WO2024075820A1 - Automated external defibrillator - Google Patents

Automated external defibrillator Download PDF

Info

Publication number
WO2024075820A1
WO2024075820A1 PCT/JP2023/036430 JP2023036430W WO2024075820A1 WO 2024075820 A1 WO2024075820 A1 WO 2024075820A1 JP 2023036430 W JP2023036430 W JP 2023036430W WO 2024075820 A1 WO2024075820 A1 WO 2024075820A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
needle
external defibrillator
aed
Prior art date
Application number
PCT/JP2023/036430
Other languages
French (fr)
Japanese (ja)
Inventor
敏雄 千葉
Original Assignee
株式会社オンラインマスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オンラインマスター filed Critical 株式会社オンラインマスター
Publication of WO2024075820A1 publication Critical patent/WO2024075820A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators

Definitions

  • the present invention relates to an automated external defibrillator.
  • AEDs automated external defibrillators
  • An AED delivers an electric shock (high-voltage pulse) to the patient's heart from outside the body via a pad-type electrode (patient electrode). This can sometimes return the patient's heart to a normal state where it beats at a regular rhythm.
  • the present invention was made in consideration of these circumstances, and aims to provide an automatic external defibrillator equipped with electrodes that can be easily and quickly attached to a patient.
  • one aspect of the present invention is an automated external defibrillator that includes a pair of electrodes that are attached to the recipient to deliver an electric shock, and the electrodes have attachment parts that are attached to the recipient's wet skin.
  • the attachment part may have, for example, a needle-shaped body that pierces the skin of the rescuee.
  • the electrode has, for example, a rod-shaped body, and the needle-shaped body is disposed at the end of the rod-shaped body.
  • the electrode has, for example, a base, and at least one of the needle-shaped bodies is disposed on the base.
  • the electrode has a gripping portion that is grasped by the rescuer of the rescuee, and a gripping portion that grasps the skin of the rescuee, and when the gripping portion is grasped by the rescuer, the gripping portions open, and the skin of the rescuee is inserted and pinched between the gripping portions, and when the gripping portion is released, the skin is grasped by the gripping portions, and the attachment portion is composed of at least the gripping portions.
  • a needle-shaped object that pierces the skin of the rescuee is disposed on the attachment part, and the attachment part includes at least the grip part and the needle-shaped object.
  • the electrode includes a plate-shaped portion and a layer of conductive adhesive containing a filler that is laminated on the plate-shaped portion, and the attachment portion is composed of the layer of conductive adhesive.
  • the attachment section for example, has a portion that reaches the subcutaneous tissue of the rescuee.
  • the needle-shaped body is made of, for example, a conductive porous material.
  • the needle-shaped body for example, has multiple conductive fibers arranged on its surface.
  • the needle-shaped body for example, has an auxiliary electrode inside, which protrudes outside the needle-shaped body and increases the surface area of the electrode.
  • the device may include an impedance measuring means for measuring the impedance between the pair of electrodes attached to the recipient, and a means for adjusting the voltage pulse applied to the recipient via the pair of electrodes according to the impedance measured by the impedance measuring means.
  • the automated external defibrillator may have a rectangular parallelepiped housing, one of the pair of electrodes may be a pad-shaped electrode and disposed on one side of the housing, and the other of the pair of electrodes may be formed in a stick shape with a needle-shaped body at one end and may be removably held on the side of the housing.
  • the electrodes have attachment parts, the electrodes of an automated external defibrillator can be quickly and easily attached to the recipient (patient) even if the recipient's (patient's) skin is wet.
  • FIG. 1 is a diagram showing the external configuration of an automated external defibrillator (AED) according to an embodiment of the present invention
  • 2 is a block diagram showing an example of an internal configuration of the AED shown in FIG. 1.
  • 4A to 4C are diagrams showing examples of positions at which electrodes of an AED according to the first embodiment are attached to a patient.
  • 3(B) is a schematic diagram showing the relationship between the electrodes of an AED and the heart when the electrodes are attached in the positions shown in FIG. 3(A), where (A) is an example of a pad-type electrode, and (B) is an example of the needle-shaped electrode shown in FIG. 6A to 6C are diagrams showing other examples of electrodes of the AED according to the first embodiment.
  • 13A to 13D are diagrams showing other examples of electrodes of the AED according to the first embodiment.
  • 5A and 5B are diagrams showing other examples of electrodes of the AED according to the first embodiment.
  • 5A and 5B are diagrams showing other examples of electrodes of the AED according to the first embodiment.
  • 5A and 5B are diagrams showing other configuration examples of the electrodes of the AED according to the first embodiment.
  • 5A and 5B are diagrams showing other configuration examples of the electrodes of the AED according to the first embodiment.
  • 6A and 6B are diagrams illustrating other configuration examples of the electrodes of the AED according to the first embodiment.
  • 13 is a diagram showing an example of a waveform of a high-voltage pulse applied by an AED according to a second embodiment.
  • FIG. 10 is a flowchart for explaining a high-voltage pulse application process of the AED according to the second embodiment.
  • FIG. 13 is a diagram showing a configuration example of an AED according to a third embodiment.
  • FIG. 15 is a block diagram showing a configuration example of the AED shown in FIG. 14.
  • FIG. 13 is a diagram showing another configuration example of the AED according to the third embodiment.
  • FIG. 13 is a diagram showing yet another configuration example of the AED according to the third embodiment.
  • AED automated external defibrillator
  • the AED 1 according to the first embodiment includes a main body 10, electrodes 30A and 30B, and cables 40A and 40B.
  • the cable 40A electrically connects the main body 10 to the electrode 30A.
  • the cable 40B electrically connects the main body 10 to the electrode 30B.
  • a display unit 11 and an operation unit 12 are provided on one surface of the main body unit 10 .
  • the display unit 11 is configured with, for example, a liquid crystal display device, and displays various information.
  • the operation unit 12 includes various operators such as a volume 12a and a button 12b for allowing the user to input various pieces of information.
  • the AED 1 has a memory unit 13, a control unit 14, a communication unit 15, a high-voltage generation unit 16, a biosignal acquisition unit 17, a status detection unit 18, a power supply unit 19, and an audio output unit 20.
  • the memory unit 13, the control unit 14, the communication unit 15, the high-voltage generation unit 16, the biosignal acquisition unit 17, the status detection unit 18, the power supply unit 19, and the audio output unit 20 are built into the main body unit 10.
  • the power supply unit 19 includes a number of batteries connected so that the output voltage is, for example, about 120V to 200V.
  • the batteries may be primary or secondary batteries. They may also be capacitors, etc.
  • the power supply unit 19 may include a charger that charges the secondary batteries with AC power supplied from a commercial power source. They may also be capacitors, etc. instead of secondary batteries.
  • the power supply unit 19 may also be equipped with a boost circuit.
  • the power supply unit 19 is also connected to each of the display unit 11, operation unit 12, memory unit 13, control unit 14, communication unit 15, biosignal acquisition unit 17, status detection unit 18, and audio output unit 20, and supplies power for operation.
  • the control unit 14 includes a processor, such as a central processing unit (CPU) or a graphics processing unit (GPU), i.e., a computer.
  • the control unit 14 may include a single computer or may include multiple computers.
  • the control unit 14 may also include a gate array, an A/D converter, etc.
  • the control unit 14 is connected to each of the display unit 11, the operation unit 12, the memory unit 13, the communication unit 15, the high voltage generation unit 16, the biosignal acquisition unit 17, the state detection unit 18, and the audio output unit 20.
  • the control unit 14 functions as the control center of the AED 1 by operating according to the program stored in the memory unit 13.
  • the control unit 14 controls the display unit 11, operation unit 12, memory unit 13, communication unit 15, high voltage generation unit 16, biosignal acquisition unit 17, status detection unit 18, and audio output unit 20 according to the program, thereby measuring bioimpedance, performing real-time analysis of bioinformation such as electrocardiogram analysis, and controlling the output of electric shocks.
  • the storage unit 13 is composed of a non-volatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory).
  • the non-volatile memory stores programs.
  • the volatile memory is used by the control unit 14 as a work area when executing the programs.
  • the volatile memory also temporarily stores various types of biometric information such as electrocardiogram signals.
  • the audio output unit 20 is composed of a speaker and the like, and outputs various sounds such as audio guidance and warnings under the control of the control unit 14.
  • Electrode 30A is connected to high voltage generating unit 16, biosignal acquiring unit 17, and status detecting unit 18 via cable 40A.
  • electrode 30B is connected to high voltage generating unit 16, biosignal acquiring unit 17, and status detecting unit 18 via cable 40B.
  • the electrodes 30A and 30B are each composed of a rod-shaped or stick-shaped body, and are equipped with a holding part to be held by the rescuer, and a conductive needle-shaped body arranged at one end of the holding part.
  • the needle-shaped body has a sharp tip and functions to pierce the rescuee and attach the electrodes 30A and 30B. This makes it possible to quickly and easily attach the electrodes 30A and 30B to the skin of the rescuee even if the rescuee's skin is wet.
  • a flange-shaped or other entry prevention portion 30Aa, 30Ba may be formed at a position 5 mm to 10 mm from the tip of the needle-shaped body.
  • the position, shape, number, etc. of the entry prevention portion 30Aa, 30Ba are arbitrary as long as the tip of the electrode 30A, 30B can be prevented from reaching the subcutaneous tissue and penetrating too deeply into the body.
  • the holding portion is an example of a base
  • the portion including the needle-shaped body is an example of an attachment portion that is attached to the skin of the rescue recipient.
  • the biosignal acquisition unit 17 shown in FIG. 1 acquires various biosignals such as electrocardiogram signals from electrodes 30A and 30B, as well as body temperature, heart rate, respiratory rate, blood oxygen saturation, and relative blood pressure.
  • the biosignal acquisition unit 17 filters noise from the acquired biosignals, amplifies them, and transmits them to the control unit 14.
  • the control unit 14 performs analysis of the electrocardiogram and bioinformation based on the biosignals.
  • the state detection unit 18 detects the attachment state of the electrodes 30A and 30B to the patient, for example, by measuring the impedance (biological impedance) between the electrodes 30A and 30B.
  • the state detection unit 18 outputs a signal indicating the attachment state of the electrodes 30A and 30B to the patient (a signal representing the bioimpedance) to the control unit 14 as an attachment state signal.
  • the control unit 14, the high voltage generation unit 16, and the state detection unit 18 function as a bioimpedance measuring means that measures the impedance (biological impedance) between the electrodes 30A and 30B.
  • the control unit 14 determines the attachment state of the electrodes 30A and 30B to the patient based on the attachment state signal, and causes the determined attachment state to be displayed as an image on the display unit 11 or output as sound from the audio output unit 20.
  • the high voltage generating unit 16 Based on a control signal from the control unit 14, the high voltage generating unit 16 generates a high voltage pulse (more specifically, the potential difference between electrodes 30A and 30B) equivalent to the electric shock to be given to the patient from electrodes 30A and 30B.
  • the high voltage generating unit 16 is not particularly limited in its method as long as it can give the patient an electric shock necessary to return the heart and heartbeat of a patient in cardiac arrest to a normal state.
  • the "electric shock necessary to return the heart and heartbeat of a patient in cardiac arrest to a normal state" is, for example, an electric shock with a voltage value of 1000-3000V, a current value of 15-30A, a pulse width of 2ms-20ms, and energy of 150-360J.
  • the high voltage generating unit 16 it is preferable to adopt the high voltage pulse generating circuit disclosed in JP 2022-182010 A and JP 2022-182010 A, and the high voltage generating unit described in the specification and drawings first attached to the application of International Patent Application PCT/JP2023/30715.
  • the high voltage generating unit it is possible to provide an AED 1 that is small, lightweight, and ready for use in a short time.
  • electrodes 30A and 30B are attached to the patient near the right front chest and the left side of the chest or flank, respectively, as shown in FIG. 3(A). That is, the needle-shaped conductor parts at the tips of electrodes 30A and 30B are inserted into the patient near the right front chest and the left side of the chest or flank, respectively.
  • the attachment positions of the electrodes 30A and 30B are not limited to the example shown in FIG. 3(A).
  • the attachment positions of the electrodes 30A and 30B are arbitrary as long as they are paired with each other on the heart, that is, as long as they are capable of delivering an electric shock to the heart.
  • the electrodes 30A and 30B are attached at positions that can generate a path for a current generated by a high-voltage pulse to pass from one of the electrodes 30A and 30B through the heart to the other.
  • the electrode 30A may be attached to the right shoulder or upper right arm
  • the electrode 30B may be attached to the left shoulder or upper left arm.
  • FIG. 4(A) shows the positional relationship between the electrodes 31A, 31B and the heart H when conventional pad-type electrodes 31A, 31B are attached to a patient.
  • the pad-type electrodes 31A and 31B are attached to the patient's skin K at a position where an electric shock can be administered to the heart H.
  • AED1 is used in situations where it is necessary to quickly and accurately measure the electrocardiogram to determine whether or not an electric shock is necessary, and if it is determined to be necessary, to administer an electric shock as quickly as possible.
  • electrodes 31A and 31B must be attached appropriately to the appropriate positions on the patient as quickly as possible.
  • pad-type electrodes 31A and 31B it is often difficult to attach pad-type electrodes 31A and 31B to the appropriate positions on the skin K. For example, this may occur when the surface of the skin K is wet with bodily fluids or rainwater, or when exposing the chest is hesitant.
  • Electrodes 30A and 30B have a needle-like shape, and at least the tip is made of a conductor such as metal. Therefore, as shown in Fig. 4(B), the user (rescuer) can quickly and easily attach electrodes 30A and 30B to the patient (rescuee) by simply piercing the tip of electrodes 30A and 30B into the skin K or subcutaneous tissue at a predetermined position of the patient (rescuee). Therefore, electrodes 30A and 30B can be quickly and easily attached to the rescuee whose skin K is covered with liquid such as body fluids or rainwater. In addition, electrodes 30A and 30B can be pierced into the patient through clothing, so that electrodes 30A and 30B can be quickly attached even if the patient is a woman.
  • the conductive portions of the pad-shaped electrodes 31A and 31B are present outside the patient's skin K.
  • at least a portion of the conductive portions of the electrodes 30A and 30B of the present embodiment are located in the subcutaneous tissue beyond the patient's skin K. Therefore, the bioimpedance between the electrodes 30A and 30B can be reduced compared to the conventional embodiment.
  • a person's bioimpedance is divided into skin impedance and subcutaneous tissue impedance.
  • Pad-shaped electrodes 31A and 31B shown in FIG. 4(A) are attached to the surface of the skin K.
  • Skin impedance is 30 to 100 k ⁇ per cm2 due to the stratum corneum on the surface, which is one of the causes of high bioimpedance.
  • the impedance between the electrodes 31A, 31B and the skin K also becomes high.
  • the tips of electrodes 30A and 30B are present in the subcutaneous tissue. This allows current to flow inside the patient's body without being affected by the resistance of the stratum corneum or the condition of the skin K. As a result, bioimpedance can be reduced.
  • the needle-shaped electrodes 30A and 30B shown in FIG. 4(B) can achieve the following first and second effects compared to the conventional pad-type electrodes 31A and 31B shown in FIG. 4(A).
  • Electrodes 30A and 30B when there is no need to distinguish between electrodes 30A and 30B, and between electrodes 31A and 31B, they will be collectively referred to as “electrodes 30" and “electrodes 31.” Additionally, cables 40A and 40B will be collectively referred to as “cable 40.”
  • the first effect is that the electrode 30 has an attachment part that has a needle-shaped body. Therefore, the electrode 30 can be quickly and easily attached to the patient by simply inserting the needle-shaped body (attachment part) into an appropriate position of the patient's skin K. This effect is hereinafter referred to as the "easy attachment effect.”
  • the easy attachment effect is particularly noticeable for patients whose skin K surface is wet with bodily fluids or rainwater.
  • the electrode 30 can be quickly and easily attached even when the patient is fully clothed.
  • the second effect is that by attaching the needle-shaped body of the electrode 30 to the patient so that it reaches the subcutaneous tissue, it is possible to reduce bioimpedance without being affected by skin impedance.
  • this effect will be referred to as the "impedance reduction effect.”
  • the electrode 30 of the embodiment does not need to achieve both the first effect and the second effect. It is sufficient for the electrode 30 to achieve the first effect, and it is more preferable for the electrode 30 to achieve the second effect.
  • the electrode 32 shown in FIG. 5 can be used as the electrode of the AED 1.
  • the electrode 32 has a grip portion 321, a holding portion 322, and a coil spring (biasing member) (not shown), similar to a clothespin.
  • the pair of grip portions 322 are in contact with each other and in a closed state due to the action of the coil spring (biasing member).
  • the user rescueer grasps the pair of grip portions 321 to open the pair of grip portions 322, inserts and clamps the skin K between the pair of grip portions 322, and releases the grip of the grip portions 321.
  • the grip portions 322 are clamped to hold the skin K due to the action of the coil spring. As a result, the grip portions 322 come into contact with the skin K and are electrically connected to the skin K.
  • the pair of grip portions 321 are an example of a base, and the pair of grip portions 322 are an example of an attachment portion.
  • the user can quickly attach the electrode 32 to the patient's skin K with a simple operation.
  • the electrode 32 has an easy-to-attach effect.
  • the gripping portion 322 of the electrode 32 may have multiple needle-shaped bodies 323.
  • the length of each needle-shaped body 323 is such that its tip reaches the subcutaneous tissue when the gripping portion 322 is in contact with the skin K, for example, about 5 mm to 10 mm. Therefore, when the skin K is gripped by the gripping portion 322, the tip of the needle-shaped body 323 is located within the subcutaneous tissue. This allows the electrode 32 to achieve an impedance reduction effect.
  • the needle-shaped body 323 may be of such a length that its tip reaches the subcutaneous tissue even through clothing, for example, about 10 mm to 15 mm.
  • the needle-shaped body 323 forms part of the attachment portion.
  • the pad-shaped electrode 33 shown in FIG. 6(A) comprises a plate-shaped portion 331 and a number of needle-shaped bodies 332 formed on one surface of the plate-shaped portion 331.
  • the length of each needle-shaped body 332 is a length that allows the plate-shaped portion 331 to reach the subcutaneous tissue when in contact with the skin K, for example, about 5 mm to 10 mm.
  • the length of the needle-shaped body 332 may be a length that allows the tip to reach the subcutaneous tissue even through clothing, for example, about 10 mm to 20 mm.
  • the plate-shaped portion 331 is an example of a base, and the multiple needle-shaped bodies 332 are each an example of an attachment portion.
  • the planar shape of the plate-like portion 331 may be substantially rectangular as shown in FIG. 6(B) or stick-like as shown in FIG. 6(C). Also, as shown in FIG. 6(D), a cover 333 may be provided to protect the needle-like body 332. When in use, the cover 333 is removed before attaching the electrode 33 to the patient.
  • the pad-type electrode (pad-shaped electrode) 34 shown in FIG. 7A is composed of a plate-shaped portion 341 and a conductive adhesive layer 342 arranged on one surface of the plate-shaped portion 341.
  • the adhesive layer 342 is composed of, for example, a conductive adhesive or a conductive gel.
  • the adhesive layer 342 preferably includes, for example, a conductive filler (filler) 343.
  • the conductive adhesive layer 342 may also be composed of a silicone coating gel containing adhesive.
  • the filler 343 is for improving the conductivity of the conductive adhesive, and is preferably a carbon filler or a metal (preferably silver, which has high conductivity).
  • conductive adhesive or conductive gel please refer to "Conductive Adhesive Technology" in "Journal of the Japan Society for Precision Engineering, Vol. 79, No. 8, 2013, pp. 730-734".
  • the user can quickly and easily attach the electrode 34 to the patient by pressing the adhesive layer 342 against the patient's skin K, even if the surface of the skin K is wet.
  • the plate-shaped portion 341 is an example of a base
  • the conductive adhesive layer 342 is an example of an attachment portion.
  • release paper 344 On the adhesive layer 342. When in use, peel off the release paper 344 from the adhesive layer 342 and then attach the electrode 34 to the patient.
  • an adhesive layer 342 may be disposed on the electrode 33 shown in FIG. 6(A). Similarly, an adhesive layer 342 may be disposed on the electrode 32 shown in FIG. 5, etc.
  • the AED 1 When using the AED 1, it is desirable to have a small bioimpedance. In order to reduce the bioimpedance, it is desirable to increase the surface area of the electrode, or more precisely, the contact area with the patient's tissue. However, simply increasing the surface area results in a larger electrode size. Below, we will use electrode 30 as an example to explain a method for increasing the effective surface area without increasing the size of the electrode itself.
  • the needle-shaped body 35 that comes into contact with the subcutaneous tissue of the patient, from a conductive porous material.
  • the conductive porous material is composed of, for example, porous metal, porous carbon, etc. It is also desirable for the porous material to be highly hydrophilic. The surface of the electrode may be hydrophilized. The porous material has many pores 351 and a large specific surface area. Therefore, even if the shape and size are the same, the needle-shaped body 35 formed from a porous material has a larger surface area than an electrode formed from a non-porous material.
  • the needle-shaped body 35 formed from a porous material is an example of an attachment part.
  • the needle-shaped body 35 When the electrode 30 is attached to a patient, the needle-shaped body 35 is hydrophilic, so bodily fluids spread over the surface of the porous electrode 30 of the needle-shaped body 35 and come into contact with it. Therefore, the contact area between the electrode 30 and the patient is large. This makes it possible to reduce bioimpedance.
