WO2024074064A1 - 一种间接式多层级余热回收的热泵空调***及其控制方法 - Google Patents

一种间接式多层级余热回收的热泵空调***及其控制方法 Download PDF

Info

Publication number
WO2024074064A1
WO2024074064A1 PCT/CN2023/104547 CN2023104547W WO2024074064A1 WO 2024074064 A1 WO2024074064 A1 WO 2024074064A1 CN 2023104547 W CN2023104547 W CN 2023104547W WO 2024074064 A1 WO2024074064 A1 WO 2024074064A1
Authority
WO
WIPO (PCT)
Prior art keywords
way valve
electronic expansion
water pump
port
heater
Prior art date
Application number
PCT/CN2023/104547
Other languages
English (en)
French (fr)
Inventor
李蒙
高游游
徐兴
李勇
廉玉波
凌和平
邱嵩
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2024074064A1 publication Critical patent/WO2024074064A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/00607Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/46Heat pumps, e.g. for cabin heating

Definitions

  • the present invention relates to the technical field of thermal management of new energy vehicles, and in particular to a heat pump air-conditioning system with indirect multi-level waste heat recovery and a control method thereof.
  • the driving range is one of the bottlenecks restricting the development of new energy vehicles.
  • the thermal management technology of the whole vehicle has also received widespread attention.
  • heat pumps have high efficiency, which can save electricity and provide a comfortable passenger compartment environment.
  • the battery When the battery is started at low temperature, in order to avoid a large amount of capacity decay caused by low-temperature discharge, the battery needs to be heated; during normal driving, the battery needs to be maintained in a specific temperature range so that its capacity and service life will not decay significantly.
  • the heat of electric drive and other heat not only needs to be dissipated, but also the remaining heat needs to be utilized to heat the passenger compartment and the battery.
  • most traditional direct heat pump air conditioners can only absorb heat from the environment, with a single working mode, and it is difficult to achieve waste heat recovery from batteries and electric drive systems.
  • the present invention provides a heat pump air-conditioning system with indirect multi-level waste heat recovery and a control method thereof, which can perform multi-level waste heat recovery at low temperatures, fully cool the battery, electric drive and cabin at medium and high temperatures at the same time, and meet various thermal management needs with low energy consumption under all-weather conditions.
  • the present invention achieves the above technical objectives through the following technical means.
  • An indirect multi-stage waste heat recovery heat pump air conditioning system comprising:
  • a compressor, a first one-way valve, an outdoor heat exchanger, a second one-way valve and a gas-liquid separator are connected in sequence, wherein two ends of the first one-way valve are connected to a water condenser and a first electronic expansion valve, two ends of the second one-way valve are connected to an evaporator and a second electronic expansion valve, and two ends of the second one-way valve are also connected to a third electronic expansion valve and a chiller;
  • a first water pump, a first heater and a heater core are connected in sequence, and the water condenser is also connected to the first water pump and the heater core respectively;
  • the third one-way valve, the third water pump, the second heater, the power battery and the fourth one-way valve are connected in sequence, the third one-way valve is also connected to the radiator, and the fourth one-way valve is also connected to the three-way valve; the chiller is also connected to the third water pump and the fourth one-way valve respectively.
  • a fan is provided at the radiator.
  • blowers are provided at the evaporator and the heater core.
  • the compressor, the first one-way valve, the first electronic expansion valve, the second one-way valve, the second electronic expansion valve, the third electronic expansion valve, the first water pump, the first heater, the second water pump, the three-way valve, the third one-way valve, the third water pump, the second heater, the fourth one-way valve, the blower, and the fan are all communicatively connected to the control module.
  • a control method for a heat pump air conditioning system with indirect multi-level waste heat recovery :
  • the control module controls the refrigerant flow rate through the compressor, controls the coolant flow rate through the first water pump, the second water pump and the third water pump, controls the air flow rate through the blower and the fan, controls the heating power of the first heater and the second heater, controls the connection, disconnection or realization of the specified flow state of the fluid through the first one-way valve, the first electronic expansion valve, the second one-way valve, the second electronic expansion valve, the third electronic expansion valve, the three-way valve, the third one-way valve and the fourth one-way valve, and realizes the following working modes: the heat pump heats the cabin in a low temperature environment, the heat pump heats the cabin and the electric drive waste heat heats the battery in a low temperature environment, the electric drive radiator is cooled in a medium temperature environment, and the heat pump air conditioner cools the cabin, the electric drive radiator and the battery chiller in a high temperature environment.
  • the heat pump heats the cabin in the low temperature environment through the following process:
  • the heat pump heats the cabin and the electric drive waste heat heats the battery in the low temperature environment, which is achieved through the following process:
  • the heat pump air conditioning cooling the cabin, the electric drive radiator cooling and the battery chiller cooling in a high temperature environment are achieved through the following process:
  • a vehicle comprises the above-mentioned heat pump air-conditioning system.
  • the heat pump air-conditioning system of the present invention comprises a compressor, a first one-way valve, a water condenser, a first electronic expansion valve, an outdoor heat exchanger, a second one-way valve, a second electronic expansion valve, an evaporator, a third electronic expansion valve, a chiller, a gas-liquid separator, a first water pump, a first heater, a heater core, a second water pump, a radiator, an electric drive system, a three-way valve, a third one-way valve, a third water pump, a second heater, a power battery and a fourth one-way valve, wherein the compressor, the first one-way valve, the water condenser, the first electronic expansion valve, the outdoor heat exchanger, the second one-way valve, the second electronic expansion valve, the evaporator, the third electronic expansion valve, the chiller and the gas-liquid separator constitute a heat pump refrigerant cycle, the first water pump, the first heater and the heater core constitute a cabin heating cycle, the
  • the heat pump air-conditioning system of the present invention can realize the following working modes: the heat pump heats the cabin in a low temperature environment, the heat pump heats the cabin and the electric drive waste heat heats the battery in a low temperature environment, the electric drive radiator is cooled in a medium temperature environment, and the heat pump air-conditioning cools the cabin, the electric drive radiator and the battery chiller in a high temperature environment, covering a variety of thermal management needs under all-weather conditions and reducing energy consumption through reasonable waste heat utilization.
  • the working mode of the heat pump to heat the cabin in the medium and low temperature environment of the present invention utilizes the heat pump refrigerant cycle to provide heating, thereby reducing the energy consumption of the thermal management system; while the heat pump heats the cabin in the low temperature environment, it can also achieve the purpose of heating the battery through the waste heat of the electric drive, thereby alleviating the problems of increased internal resistance and severe aging of the battery at low temperatures; the electric drive radiator cooling in the medium temperature environment can ensure the thermal safety of the electric drive in the medium temperature environment and achieve the effect of reducing the energy consumption of thermal management; in the high temperature environment, the heat pump air conditioning cools the cabin, the electric drive radiator cools the battery chiller, which ensures the comfort of the cabin and the thermal management safety of the electric drive and battery at high temperatures, and solves the problem of insufficient heat dissipation of the battery radiator cooling at high temperatures.
  • FIG1 is a diagram of a heat pump air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the communication connection between the control module of the present invention and each actuator of the heat pump air conditioning system;
  • FIG3 is a schematic internal structure diagram of the control module of the present invention.
  • FIG4 is a system diagram of the heat pump air conditioning system of the present invention in a heat pump heating cabin mode under a low temperature environment
  • FIG. 5 is a system diagram of the heat pump air conditioning system of the present invention in a heat pump heating cabin mode and an electric drive waste heat heating battery mode under a low temperature environment;
  • FIG6 is a system diagram of the heat pump air conditioning system of the present invention in an electric drive radiator cooling mode under a medium temperature environment
  • FIG7 is a diagram of the heat pump air conditioning system of the present invention in a high temperature environment, in which the heat pump air conditioning cools the cabin, the electric drive radiator cools the System diagram in pool chiller cooling mode;
  • 100-heat pump air conditioning system 101-compressor, 102-first one-way valve, 103-water condenser, 104-first electronic expansion valve, 105-outdoor heat exchanger, 106-second one-way valve, 107-second electronic expansion valve, 108-evaporator, 109-third electronic expansion valve, 110-water chiller, 111-gas-liquid separator, 201-first water pump, 202-first heater, 203-heater core , 301-second water pump, 302-radiator, 303-electric drive system, 304-three-way valve, 401-third one-way valve, 402-third water pump, 403-second heater, 404-power battery, 405-fourth one-way valve, 501-blower, 502-fan, 1011-compressor exhaust port, 1012-compressor intake port, 1021-first one-way valve first end, 1022-first one-way valve second port ⁇ 1031-water condenser refrigerant channel outlet, 1032-
