。すなわち、二重配管3は、極低温流体を通過させる内管15と、内管15の外側を覆う外管17とから構成されている。内管15と外管17との間の径方向の隙間に第1真空断熱層19が形成される。 As shown in FIG. 1, the double pipe 3 is configured as a vacuum insulated pipe having a double structure. That is, the double pipe 3 is configured from an inner pipe 15 through which the cryogenic fluid passes, and an outer pipe 17 that covers the outside of the inner pipe 15. A first vacuum insulation layer 19 is formed in the radial gap between the inner pipe 15 and the outer pipe 17.
 二重配管3によって移送される極低温流体は、例えば、液化窒素(LN、約-200℃)、液化水素(LH、約-250℃)、液化ヘリウム(LHe、約-270℃)といった液化ガスである。本実施形態では、液化水素が二重配管3を介して移送される。もっとも、本明細書でいう極低温流体には、液化ガスだけでなく、液化ガスから発生する極低温の気化ガスも含まれる。本開示の配管ユニット1は、液化ガスだけでなく、極低温の気化ガスを移送する設備にも適用することができる。 The cryogenic fluid transferred by the double pipe 3 is, for example, a liquefied gas such as liquefied nitrogen (LN 2 , approximately −200° C.), liquefied hydrogen (LH 2 , approximately −250° C.), or liquefied helium (LHe, approximately −270° C.). In this embodiment, liquefied hydrogen is transferred through the double pipe 3. However, the cryogenic fluid referred to in this specification includes not only liquefied gas, but also cryogenic vaporized gas generated from liquefied gas. The piping unit 1 of the present disclosure can be applied to equipment that transfers not only liquefied gas, but also cryogenic vaporized gas.
 一重配管5は、内管15の一端部に接続されている。一重配管5は、例えば配管表面において液化酸素が発生しない程度の、比較的高温の流体を移送する配管である。二重配管3と一重配管5との間には遮断弁7が介装されている。極低温流体を二重配管3側から一重配管5側へ向けて流すという配管ユニット1の典型的な運用において、遮断弁7の一次側に二重配管3が接続され、二次側に一重配管5が接続されている。なお、配管ユニット1においては、極低温流体を一重配管5側から二重配管3側へ向けて流すという、典型的運用と異なる運用を行う場合もあり得る。もっとも、以下の説明では、便宜上、遮断弁7の二重配管3が接続されている側を一次側と呼び、一重配管5が接続されている側を二次側と呼ぶ。 The single pipe 5 is connected to one end of the inner pipe 15. The single pipe 5 is a pipe that transports a relatively high-temperature fluid, for example, to the extent that liquefied oxygen is not generated on the pipe surface. A shutoff valve 7 is interposed between the double pipe 3 and the single pipe 5. In a typical operation of the piping unit 1 in which the cryogenic fluid flows from the double pipe 3 side to the single pipe 5 side, the double pipe 3 is connected to the primary side of the shutoff valve 7, and the single pipe 5 is connected to the secondary side. Note that the piping unit 1 may also be operated differently from the typical operation, in which the cryogenic fluid flows from the single pipe 5 side to the double pipe 3 side. However, in the following explanation, for convenience, the side of the shutoff valve 7 to which the double pipe 3 is connected is called the primary side, and the side to which the single pipe 5 is connected is called the secondary side.
 具体的には、遮断弁7の弁箱9に二重配管3および一重配管5が接続されている。弁箱9と二重配管3,一重配管5とは溶接により接合されている。もっとも、弁箱9と配管3,5との間の接合方法は溶接に限定されるものではなく、フランジ接続、ねじ接合などの任意の方法を用いることができる。弁箱9の内部には、遮断または流量を調整するための弁体、弁体を操作するための弁軸等が配置されている。遮断弁7は、二重配管3内を流れる極低温流体が一重配管5側に流れ込まないように遮断する。本実施形態では、遮断弁7として玉型弁を用いているが、必要に応じて任意の種類の弁を採用することができる。 Specifically, the double pipe 3 and the single pipe 5 are connected to the valve box 9 of the shutoff valve 7. The valve box 9 is joined to the double pipe 3 and the single pipe 5 by welding. However, the method of joining the valve box 9 to the pipes 3 and 5 is not limited to welding, and any method such as flange connection or screw connection can be used. Inside the valve box 9, a valve body for adjusting the shutoff or flow rate, a valve shaft for operating the valve body, etc. are arranged. The shutoff valve 7 shuts off the cryogenic fluid flowing in the double pipe 3 so that it does not flow into the single pipe 5. In this embodiment, a globe valve is used as the shutoff valve 7, but any type of valve can be used as necessary.
 遮断弁7の一次側は二重配管3内の極低温流体と接しているので、この極低温流体からの冷熱が伝わることで、遮断弁7およびその二次側の一重配管5のうちの遮断弁7の周囲の部分が深冷化する。ここで、配管表面の「深冷化」とは、配管表面の温度が極めて低温になることをいう。配管表面が深冷化すると、この配管が外気に露出している場合には、液化酸素の生成が起こり得る。例えば、液化酸素の生成は、-183℃以下の配管表面において起こり得る。 The primary side of the shutoff valve 7 is in contact with the cryogenic fluid in the double pipe 3, so the cold heat from this cryogenic fluid is transferred to the shutoff valve 7 and the portion of the single pipe 5 on the secondary side surrounding the shutoff valve 7, causing it to become deeply cooled. Here, "deep cooling" of the pipe surface means that the temperature of the pipe surface becomes extremely low. When the pipe surface becomes deeply cooled, liquefied oxygen may be generated if the pipe is exposed to the outside air. For example, liquefied oxygen may be generated on the pipe surface at temperatures below -183°C.
