WO2024078364A1 - 激光雷达 - Google Patents

激光雷达 Download PDF

Info

Publication number
WO2024078364A1
WO2024078364A1 PCT/CN2023/122777 CN2023122777W WO2024078364A1 WO 2024078364 A1 WO2024078364 A1 WO 2024078364A1 CN 2023122777 W CN2023122777 W CN 2023122777W WO 2024078364 A1 WO2024078364 A1 WO 2024078364A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
mixer
laser radar
laser
Prior art date
Application number
PCT/CN2023/122777
Other languages
English (en)
French (fr)
Inventor
徐洋
冯楚桓
李毅
邓永强
Original Assignee
武汉万集光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉万集光电技术有限公司 filed Critical 武汉万集光电技术有限公司
Publication of WO2024078364A1 publication Critical patent/WO2024078364A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of laser radar technology, and in particular to a laser radar.
  • a beam splitter is arranged on the optical path of the light source, as shown in Figure 1.
  • the light emitted by the laser light source 100 is divided into detection light and local oscillator light after passing through the beam splitter 101.
  • the detection light can be transmitted to a silicon photonic chip (such as an optical phased array (OPA) chip, etc.) or other optical components, and the silicon photonic chip or other optical components then transmit the detection light to the target to be detected 103, and the target to be detected 103 receives the detection light and reflects it to form an echo light signal.
  • OPA optical phased array
  • the radar system receives the above-mentioned echo light signal, and performs frequency mixing processing, data analysis and other operations on the local oscillator light and the echo light signal through the mixer 102, and finally obtains the parameters such as the direction, distance, and volume of the target to be detected.
  • the beam splitting function and mixing function of the laser radar are respectively realized by a beam splitter and a mixer.
  • the beam splitter and the mixer are respectively arranged on different optical paths in the system, resulting in a large number of optical devices in the radar system and introducing additional light loss, which leads to a decrease in the signal-to-noise ratio.
  • each optical device since each optical device requires a corresponding arrangement space, the entire radar system has a low degree of integration and a large size.
  • One of the purposes of the embodiments of the present application is to provide a laser radar.
  • a laser radar comprising a laser light source, a beam splitting mixer, an optical transceiver, a total reflector, a first photodetector and a substrate, wherein the beam splitting mixer, the optical transceiver and the first photodetector are all integrated on the substrate;
  • the beam splitting mixer has a first port, a second port, a third port and a fourth port, and the first port, the second port, the third port and the fourth port are respectively connected to the laser light source, the optical transceiver, the total reflector and the first photodetector through an optical path;
  • the beam splitting mixer is used to receive the laser beam emitted by the laser light source and split the laser beam into two beams, one of which is output to the optical transceiver through the second port for use as a detection beam, and the other is output to the total reflector through the third port for use as a local oscillator beam; the beam splitting mixer is also used to receive an echo light signal from the optical transceiver and a local oscillator light beam reflected by the total reflector, and mix the echo light signal and the reflected local oscillator light beam to obtain a beat frequency light signal, and then output the beat frequency light signal to the first photodetector.
  • the beam splitting mixer is a fiber optic component, a spatial optical path structure or a multi-port coupler.
  • the beam splitting mixer is a 2 by 2 coupler.
  • the optical transceiver is a coaxial optical transceiver.
  • the laser radar further includes an optical phase shifter, which is located between the total reflector and the third port of the beam splitter mixer and is used to adjust the phase of the local oscillator light beam between the total reflector and the beam splitter mixer.
  • the laser radar further includes an optical amplifier, which is located between the beam splitting mixer and the optical transceiver and is used to amplify the detection light beam.
  • the optical amplifier is a fiber amplifier or a semiconductor optical amplifier.
  • the laser radar further includes an optical circulator and a second photodetector, wherein a first port of the optical circulator is connected to the laser light source, a second port of the optical circulator is connected to a first port of the beam splitting mixer, and a third port of the optical circulator is connected to the second photodetector;
  • Part of the beat frequency optical signal is output to the first photodetector through the fourth port, and another part of the beat frequency optical signal is output to the second photodetector through the third port and the optical circulator.
  • At least one of the first photodetector and the second photodetector is integrated on the substrate.
  • the second photodetector and the first photodetector form a balanced detector.
  • the laser radar further includes a coupler formed on the substrate, wherein the coupler is optically connected to the beam splitting mixer and the laser light source respectively, and is used to couple the laser beam provided by the laser light source to the beam splitting mixer.
  • the coupler is connected to the laser light source optical path via an optical fiber or a spatial optical path.
  • the laser light source is a narrow line width light source, and its line width is less than 1 MHz.
  • the laser radar further includes a collimating and converging device, the collimating and converging device is located on the first side of the optical transceiver, and the collimating and converging device is used to collimate the detection light beam and converge the echo light signal;
  • the first side is the side where the optical transceiver emits the detection light beam and receives the echo light signal.
  • the beneficial effect of the laser radar provided by the embodiment of the present application is that the laser radar provided by the embodiment of the present application includes a laser light source, a beam splitting mixer, an optical transceiver, a total reflector, a first photodetector and a substrate.
  • the laser radar provided by the embodiment of the present application integrates the beam splitting function and the mixing function into the beam splitting & mixing multiplexing structure (i.e., the beam splitting mixer) to form a separate object, so that the light splitting and mixing involved in the laser radar system can be completed in an integrated device, without the need to separately arrange the beam splitter and the mixer on the optical path of the system, thereby increasing the integration of the entire laser radar and reducing the volume of the laser radar;
  • the beam splitting mixer, the optical transceiver and the first photodetector are all integrated on the substrate to form a silicon photonic chip, thereby increasing the integration of the entire radar system and reducing the volume of the system, while realizing on-chip mixing and on-chip reception of echo optical signal light, reducing the loss of the beat frequency optical signal and the echo optical signal light, and also avoiding the interference of the end face reflected light on the echo optical signal light when the optical transceiver adopts a coaxial transceiver system, thereby improving the detection sensitivity
  • FIG1 is a schematic diagram of the structure of a laser radar in the prior art, in which the dotted arrows represent the end face reflected light;
  • FIG2 is a schematic diagram of the structure of a laser radar provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a beam splitting mixer used in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a beam splitting mixer used in another embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a beam splitting mixer used in another embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a laser radar provided in another embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a laser radar provided in another embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a laser radar provided in another embodiment of the present application.
  • FIG9 is a schematic structural diagram of an assembly of an optical transceiver and a beam splitting mixer used in an embodiment of the present application;
  • FIG. 10 is a schematic structural diagram of an assembly of an optical transceiver and a beam splitting mixer used in another embodiment of the present application.
  • 100 laser light source; 101, beam splitter; 102, mixer; 103, target to be detected; 200, beam splitting mixer; 300, optical transceiver; 310, substrate; 320, collimating and converging device; 330, coupler; 400, total reflector; 500, first photodetector; 600, optical phase shifter; 700, optical circulator; 800, second photodetector; 900, optical amplifier.
  • first and second are only used for the purpose of convenience of description, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features.
  • the meaning of “multiple” is two or more, unless otherwise clearly and specifically defined.
  • a laser radar generally includes a laser light source 100, a beam splitter 101, a mixer 102, an optical circulator 700, a silicon photonic chip, and a first photodetector 500.
  • the silicon photonic chip can be in various forms.
  • the silicon photonic chip may include a substrate 310 and an optical transceiver 300 integrated on the substrate 310; or a structure as shown in FIG1 may be used, including a substrate 310 and an optical transceiver 300 integrated on the substrate 310 and a coupler 330.
  • the silicon photonic chip may also adopt other structures, which are not limited here. However, regardless of the specific structure of the silicon photonic chip, there is generally no circulator on it.
