WO2024078042A1 - 一种面内二维平动光学致动器 - Google Patents

一种面内二维平动光学致动器 Download PDF

Info

Publication number
WO2024078042A1
WO2024078042A1 PCT/CN2023/104245 CN2023104245W WO2024078042A1 WO 2024078042 A1 WO2024078042 A1 WO 2024078042A1 CN 2023104245 W CN2023104245 W CN 2023104245W WO 2024078042 A1 WO2024078042 A1 WO 2024078042A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
translation
drive
plane
fixed plate
Prior art date
Application number
PCT/CN2023/104245
Other languages
English (en)
French (fr)
Inventor
宋旭东
宋秀敏
安妍
夏长锋
董淑朋
郭星
Original Assignee
西安知微传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211250920.XA external-priority patent/CN115407520A/zh
Priority claimed from CN202211251632.6A external-priority patent/CN115616724A/zh
Application filed by 西安知微传感技术有限公司 filed Critical 西安知微传感技术有限公司
Publication of WO2024078042A1 publication Critical patent/WO2024078042A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to a translational optical actuator, in particular to an in-plane two-dimensional translational optical actuator.
  • the in-plane two-dimensional translational optical actuator can drive the optical element to perform two-dimensional translational motion in the plane. It is suitable for optical applications that require in-plane translational motion and can be used as an actuator in optical devices such as laser speckle dynamic elimination devices and optical switches. Some high-resonance frequency and long-term working conditions have put forward strict requirements on the high-cycle fatigue life of the in-plane motion optical actuator, and its fatigue life must reach at least 10 billion times. In addition, in order to achieve the miniaturization of the optical system, the space for setting the in-plane motion optical actuator in the optical path is often limited, which requires the actuator size to be reduced as much as possible. Too large a size will increase the volume of the entire optical system.
  • Invention patents (US 2016/0306183 A1) and (WO2010078662) disclose in-plane two-dimensional translational optical actuators with magnetoresistive drive structures and electroactive polymer drive structures.
  • the drive structure and elastic components arranged on the periphery of the translation plate of the fixed optical element occupy a large in-plane space; in addition, the driving force of the magnetoresistive drive structure is relatively small, and the high-cycle fatigue life of the electroactive polymer drive structure is also greatly reduced, making it difficult to be applied to high-frequency working conditions for a long time.
  • the purpose of the present invention is to provide an in-plane two-dimensional translational optical actuator to overcome the problems that the existing in-plane two-dimensional translational optical actuator is large in size and the fatigue life of the elastomer is difficult to meet the elastomer life requirements under high resonant frequency and long-term working conditions.
  • An in-plane two-dimensional translation optical actuator which is special in that it comprises a fixed plate, a translation plate, i sets of elastic components located between the fixed plate and the translation plate and connected to the fixed plate and the translation plate at both ends, and j sets of electromagnetic drive components fixed between the fixed plate and the translation plate; wherein i and j are both integers greater than or equal to 2;
  • a light-transmitting area is provided on the fixed plate
  • the translation plate is provided with a light-through hole for placing optical elements
  • the positions of the light-transmitting area and the light-through hole must ensure that the light beam can be incident on the optical element placed in the light-through hole through the light-transmitting area;
  • Each group of elastic components is composed of the same or different numbers of elastic elements, and the number of elastic elements in at least one group of the i groups of elastic components is greater than or equal to 2;
  • the j sets of electromagnetic drive components are arranged along two different directions in the plane, and are used to drive the translation plate to move relative to the fixed plate along two different directions in the plane where the translation plate is located, so as to realize two-dimensional translation of the translation plate.
  • each set of electromagnetic drive components includes a drive coil and a magnet arranged at a drive end of the drive coil;
  • the driving coil is arranged on the fixed plate and the magnet is arranged on the translation plate; or, the driving coil is arranged on the translation plate and the magnet is arranged on the fixed plate.
  • each set of electromagnetic drive components includes at least two magnets, which are respectively arranged at two drive ends of the drive coil, and the two magnets have opposite polarities and their centers are located on the axial center line of the drive coil.
  • the elastic element is made of conductive material and is used to provide an electrical signal path for the components (such as optical elements) located on the translation plate to be transmitted to the fixed plate.
  • the resonant frequency of the actuator can be adjusted by adjusting the number of elastic elements.
  • the number of elastic elements in each group of elastic components is the same, and the i groups of elastic components are symmetrical about the central axis of the fixed plate.
  • the number of elastic elements in each group of elastic components is different, or the positions are not symmetrical about the central axis of the fixed plate, forming an asymmetric structure, and the translation direction of the translation plate deviates from the X and Y directions and the two directions may not be perpendicular; by adjusting the number of elastic elements in each group and the distribution of the elastic elements, the translation direction of the translation actuator can be adjusted.
  • two electromagnetic drive assemblies form a group of drive units, including two groups of drive units in total; the two sets of electromagnetic drive assemblies in the same group of drive units are used to drive the translation plate to move in the same direction relative to the fixed plate within the plane where the translation plate is located.
  • the above-mentioned in-plane two-dimensional translation optical actuator also includes a driving coil support seat and a magnet support seat; the driving coil is fixed on the driving coil support seat, and the magnet is fixed on the magnet support seat;
  • the driving coil support seat is fixed on the fixed plate, and the magnet support seat is fixed on the translation plate, or the driving coil support seat is fixed on the translation plate, and the magnet support seat is fixed on the fixed plate.
  • the drive coil support seat includes two groups of parallel support arms, one end of the support arm is fixed on the fixed plate or the translation plate, and the other end is provided with a slot, and the two driving ends of the drive coil are inserted into the slot to achieve fixation; the axial center lines of the drive coils of the two sets of electromagnetic drive components in one group of drive units are parallel to the X direction, and the axial center lines of the drive coils of the two sets of electromagnetic drive components in the other group of drive units are parallel to the Y direction.
  • the drive coil support seat includes a support frame and a coil positioning structure fixed on the support frame, a slot is opened at one end of the coil positioning structure, and both ends of the drive coil are inserted into the slot to achieve fixation; the axial center lines of the drive coils of the two sets of electromagnetic drive components in one group of drive units are parallel to the X direction, and the axial center lines of the drive coils of the two sets of electromagnetic drive components in the other group of drive units are parallel to the Y direction.
  • a light-through hole can be opened in the light-transmitting area of the fixing plate to facilitate the direct passage of the light beam and to be incident on the optical element placed in the light-through hole.
  • a PCB circuit board is used as the fixing plate, and the output end of the driving coil can be welded to the corresponding pad of the fixing plate.
  • the translation plate is hollowed out outside the functional area.
  • a PCB circuit board can also be used as the translation plate.
  • the fixed plate and the translation plate are both rectangular PCB circuit boards, the two are parallel to each other, and the center of the fixed plate and the center of the translation plate are located in the same straight line;
  • the light-transmitting area of the fixed plate is located at the center of the fixed plate, and the light-transmitting hole of the translation plate is located at the center of the translation plate;