  • FIG. 1 is a system diagram of a heat pump air conditioning system 100 according to an embodiment of the present application, to illustrate the components and their connection relationships in the heat pump air conditioning system 100.
  • the heat pump air conditioning system 100 includes a compressor 101, a first one-way valve 102, a water condenser 103, a first electronic expansion valve 104, an outdoor heat exchanger 105, a second one-way valve 106, a second electronic expansion valve 107, an evaporator 108, a third electronic expansion valve 109, a chiller 110, a gas-liquid separator 111, a first water pump 201, a first heater 202, a heater core 203, a second water pump 301, a radiator 302, an electric drive system 303, a three-way valve 304, a third one-way valve 401, a third water pump 402, a second heater 403, a power battery 404, a fourth one-way valve 405, a blower 501 and a fan 502, and connecting
  • the compressor 101 uses a scroll type or other type of electric compressor, and its function is to evaporate and compress the refrigerant into superheated steam and promote it to flow in the refrigerant circulation system.
  • the water pump type used by the first water pump 201, the second water pump 301 and the third water pump 402 is an electric water pump, which promotes the coolant to flow in the coolant circulation system, and the first water pump 201, the second water pump 301 and the third water pump 402 are all connected to an external water source.
  • the water condenser 103 and the chiller 110 are water-side heat exchangers, providing heat exchange between the coolant and the refrigerant.
  • the outdoor heat exchanger 105 and the evaporator 108 are air-side heat exchangers, providing heat exchange between the air and the refrigerant.
  • the heater core 203 and the radiator 302 are air-side heat exchangers, providing heat exchange between the air and the coolant.
  • the first one-way valve 102, the second one-way valve 106, the third one-way valve 401 and the fourth one-way valve 405 can be solenoid valve one-way valves or electric one-way valves to control the opening and closing of the valves.
  • the first electronic expansion valve 104, the second electronic expansion valve 107 and the third electronic expansion valve 109 can be solenoid expansion valves or electric expansion valves to achieve the temperature accuracy of superheat or supercooling by controlling the valve hole opening.
  • the three-way valve 304 can be a solenoid valve, or it can be set as other types of valves, as long as it meets the specific connection mode, it can be reasonably replaced.
  • the blower 501 can be different types of electric blowers, which not only provide the required air flow for the heat exchange between the refrigerant and the air of the evaporator 108, but also provide the required air flow for the heat exchange between the coolant and the air of the heater core 203.
  • the fan 502 can be different types of fans, which not only provide the required air flow for the heat exchange between the refrigerant and the air of the outdoor heat exchanger 105, but also provide the required air flow for the heat exchange between the coolant and the air of the radiator 302.
  • the gas-liquid separator 111 separates the liquid refrigerant and the gaseous refrigerant in the refrigerant cycle.
  • the three-way valve 304 only connects the second port 3042 of the three-way valve and the third port 3043 of the three-way valve, and only connects the first port 3041 of the three-way valve and the third port 3043 of the three-way valve.
  • the first one-way valve 102, the second one-way valve 106, the third one-way valve 401, the fourth one-way valve 405 and the three-way valve 304 are used to control the connection and disconnection of the adjacent components of their valve ports, so as to achieve the purpose of operating in different modes.
  • the compressor suction port 1012 is connected to the gas-liquid separator outlet 1111; the pipeline node A is respectively connected to the compressor exhaust port 1011, the refrigerant channel inlet 1032 and the first one-way valve second port 1022; the pipeline node B is respectively connected to the first one-way valve first port 1021, the first electronic expansion valve first port 1041 and the outdoor heat exchanger second port 1052; the refrigerant channel outlet 1031 is connected to the first electronic expansion valve second port 1042; the pipeline node C is respectively connected to the outdoor heat exchanger first port 1051, the pipeline node D and the third electronic expansion valve second port 1092; the chiller refrigerant channel inlet 1102 is connected to the third electronic expansion valve first port 1091; the pipeline node D is respectively connected to the The pipeline node C, the second one-way valve second port 1062 and the second electronic expansion valve second port 1072 are in communication; the evaporator second port 1082 is in communication with the
  • Fig. 2 is a schematic diagram of the communication connection between the control module and each actuator of the heat pump air conditioning system.
  • the control module 8000 determines the working state of each actuator of the heat pump air conditioning system 100.
  • the interface A8101, the interface B8102, the interface C8103, the interface D8104, the interface E8105, the interface F8106, the interface G8107, the interface H8108, the interface I8109, the interface J8110, the interface K8111, the interface L8112, the interface M8113, the interface N8114, the interface O8115 and the interface P8116 of the output interface 8005 of the control module 8000 are respectively connected to the compressor 101, the first one-way valve 102, the first electronic expansion valve 104, the second one-way valve 106, the second electronic expansion valve 107, the third electronic expansion valve 109, the first water pump 201, the first heater 202, the second water pump 301, the three-way valve 304, the third one-way valve 401, the third water pump
  • the control module 8000 controls the flow rate of the coolant through the first water pump 201, the second water pump 301 and the third water pump 402.
  • the control module 8000 controls the heating power of the first heater 202 and the second heater 403.
  • the control module 8000 controls the connection, disconnection or realization of the specified flow state of the fluid through the first one-way valve 102, the first electronic expansion valve 104, the second one-way valve 106, the second electronic expansion valve 107, the third electronic expansion valve 109, the three-way valve 304, the third one-way valve 401 and the fourth one-way valve 405.
  • the control module 8000 controls the air flow through the blower 501 and the fan 502.
  • FIG3 is a schematic internal structure diagram of the control module.
  • the control module 8000 includes a bus 8001, an input interface 8002, a memory 8003, a processor 8004, and an output interface 8005.
  • the memory 8003 is used to store programs, instructions, and data
  • the processor 8004 reads programs, instructions, and data from the memory 8003, and can write data to the memory 8003.
  • the processor 8004 implements signal exchange through the input interface 8002 and the output interface 8004.
  • the input interface 8002 of the control module 8000 receives the operation request and other operation parameters of the heat pump air conditioning system 100 through the connection 8200.
  • the processor 8004 controls the operation of the heat pump air conditioning system 100.
  • the control device 8000 can receive operation requests or signals of other components for controlling the heat pump air-conditioning system 100 through the input interface 8002, and send control signals to each controlled component through the output interface 8005, so that the heat pump air-conditioning system 100 can operate in a specified working mode and switch between different modes.
  • FIG. 4-7 illustrate the fluid flow states of the heat pump air conditioning system 100 operating in different working modes, wherein hollow arrows indicate the flow direction and flow path of the refrigerant, bold solid arrows indicate the flow direction and flow path of the coolant, and other solid lines indicate no fluid flow.
  • hollow arrows indicate the flow direction and flow path of the refrigerant
  • bold solid arrows indicate the flow direction and flow path of the coolant
  • other solid lines indicate no fluid flow.
  • FIG4 is a system diagram of the heat pump air conditioning system 100 in the heat pump heating cabin mode under low temperature environment.
  • the heat pump air conditioning system 100 can transfer heat to the cabin through the heat pump heating mode after receiving the cabin heating command (or the control module 8000 automatically generates the cabin heating command).
  • the first one-way valve 102, the second electronic expansion valve 107, the third electronic expansion valve 109, the third one-way valve 401, the fourth one-way valve 405, the three-way valve 304 and the second heater 403 are controlled to be closed, the first electronic expansion valve 104 and the second one-way valve 106 are controlled to be opened, the refrigerant flow of the compressor 101 is controlled, the coolant flow of the first water pump 201 is controlled, the air flow of the fan 502 and the blower 501 is controlled, and the heating power of the first heater 202 is controlled.
  • the high-temperature and high-pressure refrigerant flowing out of the compressor exhaust port 1011 flows into the water condenser refrigerant channel inlet 1032 through the pipeline node A.
  • the refrigerant changes from gas to liquid.
  • the liquid high-pressure refrigerant flows out from the refrigerant channel outlet 1031 of the water condenser, and forms a low-temperature and low-pressure liquid mist mixture under the action of the first electronic expansion valve 104 to reduce pressure and increase accumulation, and then flows to the second port 1052 of the outdoor heat exchanger through the pipeline node B.