  • the echo light signal received by the silicon photonic chip through coupling is usually very weak, and the echo light signal will be further attenuated when coupled out of the optical transceiver through the port, which greatly reduces the detection sensitivity of the laser radar.
  • there is generally strong end face reflection light at the end face where the existing silicon photonic chip and the optical fiber are coupled (as shown by the dotted arrow in Figure 1). Since the intensity of the end face reflection light is usually greater than the intensity of the echo light signal, when the optical transceiver uses a coaxial optical transceiver, the echo light signal will be "submerged" in the end face reflection light and cannot be identified.
  • the embodiment of the present application provides a laser radar.
  • the laser radar includes a laser light source 100 , a beam splitting mixer 200 , an optical transceiver 300 , a total reflector 400 , a first photodetector 500 and a substrate 310 .
  • the beam splitting mixer 200, the optical transceiver 300 and the first photodetector 500 are all integrated on the substrate 310 to form a silicon photonic chip.
  • the optical transceiver 300 can adopt a parallel axis transceiver system or a coaxial transceiver system, which can be flexibly selected according to the needs of use, and is not limited here.
  • the splitting ratio of the beam splitting mixer 200 in order to obtain a better beat frequency optical signal, can be 1:1, or any other unequal splitting ratio, which can be selected according to actual needs.
  • the beam splitter mixer 200 has a first port, a second port, a third port and a fourth port.
  • the beam splitter mixer 200 in this embodiment has a bidirectional transmission function, two of the four ports are input ports, and the other two ports are output ports, and their functions can be interchanged.
  • the first port, the second port, the third port and the fourth port are respectively connected to the laser light source 100, the optical transceiver 300, the total reflector 400 and the first photodetector 500 through optical paths.
  • the laser light source 100 is used to provide a laser beam.
  • the beam splitting mixer 200 is used to receive the laser beam emitted by the laser light source 100, and split the laser beam into two beams, one of which is output to the optical transceiver 300 through the second port for use as a detection beam, and the other is output to the total reflector 400 through the third port for use as a local oscillator beam; the beam splitting mixer 200 is also used to receive the echo light signal from the optical transceiver 300 and the local oscillator beam reflected by the total reflector 400, and mix the echo light beam and the reflected local oscillator light beam to obtain a beat frequency light signal, and then transmit the beat frequency light signal to the first photodetector 500.
  • the laser light source 100 When detecting a target to be detected, the laser light source 100 emits a laser beam and couples it to the silicon photonic chip.
  • the laser beam enters the beam splitter mixer 200 through the first port, and is then split into two beams by the beam splitter mixer 200, one of which is output as a detection beam to the optical transceiver 300 through the second port, and the other is output as a local oscillator beam to the total reflector 400 through the third port.
  • the detection beam is outputted by the optical transceiver 300 and irradiated onto the target 103 to be detected, and then reflected by the target 103 to be detected to form an echo optical signal, which is received by the optical transceiver 300 and then transmitted through it and enters the beam splitting mixer 200 through the second port.
  • the local oscillator beam is provided to the total reflector 400 through the third port, and then reflected by the total reflector 400 and returns to the beam splitting mixer 200 again through the third port.
  • the echo optical signal and the reflected local oscillator light beam are mixed to obtain a beat frequency optical signal; then the beat frequency optical signal is split by the beam splitting mixer 200, wherein a part of the beat frequency optical signal is output through the first port and is discarded or enters other components, and the other part of the beat frequency optical signal is transmitted to the first photodetector 500 through the fourth port, and then the first photodetector 500 converts the beat frequency optical signal into an electrical signal, and then the electrical signal is transmitted to an external digital processing device, which processes and analyzes the data and finally obtains the detection data (such as distance, speed, etc.) of the target 103 to be detected.
  • the detection data such as distance, speed, etc.
  • the echo light signal received by the optical transceiver 300 is still relatively weak, but the echo light signal can be directly input into the beam splitting mixer 200 through the second port, and then directly input into the first photodetector 500 through its fourth port after being mixed by the beam splitting mixer 200.
  • the echo light signal does not need to be coupled out of the silicon photonic chip by coupling as in the prior art, thereby greatly reducing the loss of the echo light signal in this process.
  • the mixing is performed in the silicon photonic chip in the above process, the end face reflected light when the optical transceiver 300 and the optical fiber are coupled will not be introduced. This can not only reduce the loss of the echo light signal, but also avoid the interference of the end face reflected light on the echo light signal, thereby achieving the purpose of improving the detection sensitivity of the laser radar.
  • the laser radar provided in the embodiment of the present application includes a laser light source 100, a beam splitter mixer 200, an optical transceiver 300, a total reflector 400, a first photodetector 500 and a substrate 310, wherein the beam splitter mixer 200 has a beam splitting function and a mixing function, and realizes the output and reception of light through multiple input ports and multiple output ports. Therefore, the light splitting and mixing involved in the laser radar system are completed in an integrated device, and there is no need to separately arrange the beam splitter 101 and the mixer 102 on the optical path of the system, thereby increasing the integration of the entire laser radar and reducing the volume of the system.
  • the design of the beam splitter mixer 200 with multiple input ports and multiple output ports is conducive to the arrangement of other components corresponding to the corresponding ports, and other components are arranged in an orderly manner around the beam splitter mixer 200, further increasing the integration of the entire laser radar.
  • the beam splitting mixer 200, the optical transceiver 300 and the first photodetector 500 are all integrated on the substrate 310 to form a silicon photonic chip, which increases the integration of the entire radar system and reduces the system volume.
  • on-chip mixing and on-chip reception of echo optical signal light are realized, thereby reducing the loss of beat frequency optical signals and echo optical signal light. It can also avoid the interference of end face reflected light on the echo optical signal light when the optical transceiver adopts a coaxial transceiver system, thereby improving the detection sensitivity of the radar.
  • the above-mentioned beam splitting mixer 200 can be at least one of an optical fiber component, a spatial optical path structure, a multi-port coupler, etc., or a combination of multiple ones, as long as the above-mentioned functions can be achieved.
  • the beam splitter mixer 200 When the beam splitter mixer 200 is an optical fiber component, it can be a fused taper type optical fiber coupler formed by two optical fibers through a fused taper method, as shown in FIG3. During preparation, the coating of the two optical fibers is removed, and the two optical fibers are brought close together in a certain way, melted under high temperature heating, and stretched to both sides at the same time, forming a special waveguide structure in the form of a double cone in the heating area to achieve optical power coupling. Controlling the length of the stretched taper coupling area can control the power coupling ratio (splitting ratio) of the two ports. It can also be a four-port optical fiber coupler formed by splicing multiple optical fibers, as shown in FIG4.
  • the beam splitting mixer 200 is a spatial optical path structure, as shown in FIG. 5 , a plurality of total reflection channels are connected to form a four-port optical path structure.
  • a 2x2 coupler or an M ⁇ N star coupler can be used.
  • the above coupler can be an optical fiber coupler, or a micro-optical element coupler, an integrated optical waveguide coupler or other types of couplers, as long as the above functions can be achieved.
  • the beam splitting mixer 200 is a 2x2 coupler with a bidirectional conduction function.
  • the laser light source 100 is connected to the first port of the 2x2 coupler through an optical fiber
  • the first photodetector 500 is connected to the fourth port of the 2x2 coupler through an optical fiber
  • the optical transceiver 300 is connected to the second port of the 2x2 coupler through an optical fiber
  • the total reflector 400 is connected to the third port of the 2x2 coupler through an optical fiber.
  • the beam splitting mixer 200 adopts a 2x2 coupler, which has a simple structure and is easy to install.
  • the beam splitting mixer can be an MMI coupler or a bidirectional directional coupler.
  • the beam splitting mixer 200 may also be other multi-port couplers, such as a 3x3 coupler, a 2x3 coupler, a 3x2 coupler, etc., which may be flexibly selected according to usage requirements.
  • optical transceivers mostly use parallel axis transceiver systems, that is, the optical axes of the optical system for receiving and emitting detection light and the optical system for receiving and transmitting echo light in the optical transceiver are parallel to each other, so as to avoid the interference of optical crosstalk between the transceiver systems on the detection light signal.