  • the driving coil is made of a wire wound on a magnetic core, and the cross-section of the magnet is rectangular.
  • the in-plane two-dimensional translation optical actuator of the present invention uses multiple groups of multiple elastic elements as elastic components, which ensures that the elastic components have a high high-cycle fatigue life while ensuring the resonant frequency.
  • the electromagnetic drive component is placed between the fixed plate and the translation plate, which reduces the in-plane space required by the actuator, and realizes two-dimensional translation by arranging the electromagnetic drive components in two directions.
  • the present invention arranges magnets with opposite polarities on both sides of the driving coil to form an electromagnetic driving component with significantly reduced volume.
  • the two magnets with opposite polarities generate push-pull forces under the action of the driving coil, which greatly increases the driving force and makes it easy for the actuator to achieve large displacement translation.
  • the centers of the two magnets are located on the axial center line of the driving coil, ensuring that the mutual interference between the driving forces of the two direction drivers is reduced.
  • the present invention uses elastic elements made of conductive materials to provide elastic restoring force for the actuator and at the same time provide an electrical signal path for the components following the translation plate to be transmitted to the fixed plate, thus overcoming the difficulty of establishing the electrical signal path for the movable components.
  • the present invention can adjust the resonant frequency of the actuator by adjusting the number of elastic elements, and can adjust the translational direction of the actuator by adjusting the number and arrangement of each group of elastic elements, so that the actuator can be flexibly adapted to various application scenarios.
  • the present invention realizes two-dimensional translation by arranging electromagnetic drive components on both sides in two directions.
  • the arrangement of the electromagnetic structure on both sides in one direction makes the movement amplitude on both sides of the translation plate uniform, while further increasing the driving force, making it easier to realize large displacement translation.
  • the fixed plate and the translation plate in the in-plane two-dimensional translation optical actuator of the present invention can both adopt PCB circuit boards to provide pathways for the device's driving electrical signals and the electrical signals of the optical elements.
  • FIG1 is a schematic diagram of the structure of an in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention.
  • FIG2 is a schematic structural diagram of a fixed plate in the in-plane two-dimensional translation optical actuator according to Example 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a translation plate in an in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a fixed plate, a translation plate and an elastic component in the in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention
  • FIG5 is a schematic diagram of adjusting the translation direction of the translation plate by adjusting the number of elastic elements in each group and the distribution of the elastic elements in the in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention; wherein (a) is a schematic diagram of the local structure of the in-plane two-dimensional translation optical actuator after adjusting the number of elastic elements, and (b) is a schematic diagram of the translation direction of the translation plate;
  • FIG6 is a schematic diagram of a partial structure of an in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention.
  • FIG7 is a schematic diagram of the structure of an electromagnetic drive assembly in an in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention; wherein (a), (b), (c), and (d) represent different arrangements of the magnetic poles of the magnets;
  • FIG8 is a schematic diagram of the structure of a single electromagnetic drive component in the in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention.
  • FIG9 is a schematic diagram of the connection of all driving coils in the in-plane two-dimensional translation optical actuator according to Embodiment 1 of the present invention; in FIG. (a), the driving coils are connected in series, and in FIG. (b), the driving coils on the opposite side are connected in parallel;
  • FIG10 is a schematic structural diagram of a driving coil support seat according to Embodiment 2 of the present invention.
  • FIG11 is a schematic diagram of the installation of the drive coil on the coil support seat according to Embodiment 2 of the present invention.
  • FIG12 is a schematic diagram of the structure of an in-plane two-dimensional translation optical actuator according to Embodiment 3 of the present invention.
  • 6.1-1, 6.1-2, 6.2-1, 6.2-2, 6.3-1, 6.3-2, 6.4-1 and 6.4-2 are all magnet support seats
  • 4.1, 4.2, 4.3 and 4.4 are all driving coils.
  • an in-plane two-dimensional translation optical actuator is mainly composed of a fixed plate 1, a translation plate 7, at least two groups of elastic components 3 and at least two sets of driving components.
  • a plurality of elastic elements are used as the elastic component 3.
  • the two ends of the plurality of elastic elements are respectively fixed on the fixed plate 1 and the translation plate 7.
  • Fixing the driving component between the fixed plate 1 and the translation plate 7 greatly reduces the volume of the actuator relative to the peripheral arrangement structure.
  • the driving component includes a driving coil 4 and a magnet 6.
  • a driving coil support seat 2 and a magnet support seat 5 may also be provided.
  • the driving coil support seat 2 includes two groups of parallel supporting arms, one end of the supporting arm is fixed on the fixed plate, and the other end is provided with a slot, and the two ends of the driving coil 4 are inserted into the slot to achieve fixation; the upper end of the elastic element of the elastic component 3 is connected to the fixed plate 1, and the lower end is connected to the translation plate 7; the magnet support seat 5 is connected to the translation plate 7 to provide support for the magnet 6, and the magnet 6 is placed on the corresponding supporting structure on the magnet support seat 6 and arranged in alignment with the driving coil 4.
  • this embodiment adopts a rectangular fixing plate, and connection holes 1.1-1, 1.1-2, 1.1-3 and 1.1-4 are provided at four diagonal corners of the fixing plate, which are used to connect with the upper ends of the elastic elements in the four groups of elastic components 3 to fix the upper ends of the elastic components 3; a first light-through hole 1.2 is also provided in the center of the fixing plate to prevent the fixing plate 1 from blocking the light beam.
  • the first light-through hole may not be provided, and the area corresponding to the first light-through hole of the fixing plate may be set as a light-transmitting material.
  • the fixing plate 1 may be a PCB circuit board, which provides a path for the driving electrical signals of the device and the electrical signals of the optical element.
  • the output end of the driving coil 4 may be welded to the corresponding pad of the fixing plate 1, which is also convenient for making tiny electrical connection holes for small elastic elements.
  • the translation plate 7 of this embodiment can also be rectangular, and connecting holes 7.1-1, 7.1-2, 7.1-3 and 7.1-4 are also provided at the four diagonal positions of the rectangular translation plate, which are used to connect with the lower ends of the elastic elements in the four groups of elastic components 3 to fix the lower ends of the elastic components 3;
  • the connecting holes 7.1-1, 7.1-2, 7.1-3 and 7.1-4 correspond to the connecting holes 1.1-1, 1.1-2, 1.1-3 and 1.1-4 on the fixing plate 1 one by one;
  • the translation plate 7 is also provided with a second light-through hole 7.2 to place the optical element; the opening positions and sizes of the second light-through hole 7.2 and the first light-through hole 7.1 need to ensure that the light beam can be incident on the optical element placed in the second light-through hole 7.2 through the first light-through hole 7.1.
  • the translation plate 7 is hollowed out outside the functional area to reduce the mass of the translation plate 7.
  • the translation plate 7 can be a PCB circuit board, providing a path for the driving electrical signals of the device and the electrical signals of the optical element, and facilitating the production of tiny electrical connection holes for the tiny elastic elements.
  • this embodiment includes 4 groups of elastic components 3, which are defined as elastic components 3.1, elastic components 3.2, elastic components 3.3 and elastic components 3.4.
