WO2024078250A1 - 一种混合量子点扩散板及其制备方法 - Google Patents

一种混合量子点扩散板及其制备方法 Download PDF

Info

Publication number
WO2024078250A1
WO2024078250A1 PCT/CN2023/118771 CN2023118771W WO2024078250A1 WO 2024078250 A1 WO2024078250 A1 WO 2024078250A1 CN 2023118771 W CN2023118771 W CN 2023118771W WO 2024078250 A1 WO2024078250 A1 WO 2024078250A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
hybrid quantum
hybrid
luminescent
quantum dot
Prior art date
Application number
PCT/CN2023/118771
Other languages
English (en)
French (fr)
Inventor
陈锦全
王敬蕊
陈家立
邓志凌
程培红
陈结娴
Original Assignee
广东欧迪明光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧迪明光电科技股份有限公司 filed Critical 广东欧迪明光电科技股份有限公司
Publication of WO2024078250A1 publication Critical patent/WO2024078250A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention belongs to the technical field of quantum dot optics, and in particular relates to a quantum dot diffusion plate and a preparation method thereof.
  • Light diffusers usually use chemical or physical means to cause the light to refract, reflect and scatter when it encounters two media with different refractive indices.
  • inorganic or organic light diffusers By adding inorganic or organic light diffusers to a polymer substrate with good light transmittance, or by artificially adjusting the light through an array of micro-feature structures on the surface of the substrate, the light is refracted, reflected and scattered in different directions, thereby changing the path of the light and achieving full scattering of the incident light to produce an optical diffusion effect.
  • Light diffusers are widely used in liquid crystal displays, LED lighting and imaging display systems.
  • Quantum dot stimulated emission has the characteristics of narrow half-peak width of emission line, high color purity, good light stability, etc., which can improve the optical performance of the diffuser.
  • Core-shell structure quantum dots use narrow bandgap materials such as CdSe as the luminescent core and relatively wide bandgap materials such as ZnSe as the shell, which can effectively reduce fluorescence quenching and improve quantum yield.
  • the present invention intends to provide a hybrid quantum dot diffusion plate by changing the diffusion
  • the size and composition of the quantum dot luminescent core in the diffuser can obtain different excitation wavelengths and colors, achieve white light with a higher color gamut, and improve the luminous efficiency of the diffuser.
  • the present invention adopts the following technical scheme.
  • the present invention first provides a hybrid quantum dot diffusion plate, wherein the hybrid quantum dots are composed of quantum dots of different components and different sizes; the hybrid quantum dot diffusion plate is composed of the hybrid quantum dots and an organic polymer, and is formed by melt-mixing and extruding the hybrid quantum dots and the organic polymer, and the different components and different sizes of quantum dots constituting the hybrid quantum dots are uniformly dispersed in the organic polymer matrix.
  • the organic polymer is selected from one or more of PC (polycarbonate), PVC (polyvinyl chloride), PS (polystyrene), PMMA (polymethyl methacrylate), PET (polyethylene terephthalate) or epoxy resin.
  • the hybrid quantum dots are composed of Cd1 - xZnxSe luminescent cores of different sizes and different x components, and a ZnSe shell wrapped around the luminescent core.
  • the ZnSe shell is 2-4nm thick.
  • the hybrid quantum dots contain Cd1-xZnxSe luminescent cores of different sizes and components, which can enable continuous regulation of the luminescent band of the hybrid quantum dots in the diffusion plate within the range of 460-680nm.
  • a hybrid quantum dot with an optimal mixing ratio is achieved, so that the hybrid quantum dots can mix out high-quality white light after being excited by blue light.
  • the wrapped ZnSe shell reduces the dangling bonds on the core surface, passivates the luminescent core, and improves the quantum yield; on the other hand, the Cd in the core and the Zn in the shell can produce ion exchange, forming an alloy layer at the interface, thereby Reducing the core/shell lattice mismatch reduces lattice stress and improves the luminescence efficiency of quantum dots.
  • the different x components refer to the Cd1 - xZnxSe luminescent cores in which the x value is continuously adjustable, wherein 0 ⁇ x ⁇ 1; the different sizes refer to the Cd1 - xZnxSe /ZnSe quantum dots containing Cd1 - xZnxSe luminescent cores of various sizes in the hybrid quantum dots, wherein the size range of the Cd1- xZnxSe luminescent cores of various sizes is 2.7nm-3.5nm.
  • the molar ratio of quantum dots of different x components in the hybrid quantum dots is 0 ⁇ x ⁇ 0.3, accounting for 20%-40% in the hybrid quantum dots; 0.3 ⁇ x ⁇ 0.6, accounting for 20-40% in the hybrid quantum dots, and 0.6 ⁇ x ⁇ 1, accounting for 20-40% in the hybrid quantum dots.
  • the size distribution of the Cd1- xZnxSe luminescent core of the Cd1 - xZnxSe /ZnSe quantum dots of different sizes in the hybrid quantum dots is related to the x component of the luminescent core Cd1 - xZnxSe , specifically: when 0 ⁇ x ⁇ 0.3, more than 80% of the Cd1 - xZnxSe luminescent core has a size between 2.7-3.1nm; when 0.3 ⁇ x ⁇ 0.6, more than 80% of the Cd1 - xZnxSe luminescent core has a size between 3.0-3.4nm; when 0.6 ⁇ x ⁇ 1, more than 80% of the Cd1 - xZnxSe luminescent core has a size between 3.2-3.5nm.
  • the excitation wavelength will be used for quantum dot luminescent cores of the same component, as the quantum dot size increases within the parameter range of the present invention, the excitation wavelength will
  • the mass ratio of the mixed quantum dots to the organic polymer is 0.15-0.225%.
  • the hybrid quantum dot diffusion plate has a thickness of 2-30 mm.
  • the hybrid quantum dot diffusion plate of the present invention adopts quantum dots of Cd1 - xZnxSe /ZnSe core-shell structure.
  • Cd1 - xZnxSe as the luminescent core, the lattice mismatch stress at the core/shell interface can be reduced and the quantum yield can be improved compared to conventional CdSe/ZnSe core-shell structure quantum dots.