 本実施形態では、一重配管5における、遮断弁7の弁箱9から露出した部分を覆って、一重配管5との間に第2真空断熱層21を形成するカバー11が設けられている。遮断弁7の二次側においても、一重配管5とカバー11との間に第2真空断熱層21が形成される。具体的には、本実施形態の遮断弁7は、弁箱9を覆う真空ジャケット23を備えており、真空ジャケット23の一重配管側端部23aと、この一重配管側端部23aに連結された筒状部材25によってカバー11が形成されている。すなわち、この例では、真空ジャケット23は、その一重配管5側の一端が、軸心方向において弁箱9を超えて一重配管側へ延びており、真空ジャケット23の弁箱9を超えて延出した一部である上記一重配管側端部23aと、筒状部材25とによってカバー11が形成されている。 In this embodiment, a cover 11 is provided that covers the portion of the single pipe 5 that is exposed from the valve box 9 of the shutoff valve 7, and forms a second vacuum insulation layer 21 between the single pipe 5. The second vacuum insulation layer 21 is also formed between the single pipe 5 and the cover 11 on the secondary side of the shutoff valve 7. Specifically, the shutoff valve 7 in this embodiment is provided with a vacuum jacket 23 that covers the valve box 9, and the cover 11 is formed by the single pipe side end 23a of the vacuum jacket 23 and a cylindrical member 25 connected to this single pipe side end 23a. That is, in this example, one end of the vacuum jacket 23 on the single pipe 5 side extends beyond the valve box 9 in the axial direction toward the single pipe side, and the cover 11 is formed by the single pipe side end 23a, which is a part of the vacuum jacket 23 that extends beyond the valve box 9, and the cylindrical member 25.
 このように、カバー11が一重配管5のうち遮断弁7の弁箱から所定長さにわたる部分を覆うことにより、一重配管のうち深冷化した部分が外気に露出することを抑制できる。また、一重配管5とカバー11との間の空間を真空断熱層21とすることにより、一重配管5からカバー11への熱伝達を抑制しカバー11の深冷化を防ぐことができる。これにより、一重配管5側での液化酸素の生成を防止できる。 In this way, by having the cover 11 cover a portion of the single pipe 5 that extends a predetermined length from the valve box of the shutoff valve 7, it is possible to prevent the deeply cooled portion of the single pipe from being exposed to the outside air. In addition, by making the space between the single pipe 5 and the cover 11 into a vacuum insulation layer 21, it is possible to suppress heat transfer from the single pipe 5 to the cover 11 and prevent the cover 11 from becoming deeply cooled. This makes it possible to prevent the generation of liquefied oxygen on the single pipe 5 side.
 カバー11を構成する筒状部材25は、例えば、一重配管5の外側に配置された単管として構成することができる。筒状部材25を単管として構成する場合、例えば、筒状部材25は二重配管3の外管17と同一の材質および/または管径を有する単管として形成することができる。筒状部材25の遮断弁7と反対側の端部は蓋部25aによって閉塞される。図示の例では筒状部材25はほぼ円筒形状を有している。なお、筒状部材25は、複数、例えば2つの分割筒体から構成されていてもよいし、3つ以上の分割筒体から構成されていてもよい。また、筒状部材25の形状は、円筒形状に限定されず、角筒形状等、他の筒形状であってよい。 The cylindrical member 25 constituting the cover 11 can be configured, for example, as a single pipe arranged outside the single pipe 5. When the cylindrical member 25 is configured as a single pipe, for example, the cylindrical member 25 can be formed as a single pipe having the same material and/or pipe diameter as the outer pipe 17 of the double pipe 3. The end of the cylindrical member 25 opposite the shutoff valve 7 is closed by a lid portion 25a. In the illustrated example, the cylindrical member 25 has an approximately cylindrical shape. Note that the cylindrical member 25 may be configured from multiple divided cylinders, for example, two divided cylinders, or three or more divided cylinders. Furthermore, the shape of the cylindrical member 25 is not limited to a cylindrical shape, and may be another cylindrical shape, such as a rectangular cylinder.
 なお、本明細書において、「カバー11」は、一重配管5を覆う要素の態様、図1の例でいえば真空ジャケット23の具体的形態および/または真空ジャケット23と筒状部材25との位置関係等にかかわらず、上述のとおり、一重配管5における、遮断弁7の弁箱9から露出した部分を覆って、一重配管5との間に第2真空断熱層21を形成する要素を指す。上述のとおり、図1に示す本実施形態では、カバー11は、真空ジャケット23の一重配管側端部23aと、筒状部材25とによって形成されている。この例では、筒状部材25の遮断弁7と反対側の端が蓋部25aによって閉塞されている。 In this specification, "cover 11" refers to an element that covers the portion of the single pipe 5 that is exposed from the valve box 9 of the shutoff valve 7 and forms a second vacuum insulation layer 21 between the single pipe 5, as described above, regardless of the form of the element that covers the single pipe 5, such as the specific form of the vacuum jacket 23 in the example of Figure 1 and/or the positional relationship between the vacuum jacket 23 and the tubular member 25. As described above, in this embodiment shown in Figure 1, the cover 11 is formed by the single pipe side end 23a of the vacuum jacket 23 and the tubular member 25. In this example, the end of the tubular member 25 opposite the shutoff valve 7 is closed by the lid portion 25a.
