WO2024073918A1 - Methods and apparatus of dynamic waveform switching for pusch - Google Patents

Methods and apparatus of dynamic waveform switching for pusch Download PDF

Info

Publication number
WO2024073918A1
WO2024073918A1 PCT/CN2022/130362 CN2022130362W WO2024073918A1 WO 2024073918 A1 WO2024073918 A1 WO 2024073918A1 CN 2022130362 W CN2022130362 W CN 2022130362W WO 2024073918 A1 WO2024073918 A1 WO 2024073918A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
pusch transmission
transmission
pusch
indicated
Prior art date
Application number
PCT/CN2022/130362
Other languages
French (fr)
Inventor
Lingling Xiao
Bingchao LIU
Chenxi Zhu
Wei Ling
Yi Zhang
Original Assignee
Lenovo (Beijing) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Ltd. filed Critical Lenovo (Beijing) Ltd.
Priority to PCT/CN2022/130362 priority Critical patent/WO2024073918A1/en
Publication of WO2024073918A1 publication Critical patent/WO2024073918A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]

Definitions

  • the subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of dynamic waveform switching for Physical Uplink Shared Channel (PUSCH) .
  • PUSCH Physical Uplink Shared Channel
  • 5G Fifth Generation Partnership Project
  • 5G New Radio
  • NR New Radio
  • 5G Node B gNB
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • E-UTRAN Node B eNB
  • Universal Mobile Telecommunications System UMTS
  • WiMAX Evolved UMTS Terrestrial Radio Access Network
  • E-UTRAN Wireless Local Area Networking
  • WLAN Wireless Local Area Networking
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • DL Downlink
  • UL Uplink
  • UE User Equipment
  • NE Network Equipment
  • RAT Radio Access Technology
  • RX Receive
  • a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) .
  • the wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
  • the 5G New Radio is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology.
  • Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2.
  • FR1 Frequency of sub-6 GHz range (from 450 to 6000 MHz)
  • millimeter wave range from 24.25 GHz to 52.6 GHz
  • the 5G NR supports both FR1 and FR2 frequency bands.
  • a TRP is an apparatus to transmit and receive signals, and is controlled by a gNB through the backhaul between the gNB and the TRP.
  • Two waveforms namely DFT-s-OFDM and CP-OFDM, are supported in NR UL transmission to utilize the advantages of different waveforms in different scenarios.
  • CP-OFDM waveform may support up to eight-layer PUSCH transmission.
  • the PAPR of DFT-s-OFDM waveform is lower, and thus the efficiency of a UE’s power-amplifier is higher compared to CP-OFDM waveform. For example, if a UE is at a cell centric location, a PUSCH may be transmitted with CP-OFDM for higher throughput; and if a UE is at the cell edge, a PUSCH may be transmitted with DFT-s-OFDM since it provides a better coverage due to a higher power efficiency.
  • an apparatus including: a receiver that receives a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and a transmitter that transmits the PUSCH transmission with the transmission waveform determined by the processor.
  • PUSCH Physical Uplink Shared Channel
  • an apparatus including: a transmitter that transmits a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and a receiver that receives the PUSCH transmission according to the transmission waveform determined by the processor.
  • PUSCH Physical Uplink Shared Channel
  • a method including: receiving, by a receiver, a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and transmitting, by a transmitter, the PUSCH transmission with the transmission waveform determined by the processor.
  • PUSCH Physical Uplink Shared Channel
  • a method including: transmitting, by a transmitter, a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and receiving, by a receiver, the PUSCH transmission according to the transmission waveform determined by the processor.
  • PUSCH Physical Uplink Shared Channel
  • Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure
  • Figure 4 is a schematic block diagram illustrating an example of waveform determination for CG type 1 PUSCH in accordance with some implementations of the present disclosure
  • Figure 5 is a schematic block diagram illustrating an example of waveform determination for DG PUSCH in accordance with some implementations of the present disclosure
  • Figure 6 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by UE in accordance with some implementations of the present disclosure.
  • Figure 7 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by gNB in accordance with some implementations of the present disclosure.
  • embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
  • one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ”
  • code computer readable code
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • references throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example.
  • instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed.
  • Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise.
  • the terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
  • first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise.
  • a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily.
  • a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
  • a and/or B may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B.
  • the character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items.
  • A/B means “A or B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
  • Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100.
  • the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
  • UE user equipment
  • NE network equipment
  • the UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, user device, or by other terminology used in the art.
  • the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like.
  • the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like.
  • the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
  • the NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art.
  • a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
  • the NEs 104 may be distributed over a geographic region.
  • the NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
  • the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) .
  • the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme.
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX.
  • WiMAX open or proprietary communication protocols
  • the NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link.
  • the NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
  • Communication links are provided between the NE 104 and the UEs 102a, 102b, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
  • RATs Radio Access Technologies
  • the NE 104 may also include one or more transmit receive points (TRPs) 104a.
  • the network equipment may be a gNB 104 that controls a number of TRPs 104a.
  • the network equipment may be a TRP 104a that is controlled by a gNB.
  • Communication links are provided between the NEs 104, 104a and the UEs 102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some UEs 102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
  • RATs Radio Access Technologies
  • the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal or ideal backhaul, simultaneously.
  • a TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) .
  • the two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs.
  • TRP Transmission Reception Point
  • transmitting-receiving identity may be used interchangeably throughout the disclosure.
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment.
  • a UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the UE 200 may not include any input device 206 and/or display 208.
  • the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment.
  • the memory 204 also stores program code and related data.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audio, and/or haptic signals.
  • the transceiver 210 in one embodiment, is configured to communicate wirelessly with the network equipment.
  • the transceiver 210 comprises a transmitter 212 and a receiver 214.
  • the transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
  • the transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214.
  • the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment.
  • the NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310.
  • the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
  • the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200.
  • the processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200.
  • the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
  • the transceiver 310 comprises a transmitter 312 and a receiver 314.
  • the transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
  • the transceiver 310 may communicate simultaneously with a plurality of UEs 200.
  • the transmitter 312 may transmit DL communication signals to the UE 200.
  • the receiver 314 may simultaneously receive UL communication signals from the UE 200.
  • the transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314.
  • the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
  • CG type 1 PUSCH In Release 15, two kinds of CG PUSCH transmissions are specified, i.e., CG type 1 PUSCH and CG type 2 PUSCH transmissions.
  • the CG Type 1 PUSCH transmission is semi-statically configured without the detection of a UL grant in a DCI while the CG Type 2 PUSCH transmission is semi-persistently scheduled by a UL grant in a valid activation DCI.
  • the scheduling information may only be changed by RRC reconfiguration.