  • conductive and flexible fibers (conductive fibers) 352 may be arranged on the needle-shaped body 35. Because the fibers 352 are flexible, when the needle-shaped body 35 is inserted into the patient, the fibers 352 are pressed against the surface of the needle-shaped body 35 and do not provide significant resistance. On the other hand, the portion of the fibers 352 that has entered the subcutaneous tissue of the needle-shaped body 35 spreads out and becomes a current path, increasing the effective surface area of the electrode 30. This makes it possible to reduce bioimpedance.
  • the electrode 30 may increase in size after it is attached to the patient.
  • the electrode 30 includes a case electrode 353 and a conductive pin group 354 housed in the case electrode 353.
  • the pin group 354 corresponds to an auxiliary electrode with respect to the case electrode 353, which corresponds to the electrode body.
  • At least the tip 353a of the case electrode 353 has a sharp outer shape, and the case electrode 353 is formed in a needle shape as a whole.
  • the inside of the case electrode 353 is hollow.
  • a slider 355 is disposed in the hollow part of the case electrode 353.
  • a stopper button 356 is disposed near the base of the case electrode 353.
  • the tip 353a of the case electrode 353 is formed so that it can be opened and closed.
  • the case electrode 353 has a sharp tip and can be inserted into the patient's body.
  • the tip 353a is open, the tip of the internal space of the case electrode 353 is open, allowing the pin group 354 to enter and exit.
  • the slider 355 is engaged with the base of the case electrode 353. With the slider 355 engaged with the base of the case electrode 353, it is biased toward the tip by a biasing member 357.
  • a group of pins 354 is fixed to the slider 355.
  • the case electrode 353 and the group of pins 354 are electrically connected to the cable 40.
  • the stopper button 356 is linked to the tip 353a and the slider 355. When the stopper button 356 is operated, it has the function of releasing the engagement between the tip 353a and the engagement between the slider 355 and the case electrode 353.
  • the pin group 354 is housed in the case electrode 353, and the tip portion 353a is closed.
  • the user inserts the tip 353a of the electrode 30 in this state into the patient's body to attach it.
  • the tip 353a reaches the subcutaneous tissue
  • the user releases the stopper button 256.
  • the stopper button 356 By releasing the stopper button 356, the mutual engagement of the tip parts 353a is released, the tip parts 353a open, and the engagement of the slider 355 with the base end of the case electrode 353 is released.
  • the slider 355 is pushed out by the bias of the biasing member 357, and the pin group 354 is pushed out of the case electrode 353 as shown in FIG. 9B.
  • the pin group 354 extends beyond the case electrode 353 in the subcutaneous tissue of the patient and further spreads. Therefore, the effective surface area of the electrode 30 as a whole is increased. This makes it possible to reduce the bioimpedance.
  • the pin group 354 protrudes from the opening at the tip of the case electrode 353, but the target and the position from which it protrudes can be any as long as the auxiliary electrode can increase the effective surface area of the electrode 30.
  • the means for moving the auxiliary electrode can also be any.
  • the pin group 354 may protrude from the side of the case electrode 353.
  • the shape of the protruding pins may also be arbitrary.
  • the pin group 354 may be replaced with cotton-like conductive fibers 358.
  • the needle-shaped body is conical, but the shape of the needle-shaped body is not limited to a cone, and may be any shape, such as a pyramidal or sawtooth shape, as long as it can be easily inserted into the skin and reach the subcutaneous tissue.
  • a method of biasing the slider 355 with a coil spring to move it has been disclosed, but the biasing means is arbitrary and may be a leaf spring or the like, or may be a body other than a spring such as rubber. It may also be manually pushed out.
  • an AED 1 can be provided that is equipped with electrodes that can be quickly and easily attached to a patient.
  • an AED 1 with low bioimpedance can be provided.
  • the number of high voltage pulses applied is not limited to one.
  • multiple sets of positive and negative pulses may be applied.
  • an AED that can apply a high-voltage pulse of almost constant energy any number of times, regardless of fluctuations in bioimpedance.
  • the electrodes are assumed to be needle-shaped electrodes 30A and 30B.
  • the voltage pulse to be applied when the bioimpedance is at the reference value Rr is preset and stored in the memory unit 13.
  • an instruction to display an electrocardiogram is given by operating the operation unit 12.
  • the control unit 14 acquires the voltage between the electrodes 30A and 30B via the biosignal acquisition unit 17, and displays it on the display unit 11.
  • the rescuer checks the electrocardiogram and determines whether or not an electric shock is necessary. If it is determined that an electric shock is necessary, the rescuer operates the operation unit 12 to set the number of pulses to be applied, and then issues an instruction to apply a high-voltage pulse.
  • control unit 14 When the control unit 14 starts processing, it controls the high voltage generation unit 16 to apply a preset reference voltage between electrodes 30A and 30B.
  • the state detection unit 18 measures the current flowing through electrodes 30A and 30B and notifies the control unit 14 of the measured value.
  • the control unit 14 measures the impedance between electrodes 30A and 30B from the reference voltage applied by the high voltage generation unit 16 and the current detected by the state detection unit 18 (step S11).
  • the control unit 14 obtains a ratio RH of the measured impedance Rb to a preset reference value Rr of the impedance (step S12).
  • the control unit 14 adjusts the waveform of the generated voltage pulse according to the calculated ratio. For example, when adjusting the voltage of the high-voltage pulse, the voltage of the reference waveform is multiplied by ⁇ RH.
  • the pulse width (application time) of the reference waveform is multiplied by RH (step S13).
  • the application number i is set to 1 (step S14).
  • the control unit 14 then controls the high voltage generating unit 16 to output a pulse of the voltage waveform adjusted in step S13 for the set pulse width (step S15).
  • the control unit 14 determines whether the number of applied pulse sets, i, has reached a set value (step S16), and if not (step S16: No), increments i by 1 (step S17), waits for a fixed period of time, for example, 2 to 4 seconds, and then returns to step S15 to apply the next pulse set.
  • control unit 14 determines in step S16 that the set number i of applied pulses has reached the set value (step S16: Yes), it ends the high-voltage pulse application process. After that, it may automatically proceed to the process of displaying the electrocardiogram.
  • Modification 12 shows an example in which two sets of high-voltage pulses of a so-called BTE waveform (biphasic truncated exponential waveform) are applied to the patient, but the waveform of the high-voltage pulse and the number of sets are arbitrary. For example, one set of an RLB waveform (biphasic direct current waveform) or an MDS (monophasic sinusoidal waveform) may be applied, or three or more sets may be applied.
  • BTE waveform biphasic truncated exponential waveform
  • One suitable method for realizing such a system is to have the AED function as a communications device.
  • the AED function can send and receive various information with terminals of remote doctors and the medical community (ambulance teams and emergency hospitals in the case of an emergency). For example, electrocardiogram (signals) and heart rate information acquired by the AED can be provided to ambulance teams and emergency hospitals, which can then communicate to rescuers appropriate measures for the patient, such as whether or not an electric shock is required.
  • the AED 2 is integrated with a communication device.
  • the communication device is assumed to be a smartphone.
  • the communication device is not limited to a smartphone, and may be any device having a communication function, such as a tablet, a palmtop computer, an amateur radio device, or a vending machine.
  • the AED 2 includes an AED configuration (hereinafter, AED section) 21 and a smartphone configuration (hereinafter, smartphone section) 22.
  • the AED section 21 and smartphone section 22 share a battery 23 and a shared section 24.
  • the shared section 24 includes, for example, the display section 11, the operation section 12, the memory section 13, the control section 14, the communication section 15, the audio output section 20, etc.
  • the AED unit 21 has, for example, the configuration of the AED 1 illustrated in FIG. 2.
  • the smartphone unit 22 has, for example, the configuration of a known smartphone.
  • the AED unit 21, smartphone unit 22, and battery 23 are housed in a single housing.
  • all or part of the battery 23 constituting the power supply unit 19 may be disposed in an external device.
  • a case 25 may be prepared for the AED 2, and an external battery 26 may be disposed in the case 25.
  • the power plug 27 of the case 25 is connected to the power connector of the AED 2, and power is automatically supplied from the external battery 26 to the AED 2. In this way, it is possible to supply a large amount of power to the AED 2 while suppressing the size of the power supply unit 19 in the AED 2.
  • AED2 is more expensive than commercially available smartphones because it includes AED unit 21. However, because it is an integrated unit, it can share the same battery as a commercially available smartphone and can be carried around at all times.
  • smartphone refers to a device that is equipped with an OS such as iPhone (registered trademark) or Andoroid (registered trademark), can carry out various communication methods similar to those of commercially available devices, and is in an environment in which various application software can be installed and executed.
  • OS such as iPhone (registered trademark) or Andoroid (registered trademark)
  • the functional configuration of the AED in FIG. 2 is realized by hardware that is originally equipped on the smartphone, hardware that is externally attached to the smartphone, and a software program executed on the smartphone.
  • the display unit 11 can be configured by a display placed on one side of the smartphone, as shown in FIG. 14(B).
  • the operation unit 12 can be configured by hardware buttons that are originally equipped on the smartphone, and software buttons that are displayed on the display unit 11.
  • the memory unit 13, the control unit 14, and the communication unit 15 can be configured using hardware that is originally built into the smartphone.
  • the high voltage generating unit 16 can be configured by hardware that the smartphone is originally equipped with, or by hardware that is attached externally to the smartphone.
  • the biosignal acquisition unit 17 and the condition detection unit 18 can be configured as a software program executed on a smartphone.
  • the power supply unit 19 can be configured by a battery 23 attached to the smartphone.
  • the battery 23 of the smartphone can be shared as the power supply unit 19 of the AED 1.
  • the electrode 30A can be placed on the back of the housing, which is generally rectangular as a whole, as shown in FIG. 14(A). In this case, it is preferable to use the electrode 30A with the adhesive layer 342 shown in FIG. 7(A) to facilitate easy attachment.
  • the cable 40A is wired inside the main body 10 of the AED 1.
  • the electrode 30B is needle-shaped as shown in FIG. 4(B). As shown in FIG. 12(A), the electrode 30B is removably stored on the side of the housing with an attachment together with the cable 40B.
  • electrodes 30A and 30B shown in Figs. 14(A) and (B) is merely an example and can be modified.
  • electrode 30A may be needle-shaped as shown in Fig. 4(B).
  • electrode 30A may be made retractable (detachable) on the other side of the housing.
  • at least one of electrodes 30A and 30B may be clothespin-shaped as shown in Fig. 5.
  • the smartphone 50 functions as a remote controller (hereinafter, remote control) for the AED 1A.
  • the smartphone 50 is a normal commercially available smartphone that does not have an AED function.
  • AED app Special application software (hereinafter referred to as the "AED app") that enables the operation of the AED 1A is installed on the smartphone 50.
  • the user (rescuer) of the AED 1A can operate the AED 1A using the smartphone 50 via wireless communication.
  • the AED 1A shown in FIG. 16 differs from the AED 1 in FIG. 1 in that the electrode 30A is pad-type and attached to the back of the AED 1A.
  • the rest of the configuration is the same as in FIG. 1.
  • the cable 40A is wired inside the main body 10 of the AED 1.
  • electrode 30A and 30B in FIG. 16 is merely one example, and for example, electrode 30A may also be needle-shaped as shown in FIG. 4(B), or at least one of electrodes 30A and 30B may be clothespin- and pinholder-shaped as shown in FIG. 5.
  • the communication unit 15 of the AED 1A shown in FIG. 16 wirelessly communicates with the smartphone 50 via Wi-fi (registered trademark) or Bluetooth (trademark).
  • the communication unit 15 receives a control signal for operating the AED 1A (hereinafter referred to as an "operation signal") from the smartphone 50 and provides it to the control unit 14.
  • the control unit 14 controls the operation of the AED 1A based on the operation signal.
  • the smartphone 50 functions as a controller for the AED 1A.
  • the communication unit 15 also transmits biosignals, such as electrocardiogram signals, acquired by the biosignal acquisition unit 17 of the AED 1A to the smartphone 50.
  • the smartphone 50 can further transmit biosignals, such as electrocardiogram signals, to a terminal of a remote doctor or medical community via the Internet or the like.
  • the smartphone 50 In order for the smartphone 50 to function as a controller for the AED 1A, it is necessary to wirelessly connect the smartphone 50 and the AED 1A. However, since commercially available smartphones 50 are designed to be wirelessly connected to an unspecified number of people, it takes a certain amount of time to wirelessly connect to the AED 1A.
  • a dedicated controller 60 may be used to enable immediate connection to the AED 1A.
  • the dedicated controller 60 shown in FIG. 17 has a program pre-installed that has the same functions as the AED app for the smartphone 50 in FIG. 16. That is, the AED 1A in FIG. 17 is connected to the dedicated controller 60.
  • the wireless communication may be radio wave communication or infrared communication. It may also be wired, etc.
  • the AED 1A and the controller are connected in a 1: ⁇ ratio of AED 1A:controller (smartphone 50).
  • the AED 1A:controller (dedicated controller 60) is 1:1.
  • the AED 1A is instantly connected to the dedicated controller 60, making it possible to operate the AED 1A quickly.
  • the AEDs 2 and 1A having a communication function have been described above with reference to FIGS.
  • records of bioinformation such as an electrocardiogram and heart rate obtained by the AED can be remotely transmitted in real time to an emergency team or an emergency hospital, and the emergency team or emergency hospital can remotely transmit appropriate measures for the patient, such as whether or not an electric shock is required, to the rescuer.
  • vital signs (biological signals, etc.) other than the electrocardiogram signal can be remotely transmitted in real time from the AED to an emergency team or an emergency hospital in this way, it will be possible to provide even more appropriate measures to the patient.
  • the sensor for acquiring such vital signs other than the electrocardiogram signal may be built into the AED 1, 1A, 2, the smartphone 50, or the dedicated controller 60, or may be external.
  • the external sensor can communicate with the AED 1, 1A, 2, the smartphone 50, or the dedicated controller 60 using any method.
  • a small earphone-type sensor 61 may be stored in a removable state in the dedicated controller 60.
  • the earphone-type sensor 61 may be placed in the AED 1, 1A, or 2.
  • This earphone-type sensor is attached to the patient's outer ear and obtains the patient's vital signs (e.g., body temperature, respiratory rate, heart rate, relative blood pressure, blood oxygen saturation, etc.) from the circulatory dynamics of the tissues and structures in the middle ear behind the eardrum, and transmits the same to the AED 1, 1A, or 2, smartphone 50, and dedicated controller 60 via a specified wireless communication method such as Bluetooth (registered trademark).
  • a specified wireless communication method such as Bluetooth (registered trademark).
  • a rescuer first attaches the electrodes 30A and 30B of the AED 1A to the anterior chest of the patient (rescued person). This makes it possible to remotely transmit records of an electrocardiogram (signal), heart rate, etc. acquired by the AED 1 to an ambulance or an emergency hospital. Furthermore, the rescuer inserts the earphone sensor 61 into the ear canal of the patient. The earphone sensor 61 then acquires vital signs of the patient from tissues and structures deep in the eardrum of the patient and transmits them to the AED 1A. The AED 1A transmits the vital signs to an ambulance or an emergency hospital in real time.
  • AEDs are ideal when combined with the functions of smartphones. There are no particular limitations on how they can be combined, and they can be integrated or separate.
  • the AEDs 1A and 2 can refine not only the bio-information (heart rate, etc.) obtained from the electrodes 30 but also the AED activation condition algorithm. Furthermore, for example, the AEDs 1A and 2 can link (communicate) with an IoT medical device using BLE to supplementarily acquire vital signs that cannot be acquired from the electrodes 30.
  • the earphone-type sensor 61 described above can acquire vital signs such as body temperature, respiratory rate, heart rate, relative blood pressure, and blood oxygen saturation. Using such vital signs can prevent erroneous activation or failure of the AED 1.
  • the AEDs 1A and 2 can notify remote doctors and the medical community (ambulance teams and emergency hospitals in case of an emergency) of the patient's condition in real time using a long-distance communication function (WAN 4G/5G (registered trademark), Internet connection function).
  • the medical community includes government agencies (nearby fire stations, ambulance teams, medical institutions, etc.).
  • the AEDs 1A and 2 can use the short-distance communication function to notify medical personnel who are near the patient (within a range of 10 to 100 m) of the occurrence of an emergency.
  • the medical personnel who receive the notification can use the AEDs 1A and 2 to take appropriate measures to rescue the patient (person to be rescued). In this way, the survival rate of patients can be improved by having medical personnel participate in rescue efforts early.
  • the AEDs 1A and 2 can further have a function of transmitting an image (which may be a still image or a video) of the patient's condition to an emergency team or emergency hospital when a rescuer is providing first aid.
  • an image which may be a still image or a video
  • the emergency team or doctor can learn in advance the state of the patient's injuries and posture (including the direction of the head, the state of the airway, the direction of the limbs, etc.), allowing them to make appropriate preparations.
  • the resolution of the patient's image may be automatically controlled up to a maximum resolution of 8K depending on the communication conditions.
  • the AED 1 (smartphone function) of the rescuer may be controlled to provide a communication band (communication bands for multiple smartphones as necessary) that enables communication between the AED 1 (smartphone function) of the rescuer and a smartphone held by another rescuer in the vicinity through short-distance communication.
  • a communication band communication bands for multiple smartphones as necessary
  • the AEDs 1A and 2 can have a function for communicating with an ambulance team or an emergency hospital when a rescuer rescues a patient.
  • the ambulance team or emergency hospital can appropriately give instructions on first aid measures according to the patient's condition and ask questions to further understand the situation.
  • emergency teams or hospitals can more appropriately give instructions on first aid and ask further questions based on the state of the patient's injuries and posture (including the direction of the head, the state of airway management, and the direction of the limbs, etc.).
  • the present invention is not limited to the above-mentioned embodiment, and includes modifications and improvements within the scope of achieving the object of the present invention.
  • the electrodes 30 are not limited to the form of the above-mentioned embodiment.
  • the electrodes of the AED to which the present invention is applied need only be easy to attach, and preferably also have an impedance reduction effect as needed.
  • the pair of electrodes that are attached to the skin of the rescuee (patient) to deliver an electric shock have the function (first function) of serving as an attachment part that attaches a conductive part to the skin in a wet state.
  • the function of at least a part of the electrode 30 piercing the skin is an example of the first function.
  • the gripping portion 322 opens, and the skin of the rescuee (patient) is inserted and pinched between the gripping portions 322.
  • the gripping portion 322 grasps the skin (this does not exclude the possibility that the tips of the numerous electrodes arranged in a pinholder shape may penetrate partially under the skin, causing a decrease in bioimpedance due to the epidermal tissue). This is an example of the first function.
  • the function of attaching the conductive adhesive layer 324 to the patient's skin is an example of the first function.
  • the electrode 30 in order to achieve the impedance reducing effect, it is sufficient for the electrode 30 to have the second function of being attached so that at least a part of it is present inside the skin of the rescuee (patient).
  • the function of a part of the electrode 30 piercing the skin and reaching the subcutaneous tissue is an example of the second function.
  • the function of at least a part of the needle-shaped body 323 reaching the skin tissue is an example of the second function.
  • the functional block diagram shown in FIG. 2 is merely an example and is not particularly limited. In other words, it is sufficient if the function capable of executing the above-mentioned series of processes as a whole is provided, and the type of functional block used to realize this function is not particularly limited to the example in FIG. 2.
  • the locations of the functional blocks are not limited to those shown in Fig. 2 and may be arbitrary.
  • at least a part of the functional blocks of the AED 1 may be provided in another information processing device capable of communicating with the AED 1 (for example, the smartphone 50 in Fig. 7 or the dedicated controller 60 in Fig. 8), or vice versa.
  • a single functional block may be configured as a single piece of hardware, or may be configured in combination with a single piece of software.
  • the program constituting the software is installed into a computer or the like from a network or a recording medium.
  • the computer may be a computer built into dedicated hardware, or may be a computer capable of executing various functions by installing various programs, such as a server, a general-purpose smartphone, or a personal computer.
  • Recording media containing such programs are not only configured as removable media that are distributed separately from the device body in order to provide each user with the program, but also configured as recording media etc. that are provided to each user in a state where they are already installed in the device body.
  • the steps describing the program to be recorded on the recording medium include not only processes that are performed in chronological order, but also processes that are not necessarily performed in chronological order but are executed in parallel or individually.
  • AED automated external defibrillator
  • 10 Main body 11: Display 12: Operation section 13: Memory section 14: Control section 15: Communication section 16: High voltage generation section 17: Biosignal acquisition section 18: Status detection section 19: Power supply section 20: Audio output section 30, 30A, 30B, 31 to 34: Electrodes 40, 40A, 40B: Cables 50: Smartphone 60: Dedicated controller 321: Grip section 322: Holding section 323: Needle-shaped body