  • the two optical paths of the parallel axis transceiver system need to be strictly aligned with high precision, which is difficult. Therefore, in an optional embodiment, the optical transceiver uses a coaxial optical transceiver.
  • the coaxial optical transceiver in this embodiment can be an optical phased array (OPA) or other optical components with coaxial transceiver function, which can be flexibly selected according to the needs of use, and no limitation is made here.
  • OPA optical phased array
  • the coaxial optical transceiver mentioned here refers to the coaxial arrangement of the optical system for receiving and emitting the detection light and the optical system for receiving and transmitting the echo light in the transceiver, and generally the above two optical systems are the same group of optical systems.
  • the laser radar is a coaxial transceiver laser radar system, so that the echo light signal reflected back by the target to be detected can propagate back in the reverse direction of the emission direction of the detection light, so the detection light path and the echo light signal light path can be automatically aligned without adjustment.
  • the optical transceiver 300 adopts a coaxial optical transceiver, which is small in size and highly integrated, and helps to reduce the volume of the entire radar system.
  • the laser radar further includes an optical phase shifter 600.
  • the optical phase shifter 600 is located between the total reflector 400 and the third port of the beam splitter mixer 200, and is used to adjust the phase of the local oscillator light beam between the total reflector 400 and the beam splitter mixer 200, so as to obtain a better beat frequency light signal with the echo light signal.
  • the laser radar further includes an optical amplifier 900.
  • the optical amplifier 900 in this embodiment may be an optical fiber amplifier, a semiconductor optical amplifier, etc., which may be selected according to the use requirements.
  • the optical amplifier 900 adopts a semiconductor optical amplifier; if the beam splitting mixer 200 and the optical transceiver 300 are arranged in an all-fiber link, the optical amplifier 900 adopts an optical fiber amplifier.
  • the optical amplifier 900 is located between the beam splitting mixer 200 and the optical transceiver 300, and is used to amplify the detection beam, improve the optical power of the detection beam, and increase the ranging capability of the radar system.
  • the beat frequency optical signal generated by the beam splitting mixer 200 will be divided into two beams when output due to the beam splitting function of the beam splitting mixer 200, one of which is received and used by the first photodetector 500, but the other is usually directly abandoned, resulting in a waste of the echo optical signal.
  • this part of the echo optical signal may also enter the laser light source 100 and cause adverse effects on its light output effect.
  • the laser radar also includes an optical circulator 700 and a second photodetector 800, the first port of the optical circulator 700 is connected to the laser light source 100, the second port of the optical circulator 700 is connected to the first port of the beam splitting mixer 200, and the third port of the optical circulator 700 is connected to the second photodetector 800.
  • the second photodetector 800 and the first photodetector 500 can be used as a balanced detector or separately. Specifically, when the second photodetector 800 and the first photodetector 500 are used as a balanced detector, the second photodetector 800 and the first photodetector 500 need to use two photodetectors with completely similar characteristics. By using a balanced detector, the signals obtained by the two photodetectors can be added together, so that the noise in the two paths is completely offset, the output amplitude is greatly amplified, and the detection sensitivity of the laser radar is improved.
  • the beat frequency optical signal formed by mixing by the beam splitting mixer 200 is divided into two parts by the beam splitting mixer 200, one part is output to the first photodetector 500 through the third port, and the other part is output to the second photodetector 800 through the optical circulator 700.
  • the laser radar provided in this embodiment is provided with an optical circulator 700.
  • the input light from the laser light source 100 passes through the optical circulator 700 and then enters the first port of the beam splitter mixer 200 through the optical fiber; and the other part of the beat frequency optical signal after mixing from the beam splitter mixer 200 can be sent to the second photodetector 800 through the optical circulator 700, so that the beat frequency optical signal received by the first photodetector 500 and the second photodetector 800 can be used to obtain the data of the target 103 to be detected.
  • the other part of the beat frequency optical signal after mixing is obtained through the optical circulator 700, which effectively prevents the other part of the beat frequency optical signal from returning to the laser light source 100 through the first port, avoids the loss of the beat frequency optical signal, and the beat frequency optical signal interferes with the normal operation of the laser light source 100.
  • the two parts of the beat frequency optical signal after mixing by the beam splitter mixer 200 are received and utilized, which can effectively improve the detection sensitivity of the laser radar.
  • the first photodetector 500 and the second photodetector 800 can both be separately arranged relative to the optical transceiver 300, and can also be integrated on a silicon photonic chip to further improve the integration of the entire radar system.
  • one of the first photodetector 500 and the second photodetector 800 can be separately arranged relative to the silicon photonic chip, and the other can be integrated on the silicon photonic chip.
  • the first photodetector 500 and the second photodetector 800 are both integrated on the substrate 310 , which can reduce the size of the radar system and further increase the integration of the radar system.
  • the laser radar further includes a coupler 330 formed on the substrate 310.
  • the coupler 330 is integrated on the silicon photonic chip, and the coupler 330 is optically connected to the beam splitting mixer 200 and the laser light source 100, respectively, for coupling the laser beam provided by the laser light source 100 to the beam splitting mixer 200.
  • the structure provided in this embodiment is adopted, and compared with the beam splitting mixer 200, a coupling structure is additionally provided to connect with the laser light source 100, which can further improve the integration of the laser radar and reduce the volume of the laser radar.
  • the coupler 330 can be optically connected to the laser light source 100 through an optical fiber or a constructed spatial optical path, which can be flexibly selected according to the installation space and usage requirements, and is not limited here.
  • the coupler 330 adopts this structure, which is simple in structure and easy to install.
  • the laser light source is a narrow line width light source, and its line width is less than 1 MHz.
  • the laser light source adopts a narrow line width light source, which can make its own phase noise very low and the spectral purity very high, thereby making the detection performance of the laser radar better.
  • the detection light beam emitted by the laser radar provided by the above embodiments also has a certain divergence angle, so that after the detection light irradiated on the target to be detected is reflected, a part of it will be reflected to the area outside the receiving range of the optical transceiver, resulting in an incomplete point cloud obtained by the laser radar, and the adverse effects of this phenomenon are reduced.
  • the laser radar also includes a collimating and converging device 320 located on the first side of the optical transceiver 300. The first side is the side where the optical transceiver 300 emits the detection light beam and receives the echo light signal.
  • the collimating and converging device 320 can be located outside the substrate or fixed on the surface of the substrate, and is used to collimate the detection light beam and converge the echo light signal.
  • the collimating and converging device 320 can be composed of one or more lenses, and the lens can be a convex lens, a concave lens or a lens of other shapes, which can be determined according to the light emission effect, and is not limited here; other optical elements/structures that can achieve the above functions can also be used.
  • a microlens array in an array form can be processed on the surface of the substrate by micromachining technology to form the collimating and converging device 320, or other optical elements capable of achieving the above functions can be used.
  • the detection beam can be collimated for output, and most of the detection light irradiated on the target 103 to be detected can be returned to the optical transceiver 300 along the preset path, thereby improving the detection performance of the laser radar.
  • the preset path can be the same as the propagation path of the detection beam, or it can be a path parallel to the propagation path of the detection beam, depending on the type of the optical transceiver 300.
  • the laser light source adopts a light source assembly with a collimating device, that is, the laser light source directly provides a collimated laser beam
  • the first side of the optical transceiver may not be provided with a collimating focusing device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达,包括激光光源(100)、分束混频器(200)、光收发器(300)、全反射器(400)、第一光电探测器(500)和衬底(310),分束混频器(200)、光收发器(300)和第一光电探测器(500)均集成于衬底(310)上;分束混频器(200)用于接收激光光源(100)发出的激光束,并将激光束分为两束,其中一束通过第二端口输出至光收发器(300)作为探测光束使用,另一束通过第三端口输出至全反射器(400)作为本振光束使用;还用于接收来自光收发器(300)的回波光信号,以及经全反射器(400)反射的本振光束,并对回波光信号以及反射后的本振光束进行混频处理得到拍频光信号,再将拍频光信号输出至第一光电探测器(500)。由此激光雷达集成度高。