  • Each group of elastic components 3 includes a plurality of elastic elements, the upper end of which is connected to the connection holes 1.1-1, 1.1-2, 1.1-3 and 1.1-4 corresponding to the fixed plate 1, and the lower end is connected to the connection holes 7.1-1, 7.1-2, 7.1-3 and 7.1-4 corresponding to the translation plate 7, to provide elastic restoring force for the actuator.
  • the elastic elements constituting the elastic components 3 are conductive materials, such as piano wire, stainless steel wire, beryllium copper wire, titanium wire and other high-strength metal wires, to provide an electrical signal path for the components located on the translation plate 7 to be transmitted to the fixed plate 1.
  • the number of elastic elements in at least one group of the four groups of elastic components 3 is greater than or equal to 2.
  • the multiple elastic elements evenly distribute the stress generated by the translation. Under the condition of the same free length and translational displacement of the elastic elements, the stress borne by a single elastic element is greatly reduced, the high-cycle fatigue life of the device is effectively improved, and the number of electrical signal pathways that can be transmitted from the moving parts to the fixed plate 1 is increased.
  • the number of elastic elements in each group of the elastic component 3 is the same and their positions are symmetrical about the center of the entire in-plane two-dimensional translation optical actuator.
  • the translation direction of the translation plate 7 is the X and Y directions that are perpendicular to each other.
  • the translation direction of the translation plate can be adjusted.
  • the number of elastic elements in each group of the elastic assembly 3 is different or the position is not symmetrical about the center of the entire translation plate, forming an asymmetric structure, and the translation direction of the translation plate deviates from the X and Y directions and the two directions may not be perpendicular.
  • the number and position of the elastic elements 3.1 and 3.3 are adjusted to adjust the translation direction of the actuator to the X' and Y' directions.
  • the drive coil 4 is made of a wire wound on a magnetic core, and the magnets 5.1-1, 5.1-2, 5.2-1, 5.2-2, 5.3-1, 5.3-2, 5.4-1 and 5.4-2 are respectively placed on the supporting structures of magnet support seats 6.1-1, 6.1-2, 6.2-1, 6.2-2, 6.3-1, 6.3-2, 6.4-1 and 6.4-2, and are respectively aligned with the centers of the corresponding drive coils 4.1, 4.2, 4.3 and 4.4, forming 4 groups of bilaterally symmetrical electromagnetic drive structures.
  • the cross-sections of the magnetic core and the magnet 6 are square or rectangular.
  • the cross-section of the magnet 6 is rectangular to reduce the problem of two-dimensional motion, in which the driving force in one direction is disturbed due to the relative position change of the magnetic core and magnet of the driving structure caused by the motion in another direction.
  • the magnets on the same side have like poles arranged opposite to each other, and one side of the energized coil forms a repulsive force with the magnet, and the other side forms an attractive force with the energized coil.
  • the push-pull force pushes the magnet to move along the axial direction of the driving coil.
  • the N pole of magnet 6.1-1 is opposite to the N pole of magnet 6.1-2
  • the N pole of magnet 6.2-1 is opposite to the N pole of magnet 6.2-2
  • the N pole of magnet 6.3-1 is opposite to the N pole of magnet 6.3-2
  • the N pole of magnet 6.4-1 is opposite to the N pole of magnet 6.4-2.
  • the magnetism of the opposite poles can be swapped, and Figures (b)-(d) show different magnet arrangements.
  • the relative magnetic poles of the magnets corresponding to the opposite side coils can be the same or different, as long as the push-pull forces formed between the opposite side coils and the magnets at the same time are in the same direction.
  • the two magnets located at the same corner are oppositely charged at a 90° angle, and opposite charges attract each other, making it easy to install the magnets on the magnet support seat, as shown in Figure 7 (b) and 7 (d).
  • the two magnets located at the same corner can be replaced by a magnet with a magnetic pole direction of 90°.
  • the gaps between the driving coil 4 and the two corresponding magnets 6 are not equal, that is, g1 ⁇ g2, so that the translation plate has an initial displacement to adjust the initial position of the optical element.
  • the working principle of the in-plane two-dimensional translation actuator of this embodiment is as follows: a driving signal is applied to the two driving coils 4.1 and 4.3 on the opposite sides, and a push-pull force in the same direction is formed between the driving coils and the corresponding magnets 6, which pushes the magnet support seat 5 to drive the translation plate 7 to translate along the Y direction. A driving signal is applied to the two driving coils 4.2 and 4.4 on the opposite sides, and a push-pull force in the same direction is formed between the driving coils and the corresponding magnets 6, which pushes the magnet support seat 5 to drive the translation plate 7 to translate along the X direction.
  • the translation plate 7 is driven to drive the optical element to translate along two mutually perpendicular directions of X and Y.
  • the resonant frequency and translation direction of the actuator are adjusted by adjusting the number and position of each group of elastic elements of the elastic component 3.
  • the two drive coils 4.1 and 4.3 on the opposite sides can be connected in series or in parallel to form a driving force with the same direction on both sides.
  • the drive coils 4.2 and 4.4 can be connected in series or in parallel.
  • the drive coil support seat 2 includes a support frame and a first coil positioning structure 2-5.1, a second coil positioning structure 2-5.2, a third coil positioning structure 2-5.3 and a fourth coil positioning structure 2-5.4 fixed on the support frame; a slot is provided at one end of the coil positioning structure, and the first drive coil 4.1, the second drive coil 4.2, the third drive coil 4.3 and the fourth drive coil 4.4 are respectively inserted into the slots of the corresponding coil positioning structures to achieve fixation, and the output end of the drive coil 4 is welded to the corresponding pad on the fixed plate 1.
  • positioning holes 8.1 and positioning pin holes 8.2 can also be provided on the support frame, and the device is positioned and fastened in the laser projection system by positioning pins and bolts.
  • the in-plane two-dimensional translation optical actuator of this embodiment comprises a fixed plate 1, a driving coil support seat 2, an elastic component 3 composed of multiple groups of elastic elements, a driving coil 4, a magnet support seat 5, a magnet 6 and a translation plate 7.
  • the magnet support seat 5 is connected to the fixed plate 1 to provide support for the magnet 6, which is placed on a corresponding support structure on the magnet support seat 6;
  • the driving coil support seat 2 is connected to the translation plate 7 to provide support for the driving coil 4, which is placed on a corresponding support structure on the driving coil support seat 2 and arranged in alignment with the magnet 6;
  • the upper end of the elastic element of the elastic component 3 is connected to the fixed plate 1, and the lower end is connected to the translation plate 7.
  • the output end of the driving coil 4 is welded to the corresponding pad of the translation plate 7, and the driving electrical signal is introduced from the translation plate 7 to the electrical signal path of the fixed plate 1 through the elastic component 3.
  • the working principle of the in-plane two-dimensional translation actuator is as follows: a driving signal is applied to the two driving coils 4.1 and 4.3 on the opposite sides, and a push-pull force in the same direction is formed between the driving coils and the corresponding magnets 6, which pushes the driving coil support seat 2 to drive the translation plate 7 to translate along the Y direction.
  • a driving signal is applied to the two driving coils 4.2 and 4.4 on the opposite sides, and a push-pull force in the same direction is formed between the driving coils and the corresponding magnets 6, which pushes the driving coil support seat 2 to drive the translation plate 7 to translate along the X direction.
  • the translation plate 7 is driven to drive the optical element to translate along two mutually perpendicular directions of X and Y.
  • the resonant frequency and translation direction of the actuator are adjusted by adjusting the number and position of each group of elastic elements in the elastic component 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