  • the waveform is configured by RRC.
  • DFT-s-OFDM i.e., transformPrecoder is enabled in 3GPP standards
  • CP-OFDM i.e., transformPrecoder is disabled in 3GPP standards
  • the signalling for dynamic switching may be via a DCI, a MAC-CE, or another appropriate signalling.
  • DCI is used as a signalling indicating a waveform for a subsequent PUSCH transmission
  • the signalling is not limited to DCI, and may include MAC-CE and/or another appropriate signalling.
  • the indicated waveform in a DCI applies at least to the scheduled PUSCH transmission, but whether and how the indication applies for other types PUSCH transmission is under discussion.
  • Some enhancements are needed to support the waveform switching for a PUSCH transmission whose transmission parameters cannot be dynamically switched. For example, for a CG PUSCH transmission or for a PUSCH transmission with repetition.
  • the transmission parameters are semi-persistently configured by RRC or indicated in a valid activation DCI.
  • the waveform may be switched between two repetitions but the transmission parameters cannot be updated to match the switched waveform.
  • the IE ConfiguredGrantConfig is used to configure uplink transmission without dynamic grant according to the two kinds of CG PUSCH transmissions.
  • the actual uplink grant may either be configured via RRC (type1) or provided via an activation DCI (addressed to CS-RNTI) (type2) .
  • Multiple Configured Grant configurations may be configured in one BWP of a serving cell.
  • the following is an example of the UE procedure for transmitting the physical uplink shared channel as provided in TS 38.214.
  • PUSCH transmission can be dynamically scheduled by a UL grant in a DCI, or the transmission can correspond to a configured grant Type 1 or Type 2.
  • the configured grant Type 1 PUSCH transmission is semi-statically configured to operate upon the reception of higher layer parameter of configuredGrantConfig including rrc-ConfiguredUplinkGrant without the detection of a UL grant in a DCI.
  • the configured grant Type 2 PUSCH transmission is semi-persistently scheduled by a UL grant in a valid activation DCI according to Clause 10.2 of [6, TS 38.213] after the reception of higher layer parameter configuredGrantConfig not including rrc-ConfiguredUplinkGrant. If configuredGrantConfigToAddModList is configured, more than one configured grant configuration of configured grant Type 1 and/or configured grant Type 2 may be active at the same time on an active BWP of a serving cell.
  • the parameters applied for the transmission are provided by configuredGrantConfig except for dataScramblingIdentityPUSCH, txConfig, codebookSubset, maxRank, scaling of UCI-OnPUSCH, which are provided by pusch-Config.
  • the parameters applied for the transmission are provided by configuredGrantConfig except for dataScramblingIdentityPUSCH, txConfig, codebookSubsetDCI-0-2, maxRankForDCI-Format0-2, scaling of UCI-OnPUSCH, resourceAllocationType1GranularityDCI-0 provided by pusch-Config.
  • configuredGrantConfig the parameters applied for the transmission are provided by configuredGrantConfig except for dataScramblingIdentityPUSCH, txConfig, codebookSubsetDCI-0-2, maxRankForDCI-Format0-2, scaling of UCI-OnPUSCH, resourceAllocationType1GranularityDCI-0 provided by pusch-Config.
  • the UE applies the higher layer parameter tp-pi2BPSK, if provided in pusch-Config, according to the procedure described in Clause 6.1.4 for the PUSCH transmission corresponding to a configured grant.
  • the parameters in pusch-Config are applied for the PUSCH transmission except for p0-NominalWithoutGrant, p0-PUSCH-Alpha, powerControlLoopToUse, pathlossReferenceIndex described in Clause 7.1 of [6, TS 38.213] , mcs-Table, mcs-TableTransformPrecoder described in Clause 6.1.4.1 and transformPrecoder described in Clause 6.1.3.
  • Two waveforms are supported in NR UL transmission to facilitate the advantages of different waveforms in different scenarios.
  • the frequency domain resource allocation, the number of transmission layers, the precoder matrix, SRS resource used for codebook or non-codebook PUSCH transmission, and the MCS tables may be different.
  • these parameters may be dynamically indicated in the DCI to match the indicated waveform.
  • these parameters are configured or indicated semi-persistently. If dynamic waveform switching is applied for a CG PUSCH transmission, these parameters may not match the waveform to which is to be switched.
  • these parameters are configured by RRC signalling, and for CG type 2 PUSCH transmission, except that the DMRS type is configured by RRC, the other parameters are indicated in the activation DCI.
  • these parameters configured by RRC or indicated in scheduling DCI may also not match the waveform for the remaining PUSCH repetitions.
  • enhancements to support dynamic waveform switching for a PUSCH transmission and corresponding UE’s behaviour are proposed, based on one of the following two schemes:
  • dmrs-Type The parameter is used to indicate the DMRS pattern in the frequency domain, and it may be configured as type 2 or be absent. If the field is absent, the UE uses DMRS type 1. For a PUSCH transmission with CP-OFDM, both DMRS types are supported; but for PUSCH transmission with DFT-s-OFDM, only DMRS type 1 is supported. Therefore, if a CG configuration supports the dynamic switching waveform or if waveforms can be switched between different PUSCH repetitions, the parameter should be absent. That is, for both CP-OFDM and DFT-s-OFDM PUSCH transmissions, only DMRS type 1 is supported.
  • Frequency domain resource assignment This parameter is used to indicate the frequency resource for a PUSCH transmission.
  • the scheduled number of RBs may be arbitrary; but for a PUSCH transmission with DFT-s-OFDM, the scheduled number of RBs should be multiples of 2, 3 or 5. Therefore, if a CG configuration supports the dynamic switching waveform or if waveforms can be switched between different PUSCH repetitions, the number of scheduled RBs is multiples of 2, 3 or 5.
  • the flexibility of a CG PUSCH transmission with CP-OFDM is reduced compared to legacy, i.e., the existing configuration.
  • the scheduled number of RBs is defined as where ⁇ 2 , ⁇ 3 , ⁇ 5 are a set of non-negative integers. Thus, possible values of the scheduled number of RBs are multiples of 2, 3, or 5.
  • Antenna ports This field is used to indicate the DMRS port of a PUSCH transmission.
  • a PUSCH with CP-OFDM can support up to eight-layer transmission, but a PUSCH with DFT-s-OFDM supports only one-layer transmission. That is, only one DMRS port needs to be indicated for a PUSCH transmission with DFT-s-OFDM. Therefore, if a CG configuration supports the dynamic switching waveform or if waveforms can be switched between different PUSCH repetitions, only one antenna port may be indicated or configured for both CP-OFDM and DFT-s-OFDM waveforms. In this scheme, a PUSCH with CP-OFDM only supports one-layer transmission.