  • the outdoor heat exchanger 105 is used as an evaporator, which absorbs a large amount of heat in the ambient air, so that the refrigerant becomes gaseous and flows out from the first port 1051 of the outdoor heat exchanger, and passes through the pipeline node C, the pipeline node D, the second one-way valve 106, the pipeline node E and After the pipeline node F, it flows into the gas-liquid separator inlet 1112, and the liquid refrigerant and the gaseous refrigerant are separated by the gas-liquid separator 111.
  • the compressor air inlet 1012 sucks the gaseous refrigerant from the gas-liquid separator outlet 1111 to start the next refrigerant cycle.
  • the low-temperature coolant flows through the coolant channel of the water condenser 103, it absorbs the heat of the refrigerant to produce high-temperature coolant.
  • the high-temperature coolant will then be pumped out from the first water pump outlet 2011 and flow into the first heater second port 2022.
  • the first heater 202 can release heat to the coolant as needed, thereby improving the cabin heating power and system efficiency. Then, the coolant flows from the first heater first port 2021 to the heater core second port 2032.
  • the high-temperature coolant When passing through the heater core 203, the high-temperature coolant will release heat to the air blown out by the blower 501 to heat the cabin, and will turn back into low-temperature coolant at the first heater core first port 2031, and then flow into the first water pump inlet 2012 through the coolant channel of the water condenser 103 to form a cabin heating coolant cycle.
  • FIG5 is a system diagram of the heat pump air conditioning system 100 in a low temperature environment in which the heat pump heats the cabin and the electric drive waste heat heats the battery mode.
  • the heat pump air conditioning system 100 recognizes that the heat pump efficiency is low and the outlet coolant temperature of the electric drive system 302 is high, the electric drive waste heat can be directly used to heat the battery.
  • the first one-way valve 102, the second electronic expansion valve 107, the third electronic expansion valve 109, the fourth one-way valve 405 and the first port of the three-way valve 304 are controlled to be closed, the first electronic expansion valve 104, the second one-way valve 106, and the third one-way valve 401 are controlled to be opened, the second port and the third port of the three-way valve 304 are controlled to be opened, the refrigerant flow of the compressor 101 is controlled, the coolant flow of the first water pump 201 and the third water pump 402 is controlled, the air flow of the fan 502 and the blower 501 is controlled, and the heating power of the first heater 202 and the second heater 403 is controlled.
  • the coolant temperature at the second port 3032 of the electric drive system is relatively high, and the high-temperature coolant will flow into the third water pump inlet 4022 through the pipeline node G, the third one-way valve 401 and the pipeline node H in sequence, and the high-temperature coolant will flow out from the third water pump outlet 4021 and flow into the second port 4042 of the power battery through the second heater 403, and the high-temperature coolant will heat the power battery 404 and form low-temperature coolant at the first port 4041 of the power battery, and then flow into the first port 3031 of the electric drive system through the pipeline node I, the second port 3042 of the three-way valve and the third port 3043 of the three-way valve, forming a coolant circulation for heating the battery with waste heat from the electric drive.
  • FIG6 is a system diagram of the heat pump air conditioning system 100 in the electric drive radiator cooling mode in a medium temperature environment.
  • the electric drive In a medium temperature environment, the electric drive needs to be cooled when there is no heating and cooling demand in the cabin. Generally, the ambient temperature is suitable and the heat generated by the electric drive is not large.
  • the electric drive can use the radiator to dissipate heat, thereby reducing the load on the compressor and playing a role in reducing the energy consumption of the compressor.
  • the first electronic expansion valve 104, the first one-way valve 102, the second electronic expansion valve 107, the second one-way valve 106, the third electronic expansion valve 109, the second port of the three-way valve 304, the first heater 202, the second heater 403 and the fourth one-way valve 405 are controlled to be closed, the first port and the third port of the three-way valve 304 are controlled to be opened, the coolant flow of the second water pump 301 is controlled, and the air flow of the fan 502 is controlled.
  • the high-temperature coolant pumped out from the second water pump outlet 3011 flows into the second port 3022 of the radiator.
  • the high-temperature coolant at the second port 3022 of the radiator exchanges heat with the air and cools down, forming low-temperature coolant at the first port 3021 of the radiator, and then flows into the second port 3032 of the electric drive system through the pipeline node G.
  • the coolant flows out from the first port 3031 of the electric drive system and passes through the third port 3043 of the three-way valve and the first port 3041 of the three-way valve, and then flows into the second port 3012 of the second water pump, forming a cooling cycle of the electric drive radiator under a medium temperature environment.
  • FIG7 is a system diagram of the heat pump air conditioning system 100 in a high temperature environment, in which the heat pump air conditioning cools the cabin, the electric drive radiator cools the cabin, and the battery chiller cools the cabin.
  • the heat pump air conditioning system 100 receives a cabin air conditioning cooling command (or the control module 8000 automatically generates a cabin cooling command), the refrigerant circulates to cool the cabin.
  • the first electronic expansion valve 104, the second one-way valve 106, the first heater 202, the third one-way valve 401, and the second port of the three-way valve 304 are controlled to be closed, the first one-way valve 102, the second electronic expansion valve 107, the third electronic expansion valve 109, and the fourth one-way valve 405 are controlled to be opened, the first port and the third port of the three-way valve 304 are controlled to be opened, the coolant flow of the second water pump 301 and the third water pump 402 is controlled, the heating power of the second heater 403 is controlled, and the air flow of the fan 502 and the blower 501 is controlled.
  • the high-temperature and high-pressure refrigerant flowing out of the compressor exhaust port 1011 flows into the second port 1052 of the outdoor heat exchanger through the pipeline node A, the first one-way valve 102 and the pipeline node B.
  • the outdoor heat exchanger 105 is used as a condenser. Under its condensation effect, the refrigerant condenses from gas to liquid and dissipates heat to the environment.
  • the refrigerant flows out of the first port 1051 of the outdoor heat exchanger and flows into the second port 1072 of the partially opened second electronic expansion valve through the pipeline node C and the pipeline node D in sequence.
  • the refrigerant forms a low-temperature and low-pressure liquid mist mixture and flows out from the first port 1071 of the second electronic expansion valve to the second port 1082 of the evaporator.
  • the refrigerant absorbs heat from the air blown out by the blower 501 and reduces the humidity through air refrigeration.
  • the refrigerant flows out of the first port 1081 of the evaporator and flows into the second port 1112 of the gas-liquid separator through the pipeline node E and the pipeline node F.
  • the refrigerant flows through the pipeline node C, there will be a path that flows into the second port 1092 of the third electronic expansion valve.
  • the refrigerant forms a low-temperature and low-pressure liquid mist mixture and flows out from the first port 1091 of the third electronic expansion valve to the inlet 1102 of the refrigerant channel of the chiller.
  • the refrigerant and the coolant pumped out by the third water pump 402 exchange heat in the chiller 110 to form a low-temperature and low-pressure state.
  • the refrigerant flows out from the outlet 1101 of the refrigerant channel of the chiller through the pipeline node F and flows into the second port 1112 of the gas-liquid separator.
  • the gas-liquid separator 111 will separate the liquid refrigerant and the gaseous refrigerant.
  • the compressor air inlet 1012 inhales the gaseous refrigerant from the first port 1111 of the gas-liquid separator to start the next refrigerant cycle.
  • the cooling of the electric drive radiator in this mode is exactly the same as Figure 6, so it will not be repeated here.
  • the difference is that the high-temperature coolant pumped out from the third water pump outlet 4021 flows through the second heater 403, the power battery 404, the pipeline node I and the fourth one-way valve 405 and then flows into the chiller coolant channel inlet 1104.
  • the high-temperature coolant will exchange heat with the refrigerant and form low-temperature coolant at the chiller coolant channel outlet 1103, and then flow into the third water pump inlet 4022 through the pipeline node H, forming a battery chiller cooling cycle.
  • the refrigerant flow of the compressor 101 is achieved by controlling its rotation speed
  • the coolant flow of the first water pump 201, the second water pump 301 and the third water pump 402 is achieved by controlling their rotation speeds
  • the air flow of the fan 502 and the blower 501 is achieved by controlling their rotation speeds
  • the heating power of the first heater 202 and the second heater 403 is achieved by controlling their currents. It is realized, and the control of the rotation speed and the current are determined according to the thermal management requirements, which is the existing technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种间接式多层级余热回收的热泵空调***及其控制方法,通过压缩机控制制冷剂流量,通过第一水泵(201)、第二水泵(301)和第三水泵(402)控制冷却液流量,通过鼓风机(501)和风扇(502)控制空气流量,控制第一加热器(202)和第二加热器(403)的加热功率,通过第一单通阀(102)、第一电子膨胀阀(104)、第二单通阀(106)、第二电子膨胀阀(107)、第三电子膨胀阀(109)、三通阀(304)、第三单通阀(401)和第四单通阀(405)控制流体的连通、断开或者实现指定的流动状态,满足涵盖全天候状况下多种热管理需求,并通过合理的余热利用降低能耗。