本发明涉及一种平动光学致动器,具体为一种面内二维平动光学致动器。克服现有面内二维平动光学致动器体积大以及弹性体的疲劳寿命难以满足高谐振频率长时间工况对弹性体寿命需求的问题。包括固定板、平动板、位于固定板与平动板之间且两端分别连接固定板与平动板的 i 组弹性组件以及固定在固定板与平动板之间的 j 套电磁驱动组件;固定板上设有透光区域;平动板上设有用于放置光学元件的通光孔;各组弹性组件由数量相同或不同的弹性元件构成, i 组弹性组件中至少有一组弹性组件中弹性元件的数量大于等于2; j 套电磁驱动组件在平面内沿两个不同方向布置,用于驱动平动板相对固定板在平动板所在平面内沿两个不同方向移动,实现平动板的二维平动。

Description

一种面内二维平动光学致动器 技术领域
本发明涉及一种平动光学致动器,具体为一种面内二维平动光学致动器。
背景技术
面内二维平动光学致动器可带动光学元件进行面内二维平动运动,适用于需要面内平动运动的光学应用场合,可作为激光散斑动态消除器件和光开关等光学器件中的致动器。部分高谐振频率长时间的工况对面内运动光学致动器的高周疲劳寿命提出了严苛的要求,其疲劳寿命至少要达到100亿次以上。此外,为实现光学***的小型化,光路中设置面内运动光学致动器的空间往往有限,这就要求致动器尺寸尽可能地缩小,过大的尺寸会增大整个光学***的体积。
发明专利(US 2016/0306183 A1)和(WO2010078662)公开了磁阻驱动结构和电活性聚合物驱动结构的面内二维平动光学致动器,布置在固定光学元件平动板***的驱动结构与弹性组件占据了较大的面内空间;另外,磁阻驱动结构的驱动力相对较小,电活性聚合物驱动结构的高周疲劳寿命也有较大差距,难以长时间的应用于高频率工况。
技术问题
本发明的目的是提供一种面内二维平动光学致动器,克服现有面内二维平动光学致动器体积大以及弹性体的疲劳寿命难以满足高谐振频率长时间工况对弹性体寿命需求的问题。
技术解决方案
本发明的技术方案是:
一种面内二维平动光学致动器,其特殊之处在于:包括固定板、平动板、位于固定板与平动板之间且两端分别连接固定板与平动板的 i组弹性组件以及固定在固定板与平动板之间的 j套电磁驱动组件;其中, ij均为大于等于2的整数;
固定板上设有透光区域;
平动板上设有用于放置光学元件的通光孔;
透光区域和通光孔的位置需确保光束通过透光区域能够入射至放置于通光孔的光学元件;
各组弹性组件由数量相同或不同的弹性元件构成, i组弹性组件中至少有一组弹性组件中弹性元件的数量大于等于2;
j套电磁驱动组件在平面内沿两个不同方向布置,用于驱动平动板相对固定板在平动板所在平面内沿两个不同方向移动,实现平动板的二维平动。
进一步地,每套电磁驱动组件均包括驱动线圈以及布置在驱动线圈驱动端的磁铁;
上述驱动线圈设置在固定板上且磁铁设置在平动板上;或者,驱动线圈设置在平动板上且磁铁设置在固定板上。
进一步地,每套电磁驱动组件包括至少两块磁铁,分别布置在驱动线圈的两个驱动端,且两块磁铁极性相对、中心位于驱动线圈的轴向中心线上。
进一步地,弹性元件采用导电材料制成,用于为位于平动板上随动的部件(如光学元件)提供传输到固定板上的电信号通路,同时还可以通过调整弹性元件的数量,可调整致动器的谐振频率。
进一步地,为了使平动板沿X、Y方向平动,各组弹性组件中弹性元件的数量相同,且 i组弹性组件关于固定板的中心轴对称。为了使平动板沿非X、Y方向平动,各组弹性组件中弹性元件的数量不相同,或位置不关于固定板中心轴对称,形成非对称结构,平动板的平动方向偏离X和Y方向且两个方向可以不垂直;调整各组弹性元件的数量以及弹性元件的分布方式,可调整平动致动器的平动方向。
进一步地,为了确保平动板沿一个方向平动时,两侧平动位移相同, j=4,两两电磁驱动组件形成一组驱动单元,共包括两组驱动单元;同一组驱动单元中的两套电磁驱动组件用于驱动平动板相对固定板在平动板所在平面内沿同一方向移动。
进一步地,上述面内二维平动光学致动器还包括驱动线圈支撑座与磁铁支撑座;驱动线圈固定在驱动线圈支撑座上,磁铁固定在磁铁支撑座上;
驱动线圈支撑座固定在固定板上,磁铁支撑座固定在平动板上,或者,驱动线圈支撑座固定在平动板上,磁铁支撑座固定在固定板上。
进一步地,驱动线圈支撑座包括两组平行设置的支撑臂,支撑臂一端固定在固定板或平动板上,另一端开设卡槽,驱动线圈两驱动端卡入卡槽,实现固定;其中一组驱动单元中两套电磁驱动组件的驱动线圈轴向中心线与X方向平行,另一组驱动单元中两套电磁驱动组件的驱动线圈轴向中心线与Y方向平行。
进一步地,驱动线圈支撑座包括支撑框架及固定在支撑框架上的线圈定位结构,线圈定位结构一端开设卡槽,驱动线圈两端卡入卡槽,实现固定;其中一组驱动单元中两套电磁驱动组件的驱动线圈轴向中心线与X方向平行,另一组驱动单元中两套电磁驱动组件的驱动线圈轴向中心线与Y方向平行。
进一步地,在固定板的透光区域可以开设通光孔,便于光束直接通过,入射至放置于通光孔的光学元件。为了为器件的驱动电信号以及光学元件的电信号提供通路,采用PCB电路板作为固定板,驱动线圈的出线端可焊接在固定板对应的焊盘上。
进一步地,为了减小平动板的质量,实现相同驱动力下,更大的位移量,在平动板功能区域之外镂空。同时也可以采用PCB电路板作为平动板。
进一步地,固定板与平动板均为矩形PCB电路板,二者相互平行,且固定板的中心与平动板的中心位于同一直线;
固定板的透光区域位于固定板的中心位置,平动板的通光孔位于平动板的中心位置;
i=4,4组弹性组件相互平行,其一端分别固定在固定板的四个对角处,另一端分别固定在平动板的四个对角处;电磁驱动组件位于两两相邻弹性组件之间。
进一步地,驱动线圈由导线在磁芯上绕制而成,磁铁的截面为矩形,减小二维运动时,一个方向因另一个方向运动,引起其驱动结构磁芯磁铁相对位置变化,而导致该方向驱动力被干扰的问题。