 本実施形態の一変形例として、例えば、図2Aに示すように、真空ジャケット23の一重配管側端部23aが長く延出している場合、換言すれば真空ジャケット23と図1の筒状部材25とが一体的に形成されている場合には、カバー11は、図2Aの真空ジャケット23の一重配管側端部23aによって形成されている。一重配管側端部23aの遮断弁7と反対側の端が真空ジャケット23の蓋部23bによって閉塞されている。また、図2Bに他の変形例として示すように、真空ジャケット23の一重配管側端部23aをも覆うように筒状部材25が設けられている場合には、筒状部材25のうちの一重配管5の露出部分を覆う被覆部分25bがカバー11となる。 As a modified example of this embodiment, for example, as shown in FIG. 2A, when the single pipe side end 23a of the vacuum jacket 23 extends long, in other words, when the vacuum jacket 23 and the tubular member 25 of FIG. 1 are formed integrally, the cover 11 is formed by the single pipe side end 23a of the vacuum jacket 23 of FIG. 2A. The end of the single pipe side end 23a opposite the shutoff valve 7 is closed by the lid portion 23b of the vacuum jacket 23. Also, as shown in FIG. 2B as another modified example, when the tubular member 25 is provided so as to cover the single pipe side end 23a of the vacuum jacket 23 as well, the covering portion 25b of the tubular member 25 that covers the exposed portion of the single pipe 5 becomes the cover 11.
 図1に示す本実施形態では、第1真空断熱層19と、第2真空断熱層21とが連通している。具体的には、遮断弁7の弁箱9と真空ジャケット23との間の空間を介して第1真空断熱層19と、第2真空断熱層21とが連通している。これらの真空断熱層19,12の間に隔壁を設けると、遮断弁7の一次側の極低温流体からの伝熱によって、この隔壁が深冷化し、その結果隔壁に連結されたカバー11の表面が深冷化する可能性がある。したがって、第1および第2の真空断熱層19,21が連通している構成とすることにより、カバー11の深冷化を抑制できる。また、第1真空断熱層19および第2真空断熱層21の真空排気を、共通の真空ポンプを用いて同時に行うことができ、真空の管理も容易である。もっとも、第1真空断熱層19と、第2真空断熱層21とが連通していることは必須ではない。 In the present embodiment shown in FIG. 1, the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are in communication with each other. Specifically, the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are in communication with each other through the space between the valve box 9 of the shutoff valve 7 and the vacuum jacket 23. If a partition wall is provided between these vacuum insulation layers 19 and 12, the partition wall may be cooled deeply due to heat transfer from the cryogenic fluid on the primary side of the shutoff valve 7, and as a result, the surface of the cover 11 connected to the partition wall may be cooled deeply. Therefore, by configuring the first and second vacuum insulation layers 19 and 21 to be in communication with each other, it is possible to suppress the cover 11 from being cooled deeply. In addition, the first vacuum insulation layer 19 and the second vacuum insulation layer 21 can be evacuated simultaneously using a common vacuum pump, making it easy to manage the vacuum. However, it is not essential that the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are in communication with each other.
 本実施形態では、図1に示すように、カバー11の軸心方向長さL1が、遮断弁7における二重配管側の流体連通遮断部分の軸心方向位置Pから弁箱9の一重配管5側の軸心方向端9aまでの長さL2よりも長い。本明細書において、「流体連通遮断部分」とは、遮断弁7の具体的な構造によって異なり得るが、例えば上述の玉型弁の場合、弁体が閉じた状態での一次側流路の下流端となる。なお図示の例において、上記軸心方向位置Pは、弁箱9の軸心方向のほぼ中央位置に示されているが、遮断弁7の具体的な構造によって異なる位置になり得る。カバー11の軸心方向長さL1は、例えば250mm以上であってもよい。このような構成とすることにより、カバー11が、一重配管5のうちの、深冷化の起点となる上記位置Pから十分離れた部分まで覆うことができ、より確実に配管表面の深冷化による液体酸素の生成を防止できる。もっとも、カバー11の軸心方向長さL1はこの例に限定されない。 In this embodiment, as shown in FIG. 1, the axial length L1 of the cover 11 is longer than the length L2 from the axial position P of the fluid communication blocking portion on the double pipe side of the shutoff valve 7 to the axial end 9a on the single pipe 5 side of the valve box 9. In this specification, the "fluid communication blocking portion" may vary depending on the specific structure of the shutoff valve 7, but in the case of the above-mentioned globe valve, it is the downstream end of the primary flow path when the valve body is closed. In the illustrated example, the axial position P is shown at approximately the center position in the axial direction of the valve box 9, but may be a different position depending on the specific structure of the shutoff valve 7. The axial length L1 of the cover 11 may be, for example, 250 mm or more. With this configuration, the cover 11 can cover a portion of the single pipe 5 that is sufficiently distant from the position P, which is the starting point of deep cooling, and the generation of liquid oxygen due to deep cooling of the pipe surface can be more reliably prevented. However, the axial length L1 of the cover 11 is not limited to this example.