  • the value of the antenna port is restricted to be less than the minimum number of effective values in antenna port tables corresponding to different waveforms.
  • the effective values are those which do not correspond to a “Reserved” entry.
  • Precoding information and number of layers This field is used to indicate the number of layers and the precoder matrix for a codebook based PUSCH transmission.
  • the number of combinations of layer and precoder of a PUSCH transmission with CP-OFDM is different from the number of combinations of layer and precoder of a PUSCH transmission with DFT-s-OFDM since different waveforms support different numbers of layers.
  • the maximum rank of a PUSCH transmission is limited to one so that the precoding information and number of layers tables for different waveforms are the same.
  • the maximum value of the field is the number of valid values minus one in the precoding information and number of layers table corresponding to DFT-s-OFDM.
  • the valid values are those which do not correspond to a “Reserved” entry.
  • the number of SRS ports of an SRS resource used for codebook based transmission is 4 and full power transmission mode is not configured; and the maximum rank of CP-OFDM PUSCH transmission is 2 and the codebook subset is configured as fullyAndPartialAndNonCoherent.
  • Table 7.3.1.1.2-3 in TS 38.212 will be used to indicate the number of layers and the precoder for the PUSCH transmission; and if CP-OFDM is applied, Table 7.3.1.1.2-2 in TS 38.212 will be used to indicate the number of layers and the precoder for the PUSCH transmission. Since the valid number of combinations in Table 7.3.1.1.2-3 is 28, the filed Precoding information and number of layers may only be set as a value from 0 to 27.
  • SRS resource indicator This field is used to indicate the SRS resource for a PUSCH transmission and to indicate the number of layers for a non-codebook based PUSCH transmission.
  • this parameter may indicate only the entries which include one SRI in SRI indication tables. That is, only one rank is supported if a CG PUSCH supports the dynamic waveform switching or if waveforms can be switched between different PUSCH repetitions.
  • the maximum rank of a non-codebook based CG PUSCH transmission is limited to one.
  • the value of the SRS resource indicator may be restricted to be less than the minimum number of effective values in SRI tables corresponding to different waveforms.
  • Modulation and coding scheme This field is used to indicate modulation order and the code rate of the PUSCH transmission.
  • different MCS tables may be used.
  • the number of valid entries in different MCS tables may be different.
  • the valid entry is not a “Reserved” entry.
  • the maximum value of this parameter should be the minimum value in MCS tables corresponding to the two different waveforms.
  • the MCS table for CP-OFDM and DFT-s-OFDM is configured as qam64LowSE.
  • the UE shall use this parameter and Table 5.1.3.1-3 in TS 38.214 which includes 29 valid entries, to determine the modulation order and target code rate for the PUSCH transmission if CP-OFDM is applied; and the UE shall use this parameter and Table 6.1.4.1-2 in TS 38.214 which includes 28 valid entries, to determine the modulation order and target code rate used for the PUSCH transmission if DFT-s-OFDM is applied. Therefore, the value of this parameter should be indicated as a value from 0 to 27.
  • the UE receives DCI indicating a waveform for a subsequent PUSCH transmission, and the indicated waveform may be different from an initial waveform of the PUSCH transmission.
  • the initial waveform of a PUSCH is configured by transformPrecoder in TS 38.331. If transformPrecoder is set as enabled, it is DFT-s-OFDM, and if the parameter is set as disabled, it is CP-OFDM.
  • the parameters for the PUSCH transmission may be configured by RRC signalling or indicated in DCI, and may include resourceAllocation, for indicating resource allocation scheme in frequency domain; DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain; Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain; Antenna port, for indicating a DMRS port; precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix; SRS resource indicator, for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and/or mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
  • resourceAllocation for indicating resource allocation scheme in frequency domain
  • DMRS-type for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain
  • FDRA Frequency domain resource assignment
  • Antenna port for indicating a
  • One or more of the parameters may be configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
  • the DMRS type may be restricted to type 1; the number of Resource Blocks (RBs) indicated by the FDRA may be restricted to multiples of 2, 3, or 5; the Antenna port may be restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator may be restricted to be less than the minimum number of effective values in SRI tables corresponding to different waveforms; and/or the value of the mcsAndTBS may be restricted to be less than the minimum number of effective values in MCS tables corresponding to different waveforms.
  • RBs Resource Blocks
  • the precodingAndNumberOfLayers may be restricted to entries corresponding to one layer.
  • the precodingAndNumberOfLayers may be restricted to be less than the minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
  • the SRS resource indicator may be restricted to entries which include one SRI in an SRI table.
  • the parameters may be set according to the current 3GPP specification.
  • a parameter may be initially set for CP-OFDM transmission, and the transmission waveform needs to subsequently be dynamically switched to DFT-s-OFDM.
  • the parameters may be reinterpreted, i.e. interpreted differently, when DFT-s-OFDM is applied, while they are interpreted in the same way as legacy when CP-OFDM is applied.
  • the bit width of a parameter or a field required for CP-OFDM is larger than DFT-s-OFDM. Therefore, in this scheme, the set of parameters is configured or indicated for a CG PUSCH transmission with CP-OFDM waveform. That is, the transformPrecoder in the CG configuration is enabled. Similarly, if waveforms can be switched between different PUSCH repetitions, the set of parameters indicated is also for CP-OFDM waveform.
  • the parameter may be set type 2 or absent.
  • the UE always assumes that DMRS type 1 is used for the CG PUSCH transmission or the remaining PUSCH repetitions when DFT-s-OFDM is applied.
  • the number of scheduled RBs may be any value, but if DFT-s-OFDM waveform is applied, the UE assumes the number of scheduled RBs is the largest value which is smaller than the indicated number of RBs and is multiples of 2, 3 or 5. Alternatively, the UE may assume the number of scheduled RBs is the smallest value which is larger than the indicated number of RBs and is multiples of 2, 3 or 5. In an example, the scheduled number of RBs is defined as where ⁇ 2 , ⁇ 3 , ⁇ 5 are a set of non-negative integers. Thus, possible values of the scheduled number of RBs are multiples of 2, 3, or 5.
  • the number of indicated antenna ports may be up to 8 as in legacy, but if DFT-s-OFDM waveform is applied, the UE assumes that one of the indicated DMRS port is used for the PUSCH transmission based on a predefined rule, for example, always the first or the last indicated DMRS port.