有益效果
本发明的有益效果是:
1、本发明面内二维平动光学致动器,采用多组多根弹性元件作为弹性组件,在保证谐振频率的同时,确保弹性组件具有高的高周疲劳寿命。同时将电磁驱动组件置于固定板与平动板之间,缩小了致动器所需占据的面内空间,通过在两个方向布置电磁驱动组件实现二维平动。
2、本发明在驱动线圈两侧布置极性相对的磁铁形成体积显著减小的电磁驱动组件,两个极性相对的磁铁在驱动线圈作用下,产生推挽力,极大的增大了驱动力,使得致动器易于实现大位移平动。且两块磁铁的中心位于驱动线圈的轴向中心线上,确保减小两个方向驱动器驱动力之间的相互干扰。
3、本发明采用导电材料的弹性元件,为致动器提供弹性回复力的同时可以为平动板上随动的部件提供传输到固定板上的电信号通路,克服可动部件电信号通路建立的难题。
4、本发明通过调整弹性元件的数量,可调整致动器的谐振频率,通过调整各组弹性元件的数量和排布方式,可调整致动器的平动方向,使致动器灵活地适用各种应用场景。
5、本发明通过在两个方向双侧布置电磁驱动组件实现二维平动,单方向双侧电磁结构的布置形式使平动板两侧运动幅值统一,同时进一步增大了驱动力,更容易实现大位移平动。
6、本发明面内二维平动光学致动器中固定板和平动板均可采用PCB电路板,为器件的驱动电信号以及光学元件的电信号提供通路。
附图说明
图1为本发明实施例1面内二维平动光学致动器结构示意图;
图2为本发明实施例1面内二维平动光学致动器中固定板的结构示意图;
图3为本发明实施例1面内二维平动光学致动器中平动板的结构示意图;
图4为本发明实施例1面内二维平动光学致动器中固定板、平动板以及弹性组件的结构示意图;
图5为本发明实施例1面内二维平动光学致动器通过调整各组弹性元件的数量以及弹性元件的分布方式,调整平动板平动方向的示意图;其中,(a)为调整弹性元件数量后面内二维平动光学致动器局部结构示意图,(b)为平动板平动方向的示意图;
图6为本发明实施例1面内二维平动光学致动器的局部结构示意图;
图7为本发明实施例1面内二维平动光学致动器中电磁驱动组件结构示意图;其中(a)、(b)、(c)、(d)中表示不同的磁铁磁极排布方式;
图8为本发明实施例1面内二维平动光学致动器中单一电磁驱动组件结构示意图;
图9为本发明实施例1面内二维平动光学致动器中所有驱动线圈的连接示意图;其中(a)图中,各个驱动线圈为串联连接,(b)图中位于对侧的驱动线圈并联连接;
图10为本发明实施例2驱动线圈支撑座的结构示意图;
图11为本发明实施例2驱动线圈在线圈支撑座上的安装示意图;
图12为本发明实施例3面内二维平动光学致动器结构示意图;
图中附图标记为:
1、固定板;1.2、第一通光孔;2、驱动线圈支撑座;3、弹性组件;4、驱动线圈;5、磁铁支撑座;6、磁铁;7、平动板;7.2、第二通光孔;8.3、定位孔;8.2、定位销孔;
1.1-1、1.1-2、1.1-3、1.1-4、7.1-1、7.1-2、7.1-3和7.1-4均为连接孔;
2-5.1、2-5.2、2-5.3和2-5.4均为线圈定位结构;
5.1-1、5.1-2、5.2-1、5.2-2、5.3-1、5.3-2、5.4-1和5.4-2均为磁铁;
6.1-1、6.1-2、6.2-1、6.2-2、6.3-1、6.3-2、6.4-1和6.4-2均为磁铁支撑座
4.1、4.2、4.3和4.4均驱动线圈。
本发明的实施方式
以下结合附图及具体实施例对本发明做进一步地描述。
实施例1
本实施例一种面内二维平动光学致动器主要由固定板1、平动板7、至少两组弹性组件3及至少两套驱动组件组成。为了确保弹性组件具有高的高周疲劳寿命,采用多根弹性元件作为弹性组件3。多根弹性元件的两端分别固定在固定板1与平动板7上。将驱动组件固定在固定板1与平动板7之间,相对于***布置结构,大大减小了致动器的体积。驱动组件包括驱动线圈4与磁铁6,为了固定驱动线圈4与磁铁6,还可以设置有驱动线圈支撑座2和磁铁支撑座5。
如图1所示,驱动线圈支撑座2包括两组平行设置的支撑臂,支撑臂一端固定在固定板上,另一端开设卡槽,驱动线圈4两端卡入卡槽,实现固定;弹性组件3的弹性元件上端部与固定板1连接,下端部与平动板7连接;磁铁支撑座5与平动板7连接,为磁铁6提供支撑,磁铁6置于磁铁支撑座6上相应的支撑结构上,与驱动线圈4对中布置。
如图2所示,本实施例采用矩形固定板,在固定板的四个对角处开设连接孔1.1-1、1.1-2、1.1-3和1.1-4,用于与四组弹性组件3中各个弹性元件的上端连接,以固定弹性组件3的上端部;在固定板的中心还开设有第一通光孔1.2,避免固定板1对光束形成遮挡,在其他实施例中,可以不开设第一通光孔,通过将固定板第一通光孔对应区域设置为透光材料即可。固定板1可以为PCB电路板,为器件的驱动电信号以及光学元件的电信号提供通路,驱动线圈4的出线端可焊接在固定板1对应的焊盘上,也方便为细小的弹性元件制作微小的电连接孔。
如图3所示,本实施例平动板7也可以为矩形,在矩形平动板的四个对角处也开设有连接孔7.1-1、7.1-2、7.1-3和7.1-4,用于与四组弹性组件3中各个弹性元件的下端连接,以固定弹性组件3的下端部;连接孔7.1-1、7.1-2、7.1-3和7.1-4与固定板1上的连接孔1.1-1、1.1-2、1.1-3和1.1-4一一对应;平动板7上还开设有第二通光孔7.2,以放置光学元件;第二通光孔7.2与第一通光孔7.1的开设位置及大小需要确保光束通过第一通光孔7.1能够入射至放置于第二通光孔7.2的光学元件。平动板7在功能区域之外镂空,减小平动板7的质量。平动板7可以为PCB电路板,为器件的驱动电信号以及光学元件的电信号提供通路,方便为细小的弹性元件制作微小的电连接孔。