 本実施形態に係る配管ユニット1において、図1に示すように、一重配管5が、カバー11で覆われた部分に、軸心方向長さの変化を許容する配管伸縮許容部31を備えている。本実施形態では、一重配管5は、配管伸縮許容部31としてベローズを有している。なお、配管伸縮許容部31は、一重配管5の軸心方向長さの変化に加えて、例えば径方向の変位を許容するように構成されていてもよい。この構成によれば、一重配管5とカバー11の連結部分に高応力が発生することを抑制し、変形や破損を抑制することができる。さらに、ベローズのような配管伸縮許容部31を設けることによってカバー11内における内管5の伝熱距離が増大するので、カバー11外へと冷熱が伝わることをより効果的に抑制できる。 In the piping unit 1 according to this embodiment, as shown in FIG. 1, the single pipe 5 has a pipe expansion/contraction allowing portion 31 that allows changes in axial length in the portion covered by the cover 11. In this embodiment, the single pipe 5 has a bellows as the pipe expansion/contraction allowing portion 31. The pipe expansion/contraction allowing portion 31 may be configured to allow, for example, radial displacement in addition to changes in the axial length of the single pipe 5. This configuration can prevent high stress from occurring in the connection portion between the single pipe 5 and the cover 11, and can prevent deformation and damage. Furthermore, by providing a pipe expansion/contraction allowing portion 31 such as a bellows, the heat transfer distance of the inner pipe 5 inside the cover 11 is increased, so that the transfer of cold to the outside of the cover 11 can be more effectively prevented.
 もっとも、軸心方向長さの変化を許容する伸縮許容部は、カバー11および一重配管5のカバー11で覆われた部分の少なくとも一方に設けることができる。本実施形態の一変形例に係る配管ユニット1において、図3に示すように、カバー11が、軸心方向長さの変化を許容するカバー伸縮許容部33を備えていてもよい。この変形例では、カバー11は、カバー伸縮許容部33としてベローズを有している。配管伸縮許容部31と同様に、カバー伸縮許容部33は、カバー11の軸心方向長さの変化に加えて、例えば径方向の変位を許容するように構成されていてもよい。カバー伸縮許容部33は、内管15の熱収縮を許容し内管-外管間の熱収縮差を吸収するために有効である。この構成によれば、一重配管5とカバー11の連結部分に高応力が発生することを抑制し、変形や破損を抑制することができる。このような伸縮許容部をカバー11に設けると、カバー11に覆われる一重配管5に設ける場合よりも、点検が容易である。 However, the expansion and contraction allowance portion that allows the change in the axial length can be provided in at least one of the cover 11 and the portion of the single pipe 5 covered by the cover 11. In the piping unit 1 according to one modified example of this embodiment, as shown in FIG. 3, the cover 11 may be provided with a cover expansion and contraction allowance portion 33 that allows the change in the axial length. In this modified example, the cover 11 has a bellows as the cover expansion and contraction allowance portion 33. As with the pipe expansion and contraction allowance portion 31, the cover expansion and contraction allowance portion 33 may be configured to allow, for example, radial displacement in addition to the change in the axial length of the cover 11. The cover expansion and contraction allowance portion 33 is effective in allowing thermal contraction of the inner pipe 15 and absorbing the thermal contraction difference between the inner pipe and the outer pipe. With this configuration, it is possible to suppress the occurrence of high stress in the connection portion between the single pipe 5 and the cover 11, and to suppress deformation and damage. When such an expansion and contraction allowance portion is provided in the cover 11, inspection is easier than when it is provided in the single pipe 5 covered by the cover 11.
 上記の説明では、一重配管5が配管伸縮許容部31を備える例と、カバー11がカバー伸縮許容部33を備える例とを分けて示したが、配管ユニット1において、配管伸縮許容部31とカバー伸縮許容部33との両方が設けられていてもよい。また、配管伸縮許容部31およびカバー伸縮許容部33のいずれも省略してよい。 In the above explanation, an example in which the single pipe 5 has a pipe extension/contraction section 31 and an example in which the cover 11 has a cover extension/contraction section 33 are shown separately, but the pipe unit 1 may be provided with both the pipe extension/contraction section 31 and the cover extension/contraction section 33. In addition, both the pipe extension/contraction section 31 and the cover extension/contraction section 33 may be omitted.
 図4に他の変形例として示すように、カバー11の形状として、弁箱9とは反対側の蓋部25aが湾曲した形状を有していてもよい。具体的には、図示の例では、蓋部25aは、カバー11の周壁から一重配管5に向かって滑らかに縮径するように湾曲している。カバー11の蓋部25aをこのような形状とすることで、例えば一重配管5の伸縮により一重配管5とカバー11の連結部分に加わる応力集中を緩和することができる。なお、図3には、図1に示す配管ユニット1において、配管伸縮許容部31を設ける代わりにカバー11の蓋部25aを上述の湾曲形状とした例を示したが、配管伸縮許容部31およびカバー伸縮許容部33のいずれか一方または両方を設けることに加えて、カバー11の蓋部25aを上述の湾曲形状としてもよい。 As shown in FIG. 4 as another modified example, the cover 11 may have a curved shape in the lid portion 25a on the side opposite the valve box 9. Specifically, in the illustrated example, the lid portion 25a is curved so as to smoothly reduce in diameter from the peripheral wall of the cover 11 toward the single pipe 5. By forming the lid portion 25a of the cover 11 in such a shape, it is possible to alleviate the stress concentration applied to the connection portion between the single pipe 5 and the cover 11 due to the expansion and contraction of the single pipe 5, for example. Note that FIG. 3 shows an example in which the lid portion 25a of the cover 11 has the above-mentioned curved shape instead of providing the pipe expansion and contraction allowance portion 31 in the piping unit 1 shown in FIG. 1, but in addition to providing either or both of the pipe expansion and contraction allowance portion 31 and the cover expansion and contraction allowance portion 33, the lid portion 25a of the cover 11 may have the above-mentioned curved shape.