Description

激光雷达
本申请要求于2022年10月11日提交国家知识产权局、申请号为202211240436.9、发明名称为“激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光雷达技术领域,具体涉及一种激光雷达。
背景技术
现有的激光雷达***,通常需要一个窄线宽光源,且光源的光路上布设有分束器,如图1所示。激光光源100发出的光经过分束器101后,被分为探测光和本振光,其中探测光可传输至硅光芯片(如光学相控阵(Optical phased array,OPA)芯片等)或其他光学件,硅光芯片或其他光学件再将探测光发射至待探测目标103,待探测目标103接收探测光并反射形成回波光信号。雷达***接收上述回波光信号,并通过混频器102对本振光和回波光信号进行混频处理、数据分析等操作,最终获取待探测目标的方位、距离、体积等参数。
现有技术中,激光雷达的分束功能和混频功能分别由分束器和混频器实现,分束器和混频器分别布置于***中的不同光路上,造成雷达***的光学器件数量偏多,并引入额外的光损耗,导致信噪比下降,又由于各光学器件分别需要相应的布置空间,造成整个雷达***的集成度低、体积大。
技术问题
本申请实施例的目的之一在于:提供一种激光雷达。
技术解决方案
本申请实施例采用的技术方案是:
提供了一种激光雷达,包括激光光源、分束混频器、光收发器、全反射器、第一光电探测器和衬底,所述分束混频器、所述光收发器和所述第一光电探测器均集成于所述衬底上;
所述分束混频器具有第一端口、第二端口、第三端口和第四端口,所述第一端口、所述第二端口、所述第三端口和所述第四端口分别通过光路与所述激光光源、所述光收发器、所述全反射器和所述第一光电探测器连接;
所述分束混频器用于接收所述激光光源发出的激光束,并将所述激光束分为两束,其中一束通过所述第二端口输出至所述光收发器作为探测光束使用,另一束通过所述第三端口输出至所述全反射器作为本振光束使用;所述分束混频器还用于接收来自所述光收发器的回波光信号,以及经所述全反射器反射的本振光束,并对所述回波光信号以及反射后的所述本振光束进行混频处理得到拍频光信号,再将所述拍频光信号输出至所述第一光电探测器。
在一个实施例中,所述分束混频器为光纤组件、空间光路结构或者多端口耦合器。
在一个实施例中,所述分束混频器为2乘2耦合器。
在一个实施例中,所述光收发器为同轴光收发器。
在一个实施例中,所述激光雷达还包括光移相器,所述光移相器位于所述全反射器和所述分束混频器的第三端口之间,用于调整于所述全反射器和所述分束混频器之间的所述本振光束的相位。
在一个实施例中,所述激光雷达还包括光放大器,所述光放大器位于所述分束混频器和所述光收发器之间,用于放大所述探测光束。
在一个实施例中,所述光放大器为光纤放大器或者半导体光放大器。
在一个实施例中,所述激光雷达还包括光环形器和第二光电探测器,所述光环形器的第一端口与所述激光光源连接,所述光环形器的第二端口与所述分束混频器的第一端口连接,所述光环形器的第三端口与所述第二光电探测器连接;
其中,部分所述拍频光信号通过所述第四端口输出至所述第一光电探测器,另一部分所述拍频光信号经所述第三端口和所述光环形器输出至所述第二光电探测器。
在一个实施例中,所述第一光电探测器和所述第二光电探测器中的至少一个集成于所述衬底上。
在一个实施例中,所述第二光电探测器和所述第一光电探测器组成平衡探测器。
在一个实施例中,所述激光雷达还包括形成于所述衬底上的耦合器,所述耦合器与所述分束混频器以及所述激光光源分别光路连接,用于将所述激光光源提供的激光束耦合至所述分束混频器。
在一个实施例中,所述耦合器通过光纤或者空间光路与所述激光光源光路连接。
在一个实施例中,所述激光光源为窄线宽光源,其线宽小于1MHz。
在一个实施例中,所述激光雷达还包括准直会聚器件,所述准直会聚器件位于所述光收发器的第一侧,所述准直会聚器件用于准直所述探测光束,以及会聚所述回波光信号;
其中,所述第一侧为所述光收发器出射所述探测光束以及接收所述回波光信号的一侧。
有益效果
本申请实施例提供的激光雷达的有益效果在于:本申请实施例提供的激光雷达,包括激光光源、分束混频器、光收发器、全反射器、第一光电探测器和衬底。一方面,本申请实施例提供的激光雷达,将分束功能和混频功能集成于分束&混频复用结构(即分束混频器)中,构成单独客体,使得激光雷达***所涉及的光的分束和混频能够在一体集成的器件中进行完成,无需在***的光路上分别单独布置分束器和混频器,增加了整个激光雷达的集成度,减小了激光雷达的体积;第二方面,分束混频器、光收发器和第一光电探测器均集成于衬底上,形成硅光芯片,增加了整个雷达***的集成度,减小了***体积,同时实现了片上混频和片上接收回波光信号光,降低了拍频光信号和回波光信号光的损耗,还可以避免光收发器采用同轴收发***时端面反射光对回波光信号光的干扰,可提高雷达的探测灵敏度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是现有技术中激光雷达的结构示意图,图中虚线箭头表示端面反射光;
图2是本申请一实施例提供的激光雷达的结构示意图;
图3是本申请一实施例所采用的分束混频器的结构示意图;
图4是本申请另一实施例所采用的分束混频器的结构示意图;
图5是本申请另一实施例所采用的分束混频器的结构示意图;
图6是本申请另一实施例提供的激光雷达的结构示意图;
图7是本申请另一实施例提供的激光雷达的结构示意图;
图8是本申请另一实施例提供的激光雷达的结构示意图;
图9是本申请一实施例所采用的光收发器和分束混频器的组合件的结构示意图;
图10是本申请另一实施例所采用的光收发器和分束混频器的组合件的结构示意图。
附图标记说明:
100、激光光源;101、分束器;102、混频器;103、待探测目标;200、分束混频器;300、光收发器;310、衬底;320、准直会聚器件;330、耦合器;400、全反射器;500、第一光电探测器;600、光移相器;700、光环形器;800、第二光电探测器;900、光放大器。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