  • Precoding information and number of layers For a CG PUSCH transmission that supports the dynamic switching waveform or PUSCH repetitions support waveform switching between different repetitions, the following options are provided for precoding information and number of layers:
  • the precoder matrix for PUSCH transmission with DFT-s-OFDM is one column of the precoder corresponding to CP-OFDM based on a predefined rule, for example, always the first or the last column. Assuming that the precoder for PUSCH transmission with CP-OFDM is determined as then if DFT-s-OFDM is applied, the precoder is where the coefficient of the precoder is adjusted so that the total power is same.
  • the value of the field may set as the valid values in precoding information and number of layers table corresponding to CP-OFDM.
  • the value of this field is determined as mod (value of Precoding information and number of layers field, total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM) .
  • the assumption is the same as in the option A2, and then the value of this field may be one value from 0 to 61 as in Table 7.3.1.1.2-2 in TS 38.212.
  • Precoding information and number of layers equals to 39 in the activation DCI for a CG type 2 PUSCH or in the CG configuration for a CG type 1 PUSCH and if DFT-s-OFDM is applied, then entry 11 which equals to mod (39, 28) in Table 7.3.1.1.2-3 in TS 38.212 is used for the PUSCH transmission, where 28 is the total number of valid entries in Table 7.3.1.1.2-3. That is, the precoder index is 11 in Table 6.3.1.5-2 in TS 38.211.
  • SRS resource indicator The possible values of the parameter may be the same as in legacy, but one SRI indicated by SRS resource indicator is used to determine the SRS resource for PUSCH transmission with DFT-s-OFDM based on a predefined rule, for example, always the first or the last indicated SRI.
  • Modulation and coding scheme There is no restriction on the value of the field. However, if the value indicates an entry that is not available in the MCS table corresponding to DFT-s-OFDM, the UE always assumes the last entry in the MCS table corresponding to DFT-s-OFDM is used to determine the modulation order and the code rate for the PUSCH transmission. In this scheme, when the DFT-s-OFDM is the waveform indicated by DCI, the values of one or more of the parameters for the PUSCH transmission may be interpreted based on a modified interpretation.
  • the modified interpretation may include: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
  • the modified interpretation may further include: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power; or for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM; or for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
  • a DCI format 0_1 activates a codebook based CG type 2 PUSCH transmission.
  • the transformPrecoder is configured as disabled and the resource allocation scheme is configured as resourceAllocationType1 in the CG configuration.
  • the mcs-Table and mcs-TableTransformPrecoder for CP-OFDM and DFT-s-OFDM are both configured as qam64LowSE.
  • the number of SRS ports of an SRS resource used for codebook based PUSCH transmission is 4 and the full power transmission mode is not configured.
  • the maximum rank of CP-OFDM PUSCH transmission is 2 and the codebook subset is configured as fullyAndPartialAndNonCoherent.
  • the DMRS type is configured as type 1 and the maximum length of DMRS is one. It is assumed that the following parameters are indicated as in Table 1 in DCI format 0_1, then the interpretation of these fields needs to be enhanced as in the fourth column when DFT-s-OFDM waveform is applied.
  • the UL grant is semi-statically configured or indicated in an activation DCI. If dynamic waveform switching is applied to a CG PUSCH transmission or a plurality of PUSCH repetitions, then which DCI is used to indicate the waveform of the PUSCH needs to be determined to avoid ambiguous understanding between the UE and the gNB.
  • the gap between the first symbol, or starting symbol, of PUSCH transmission and the last symbol, or ending symbol, of the DCI which indicates the waveform should be larger than a threshold, since it may take some time for the UE to prepare for the PUSCH transmission with the indicated waveform.
  • the threshold should be no less than the PUSCH preparation time as indicated in TS 38.214. If there are more than one DCIs satisfying the requirement, the DCI which is the latest to the PUSCH transmission is used to indicate the waveform for the CG PUSCH transmission or the remaining PUSCH repetitions.
  • FIG. 4 is a schematic block diagram illustrating an example of waveform determination for CG type 1 PUSCH in accordance with some implementations of the present disclosure.
  • supposing a CG type 1 PUSCH is transmitted with periodicity of 8 slots, and the transformPrecoder in the CG configuration is disabled, then the CG type 1 PUSCH is transmitted with CP-OFDM.
  • three DCIs, DCI #1 411, DCI #2 412 and DCI #3 413 are transmitted by the gNB, and two PUSCHs, PUSCH#1 401 and PUSCH #2 402, are transmitted by the UE.
  • the DCI #1 411 indicates DFT-s-OFDM will be used for the following PUSCH transmission; at time t2, the DCI #2 412 indicates CP-OFDM will be used for the following PUSCH transmission; and at time t3, the DCI #3 413 indicates DFT-s-OFDM will be used for the following PUSCH transmission.
  • the gap 1 is the gap between the first symbol of PUSCH #1 401 and the last symbol of DCI #1 411.
  • gap 1 is smaller than the threshold which is used for preparing PUSCH #1 401 transmission with DFT-s-OFDM.
  • the PUSCH #1 is still transmitted with CP-OFDM.
  • gap 2 and gap 3 are gaps between the first symbol of PUSCH #2 402 and the last symbol of DCI #2 412 and DCI #3 413, respectively.
  • both gap 2 and gap 3 are larger than the threshold.
  • the PUSCH #2 402 will be transmitted with DFT-s-OFDM as indicated in DCI #3 413 since it is latest to the PUSCH #2 402 transmission.
  • the mechanism may also be applied to indicate the waveform for PUSCHs in Carrier Aggregation (CA) scenario. That is, the waveform indicated in a DCI may be applied to more than one PUSCH transmissions in more than one BWPs of more than one carriers. Then, the threshold should be determined based on the carrier with smallest SCS configuration.
  • CA Carrier Aggregation
  • the transmission waveform may be determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold.
  • the transmission waveform may be applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
  • BWPs Bandwidth Parts
  • SCS Subcarrier Spacing
  • the determination of the waveform for DG PUSCH may also be considered.
  • the DCI for scheduling the PUSCH also indicates the waveform for the scheduled PUSCH transmission.
  • the gap between the another DCI and the scheduled PUSCH is larger than the threshold, how to determine the waveform for the scheduled PUSCH in such cases also needs to be resolved.
  • the waveform should follow the indication in the scheduling DCI, since the indications, for example the FDRA, the antenna ports, the PMI, the SRI and so on, in the scheduling DCI may not match the waveform indicated in other DCIs.
  • Figure 5 is a schematic block diagram illustrating an example of waveform determination for DG PUSCH in accordance with some implementations of the present disclosure.
  • a DCI #1 511 schedules a PUSCH #1 501 transmission and the indicated waveform is CP-OFDM for example; and at a later time, a DCI #2 512 indicates DFT-s-OFDM will be used for following PUSCH transmission.
  • the gap 1 equals to K 2 which is indicated in DCI #1 511, and the gap 2 is the gap between the first symbol of PUSCH #1 501 and the last symbol of DCI #2 512.