 本実施形態では、図1に示すように、配管ユニット1は一重配管5の温度を計測する温度計測器35を備えている。温度計測器35は検知対象の温度を検知する温度センサ素子35aを備えており、一重配管5の、カバー11によって覆われている部分の端部5aに、温度センサ素子35aが配置されている。この構成によれば、一重配管5においてカバー11で被覆されている部分のうち、カバー11で被覆されていない部分に最も近接する端部5aで一重配管5の温度を計測することにより、カバー11によって覆われていない部分が深冷化していないことを確実に把握することができる。もっとも、配管ユニット1に温度計測器35を設けることは必須ではない。 In this embodiment, as shown in FIG. 1, the piping unit 1 is provided with a temperature measuring device 35 that measures the temperature of the single pipe 5. The temperature measuring device 35 has a temperature sensor element 35a that detects the temperature of the detection target, and the temperature sensor element 35a is disposed at the end 5a of the portion of the single pipe 5 that is covered by the cover 11. With this configuration, by measuring the temperature of the single pipe 5 at the end 5a that is closest to the portion of the single pipe 5 that is covered by the cover 11, it is possible to reliably determine that the portion not covered by the cover 11 is not deeply cooled. However, it is not essential to provide the temperature measuring device 35 in the piping unit 1.
 なお、温度計測器35は、温度センサ素子35aのほかに、取得した検出量に対して信号変換処理、演算処理等必要な処理を行う各種回路、これらの処理に必要な情報を格納するためのメモリ、電池等の電源素子または外部から電源供給を受けるための電源回路、出力信号を有線または無線で外部へ送信するための送信回路等を適宜の場所に備えていてよい。 In addition to the temperature sensor element 35a, the temperature measuring device 35 may include, in appropriate locations, various circuits for performing necessary processing such as signal conversion processing and arithmetic processing on the obtained detected amount, memory for storing information required for these processes, a power supply element such as a battery or a power supply circuit for receiving power from an external source, and a transmission circuit for transmitting the output signal to the outside via a wired or wireless connection.
 本実施形態の他の変形例に係る配管ユニット1において、図5に示すように、一重配管5のカバー11から露出した部分に、追加の遮断弁37が設けられていてもよい。極低温流体の流れ方向における遮断弁7の下流側に追加の遮断弁37を設けることで、より確実に極低温流体の流れを遮断できる。 In the piping unit 1 according to another modified example of this embodiment, as shown in FIG. 5, an additional shutoff valve 37 may be provided in the portion of the single pipe 5 exposed from the cover 11. By providing the additional shutoff valve 37 downstream of the shutoff valve 7 in the flow direction of the cryogenic fluid, the flow of the cryogenic fluid can be shut off more reliably.
 本実施形態の他の変形例に係る配管ユニット1において、図6に示すように、一重配管5のカバー11から露出した部分が、断熱材39によって覆われていてもよい。このように構成することにより、一時的に二重配管5から一重配管5へ極低温流体を流す場合に、一重配管5を適切に断熱することができる。断熱材39で覆う範囲は、配管表面の温度等に応じて任意に定めることができる。また、断熱材39としては、例えば真空断熱パネルを使用することができる。断熱材39は、パネル状の部材ではなく、粉体であってもよい。断熱材39として用いられる素材は、特に限定されないが、例えばポリウレタンフォームやポリエチレンフォームといった有機高分子系材料や、パーライトのような無機材料であってよい。 In the piping unit 1 according to another modified example of this embodiment, as shown in FIG. 6, the portion of the single pipe 5 exposed from the cover 11 may be covered with a heat insulating material 39. By configuring in this manner, the single pipe 5 can be appropriately insulated when a cryogenic fluid is temporarily flowed from the double pipe 5 to the single pipe 5. The area covered with the heat insulating material 39 can be determined arbitrarily according to the temperature of the pipe surface, etc. Also, as the heat insulating material 39, for example, a vacuum insulation panel can be used. The heat insulating material 39 may be a powder instead of a panel-shaped member. The material used as the heat insulating material 39 is not particularly limited, but may be, for example, an organic polymer material such as polyurethane foam or polyethylene foam, or an inorganic material such as perlite.
 なお、図5に示した追加の遮断弁37および図6に示した断熱材39は、上述したいずれの変形例の構成とも任意に組み合わせることができる。 The additional shutoff valve 37 shown in FIG. 5 and the insulation material 39 shown in FIG. 6 can be combined with any of the modified configurations described above.
 配管ユニット1には、上記で説明したもの以外にも、必要に応じて各種の弁や測定機器を設けることができる。例えば、カバー11により形成される第2真空断熱層21と連通している任意の箇所に真空計を設けてもよい。 In addition to those described above, the piping unit 1 can be provided with various valves and measuring instruments as necessary. For example, a vacuum gauge can be provided at any location that communicates with the second vacuum insulation layer 21 formed by the cover 11.