  • Cd1 -xZnxSe / ZnSe mixed quantum dots of different components and sizes in the diffusion plate a quantum dot luminescent core with different components and sizes is formed, and by mixing quantum dots of multiple components and sizes in the diffusion plate, different excitation wavelengths and colors are obtained.
  • Cd1- xZnxSe /ZnSe mixed quantum dots of different x components and sizes are excited, thereby obtaining different excitation peaks from the green light to the red light band, and obtaining white light with a higher color gamut.
  • the present invention also provides a method for preparing the hybrid quantum dot diffusion plate, comprising the following steps:
  • Se powder was mixed with octadecene (ODE) at a ratio of 0.4 mmol/ml, and ultrasonically vibrated at 60° C. for 30 minutes to disperse and obtain the first Se precursor for later use.
  • ODE octadecene
  • CdO and Zn(Ac) 2 are mixed in a molar ratio of 1:1; then oleic acid (OA) is added in a ratio of 1 mmol/ml of Zn(Ac) 2 ; after vacuuming to 5 Pa, ODE is added in a volume ratio of 10:1 with OA; the mixed liquid is heated to 240°C-300°C, and the first Se precursor of step S11 is added in a volume ratio of 1:1 to start the reaction; 4, 6, 8, 10, 15, 20, and 30 minutes after the start of the reaction, OA-activated Zn(Ac) 2 is added to the reaction liquid in a molar ratio of Zn(Ac) 2 /CdO (2-30):1, and finally after sufficient reaction, X components are obtained in the range of 0 ⁇ x ⁇ 1.
  • the OA-activated Zn(Ac) 2 is prepared by adding OA to Zn(Ac) 2 at a ratio of 1 mmol/ml of Zn(Ac) 2.
  • the Cd 1-x Zn x Se luminescent core stock solution prepared in step S12 is centrifuged in a high-speed centrifuge;
  • the synthesized Cd 1-x Zn x Se luminescent nucleus stock solution is purified in order to remove the excess Zn and impurities in the nucleation reaction.
  • Se powder was mixed with tri-n-octylphosphine (TOP) at a ratio of 1 mmol/ml, placed in a sealed container, evacuated to 5 Pa and filled with inert gas for protection, stirred and heated to 80 °C until the Se powder was completely dissolved, cooled to room temperature to obtain the second Se precursor for standby use.
  • TOP tri-n-octylphosphine
  • the purified Cd 1-x Zn x Se luminescent core solution obtained in step S13 was added with ODE to prepare a 1 nmol/mL Cd 1-x Zn x Se luminescent core ODE dilution solution.
  • the thickness of the ZnSe shell layer is controlled to 2-4nm by controlling the drop time of the Zn precursor.
  • the Zn precursor refers to 0.3M zinc oleate Zn(OA) 2 .
  • the Cd1- xZnxSe /ZnSe hybrid quantum dots obtained in step S22 are melt-mixed with one or more of PC, PVC, PS, PMMA, PET and epoxy resin by mechanical stirring and ultrasonic oscillation, and a diffusion plate is formed by extrusion.
  • the diffusion plate has a thickness of 2 to 30 mm.
  • the present invention has the following beneficial effects:
  • the fluorescence emission wavelength can be controlled by changing the chemical element composition of the alloy quantum dots.
  • the lattice structure and bandgap width of the alloy structure Cd 1-x Zn x Se quantum dot core are between ZnSe and CdSe, and the lattice mismatch of the Cd 1-x Zn x Se/ZnSe core-shell structure is small, which improves the stability of the quantum dots and the fluorescence quantum yield.
  • FIG. 1 is a schematic diagram of the structure of a hybrid quantum dot diffusion plate prepared according to various embodiments of the present invention.
  • 01 is a hybrid quantum dot and 02 is an organic polymer.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Se powder was mixed with octadecene (ODE) at a ratio of 0.4 mmol/ml, and ultrasonically shaken at 60° C. for 30 minutes to disperse and obtain a first Se precursor for later use.
  • ODE octadecene
  • CdO and Zn(Ac) 2 are mixed in a molar ratio of 1:1; oleic acid (OA) is added at a ratio of 1 mmol/ml of Zn(Ac) 2; after vacuuming to 5 pa, ODE is added in a volume ratio of 10:1 with OA; the liquid is heated to 240°C, and the first Se precursor is added in a volume ratio of 1:1, and OA-activated Zn(Ac) 2 is added in a molar ratio of Zn(Ac) 2 /CdO of 2:1 4, 6, 8, 10, 15, 20, and 30 minutes after the reaction begins.
  • OA oleic acid
  • ODE is added in a volume ratio of 10:1 with OA
  • the liquid is heated to 240°C
  • the first Se precursor is added in a volume ratio of 1:1
  • OA-activated Zn(Ac) 2 is added in a molar ratio of Zn(Ac) 2 /CdO of 2:1 4, 6, 8, 10, 15, 20, and 30 minutes
  • the reaction is continued for 2 minutes to terminate the reaction, thereby obtaining a Cd 1-x Zn x Se mixed quantum dot core stock solution containing different x components and sizes.
  • the OA-activated Zn(Ac) 2 is: OA is added to Zn(Ac) 2 at a ratio of 1 mmol/ml of Zn(Ac) 2 .
  • composition and size distribution of the obtained hybrid quantum dots are as follows when Zn(Ac) 2 activated by OA is added at different time points:
  • the synthesized CdZnSe core quantum dots are purified in order to remove excess Zn and impurities in the nucleation reaction.
  • the above-prepared core stock solution is centrifuged in a high-speed centrifuge. Then the supernatant is dissolved in n-hexane, and anhydrous ethanol is added to promote precipitation. After 2-3 centrifugations, the obtained precipitate is dissolved in a small amount of n-hexane solution and sealed for storage.
  • Se powder was mixed with tri-n-octylphosphine (TOP) at a ratio of 1 mmol/ml, placed in a sealed container, evacuated to 5 Pa and filled with inert gas for protection, stirred and heated to 80 °C until the Se powder was completely dissolved, cooled to room temperature to obtain the second Se precursor for standby use.
  • TOP tri-n-octylphosphine
  • the purified Cd1- xZnxSe quantum dot core stock solution was precipitated to prepare a 1nmmol/mL ODE dilution solution. Under an argon/nitrogen protective atmosphere, the solution was stirred several times and heated to 300°C.
  • the second Se precursor was added according to a volume ratio of 1.3:1 between the Cd1 - xZnxSe luminescent core ODE dilution solution and the second Se precursor. Then, 0.3M zinc oleate Zn(OA) 2 was slowly added dropwise at a rate of 4mL/h to generate Cd 1-x Zn x Se/ZnSe hybrid quantum dots.