  • the gap 2 is larger than the threshold.
  • PUSCH #1 501 will be transmitted with CP-OFDM waveform indicated in DCI #1 511 since the parameters indicated in DCI #1 511 (i.e., the scheduling DCI) are dedicated for CP-OFDM and they may not be suitable for PUSCH transmission with DFT-s-OFDM.
  • the transmission waveform is determined as CP-OFDM waveform indicated in an earlier DCI for scheduling the PUSCH transmission when the PUSCH transmission is a DG PUSCH transmission.
  • Figure 6 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by UE 200 in accordance with some implementations of the present disclosure.
  • the receiver 214 of UE 200 receives a signaling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission.
  • PUSCH Physical Uplink Shared Channel
  • the processor 202 of UE 200 determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission.
  • the transmitter 212 of UE 200 transmits the PUSCH transmission with the transmission waveform determined by the processor.
  • Figure 7 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by gNB 300 in accordance with some implementations of the present disclosure.
  • the transmitter 312 of gNB 300 transmits a signaling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission.
  • PUSCH Physical Uplink Shared Channel
  • the processor 302 of gNB 300 determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission.
  • the receiver 314 of gNB 300 receives the PUSCH transmission according to the transmission waveform determined by the processor.
  • An apparatus comprising:
  • a receiver that receives a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
  • PUSCH Physical Uplink Shared Channel
  • a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission;
  • a transmitter that transmits the PUSCH transmission with the transmission waveform determined by the processor.
  • the PUSCH transmission is a Configured Grant (CG) PUSCH transmission
  • the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform
  • the set of parameters comprises one or more of:
  • resourceAllocation for indicating resource allocation scheme in frequency domain
  • DMRS-type for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain
  • Frequency domain resource assignment for indicating a resource in frequency domain
  • Antenna port for indicating a DMRS port
  • precodingAndNumberOfLayers for indicating number of layers and a precoder matrix
  • SRS resource indicator for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission
  • mcsAndTBS used for indicating a Modulation and Coding Scheme (MCS) value.
  • DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
  • the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
  • the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
  • the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
  • the transmission waveform is applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
  • BWPs Bandwidth Parts
  • SCS Subcarrier Spacing
  • the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission
  • the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission
  • the transmission waveform is determined as the initial waveform.
  • DG Dynamic Grant
  • An apparatus comprising:
  • a transmitter that transmits a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
  • PUSCH Physical Uplink Shared Channel
  • a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission;
  • a receiver that receives the PUSCH transmission according to the transmission waveform determined by the processor.
  • the PUSCH transmission is a Configured Grant (CG) PUSCH transmission
  • the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform
  • the set of parameters comprises one or more of:
  • resourceAllocation for indicating resource allocation scheme in frequency domain
  • DMRS-type for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain
  • Frequency domain resource assignment for indicating a resource in frequency domain
  • Antenna port for indicating a DMRS port
  • precodingAndNumberOfLayers for indicating number of layers and a precoder matrix
  • SRS resource indicator for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission
  • mcsAndTBS used for indicating a Modulation and Coding Scheme (MCS) value.
  • DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
  • the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
  • the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
  • the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
  • the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission
  • the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission
  • the transmission waveform is determined as the initial waveform.
  • DG Dynamic Grant
  • a method comprising:
  • PUSCH Physical Uplink Shared Channel
  • the PUSCH transmission is a Configured Grant (CG) PUSCH transmission
  • the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform
  • the set of parameters comprises one or more of:
  • resourceAllocation for indicating resource allocation scheme in frequency domain
  • DMRS-type for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain
  • Frequency domain resource assignment for indicating a resource in frequency domain
  • Antenna port for indicating a DMRS port
  • precodingAndNumberOfLayers for indicating number of layers and a precoder matrix
  • SRS resource indicator for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission
  • mcsAndTBS used for indicating a Modulation and Coding Scheme (MCS) value.
  • the DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
  • the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
  • modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
  • modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
  • modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
  • the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission
  • the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission
  • the transmission waveform is determined as the initial waveform.
  • DG Dynamic Grant
  • a method comprising:
  • PUSCH Physical Uplink Shared Channel
  • PUSCH transmission is a Configured Grant (CG) PUSCH transmission
  • the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform
  • the set of parameters comprises one or more of:
  • resourceAllocation for indicating resource allocation scheme in frequency domain
  • DMRS-type for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain
  • Frequency domain resource assignment for indicating a resource in frequency domain
  • Antenna port for indicating a DMRS port
  • precodingAndNumberOfLayers for indicating number of layers and a precoder matrix
  • SRS resource indicator for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission
  • mcsAndTBS used for indicating a Modulation and Coding Scheme (MCS) value.
  • DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
  • the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
  • modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
  • the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
  • modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
  • the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission
  • the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission
  • the transmission waveform is determined as the initial waveform.
  • DG Dynamic Grant

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus of dynamic waveform switching for a PUSCH transmission are disclosed. The apparatus includes a receiver that receives a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and a transmitter that transmits the PUSCH transmission with the transmission waveform determined by the processor.

Description

METHODS AND APPARATUS OF DYNAMIC WAVEFORM SWITCHING FOR PUSCH FIELD
The subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of dynamic waveform switching for Physical Uplink Shared Channel (PUSCH) .
BACKGROUND
The following abbreviations and acronyms are herewith defined, at least some of which are referred to within the specification:
Third Generation Partnership Project (3GPP) , 5th Generation (5G) , New Radio (NR) , 5G Node B (gNB) , Long Term Evolution (LTE) , LTE Advanced (LTE-A) , E-UTRAN Node B (eNB) , Universal Mobile Telecommunications System (UMTS) , Worldwide Interoperability for Microwave Access (WiMAX) , Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) , Wireless Local Area Networking (WLAN) , Orthogonal Frequency Division Multiplexing (OFDM) , Single-Carrier Frequency-Division Multiple Access (SC-FDMA) , Downlink (DL) , Uplink (UL) , User Equipment (UE) , Network Equipment (NE) , Radio Access Technology (RAT) , Receive or Receiver (RX, or Rx) , Transmit or Transmitter (TX, or Tx) , Physical Downlink Control Channel (PDCCH) , Physical Uplink Shared Channel (PUSCH) , Bandwidth Part (BWP) , Carrier Aggregation (CA) , Configured Grant (CG) , Cyclic Prefix (CP) , Cyclic redundancy check (CRC) , Channel State Information (CSI) , Downlink Control Information (DCI) , Demodulation Reference Signal (DMRS) , Frequency Division Multiple Access (FDMA) , Index/Identifier (ID) , Information Element (IE) , Modulation Coding Scheme (MCS) , Multiple Input Multiple Output (MIMO) , New Data Indicator (NDI) , Radio Access Network (RAN) , Resource Block (RB) , Radio Network Temporary Identifier (RNTI) , Radio Resource Control (RRC) , Subcarrier Spacing (SCS) , Sounding Reference Signal (SRS) , Transmission Reception Point (TRP) , Uplink Control Information (UCI) , Ultra Reliable Low Latency Communications (URLLC) , Configured Scheduling RNTI (CS-RNTI) , Discrete Fourier Transform (DFT) , Frequency Range 1 (FR1) , Frequency Range 2  (FR2) , Precoder Matrix Indicator (PMI) , SRS Resource Indicator (SRI) , Technical Specification (TS) , Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) , Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) , Configured Grant Physical Uplink Shared Channel (CG-PUSCH) , Coherent Joint Transmission (CJT) , Dynamic-Grant (DG) , Peak-to-Average Power Ratio (PAPR) .