 本実施形態では、上述したように、配管ユニット1を液化水素の移送用に用いている。液化水素は液化酸素よりも温度が低いので、上述した配管ユニット1を適用する利点が大きい。もっとも、本実施形態に係る配管ユニット1は、上述したように、液化水素以外の移送用に用いることができる。 In this embodiment, as described above, the piping unit 1 is used for transporting liquefied hydrogen. Since liquefied hydrogen has a lower temperature than liquefied oxygen, there are great advantages to using the piping unit 1 described above. However, as described above, the piping unit 1 according to this embodiment can also be used for transporting things other than liquefied hydrogen.
 以上説明した本実施形態の第1の態様に係る配管ユニット1は、極低温流体を通過させる内管15と、前記内管15の外側を覆い、前記内管15との間に第1真空断熱層19を形成する外管17とを有する二重配管3と、前記二重配管3と別体の一重配管5と、前記二重配管3と前記一重配管5とを接続する遮断弁7と、前記一重配管5における、前記遮断弁7の弁箱9から露出した部分を覆って、前記一重配管5との間に第2真空断熱層21を形成するカバー11と、を備える。この構成によれば、カバー11が一重配管5のうち遮断弁7の弁箱から所定長さにわたる部分を覆うことにより、一重配管のうち深冷化した部分が外気に露出することを抑制できる。また、一重配管5とカバー11との間の空間を真空断熱層21とすることにより、一重配管5からカバー11への熱伝達を抑制しカバー11の深冷化を防ぐことができる。これにより、一重配管5側での液化酸素の生成を防止できる。 The piping unit 1 according to the first aspect of the present embodiment described above includes a double pipe 3 having an inner pipe 15 through which a cryogenic fluid passes and an outer pipe 17 that covers the outside of the inner pipe 15 and forms a first vacuum insulation layer 19 between the inner pipe 15, a single pipe 5 separate from the double pipe 3, a shutoff valve 7 that connects the double pipe 3 and the single pipe 5, and a cover 11 that covers the portion of the single pipe 5 exposed from the valve box 9 of the shutoff valve 7 and forms a second vacuum insulation layer 21 between the single pipe 5. According to this configuration, the cover 11 covers the portion of the single pipe 5 that extends a predetermined length from the valve box of the shutoff valve 7, thereby preventing the deeply cooled portion of the single pipe from being exposed to the outside air. In addition, by forming the space between the single pipe 5 and the cover 11 as the vacuum insulation layer 21, heat transfer from the single pipe 5 to the cover 11 can be suppressed and the cover 11 can be prevented from being deeply cooled. This prevents the generation of liquefied oxygen on the single pipe 5 side.
 本実施形態の第2の態様に係る配管ユニット1は、第1の態様に係る配管ユニットにおいて、前記第1真空断熱層19と、前記第2真空断熱層21とが連通していてもよい。この構成によれば、遮断弁7の二次側における深冷化を抑制できるとともに、第1真空断熱層19および第2真空断熱層21の真空排気を、共通の真空ポンプを用いて行うことができ、真空の管理も容易である。 The piping unit 1 according to the second aspect of this embodiment may be the piping unit according to the first aspect, in which the first vacuum insulation layer 19 and the second vacuum insulation layer 21 are connected to each other. With this configuration, it is possible to suppress deep cooling on the secondary side of the shutoff valve 7, and the first vacuum insulation layer 19 and the second vacuum insulation layer 21 can be evacuated using a common vacuum pump, making it easy to manage the vacuum.
 本実施形態の第3の態様に係る配管ユニット1は、第1または第2の態様に係る配管ユニットにおいて、前記カバー11の軸心方向長さL1が、前記遮断弁7における、前記二重配管3側の流体連通遮断部分の軸心方向位置Pから前記弁箱9の前記一重配管5側の軸心方向端9aまでの長さL2よりも長くてもよい。この構成によれば、カバー11が、一重配管5のうちの、深冷化の起点となる上記位置Pから十分離れた部分まで覆うことができ、より確実に配管表面の深冷化による液体酸素の生成を防止できる。 The piping unit 1 according to the third aspect of this embodiment may be the piping unit according to the first or second aspect, in which the axial length L1 of the cover 11 is longer than the length L2 from the axial position P of the fluid communication cut-off portion on the double pipe 3 side of the shutoff valve 7 to the axial end 9a of the valve box 9 on the single pipe 5 side. With this configuration, the cover 11 can cover the single pipe 5 up to a portion sufficiently away from the position P, which is the starting point of deep cooling, and the generation of liquid oxygen due to deep cooling of the pipe surface can be more reliably prevented.
 本実施形態の第4の態様に係る配管ユニット1は、第1から第3のいずれかの態様に係る配管ユニットにおいて、前記カバー11および前記一重配管5の前記カバー11で覆われた部分の少なくとも一方に、軸心方向長さの変化を許容する伸縮許容部、すなわち上記カバー伸縮許容部33および/または配管伸縮許容部31を備えていてもよい。この構成によれば、一重配管5とカバー11の連結部分に高応力が発生することを抑制し、変形や破損を抑制することができる。さらに、配管伸縮許容部31を設けた場合は、一重配管5における伝熱距離が増大するので、カバー11外へと冷熱が伝わることをより効果的に抑制できる。 The piping unit 1 according to the fourth aspect of this embodiment may be a piping unit according to any one of the first to third aspects, in which at least one of the cover 11 and the portion of the single pipe 5 covered by the cover 11 has an expansion/contraction allowing portion that allows for a change in axial length, i.e., the cover expansion/contraction allowing portion 33 and/or the pipe expansion/contraction allowing portion 31. This configuration can prevent high stress from occurring at the connection portion between the single pipe 5 and the cover 11, and can prevent deformation and damage. Furthermore, when the pipe expansion/contraction allowing portion 31 is provided, the heat transfer distance in the single pipe 5 increases, so that the transfer of cold to the outside of the cover 11 can be more effectively prevented.