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

In the present invention, electrodes (30A) and (30B) of an automated external defibrillator are fitted onto the skin of a person being rescued (patient) and apply an electric shock. At the distal-end sections of the electrodes (30A) and (30B), the electrodes (30A) and (30B) are configured from needle-form bodies. Piercing the skin using the electrodes (30A) and (30B) makes it possible for the electrodes (30A) and (30B) to be fitted quickly and easily even onto skin that is wet with a body fluid or rainwater.

Description

自動体外式除細動器Automated External Defibrillator
 本発明は、自動体外式除細動器に関する。 The present invention relates to an automated external defibrillator.
 心停止の一般的な原因である心室細動又は心室頻拍の際に心停止を防止するために、自動体外式除細動器(AED:Automated External Defibrillator)が使用されている。例えば特許文献1参照。AEDは、体外から、パッド型の電極(患者電極)を介して、患者の心臓に、電気ショック(高電圧パルス)を与える。これにより、患者の心臓が、一定のリズムで拍動する正常な状態に戻る場合がある。 To prevent cardiac arrest during ventricular fibrillation or ventricular tachycardia, which are common causes of cardiac arrest, automated external defibrillators (AEDs) are used. For example, see Patent Document 1. An AED delivers an electric shock (high-voltage pulse) to the patient's heart from outside the body via a pad-type electrode (patient electrode). This can sometimes return the patient's heart to a normal state where it beats at a regular rhythm.
特表2013-543781号公報JP 2013-543781 A
 心臓に適切な電気ショックを与えるためには、電極を適切に患者に装着する必要がある。しかし、パッド型の電極は、表面が平坦であるため、患者に装着出来なかったり、装着に時間がかかったりする場合がある。例えば、外傷等により前胸部に出血が続き、患者の前胸部が濡れ続ける場合、降雨下で、患者の前胸部が雨水により濡れ続ける場合、等である。また、患者が女性の場合、電極を装着するために、胸部を露出することに抵抗を示す場合がある。これらの場合、患者の適切な位置に電極を装着できなかったり、装着に時間がかかる。このため、容易且つ迅速に患者に装着可能な電極を備えるAEDが望まれる。 In order to deliver an appropriate electric shock to the heart, it is necessary to attach electrodes to the patient properly. However, because pad-type electrodes have a flat surface, there are cases where they cannot be attached to the patient or where it takes a long time to attach them. For example, there are cases where the patient's anterior chest continues to get wet due to continued bleeding in the anterior chest due to trauma, or where the patient's anterior chest continues to get wet from rainwater during rainfall. Furthermore, if the patient is female, she may be reluctant to expose her chest in order to attach the electrodes. In such cases, it may be difficult to attach the electrodes to the patient's appropriate positions, or it may take a long time to attach them. For this reason, there is a demand for an AED with electrodes that can be easily and quickly attached to the patient.
 本発明は、このような状況に鑑みてなされたものであり、容易且つ迅速に患者に装着可能な電極を備える自動体外式除細動器を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide an automatic external defibrillator equipped with electrodes that can be easily and quickly attached to a patient.
 上記目的を達成するため、本発明の一態様である自動体外式除細動器は、被救助者に装着されて電気ショックを与える一対の電極を備え、前記電極は、濡れた状態の被救護者の皮膚に装着させる装着部を有する。 In order to achieve the above object, one aspect of the present invention is an automated external defibrillator that includes a pair of electrodes that are attached to the recipient to deliver an electric shock, and the electrodes have attachment parts that are attached to the recipient's wet skin.
 前記装着部は、例えば、被救助者の皮膚に突き刺さる針状体を有してもよい。 The attachment part may have, for example, a needle-shaped body that pierces the skin of the rescuee.
 前記電極は、例えば、棒状体を有し、前記針状体は前記棒状体の端部に配置されている。 The electrode has, for example, a rod-shaped body, and the needle-shaped body is disposed at the end of the rod-shaped body.
 前記電極は、例えば、基部を有し、少なくとも1つの前記針状体が、前記基部に配置されている。 The electrode has, for example, a base, and at least one of the needle-shaped bodies is disposed on the base.
 例えば、前記電極は、前記被救助者の救助者により握られる握り部と、前記被救助者の前記皮膚を把持する把持部と、を有し、前記救助者により前記握り部が握られた場合には前記把持部が開き、前記把持部の間に前記被救助者の前記皮膚が挿入されて挟みこまれた後、前記握り部の握りが解除されると前記把持部により前記皮膚が把持され、前記装着部は、少なくとも、前記把持部から構成される。 For example, the electrode has a gripping portion that is grasped by the rescuer of the rescuee, and a gripping portion that grasps the skin of the rescuee, and when the gripping portion is grasped by the rescuer, the gripping portions open, and the skin of the rescuee is inserted and pinched between the gripping portions, and when the gripping portion is released, the skin is grasped by the gripping portions, and the attachment portion is composed of at least the gripping portions.
 例えば、前記装着部に、被救助者の皮膚に突き刺さる針状体が配置されている、前記装着部は、少なくとも前記把持部と前記針状体を含む。 For example, a needle-shaped object that pierces the skin of the rescuee is disposed on the attachment part, and the attachment part includes at least the grip part and the needle-shaped object.
 例えば、前記電極は、板状部と、前記板状部に積層され、フィラーを含む導電性粘着剤の層を備え、前記装着部は、前記導電性粘着剤の層から構成される。 For example, the electrode includes a plate-shaped portion and a layer of conductive adhesive containing a filler that is laminated on the plate-shaped portion, and the attachment portion is composed of the layer of conductive adhesive.
 前記装着部は、例えば、その一部が、被救助者の皮下組織に到達する部分を備える。 The attachment section, for example, has a portion that reaches the subcutaneous tissue of the rescuee.
 前記針状体は、例えば、導電性の多孔質物質から構成される。 The needle-shaped body is made of, for example, a conductive porous material.
 前記針状体は、例えば、表面に複数の導電性繊維が配置されている。 The needle-shaped body, for example, has multiple conductive fibers arranged on its surface.
 前記針状体は、例えば、内部に補助電極を備え、前記補助電極は、前記針状体の外部に突出し、前記電極の表面積を増大する。 The needle-shaped body, for example, has an auxiliary electrode inside, which protrudes outside the needle-shaped body and increases the surface area of the electrode.
 さらに、前記被救護者に装着された前記一対の電極の間のインピーダンスを測定するインピーダンス測定手段と、インピーダンス測定手段により測定されたインピーダンスに従って、前記一対の電極を介して前記被救護者に印加する電圧パルスを調整する手段を備えてもよい。 Furthermore, the device may include an impedance measuring means for measuring the impedance between the pair of electrodes attached to the recipient, and a means for adjusting the voltage pulse applied to the recipient via the pair of electrodes according to the impedance measured by the impedance measuring means.
 例えば、前記自動体外式除細動器は、直方体状の筐体を有し、前記一対の電極の一方はパッド状電極から構成され、前記筐体の一面に配置され、前記一対の電極の他方は、一端に針状体を備えるスティック状に形成されており、前記筐体の側面部に着脱可能に保持されてもよい。 For example, the automated external defibrillator may have a rectangular parallelepiped housing, one of the pair of electrodes may be a pad-shaped electrode and disposed on one side of the housing, and the other of the pair of electrodes may be formed in a stick shape with a needle-shaped body at one end and may be removably held on the side of the housing.
 本発明によれば、電極が装着部を備えるので、自動体外式除細動器の電極を、仮に被救護者(患者)の皮膚が濡れている場合であっても、迅速にかつ容易に被救護者に装着することができる。 According to the present invention, since the electrodes have attachment parts, the electrodes of an automated external defibrillator can be quickly and easily attached to the recipient (patient) even if the recipient's (patient's) skin is wet.
本発明の実施の形態に係る自動体外式除細動器(AED)の外観構成を示す図である。1 is a diagram showing the external configuration of an automated external defibrillator (AED) according to an embodiment of the present invention; 図1に示すAEDの内部構成の一例を示すブロック図である。2 is a block diagram showing an example of an internal configuration of the AED shown in FIG. 1. (A)~(C)は、実施の形態1に係るAEDの電極の患者への装着位置の例を示す図である。4A to 4C are diagrams showing examples of positions at which electrodes of an AED according to the first embodiment are attached to a patient. AEDの電極を図3(A)の位置に装着した状態のときの電極と心臓との関係を示す模式図であり、(A)はパッド型電極の例、(B)は図1に示す針状電極の例である。3(B) is a schematic diagram showing the relationship between the electrodes of an AED and the heart when the electrodes are attached in the positions shown in FIG. 3(A), where (A) is an example of a pad-type electrode, and (B) is an example of the needle-shaped electrode shown in FIG. 実施の形態1に係るAEDの電極の他の例を示す図である。6A to 6C are diagrams showing other examples of electrodes of the AED according to the first embodiment. (A)~(D)は、実施の形態1に係るAEDの電極の他の例を示す図である。13A to 13D are diagrams showing other examples of electrodes of the AED according to the first embodiment. (A),(B)は、実施の形態1に係るAEDの電極の他の例を示す図である。5A and 5B are diagrams showing other examples of electrodes of the AED according to the first embodiment. (A),(B)は、実施の形態1に係るAEDの電極の他の例を示す図である。5A and 5B are diagrams showing other examples of electrodes of the AED according to the first embodiment. (A)、(B)は、実施の形態1に係るAEDの電極の他の例を示す図である。5A and 5B are diagrams showing other examples of electrodes of the AED according to the first embodiment. (A)、(B)は、実施の形態1に係るAEDの電極の他の構成例を示す図である。5A and 5B are diagrams showing other configuration examples of the electrodes of the AED according to the first embodiment. 実施の形態1に係るAEDの電極の他の構成例を示す図である。6A and 6B are diagrams illustrating other configuration examples of the electrodes of the AED according to the first embodiment. 実施の形態2に係るAEDが印加する高電圧パルスの波形の例を示す図である。13 is a diagram showing an example of a waveform of a high-voltage pulse applied by an AED according to a second embodiment. FIG. 実施の形態2に係るAEDの高電圧パルス印加処理を説明するためのフローチャートである。10 is a flowchart for explaining a high-voltage pulse application process of the AED according to the second embodiment. 実施の形態3に係るAEDの構成例を示す図である。FIG. 13 is a diagram showing a configuration example of an AED according to a third embodiment. 図14に示すAEDの構成例を示すブロック図である。FIG. 15 is a block diagram showing a configuration example of the AED shown in FIG. 14. 実施の形態3に係るAEDの他の構成例を示す図である。FIG. 13 is a diagram showing another configuration example of the AED according to the third embodiment. 実施の形態3に係るAEDのさらに他の構成例を示す図である。FIG. 13 is a diagram showing yet another configuration example of the AED according to the third embodiment.
 以下、本発明の実施形態に係る自動体外式除細動器(以下、AED)について図面を用いて説明する。 The following describes an automated external defibrillator (hereinafter, AED) according to an embodiment of the present invention with reference to the drawings.
 (実施の形態1)
 図1に示すように、実施の形態1に係るAED1は、本体部10と、電極30A及び30Bと、ケーブル40A及び40Bと、を有する。ケーブル40Aは、本体部10と電極30Aとを電気的に接続する。ケーブル40Bは、本体部10と電極30Bとを電気的に接続する。
(Embodiment 1)
1, the AED 1 according to the first embodiment includes a main body 10, electrodes 30A and 30B, and cables 40A and 40B. The cable 40A electrically connects the main body 10 to the electrode 30A. The cable 40B electrically connects the main body 10 to the electrode 30B.
 本体部10の一面には、表示部11と、操作部12とが設けられる。
 表示部11は、例えば液晶表示装置等により構成され、様々な情報を表示する。
 操作部12は、使用者が種々の情報を入力するための、ボリューム12a、ボタン12b等の各種操作子を含む。
A display unit 11 and an operation unit 12 are provided on one surface of the main body unit 10 .
The display unit 11 is configured with, for example, a liquid crystal display device, and displays various information.
The operation unit 12 includes various operators such as a volume 12a and a button 12b for allowing the user to input various pieces of information.
 図2に示すように、AED1は、表示部11と操作部12の他に、記憶部13と、制御部14と、通信部15と、高電圧生成部16と、生体信号取得部17と、状態検出部18と、電源部19と、音声出力部20と、を有する。記憶部13、制御部14、通信部15、高電圧生成部16、生体信号取得部17、状態検出部18、電源部19、及び音声出力部20は、本体部10に内蔵されている。 As shown in FIG. 2, in addition to the display unit 11 and the operation unit 12, the AED 1 has a memory unit 13, a control unit 14, a communication unit 15, a high-voltage generation unit 16, a biosignal acquisition unit 17, a status detection unit 18, a power supply unit 19, and an audio output unit 20. The memory unit 13, the control unit 14, the communication unit 15, the high-voltage generation unit 16, the biosignal acquisition unit 17, the status detection unit 18, the power supply unit 19, and the audio output unit 20 are built into the main body unit 10.
 電源部19は、例えば、出力電圧が120V~200V程度となるように接続された複数の電池を含む。電池は一次電池でも二次電池でもよい。また、キャパシタ等でもよい。電源部19は、商用電源から供給される交流電力により二次電池を充電する充電器を含んでもよい。また、二次電池に代えてキャパシタ等でもよい。また、電源部19は昇圧回路を備えても良い。 The power supply unit 19 includes a number of batteries connected so that the output voltage is, for example, about 120V to 200V. The batteries may be primary or secondary batteries. They may also be capacitors, etc. The power supply unit 19 may include a charger that charges the secondary batteries with AC power supplied from a commercial power source. They may also be capacitors, etc. instead of secondary batteries. The power supply unit 19 may also be equipped with a boost circuit.
 図2では詳細な図示が省略されているが、電源部19は、表示部11、操作部12、記憶部13、制御部14、通信部15、生体信号取得部17、状態検出部18、及び音声出力部20の各部にも接続され、動作用の電力を供給する。 Although detailed illustration is omitted in FIG. 2, the power supply unit 19 is also connected to each of the display unit 11, operation unit 12, memory unit 13, control unit 14, communication unit 15, biosignal acquisition unit 17, status detection unit 18, and audio output unit 20, and supplies power for operation.
 制御部14は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサ、即ちコンピュータを含む。制御部14には、単一のコンピュータが含まれてもよく、また、複数のコンピュータが含まれてもよい。また、制御部14は、ゲートアレイ、A/Dコンバータ等を含んでもよい。
 制御部14は、表示部11、操作部12、記憶部13、通信部15、高電圧生成部16、生体信号取得部17、状態検出部18、及び音声出力部20の各々に接続されている。
The control unit 14 includes a processor, such as a central processing unit (CPU) or a graphics processing unit (GPU), i.e., a computer. The control unit 14 may include a single computer or may include multiple computers. The control unit 14 may also include a gate array, an A/D converter, etc.
The control unit 14 is connected to each of the display unit 11, the operation unit 12, the memory unit 13, the communication unit 15, the high voltage generation unit 16, the biosignal acquisition unit 17, the state detection unit 18, and the audio output unit 20.
 制御部14は、記憶部13に記憶されているプログラムに従って作動することにより、AED1の制御中枢として機能する。制御部14は、プログラムに従って、表示部11、操作部12、記憶部13、通信部15、高電圧生成部16、生体信号取得部17、状態検出部18、及び音声出力部20を制御することによって、生体インピーダンスの測定、心電図解析等の生体情報のリアルタイム解析及び電気ショックの出力等の制御を行う。 The control unit 14 functions as the control center of the AED 1 by operating according to the program stored in the memory unit 13. The control unit 14 controls the display unit 11, operation unit 12, memory unit 13, communication unit 15, high voltage generation unit 16, biosignal acquisition unit 17, status detection unit 18, and audio output unit 20 according to the program, thereby measuring bioimpedance, performing real-time analysis of bioinformation such as electrocardiogram analysis, and controlling the output of electric shocks.
 記憶部13は、ROM(Read Only Memory)等の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリと、から構成される。不揮発性メモリは、プログラムを記憶している。揮発性メモリは、プログラムを実行する際のワークエリアとして制御部14によって利用される。また、揮発性メモリは、心電図信号等の各種生体情報を一時的に記憶する。 The storage unit 13 is composed of a non-volatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory). The non-volatile memory stores programs. The volatile memory is used by the control unit 14 as a work area when executing the programs. The volatile memory also temporarily stores various types of biometric information such as electrocardiogram signals.
 通信部15は、制御部14による制御の下、サーバ装置等の外部の他の情報処理装置と無線又は有線の通信を行う。
 音声出力部20は、スピーカ等より構成され、制御部14による制御の下、音声ガイドや警告等の各種音声を出力する。
The communication unit 15, under the control of the control unit 14, performs wireless or wired communication with other external information processing devices such as a server device.
The audio output unit 20 is composed of a speaker and the like, and outputs various sounds such as audio guidance and warnings under the control of the control unit 14.
 電極30Aは、ケーブル40Aを介して、高電圧生成部16、生体信号取得部17、及び状態検出部18に接続されている。同様に、電極30Bは、ケーブル40Bを介して、高電圧生成部16、生体信号取得部17、及び状態検出部18に接続されている。 Electrode 30A is connected to high voltage generating unit 16, biosignal acquiring unit 17, and status detecting unit 18 via cable 40A. Similarly, electrode 30B is connected to high voltage generating unit 16, biosignal acquiring unit 17, and status detecting unit 18 via cable 40B.
 電極30Aと電極30Bは、それぞれ、棒状体或いはステック状体から構成され、救護者に保持される保持部と、保持部の一端部に配置された導体の針状体とを備える。針状体は、先端が鋭利で、被救護者に刺さって、電極30A,30Bを装着する機能を有する。これにより、被救護者の皮膚が濡れている場合でも、迅速且つ容易に被救護者の皮膚に電極30A,30Bを装着することが可能となる。針状体が被救護者の体に深く入り過ぎないように、例えば、図2に例示するように、針状体の先端から5mm~10mmの位置に、フランジ状等の進入阻止部30Aa,30Baを形成してもよい。進入阻止部30Aa,30Baの位置、形状、数等は、電極30A,30Bの先端が皮下組織に到達し、且つ、体内に深く入ることを防止できれば、任意である。保持部は、基部の一例であり、針状体を含む部分が被救護者の皮膚に装着される装着部の一例である。 The electrodes 30A and 30B are each composed of a rod-shaped or stick-shaped body, and are equipped with a holding part to be held by the rescuer, and a conductive needle-shaped body arranged at one end of the holding part. The needle-shaped body has a sharp tip and functions to pierce the rescuee and attach the electrodes 30A and 30B. This makes it possible to quickly and easily attach the electrodes 30A and 30B to the skin of the rescuee even if the rescuee's skin is wet. In order to prevent the needle-shaped body from penetrating too deeply into the rescuee's body, for example, as illustrated in Figure 2, a flange-shaped or other entry prevention portion 30Aa, 30Ba may be formed at a position 5 mm to 10 mm from the tip of the needle-shaped body. The position, shape, number, etc. of the entry prevention portion 30Aa, 30Ba are arbitrary as long as the tip of the electrode 30A, 30B can be prevented from reaching the subcutaneous tissue and penetrating too deeply into the body. The holding portion is an example of a base, and the portion including the needle-shaped body is an example of an attachment portion that is attached to the skin of the rescue recipient.
 図1に示す生体信号取得部17は、電極30Aと30Bからの心電図信号や、体温、心拍数、呼吸数、血液酸素飽和度、相対的血圧等を示す各種各様な生体信号を取得する。生体信号取得部17は、取得した生体信号の雑音のフィルタリング、増幅等を行った後、制御部14に送信する。制御部14は、生体信号に基づいて、心電図や生体情報の解析等を実行する。 The biosignal acquisition unit 17 shown in FIG. 1 acquires various biosignals such as electrocardiogram signals from electrodes 30A and 30B, as well as body temperature, heart rate, respiratory rate, blood oxygen saturation, and relative blood pressure. The biosignal acquisition unit 17 filters noise from the acquired biosignals, amplifies them, and transmits them to the control unit 14. The control unit 14 performs analysis of the electrocardiogram and bioinformation based on the biosignals.
 状態検出部18は、例えば、電極30A及び30Bとの間のインピーダンス(生体インピーダンス)を測定することにより、電極30A及び30Bの患者への装着状態を検出する。状態検出部18は、電極30A及び30Bの患者への装着状態を示す信号(生体インピーダンスを表す信号)を、装着状態信号として制御部14に出力する。制御部14、高電圧生成部16、及び状態検出部18は、電極30Aと30Bとの間のインピーダンス(生体インピーダンス)を測定する生体インピーダンス測定手段として機能する。 The state detection unit 18 detects the attachment state of the electrodes 30A and 30B to the patient, for example, by measuring the impedance (biological impedance) between the electrodes 30A and 30B. The state detection unit 18 outputs a signal indicating the attachment state of the electrodes 30A and 30B to the patient (a signal representing the bioimpedance) to the control unit 14 as an attachment state signal. The control unit 14, the high voltage generation unit 16, and the state detection unit 18 function as a bioimpedance measuring means that measures the impedance (biological impedance) between the electrodes 30A and 30B.
 制御部14は、装着状態信号に基づいて、電極30A及び30Bの患者への装着状態を判定し、判定した装着状態を、画像として表示部11に表示させたり、音声として音声出力部20から出力させる。 The control unit 14 determines the attachment state of the electrodes 30A and 30B to the patient based on the attachment state signal, and causes the determined attachment state to be displayed as an image on the display unit 11 or output as sound from the audio output unit 20.
 高電圧生成部16は、制御部14からの制御信号に基づいて、電極30A及び30Bから患者に与える電気ショックに相当する高電圧パルス(より具体的には、電極30Aと電極30Bとの間の電位差)を発生させる。高電圧生成部16は、心停止状態の患者の心臓や心拍動を正常な状態に戻すために必要な電気ショックを患者に与えることができれば、その方式は特に限定されない。「心停止状態の患者の心臓や心拍動を正常な状態に戻すために必要な電気ショック」は、具体的には、例えば、電圧値が1000~3000V及び電流値が15~30A、パルス幅が2ms~20ms、エネルギーが150~360J、程度の電気ショックである。 Based on a control signal from the control unit 14, the high voltage generating unit 16 generates a high voltage pulse (more specifically, the potential difference between electrodes 30A and 30B) equivalent to the electric shock to be given to the patient from electrodes 30A and 30B. The high voltage generating unit 16 is not particularly limited in its method as long as it can give the patient an electric shock necessary to return the heart and heartbeat of a patient in cardiac arrest to a normal state. Specifically, the "electric shock necessary to return the heart and heartbeat of a patient in cardiac arrest to a normal state" is, for example, an electric shock with a voltage value of 1000-3000V, a current value of 15-30A, a pulse width of 2ms-20ms, and energy of 150-360J.