  • the thickness of the generated ZnSe shell is about 2-4 nm.
  • the quantum dots are melt-mixed with a mixture of one or more of PC, PVC, PS, PMMA, PET and epoxy resin by mechanical stirring and ultrasonic vibration, and a diffusion plate with a thickness of 2 to 30 mm is formed by extrusion.
  • Se powder was mixed with octadecene (ODE) at a ratio of 0.4 mmol/ml, and ultrasonically shaken at 60° C. for 30 minutes to disperse and obtain a first Se precursor for later use.
  • ODE octadecene
  • CdO and Zn(Ac)2 are mixed in a molar ratio of 1:1; oleic acid (OA) is added at a ratio of 1 mmol/ml of Zn(Ac)2; after vacuuming to 5 pa, ODE is added in a volume ratio of 10:1 with OA; the liquid is heated to 240°C, and the first Se precursor is added in a volume ratio of 1:1, and OA-activated Zn(Ac) 2 is added in a molar ratio of Zn(Ac)2/CdO of 15:1 4, 6, 8, 10, 15, 20, and 30 minutes after the reaction starts.
  • OA oleic acid
  • ODE is added in a volume ratio of 10:1 with OA
  • the liquid is heated to 240°C
  • the first Se precursor is added in a volume ratio of 1:1
  • OA-activated Zn(Ac) 2 is added in a molar ratio of Zn(Ac)2/CdO of 15:1 4, 6, 8, 10, 15, 20, and 30 minutes
  • the reaction is continued for another 2 minutes to terminate the reaction, and finally a Cd1 - xZnxSe mixed quantum dot core stock solution containing different x components and sizes is obtained.
  • the OA-activated Zn(Ac) 2 is: in Zn(Ac) 2 , Zn(Ac) 2 is added in a volume ratio of 10:1 with Zn(Ac)2 /CdO. OA was added at a ratio of 1mmol/ml.
  • the composition and size distribution of Zn(Ac) 2 activated by OA at different time points in the obtained mixed quantum dots are as follows:
  • the synthesized CdZnSe core quantum dots are purified in order to remove excess Zn and impurities in the nucleation reaction.
  • the above-prepared core stock solution is centrifuged in a high-speed centrifuge. Then the supernatant is dissolved in n-hexane, and anhydrous ethanol is added to promote precipitation. After 2-3 centrifugations, the obtained precipitate is dissolved in a small amount of n-hexane solution and sealed for storage.
  • Se powder was mixed with tri-n-octylphosphine (TOP) at a ratio of 1 mmol/ml, placed in a sealed container, evacuated to 5 Pa and filled with inert gas for protection, stirred and heated to 80 °C until the Se powder was completely dissolved, cooled to room temperature to obtain the second Se precursor for standby use.
  • TOP tri-n-octylphosphine
  • the purified Cd1-xZnxSe quantum dot core stock solution was precipitated and prepared into 1nmmol/mL ODE dilution solution. Under the protective atmosphere of argon/nitrogen, the solution was stirred several times and heated to 300°C.
  • the second Se precursor was taken and added according to the volume ratio of Cd1 - xZnxSe luminescent core ODE dilution solution to the second Se precursor of 1.3:1.
  • 0.3M zinc oleate Zn(OA) 2 was slowly added dropwise at a dropping speed of 4mL/h to finally generate Cd1- xZnxSe /ZnSe mixed quantum dots.
  • the thickness of the generated ZnSe shell layer was about 2-4nm.
  • the quantum dots are melt-mixed with a mixture of one or more of PC, PVC, PS, PMMA, PET and epoxy resin by mechanical stirring and accompanied by ultrasonic vibration, and a diffusion plate with a thickness of 2 to 30 mm is formed by extrusion.
  • Se powder was mixed with octadecene (ODE) at a ratio of 0.4 mmol/ml, and ultrasonically shaken at 60° C. for 30 minutes to disperse and obtain a first Se precursor for later use.
  • ODE octadecene
  • CdO and Zn(Ac)2 were mixed in a molar ratio of 1:1; oleic acid (OA) was added at a ratio of 1 mmol/ml of Zn(Ac)2; after vacuuming to 5 Pa, ODE was added in a volume ratio of 10:1 with OA; the liquid was heated to 240 °C, and the first Se precursor was added in a volume ratio of 1:1.
  • OA activated Zn(Ac) 2 was added at a molar ratio of Zn(Ac) 2 /CdO 2 of 30:1 4, 6, 8, 10, 15, 20, and 30 minutes after the reaction started.
  • OA activated Zn(Ac) 2 is: OA is added to Zn(Ac) 2 at a ratio of 1mmol /ml. After testing and analysis, the components and size distribution of the mixed quantum dots obtained by adding OA activated Zn(Ac) 2 at different time points are as follows:
  • the synthesized CdZnSe core quantum dots are purified in order to remove excess Zn and impurities in the nucleation reaction.
  • the above-prepared core stock solution is centrifuged in a high-speed centrifuge. Then the supernatant is dissolved in n-hexane, and anhydrous ethanol is added to promote precipitation. After 2-3 centrifugations, the obtained precipitate is dissolved in a small amount of n-hexane solution and sealed for storage.
  • Se powder was mixed with tri-n-octylphosphine (TOP) at a ratio of 1 mmol/ml, placed in a sealed container, evacuated to 5 Pa and filled with inert gas for protection, stirred and heated to 80 °C until the Se powder was completely dissolved, cooled to room temperature to obtain the second Se precursor for standby use.
  • TOP tri-n-octylphosphine
  • the purified Cd 1-x Zn x Se quantum dot core stock solution was precipitated to prepare a 1nmmol/mL ODE dilution solution, and stirred several times under an argon/nitrogen protective atmosphere, and the temperature was raised to 300°C.
  • the second Se precursor was taken and added according to the volume ratio of Cd 1-x Zn x Se luminescent core ODE dilution solution to the second Se precursor of 1.3:1; then 0.3M zinc oleate Zn(OA) 2 was slowly added dropwise at a drop rate of 4mL/h, and finally Cd 1-x Zn x Se/ZnSe mixed quantum dots were generated.
  • the thickness of the generated ZnSe shell layer was about 2-4nm.
  • the quantum dots are melt-mixed with a mixture of one or more of PC, PVC, PS, PMMA, PET and epoxy resin by mechanical stirring and accompanied by ultrasonic vibration, and a diffusion plate with a thickness of 2 to 30 mm is formed by extrusion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种混合量子点扩散板,通过混合量子点和有机聚合物混熔挤压成型。所述混合量子点由不同组分、不同尺寸的若干量子点混合构成、且均匀分散于有机聚合物基体中。构成混合量子点中的若干量子点均由不同尺寸和不同x组分的Cd1-xZnxSe发光核、以及发光核外面包裹的ZnSe壳层组成,Cd1-xZnxSe发光核中x中,0<x≤1;Cd1-xZnxSe发光核的尺寸在2.7nm-3.5nm范围内。通过在扩散板中混合多种组分和尺寸的量子点发光核,获得不同激发波长及颜色,在蓝光经过本发明的混合量子点扩散板时,会激发不同组分或尺寸的量子点,从而获得从绿光到红光波段的不同激发峰,获得更高色域的白光。