如图4所示,本实施例包括4组弹性组件3,分别定义为弹性组件3.1、弹性组件3.2、弹性组件3.3和弹性组件3.4。每组弹性组件3包括多根弹性元件,弹性元件上端部连接固定板1对应的连接孔1.1-1、1.1-2、1.1-3和1.1-4,下端部连接平动板7对应的连接孔7.1-1、7.1-2、7.1-3和7.1-4,为致动器提供弹性回复力。本实施例中,组成弹性组件3的弹性元件为导电材料,如,琴钢丝,不锈钢丝,铍铜丝,钛丝等高强度金属丝,为位于平动板7上随动的部件提供传输到固定板1上的电信号通路。4组弹性组件3中各组弹性元件至少有一组的数量大于等于2,多根弹性元件将平动产生的应力均分,在相同弹性元件自由长度和平动位移的情况下,大幅减小单根弹性元件所承受的应力,有效提高器件高周疲劳寿命,同时增加了运动部件可以传输到固定板1上的电信号通路数量。
图4中,弹性组件3各组弹性元件的数量相同且位置关于整个面内二维平动光学致动器的中心对称,平动板7的平动方向为X和Y相互垂直的方向;调整弹性元件的数量,可调整弹性组件3的刚度以及致动器的谐振频率。
通过调整弹性组件各组弹性元件的数量或者各组弹性组件的排布位置,可以调整平动板的平动方向,如图5所示,弹性组件3各组弹性元件的数量不同或位置不关于整个平动板的中心对称,形成非对称结构,平动板的平动方向偏离X和Y方向且两个方向可以不垂直。图5中,调整弹性元件3.1和弹性元件3.3的数量和位置,将致动器平动方向调整到X’和Y’方向。
图6所示,驱动线圈4由导线在磁芯上绕制而成,磁铁5.1-1、5.1-2、5.2-1、5.2-2、5.3-1、5.3-2、5.4-1和5.4-2分别置于磁铁支撑座6.1-1、6.1-2、6.2-1、6.2-2、6.3-1、6.3-2、6.4-1和6.4-2的支撑结构上,分别与对应的驱动线圈4.1、4.2、4.3和4.4中心对齐,组成4组双侧对称的电磁驱动结构。
磁芯和磁铁6的截面是方形或矩形,优选地,磁铁6的截面为矩形,减小二维运动时,一个方向因另一个方向运动,引起其驱动结构磁芯磁铁相对位置变化,而导致该方向驱动力被干扰的问题。
如图7所示,位于同一侧的磁铁同性磁极相对布置,通电线圈一侧与磁铁形成斥力,一侧与通电线圈形成引力,推挽力推动磁铁沿驱动线圈轴向方向运动。如图(a)所示,磁铁6.1-1的N极与磁铁6.1-2的N极相对,磁铁6.2-1的N极与磁铁6.2-2的N极相对,磁铁6.3-1的N极与磁铁6.3-2的N极相对,磁铁6.4-1的N极与磁铁6.4-2的N极相对。相对的磁极的磁性可以调换,图(b)-(d)为不同的磁铁布置形式。
相对侧线圈所应的磁铁的相对磁极可以相同也可以不同,相对侧线圈与磁铁之间在同一时间形成的推挽力方向相同即可。位于同一角上的两个磁铁在90°的拐角上异性相对,异性相吸,便于将磁铁安装于磁铁支撑座上,如图7中(b)和7中(d)所示。可选地,位于同一个拐角上的两个磁铁可由一个磁极方向呈90°的磁铁替代。
驱动线圈4与两个对应地磁铁6之间的间隙相等,即g1=g2,且大于该方向的运动幅值,如图8所示。可选地,驱动线圈4与两个对应的磁铁6之间的间隙不相等,即g1≠g2,使平动板存在一个初始位移,用以调整光学元件的初始位置。
本实施例面内二维平动致动器的工作原理为:在相对侧的两个驱动线圈4.1和4.3上施加驱动信号,驱动线圈与相对应的磁铁6之间形成的方向一致的推挽力,推动磁铁支撑座5带动平动板7沿Y方向平动。在相对侧的两个驱动线圈4.2和4.4上施加驱动信号,驱动线圈与相对应的磁铁6之间形成的方向一致的推挽力,推动磁铁支撑座5带动平动板7沿X方向平动。从而驱动平动板7带动光学元件沿X和Y两个互相垂直的方向平动。通过调整弹性组件3各组弹性元件的数量和位置,调整致动器的谐振频率和平动方向。
如图9所示,位于对侧的两个驱动线圈4.1和4.3可串联连接,也可并联连接,在两侧形成方向一致的驱动力。同样驱动线圈4.2和4.4可串联连接,也可并联连接。
实施例2
如图10和图11所示,驱动线圈支撑座2包括支撑框架及固定在支撑框架上的第一线圈定位结构2-5.1、第二线圈定位结构2-5.2、第三线圈定位结构2-5.3及第四线圈定位结构2-5.4;线圈定位结构一端开设卡槽,第一驱动线圈4.1、第二驱动线圈4.2、第三驱动线圈4.3及第四驱动线圈4.4两端分别卡入对应线圈定位结构的卡槽,实现固定,驱动线圈4的出线端焊接在位于固定板1对应的焊盘上。另外,支撑框架上还可以设置定位孔8.1和定位销孔8.2,通过定位销和螺栓将器件定位并紧固于激光投影***之中。
实施例3
如图10所示,本实施例面内二维平动光学致动器包含固定板1、驱动线圈支撑座2、由多组多根弹性元件组成的弹性组件3、驱动线圈4、磁铁支撑座5、磁铁6和平动板7。磁铁支撑座5与固定板1连接,为磁铁6提供支撑,磁铁6置于磁铁支撑座6上相应的支撑结构上;驱动线圈支撑座2与平动板7连接,为驱动线圈4提供支撑,驱动线圈4置于驱动线圈支撑座2上相应的支撑结构上,与磁铁6对中布置;弹性组件3的弹性元件上端部与固定板1连接,下端部与平动板7连接。驱动线圈4出线端焊接于平动板7相应的焊盘上,驱动电信号由平动板7经弹性组件3引入到固定板1的电信号通路中。面内二维平动致动器的工作原理为:在相对侧的两个驱动线圈4.1和4.3上施加驱动信号,驱动线圈与相对应的磁铁6之间形成的方向一致的推挽力,推动驱动线圈支撑座2带动平动板7沿Y方向平动。在相对侧的两个驱动线圈4.2和4.4上施加驱动信号,驱动线圈与相对应的磁铁6之间形成的方向一致的推挽力,推动驱动线圈支撑座2带动平动板7沿X方向平动。从而驱动平动板7带动光学元件沿X和Y两个互相垂直的方向平动。通过调整弹性组件3各组弹性元件的数量和位置,调整致动器的谐振频率和平动方向。