 高電圧生成部16として、特開2022-182010号公報及び特開2022-182010号に開示された高電圧パルス生成回路、国際特許出願PCT/JP2023/30715の願書に最初に添付した明細書及び図面に記載された高電圧生成部を採用すると好適である。これらの高電圧生成部を採用することで、小型且つ軽量で、短時間のうちに使用可能になるAED1を提供することができる。 As the high voltage generating unit 16, it is preferable to adopt the high voltage pulse generating circuit disclosed in JP 2022-182010 A and JP 2022-182010 A, and the high voltage generating unit described in the specification and drawings first attached to the application of International Patent Application PCT/JP2023/30715. By adopting these high voltage generating units, it is possible to provide an AED 1 that is small, lightweight, and ready for use in a short time.
 AED1を使用する際には、例えば、電極30A及び30Bを、夫々、図3(A)に例示するように、患者の右前胸部付近及び左側胸部やわき腹付近に装着する。即ち、電極30A及び30Bの先端部の針状の導体部分を、患者の右前胸部付近及び左側胸部やわき腹付近に夫々に差し込む。 When using the AED 1, for example, electrodes 30A and 30B are attached to the patient near the right front chest and the left side of the chest or flank, respectively, as shown in FIG. 3(A). That is, the needle-shaped conductor parts at the tips of electrodes 30A and 30B are inserted into the patient near the right front chest and the left side of the chest or flank, respectively.
 電極30A及び30Bの装着位置は、図3(A)の例に限定されない。電極30A及び30Bの装着位置は、心臓に対して対になる位置、即ち、心臓に対して電気ショックを与えることが可能な位置であれば任意である。具体的には、高電圧パルスにより生じる電流が、電極30A及び30Bのうち一方から心臓を通過して他方に到達する経路を生成可能な位置に、電極30A及び30Bを装着する。例えば、図3(B)、(C)に示すように、電極30Aを、右肩或いは右上腕に装着し、電極30Bを左肩或いは左上腕に装着してもよい。 The attachment positions of the electrodes 30A and 30B are not limited to the example shown in FIG. 3(A). The attachment positions of the electrodes 30A and 30B are arbitrary as long as they are paired with each other on the heart, that is, as long as they are capable of delivering an electric shock to the heart. Specifically, the electrodes 30A and 30B are attached at positions that can generate a path for a current generated by a high-voltage pulse to pass from one of the electrodes 30A and 30B through the heart to the other. For example, as shown in FIGS. 3(B) and (C), the electrode 30A may be attached to the right shoulder or upper right arm, and the electrode 30B may be attached to the left shoulder or upper left arm.
 図4(A)は、従来のパッド式の電極31A,31Bが患者に装着された場合の、電極31A、31Bと心臓Hとの位置関係を示す。パッド式の電極31A及び31Bは、患者の皮膚Kの、心臓Hに電気ショックを与えることが可能な位置に貼り付けられる。 FIG. 4(A) shows the positional relationship between the electrodes 31A, 31B and the heart H when conventional pad-type electrodes 31A, 31B are attached to a patient. The pad-type electrodes 31A and 31B are attached to the patient's skin K at a position where an electric shock can be administered to the heart H.
 AED1が使用されるのは、心電図を素早く正確に計測して電気ショックの要否を判定し、必要と判断した場合に、一刻も早く電気ショックを与える必要がある状況である。即ち、電極31A及び31Bを患者の適切な位置に一刻も早く適切に装着しなければならない状況である。しかし、パッド式の電極31A及び31Bを皮膚Kの適切な位置に貼り付けることが困難な場合が多い。例えば、体液、雨水等で皮膚Kの表面が濡れている場合、胸部を露出することが躊躇される場合等である。 AED1 is used in situations where it is necessary to quickly and accurately measure the electrocardiogram to determine whether or not an electric shock is necessary, and if it is determined to be necessary, to administer an electric shock as quickly as possible. In other words, it is a situation in which electrodes 31A and 31B must be attached appropriately to the appropriate positions on the patient as quickly as possible. However, it is often difficult to attach pad-type electrodes 31A and 31B to the appropriate positions on the skin K. For example, this may occur when the surface of the skin K is wet with bodily fluids or rainwater, or when exposing the chest is hesitant.
 本願発明者は、これらの場合であっても適切な位置に電極を迅速かつ簡便に装着可能とするため、図1及び図4(B)に示す電極30A及び30Bを考案した。電極30A及び30Bは、針状の形状を有し、少なくとも先端部が金属等の導体から構成されている。このため、図4(B)に示すように、使用者(救助者)は、電極30A及び30Bの先端を患者(被救助者)の所定位置の皮膚K及び皮下に突き刺すだけで、迅速且つ簡便に、電極30A及び30Bを患者に装着できる。このため、体液、雨水等の液体で皮膚Kの表面が覆われた被救助者にも、迅速かつ簡易に電極30A及び30Bを装着できる。また、衣服を通して、電極30A、30Bを患者に突き刺すことが可能であり、患者が女性の場合でも、迅速に電極30A,30Bを装着できる。 The inventor of the present application has devised electrodes 30A and 30B shown in Fig. 1 and Fig. 4(B) so that electrodes can be quickly and easily attached to appropriate positions even in these cases. Electrodes 30A and 30B have a needle-like shape, and at least the tip is made of a conductor such as metal. Therefore, as shown in Fig. 4(B), the user (rescuer) can quickly and easily attach electrodes 30A and 30B to the patient (rescuee) by simply piercing the tip of electrodes 30A and 30B into the skin K or subcutaneous tissue at a predetermined position of the patient (rescuee). Therefore, electrodes 30A and 30B can be quickly and easily attached to the rescuee whose skin K is covered with liquid such as body fluids or rainwater. In addition, electrodes 30A and 30B can be pierced into the patient through clothing, so that electrodes 30A and 30B can be quickly attached even if the patient is a woman.
 さらに、従来の図4(A)と本実施形態の図4(B)とを比較すると明確であるが、パッド状電極31A及び31Bの導電部位は、患者の皮膚Kの外部に存在する。これに対して、本実施形態の電極30A及び30Bの導電部位の少なくとも一部は、患者の皮膚Kを越えて皮下組織に位置する。このため、従来と比較して、電極30A及び30Bの間の生体インピーダンスを低減することができる。 Furthermore, as is clear from a comparison of FIG. 4(A) of the conventional embodiment with FIG. 4(B) of the present embodiment, the conductive portions of the pad-shaped electrodes 31A and 31B are present outside the patient's skin K. In contrast, at least a portion of the conductive portions of the electrodes 30A and 30B of the present embodiment are located in the subcutaneous tissue beyond the patient's skin K. Therefore, the bioimpedance between the electrodes 30A and 30B can be reduced compared to the conventional embodiment.
 具体的には、人の生体インピーダンスは、皮膚インピーダンスと、皮下組織インピーダンスとに区分される。図4(A)に示すパッド状電極31A及び31Bは、皮膚Kの表面に装着される。このため、皮膚インピーダンスと皮下組織インピーダンスを介して電流が人の体内に流れる。皮膚インピーダンスは、表面部の角質層のため、1cm2当たり30~100kオームであり、生体インピーダンスを大きくする原因の1つである。さらに、皮膚Kが濡れていたり、皮膚K上に衣服がある場合には、電極31A、31Bと皮膚Kとの間のインピーダンスも大きくなる。 Specifically, a person's bioimpedance is divided into skin impedance and subcutaneous tissue impedance. Pad-shaped electrodes 31A and 31B shown in FIG. 4(A) are attached to the surface of the skin K. As a result, current flows into the human body via the skin impedance and subcutaneous tissue impedance. Skin impedance is 30 to 100 kΩ per cm2 due to the stratum corneum on the surface, which is one of the causes of high bioimpedance. Furthermore, if the skin K is wet or there is clothing on the skin K, the impedance between the electrodes 31A, 31B and the skin K also becomes high.
 これに対し、本実施の形態では、図4(B)に示すように電極30A及び30Bの先端部が皮下組織内に存在する。これにより、角質層の抵抗の影響及び皮膚Kの状況の影響を受けずに、患者の体内に電流を流すことができる。結果として、生体インピーダンスを小さくできる。 In contrast, in this embodiment, as shown in FIG. 4(B), the tips of electrodes 30A and 30B are present in the subcutaneous tissue. This allows current to flow inside the patient's body without being affected by the resistance of the stratum corneum or the condition of the skin K. As a result, bioimpedance can be reduced.
 まとめると、図4(B)に示す針状の電極30A及び30Bは、図4(A)に示す従来のパッド形式の電極31A及び31Bと比較して、次の第1効果及び第2効果を奏することができる。 In summary, the needle-shaped electrodes 30A and 30B shown in FIG. 4(B) can achieve the following first and second effects compared to the conventional pad-type electrodes 31A and 31B shown in FIG. 4(A).
 以下、電極30Aと30B、電極31Aと31B、を個々に区別する必要がない場合、これらをまとめて「電極30」、「電極31」と呼ぶ。また、ケーブル40Aと40Bをまとめて「ケーブル40」と呼ぶ。 Hereinafter, when there is no need to distinguish between electrodes 30A and 30B, and between electrodes 31A and 31B, they will be collectively referred to as "electrodes 30" and "electrodes 31." Additionally, cables 40A and 40B will be collectively referred to as "cable 40."
 第1効果は、電極30は、針状体を有する装着部を有する。このため、患者の皮膚Kの適切な位置に針状体(装着部)を突き刺すだけで、電極30を患者に迅速かつ容易に装着することができることである。この効果を、以下、「容易装着効果」と呼ぶ。特に、体液や雨水で皮膚Kの表面が濡れた患者に対して、容易装着効果は顕著である。また、患者が着衣の状態でも、電極30を迅速且つ容易に装着することができる。 The first effect is that the electrode 30 has an attachment part that has a needle-shaped body. Therefore, the electrode 30 can be quickly and easily attached to the patient by simply inserting the needle-shaped body (attachment part) into an appropriate position of the patient's skin K. This effect is hereinafter referred to as the "easy attachment effect." The easy attachment effect is particularly noticeable for patients whose skin K surface is wet with bodily fluids or rainwater. In addition, the electrode 30 can be quickly and easily attached even when the patient is fully clothed.
 第2効果は、電極30の針状体を皮下組織に達するように患者に装着することで、皮膚インピーダンスの影響を受けずに、生体インピーダンスを低減させることができることである。この効果を、以下、「インピーダンス低減効果」と呼ぶ。 The second effect is that by attaching the needle-shaped body of the electrode 30 to the patient so that it reaches the subcutaneous tissue, it is possible to reduce bioimpedance without being affected by skin impedance. Hereinafter, this effect will be referred to as the "impedance reduction effect."
 (電極30の変形例)
 実施の形態の電極30は、第1効果と第2効果の両方を奏する必要はない。電極30は第1効果を奏するものであれば足り、第2効果を奏するものであるとより好適である。
(Modifications of the electrode 30)
The electrode 30 of the embodiment does not need to achieve both the first effect and the second effect. It is sufficient for the electrode 30 to achieve the first effect, and it is more preferable for the electrode 30 to achieve the second effect.
 例えば、AED1の電極として、図5に示す電極32を用いることも可能である。 For example, the electrode 32 shown in FIG. 5 can be used as the electrode of the AED 1.
 電極32は、洗濯バサミと同様に、握り部321と把持部322と図示せぬコイルバネ(付勢部材)を有している。通常状態では、コイルバネ(付勢部材)の作用により、一対の把持部322は、互いに接触して閉じた状態にある。使用者(救助者)は、一対の握り部321を握って一対の把持部322を開き、一対の把持部322の間に皮膚Kを挿入して挟み、握り部321の握りを解除する。コイルバネの作用により、把持部322を挟んで皮膚Kを把持する。これにより、把持部322が皮膚Kに接触し、皮膚Kに電気的に接続される。一対の握り部321は基部の一例であり、一対の把持部322は、装着部の一例である。 The electrode 32 has a grip portion 321, a holding portion 322, and a coil spring (biasing member) (not shown), similar to a clothespin. In a normal state, the pair of grip portions 322 are in contact with each other and in a closed state due to the action of the coil spring (biasing member). The user (rescuer) grasps the pair of grip portions 321 to open the pair of grip portions 322, inserts and clamps the skin K between the pair of grip portions 322, and releases the grip of the grip portions 321. The grip portions 322 are clamped to hold the skin K due to the action of the coil spring. As a result, the grip portions 322 come into contact with the skin K and are electrically connected to the skin K. The pair of grip portions 321 are an example of a base, and the pair of grip portions 322 are an example of an attachment portion.
 このように、使用者は、簡便な操作で、電極32を患者の皮膚Kに迅速に装着することができる。即ち、電極32は、容易装着効果を奏する。 In this way, the user can quickly attach the electrode 32 to the patient's skin K with a simple operation. In other words, the electrode 32 has an easy-to-attach effect.
 電極32の把持部322は、複数の針状体323を有してもよい。各針状体323の長さは、把持部322が皮膚Kに接触した状態で、その先端が皮下組織に届く長さ、例えば、5mm~10mm程度である。このため、把持部322に皮膚Kが把持されると、針状体323の先端部が、皮下組織内に位置する。これにより、電極32は、インピーダンス低減効果を奏することができる。なお、針状体323を、衣服を介しても、その先端が皮下組織に届く長さ、例えば、10mm~15mm程度としてもよい。針状体323は、装着部の一部を構成する。 The gripping portion 322 of the electrode 32 may have multiple needle-shaped bodies 323. The length of each needle-shaped body 323 is such that its tip reaches the subcutaneous tissue when the gripping portion 322 is in contact with the skin K, for example, about 5 mm to 10 mm. Therefore, when the skin K is gripped by the gripping portion 322, the tip of the needle-shaped body 323 is located within the subcutaneous tissue. This allows the electrode 32 to achieve an impedance reduction effect. The needle-shaped body 323 may be of such a length that its tip reaches the subcutaneous tissue even through clothing, for example, about 10 mm to 15 mm. The needle-shaped body 323 forms part of the attachment portion.
 また、パッド状電極にも本発明を適用可能である。例えば、図6(A)に示すパッド状の電極33は、板状部331と、板状部331の一面に形成された複数の針状体332を備える。各針状体332の長さは、板状部331が皮膚Kに接触した状態で、皮下組織に届く長さ、例えば、5mm~10mm程度である。針状体332の長さを、衣服を介しても、その先端が皮下組織に届く長さ、例えば、10mm~20mm程度としてもよい。なお、板状部331は基部の一例、複数の針状体332は、それぞれ、装着部の一例である。 The present invention can also be applied to pad-shaped electrodes. For example, the pad-shaped electrode 33 shown in FIG. 6(A) comprises a plate-shaped portion 331 and a number of needle-shaped bodies 332 formed on one surface of the plate-shaped portion 331. The length of each needle-shaped body 332 is a length that allows the plate-shaped portion 331 to reach the subcutaneous tissue when in contact with the skin K, for example, about 5 mm to 10 mm. The length of the needle-shaped body 332 may be a length that allows the tip to reach the subcutaneous tissue even through clothing, for example, about 10 mm to 20 mm. The plate-shaped portion 331 is an example of a base, and the multiple needle-shaped bodies 332 are each an example of an attachment portion.
 板状部331の平面形状は、図6(B)に示すようにほぼ矩形状でも、図6(C)に示すようなスティック状でもよい。また、図6(D)に示すように、針状体332を保護するカバー333を配置してもよい。使用時には、カバー333を外してから、電極33を患者に装着する。 The planar shape of the plate-like portion 331 may be substantially rectangular as shown in FIG. 6(B) or stick-like as shown in FIG. 6(C). Also, as shown in FIG. 6(D), a cover 333 may be provided to protect the needle-like body 332. When in use, the cover 333 is removed before attaching the electrode 33 to the patient.
 また、針状体を用いずに第1効果を得ることも可能である。例えば、図7(A)に示すパッド式の電極(パット状電極)34は、板状部341と板状部341の一面に配置された導電性の粘着層342とから構成される。粘着層342は、例えば、導電性粘着剤又は導電性ゲルから構成される。粘着層342は、例えば、導電性のフィラー(充填剤)343を含むことが望ましい。また、導電性の粘着層342は、接着剤入りのシリコン性の塗布ゲルから構成されてもよい。フィラー343は、導電性粘着剤の導電率を良くするためのものであり、カーボンフィラー、金属(導電率が高い銀が望ましい)が好適である。導電性粘着剤又は導電性ゲルの詳細については、例えば「精密工学会誌Vol.79,No.8,2013 730乃至734頁」の「導電性接着技術」を参考にするとよい。 It is also possible to obtain the first effect without using a needle-shaped body. For example, the pad-type electrode (pad-shaped electrode) 34 shown in FIG. 7A is composed of a plate-shaped portion 341 and a conductive adhesive layer 342 arranged on one surface of the plate-shaped portion 341. The adhesive layer 342 is composed of, for example, a conductive adhesive or a conductive gel. The adhesive layer 342 preferably includes, for example, a conductive filler (filler) 343. The conductive adhesive layer 342 may also be composed of a silicone coating gel containing adhesive. The filler 343 is for improving the conductivity of the conductive adhesive, and is preferably a carbon filler or a metal (preferably silver, which has high conductivity). For details on the conductive adhesive or conductive gel, please refer to "Conductive Adhesive Technology" in "Journal of the Japan Society for Precision Engineering, Vol. 79, No. 8, 2013, pp. 730-734".
 使用者は、粘着層342を患者の皮膚Kに押し付けて貼り付けることで、皮膚Kの表面が濡れている場合でも、電極34を迅速にかつ容易に患者に装着することができる。板状部341は基部の一例、導電性の粘着層342は、装着部の一例である。 The user can quickly and easily attach the electrode 34 to the patient by pressing the adhesive layer 342 against the patient's skin K, even if the surface of the skin K is wet. The plate-shaped portion 341 is an example of a base, and the conductive adhesive layer 342 is an example of an attachment portion.
 なお、粘着層342上に、剥離紙344を配置しておくことが望ましい。使用時には、粘着層342から剥離紙344を剥がしてから、電極34を患者に装着する。 It is desirable to place release paper 344 on the adhesive layer 342. When in use, peel off the release paper 344 from the adhesive layer 342 and then attach the electrode 34 to the patient.
 なお、図7(B)に示すように、図6(A)に示す電極33に粘着層342を配置してもよい。同様に、図5に示す電極32等にも粘着層342を配置可能である。 As shown in FIG. 7(B), an adhesive layer 342 may be disposed on the electrode 33 shown in FIG. 6(A). Similarly, an adhesive layer 342 may be disposed on the electrode 32 shown in FIG. 5, etc.
 AED1を使用する上では、生体インピーダンスは小さい方が望ましい。生体インピーダンスを低減するためには、電極の表面積、より正確には、患者の組織との接触面積、を大きくすることが望ましい。しかし、単純に表面積を大きくすると、電極のサイズが大きくなってしまう。以下、電極30を例に、電極の本体のサイズ自体を大きくすることなく、実効的な表面積を大きくする方法を説明する。 When using the AED 1, it is desirable to have a small bioimpedance. In order to reduce the bioimpedance, it is desirable to increase the surface area of the electrode, or more precisely, the contact area with the patient's tissue. However, simply increasing the surface area results in a larger electrode size. Below, we will use electrode 30 as an example to explain a method for increasing the effective surface area without increasing the size of the electrode itself.
 例えば、図8(A)に模式的に示すように、電極30の先端部分、より正確には、患者の皮下組織に接触する針状体35を導電性の多孔質物質で形成することが有効である。導電性の多孔質物質は、例えば、多孔質金属、多孔質炭素などから構成される。また、多孔質物質は、親水性が高いことが望ましい。電極の表面を親水処理してもよい。多孔質物質は多数の細孔351を備え、比表面積が大きい。このため、同一形状且つサイズであっても、多孔質物質で形成した針状体35が、非多孔質で形成した電極よりも表面積が大きい。多孔質物質で形成された針状体35は装着部の一例である。 For example, as shown in FIG. 8(A), it is effective to form the tip of the electrode 30, or more precisely, the needle-shaped body 35 that comes into contact with the subcutaneous tissue of the patient, from a conductive porous material. The conductive porous material is composed of, for example, porous metal, porous carbon, etc. It is also desirable for the porous material to be highly hydrophilic. The surface of the electrode may be hydrophilized. The porous material has many pores 351 and a large specific surface area. Therefore, even if the shape and size are the same, the needle-shaped body 35 formed from a porous material has a larger surface area than an electrode formed from a non-porous material. The needle-shaped body 35 formed from a porous material is an example of an attachment part.
 電極30を患者に装着すると、針状体35が親水性を有するので、体液が針状体35の多孔質の電極30の表面に広がって接触する。従って、電極30と患者の接触面積が大きい。このため、生体インピーダンスを小さくすることができる。 When the electrode 30 is attached to a patient, the needle-shaped body 35 is hydrophilic, so bodily fluids spread over the surface of the porous electrode 30 of the needle-shaped body 35 and come into contact with it. Therefore, the contact area between the electrode 30 and the patient is large. This makes it possible to reduce bioimpedance.
 例えば、図8(B)に示すように、針状体35に導電性で可撓性の繊維(導電性繊維)352を配置してもよい。繊維352が可撓性であるため、針状体35を患者に刺し込む際には、繊維352は針状体35の表面に押し付けられて、大きな抵抗にならない。一方、針状体35の皮下組織に入った部分の繊維352は、広がって、電流路となり、電極30の実効的な表面積を増大する。これにより、生体インピーダンスを小さくすることができる。 For example, as shown in FIG. 8(B), conductive and flexible fibers (conductive fibers) 352 may be arranged on the needle-shaped body 35. Because the fibers 352 are flexible, when the needle-shaped body 35 is inserted into the patient, the fibers 352 are pressed against the surface of the needle-shaped body 35 and do not provide significant resistance. On the other hand, the portion of the fibers 352 that has entered the subcutaneous tissue of the needle-shaped body 35 spreads out and becomes a current path, increasing the effective surface area of the electrode 30. This makes it possible to reduce bioimpedance.
 また、例えば、電極30を患者に装着した後、電極30がそのサイズを増大するようにしてもよい。 Also, for example, the electrode 30 may increase in size after it is attached to the patient.
 例えば、図9(A)に示す構成では、電極30は、ケース電極353と、ケース電極353に収容された導電性のピン群354とを備える。ピン群354は、電極本体に相当するケース電極353に対して、補助電極に相当する。 For example, in the configuration shown in FIG. 9(A), the electrode 30 includes a case electrode 353 and a conductive pin group 354 housed in the case electrode 353. The pin group 354 corresponds to an auxiliary electrode with respect to the case electrode 353, which corresponds to the electrode body.
 ケース電極353は、少なくとも先端部353aが先鋭状の外形を有し、全体として針状に形成されている。ケース電極353は、内部が中空に形成されている。ケース電極353の中空部には、スライダ355が配置されている。ケース電極353の根本付近には、ストッパボタン356が配置されている。 At least the tip 353a of the case electrode 353 has a sharp outer shape, and the case electrode 353 is formed in a needle shape as a whole. The inside of the case electrode 353 is hollow. A slider 355 is disposed in the hollow part of the case electrode 353. A stopper button 356 is disposed near the base of the case electrode 353.
 ケース電極353の先端部353aは、開閉可能に形成されている。先端部353aが閉じた状態では、ケース電極353は、先が尖って、患者の体内に挿入可能となっている。一方、先端部353aが開いた状態では、ケース電極353の内部空間の先端が開いた状態となり、ピン群354の出入りが可能となる。 The tip 353a of the case electrode 353 is formed so that it can be opened and closed. When the tip 353a is closed, the case electrode 353 has a sharp tip and can be inserted into the patient's body. On the other hand, when the tip 353a is open, the tip of the internal space of the case electrode 353 is open, allowing the pin group 354 to enter and exit.