Description

一种混合量子点扩散板及其制备方法 技术领域
本发明属于量子点光学技术领域,具体涉及一种量子点扩散板及其制备方法。
背景技术
光扩散板通常利用化学或物理的手段,使光线在行径途中遇到两个折射率相异的介质时,发生折射、反射与散射的物理现象。通过在具有良好透光性高分子聚合物类基材基础中添加无机或有机光扩散剂、或者通过基材表面的微特征结构的阵列排列人为的调整光线,使光线发生不同方向的折射、反射、与散射,从而改变光的行进路线,实现入射光充分散射来产生光学扩散的效果。光扩散板广泛应用在液晶显示、LED照明及成像显示***中。
量子点受激发射具有发射线半峰宽窄,色纯度高,光稳定性好等特点,可以提升扩散板的光学性能。核壳结构量子点以窄禁带的材料如CdSe作为发光核,以相对较宽禁带的材料如ZnSe作为壳层可以有效降低荧光淬灭,提高量子产率。
发明内容
基于上述现有技术,本发明拟提供一种混合量子点扩散板,通过改变扩 散板中量子点发光核的尺寸及组分,可以获得不同激发波长及颜色,实现更高色域的白光、且提高扩散板的发光效率。
为实现上述发明目的,本发明采用下述技术方案。
本发明首先提供了一种混合量子点扩散板,所述混合量子点由不同组分、不同尺寸量子点构成;所述混合量子点扩散板,由所述混合量子点以及有机聚合物组成、通过所述混合量子点和所述有机聚合物混熔挤压成型,且构成所述混合量子点的所述不同组分、不同尺寸量子点均匀分散于所述有机聚合物基体中。
其中有机聚合物选自PC(聚碳酸酯)、PVC(聚氯乙烯)、PS(聚苯乙烯)、PMMA(聚甲基丙烯酸甲酯)、PET(聚对苯二甲酸乙二醇酯)或环氧树脂中的一种或几种。
更为具体的,所述混合量子点由不同尺寸的、不同x组分的Cd1-xZnxSe发光核,以及发光核外面包裹的ZnSe壳层组成。其中所述ZnSe壳层2-4nm厚度。混合量子点中包含不同尺寸和组分的Cd1-xZnxSe发光核,可以使扩散板中的混合量子点发光波段在460-680nm范围内实现连续调控。而通过混合量子点扩散板制作过程中工艺的控制,达到形成最佳混合比的混合量子点,使得混合量子点在经蓝光激发后,能够混合出高质量白光。同时,包裹的ZnSe壳层,一方面减少了核表面的悬空键,钝化了发光核,提升量子产率;另一方面核内的Cd与壳层的Zn能够产生离子交换,在界面处形成合金层,从 而降低核/壳的晶格失配度而减少了晶格应力,提升量子点的发光效率。
进一步地,所述不同x组分:指Cd1-xZnxSe发光核中x取值连续可调的,其中0<x≤1;所述不同尺寸:指所述混合量子点中包含多种尺寸的Cd1-xZnxSe发光核的Cd1-xZnxSe/ZnSe量子点,所述多种尺寸的Cd1-xZnxSe发光核的尺寸范围为2.7nm-3.5nm。
更为具体的,所述混合量子点中的不同x组分的量子点的摩尔占比为0<x≤0.3,在混合量子点中占比20%-40%;0.3<x≤0.6,在混合量子点中占比20-40%,0.6<x≤1,在混合量子点中占比20-40%。
相应的,所述混合量子点中的不同尺寸的Cd1-xZnxSe/ZnSe量子点,其Cd1-xZnxSe发光核的尺寸分布与发光核Cd1-xZnxSe的x组分相关,具体为:当0<x≤0.3时,80%以上的Cd1-xZnxSe发光核的尺寸在2.7-3.1nm之间;当0.3<x≤0.6时,80%以上的Cd1-xZnxSe发光核的尺寸在3.0-3.4nm之间,0.6<x≤1时,80%以上的Cd1-xZnxSe发光核的尺寸在3.2-3.5nm。根据发明人在研究中的反复实测,对于同一组分的量子点发光核,随量子点尺寸在本发明参数范围的增大,激发波长会发生50-10nm的红移。
其中所述混合量子点扩散板中,所述混合量子点以及所述有机聚合物的质量比0.15-0.225%。
进一步地,所述混合量子点扩散板厚度为2-30mm。
本发明混合量子点扩散板通过采用Cd1-xZnxSe/ZnSe核壳结构的量子点, 以Cd1-xZnxSe作为发光核,相比常规的CdSe/ZnSe核壳结构量子点可以减小核/壳界面晶格失配应力,提高量子产率。进一步,通过在扩散板中采用不同组分、不同尺寸的Cd1-xZnxSe/ZnSe混合量子点,形成具有不同组分和尺寸的量子点发光核的,通过在扩散板中混合多种组分和尺寸的量子点,获得不同激发波长及颜色。在蓝光经过本发明的混合量子点扩散板时,会激发不同x组分、不同尺寸的Cd1-xZnxSe/ZnSe混合量子点,从而获得从绿光到红光波段的不同的激发峰,获得更高色域的白光。
本发明还提供上述混合量子点扩散板的制备方法,包括以下步骤:
S1.混合量子点中的Cd1-xZnxSe发光核的制取
S11.第一Se前驱体的制备
将Se粉以0.4mmol/ml的比例与十八烯(ODE)混合,60℃超声震荡30分钟,分散获得第一Se前驱体,待用。
S12.不同组分和不同尺寸的Cd1-xZnxSe发光核原液的制备
CdO和Zn(Ac)2按照摩尔比为1:1混合;然后以Zn(Ac)2 1mmol/ml的比例,加入油酸(OA);抽真空至5pa后,按照与OA体积比10:1的分量,加入ODE;将此混合液体升温至240℃-300℃,按体积比1:1份量加入步骤S11步骤的第一Se前驱体,开始反应;反应开始后的4、6、8、10、15、20、30分钟时,在反应液中依次按Zn(Ac)2/CdO比(2~30):1的摩尔比再加入OA活化后的Zn(Ac)2,最后充分反应之后,得到X组分在0<x≤1之间逐 渐增大,尺寸在2.7-3.5nm之间逐渐增大的Cd1-xZnxSe/ZnSe混合量子点的Cd1-xZnxSe发光核原液;