如图1所示,现有技术中,激光雷达一般包括激光光源100、分束器101、混频器102、光环形器700、硅光芯片和第一光电探测器500。其中硅光芯片可以采用多种形式。举例说明,硅光芯片可以包括衬底310和集成于衬底310上的光收发器300;或者采用如图1所示结构,包括衬底310和集成于衬底310上的光收发器300和耦合器330。当然在其他实施例中,硅光芯片还可以采用其他结构,这里不做任何限定。但无论硅光芯片具体结构如何,一般其上没有环形器这种器件,因此在接收到逆向传播的回波光信号后,通常需要先将回波光信号耦合到硅光芯片外,再通过光纤的光环形器700,才能将回波光信号输送至混频器102内。而硅光芯片通过耦合接收到的回波光信号通常都非常弱,且回波光信号经端口耦合出光收发器时会进一步被衰减,这就导致激光雷达的探测灵敏度大幅降低。除此之外,现有硅光芯片和光纤耦合的端面处一般会有较强的端面反射光(如图1中虚线箭头所示),由于端面反射光的光强通常大于回波光信号的光强,当光收发器采用同轴光收发器时,会导致回波光信号被“淹没”在端面反射光中,而无法被识别。
为解决上述现象所引起的光损耗,以及雷达***的集成度低、体积大等技术问题,本申请实施例提供了一种激光雷达。请参照图2所示,该激光雷达包括激光光源100、分束混频器200、光收发器300、全反射器400、第一光电探测器500和衬底310。
其中,分束混频器200、光收发器300和第一光电探测器500均集成于衬底310上,形成硅光芯片。通常情况下,光收发器300可以采用平行轴收发***,也可以采用同轴收发***,具体可以根据使用需要灵活选择,这里不做唯一限定。本实施例中,为获取更好的拍频光信号,分束混频器200的分光比可以是1:1,也可以是其他任何不相等的分光比例,具体可根据实际需要进行选择。
分束混频器200具有第一端口、第二端口、第三端口和第四端口。具体的,本实施例中的分束混频器200具有双向传导功能,上述四个端口中其中两个端口为输入端口,另两个端口为输出端口,且功能可以互换。第一端口、第二端口、第三端口和第四端口分别通过光路与激光光源100、光收发器300、全反射器400和第一光电探测器500连接。
本实施例中,激光光源100用于提供激光束。分束混频器200用于接收激光光源100发出的激光束,并将激光束分为两束,其中一束通过第二端口输出至光收发器300作为探测光束使用,另一束通过第三端口输出至全反射器400作为本振光束使用;分束混频器200还用于接收来自光收发器300的回波光信号以及经全反射器400反射的本振光束,并对回波光束以及反射后的本振光束进行混频处理得到拍频光信号,再将拍频光信号传输至第一光电探测器500。
本申请实施例提供的激光雷达的工作原理如下:
探测待探测目标时,激光光源100发出激光束,并耦合至硅光芯片。该激光束经第一端口进入分束混频器200,再经分束混频器200分成两束,其中一束作为探测光束经第二端口输出至光收发器300,另一束作为本振光束经第三端口输出至全反射器400。
之后,探测光束经光收发器300输出并照射至待探测目标103上,再经待探测目标103反射形成回波光信号,该回波光信号被光收发器300接收后经其传导再经第二端口进入分束混频器200。与此同时,本振光束经第三端口提供给全反射器400后,经全反射器400反射后再次经第三端口回到分束混频器200。在分束混频器200内,对回波光信号以及反射后的本振光束进行混频处理得到拍频光信号;之后拍频光信号经分束混频器200分束,其中一部分拍频光信号经第一端口输出,被舍弃或者进入其他部件中,另一部分拍频光信号经第四端口传输至第一光电探测器500,再经第一光电探测器500将该部分的拍频光信号转化为电信号,之后该电信号被传输至外部数字处理装置,外部数字处理装置对该数据进行处理分析最终得出待探测目标103的检测数据(如距离、速度等)。
上述过程中,光收发器300接收到的回波光信号依然较弱,但该回波光信号可通过第二端口直接输入分束混频器200,再经分束混频器200混频后可通过其第四端口直接输入第一光电探测器500,在此过程中回波光信号无需如现有技术那样通过耦合方式耦出硅光芯片,进而大幅度降低了在此过程中的回波光信号的损耗,又由于在上述过程中,混频在硅光芯片内进行,不会引入光收发器300和光纤耦合时的端面反射光,如此可以既降低回波光信号的损耗,又避免端面反射光对回波光信号的干扰,进而可达到提高激光雷达探测灵敏度的目的。
本申请实施例提供的激光雷达,包括激光光源100、分束混频器200、光收发器300、全反射器400、第一光电探测器500和衬底310,其中分束混频器200具有分束功能和混频功能,通过多输入端口和多输出端口实现光的输出和接收,因此激光雷达***所涉及的光的分束和混频在一体集成的器件中进行完成,无需在***的光路上分别单独布置分束器101和混频器102,增加了整个激光雷达的集成度,减小了***的体积。同时,分束混频器200多输入端口和多输出端口的设计,利于其他部件可对应相应的端口布置,其他部件围绕分束混频器200有序布置,进一步增加了整个激光雷达的集成度。
另外,本申请实施例提供的激光雷达中,分束混频器200、光收发器300和第一光电探测器500均集成于衬底310上,形成硅光芯片,增加了整个雷达***的集成度,减小了***体积,同时实现了片上混频和片上接收回波光信号光,降低了拍频光信号和回波光信号光的损耗,还可以避免光收发器采用同轴收发***时端面反射光对回波光信号光的干扰,提高雷达的探测灵敏度。
上述分束混频器200可以为光纤组件、空间光路结构、多端口耦合器等中至少一个或者多个组合,只要能实现上述功能即可。
当分束混频器200为光纤组件时,可以为两根光纤通过熔锥法形成的熔融拉锥型光纤耦合器,如图3所示。制备时,将两根光纤去除涂覆层,并以一定方式靠拢,在高温加热下熔融,同时向两侧拉伸,在加热区形成双锥体形式的特种波导结构,实现光功率耦合,控制拉伸锥型耦合区长度可以控制两端口功率耦合比(分光比)。也可以为多个光纤拼接而成的四端口光纤耦合器,如图4所示。
当分束混频器200为空间光路结构时,可如图5所示,由多条全反射通道连通形成四端口光路结构。
当分束混频器200为多端口耦合器时,可采用2乘2耦合器,也可以采用M×N星型耦合器,上述耦合器可以为光纤耦合器,也可以为微光元件型耦合器、集成光波导耦合器或者其他类型耦合器,只要能实现上述功能即可。