 スライダ355は、ケース電極353の基部に係止されている。スライダ355は、ケース電極353の根本部分に係止された状態で、付勢部材357により先端方向に付勢されている。スライダ355には、ピン群354が固定されている。ケース電極353及びピン群354は、ケーブル40に電気的に接続されている。 The slider 355 is engaged with the base of the case electrode 353. With the slider 355 engaged with the base of the case electrode 353, it is biased toward the tip by a biasing member 357. A group of pins 354 is fixed to the slider 355. The case electrode 353 and the group of pins 354 are electrically connected to the cable 40.
 ストッパボタン356は、先端部353aとスライダ355に連動している。ストッパボタン356が操作されると、先端部353a相互の係合及びスライダ355とケース電極353との係合を解除する機能を有する。 The stopper button 356 is linked to the tip 353a and the slider 355. When the stopper button 356 is operated, it has the function of releasing the engagement between the tip 353a and the engagement between the slider 355 and the case electrode 353.
 初期状態では、ピン群354はケース電極353内に収容され、先端部353aは閉じられている。
 使用者は、この状態の電極30の先端部353aを患者の体内に刺し込んで装着する。先端部353aが皮下組織に到達すると、使用者は、ストッパボタン256を解除操作する。ストッパボタン356の解除操作により、先端部353a相互の係合が解除されて先端部353aが開き、スライダ355のケース電極353の基端部への係合が解除される。これにより、付勢部材357の付勢により、スライダ355が押し出され、図9(B)に示すように、ピン群354がケース電極353の外に押し出される。これにより、患者の皮下組織内で、ピン群354がケース電極353の先に延びさらに広がる。このため、電極30全体としての実効的な表面積が増大する。これにより、生体インピーダンスを低減することができる。
In the initial state, the pin group 354 is housed in the case electrode 353, and the tip portion 353a is closed.
The user inserts the tip 353a of the electrode 30 in this state into the patient's body to attach it. When the tip 353a reaches the subcutaneous tissue, the user releases the stopper button 256. By releasing the stopper button 356, the mutual engagement of the tip parts 353a is released, the tip parts 353a open, and the engagement of the slider 355 with the base end of the case electrode 353 is released. As a result, the slider 355 is pushed out by the bias of the biasing member 357, and the pin group 354 is pushed out of the case electrode 353 as shown in FIG. 9B. As a result, the pin group 354 extends beyond the case electrode 353 in the subcutaneous tissue of the patient and further spreads. Therefore, the effective surface area of the electrode 30 as a whole is increased. This makes it possible to reduce the bioimpedance.
 なお、ケース電極353の先端の開口からピン群354を突出させる例を示したが、電極30の実効的な表面積を拡大できる補助電極ならば、突出させる対象と突出させる位置は任意である。また、補助電極を移動する手段(付勢部材)も任意である。 In the above example, the pin group 354 protrudes from the opening at the tip of the case electrode 353, but the target and the position from which it protrudes can be any as long as the auxiliary electrode can increase the effective surface area of the electrode 30. In addition, the means for moving the auxiliary electrode (the biasing member) can also be any.
 例えば、図10(A)、10(B)に示すように、ピン群354をケース電極353の側面から突出させてもよい。また、突出させるピンの形状も任意である。また、例えば、図11に示すように、ピン群354に代えて、綿状の導体繊維358としてもよい。 For example, as shown in Figures 10(A) and 10(B), the pin group 354 may protrude from the side of the case electrode 353. The shape of the protruding pins may also be arbitrary. For example, as shown in Figure 11, the pin group 354 may be replaced with cotton-like conductive fibers 358.
 以上の説明では、針状体は円錐状としたが、針状体の形状は、円錐形状に限定されず、角錐形状、鋸歯状など、皮膚に容易に刺し込めて、皮下組織に到達できるならば、任意である。スライダ355をコイルバネで付勢して移動させる手法を開示したが、付勢させる手段は任意であり、板バネ等でもよく、バネに限らずゴム等体でもよい。また、手動で押し出すようにしてもよい。 In the above explanation, the needle-shaped body is conical, but the shape of the needle-shaped body is not limited to a cone, and may be any shape, such as a pyramidal or sawtooth shape, as long as it can be easily inserted into the skin and reach the subcutaneous tissue. A method of biasing the slider 355 with a coil spring to move it has been disclosed, but the biasing means is arbitrary and may be a leaf spring or the like, or may be a body other than a spring such as rubber. It may also be manually pushed out.
 以上説明したように、実施の形態1では、患者に迅速且つ容易に装着できる電極を備えるAED1を提供できる。また、低生体インピーダンスのAED1を提供できる。 As described above, in the first embodiment, an AED 1 can be provided that is equipped with electrodes that can be quickly and easily attached to a patient. In addition, an AED 1 with low bioimpedance can be provided.
 (実施の形態2)
 図3(A)~(C)に示すように、電極30~32の装着位置は、変化する。このため、一対の電極間のインピーダンス(生体インピーダンス)は変動する。従来のAEDでは、生体インピーダンスが変動に伴って、患者に印加する高電圧パルスのエネルギーも変動してしまう。例えば、印加パルスのパルス高(電圧)とパルス幅が一定とすると、生体インピーダンスが大きくなるに従って小さくなる。
(Embodiment 2)
As shown in Figures 3A to 3C, the attachment positions of the electrodes 30 to 32 change. This causes the impedance (biological impedance) between a pair of electrodes to vary. In a conventional AED, the energy of the high-voltage pulse applied to the patient varies as the bioimpedance varies. For example, if the pulse height (voltage) and pulse width of the applied pulse are constant, the energy decreases as the bioimpedance increases.
 また、印加する高電圧パルスは、1パルスに限定されない。例えば、図13に示すように、正極性パルスと負極性パルスとのセットを複数セット印加してもよい。 Furthermore, the number of high voltage pulses applied is not limited to one. For example, as shown in FIG. 13, multiple sets of positive and negative pulses may be applied.
 本実施形態では、生体インピーダンスの変動にかかわらず、ほぼ一定のエネルギーの高電圧パルスを、任意の回数だけ、印加できるAEDについて説明する。以下の説明では、電極は、針状の電極30Aと30Bであるとする。 In this embodiment, an AED is described that can apply a high-voltage pulse of almost constant energy any number of times, regardless of fluctuations in bioimpedance. In the following description, the electrodes are assumed to be needle-shaped electrodes 30A and 30B.
 本実施形態では、生体インピーダンスが基準値Rrのときに、印加する電圧パルスが予め設定されて、記憶部13に記憶されている。 In this embodiment, the voltage pulse to be applied when the bioimpedance is at the reference value Rr is preset and stored in the memory unit 13.
 次に、被救護者に高圧パルス電圧を印加する処理を図10のフローチャートを参照しつつ説明する。
 被救護者に高圧パルス電圧を印加する場合、例えば、図3(A)~(C)に示す位置に、一対の電極30Aと30Bを挿し込んでセットする。
Next, the process of applying a high voltage pulse voltage to a person to be rescued will be described with reference to the flow chart of FIG.
When a high voltage pulse voltage is applied to a person to be rescued, a pair of electrodes 30A and 30B are inserted and set at the positions shown in, for example, FIGS.
 次に、操作部12を操作して、心電図の表示を指示する。制御部14は、電極30Aと30Bの間の電圧を生体信号取得部17を介して取得し、これを表示部11に表示する。
 救護者は、心電図を確認し、電気ショックが必要な否かを判断する。電気ショックが必要と判断した場合、救護者は、操作部12を操作して、印加するパルス数を設定し、その後、高圧パルスの印加を指示する。
Next, an instruction to display an electrocardiogram is given by operating the operation unit 12. The control unit 14 acquires the voltage between the electrodes 30A and 30B via the biosignal acquisition unit 17, and displays it on the display unit 11.
The rescuer checks the electrocardiogram and determines whether or not an electric shock is necessary. If it is determined that an electric shock is necessary, the rescuer operates the operation unit 12 to set the number of pulses to be applied, and then issues an instruction to apply a high-voltage pulse.
 印加ボタンが押下されると、図12に示す高電圧パルス印加処理を開始する。 When the application button is pressed, the high voltage pulse application process shown in Figure 12 begins.
 制御部14は、処理を開始すると、高電圧生成部16を制御し、電極30Aと30Bの間に、予め設定された基準電圧を印加する。状態検出部18は、電極30A,30Bに流れる電流を測定し、測定値を制御部14に通知する。制御部14は、高電圧生成部16が印加した基準電圧と状態検出部18が検出した電流とから、電極30Aから30Bの間のインピーダンスを測定する(ステップS11)。 When the control unit 14 starts processing, it controls the high voltage generation unit 16 to apply a preset reference voltage between electrodes 30A and 30B. The state detection unit 18 measures the current flowing through electrodes 30A and 30B and notifies the control unit 14 of the measured value. The control unit 14 measures the impedance between electrodes 30A and 30B from the reference voltage applied by the high voltage generation unit 16 and the current detected by the state detection unit 18 (step S11).
 制御部14は、測定したインピーダンスRbと予め設定されているインピーダンスの基準値Rrの比RHを求める(ステップS12)。
 制御部14は、求めた比に応じて、発生する電圧パルスの波形を調整する。例えば、高電圧パルスの電圧を調整する場合、基準波形の電圧を√RH倍する。また、高電圧パルスの印加時間を調整する場合には、基準波形のパルス幅(印加時間)をRH倍する(ステップS13)。
 次に、印加数iを1に設定する(ステップS14)。
The control unit 14 obtains a ratio RH of the measured impedance Rb to a preset reference value Rr of the impedance (step S12).
The control unit 14 adjusts the waveform of the generated voltage pulse according to the calculated ratio. For example, when adjusting the voltage of the high-voltage pulse, the voltage of the reference waveform is multiplied by √RH. When adjusting the application time of the high-voltage pulse, the pulse width (application time) of the reference waveform is multiplied by RH (step S13).
Next, the application number i is set to 1 (step S14).
 次に、制御部14は、高電圧生成部16を制御して、ステップS13で調整した電圧波形のパルスを、設定したパルス幅だけ出力させる(ステップS15)。 The control unit 14 then controls the high voltage generating unit 16 to output a pulse of the voltage waveform adjusted in step S13 for the set pulse width (step S15).
 次に、制御部14は、印加したパルスのセット数iが設定値に達したか否かを判別し(ステップS16)、達していなければ(ステップS16:No)、iを+1して(ステップS17)、例えば、2~4秒の一定時間待機した後、ステップS15にリターンし、次のパルスセットを印加する。 The control unit 14 then determines whether the number of applied pulse sets, i, has reached a set value (step S16), and if not (step S16: No), increments i by 1 (step S17), waits for a fixed period of time, for example, 2 to 4 seconds, and then returns to step S15 to apply the next pulse set.
 一方、制御部14は、ステップS16で、印加したパルスのセット数iが設定値に達していると判別すると(ステップS16:Yes)、高電圧パルス印加処理を終了する。その後は、自動的に、心電図を表示する処理に移行してもよい。 On the other hand, if the control unit 14 determines in step S16 that the set number i of applied pulses has reached the set value (step S16: Yes), it ends the high-voltage pulse application process. After that, it may automatically proceed to the process of displaying the electrocardiogram.
 このような構成とすることにより、生体インピーダンスの変動にかかわらず、ほぼ一定のエネルギーの電気ショックを被救護者に印加することができる。 By using this configuration, it is possible to apply an electric shock of approximately constant energy to the recipient, regardless of fluctuations in bioimpedance.
(変形例)
 なお、図12では、いわゆるBTE波形(二相性切断指数波形)の高電圧パルスを2セット患者に印加する例を示したが、高電圧パルスの波形やセット数は任意である。例えば、RLB波形(二相性直流波形)、MDS(単相性サインカーブ波形)を1セット、又は3セット以上、印加してもよい。
(Modification)
12 shows an example in which two sets of high-voltage pulses of a so-called BTE waveform (biphasic truncated exponential waveform) are applied to the patient, but the waveform of the high-voltage pulse and the number of sets are arbitrary. For example, one set of an RLB waveform (biphasic direct current waveform) or an MDS (monophasic sinusoidal waveform) may be applied, or three or more sets may be applied.
 (実施の形態3)
 AEDの使用が必要な現場が過疎地域の場合、患者に救助者となる同行者がいなければ、患者を孤立させないように、近隣の救助者を確保する必要がある。また、患者と救助者を孤立させないように、医師又は消防隊や救急隊を含む地域の医療コミュニティと適切にコミュニケーションを図れる仕組みが必要になる。
(Embodiment 3)
In cases where the use of an AED is required in a depopulated area, if the patient does not have a companion to rescue them, it is necessary to secure rescuers in the vicinity to avoid isolating the patient. In addition, a system is required to ensure appropriate communication with the local medical community, including doctors, firefighters, and ambulance crews, to avoid isolating the patient and rescuer.
 即ち、救急現場にて、患者(傷病者)と向き合う救助者を孤立させない社会システムを実現し、ひいては救急を含め地域医療には医師、救助者、消防隊や救急隊、地域及び患者(傷病者)を含む皆が参加できる仕組みが必要になる。 In other words, we need a social system that does not isolate rescuers who come into contact with patients (injured or ill people) at emergency scenes, and ultimately a system in which everyone can participate in local medical care, including emergency care, including doctors, rescuers, fire and ambulance teams, the local community, and patients (injured or ill people).
 このような仕組みを実現させるためのひとつの手法として、AEDを通信機器として機能させると好適である。AEDを通信機器として機能させることで、遠隔の医師や医療コミュニティ(緊急の場合には救急隊や救急病院)の端末と各種情報を授受することができる。例えば、AEDが取得した心電図(信号)や心拍数の情報を救急隊や救急病院に提供して、当該救急隊や救急病院から救助者に対して、電気ショックの要否等患者に対する適切な措置を伝達することができる。 One suitable method for realizing such a system is to have the AED function as a communications device. By having the AED function as a communications device, it can send and receive various information with terminals of remote doctors and the medical community (ambulance teams and emergency hospitals in the case of an emergency). For example, electrocardiogram (signals) and heart rate information acquired by the AED can be provided to ambulance teams and emergency hospitals, which can then communicate to rescuers appropriate measures for the patient, such as whether or not an electric shock is required.
 図14(A)、(B)は、実施の形態に係るAED2の裏面側外観と表面側概観の一例を示す。
 AED2は、通信機と一体型の構成を有している。以下、通信機をスマートフォンとする。ただし、スマートフォンに限定する趣旨ではなく、通信機は、タブレット、パームトップコンピュータ、アマチュア無線機、自動販売機など通信機能を有すれば任意である。
14A and 14B show an example of the rear and front appearances of the AED 2 according to the embodiment.
The AED 2 is integrated with a communication device. Hereinafter, the communication device is assumed to be a smartphone. However, the communication device is not limited to a smartphone, and may be any device having a communication function, such as a tablet, a palmtop computer, an amateur radio device, or a vending machine.
 図15に示すように、AED2は、AED用の構成(以下、AED部)21と、スマートフォン用の構成(以下、スマートフォン部)22とを備える。AED部21とスマートフォン部22とは、バッテリー23と共用部24を共用する。共用部24は、例えば、表示部11、操作部12、記憶部13、制御部14、及び通信部15、音声出力部20等である。 As shown in FIG. 15, the AED 2 includes an AED configuration (hereinafter, AED section) 21 and a smartphone configuration (hereinafter, smartphone section) 22. The AED section 21 and smartphone section 22 share a battery 23 and a shared section 24. The shared section 24 includes, for example, the display section 11, the operation section 12, the memory section 13, the control section 14, the communication section 15, the audio output section 20, etc.
 AED部21は、例えば、図2に例示したAED1の構成を有する。スマートフォン部22は、例えば、既知のスマートフォンの構成を有する。AED部21と、スマートフォン部22と、バッテリー23は、1つの筐体に収容されている。なお、電源部19を構成するバッテリー23の全部又は一部を、外部装置に配置してもよい。例えば、図14(C)に示すように、AED2にケース25を用意し、ケース25に外部電池26を配置することが考えられる。この場合、例えば、AED2をケース25に装着すると、AED2の電源コネクタにケース25の電源プラグ27が接続されて、外部電池26からAED2に自動的に電力を供給するように構成する。このようにすれば、AED2内の電源部19のサイズを抑えつつ、大電力をAED2に供給許容できる。 The AED unit 21 has, for example, the configuration of the AED 1 illustrated in FIG. 2. The smartphone unit 22 has, for example, the configuration of a known smartphone. The AED unit 21, smartphone unit 22, and battery 23 are housed in a single housing. Note that all or part of the battery 23 constituting the power supply unit 19 may be disposed in an external device. For example, as shown in FIG. 14(C), a case 25 may be prepared for the AED 2, and an external battery 26 may be disposed in the case 25. In this case, for example, when the AED 2 is attached to the case 25, the power plug 27 of the case 25 is connected to the power connector of the AED 2, and power is automatically supplied from the external battery 26 to the AED 2. In this way, it is possible to supply a large amount of power to the AED 2 while suppressing the size of the power supply unit 19 in the AED 2.
 AED2は、市販のスマートフォンと比較するとAED部21を有する分高価になる。ただし、一体型であるがゆえ市販のスマートフォンとバッテリーを共有できるし常に携帯することも可能になる。 AED2 is more expensive than commercially available smartphones because it includes AED unit 21. However, because it is an integrated unit, it can share the same battery as a commercially available smartphone and can be carried around at all times.
 ここでいうスマートフォンとは、例えば、iphone(登録商標)やAndoroido(登録商標)のOSが搭載され、市販のものと同様の各種方式の通信が実行でき、かつ、各種アプリケーションソフトウェアがインストールされていれば実行できる環境にあるものをいう。 The term "smartphone" refers to a device that is equipped with an OS such as iPhone (registered trademark) or Andoroid (registered trademark), can carry out various communication methods similar to those of commercially available devices, and is in an environment in which various application software can be installed and executed.
 また、スマートフォンと一体型とは、スマートフォンが元々備えているハードウェア、スマートフォンに外付けで装着させるハードウェア、及びスマートフォンで実行されるソフトウェアプログラムにより図2のAEDの機能的構成を実現することをいう。例えば、表示部11は、図14(B)に示すように、スマートフォンの一面に配置されるディスプレイにより構成することができる。操作部12は、スマートフォンに元々備えられているハードウェアボタンや、表示部11に表示されるソフトウェアボタンにより構成することができる。 In addition, being integrated with a smartphone means that the functional configuration of the AED in FIG. 2 is realized by hardware that is originally equipped on the smartphone, hardware that is externally attached to the smartphone, and a software program executed on the smartphone. For example, the display unit 11 can be configured by a display placed on one side of the smartphone, as shown in FIG. 14(B). The operation unit 12 can be configured by hardware buttons that are originally equipped on the smartphone, and software buttons that are displayed on the display unit 11.
 また、記憶部13、制御部14、及び通信部15は、スマートフォンに元々内蔵されているハードウェアにより構成することができる。
 高電圧生成部16は、スマートフォンが元々備えているハードウェア又は、スマートフォンに外付けで装着させるハードウェアにより構成することができる。
Furthermore, the memory unit 13, the control unit 14, and the communication unit 15 can be configured using hardware that is originally built into the smartphone.
The high voltage generating unit 16 can be configured by hardware that the smartphone is originally equipped with, or by hardware that is attached externally to the smartphone.
 生体信号取得部17及び状態検出部18は、スマートフォンで実行されるソフトウェアプログラムにより構成することができる。 The biosignal acquisition unit 17 and the condition detection unit 18 can be configured as a software program executed on a smartphone.
 電源部19は、スマートフォンに装着されるバッテリー23により構成することができる。即ち、スマートフォンのバッテリー23をAED1の電源部19として共有することができる。 The power supply unit 19 can be configured by a battery 23 attached to the smartphone. In other words, the battery 23 of the smartphone can be shared as the power supply unit 19 of the AED 1.
 携帯を容易にするため、電極30Aは、図14(A)に示すように、全体として略直方体状の筐体の裏面に配置することができる。この場合、電極30Aは、図7(A)に例示した粘着層342が付されたものを採用して、容易装着効果を奏するようにすると好適である。ケーブル40Aは、AED1の本体部10の内部に配線されている。 To facilitate portability, the electrode 30A can be placed on the back of the housing, which is generally rectangular as a whole, as shown in FIG. 14(A). In this case, it is preferable to use the electrode 30A with the adhesive layer 342 shown in FIG. 7(A) to facilitate easy attachment. The cable 40A is wired inside the main body 10 of the AED 1.
 電極30Bは、図4(B)に示す針状のものが採用されている。電極30Bは、図12(A)に示すように、ケーブル40Bと共に筐体の側面部にアタッチメントにより着脱可能に収納される。 The electrode 30B is needle-shaped as shown in FIG. 4(B). As shown in FIG. 12(A), the electrode 30B is removably stored on the side of the housing with an attachment together with the cable 40B.
 なお、電極30A及び30Bについては、図14(A),(B)に示す例は一例に過ぎず、変更可能である。例えば、電極30Aを図4(B)に示す針状のものにしてもよい。この場合、電極30Aを、筐体の他の側面に収納(着脱)可能としてもよい。また、電極30A及び30Bの少なくとも一方を図5に示す洗濯バサミ状のものにしてもよい。 Note that the example of electrodes 30A and 30B shown in Figs. 14(A) and (B) is merely an example and can be modified. For example, electrode 30A may be needle-shaped as shown in Fig. 4(B). In this case, electrode 30A may be made retractable (detachable) on the other side of the housing. Also, at least one of electrodes 30A and 30B may be clothespin-shaped as shown in Fig. 5.
 AEDとスマートフォンとを一体化するのでなく、スマートフォンをリモコン装置として、AEDをリモコン装置で操作することも可能である。一例として、図16において、スマートフォン50はAED1Aのリモートコントローラ(以下、リモコン)として機能する。スマートフォン50は、AED機能を有しない通常の市販のものである。 Instead of integrating the AED and the smartphone, it is also possible to use the smartphone as a remote control device and operate the AED with the remote control device. As an example, in FIG. 16, the smartphone 50 functions as a remote controller (hereinafter, remote control) for the AED 1A. The smartphone 50 is a normal commercially available smartphone that does not have an AED function.
 スマートフォン50には、AED1Aの操作を可能となる専用のアプリケーションソフトウェア(以下、「AEDアプリ」と呼ぶ)がインストールされている。AED1Aの使用者(救助者)は、無線通信により、スマートフォン50を用いてAED1Aを操作することが可能になる。  Special application software (hereinafter referred to as the "AED app") that enables the operation of the AED 1A is installed on the smartphone 50. The user (rescuer) of the AED 1A can operate the AED 1A using the smartphone 50 via wireless communication.
 図16に示すAED1Aは、図1のAED1と異なり、電極30Aがパッド型で、AED1Aの背面に取り付けられている。その他の構成は図1と同様である。この場合、電極30Aは、図7(A)に例示した粘着層342が付されたものを採用すると好適である。ケーブル40Aは、AED1の本体部10の内部に配線されている。 The AED 1A shown in FIG. 16 differs from the AED 1 in FIG. 1 in that the electrode 30A is pad-type and attached to the back of the AED 1A. The rest of the configuration is the same as in FIG. 1. In this case, it is preferable to use an electrode 30A with an adhesive layer 342 as shown in FIG. 7(A). The cable 40A is wired inside the main body 10 of the AED 1.