其中所述OA活化后的Zn(Ac)2为:在Zn(Ac)2中,以Zn(Ac)2 1mmol/ml的比例,加入OA。
S13.Cd1-xZnxSe发光核原液提纯
首先取S12步骤制得的Cd1-xZnxSe发光核原液在高速离心机中进行离心;
然后取离心后得到的上清液溶于正己烷中,再加无水乙醇促沉淀,再重复2-3次离心、取上清液、促沉淀的过程,将最后一次离心得到的沉淀溶解于少量的正己烷溶液中密封保存,即获得Cd1-xZnxSe发光核提纯原液;
在后续的包壳过程前,先对合成的Cd1-xZnxSe发光核原液进行提纯处理,是为了将成核反应过程中多余的Zn和杂质除去。
S2.Cd1-xZnxSe/ZnSe核壳混合量子点的合成
S21.第二Se前驱体的制备
将Se粉以1mmol/ml的比例与三正辛基膦(TOP)混合,装于密闭容器,抽真空至5pa后充惰性气体保护,搅拌升温至80℃,直到Se粉完全溶解,降到室温获得第二Se前驱体,待用。
S22.Cd1-xZnxSe/ZnSe混合量子点的合成
将步骤S13中得到的Cd1-xZnxSe发光核提纯原液,加入ODE,配成1nmmol/mL的Cd1-xZnxSe发光核ODE稀释液,在氩气/氮气保护气氛下,多次 搅拌,升温至300℃;加入所述第二Se前驱体,按照Cd1-xZnxSe发光核ODE稀释液与第二Se前驱体体积比1.3:1加入;之后逐滴缓慢加入Zn前驱体,滴加速度4mL/h,最后生成Cd1-xZnxSe/ZnSe混合量子点。其中ZnSe壳层的厚度通过控制Zn前驱体的滴加时间,控制在2-4nm。其中所述Zn前驱体指0.3M的油酸锌Zn(OA)2
S3.混合量子点扩散板的制取
将S22步骤得到的Cd1-xZnxSe/ZnSe混合量子点以机械搅拌、同时伴随超声震荡的方式与PC、PVC、PS、PMMA、PET及环氧树脂中的一种或几种混熔,通过挤压形成扩散板,扩散板厚度为2~30mm。
相较于现有技术,本发明具有以下有益效果:
(1)通过改变合金量子点中化学元素组成的成分来调控其荧光发射波长。合金结构Cd1-xZnxSe量子点核的晶格结构和禁带宽度介于ZnSe和CdSe和之间,Cd1-xZnxSe/ZnSe核壳结构晶格失配度小,提高了量子点的稳定性和荧光量子产率。
(2)蓝光经过扩散板时,激发不同x组分、不同尺寸的Cd1-xZnxSe/ZnSe混合量子点,获得从绿光到红光波段的不同的激发峰,能够获得更高色域的白光。
附图说明
图1是本发明各实施例制得的混合量子点扩散板的结构示意图。
其中01为混合量子点,02为有机物聚合物。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明:
实施例1:
1.混合量子点核Cd1-xZnxSe的制取
(1)第一Se前驱体的制备
将Se粉以0.4mmol/ml的比例与十八烯(ODE)混合,60℃超声震荡30分钟,分散获得第一Se前驱体待用。
(2)不同组分和不同尺寸的Cd1-xZnxSe量子点核原液的制备
CdO和Zn(Ac)2按照摩尔比为1:1混合;以Zn(Ac)2 1mmol/ml的比例,加入油酸(OA);抽真空至5pa后,按照与OA体积比10:1的分量,加入ODE;将次此液体升温至240℃,按体积比1:1份量加入第一Se前驱体,在反应开始4、6、8、10、15、20、30分钟后,依次按Zn(Ac)2/CdO比2:1的摩尔比再加入OA活化后的Zn(Ac)2,最后一次加入后,再反应2分钟,结束反应,这是得到包含不同x组分和尺寸的Cd1-xZnxSe混合量子点核原液。其中,所述OA活化后的Zn(Ac)2为:在Zn(Ac)2中,以Zn(Ac)2 1mmol/ml的比例,加入OA。
经测试分析,得到的混合量子点中,不同时间点加入OA活化后的Zn(Ac)2,得到的混合量子点的成分和尺寸分布如下:
(3)Cd1-xZnxSe量子点核原液提纯
(在后续的包壳过程前先对合成的CdZnSe核量子点进行提纯处理,是为了将成核反应过程中多余的Zn和杂质除去。)首先取上述制得的核原液在高速离心机中进行离心。然后取上层清液溶于正己烷中,再加无水乙醇促沉淀,再经2-3次离心,将得到的沉淀溶解于少量的正己烷溶液中密封保存。
2.Cd1-xZnxSe/ZnSe核壳量子点的合成
(1)第二Se前驱体的制备
将Se粉以1mmol/ml的比例与三正辛基膦(TOP)混合,装于密闭容器,抽真空至5pa后充惰性气体保护,搅拌升温至80℃,直到Se粉完全溶解,降到室温获得第二Se前驱体,待用。
(2)Cd1-xZnxSe/ZnSe量子点的合成
将已经提纯Cd1-xZnxSe量子点核原液沉淀,配成1nmmol/mL的ODE稀释液,在氩气/氮气保护气氛下,多次搅拌,升温至300℃,取所述第二Se前驱体,按照Cd1-xZnxSe发光核ODE稀释液与第二Se前驱体体积比1.3:1加入;之后逐滴缓慢加入0.3M的油酸锌Zn(OA)2,滴加速度4mL/h,最后生成 Cd1-xZnxSe/ZnSe混合量子点。生成的ZnSe壳层的厚度约为2-4nm。
3.扩散板的制取
量子点以机械搅拌、同时伴随超声震荡的方式与以PC、PVC、PS、PMMA、PET及环氧树脂中的一种或几种的混合物混熔,通过挤压形成扩散板,厚度为2~30mm。