在一个可选的实施例中,分束混频器200为具有双向传导功能的2乘2耦合器。其中,激光光源100通过光纤与2乘2耦合器的第一端口连接,第一光电探测器500通过光纤与2乘2耦合器的第四端口连接,光收发器300通过光纤与2乘2耦合器的第二端口连接,全反射器400通过光纤与2乘2耦合器的第三端口连接。分束混频器200采用2乘2耦合器,结构简单,便于安装。具体激光雷达结构中,所述分束混频器可以是MMI耦合器,还可以是双向定向耦合器。
在其他实施例中,分束混频器200还可以为其他多端口耦合器,如3乘3耦合器、2乘3耦合器、3乘2耦合器等,具体可以根据使用需要灵活选择。
现有技术中,光收发器多采用平行轴收发***,即光收发器中用于接收并出射探测光线的光学***和用于接收并传导回波光线的光学***的光轴平行,以避免收发***间的光串扰对探测光信号产生干扰,但平行轴收发***的两个光路需要高精度的严格对准,有一定的难度。为此,在一个可选的实施例中,光收发器采用同轴光收发器。
具体的,本实施例中的同轴光收发器,可以为具有同轴收发功能的光学相控阵(Optical phased array,OPA)或其他光学件,具体可以根据使用需要灵活选择,这里不做任何限定。这里所说的同轴光收发器是指收发器中用于接收并出射探测光线的光学***和用于接收并传导回波光线的光学***同轴设置,一般上述两个光学***为同一组光学***。此时,激光雷达为同轴收发的激光雷达***,这样经待探测目标反射回来的回波光信号可以沿探测光的发射方向的逆向传播回来,因此探测光路和回波光信号光路可实现自动对准、无需调节。同时,光收发器300采用同轴光收发器,体积小、集成度高,且有助于减小整个雷达***的体积。
在一个可选的实施例中,如图6所示,激光雷达还包括光移相器600。具体的,光移相器600位于全反射器400和分束混频器200的第三端口之间,用于调整于全反射器400和分束混频器200之间的本振光束的相位,以便和回波光信号获得更佳的拍频光信号。
在一个可选的实施例中,如图7所示,激光雷达还包括光放大器900。具体的,本实施例中的光放大器900可以采用光纤放大器、半导体光放大器等,具体可以根据使用需要进行选择。例如,若分束混频器200和光收发器300集成于衬底310上,则光放大器900采用半导体光放大器;若分束混频器200和光收发器300设置在全光纤链路中,则光放大器900采用光纤放大器。光放大器900位于分束混频器200和光收发器300之间,用于放大探测光束,提高探测光束的光功率,增加雷达***的测距能力。
采用上述各实施例提供的激光雷达时,经分束混频器200生成的拍频光信号在输出时由于分束混频器200的分束功能会被分为两束,其中一束被第一光电探测器500接收并利用,但另一束则通常会被直接放弃使用,造成回波光信号的浪费,另外该部分回波光信号还有可能进入激光光源100中对其出光效果造成不良影响。为避免上述问题,在一个可选的实施例中,如图8所示,激光雷达还包括光环形器700和第二光电探测器800,光环形器700的第一端口与激光光源100连接,光环形器700的第二端口与分束混频器200的第一端口连接,光环形器700的第三端口与第二光电探测器800连接。
其中,第二光电探测器800和第一光电探测器500可以组成平衡探测器使用,也可以分别单独使用。具体的,当第二光电探测器800和第一光电探测器500组成平衡探测器使用时,第二光电探测器800和第一光电探测器500需要采用特性完全相近的两个光电探测器。采用平衡探测器,可将两个光电探测器获得的信号相加,使得两路中的噪声完全相抵,大幅度放大输出幅度,提高激光雷达的探测灵敏度。
采用本实施例提供的激光雷达进行探测时,经分束混频器200混频形成的拍频光信号经分束混频器200分为两部分,一部分经第三端口输出至第一光电探测器500,另一部分经光环形器700输出至第二光电探测器800。
本实施例提供的激光雷达中加设了光环形器700。来自激光光源100的输入光经光环形器700,再通过光纤输入分束混频器200的第一端口;而来自分束混频器200混频后的另一部分拍频光信号,可通过光环形器700发送给第二光电探测器800,这样第一光电探测器500和第二光电探测器800所接收的拍频光信号均可用于待探测目标103数据的获取。同时,通过光环形器700获取混频后的另一部分拍频光信号,有效防止了该另一部分拍频光信号通过第一端口返回至激光光源100,避免了拍频光信号损耗,以及该拍频光信号对激光光源100的正常工作产生干扰,如此经分束混频器200混频后两部分拍频光信号均被接收利用,可有效提高激光雷达的探测灵敏度。
上述第一光电探测器500和第二光电探测器800二者均可相对光收发器300单独设置,二者也可以集成于硅光芯片上,以进一步提高整个雷达***的集成度。当然,还可根据具体设置空间和需求,将第一光电探测器500和第二光电探测器800中的一者相对硅光芯片单独设置,另一者集成于硅光芯片上。
在一个具体的实施例中,第一光电探测器500和第二光电探测器800均集成于上述衬底310上,如此可使得雷达***的体积较小,且可进一步增加雷达***的集成度。
在一个可选的实施例中,如图9所示,激光雷达还包括形成于衬底310上的耦合器330。具体的,耦合器330集成于硅光芯片上,耦合器330与分束混频器200以及激光光源100分别光路连接,用于将激光光源100提供的激光束耦合至分束混频器200。采用本实施例提供的结构,相较分束混频器200另外设置耦合结构与激光光源100连接,可进一步提高激光雷达的集成度,降低激光雷达的体积。
在一个可选的实施例中,耦合器330可以通过光纤或者搭建的空间光路与激光光源100进行光路连接,具体可以根据设置空间和使用需要灵活选择,这里不做唯一限定。耦合器330采用这一结构,结构简单,便于安装。
在一个可选的实施例中,激光光源为窄线宽光源,其线宽小于1MHz。激光光源采用窄线宽光源,可使得其自身相位噪声很低,光谱纯度很高,进而使得激光雷达的探测性能较佳。