Description

一种间接式多层级余热回收的热泵空调***及其控制方法 技术领域
本发明涉及新能源汽车热管理技术领域,具体涉及一种间接式多层级余热回收的热泵空调***及其控制方法。
背景技术
续航里程是制约新能源汽车发展的瓶颈之一,除了研发高容量、高密度的电池外,整车热管理技术也得到了广泛的关注。低温环境下,热泵效能高,可以节约电能并提供舒适的乘员舱环境。电池在低温启动时,为避免低温放电造成的容量大量衰减,需要对电池进行加热;在正常行驶时,电池需维持在特定的温度区间,使得其容量和使用寿命不至于出现大幅度衰减。此外,电驱等热量不仅需要散热,还需对其余热进行利用,对乘员舱加热和电池加热。然而,传统的直接式热泵空调大多只能从环境中吸热,工作模式单一,难以实现对电池和电驱***的余热回收。
发明内容
针对现有技术中存在不足,本发明提供了一种间接式多层级余热回收的热泵空调***及其控制方法,能够在低温下进行多层级余热回收,在中、高温下同时充分冷却电池、电驱和座舱,并且在全天候状况下以低能耗满足多种热管理需求。
本发明是通过以下技术手段实现上述技术目的的。
一种间接式多层级余热回收的热泵空调***,包括:
依次连通的压缩机、第一单通阀、室外换热器、第二单通阀和气液分离器,所述第一单通阀两端连通水冷凝器和第一电子膨胀阀,所述第二单通阀两端连通蒸发器和第二电子膨胀阀,所述第二单通阀两端还连通第三电子膨胀阀和冷水机;
依次连通的第一水泵、第一加热器和加热器芯,所述水冷凝器还分别与第一水泵和加热器芯连通;
依次连通的第二水泵、散热器、电驱动***和三通阀;
依次连通的第三单通阀、第三水泵、第二加热器、动力电池和第四单通阀,所述第三单通阀还与散热器连通,所述第四单通阀还与三通阀连通;所述冷水机还分别与第三水泵和第四单通阀连通。
上述技术方案中,所述散热器处设有风扇。
上述技术方案中,所述蒸发器和加热器芯处设有鼓风机。
上述技术方案中,所述压缩机、第一单通阀、第一电子膨胀阀、第二单通阀、第二电子膨胀阀、第三电子膨胀阀、第一水泵、第一加热器、第二水泵、三通阀、第三单通阀、第三水泵、第二加热器、第四单通阀、鼓风机、风扇均与控制模块通讯连接。
一种间接式多层级余热回收的热泵空调***的控制方法:
控制模块通过压缩机控制制冷剂流量,通过第一水泵、第二水泵和第三水泵控制冷却液流量,通过鼓风机和风扇控制空气流量,控制第一加热器和第二加热器的加热功率,通过第一单通阀、第一电子膨胀阀、第二单通阀、第二电子膨胀阀、第三电子膨胀阀、三通阀、第三单通阀和第四单通阀控制流体的连通、断开或者实现指定的流动状态,实现如下工作模式:低温环境下热泵加热座舱,低温环境下热泵加热座舱和电驱余热加热电池,中温环境下电驱散热器冷却,在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却。
进一步地,所述低温环境下热泵加热座舱,通过如下过程实现:
控制第一单通阀、第二电子膨胀阀、第三电子膨胀阀、第三单通阀、第四单通阀、三通阀和第二加热器关闭,控制第一电子膨胀阀、第二单通阀打开,控制压缩机的制冷剂流量,控制第一水泵的冷却液流量,控制风扇和鼓风机的空气流量,控制第一加热器的加热功率。
进一步地,所述低温环境下热泵加热座舱和电驱余热加热电池,通过如下过程实现:
控制第一单通阀、第二电子膨胀阀、第三电子膨胀阀、第四单通阀以及三通阀第一端口关闭,控制第一电子膨胀阀、第二单通阀、第三单通阀打开,控制三通阀的第二端口和第三端口打开,控制压缩机的制冷剂流量,控制第一水泵和第三水泵的冷却液流量,控制风扇和鼓风机的空气流量,控制第一加热器和第二加热器的加热功率。
进一步地,所述中温环境下电驱散热器冷却,通过如下过程实现:
控制第一电子膨胀阀、第一单通阀、第二电子膨胀阀、第二单通阀、第三电子膨胀阀、三通阀的第二端口、第一加热器、第二加热器和第四单通阀关闭,控制三通阀的第一端口和第三端口打开,控制第二水泵的冷却液流量,控制风扇的空气流量。
进一步地,所述在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却,通过如下过程实现:
控制第一电子膨胀阀、第二单通阀、第一加热器、第三单通阀以及三通阀的第二端口关闭,控制第一单通阀、第二电子膨胀阀、第三电子膨胀阀、第四单通阀打开,控制三通阀的第一端口和第三端口打开,控制第二水泵和第三水泵的冷却液流量,控制第二加热器的加热功率,控制风扇和鼓风机的空气流量。
一种车辆,包括上述热泵空调***。
本发明的有益效果为:
(1)本发明的热泵空调***包括压缩机、第一单通阀、水冷凝器、第一电子膨胀阀、室外换热器、第二单通阀、第二电子膨胀阀、蒸发器、第三电子膨胀阀、冷水机、气液分离器、第一水泵、第一加热器、加热器芯、第二水泵、散热器、电驱动***、三通阀、第三单通阀、第三水泵、第二加热器、动力电池和第四单通阀,其中压缩机、第一单通阀、水冷凝器、第一电子膨胀阀、室外换热器、第二单通阀、第二电子膨胀阀、蒸发器、第三电子膨胀阀、冷水机和气液分离器构成热泵制冷剂循环,第一水泵、第一加热器和加热器芯构成座舱加热循环,第二水泵、散热器、电驱动***、三通阀和第三单通阀构成电驱冷却液循环,第三水泵、第二加热器、动力电池和第四单通阀构成电池冷却液循环;本申请的热泵空调***通过简明的拓扑结构能够提供多个工作模式,从而满足不同的热管理需求。
(2)本发明的热泵空调***能够实现如下工作模式:低温环境下热泵加热座舱,低温环境下热泵加热座舱和电驱余热加热电池,中温环境下电驱散热器冷却,在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却,涵盖了全天候状况下多种热管理需求,并通过合理的余热利用降低了能耗。
(3)本发明中低温环境下热泵加热座舱的工作模式利用了热泵制冷剂循环提供加热,从而降低了热管理***的能耗;低温环境下热泵加热座舱的同时还可以达到通过电驱余热加热电池的目的,从而缓解低温下电池内阻升高和老化严重等问题;中温环境下电驱散热器冷却,能确保中温环境下电驱的热安全,并达到降低热管理能耗的效果;在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却,保证了高温下座舱的舒适性及电驱和电池热管理安全性,解决了电池散热器冷却在高温下散热不足的问题。
附图说明
本申请的特征和优点可以通过参照附图阅读以下详细说明得到更好地理解,在整车附图中,相同的附图标记表示相同的部件,其中:
图1为本发明一个实施例的热泵空调***图;
图2为本发明所述控制模块与热泵空调***各执行器的通讯连接示意图;
图3为本发明所述控制模块示意性的内部结构图;
图4为本发明所述热泵空调***在低温环境下热泵加热座舱模式下的***图;
图5为本发明所述热泵空调***在低温环境下热泵加热座舱和电驱余热加热电池模式下的***图;
图6为本发明所述热泵空调***在中温环境下电驱散热器冷却模式下的***图;
图7为本发明所述热泵空调***在高温环境下热泵空调冷却座舱、电驱散热器冷却及电 池冷水机冷却模式下的***图;