In wireless communication, such as a Third Generation Partnership Project (3GPP) mobile network, a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) . The wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
The 5G New Radio (NR) is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology. Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2. The 5G NR supports both FR1 and FR2 frequency bands.
Enhancements on multi-TRP/panel transmission including improved reliability and robustness with both ideal and non-ideal backhaul between these TRPs (Transmission Reception Points) are studied. A TRP is an apparatus to transmit and receive signals, and is controlled by a gNB through the backhaul between the gNB and the TRP.
Two waveforms, namely DFT-s-OFDM and CP-OFDM, are supported in NR UL transmission to utilize the advantages of different waveforms in different scenarios.
For PUSCH transmission with DFT-s-OFDM, only one layer is supported while CP-OFDM waveform may support up to eight-layer PUSCH transmission. However, the PAPR of DFT-s-OFDM waveform is lower, and thus the efficiency of a UE’s power-amplifier is higher compared to CP-OFDM waveform. For example, if a UE is at a cell centric location, a PUSCH may be transmitted with CP-OFDM for higher throughput; and if a UE is at the cell edge, a PUSCH may be transmitted  with DFT-s-OFDM since it provides a better coverage due to a higher power efficiency.
SUMMARY
Methods and apparatus of dynamic waveform switching for a PUSCH are disclosed.
According to a first aspect, there is provided an apparatus, including: a receiver that receives a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and a transmitter that transmits the PUSCH transmission with the transmission waveform determined by the processor.
According to a second aspect, there is provided an apparatus, including: a transmitter that transmits a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and a receiver that receives the PUSCH transmission according to the transmission waveform determined by the processor.
According to a third aspect, there is provided a method, including: receiving, by a receiver, a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and transmitting, by a transmitter, the PUSCH transmission with the transmission waveform determined by the processor.
According to a fourth aspect, there is provided a method, including: transmitting, by a transmitter, a signalling indicating a waveform for a subsequent Physical  Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission; determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and receiving, by a receiver, the PUSCH transmission according to the transmission waveform determined by the processor.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments will be rendered by reference to specific embodiments illustrated in the appended drawings. Given that these drawings depict only some embodiments and are not therefore considered to be limiting in scope, the embodiments will be described and explained with additional specificity and details through the use of the accompanying drawings, in which:
Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure;
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure;
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure;
Figure 4 is a schematic block diagram illustrating an example of waveform determination for CG type 1 PUSCH in accordance with some implementations of the present disclosure;
Figure 5 is a schematic block diagram illustrating an example of waveform determination for DG PUSCH in accordance with some implementations of the present disclosure;
Figure 6 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by UE in accordance with some implementations of the present disclosure; and
Figure 7 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by gNB in accordance with some implementations of the present disclosure.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
Furthermore, one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ” The storage devices may be tangible, non-transitory, and/or non-transmission.
Reference throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example. Thus, instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed. Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” , and similarly items expressed in plural form also include reference to one or multiple instances of the item, unless expressly specified otherwise.
Throughout the disclosure, the terms “first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise. For example, a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of  the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily. Similarly, a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
It should be understood that the term “and/or” as used herein refers to and includes any and all possible combinations of one or more of the associated listed items. For example, “A and/or B” may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B. The character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items. For example, “A/B” means “A or B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of various embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, as well as combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, may be implemented by code. This code may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions executed via the processor of the computer or other programmable data processing apparatus  create a means for implementing the functions or acts specified in the schematic flowchart diagrams and/or schematic block diagrams.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of different apparatuses, systems, methods, and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) . One skilled in the relevant art will recognize, however, that the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
It should also be noted that, in some alternative implementations, the functions noted in the identified blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be substantially executed in concurrence, or the blocks may sometimes be executed in reverse order, depending upon the functionality involved.
Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100. In one embodiment, the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
The UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals,  subscriber stations, user terminals, apparatus, devices, user device, or by other terminology used in the art.
In one embodiment, the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like. In some other embodiments, the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like. In some embodiments, the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
The NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art. Throughout this specification, a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
The NEs 104 may be distributed over a geographic region. The NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) . In some implementations, the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX. The  present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link. The NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
Communication links are provided between the NE 104 and the  UEs  102a, 102b, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
The NE 104 may also include one or more transmit receive points (TRPs) 104a. In some embodiments, the network equipment may be a gNB 104 that controls a number of TRPs 104a. In addition, there is a backhaul between two TRPs 104a. In some other embodiments, the network equipment may be a TRP 104a that is controlled by a gNB.
Communication links are provided between the  NEs  104, 104a and the  UEs  102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some  UEs  102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
In some embodiments, the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal or ideal backhaul, simultaneously. A TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) . The two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs. The terms “TRP” , “Transmission Reception Point” , and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment. A UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210. In some embodiments, the input device 206 and the display 208 are combined into a  single device, such as a touchscreen. In certain embodiments, the UE 200 may not include any input device 206 and/or display 208. In various embodiments, the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. The processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment. In some embodiments, the memory 204 also stores program code and related data.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audio, and/or haptic signals.