由于一般情况下激光光源发出的光线具有一定的发散角,这样经上述各实施例提供的激光雷达出射的探测光束也具有一定的发散角,进而使得照射至待探测目标上的探测光线被反射后,有一部分会被反射至光收发器接收范围以外的区域,导致激光雷达获得的点云不完整,被降低这一现象的不良影响,在一些实施例中,如图10所示,激光雷达还包括位于光收发器300的第一侧的准直会聚器件320。第一侧为光收发器300出射探测光束以及接收回波光信号的一侧。准直会聚器件320可以位于衬底外,也可以固定于衬底的表面,用于准直探测光束,以及会聚回波光信号。具体的,当准直会聚器件320位于衬底外时,准直会聚器件320可以由一个或者多个透镜组成,透镜可以为凸透镜、凹透镜或者其他形状的透镜,具体可以根据出光效果而定,这里不做唯一限定;还可以采用能够实现上述功能的其他光学元件/结构。当准直会聚器件320固定于衬底的表面时,可以通过微加工技术在衬底表面加工出阵列形式的微透镜阵列以形成准直会聚器件320,或者采用能够实现上述功能的其他光学元件。
采用本实施例提供的激光雷达,可使得探测光束准直输出,且照射至待探测目标103上的探测光线绝大部分可沿预设路径返回至光收发器300内,进而提高激光雷达的探测性能。上述预设路径可以与探测光束传播路径相同,也可以为与探测光束传播路径平行的路径,具体根据光收发器300的类型而定。
当然,若激光光源采用的具有准直器件的光源组件,即激光光源直接提供的是准直激光束,光收发器的第一侧也可不设准直会聚器件。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1.  一种激光雷达,其特征在于,包括激光光源(100)、分束混频器(200)、光收发器(300)、全反射器(400)、第一光电探测器(500)和衬底(310),所述分束混频器(200)、所述光收发器(300)和所述第一光电探测器(500)均集成于所述衬底(310)上;
    所述分束混频器(200)具有第一端口、第二端口、第三端口和第四端口,所述第一端口、所述第二端口、所述第三端口和所述第四端口分别通过光路与所述激光光源(100)、所述光收发器(300)、所述全反射器(400)和所述第一光电探测器(500)连接;
    所述分束混频器(200)用于接收所述激光光源(100)发出的激光束,并将所述激光束分为两束,其中一束通过所述第二端口输出至所述光收发器(300)作为探测光束使用,另一束通过所述第三端口输出至所述全反射器(400)作为本振光束使用;所述分束混频器(200)还用于接收来自所述光收发器(300)的回波光信号以及经所述全反射器(400)反射的本振光束,并对所述回波光信号以及反射后的所述本振光束进行混频处理得到拍频光信号,再将所述拍频光信号输出至所述第一光电探测器(500)。
  2.  如权利要求1所述的激光雷达,其特征在于,所述分束混频器(200)为光纤组件、空间光路结构或者多端口耦合器。
  3.  如权利要求1或2所述的激光雷达,其特征在于,所述分束混频器(200)为2乘2耦合器。
  4.  如权利要求1所述的激光雷达,其特征在于,所述光收发器(300)为同轴光收发器(300)。
  5.  如权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括光移相器(600),所述光移相器(600)位于所述全反射器(400)和所述分束混频器(200)的第三端口之间,用于调整于所述全反射器(400)和所述分束混频器(200)之间的所述本振光束的相位。
  6.  如权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括光放大器(900),所述光放大器(900)位于所述分束混频器(200)和所述光收发器(300)之间,用于放大所述探测光束。
  7.  如权利要求6所述的激光雷达,其特征在于,所述光放大器(900)为光纤放大器或者半导体光放大器。
  8.  如权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括光环形器(700)和第二光电探测器(800),所述光环形器(700)的第一端口与所述激光光源(100)连接,所述光环形器(700)的第二端口与所述分束混频器(200)的第一端口连接,所述光环形器(700)的第三端口与所述第二光电探测器(800)连接;
    其中,部分所述拍频光信号通过所述第四端口输出至所述第一光电探测器(500),另一部分所述拍频光信号经所述第三端口和所述光环形器(700)输出至所述第二光电探测器(800)。
  9.  如权利要求8所述的激光雷达,其特征在于,所述第一光电探测器(500)和所述第二光电探测器(800)中的至少一个集成于所述衬底(310)上。
  10.  如权利要求8所述的激光雷达,其特征在于,所述第二光电探测器(800)和所述第一光电探测器(500)组成平衡探测器。
  11.  如权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括形成于所述衬底(310)上的耦合器,所述耦合器与所述分束混频器(200)以及所述激光光源(100)分别光路连接,用于将所述激光光源(100)提供的激光束耦合至所述分束混频器(200)。
  12.  如权利要求11所述的激光雷达,其特征在于,所述耦合器通过光纤或者空间光路与所述激光光源(100)光路连接。
  13.  如权利要求1-12任一项所述的激光雷达,其特征在于,所述激光光源(100)为窄线宽光源,其线宽小于1MHz。
  14.  如权利要求1-12任一项所述的激光雷达,其特征在于,所述激光雷达还包括准直会聚器件(320),所述准直会聚器件(320)位于所述光收发器(300)的第一侧,所述准直会聚器件(320)用于准直所述探测光束,以及会聚所述回波光信号;
    其中,所述第一侧为所述光收发器(300)出射所述探测光束以及接收所述回波光信号的一侧。
PCT/CN2023/122777 2022-10-11 2023-09-28 激光雷达 WO2024078364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211240436.9 2022-10-11
CN202211240436.9A CN117907972A (zh) 2022-10-11 2022-10-11 激光雷达