图中:100-热泵空调***、101-压缩机、102-第一单通阀、103-水冷凝器、104-第一电子膨胀阀、105-室外换热器、106-第二单通阀、107-第二电子膨胀阀、108-蒸发器、109-第三电子膨胀阀、110-冷水机、111-气液分离器、201-第一水泵、202-第一加热器、203-加热器芯、301-第二水泵、302-散热器、303-电驱动***、304-三通阀、401-第三单通阀、402-第三水泵、403-第二加热器、404-动力电池、405-第四单通阀、501-鼓风机、502-风扇、1011-压缩机排气口、1012-压缩机吸气口、1021-第一单通阀第一端、1022-第一单通阀第二端口、1031-水冷凝器制冷剂通道出口、1032-水冷凝器制冷剂通道入口、1033-水冷凝器冷却液通道出口、1034-水冷凝器冷却液通道入口、1041-第一电子膨胀阀第一端口、1042-第一电子膨胀阀第二端口、1051-室外换热器第一端口、1052-室外换热器第二端口、1061-第二单通阀第一端口、1062-第二单通阀第二端口、1071-第二电子膨胀阀第一端口、1072-第二电子膨胀阀第二端口、1081-蒸发器第一端口、1082-蒸发器第二端口、1091-第三电子膨胀阀第一端口、1092-第三电子膨胀阀第二端口、1101-冷水机制冷剂通道出口、1102-冷水机制冷剂通道入口、1103-冷水机冷却液通道出口、1104-冷水机冷却液通道入口、1111-气液分离器出口、1112-气液分离器入口、2011-第一水泵出水口、2012-第一水泵入水口、2021-第一加热器第一端口、2022-第一加热器第二端口、2031-热器芯第一端口、2032-加热器芯第二端口、3011-第二水泵出水口、3012-第四单通阀第一端口、3021-散热器第一端口、3022-散热器第二端口、3031-电驱动***第一端口、3032-电驱动***第二端口、3041-三通阀第一端口、3042-三通阀第二端口、3043-三通阀第三端口、4011-第三单通阀第一端口、4012-第三单通阀第二端口、4021-第三水泵出水口、4022-第三水泵入水口、4031-第二加热器第一端口、4032-第二加热器第二端口、4041-动力电池第一端口、4042-动力电池第二端口、4051-第四单通阀第一端口、4052-第四单通阀第二端口、8000-控制模块、8001-总线、8002-输入接口、8003-存储器、8004-处理器、8005-输出接口、8101-接口A、8102-接口B、8103-接口C、8104-接口D、8105-接口E、8106-接口F、8107-接口G、8108-接口H、8109-接口I、8110-接口J、8111-接口K、8112-接口L、8113-接口M、8114-接口N、8115-接口O、8116-接口P、8200-连接。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文描述的实施例。例如电子膨胀阀、单通阀可以通过其他合理的阀门种类进行替换。相反地,提供这些实施例的目的是使对本发明公开内容的理解更加透彻全面。下面将参考构成说明书一部分的 附图对本发明的各种具体实施方案进行描述。应该理解的是,本申请中所使用的诸如“第一”、“第二”等序数词仅仅用于区分和标识,而不具有任何其他含义,如未特别指明则不表示特定的顺序,也不具备特定的关联性。例如,例如术语“第一水泵”本身并不暗示“第二水泵”的存在,术语“第二加热器”本身也不暗示“第一加热器”的存在。
图1是本申请一个实施例的热泵空调***100的***图,以示出热泵空调***100中各部件及其连接关系。如图1所示,热泵空调***100包括压缩机101、第一单通阀102、水冷凝器103、第一电子膨胀阀104、室外换热器105、第二单通阀106、第二电子膨胀阀107、蒸发器108、第三电子膨胀阀109、冷水机110、气液分离器111、第一水泵201、第一加热器202、加热器芯203、第二水泵301、散热器302、电驱动***303、三通阀304、第三单通阀401、第三水泵402、第二加热器403、动力电池404、第四单通阀405、鼓风机501和风扇502,以及用连线表示的各个部件之间的连接管路。热泵空调***100各个部件的选型和作用描述如下。其中,压缩机101选用涡旋式或其他种类的电动压缩机,其作用是将制冷剂蒸发压缩成过热蒸汽,并推动其在制冷剂循环***中流动。其中,第一水泵201、第二水泵301和第三水泵402使用的水泵类型为电动水泵,推动冷却液在冷却液循环***中流动,且第一水泵201、第二水泵301和第三水泵402均与外部水源连通。其中,水冷凝器103和冷水机110为水侧换热器,提供冷却液和制冷剂间的热量交换。其中,室外换热器105和蒸发器108为空气侧换热器,提供空气和制冷剂之间的热量交换。其中,加热器芯203和散热器302为空气侧换热器,提供空气与冷却液之间的热量交换。其中,第一单通阀102、第二单通阀106、第三单通阀401和第四单通阀405可以是电磁阀式单通阀或者电动式单通阀,控制阀门的开关。其中,第一电子膨胀阀104、第二电子膨胀阀107和第三电子膨胀阀109可以是电磁式膨胀阀或者电动式膨胀阀,通过控制阀孔开度达到过热度或过冷度的温度精度。其中,三通阀304可以是电磁阀,也可以设置为其他类型的阀,只要符合特定的连通方式就可以进行合理的替换。其中,鼓风机501可以是不同类型的电动鼓风机,不仅为蒸发器108制冷剂与空气热量交换提供所需要的空气流量,还为加热器芯203冷却液与空气热量交换提供所需要的空气流量。其中,风扇502可以是不同类型的风扇,不仅为室外换热器105制冷剂与空气热量交换提供所需要的空气流量,还为散热器302冷却液与空气热量交换提供所需要的空气流量。其中,气液分离器111使得制冷剂循环中的液态制冷剂和气态制冷剂分离。其中,三通阀304仅仅连通三通阀第二端口3042和三通阀第三端口3043、仅仅连通三通阀第一端口3041和三通阀第三端口3043。第一单通阀102、第二单通阀106、第三单通阀401、第四单通阀405和三通阀304目的是为了控制其阀门端口相邻部件的连通和断开,达到在不同模式下运行的目的。
热泵空调***100各个部件之间的连接管路描述如下。压缩机吸气口1012与气液分离器出口1111连通;管道节点A分别与压缩机排气口1011、制冷剂通道入口1032和第一单通阀第二端口1022连通;管道节点B分别与第一单通阀第一端口1021、第一电子膨胀阀第一端口1041和室外换热器第二端口1052连通;制冷剂通道出口1031与第一电子膨胀阀第二端口1042连通;管道节点C分别与室外换热器第一端口1051、管道节点D和第三电子膨胀阀第二端口1092连通;冷水机制冷剂通道入口1102与第三电子膨胀阀第一端口1091连通;管道节点D分别与管道节点C、第二单通阀第二端口1062和第二电子膨胀阀第二端口1072连通;蒸发器第二端口1082与第二电子膨胀阀第一端口1071连通;管道节点E分别与管道节点F、第二单通阀第一端口1061和蒸发器第一端口1081连通;管道节点F分别与冷水机制冷剂通道出口1101、管道节点E和气液分离器入口1112连通;第一水泵出水口2011与第一加热器第二端口2022连通;加热器芯第二端口2032与第一加热器第一端口2021连通;水冷凝器冷却液通道入口1034与加热器芯第一端口2031连通;第一水泵入水口2012与水冷凝器冷却液通道出口1033连通;第二水泵出水口3011与散热器第二端口3022连通;管道节点G分别与散热器第一端口3021、电驱动***第二端口3032和第三单通阀第二端口4012连通;管道节点H分别与第三单通阀第一端口4011、第三水泵入水口4022和冷水机冷却液通道出口1103连通;第二加热器第二端口4032与第三水泵出水口4021连通;动力电池第二端口4042与第二加热器第一端口4031连通;管道节点I分别与动力电池第一端口4041、三通阀第二端口3042和第四单通阀第二端口4052连通;冷水机冷却液通道入口1104与第四单通阀第一端口4051连通;三通阀第一端口3041与第二水泵入水口3012连通;电驱动***第一端口3031与三通阀第三端口3043连通;风扇502为室外换热器105中的制冷剂与空气热交换提供所需要的空气流量;风扇502为散热器302中的冷却液与空气热交换提供所需要的空气流量;鼓风机501为蒸发器108中的制冷剂与空气热交换提供所需要的空气流量;鼓风机501为加热器芯203中的冷却液与空气热交换提供所需要的空气流量。本申请的热泵空调***通过简明的拓扑结构提供多个工作模式,从而满足不同的热管理需求。