The transceiver 210, in one embodiment, is configured to communicate wirelessly with the network equipment. In certain embodiments, the transceiver 210 comprises a transmitter 212 and a receiver 214. The transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
The transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214. For example, in some embodiments, the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment. The NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
In some embodiments, the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200. The processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200. In another example, the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
In some embodiments, the transceiver 310 comprises a transmitter 312 and a receiver 314. The transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
The transceiver 310 may communicate simultaneously with a plurality of UEs 200. For example, the transmitter 312 may transmit DL communication signals to  the UE 200. As another example, the receiver 314 may simultaneously receive UL communication signals from the UE 200. The transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314. For example, the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
In Release 15, two kinds of CG PUSCH transmissions are specified, i.e., CG type 1 PUSCH and CG type 2 PUSCH transmissions. The CG Type 1 PUSCH transmission is semi-statically configured without the detection of a UL grant in a DCI while the CG Type 2 PUSCH transmission is semi-persistently scheduled by a UL grant in a valid activation DCI. For both CG type 1 and CG type 2 PUSCH transmissions, the scheduling information may only be changed by RRC reconfiguration.
For 3GPP previous releases until Release 17, for all of DG PUSCH, CG type 1 PUSCH, and CG type 2 PUSCH, the waveform is configured by RRC.
In RAN 1 #110b e-meeting in Release 18, dynamic waveform switching, between DFT-s-OFDM (i.e., transformPrecoder is enabled in 3GPP standards) and CP-OFDM (i.e., transformPrecoder is disabled in 3GPP standards) , will be supported. The signalling for dynamic switching may be via a DCI, a MAC-CE, or another appropriate signalling. Thus, throughout the present disclosure, while DCI is used as a signalling indicating a waveform for a subsequent PUSCH transmission, the signalling is not limited to DCI, and may include MAC-CE and/or another appropriate signalling.
The indicated waveform in a DCI applies at least to the scheduled PUSCH transmission, but whether and how the indication applies for other types PUSCH transmission is under discussion. Some enhancements are needed to support the waveform switching for a PUSCH transmission whose transmission parameters cannot be dynamically switched. For example, for a CG PUSCH transmission or for a PUSCH transmission with repetition. For a CG PUSCH transmission, the transmission parameters are semi-persistently configured by RRC or indicated in a  valid activation DCI. For a PUSCH with a plurality of repetitions, wherein each repetition is scheduled by a same DCI and each repetition can be of same or different data, the waveform may be switched between two repetitions but the transmission parameters cannot be updated to match the switched waveform.
The following is an example of the configured grant configuration as provided in TS 38.331.
The IE ConfiguredGrantConfig is used to configure uplink transmission without dynamic grant according to the two kinds of CG PUSCH transmissions. The actual uplink grant may either be configured via RRC (type1) or provided via an activation DCI (addressed to CS-RNTI) (type2) . Multiple Configured Grant configurations may be configured in one BWP of a serving cell.
ConfiguredGrantConfig information element
Figure PCTCN2022130362-appb-000001
The following is an example of the UE procedure for transmitting the physical uplink shared channel as provided in TS 38.214.
PUSCH transmission (s) can be dynamically scheduled by a UL grant in a DCI, or the transmission can correspond to a configured grant Type 1 or Type 2. The configured grant Type 1 PUSCH transmission is semi-statically configured to operate upon the reception of higher layer parameter of configuredGrantConfig including rrc-ConfiguredUplinkGrant without the detection of a UL grant in a DCI. The configured grant Type 2 PUSCH transmission is semi-persistently scheduled by a UL grant in a valid activation DCI according to Clause 10.2 of [6, TS 38.213] after the reception of higher layer parameter configuredGrantConfig not including rrc-ConfiguredUplinkGrant. If configuredGrantConfigToAddModList is configured, more than one configured grant configuration of configured grant Type 1 and/or configured grant Type 2 may be active at the same time on an active BWP of a serving cell.
For the PUSCH transmission corresponding to a Type 1 configured grant or a Type 2 configured grant activated by DCI format 0_0 or 0_1, the parameters applied for the transmission are provided by configuredGrantConfig except for dataScramblingIdentityPUSCH, txConfig, codebookSubset, maxRank, scaling of UCI-OnPUSCH, which are provided by pusch-Config. For the PUSCH transmission corresponding to a Type 2 configured grant activated by DCI format 0_2, the parameters applied for the transmission are provided by configuredGrantConfig except for dataScramblingIdentityPUSCH, txConfig, codebookSubsetDCI-0-2, maxRankForDCI-Format0-2, scaling of UCI-OnPUSCH, resourceAllocationType1GranularityDCI-0 provided by pusch-Config. If the UE is provided with transformPrecoder in configuredGrantConfig, the UE applies the higher layer parameter tp-pi2BPSK, if provided in pusch-Config, according to the procedure described in Clause 6.1.4 for the PUSCH transmission corresponding to a configured grant.
For the PUSCH retransmission scheduled by a PDCCH with CRC scrambled by CS-RNTI with NDI=1, the parameters in pusch-Config are applied for the PUSCH transmission except for p0-NominalWithoutGrant, p0-PUSCH-Alpha,  powerControlLoopToUse, pathlossReferenceIndex described in Clause 7.1 of [6, TS 38.213] , mcs-Table, mcs-TableTransformPrecoder described in Clause 6.1.4.1 and transformPrecoder described in Clause 6.1.3.
PUSCH configuration enhancement and UE behaviour
Two waveforms (i.e., DFT-s-OFDM and CP-OFDM) are supported in NR UL transmission to facilitate the advantages of different waveforms in different scenarios. For PUSCH transmission with different waveforms, the frequency domain resource allocation, the number of transmission layers, the precoder matrix, SRS resource used for codebook or non-codebook PUSCH transmission, and the MCS tables may be different. For a dynamic scheduled PUSCH transmission, these parameters may be dynamically indicated in the DCI to match the indicated waveform. However, for a CG PUSCH transmission, these parameters are configured or indicated semi-persistently. If dynamic waveform switching is applied for a CG PUSCH transmission, these parameters may not match the waveform to which is to be switched. For CG type 1 PUSCH transmission, these parameters are configured by RRC signalling, and for CG type 2 PUSCH transmission, except that the DMRS type is configured by RRC, the other parameters are indicated in the activation DCI. Similarly, for a PUSCH transmission with a plurality of repetitions, if dynamic waveform switching is applied between different repetitions, these parameters configured by RRC or indicated in scheduling DCI may also not match the waveform for the remaining PUSCH repetitions. In the disclosure, enhancements to support dynamic waveform switching for a PUSCH transmission and corresponding UE’s behaviour are proposed, based on one of the following two schemes:
A) by introducing restrictions on the parameters; and
B) by reinterpreting the parameters when DFT-s-OFDM is applied.
Scheme A: Introducing Restrictions on the Parameters
In some examples, the following restrictions may be introduced to these parameters.
dmrs-Type: The parameter is used to indicate the DMRS pattern in the frequency domain, and it may be configured as type 2 or be absent. If the field is absent, the UE uses DMRS type 1. For a PUSCH transmission with CP-OFDM, both DMRS types are supported; but for PUSCH transmission with DFT-s-OFDM, only DMRS type 1 is supported. Therefore, if a CG configuration supports the dynamic switching waveform or if waveforms can be switched between different PUSCH repetitions, the parameter should be absent. That is, for both CP-OFDM and DFT-s-OFDM PUSCH transmissions, only DMRS type 1 is supported.