Claims (13)

  1. 一种面内二维平动光学致动器,其特征在于:包括固定板(1)、平动板(7)、位于固定板(1)与平动板(7)之间且两端分别连接固定板(1)与平动板(7)的 i 组弹性组件(3)以及固定在固定板(1)与平动板(7)之间的 j 套电磁驱动组件;其中, ij 均为大于等于2的整数;
    固定板(1)上设有透光区域;
    平动板(7)上设有用于放置光学元件的第二通光孔(7.2);
    透光区域和第二通光孔(7.2)的位置及大小需确保光束通过透光区域能够入射至放置于第二通光孔(7.2)的光学元件;
    各组弹性组件(3)由数量相同或不同的弹性元件构成, i 组弹性组件(3)中至少有一组弹性组件(3)中弹性元件的数量大于等于2;
    j 套电磁驱动组件沿两个不同方向布置,用于驱动平动板(7)相对固定板(1)在平动板(7)所在平面内沿两个不同方向移动,实现平动板(7)的二维平动。
  2. 根据权利要求1所述的面内二维平动光学致动器,其特征在于:每套电磁驱动组件均包括驱动线圈(4)以及布置在驱动线圈(4)驱动端的磁铁(6);
    所述驱动线圈(4)设置在固定板(1)上且磁铁(6)设置在平动板(7)上;或者,驱动线圈(4)设置在平动板(7)上且磁铁(6)设置在固定板(1)上。
  3. 根据权利要求2所述的面内二维平动光学致动器,其特征在于:每套电磁驱动组件包括至少两块磁铁(6),分别布置在驱动线圈(4)的两个驱动端,且两块磁铁(6)极性相对、中心位于驱动线圈(4)的轴向中心线上。
  4. 根据权利要求3所述的面内二维平动光学致动器,其特征在于:弹性元件采用导电材料制成,用于为位于平动板(7)上随动的部件提供传输到固定板(1)上的电信号通路。
  5. 根据权利要求4所述的面内二维平动光学致动器,其特征在于:各组弹性组件(3)中弹性元件的数量相同,且 i 组弹性组件(3)关于固定板(1)的中心轴对称,或各组弹性组件(3)中弹性元件的数量不相同,或 i 组弹性组件(3)形成非对称结构。
  6. 根据权利要求1-5任一所述的面内二维平动光学致动器,其特征在于: j =4,两两电磁驱动组件形成一组驱动单元,共包括两组驱动单元;同一组驱动单元中的两套电磁驱动组件用于驱动平动板(7)相对固定板(1)在平动板(7)所在平面内沿同一方向移动。
  7. 根据权利要求6所述的面内二维平动光学致动器,其特征在于:还包括驱动线圈支撑座(2)与磁铁支撑座(5);驱动线圈(4)固定在驱动线圈支撑座(2)上,磁铁(6)固定在磁铁支撑座(5)上;
    驱动线圈支撑座(2)固定在固定板(1)上,磁铁支撑座(5)固定在平动板(7)上;
    或者,驱动线圈支撑座(2)固定在平动板(7)上,磁铁支撑座(5)固定在固定板(1)上。
  8. 根据权利要求7所述的面内二维平动光学致动器,其特征在于:驱动线圈支撑座(2)包括两个平行设置的支撑臂,支撑臂一端固定在固定板(1)或平动板(7)上,另一端开设卡槽,驱动线圈(4)两驱动端卡入卡槽,实现固定;其中一组驱动单元中两套电磁驱动组件的驱动线圈(4)轴向中心线与X方向平行,另一组驱动单元中两套电磁驱动组件的驱动线圈(4)轴向中心线与Y方向平行。
  9. 根据权利要求7所述的面内二维平动光学致动器,其特征在于:驱动线圈支撑座(2)包括支撑框架及固定在支撑框架上的线圈定位结构,线圈定位结构一端开设卡槽,驱动线圈(4)两端卡入卡槽,实现固定;其中一组驱动单元中两套电磁驱动组件的驱动线圈(4)轴向中心线与X方向平行,另一组驱动单元中两套电磁驱动组件的驱动线圈(4)轴向中心线与Y方向平行。
  10. 根据权利要求8或9所述的面内二维平动光学致动器,其特征在于:固定板(1)的透光区域开设第一通光孔(1.2);固定板(1)为PCB电路板,驱动线圈(4)的出线端焊接在固定板(1)对应的焊盘上。
  11. 根据权利要求10所述的面内二维平动光学致动器,其特征在于:平动板(7)为PCB电路板,平动板(7)功能区域之外镂空。
  12. 根据权利要求11所述的面内二维平动光学致动器,其特征在于:固定板(1)与平动板(7)均为矩形PCB电路板,二者相互平行,且固定板(1)的中心与平动板(7)的中心位于同一直线;
    固定板(1)的透光区域位于固定板(1)的中心位置,平动板(7)的第二通光孔(7.2)位于平动板(7)的中心位置;
    i =4,4组弹性组件(3)相互平行,其一端分别固定在固定板(1)的四个对角处,另一端分别固定在平动板(7)的四个对角处;
    电磁驱动组件位于两两相邻弹性组件(3)之间。
  13. 根据权利要求12所述的面内二维平动光学致动器,其特征在于:驱动线圈(4)由导线在磁芯上绕制而成,磁芯的端面为圆形、长方形或正方形;电磁驱动组件中与磁芯两端面相对的磁铁(6)的截面为长方形。
PCT/CN2023/104245 2022-10-12 2023-06-29 一种面内二维平动光学致动器 WO2024078042A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211250920.XA CN115407520A (zh) 2022-10-12 2022-10-12 一种激光干涉光斑匀化器件
CN202211251632.6A CN115616724A (zh) 2022-10-12 2022-10-12 一种面内二维平动光学致动器
CN202211250920.X 2022-10-12
CN202211251632.6 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024078042A1 true WO2024078042A1 (zh) 2024-04-18