图2控制模块与热泵空调***各个执行器的通讯连接示意图。如图2所示,控制模块8000决定热泵空调***100各个执行器的工作状态。控制模块8000输出接口8005的接口A8101、接口B8102、接口C8103、接口D8104、接口E8105、接口F8106、接口G8107、接口H8108、接口I8109、接口J8110、接口K8111、接口L8112、接口M8113、接口N8114、接口O8115和接口P8116分别与压缩机101、第一单通阀102、第一电子膨胀阀104、第二单通阀106、第二电子膨胀阀107、第三电子膨胀阀109、第一水泵201、第一加热器202、第二水泵301、三通阀304、第三单通阀401、第三水泵402、第二加热器403、第四单通阀405、鼓风机501 和风扇502实现通讯连接。控制模块8000通过压缩机101控制制冷剂流量。控制模块8000通过第一水泵201、第二水泵301和第三水泵402控制冷却液流量。控制模块8000控制第一加热器202和第二加热器403的加热功率。控制模块8000通过第一单通阀102、第一电子膨胀阀104、第二单通阀106、第二电子膨胀阀107、第三电子膨胀阀109、三通阀304、第三单通阀401和第四单通阀405,控制流体的连通、断开或者实现指定的流动状态。控制模块8000通过鼓风机501和风扇502控制空气流量。
图3控制模块示意性的内部结构图。如图3所示,控制模块8000包括总线8001、输入接口8002、存储器8003、处理器8004以及输出接口8005。具体来说,存储器8003用于存储程序、指令和数据,而处理器8004从存储器8003读取程序、指令和数据,并且能向存储器8003写入数据。通过执行存储器8003读取程序和指令,处理器8004通过输入接口8002和输出接口8004实现信号交换。如图3所示,控制模块8000输入接口8002通过连接8200接受热泵空调***100的运行请求与其他运行参数。通过执行器8003中的程序和指令,处理器8004控制热泵空调***100的运行。具体来说,控制装置8000可以通过输入接口8002接受控制热泵空调***100的运行请求或者其他部件的信号,并通过输出接口8005向各被控部件发出控制信号,从而使得热泵空调***100能够在指定的工作模式运行并可以在不同模式之间进行切换。
图4-7示出热泵空调***100在不同工作模式下运行的流体流动状态,其中,中空线箭头表示制冷剂的流向和流动路径,加粗实线箭头表示冷却液的流向和流动路径,其他实线表示无流体流动。下面详述图4-7所示的各个工作模式。
图4热泵空调***100在低温环境下热泵加热座舱模式下的***图。在低温环境下,热泵空调***100在收到座舱加热指令(或控制模块8000自动产生座舱加热指令)后可以通过热泵加热模式将热量转移到座舱。具体地,控制第一单通阀102、第二电子膨胀阀107、第三电子膨胀阀109、第三单通阀401、第四单通阀405、三通阀304和第二加热器403关闭,控制第一电子膨胀阀104、第二单通阀106打开,控制压缩机101的制冷剂流量,控制第一水泵201的冷却液流量,控制风扇502和鼓风机501的空气流量,控制第一加热器202的加热功率。如图4所示,从压缩机排气口1011流出的高温高压的制冷剂经管道节点A流入水冷凝器制冷剂通道入口1032,在水冷凝器103冷凝作用下,制冷剂由气态变成液态。液态高压制冷剂由水冷凝器制冷剂通道出口1031流出,经第一电子膨胀阀104减压增积的作用下,形成低温低压的液雾状混合物再经过管道节点B流向室外换热器第二端口1052,此时,室外换热器105用作蒸发器,其会吸收环境空气中大量热量,使得制冷剂变成气态,并从室外换热器第一端口1051流出,依次经过管道节点C、管道节点D、第二单通阀106、管道节点E和 管道节点F后流入气液分离器入口1112,经过气液分离器111将液态制冷剂和气态制冷剂进行分离。压缩机进气口1012从气液分离器出口1111吸入气态制冷剂,开始下一个制冷剂循环的工作。另一方面,低温冷却液流经水冷凝器103冷却液通道时会吸收制冷剂的热量从而产生高温冷却液,高温冷却液之后会由第一水泵出水口2011泵出并流入第一加热器第二端口2022,第一加热器202可以根据需要向冷却液释放热量,从而提升座舱加热的功率和***效率。接着,冷却液由第一加热器第一端口2021流入到加热器芯第二端口2032,高温冷却液在经过加热器芯203时会向鼓风机501吹出的空气释放热量加热座舱,并在加热器芯第一端口2031处变回低温冷却液,再经水冷凝器103冷却液通道流入第一水泵入水口2012形成座舱加热冷却液循环。
图5热泵空调***100在低温环境下热泵加热座舱和电驱余热加热电池模式下的***图。在热泵空调***100识别到热泵效率较低并且电驱动***302出口冷却液温度较高时,可以直接利用电驱余热来加热电池。具体地,控制第一单通阀102、第二电子膨胀阀107、第三电子膨胀阀109、第四单通阀405以及三通阀304第一端口关闭,控制第一电子膨胀阀104、第二单通阀106、第三单通阀401打开,控制三通阀304的第二端口和第三端口打开,控制压缩机101的制冷剂流量,控制第一水泵201和第三水泵402的冷却液流量,控制风扇502和鼓风机501的空气流量,控制第一加热器202和第二加热器403的加热功率。由于制冷剂循环和座舱加热循环与图4所示的工作模式完全相同,因此在这里不再赘述。在该模式下电驱动***第二端口3032冷却液温度较高,高温冷却液会依次经过管道节点G、第三单通阀401和管道节点H流入第三水泵入水口4022,高温冷却液会从第三水泵出水口4021流出并经第二加热器403流入动力电池第二端口4042,高温冷却液会对动力电池404进行加热并在动力电池第一端口4041形成低温冷却液,再经管道节点I、三通阀第二端口3042和三通阀第三端口3043流入电驱动***第一端口3031,形成电驱余热加热电池的冷却液循环。
图6是热泵空调***100在中温环境下电驱散热器冷却模式下的***图。在中温环境下,座舱无加热和冷却需求时要对电驱进行冷却,一般此环境温度适合并且电驱产热量不大,电驱能利用散热器散热,从而减低压缩机载荷,起到了降低压缩机能耗的作用。具体地,控制第一电子膨胀阀104、第一单通阀102、第二电子膨胀阀107、第二单通阀106、第三电子膨胀阀109、三通阀304的第二端口、第一加热器202、第二加热器403和第四单通阀405关闭,控制三通阀304的第一端口和第三端口打开,控制第二水泵301的冷却液流量,控制风扇502的空气流量。在该模式下,第二水泵出水口3011泵出的高温冷却液流入散热器第二端口3022,在风扇502的风扇控制下,散热器第二端口3022的高温冷却液与空气发生热量交换和降温,在散热器第一端口3021形成低温冷却液,再经过管道节点G流入电驱动***第二端口3032 进行冷却,接着冷却液由电驱动***第一端口3031流出并经过三通阀第三端口3043和三通阀第一端口3041后,流入第二水泵第二端口3012,形成中温环境下电驱散热器冷却循环。