 なお、電極30A及び30Bについては、図16の例は一例に過ぎず、例えば電極30Aも図4(B)に示す針状のものにしてもよいし、或いはまた、電極30A及び30Bの少なくとも一方を図5に示す洗濯バサミ及び剣山状のものにしてもよい。 Note that the example of electrodes 30A and 30B in FIG. 16 is merely one example, and for example, electrode 30A may also be needle-shaped as shown in FIG. 4(B), or at least one of electrodes 30A and 30B may be clothespin- and pinholder-shaped as shown in FIG. 5.
 図16に示すAED1Aの通信部15は、Wi-fi(登録商標)やBluetooth(商標)により無線でスマートフォン50と通信をする。通信部15は、AED1Aを操作のための制御信号(以下、「操作信号」と呼ぶ)をスマートフォン50から受信し、制御部14に提供する。制御部14は、操作信号に基づいて、AED1Aの動作を制御する。換言すると、スマートフォン50が、AED1Aのコントローラとしての機能を発揮する。 The communication unit 15 of the AED 1A shown in FIG. 16 wirelessly communicates with the smartphone 50 via Wi-fi (registered trademark) or Bluetooth (trademark). The communication unit 15 receives a control signal for operating the AED 1A (hereinafter referred to as an "operation signal") from the smartphone 50 and provides it to the control unit 14. The control unit 14 controls the operation of the AED 1A based on the operation signal. In other words, the smartphone 50 functions as a controller for the AED 1A.
 また、通信部15は、AED1Aの生体信号取得部17により取得された心電図信号等の生体信号を、スマートフォン50に送信する。スマートフォン50は、さらにインターネット等を介して、心電図信号等の生体信号を、遠隔の医師や医療コミュニティの端末に送信することができる。 The communication unit 15 also transmits biosignals, such as electrocardiogram signals, acquired by the biosignal acquisition unit 17 of the AED 1A to the smartphone 50. The smartphone 50 can further transmit biosignals, such as electrocardiogram signals, to a terminal of a remote doctor or medical community via the Internet or the like.
 スマートフォン50をAED1Aのコントローラとして機能させるためには、スマートフォン50とAED1Aとを無線接続させる必要がある。ただし、市販のスマートフォン50は、不特定多数との無線接続を前提としているため、AED1Aと無線接続するために一定の時間を要する。 In order for the smartphone 50 to function as a controller for the AED 1A, it is necessary to wirelessly connect the smartphone 50 and the AED 1A. However, since commercially available smartphones 50 are designed to be wirelessly connected to an unspecified number of people, it takes a certain amount of time to wirelessly connect to the AED 1A.
 しかし、AED1Aの使用は一刻を争うものである。このため、スマートフォン50とAED1との接続に要する時間を、この一定の時間よりも短縮したい場合がある。 However, time is of the essence when using the AED 1A. For this reason, there are cases where it is desirable to shorten the time required for connection between the smartphone 50 and the AED 1 beyond this fixed time.
 このため、図17に示すように、AED1Aと即座に接続ができるように、専用コントローラ60を使用してもよい。図17に示す専用コントローラ60は、図16のスマートフォン50用のAEDアプリと同様の機能を有するプログラムが予めインストールされている。即ち、図17のAED1Aは、専用コントローラ60と接続される。接続の方式は特に限定されない。例えば、無線通信は、電波通信でも、赤外線通信でもよい。また、有線等でもよい。 For this reason, as shown in FIG. 17, a dedicated controller 60 may be used to enable immediate connection to the AED 1A. The dedicated controller 60 shown in FIG. 17 has a program pre-installed that has the same functions as the AED app for the smartphone 50 in FIG. 16. That is, the AED 1A in FIG. 17 is connected to the dedicated controller 60. There are no particular limitations on the method of connection. For example, the wireless communication may be radio wave communication or infrared communication. It may also be wired, etc.
 AED1Aとコントローラの接続対象の方式は、図16の例では、AED1A:コントローラ(スマートフォン50)が1:∞となる。これに対して、図17の例では、AED1A:コントローラ(専用コントローラ60)が1:1となる。これにより、図17の例では、AED1Aが専用コントローラ60に即座に接続され、AED1Aを迅速に動作させることが可能になる。 In the example of FIG. 16, the AED 1A and the controller are connected in a 1:∞ ratio of AED 1A:controller (smartphone 50). In contrast, in the example of FIG. 17, the AED 1A:controller (dedicated controller 60) is 1:1. As a result, in the example of FIG. 17, the AED 1A is instantly connected to the dedicated controller 60, making it possible to operate the AED 1A quickly.
 以上、図14~図17を参照して、通信機能を備えるAED2,1Aについて説明した。
 AEDに通信機能を付与することで、AEDにより取得された心電図や心拍数等の生体情報の記録をリアルタイムで救急隊や救急病院にリモート伝送して、当該救急隊や救急病院から救助者に対して、電気ショックの要否等患者に対する適切な措置をリモート伝送することができる。さらに、このようにAEDから、心電図信号以外のバイタルサイン(生体信号等)を救急隊や救急病院にリアルタイムでリモート伝送することができれば、より一段と適切な措置を患者に施すことができるようになる。
The AEDs 2 and 1A having a communication function have been described above with reference to FIGS.
By providing an AED with a communication function, records of bioinformation such as an electrocardiogram and heart rate obtained by the AED can be remotely transmitted in real time to an emergency team or an emergency hospital, and the emergency team or emergency hospital can remotely transmit appropriate measures for the patient, such as whether or not an electric shock is required, to the rescuer. Furthermore, if vital signs (biological signals, etc.) other than the electrocardiogram signal can be remotely transmitted in real time from the AED to an emergency team or an emergency hospital in this way, it will be possible to provide even more appropriate measures to the patient.
 このような心電図信号以外のバイタルサインを取得するセンサは、AED1、1A、2、スマートフォン50、又は専用コントローラ60に内蔵されているものでもよいし、外部のものであってもよい。外部のセンサは、AED1、1A,2、スマートフォン50、又は専用コントローラ60との間で任意の方式により通信ができる。 The sensor for acquiring such vital signs other than the electrocardiogram signal may be built into the AED 1, 1A, 2, the smartphone 50, or the dedicated controller 60, or may be external. The external sensor can communicate with the AED 1, 1A, 2, the smartphone 50, or the dedicated controller 60 using any method.
 具体的には例えば、図17に示すように、専用コントローラ60に、小型のイヤホン型センサ61を取り出し可能な状態で格納しておいてもよい。なお、イヤホン型センサ61は、AED1,1A,2に配置されてもよい。このイヤホン型センサは、患者の外耳に装着されて、鼓膜の奥にある中耳内の組織や構造の循環動態等から当該患者のバイタルサイン(例えば体温、呼吸数、心拍数、相対的血圧、血中酸素飽和度等)を取得して、Bluetooth(登録商標)等の所定方式の無線通信でAED1、1A,2,スマートフォン50,専用コントローラ60に送信する。 Specifically, for example, as shown in FIG. 17, a small earphone-type sensor 61 may be stored in a removable state in the dedicated controller 60. The earphone-type sensor 61 may be placed in the AED 1, 1A, or 2. This earphone-type sensor is attached to the patient's outer ear and obtains the patient's vital signs (e.g., body temperature, respiratory rate, heart rate, relative blood pressure, blood oxygen saturation, etc.) from the circulatory dynamics of the tissues and structures in the middle ear behind the eardrum, and transmits the same to the AED 1, 1A, or 2, smartphone 50, and dedicated controller 60 via a specified wireless communication method such as Bluetooth (registered trademark).
 例えば心停止が発生した緊急現場において、救助者は、先ず、患者(被救助者)の前胸部等にAED1Aの電極30A及び30Bを装着する。これにより、AED1により取得された心電図(信号)や心拍数等の記録を救急隊や救急病院にリモート伝送することが可能になる。
 さらに、救助者は、イヤホン型センサ61を患者の外耳道に挿入する。これより、イヤホン型センサ61は、患者の鼓膜深部の組織や構造から、当該患者のバイタルサインを取得し、AED1Aに送信する。AED1Aは、バイタルサインを救急隊や救急病院にリアルタイムで伝送する。
For example, at the scene of an emergency where cardiac arrest has occurred, a rescuer first attaches the electrodes 30A and 30B of the AED 1A to the anterior chest of the patient (rescued person). This makes it possible to remotely transmit records of an electrocardiogram (signal), heart rate, etc. acquired by the AED 1 to an ambulance or an emergency hospital.
Furthermore, the rescuer inserts the earphone sensor 61 into the ear canal of the patient. The earphone sensor 61 then acquires vital signs of the patient from tissues and structures deep in the eardrum of the patient and transmits them to the AED 1A. The AED 1A transmits the vital signs to an ambulance or an emergency hospital in real time.
 以上まとめると、AEDは、スマートフォンが有する機能と組み合わせると好適である。ここで、組み合わせ方は、特に限定されず、一体型であてもよいし、分離型であってもよい。 In summary, AEDs are ideal when combined with the functions of smartphones. There are no particular limitations on how they can be combined, and they can be integrated or separate.
 例えば、AED1A、2は、スマートフォンの近距離通信機能(Bluetooth Low Energy:BLE)(登録商標)を使用することで、電極30から得られる生体情報(心拍等)だけでなく、AED起動条件アルゴリズムを精密化することができる。
 また例えば、AED1A、2は、BLEを使用してIoT医療機器と連動(通信)することで、電極30から取得できないバイタルサインを補助的に取得することができる。具体的には例えば、上述のイヤホン型センサ61は、体温、呼吸数、心拍数、相対的血圧、血中酸素飽和度等のバイタルサインを取得することができる。このようなバイタルサインを用いることで、AED1の誤起動や不発等を防止することができる。
For example, by using a short-range communication function of a smartphone (Bluetooth Low Energy: BLE) (registered trademark), the AEDs 1A and 2 can refine not only the bio-information (heart rate, etc.) obtained from the electrodes 30 but also the AED activation condition algorithm.
Furthermore, for example, the AEDs 1A and 2 can link (communicate) with an IoT medical device using BLE to supplementarily acquire vital signs that cannot be acquired from the electrodes 30. Specifically, for example, the earphone-type sensor 61 described above can acquire vital signs such as body temperature, respiratory rate, heart rate, relative blood pressure, and blood oxygen saturation. Using such vital signs can prevent erroneous activation or failure of the AED 1.
 また、イヤホン型センサ61のように一体化(脱着式)のIoT医療機器を採用することにより、確実なバイタルサインを取得できるようになる。 In addition, by adopting an integrated (detachable) IoT medical device such as the earphone-type sensor 61, it becomes possible to obtain reliable vital signs.
 また、AED1A,2は、長距離通信機能(WAN 4G/5G(登録商標)、インターネット接続機能)を用いて、遠隔の医師や医療コミュニティ(緊急の場合には救急隊や救急病院)に、患者の状況をリアルタイムで通知することができる。ここで、医療コミュニティには、行政機関(近接する消防署、救急隊、医療機関等)も含まれる。
 またAED1A,2は、近距離通信機能を用いて、患者の近傍(10~100m圏内)に居合わせた医療従事者に緊急事態の発生を通報することができる。通報を受けた医療従事者は、患者(被救助者)に対する救助者として、AED1A、2を使用して適切な措置を図ることができる。
 このようにして、医療従事者の早期救護参加による患者の延命率の向上を図ることができる。
In addition, the AEDs 1A and 2 can notify remote doctors and the medical community (ambulance teams and emergency hospitals in case of an emergency) of the patient's condition in real time using a long-distance communication function (WAN 4G/5G (registered trademark), Internet connection function). Here, the medical community includes government agencies (nearby fire stations, ambulance teams, medical institutions, etc.).
In addition, the AEDs 1A and 2 can use the short-distance communication function to notify medical personnel who are near the patient (within a range of 10 to 100 m) of the occurrence of an emergency. The medical personnel who receive the notification can use the AEDs 1A and 2 to take appropriate measures to rescue the patient (person to be rescued).
In this way, the survival rate of patients can be improved by having medical personnel participate in rescue efforts early.
 また例えば、AED1A,2は、救助者が救護を行う際に、患者の様子を撮像した画像(静止画でも動画でもよい)を、救急隊や救急病院に送信する機能をさらに有することができる。このようにして、患者のバイタルサインに加えて、患者の画像を送信することにより、救急隊や医師が、事前に患者の外傷の状態や姿勢(頭部の向き、気道確保の状況、手足の向き等も含む)を知ることができ、的確な準備をすることができる。 For example, the AEDs 1A and 2 can further have a function of transmitting an image (which may be a still image or a video) of the patient's condition to an emergency team or emergency hospital when a rescuer is providing first aid. In this way, by transmitting an image of the patient in addition to the patient's vital signs, the emergency team or doctor can learn in advance the state of the patient's injuries and posture (including the direction of the head, the state of the airway, the direction of the limbs, etc.), allowing them to make appropriate preparations.
 なお、患者の画像の解像度は、通信状況により最大8Kの解像度等まで自動的に制御されるようにしてもよい。
 また、救助者のAED1(スマートフォン機能)と近距離通信により周囲の別の救助者等が保有するスマートフォンが通信可能となる通信帯域(必要に応じて複数のスマートフォンの通信帯域)を提供するように制御してもよい。ここで、複数の通信帯域を有効に使うことで、8Kの解像度の画像等の大容量の画像情報をやり取りすることが可能になる。
In addition, the resolution of the patient's image may be automatically controlled up to a maximum resolution of 8K depending on the communication conditions.
In addition, the AED 1 (smartphone function) of the rescuer may be controlled to provide a communication band (communication bands for multiple smartphones as necessary) that enables communication between the AED 1 (smartphone function) of the rescuer and a smartphone held by another rescuer in the vicinity through short-distance communication. Here, by effectively using multiple communication bands, it becomes possible to exchange large amounts of image information, such as images with a resolution of 8K.
 また例えば、AED1A,2は、救助者が患者の救助を行う際に、救急隊や救急病院との間で通話する機能をさらに有することができる。救急隊や救急病院は、患者のバイタルサイン等に基づいて、救助者と通話することにより、患者の状況に応じた応急措置の指示やさらなる状況把握のための質問のやり取り等を適切に行うことができる。 Also, for example, the AEDs 1A and 2 can have a function for communicating with an ambulance team or an emergency hospital when a rescuer rescues a patient. By communicating with the rescuer based on the patient's vital signs, the ambulance team or emergency hospital can appropriately give instructions on first aid measures according to the patient's condition and ask questions to further understand the situation.
 さらに、上述の患者の画像を救急隊や救急病院に送信する機能と組み合わせることで、救急隊や救急病院は、患者の外傷の状態や姿勢(頭部の向き、気道確保の状況、手足の向き等も含む)に基づいて、応急措置の指示やさらなる質問のやり取りをより一段と適切に行うことができる。 Furthermore, by combining this with the function of sending images of the patient to emergency teams or emergency hospitals, emergency teams or hospitals can more appropriately give instructions on first aid and ask further questions based on the state of the patient's injuries and posture (including the direction of the head, the state of airway management, and the direction of the limbs, etc.).
 以上、本発明の一実施形態について説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned embodiment, and includes modifications and improvements within the scope of achieving the object of the present invention.
 また、緊急心停止事態とそれに対する処置(心肺蘇生等)がもたらすプロセスや結果(即ち、時々刻々の救命判断とそれよる救命処置、それらに対する被救助者(患者)の生体反応や医療的効果)の実際的な記録は、いわゆるビッグデータとして記録及び集積されることが望ましい。記録及び修正されたデータは、AIによるより分析され、現場に即した救命処置ガイドラインの作成において有効に活用されうる。 In addition, it is desirable to record and accumulate actual records of the process and results of emergency cardiac arrest and the treatment (such as cardiopulmonary resuscitation) (i.e., moment-to-moment life-saving decisions and resulting life-saving treatments, as well as the rescuee's (patient's) biological reactions and medical effects in response to these) as so-called big data. Recorded and corrected data can be further analyzed using AI and effectively used in creating life-saving treatment guidelines tailored to the situation.
 電極30は、上述の実施形態の形式に限定されない。本発明が適用されるAEDの電極は、容易装着効果を奏するものであれば足り、さらに必要に応じてインピーダンス低減効果を奏するものであると好適である。 The electrodes 30 are not limited to the form of the above-mentioned embodiment. The electrodes of the AED to which the present invention is applied need only be easy to attach, and preferably also have an impedance reduction effect as needed.
 容易装着効果を奏するためには、被救助者(患者)の皮膚に装着されて電気ショックを付与する一対の電極が、濡れた状態の当該皮膚に対して導電部位を装着させる装着部としての機能(第1機能)を有すれば足りる。
 具体的には例えば、図1や図4(B)の針状の電極30の場合、電極30の少なくとも一部が皮膚に突き刺さる機能が、第1機能の一例である。
In order to achieve the easy attachment effect, it is sufficient that the pair of electrodes that are attached to the skin of the rescuee (patient) to deliver an electric shock have the function (first function) of serving as an attachment part that attaches a conductive part to the skin in a wet state.
Specifically, for example, in the case of the needle-shaped electrode 30 of FIG. 1 or FIG. 4B, the function of at least a part of the electrode 30 piercing the skin is an example of the first function.
 また、図5の電極32の場合、救助者により握り部321が握られた場合には把持部322が開き、把持部322の間に被救助者(患者)の皮膚が挿入されて挟みこまれた後、握り部321の握りが解除されると把持部322により皮膚が把持(剣山状に配置された多数の電極の先端が一部皮下に穿通され、表皮組織による生体インピーダンスの低下をきたす場合も否定されない)される機能が、第1機能の一例である。 In the case of the electrode 32 in FIG. 5, when the rescuer grasps the gripping portion 321, the gripping portion 322 opens, and the skin of the rescuee (patient) is inserted and pinched between the gripping portions 322. When the grip of the gripping portion 321 is released, the gripping portion 322 grasps the skin (this does not exclude the possibility that the tips of the numerous electrodes arranged in a pinholder shape may penetrate partially under the skin, causing a decrease in bioimpedance due to the epidermal tissue). This is an example of the first function.
 また、例えば、図7(A)の板状部341に導電性粘着層324を配置した構成の場合には、導電性粘着層324が患者の皮膚に貼り付けられる機能が、第1機能の一例である。 In addition, for example, in the case of a configuration in which the conductive adhesive layer 324 is disposed on the plate-shaped portion 341 in FIG. 7(A), the function of attaching the conductive adhesive layer 324 to the patient's skin is an example of the first function.
 また、インピーダンス低減効果を奏するためには、電極30は、その少なくとも一部が被救助者(患者)の皮膚の内部に存在するように装着される第2機能を有すれば足りる。
 具体的には例えば、図1や図4(B)の針状の電極30形式の場合、電極30の一部が皮膚に突き刺さって皮下組織に至る機能が、第2機能の一例である。
 また、洗濯バサミ状の電極32の場合、針状体323の少なくとも一部が皮膚組織に達する機能が、第2機能の一例である。
Furthermore, in order to achieve the impedance reducing effect, it is sufficient for the electrode 30 to have the second function of being attached so that at least a part of it is present inside the skin of the rescuee (patient).
Specifically, for example, in the case of the needle-shaped electrode 30 shown in FIG. 1 or FIG. 4B, the function of a part of the electrode 30 piercing the skin and reaching the subcutaneous tissue is an example of the second function.
In the case of the clothespin-shaped electrode 32, the function of at least a part of the needle-shaped body 323 reaching the skin tissue is an example of the second function.
 また、図2に示す機能ブロック図は、例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行できる機能が備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは、特に図2の例に限定されない。 Furthermore, the functional block diagram shown in FIG. 2 is merely an example and is not particularly limited. In other words, it is sufficient if the function capable of executing the above-mentioned series of processes as a whole is provided, and the type of functional block used to realize this function is not particularly limited to the example in FIG. 2.
 また、機能ブロックの存在場所も、図2に限定されず、任意でよい。例えばAED1の機能ブロックの少なくとも一部を、AED1と通信可能な他の情報処理装置(例えば図7のスマートフォン50や図8の専用コントローラ60)に設けてもよいし、その逆でもよい。
 そして、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体との組み合わせで構成してもよい。
In addition, the locations of the functional blocks are not limited to those shown in Fig. 2 and may be arbitrary. For example, at least a part of the functional blocks of the AED 1 may be provided in another information processing device capable of communicating with the AED 1 (for example, the smartphone 50 in Fig. 7 or the dedicated controller 60 in Fig. 8), or vice versa.
A single functional block may be configured as a single piece of hardware, or may be configured in combination with a single piece of software.
 各機能ブロックの処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
 コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。
When the processing of each functional block is executed by software, the program constituting the software is installed into a computer or the like from a network or a recording medium.
The computer may be a computer built into dedicated hardware, or may be a computer capable of executing various functions by installing various programs, such as a server, a general-purpose smartphone, or a personal computer.
 このようなプログラムを含む記録媒体は、各ユーザにプログラムを提供するために装置本体とは別に配布される、リムーバブルメディアにより構成されるだけではなく、装置本体に予め組み込まれた状態で各ユーザに提供される記録媒体等で構成される。 Recording media containing such programs are not only configured as removable media that are distributed separately from the device body in order to provide each user with the program, but also configured as recording media etc. that are provided to each user in a state where they are already installed in the device body.
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に添って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。 In this specification, the steps describing the program to be recorded on the recording medium include not only processes that are performed in chronological order, but also processes that are not necessarily performed in chronological order but are executed in parallel or individually.
   1、1A、2:AED(自動体外式除細動器)
  10:本体部
  11 表示部
  12 操作部
  13 記憶部
  14 制御部
  15 通信部
  16 高電圧生成部
  17 生体信号取得部
  18 状態検出部
  19 電源部
  20 音声出力部
  30、30A、30B、31~34:電極
  40、40A、40B:ケーブル
  50 スマートフォン
  60 専用コントローラ
 321 握り部
 322 把持部
 323 針状体
1, 1A, 2: AED (automated external defibrillator)
10: Main body 11: Display 12: Operation section 13: Memory section 14: Control section 15: Communication section 16: High voltage generation section 17: Biosignal acquisition section 18: Status detection section 19: Power supply section 20: Audio output section 30, 30A, 30B, 31 to 34: Electrodes 40, 40A, 40B: Cables 50: Smartphone 60: Dedicated controller 321: Grip section 322: Holding section 323: Needle-shaped body