Publications (1)

Publication Number Publication Date
WO2024078364A1 true WO2024078364A1 (zh) 2024-04-18

Family

ID=90668730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122777 WO2024078364A1 (zh) 2022-10-11 2023-09-28 激光雷达

Country Status (2)

Country Link
CN (1) CN117907972A (zh)
WO (1) WO2024078364A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076485A1 (en) * 2001-06-29 2003-04-24 Ruff William C. Ladar system for detecting objects
CN104467981A (zh) * 2014-10-13 2015-03-25 北京大学 一种硅基单片集成相干光接收机
CN111543017A (zh) * 2017-12-29 2020-08-14 朗美通技术英国有限公司 平衡半导体光波导中的损耗
CN115128734A (zh) * 2022-08-31 2022-09-30 上海羲禾科技有限公司 一种硅光芯片及基于硅光芯片的激光雷达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076485A1 (en) * 2001-06-29 2003-04-24 Ruff William C. Ladar system for detecting objects
CN104467981A (zh) * 2014-10-13 2015-03-25 北京大学 一种硅基单片集成相干光接收机
CN111543017A (zh) * 2017-12-29 2020-08-14 朗美通技术英国有限公司 平衡半导体光波导中的损耗
CN115128734A (zh) * 2022-08-31 2022-09-30 上海羲禾科技有限公司 一种硅光芯片及基于硅光芯片的激光雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI YU: "Research on the Heterodyne Detection System Based on Balanced Detector", DISSERTATION, GRADUATE SCHOOL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY CHANGSHA, HUNAN, CHINA, 1 November 2015 (2015-11-01), Graduate School of National University of Defense Technology Changsha, Hunan, China, XP093158024 *

Also Published As

Publication number Publication date
CN117907972A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN115639543B (zh) 调频连续波激光雷达及自动驾驶设备
JP7303925B2 (ja) 多波長ライダー設計
US12025739B1 (en) Frequency modulated continuous wave LiDAR and autonomous driving device
CN107925484B (zh) 一种单片集成相干光接收器芯片
CN114779277A (zh) 调频连续波激光雷达
US9335480B1 (en) Optical alignment using multimode edge couplers
CN115656975B (zh) 波导转换芯片、调频连续波激光雷达及自动驾驶设备
CN115291194B (zh) 光收发模组、激光雷达、自动驾驶***及可移动设备
CN115542345A (zh) Fmcw激光雷达、自动驾驶***及可移动设备
CN111505766B (zh) 一种基于硅基集成磁光环行器的光学全双工收发组件
CN111801617A (zh) 光学环行器
WO2019214244A1 (zh) 光分束器、光功率监测装置及激光器芯片
CN112698451A (zh) 一种光模块
CN113267856A (zh) 一种收发共轴紧凑激光收发装置
CN210775927U (zh) 一种光模块
WO2024078364A1 (zh) 激光雷达
WO2024045550A1 (zh) 激光雷达的发射模块、收发装置和激光雷达
US20230366986A1 (en) LiDAR array with vertically-coupled transceivers
JPS63205611A (ja) デユアルバランス型受光器
WO2021026774A1 (zh) 一种多通道并行双向器件耦合装置
CN115343690B (zh) 光学收发组件和激光雷达装置
CN116908814B (zh) 激光雷达及可移动设备
WO2023207600A1 (zh) 调频连续波激光雷达
CN220043424U (zh) 一种利用波分复用器的收发共轴紧凑激光收发装置
CN215067435U (zh) 一种收发共轴紧凑激光收发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876567

Country of ref document: EP

Kind code of ref document: A1