图7是热泵空调***100在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却模式下的***图。当空气温度较高时,电池高温冷却液无法通过散热器与环境空气发生热量交换,因此需要通过冷水机进行冷却。当热泵空调***100收到座舱空调制冷指令(或者控制模块8000自动产生座舱制冷指令)制冷剂循环对座舱制冷。具体地,控制第一电子膨胀阀104、第二单通阀106、第一加热器202、第三单通阀401以及三通阀304的第二端口关闭,控制第一单通阀102、第二电子膨胀阀107、第三电子膨胀阀109、第四单通阀405打开,控制三通阀304的第一端口和第三端口打开,控制第二水泵301和第三水泵402的冷却液流量,控制第二加热器403的加热功率,控制风扇502和鼓风机501的空气流量。从压缩机排气口1011流出的高温高压制冷剂经管道节点A、第一单通阀102和管道节点B后流入室外换热器第二端口1052,此时,室外换热器105用作冷凝器,在其冷凝作用下制冷剂由气态冷凝成液态,并向环境中散热。制冷剂由室外换热器第一端口1051流出并依次经管道节点C和管道节点D后流入部分打开的第二电子膨胀阀第二端口1072,在其减压增积的作用下,制冷剂形成低温低压液雾状的混合物由第二电子膨胀阀第一端口1071流出到蒸发器第二端口1082,此时,制冷剂从鼓风机501吹出的空气中吸收热量并通过空气制冷降低湿度。制冷剂从蒸发器第一端口1081流出并经管道节点E和管道节点F流入气液分离器第二端口1112。与此同时,当制冷剂流经管道节点C时,会有一路流入第三电子膨胀阀第二端口1092,在其减压增积的作用下,制冷剂形成低温低压的液雾状的混合物并从第三电子膨胀阀第一端口1091流出到冷水机制冷剂通道入口1102。此时,制冷剂和第三水泵402泵出的冷却液在冷水机110中进行热量交换,形成低温低压状态。接着,制冷剂由冷水机制冷剂通道出口1101流出经管道节点F流入气液分离器第二端口1112,气液分离器111会将液态制冷剂和气态制冷剂进行分离。压缩机进气口1012从气液分离器第一端口1111吸入气态制冷剂,开始下一个制冷剂循环的工作。该模式下的电驱散热器冷却与图6完全相同,因此在这里不再赘述。不同的是,第三水泵出水口4021泵出的高温冷却液流经第二加热器403、动力电池404、管道节点I和第四单通阀405后流入冷水机冷却液通道入口1104,高温冷却液会与制冷剂发生热量交换,并在冷水机冷却液通道出口1103形成低温冷却液,再经管道节点H流入第三水泵入水口4022,形成电池冷水机冷却循环。
上述各工作模式中,压缩机101的制冷剂流量通过控制其转速实现,第一水泵201、第二水泵301和第三水泵402的冷却液流量通过控制其转速实现,风扇502、鼓风机501的空气流量通过控制其转速实现,第一加热器202、第二加热器403的加热功率通过控制其电流 实现,且转速和电流的控制均根据热管理需求确定,为现有技术。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种间接式多层级余热回收的热泵空调***,其特征在于,包括:
    依次连通的压缩机(101)、第一单通阀(102)、室外换热器(105)、第二单通阀(106)和气液分离器(111),所述第一单通阀(102)两端连通水冷凝器(103)和第一电子膨胀阀(104),所述第二单通阀(106)两端连通蒸发器(108)和第二电子膨胀阀(107),所述第二单通阀(106)两端还连通第三电子膨胀阀(109)和冷水机(110);
    依次连通的第一水泵(201)、第一加热器(202)和加热器芯(203),所述水冷凝器(103)还分别与第一水泵(201)和加热器芯(203)连通;
    依次连通的第二水泵(301)、散热器(302)、电驱动***(303)和三通阀(304);
    依次连通的第三单通阀(401)、第三水泵(402)、第二加热器(403)、动力电池(404)和第四单通阀(405),所述第三单通阀(401)还与散热器(302)连通,所述第四单通阀(405)还与三通阀(304)连通;所述冷水机(110)还分别与第三水泵(402)和第四单通阀(405)连通。
  2. 根据权利要求1所述的热泵空调***,其特征在于,所述散热器(302)处设有风扇(502)。
  3. 根据权利要求2所述的热泵空调***,其特征在于,所述蒸发器(108)和加热器芯(203)处设有鼓风机(501)。
  4. 根据权利要求3所述的热泵空调***,其特征在于,所述压缩机(101)、第一单通阀(102)、第一电子膨胀阀(104)、第二单通阀(106)、第二电子膨胀阀(107)、第三电子膨胀阀(109)、第一水泵(201)、第一加热器(202)、第二水泵(301)、三通阀(304)、第三单通阀(401)、第三水泵(402)、第二加热器(403)、第四单通阀(405)、鼓风机(501)、风扇(502)均与控制模块(8000)通讯连接。
  5. 一种基于权利要求1-4任一项所述的热泵空调***的控制方法,其特征在于:
    控制模块(8000)通过压缩机(101)控制制冷剂流量,通过第一水泵(201)、第二水泵(301)和第三水泵(402)控制冷却液流量,通过鼓风机(501)和风扇502)控制空气流量,控制第一加热器(202)和第二加热器(403)的加热功率,通过第一单通阀(102)、第一电子膨胀阀(104)、第二单通阀(106)、第二电子膨胀阀(107)、第三电子膨胀阀(109)、三通阀(304)、第三单通阀(401)和第四单通阀(405)控制流体的连通、断开或者实现指定的流动状态,实现如下工作模式:低温环境下热泵加热座舱,低温环境下热泵加热座舱和电驱余热加热电池,中温环境下电驱散热器冷却,在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却。
  6. 根据权利要求5所述的控制方法,其特征在于,所述低温环境下热泵加热座舱,通过如下过程实现:
    控制第一单通阀(102)、第二电子膨胀阀(107)、第三电子膨胀阀(109)、第三单通阀(401)、第四单通阀(405)、三通阀(304)和第二加热器(403)关闭,控制第一电子膨胀阀(104)、第二单通阀(106)打开,控制压缩机(101)的制冷剂流量,控制第一水泵(201)的冷却液流量,控制风扇(502)和鼓风机(501)的空气流量,控制第一加热器(202)的加热功率。
  7. 根据权利要求5所述的控制方法,其特征在于,所述低温环境下热泵加热座舱和电驱余热加热电池,通过如下过程实现:
    控制第一单通阀(102)、第二电子膨胀阀(107)、第三电子膨胀阀(109)、第四单通阀(405)以及三通阀(304)第一端口关闭,控制第一电子膨胀阀(104)、第二单通阀(106)、第三单通阀(401)打开,控制三通阀(304)的第二端口和第三端口打开,控制压缩机(101)的制冷剂流量,控制第一水泵(201)和第三水泵(402)的冷却液流量,控制风扇(502)和鼓风机(501)的空气流量,控制第一加热器(202)和第二加热器(403)的加热功率。
  8. 根据权利要求5所述的控制方法,其特征在于,所述中温环境下电驱散热器冷却,通过如下过程实现:
    控制第一电子膨胀阀(104)、第一单通阀(102)、第二电子膨胀阀(107)、第二单通阀(106)、第三电子膨胀阀(109)、三通阀(304)的第二端口、第一加热器(202)、第二加热器(403)和第四单通阀(405)关闭,控制三通阀(304)的第一端口和第三端口打开,控制第二水泵(301)的冷却液流量,控制风扇(502)的空气流量。
  9. 根据权利要求5所述的控制方法,其特征在于,所述在高温环境下热泵空调冷却座舱、电驱散热器冷却及电池冷水机冷却,通过如下过程实现:
    控制第一电子膨胀阀(104)、第二单通阀(106)、第一加热器(202)、第三单通阀(401)以及三通阀(304)的第二端口关闭,控制第一单通阀(102)、第二电子膨胀阀(107)、第三电子膨胀阀(109)、第四单通阀(405)打开,控制三通阀(304)的第一端口和第三端口打开,控制第二水泵(301)和第三水泵(402)的冷却液流量,控制第二加热器(403)的加热功率,控制风扇(502)和鼓风机(501)的空气流量。
  10. 一种车辆,其特征在于,包括权利要求1-4任一项所述的热泵空调***。
PCT/CN2023/104547 2022-10-08 2023-06-30 一种间接式多层级余热回收的热泵空调***及其控制方法 WO2024074064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211222544.3A CN115489262A (zh) 2022-10-08 2022-10-08 一种间接式多层级余热回收的热泵空调***及其控制方法
CN202211222544.3 2022-10-08