Claims (13)

  1.  被救助者に装着されて電気ショックを与える一対の電極を備え、
     前記電極は、濡れた状態の被救護者の皮膚に装着させる装着部を有する、
     自動体外式除細動器。
    A pair of electrodes is attached to the rescuee to deliver an electric shock,
    The electrode has an attachment part that is attached to the skin of a rescue recipient in a wet state.
    Automated external defibrillator.
  2.  前記装着部は、被救助者の皮膚に突き刺さる針状体を有する、
     請求項1に記載の自動体外式除細動器。
    The attachment portion has a needle-shaped body that pierces the skin of the rescuee.
    2. The automated external defibrillator of claim 1.
  3.  前記電極は、棒状体を有し、
     前記棒状体の端部に前記針状体が配置されている、
     請求項2に記載の自動体外式除細動器。
    The electrode has a rod-shaped body,
    The needle-shaped body is disposed at the end of the rod-shaped body.
    3. The automated external defibrillator of claim 2.
  4.  前記電極は、基部を有し、
     少なくとも1つの前記針状体が、前記基部に配置されている、
     請求項2に記載の自動体外式除細動器。
    The electrode has a base;
    At least one of the needle-shaped bodies is disposed on the base.
    3. The automated external defibrillator of claim 2.
  5.  前記電極は、前記被救助者の救助者により握られる握り部と、前記被救助者の前記皮膚を把持する把持部と、を有し、前記救助者により前記握り部が握られた場合には前記把持部が開き、前記把持部の間に前記被救助者の前記皮膚が挿入されて挟みこまれた後、前記握り部の握りが解除されると前記把持部により前記皮膚が把持され、
     前記装着部は、少なくとも、前記把持部から構成される、
     請求項1に記載の自動体外式除細動器。
    The electrodes have a gripping portion that is gripped by a rescuer of the rescuee, and a gripping portion that grips the skin of the rescuee, and when the gripping portion is gripped by the rescuer, the gripping portions open, and the skin of the rescuee is inserted and sandwiched between the gripping portions, and when the gripping portion is released, the skin is gripped by the gripping portions,
    The mounting portion is composed of at least the grip portion.
    2. The automated external defibrillator of claim 1.
  6.  前記装着部に、被救助者の皮膚に突き刺さる針状体が配置されている、
     前記装着部は、少なくとも前記把持部と前記針状体を含む、
     請求項5に記載の自動体外式除細動器。
    A needle-shaped object that pierces the skin of the rescuee is disposed in the attachment part.
    The mounting portion includes at least the gripping portion and the needle-shaped body.
    6. The automated external defibrillator of claim 5.
  7.  前記電極は、板状部と、前記板状部に積層され、フィラーを含む導電性粘着剤の層を備え、
     前記装着部は、前記導電性粘着剤の層から構成される、
     請求項1に記載の自動体外式除細動器。
    the electrode includes a plate-shaped portion and a layer of a conductive adhesive containing a filler that is laminated on the plate-shaped portion;
    The mounting portion is composed of a layer of the conductive adhesive.
    2. The automated external defibrillator of claim 1.
  8.  前記装着部は、その一部が、被救助者の皮下組織に到達する部分を備える、
     請求項1から3のいずれか1項に記載の自動体外式除細動器。
    The attachment portion has a portion that reaches the subcutaneous tissue of the rescuee.
    4. An automatic external defibrillator according to any one of claims 1 to 3.
  9.  前記針状体は、導電性の多孔質物質から構成される、
     請求項2に記載の自動体外式除細動器。
    The needle-shaped body is made of a conductive porous material.
    3. The automated external defibrillator of claim 2.
  10.  前記針状体は、表面に複数の導電性繊維が配置されている、
     請求項2に記載の自動体外式除細動器。
    The needle-shaped body has a plurality of conductive fibers arranged on the surface thereof.
    3. The automated external defibrillator of claim 2.
  11.  前記針状体は、内部に補助電極を備え、
     前記補助電極は、前記針状体の外部に突出し、前記電極の表面積を増大する、
     請求項2に記載の自動体外式除細動器。
    The needle-shaped body has an auxiliary electrode therein,
    The auxiliary electrode protrudes outside the needle-shaped body to increase the surface area of the electrode.
    3. The automated external defibrillator of claim 2.
  12.  被救護者に装着された前記一対の電極の間のインピーダンスを測定するインピーダンス測定手段と、
     インピーダンス測定手段により測定されたインピーダンスに従って、前記一対の電極を介して前記被救護者に印加する電圧パルスを調整する手段を備える、
     請求項1から11のいずれか1項に記載の自動体外式除細動器。
    an impedance measuring means for measuring the impedance between the pair of electrodes attached to the rescuee;
    a means for adjusting a voltage pulse to be applied to the rescuee via the pair of electrodes in accordance with the impedance measured by the impedance measuring means;
    12. An automated external defibrillator according to any one of claims 1 to 11.
  13.  前記自動体外式除細動器は、直方体状の筐体を有し、
     前記一対の電極の一方はパッド状電極から構成され、前記筐体の一面に配置され、
     前記一対の電極の他方は、一端に針状体を備えるスティック状に形成されており、前記筐体の側面部に着脱可能に保持されている、
     請求項1から12のいずれか1項に記載の自動体外式除細動器。
    The automated external defibrillator has a rectangular parallelepiped housing,
    One of the pair of electrodes is a pad-shaped electrode and is disposed on one surface of the housing;
    The other of the pair of electrodes is formed in a stick shape having a needle-shaped body at one end and is detachably held on the side surface of the housing.
    13. An automated external defibrillator according to any one of claims 1 to 12.
PCT/JP2023/036430 2022-10-05 2023-10-05 Automated external defibrillator WO2024075820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160854 2022-10-05
JP2022-160854 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024075820A1 true WO2024075820A1 (en) 2024-04-11