实施2
1.混合量子点核Cd1-xZnxSe的制取
(1)第一Se前驱体的制备
将Se粉以0.4mmol/ml的比例与十八烯(ODE)混合,60℃超声震荡30分钟,分散获得第一Se前驱体待用。
(2)不同组分和不同尺寸的Cd1-xZnxSe量子点核原液的制备
CdO和Zn(Ac)2按照摩尔比为1:1混合;以Zn(Ac)2 1mmol/ml的比例,加入油酸(OA);抽真空至5pa后,按照与OA体积比10:1的分量,加入ODE;将次此液体升温至240℃,按体积比1:1份量加入第一Se前驱体,依次在反应开始4、6、8、10、15、20、30分钟后,按Zn(Ac)2/CdO比15:1的摩尔比再加入OA活化后的Zn(Ac)2,最后一次加入后,再反应2分钟结束反应,最后得到包含不同x组分和尺寸的Cd1-xZnxSe混合量子点核原液。其中,所述OA活化后的Zn(Ac)2为:在Zn(Ac)2中,以Zn(Ac)2 1mmol/ml的比例,加入OA。经测试分析,得到的混合量子点中,不同时间点加入OA活化后的Zn(Ac)2,在混合量子点中的成分和尺寸分布如下:
(3)Cd1-xZnxSe量子点核原液提纯
(在后续的包壳过程前先对合成的CdZnSe核量子点进行提纯处理,是为了将成核反应过程中多余的Zn和杂质除去。)首先取上述制得的核原液在高速离心机中进行离心。然后取上层清液溶于正己烷中,再加无水乙醇促沉淀,再经2-3次离心,将得到的沉淀溶解于少量的正己烷溶液中密封保存。
2.Cd1-xZnxSe/ZnSe核壳量子点的合成
(1)第二Se前驱体的制备
将Se粉以1mmol/ml的比例与三正辛基膦(TOP)混合,装于密闭容器,抽真空至5pa后充惰性气体保护,搅拌升温至80℃,直到Se粉完全溶解,降到室温获得第二Se前驱体,待用。
(2)Cd1-xZnxSe/ZnSe量子点的合成
将已经提纯Cd1-xZnxSe量子点核原液沉淀,配成1nmmol/mL的ODE稀释液,在氩气/氮气保护气氛下,多次搅拌,升温至300℃,取所述第二Se前驱体,按照Cd1-xZnxSe发光核ODE稀释液与第二Se前驱体体积比1.3:1加入;之后逐滴缓慢加入0.3M的油酸锌Zn(OA)2,滴加速度4mL/h,最后生成Cd1-xZnxSe/ZnSe混合量子点。生成的ZnSe壳层的厚度约为2-4nm。
3.扩散板的制取
量子点以机械搅拌,同时伴随超声震荡的方式与以PC、PVC、PS、PMMA、PET及环氧树脂中的一种或几种的混合物混熔,通过挤压形成扩散板,厚度为2~30mm。
实施3
1.混合量子点核Cd1-xZnxSe的制取
(1)第一Se前驱体的制备
将Se粉以0.4mmol/ml的比例与十八烯(ODE)混合,60℃超声震荡30分钟,分散获得第一Se前驱体待用。
(2)不同组分和不同尺寸的Cd1-xZnxSe量子点核原液的制备
CdO和Zn(Ac)2按照摩尔比为1:1混合;以Zn(Ac)2 1mmol/ml的比例,加入油酸(OA);抽真空至5pa后,按照与OA体积比10:1的分量,加入ODE;将次此液体升温至240℃,按体积比1:1份量加入第一Se前驱体, 依次在反应开始4、6、8、10、15、20、30分钟后,按Zn(Ac)2/CdO2比30:1的摩尔比再加入OA活化后的Zn(Ac)2,最后一次加入后,再反应2分钟结束,得到包含不同x组分和尺寸的Cd1-xZnxSe混合量子点核原液。其中,所述OA活化后的Zn(Ac)2为:在Zn(Ac)2中,以Zn(Ac)2 1mmol/ml的比例,加入OA。经测试分析,得到的混合量子点中,不同时间点加入OA活化后的Zn(Ac)2,在混合量子点中的成分和尺寸分布如下:
(3)Cd1-xZnxSe量子点核原液提纯
(在后续的包壳过程前先对合成的CdZnSe核量子点进行提纯处理,是为了将成核反应过程中多余的Zn和杂质除去。)首先取上述制得的核原液在高速离心机中进行离心。然后取上层清液溶于正己烷中,再加无水乙醇促沉淀,再经2-3次离心,将得到的沉淀溶解于少量的正己烷溶液中密封保存。
2.Cd1-xZnxSe/ZnSe核壳量子点的合成
(1)第二Se前驱体的制备
将Se粉以1mmol/ml的比例与三正辛基膦(TOP)混合,装于密闭容器,抽真空至5pa后充惰性气体保护,搅拌升温至80℃,直到Se粉完全溶解,降到室温获得第二Se前驱体,待用。
(2)Cd1-xZnxSe/ZnSe量子点的合成
将已经提纯Cd1-xZnxSe量子点核原液沉淀,配成1nmmol/mL的ODE稀释液,在氩气/氮气保护气氛下,多次搅拌,升温至300℃,取所述第二Se前驱体,按照Cd1-xZnxSe发光核ODE稀释液与第二Se前驱体体积比1.3:1加入;之后逐滴缓慢加入0.3M的油酸锌Zn(OA)2,滴加速度4mL/h,最后生成Cd1-xZnxSe/ZnSe混合量子点。生成的ZnSe壳层的厚度约为2-4nm。
3.扩散板的制取
量子点以机械搅拌,同时伴随超声震荡的方式与以PC、PVC、PS、PMMA、PET及环氧树脂中的一种或几种的混合物混熔,通过挤压形成扩散板,厚度为2~30mm。
以上所述的仅是本发明的部分实施例。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以做出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (9)