Publications (1)

Publication Number Publication Date
WO2024074064A1 true WO2024074064A1 (zh) 2024-04-11

Family

ID=84472845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104547 WO2024074064A1 (zh) 2022-10-08 2023-06-30 一种间接式多层级余热回收的热泵空调***及其控制方法

Country Status (2)

Country Link
CN (1) CN115489262A (zh)
WO (1) WO2024074064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115489262A (zh) * 2022-10-08 2022-12-20 江苏大学 一种间接式多层级余热回收的热泵空调***及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098547A (ja) * 2014-01-29 2014-05-29 Nippon Pmac Co Ltd ヒートポンプ式空調機およびヒートポンプ式空調機の制御方法
CN114407611A (zh) * 2022-01-27 2022-04-29 江苏大学 一种基于热泵的整车热管理***及其控制方法
CN114683803A (zh) * 2022-04-01 2022-07-01 江苏大学 一种基于热泵的纯电动汽车热管理***及其控制方法
CN114905935A (zh) * 2022-06-02 2022-08-16 江苏大学 一种纯电动汽车热管理***及其控制方法
CN115489262A (zh) * 2022-10-08 2022-12-20 江苏大学 一种间接式多层级余热回收的热泵空调***及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098547A (ja) * 2014-01-29 2014-05-29 Nippon Pmac Co Ltd ヒートポンプ式空調機およびヒートポンプ式空調機の制御方法
CN114407611A (zh) * 2022-01-27 2022-04-29 江苏大学 一种基于热泵的整车热管理***及其控制方法
CN114683803A (zh) * 2022-04-01 2022-07-01 江苏大学 一种基于热泵的纯电动汽车热管理***及其控制方法
CN114905935A (zh) * 2022-06-02 2022-08-16 江苏大学 一种纯电动汽车热管理***及其控制方法
CN115489262A (zh) * 2022-10-08 2022-12-20 江苏大学 一种间接式多层级余热回收的热泵空调***及其控制方法

Also Published As

Publication number Publication date
CN115489262A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN111216515B (zh) 一种电动汽车热管理***
WO2022017297A1 (zh) 热泵***
CN111251813B (zh) 车辆的热管理***及车辆
WO2024074064A1 (zh) 一种间接式多层级余热回收的热泵空调***及其控制方法
CN114683803B (zh) 一种基于热泵的纯电动汽车热管理***及其控制方法
WO2023109768A1 (zh) 电动车及其热泵***
CN114905935A (zh) 一种纯电动汽车热管理***及其控制方法
CN111251809B (zh) 车辆的热管理***及车辆
WO2021228018A1 (zh) 空调机组及其控制方法
CN114407611A (zh) 一种基于热泵的整车热管理***及其控制方法
CN107512149B (zh) 集成电池热管理功能的车辆热泵空调***
CN114110978A (zh) 空调***、控制方法以及空调机组
CN111251814A (zh) 车辆的热管理***及车辆
CN112693363A (zh) 一种纯电动卡车整车热管理***
CN112297757B (zh) 一种冷却液集中循环的电动汽车热管理***及其使用方法
CN110715363B (zh) 一种热电回热式冷冻除湿***及方法
CN111251804B (zh) 车辆的热管理***及车辆
CN111923693A (zh) 电动汽车热泵空调***及电动汽车
KR100969463B1 (ko) 능동형 배기가스 폐열회수 기능을 갖는 냉각수 순환 회로를구비한 공기조화기
CN101706186A (zh) 一种空气热能热泵热水器的除霜装置
CN212267184U (zh) 一种新能源汽车空调热泵***
JP2878240B2 (ja) 熱供給設備
CN220669821U (zh) 一种热泵***及空调
CN212637093U (zh) 电动汽车热泵空调***及电动汽车
CN220163628U (zh) 一种纯电动商用车集成式电池冷却热泵空调***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874256

Country of ref document: EP

Kind code of ref document: A1