 本実施形態の第5の態様に係る配管ユニット1は、第1から第4のいずれかの態様に係る配管ユニットにおいて、前記一重配管5の前記カバー11から露出した部分に、追加の遮断弁37が設けられていてもよい。この構成によれば、より確実に極低温流体の流れを遮断できる。 The piping unit 1 according to the fifth aspect of this embodiment may be a piping unit according to any one of the first to fourth aspects, in which an additional shutoff valve 37 is provided in the portion of the single pipe 5 exposed from the cover 11. With this configuration, the flow of the cryogenic fluid can be shut off more reliably.
 本実施形態の第6の態様に係る配管ユニット1は、第1から第5のいずれかの態様に係る配管ユニットにおいて、前記一重配管5の、前記カバー11によって覆われている部分の端部に、前記一重配管5の温度を検知する温度センサ素子35aが配置されていてもよい。この構成によれば、一重配管5においてカバー11で被覆されている部分のうち、カバー11で被覆されていない部分に最も近接する端部5aで一重配管5の温度を計測することにより、カバー11によって覆われていない部分が深冷化していないことを確実に把握することができる。 The piping unit 1 according to the sixth aspect of this embodiment may be a piping unit according to any one of the first to fifth aspects, in which a temperature sensor element 35a for detecting the temperature of the single pipe 5 is disposed at the end of the portion of the single pipe 5 that is covered by the cover 11. With this configuration, by measuring the temperature of the single pipe 5 at the end 5a that is closest to the portion of the single pipe 5 that is covered by the cover 11, it is possible to reliably determine that the portion not covered by the cover 11 is not deeply cooled.
 以上のとおり、図面を参照しながら本開示の好適な実施形態を説明したが、本開示の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本開示の範囲内に含まれる。 As described above, a preferred embodiment of the present disclosure has been described with reference to the drawings, but various additions, modifications, and deletions are possible without departing from the spirit of the present disclosure. Therefore, such additions, modifications, and deletions are also included within the scope of the present disclosure.
1   極低温流体移送用配管ユニット
3   二重配管
5   一重配管
5a  一重配管の端部
7   遮断弁
9   弁箱
11  カバー
15  内管
17  外管
19  第1真空断熱層
21  第2真空断熱層
23  真空ジャケット
23a 一重配管側端部
23b 真空ジャケットの蓋部
25  筒状部材
25a 筒状部材の蓋部
25b 被覆部分
31  配管伸縮許容部(伸縮許容部)
33  カバー伸縮許容部(伸縮許容部)
35  温度計測器
35a 温度センサ素子
37  追加の遮断弁
39  断熱材
L1  カバーの軸心方向長さ
L2  弁箱の一重配管側寸法
P  遮断弁の二重配管側の流体連通遮断部分
1 Piping unit for transferring cryogenic fluid 3 Double pipe 5 Single pipe 5a End of single pipe 7 Shutoff valve 9 Valve box 11 Cover 15 Inner pipe 17 Outer pipe 19 First vacuum insulation layer 21 Second vacuum insulation layer 23 Vacuum jacket 23a Single pipe side end 23b Lid portion 25 of vacuum jacket Cylindrical member 25a Lid portion 25b of cylindrical member Covering portion 31 Piping expansion and contraction permitted portion (expansion and contraction permitted portion)
33 Cover stretchable portion (stretchable portion)
35 Temperature measuring device 35a Temperature sensor element 37 Additional shutoff valve 39 Insulation material L1 Axial length of cover L2 Single piping side dimension P of valve box Fluid communication shutoff portion on double piping side of shutoff valve

Claims (6)

  1.  極低温流体を通過させる内管と、前記内管の外側を覆い、前記内管との間に第1真空断熱層を形成する外管とを有する二重配管と、
     前記二重配管と別体の一重配管と、
     前記二重配管と前記一重配管とを接続する遮断弁と、
     前記一重配管における、前記遮断弁の弁箱から露出した部分を覆って、前記一重配管との間に第2真空断熱層を形成するカバーと、
    を備える極低温流体移送用配管ユニット。
    A double pipe including an inner pipe through which a cryogenic fluid passes and an outer pipe covering the outside of the inner pipe and forming a first vacuum insulation layer between the inner pipe and an outer pipe;
    A single pipe separate from the double pipe;
    A shutoff valve connecting the double pipe and the single pipe;
    a cover that covers a portion of the single pipe that is exposed from the valve body of the shutoff valve and forms a second vacuum insulation layer between the single pipe and the cover;
    A piping unit for transferring a cryogenic fluid comprising:
  2.  請求項1に記載の極低温流体移送用配管ユニットにおいて、
     前記第1真空断熱層と、前記第2真空断熱層とが連通している、
    極低温流体移送用配管ユニット。
    2. The piping unit for transporting a cryogenic fluid according to claim 1,
    The first vacuum insulation layer and the second vacuum insulation layer are in communication with each other.
    Piping unit for transferring cryogenic fluids.
  3.  請求項1または2に記載の極低温流体移送用配管ユニットにおいて、
     前記カバーの軸心方向長さが、前記遮断弁における、前記二重配管側の流体連通遮断部分の軸心方向位置から前記弁箱の前記一重配管側の軸心方向端までの長さよりも長い、
    極低温流体移送用配管ユニット。
    3. The piping unit for transporting a cryogenic fluid according to claim 1,
    The axial length of the cover is longer than the length from the axial position of the fluid communication cut-off portion on the double pipe side to the axial end of the valve body on the single pipe side in the shutoff valve.