Family

ID=90608444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036430 WO2024075820A1 (en) 2022-10-05 2023-10-05 Automated external defibrillator

Country Status (1)

Country Link
WO (1) WO2024075820A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130427A1 (en) * 2001-05-01 2003-07-10 Cleary Gary W. Two-phase, water-absorbent bioadhesive composition
JP2009154008A (en) * 2000-01-18 2009-07-16 Koninkl Philips Electronics Nv Charge-based defibrillation method and apparatus
JP2015500090A (en) * 2011-12-06 2015-01-05 カーディオスライヴ インコーポレイテッド Apparatus and method for reducing transthoracic impedance of a patient
US11433249B1 (en) * 2022-04-04 2022-09-06 Altrix Medical, Inc. Compact AED with one distal electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154008A (en) * 2000-01-18 2009-07-16 Koninkl Philips Electronics Nv Charge-based defibrillation method and apparatus
US20030130427A1 (en) * 2001-05-01 2003-07-10 Cleary Gary W. Two-phase, water-absorbent bioadhesive composition
JP2015500090A (en) * 2011-12-06 2015-01-05 カーディオスライヴ インコーポレイテッド Apparatus and method for reducing transthoracic impedance of a patient
US11433249B1 (en) * 2022-04-04 2022-09-06 Altrix Medical, Inc. Compact AED with one distal electrode

Similar Documents

Publication Publication Date Title
US11690781B2 (en) Mobile device control
US20220008286A1 (en) Integrated resuscitation
US6595918B2 (en) Tele-diagnostic device
JP2014517759A5 (en)
US10328266B2 (en) External pacing device with discomfort management
US20210146146A1 (en) Accessory-based storage for use with a medical device
US11596353B2 (en) Multilayer wearable device
EP1157717A1 (en) System for measuring and analysing Cardio-Pulmonary Resuscitation (CPR) parameters for use with and by an external defibrillator (AED)
US10589113B2 (en) Authentication of shock therapy deferral
US10213124B2 (en) Electrocardiogram package
US11097107B2 (en) External pacing device with discomfort management
WO2017114490A1 (en) Vital signs monitor provided with cardiac first aid apparatus
WO2024075820A1 (en) Automated external defibrillator
CN105813555B (en) Medical device for the detection, measurement and transmission of vital biomedical parameters of the human body, such as cardiovascular and respiratory parameters, in a bloodless and non-invasive manner
KR20200056744A (en) Method, apparatus and computer program for measuring biological signals
CN116269359B (en) Diagnostic and therapeutic device for tinnitus
US11992339B2 (en) Systems and methods for dynamic neurophysiological stimulation
JP7457412B2 (en) A system that locally activates the human eyes and brain to train visual performance, especially a system that activates the visual cortex and reorganizes the neural network of the human brain to strengthen residual vision.
US20190336073A1 (en) Systems and Methods for Dynamic Neurophysiological Stimulation
RU58327U1 (en) DEVICE FOR MONITORING, WILL-CORRECTION OF PSYCHOPHYSIOLOGICAL CONDITIONS AND ASSESSMENT OF PSYCHOPHYSIOLOGICAL COMPATIBILITY
CN113658500A (en) Cardio-pulmonary resuscitation real-time feedback APP device
CN116943036A (en) Defibrillation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874945

Country of ref document: EP

Kind code of ref document: A1