Family

ID=90668674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104245 WO2024078042A1 (zh) 2022-10-12 2023-06-29 一种面内二维平动光学致动器

Country Status (1)

Country Link
WO (1) WO2024078042A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653286A (zh) * 2019-10-12 2021-04-13 中国科学院长春光学精密机械与物理研究所 一种并联式二自由度电磁驱动柔性运动台
CN112764297A (zh) * 2020-12-30 2021-05-07 深圳市火乐科技发展有限公司 动态扩散片组件及控制方法、激光消散斑装置、投影仪
CN214474265U (zh) * 2020-07-30 2021-10-22 台湾东电化股份有限公司 光学***
CN113641062A (zh) * 2021-08-16 2021-11-12 深圳市火乐科技发展有限公司 扩散片组件、光束消散斑装置以及投影仪
CN115407520A (zh) * 2022-10-12 2022-11-29 西安知微传感技术有限公司 一种激光干涉光斑匀化器件
CN115616724A (zh) * 2022-10-12 2023-01-17 西安知微传感技术有限公司 一种面内二维平动光学致动器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653286A (zh) * 2019-10-12 2021-04-13 中国科学院长春光学精密机械与物理研究所 一种并联式二自由度电磁驱动柔性运动台
CN214474265U (zh) * 2020-07-30 2021-10-22 台湾东电化股份有限公司 光学***
CN112764297A (zh) * 2020-12-30 2021-05-07 深圳市火乐科技发展有限公司 动态扩散片组件及控制方法、激光消散斑装置、投影仪
CN113641062A (zh) * 2021-08-16 2021-11-12 深圳市火乐科技发展有限公司 扩散片组件、光束消散斑装置以及投影仪
CN115407520A (zh) * 2022-10-12 2022-11-29 西安知微传感技术有限公司 一种激光干涉光斑匀化器件
CN115616724A (zh) * 2022-10-12 2023-01-17 西安知微传感技术有限公司 一种面内二维平动光学致动器

Similar Documents

Publication Publication Date Title
US5317297A (en) MRI magnet with robust laminated magnetic circuit member and method of making same
US20080158412A1 (en) Camera Module
US20180241293A1 (en) Vibration motor
US10381911B2 (en) Linear motor, magnet unit, and stage device
EP0144445A1 (en) Apparatus for driving objective lens of optical disc player
JP7265266B2 (ja) リニア振動アクチュエータ
JP2017135948A (ja) アクチュエータ
WO1994003026A1 (en) Audio transducer with etched voice coil
JP2011205870A (ja) 振動モータ
JP2003179994A (ja) 平面型音響変換装置用ダイヤフラム、及び平面型音響変換装置
TWI682620B (zh) 線性振動馬達
KR20020094310A (ko) 광픽업용 액츄에이터
CN111828525B (zh) 一种负刚度可调的新型电磁式隔振器
WO2024078042A1 (zh) 一种面内二维平动光学致动器
CN115616724A (zh) 一种面内二维平动光学致动器
US6956953B2 (en) Electroacoustic transducer with field replaceable diaphragm carrying two interlaced coils, without manipulating any wires
CN115407520A (zh) 一种激光干涉光斑匀化器件
EP1376834B1 (en) An oscillatory linear actuator
US20220337144A1 (en) Electromagnetic device for converting mechanical energy into electrical energy
JP2013138601A (ja) プレーナ型電磁アクチュエータ
WO2014162521A1 (ja) アクチュエータ
KR100510538B1 (ko) 광픽업 액추에이터
JP2011250063A (ja) 薄型全面駆動スピーカ
WO2024131351A1 (zh) 电磁驱动机构、摄像模组及电子设备
KR100497730B1 (ko) 지그를 이용한 다극자석배열 조립구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876251

Country of ref document: EP

Kind code of ref document: A1