    Piping unit for transferring cryogenic fluids.
  4.  請求項1または2に記載の極低温流体移送用配管ユニットにおいて、
     前記カバーおよび前記一重配管の前記カバーで覆われた部分の少なくとも一方に、軸心方向長さの変化を許容する伸縮許容部を備える、
    極低温流体移送用配管ユニット。
    3. The piping unit for transporting a cryogenic fluid according to claim 1,
    At least one of the cover and the portion of the single-wall pipe covered by the cover is provided with an expansion/contraction allowing portion that allows a change in axial length.
    Piping unit for transferring cryogenic fluids.
  5.  請求項1または2に記載の極低温流体移送用配管ユニットにおいて、
     前記一重配管の前記カバーから露出した部分に、追加の遮断弁が設けられている、
    極低温流体移送用配管ユニット。
    3. The piping unit for transporting a cryogenic fluid according to claim 1,
    An additional shutoff valve is provided in a portion of the single pipe exposed from the cover.
    Piping unit for transferring cryogenic fluids.
  6.  請求項1または2に記載の極低温流体移送用配管ユニットにおいて、
     前記一重配管の、前記カバーによって覆われている部分の端部に、前記一重配管の温度を検知する温度センサ素子が配置されている、
    極低温流体移送用配管ユニット。
    3. The piping unit for transporting a cryogenic fluid according to claim 1,
    a temperature sensor element for detecting a temperature of the single pipe is disposed at an end of the single pipe that is covered by the cover;
    Piping unit for transferring cryogenic fluids.
PCT/JP2022/038129 2022-10-12 2022-10-12 Piping unit for cryogenic fluid transfer WO2024079830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038129 WO2024079830A1 (en) 2022-10-12 2022-10-12 Piping unit for cryogenic fluid transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038129 WO2024079830A1 (en) 2022-10-12 2022-10-12 Piping unit for cryogenic fluid transfer

Publications (1)

Publication Number Publication Date
WO2024079830A1 true WO2024079830A1 (en) 2024-04-18

Family

ID=90669034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038129 WO2024079830A1 (en) 2022-10-12 2022-10-12 Piping unit for cryogenic fluid transfer

Country Status (1)

Country Link
WO (1) WO2024079830A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169185A (en) * 2009-01-22 2010-08-05 Kawasaki Heavy Ind Ltd Vacuum heat insulation pipe for low-temperature liquefied gas
JP2016509550A (en) * 2012-12-28 2016-03-31 ゼネラル・エレクトリック・カンパニイ Aircraft and embedded cryogenic fuel systems
KR102111473B1 (en) * 2019-08-09 2020-05-15 (주)앤써 A vacuum insulated pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169185A (en) * 2009-01-22 2010-08-05 Kawasaki Heavy Ind Ltd Vacuum heat insulation pipe for low-temperature liquefied gas
JP2016509550A (en) * 2012-12-28 2016-03-31 ゼネラル・エレクトリック・カンパニイ Aircraft and embedded cryogenic fuel systems
KR102111473B1 (en) * 2019-08-09 2020-05-15 (주)앤써 A vacuum insulated pipe

Similar Documents

Publication Publication Date Title
US4036617A (en) Support system for an elongated cryogenic envelope
US8998267B2 (en) Cryogenic pipeline configurations and methods
KR102111473B1 (en) A vacuum insulated pipe
JP7152857B2 (en) Fluid handling fittings and fluid handling equipment
WO2016051770A1 (en) Guide mechanism for bayonet joint in vacuum-insulated double-walled pipe for low-temperature fluid
JP2005164034A (en) Liquefied natural gas transporting pipe
US3765705A (en) Vacuum-insulated pipeline
CN113329939A (en) Liquefied natural gas delivery pipe for fuel supply of ship engine
US7305837B2 (en) Cryogenic piping system
JP2016070374A (en) High heat-insulation joint structure of vacuum heat-insulating double pipe for low-temperature fluid
US11608923B2 (en) Fluid loading joint
WO2024079830A1 (en) Piping unit for cryogenic fluid transfer
JP6480693B2 (en) Joint structure of vacuum insulated double pipe for cryogenic fluid
JP2021113614A (en) Johnston coupling comprising additional vacuum enclosure
KR20190075657A (en) connection structure of vacuum line
WO2022080348A1 (en) Heat-insulating double-pipe unit for liquefied gas, and liquefied gas storage vessel comprising same
WO2024019015A1 (en) Cryogenic fluid-holding device
WO2023233479A1 (en) Liquefied gas transfer piping system
CN112128494B (en) Flange joint for vacuum interlayer pipeline and vacuum interlayer pipeline assembly
JP2023153101A (en) Fluid loading coupling for rotatable coupling of fluid conduits for cryogenic fluids
KR102443559B1 (en) Expanding joint of liquid hydrogen transfer vacuum insulated pipe
KR102431373B1 (en) Swivel joint with insulation and vacuum for cryogenic environment of lng bunkering
WO2023182366A1 (en) Cool-down method for liquefied gas storage tank
JPH0248798B2 (en)
JP2023089737A (en) piping system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962050

Country of ref document: EP

Kind code of ref document: A1