  1. 一种混合量子点扩散板,其特征在于:所述混合量子点扩散板,由所述混合量子点以及有机聚合物组成、通过所述混合量子点和所述有机聚合物混熔挤压成型;所述混合量子点由不同组分、不同尺寸的若干量子点混合构成;且构成所述混合量子点的所述不同组分、不同尺寸的若干量子点均匀分散于所述有机聚合物基体中。
  2. 根据权利要求1所述的一种混合量子点扩散板,其特征在于:所述有机聚合物选自PC、PVC、PS、PMMA、PET或环氧树脂中的一种或几种。
  3. 根据权利要求1所述的一种混合量子点扩散板,其特征在于:所述混合量子点中的若干量子点均由不同尺寸的、不同x组分的Cd1-xZnxSe发光核,以及发光核外面包裹的ZnSe壳层组成;
    其中,所述不同x组分:指Cd1-xZnxSe发光核中x取值连续可调的,其中0<x≤1;所述不同尺寸:指所述Cd1-xZnxSe发光核的尺寸在2.7nm-3.5nm范围内。
  4. 根据权利要求3所述的一种混合量子点扩散板,其特征在于:其中所述ZnSe壳层2-4nm厚度。
  5. 根据权利要求3所述的一种混合量子点扩散板,其特征在于:构成所述混合量子点不同x组分的若干量子点的摩尔占比为:0<x≤0.3,在混合量子点中占比20%-40%;0.3<x≤0.6,在混合量子点中占比20-40%; 0.6<x≤1,在混合量子点中占比20-40%。
  6. 根据权利要求5所述的一种混合量子点扩散板,其特征在于:构成所述混合量子点不同尺寸的若干量子点,其Cd1-xZnxSe发光核的尺寸分布与发光核Cd1-xZnxSe的x组分相关,为:当0<x≤0.3时,80%以上的Cd1-xZnxSe发光核的尺寸在2.7-3.1nm之间;当0.3<x≤0.6时,80%以上的Cd1- xZnxSe发光核的尺寸在3.0-3.4nm之间,0.6<x≤1时,80%以上的Cd1- xZnxSe发光核的尺寸在3.2-3.5nm。
  7. 根据权利要求1所述的一种混合量子点扩散板,其特征在于:其中所述混合量子点扩散板中,所述混合量子点以及所述有机聚合物的质量比0.15-0.225%。
  8. 根据权利要求1所述的一种混合量子点扩散板,其特征在于:所述混合量子点扩散板厚度为2-30mm。
  9. 根据权利要求1-8任一项所述一种混合量子点扩散板的的制备方法,其特征在于,包括以下步骤:
    S1.混合量子点中的Cd1-xZnxSe发光核的制取
    S11.第一Se前驱体的制备
    将Se粉以0.4mmol/ml的比例与十八烯混合,60℃超声震荡30分钟,分散获得第一Se前驱体;
    S12.不同组分和不同尺寸的Cd1-xZnxSe发光核原液的制备
    CdO和Zn(Ac)2按照摩尔比为1:1混合;然后以Zn(Ac)2 1mmol/ml的比例,加入OA;抽真空至5pa后,按照与OA体积比10:1的分量,加入ODE;将此混合液体升温至240℃-300℃,按体积比1:1份量加入步骤S11步骤的第一Se前驱体,开始反应;反应开始后的4、6、8、10、15、20、30分钟时,在反应液中依次按Zn(Ac)2/CdO比(2~30):1的摩尔比再加入OA活化后的Zn(Ac)2,最后充分反应之后,得到X组分在0<x≤1之间逐渐增大,尺寸在2.7-3.5nm之间逐渐增大的Cd1-xZnxSe/ZnSe混合量子点的Cd1-xZnxSe发光核原液;其中所述OA活化后的Zn(Ac)2为:在Zn(Ac)2中,以Zn(Ac)21mmol/ml的比例,加入OA;
    S13.Cd1-xZnxSe发光核原液提纯
    首先取S12步骤制得的Cd1-xZnxSe发光核原液在高速离心机中进行离心;然后取离心后得到的上清液溶于正己烷中,再加无水乙醇促沉淀,再重复2-3次离心、取上清液、促沉淀的过程,将最后一次离心得到的沉淀溶解于少量的正己烷溶液中密封保存,即获得Cd1-xZnxSe发光核提纯原液;
    S2.Cd1-xZnxSe/ZnSe核壳混合量子点的合成
    S21.第二Se前驱体的制备
    将Se粉以1mmol/ml的比例与三正辛基膦混合,装于密闭容器,抽真空至5pa后充惰性气体保护,搅拌升温至80℃,直到Se粉完全溶解,降到室温获得第二Se前驱体;
    S22.Cd1-xZnxSe/ZnSe混合量子点的合成
    将步骤S13中得到的Cd1-xZnxSe发光核提纯原液,加入ODE,配成1nmmol/mL的Cd1-xZnxSe发光核ODE稀释液,在氩气/氮气保护气氛下,多次搅拌,升温至300℃;加入所述第二Se前驱体,按照Cd1-xZnxSe发光核ODE稀释液与第二Se前驱体体积比1.3:1加入;之后逐滴缓慢加入Zn前驱体,滴加速度4mL/h,最后生成Cd1-xZnxSe/ZnSe混合量子点;其中所述Zn前驱体指0.3M的油酸锌Zn(OA)2
    S3.混合量子点扩散板的制取
    将S22步骤得到的Cd1-xZnxSe/ZnSe混合量子点以机械搅拌、同时伴随超声震荡的方式与PC、PVC、PS、PMMA、PET及环氧树脂中的一种或几种混熔,通过挤压形成扩散板,扩散板厚度为2~30mm。
PCT/CN2023/118771 2022-10-11 2023-09-14 一种混合量子点扩散板及其制备方法 WO2024078250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211239006.5 2022-10-11
CN202211239006.5A CN115537008B (zh) 2022-10-11 2022-10-11 一种混合量子点扩散板及其制备方法

Publications (1)

Publication Number Publication Date
WO2024078250A1 true WO2024078250A1 (zh) 2024-04-18

Family

ID=84733081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118771 WO2024078250A1 (zh) 2022-10-11 2023-09-14 一种混合量子点扩散板及其制备方法

Country Status (2)

Country Link
CN (1) CN115537008B (zh)
WO (1) WO2024078250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537008B (zh) * 2022-10-11 2023-06-27 广东欧迪明光电科技股份有限公司 一种混合量子点扩散板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387957A (zh) * 2018-02-27 2018-08-10 宁波激智科技股份有限公司 一种高遮盖高辉度的量子点扩散膜及其制备方法和应用
CN112226232A (zh) * 2020-10-16 2021-01-15 广东广腾达科技有限公司 一种改性量子点、量子点母粒、量子点扩散板及制备方法
CN113969164A (zh) * 2020-07-23 2022-01-25 纳晶科技股份有限公司 纳米晶的制备方法、纳米晶及含其的光学膜、发光器件
CN114606004A (zh) * 2022-04-07 2022-06-10 岭南师范学院 一种窄线宽红、绿、蓝光CdZnSe/ZnSe量子点及其制备方法
CN115537008A (zh) * 2022-10-11 2022-12-30 广东欧迪明光电科技股份有限公司 一种混合量子点扩散板及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251117B (zh) * 2018-02-09 2020-11-10 纳晶科技股份有限公司 核壳量子点及其制备方法、及含其的电致发光器件
CN110028970B (zh) * 2019-04-28 2022-04-12 南昌航空大学 CdZnSe/CdSe/ZnSe绿光量子点制备方法
CN111650775A (zh) * 2020-06-08 2020-09-11 深圳市天诺通光电科技有限公司 防止量子点受热散逸的量子点扩散板、制法与背光模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387957A (zh) * 2018-02-27 2018-08-10 宁波激智科技股份有限公司 一种高遮盖高辉度的量子点扩散膜及其制备方法和应用
CN113969164A (zh) * 2020-07-23 2022-01-25 纳晶科技股份有限公司 纳米晶的制备方法、纳米晶及含其的光学膜、发光器件
CN112226232A (zh) * 2020-10-16 2021-01-15 广东广腾达科技有限公司 一种改性量子点、量子点母粒、量子点扩散板及制备方法
CN114606004A (zh) * 2022-04-07 2022-06-10 岭南师范学院 一种窄线宽红、绿、蓝光CdZnSe/ZnSe量子点及其制备方法
CN115537008A (zh) * 2022-10-11 2022-12-30 广东欧迪明光电科技股份有限公司 一种混合量子点扩散板及其制备方法

Also Published As

Publication number Publication date
CN115537008B (zh) 2023-06-27
CN115537008A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Zhang et al. Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application
WO2024078250A1 (zh) 一种混合量子点扩散板及其制备方法
US9812617B2 (en) Light-emitting device and image display apparatus
CN107760307B (zh) 一种量子点及其制备方法、背光模组和显示装置
CN104205368B (zh) 半导体纳米晶体、其制备方法、组合物、以及产品
TWI574430B (zh) 量子點薄膜、照明器件及照明方法
KR100819337B1 (ko) 양자점을 이용한 백색광 led 구조 및 그 제조 방법
US10196562B2 (en) Quantum dots stabilized with a metal thiol polymer
US10263162B2 (en) Light emitting device and image displaying system
CN112680214A (zh) 一种量子点及其制备方法
TW200901502A (en) Light emitting diode device and fabrication method thereof
Prodanov et al. Progress toward blue-emitting (460–475 nm) nanomaterials in display applications
CN112143486A (zh) 基于三(二甲氨基)膦的不同中间壳层的磷化铟核壳量子点及其制备方法
CN104327856A (zh) 一种利用top辅助的silar技术制备高量子产率、窄半峰宽核壳量子点的方法
Chen et al. Red light-emitting diodes with all-inorganic CsPbI 3/TOPO composite nanowires color conversion films
TWI683449B (zh) 複合量子點材料、製備方法及其顯示裝置
JP7273992B2 (ja) 量子ドット、波長変換材料、バックライトユニット、画像表示装置及び量子ドットの製造方法
Siao et al. Ultra high luminous efficacy of white Zn x Cd 1-x S quantum dots-based white light emitting diodes
Yuan et al. Eco-friendly all-inorganic CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals in pyrophyllite for bright white light-emitting diodes
Xu et al. One pot synthesis of thick shell blue emitting CdZnS/ZnS quantum dots with narrow emission line width
Shi et al. One-pot synthesis of CsPbBr 3 nanocrystals in methyl methacrylate: a kinetic study, in situ polymerization, and backlighting applications
Chen et al. One-step spray coating strategy toward a highly uniform large-area CsPbBr 3@ PMMA composite film for backlit display
CN115247060A (zh) 一种量子点发光薄膜、制备及其在白光Mini-LED器件中的应用
TWI623490B (zh) 雙粒徑分佈之量子點奈米晶體的製備方法
Li et al. High-efficiency liquid luminescent solar concentrator based on CsPbBr 3 quantum dots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876455

Country of ref document: EP

Kind code of ref document: A1