Frequency domain resource assignment: This parameter is used to indicate the frequency resource for a PUSCH transmission. In NR, for a PUSCH transmission with CP-OFDM, the scheduled number of RBs may be arbitrary; but for a PUSCH transmission with DFT-s-OFDM, the scheduled number of RBs should be multiples of 2, 3 or 5. Therefore, if a CG configuration supports the dynamic switching waveform or if waveforms can be switched between different PUSCH repetitions, the number of scheduled RBs is multiples of 2, 3 or 5. In this scheme, the flexibility of a CG PUSCH transmission with CP-OFDM is reduced compared to legacy, i.e., the existing configuration. In an example, the scheduled number of RBs is defined as
Figure PCTCN2022130362-appb-000002
where α 2, α 3, α 5 are a set of non-negative integers. Thus, possible values of the scheduled number of RBs are multiples of 2, 3, or 5.
Antenna ports: This field is used to indicate the DMRS port of a PUSCH transmission. In NR, a PUSCH with CP-OFDM can support up to eight-layer transmission, but a PUSCH with DFT-s-OFDM supports only one-layer transmission. That is, only one DMRS port needs to be indicated for a PUSCH transmission with DFT-s-OFDM. Therefore, if a CG configuration supports the dynamic switching waveform or if waveforms can be switched between different PUSCH repetitions, only one antenna port may be indicated or configured for both CP-OFDM and DFT-s-OFDM waveforms. In this scheme, a PUSCH with CP-OFDM only supports one-layer transmission. That is, the antenna port tables are those with rank=1 defined in TS 38.212. In some examples, the value of the antenna port is restricted to be less than the minimum number of effective values in antenna port tables corresponding to different waveforms. The effective values are those which do not correspond to a “Reserved” entry.
Precoding information and number of layers: This field is used to indicate the number of layers and the precoder matrix for a codebook based PUSCH transmission. The number of combinations of layer and precoder of a PUSCH transmission with CP-OFDM is different from the number of combinations of layer and precoder of a PUSCH transmission with DFT-s-OFDM since different waveforms support different numbers of layers. For a CG PUSCH transmission that supports the dynamic switching waveform or PUSCH repetitions support waveform switching between different repetitions, the following options are provided for precoding information and number of layers:
In a first option A1, the maximum rank of a PUSCH transmission is limited to one so that the precoding information and number of layers tables for different waveforms are the same.
In a second option A2, the maximum value of the field is the number of valid values minus one in the precoding information and number of layers table corresponding to DFT-s-OFDM. The valid values are those which do not correspond to a “Reserved” entry. In an example, it is assumed that the number of SRS ports of an SRS resource used for codebook based transmission is 4 and full power transmission mode is not configured; and the maximum rank of CP-OFDM PUSCH transmission is 2 and the codebook subset is configured as fullyAndPartialAndNonCoherent. Then, if DFT-s-OFDM is applied, Table 7.3.1.1.2-3 in TS 38.212 will be used to indicate the number of layers and the precoder for the PUSCH transmission; and if CP-OFDM is applied, Table 7.3.1.1.2-2 in TS 38.212 will be used to indicate the number of layers and the precoder for the PUSCH transmission. Since the valid number of combinations in Table 7.3.1.1.2-3 is 28, the filed Precoding information and number of layers may only be set as a value from 0 to 27.
SRS resource indicator: This field is used to indicate the SRS resource for a PUSCH transmission and to indicate the number of layers for a non-codebook based PUSCH transmission. For non-codebook based PUSCH transmission, this parameter may indicate only the entries which include one SRI in SRI indication tables. That is, only one rank is supported if a CG PUSCH supports the dynamic waveform switching or if waveforms can be switched between different PUSCH  repetitions. In some examples, the the maximum rank of a non-codebook based CG PUSCH transmission is limited to one. In some other examples, the value of the SRS resource indicator may be restricted to be less than the minimum number of effective values in SRI tables corresponding to different waveforms.
Modulation and coding scheme: This field is used to indicate modulation order and the code rate of the PUSCH transmission. For different waveforms, different MCS tables may be used. The number of valid entries in different MCS tables may be different. The valid entry is not a “Reserved” entry. For a CG PUSCH transmission that supports the dynamic switching waveform or PUSCH repetitions support waveform switching between different repetitions, the maximum value of this parameter should be the minimum value in MCS tables corresponding to the two different waveforms.
In an example, the MCS table for CP-OFDM and DFT-s-OFDM is configured as qam64LowSE. The UE shall use this parameter and Table 5.1.3.1-3 in TS 38.214 which includes 29 valid entries, to determine the modulation order and target code rate for the PUSCH transmission if CP-OFDM is applied; and the UE shall use this parameter and Table 6.1.4.1-2 in TS 38.214 which includes 28 valid entries, to determine the modulation order and target code rate used for the PUSCH transmission if DFT-s-OFDM is applied. Therefore, the value of this parameter should be indicated as a value from 0 to 27.
Thus, in this scheme, the UE receives DCI indicating a waveform for a subsequent PUSCH transmission, and the indicated waveform may be different from an initial waveform of the PUSCH transmission. The initial waveform of a PUSCH is configured by transformPrecoder in TS 38.331. If transformPrecoder is set as enabled, it is DFT-s-OFDM, and if the parameter is set as disabled, it is CP-OFDM. The parameters for the PUSCH transmission may be configured by RRC signalling or indicated in DCI, and may include resourceAllocation, for indicating resource allocation scheme in frequency domain; DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain; Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain; Antenna port, for indicating a DMRS port; precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix; SRS resource indicator, for  indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and/or mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
One or more of the parameters may be configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
The DMRS type may be restricted to type 1; the number of Resource Blocks (RBs) indicated by the FDRA may be restricted to multiples of 2, 3, or 5; the Antenna port may be restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator may be restricted to be less than the minimum number of effective values in SRI tables corresponding to different waveforms; and/or the value of the mcsAndTBS may be restricted to be less than the minimum number of effective values in MCS tables corresponding to different waveforms.
For codebook based PUSCH transmission, the precodingAndNumberOfLayers may be restricted to entries corresponding to one layer. For codebook based PUSCH transmission, the precodingAndNumberOfLayers may be restricted to be less than the minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
For non-codebook based PUSCH transmission, the SRS resource indicator may be restricted to entries which include one SRI in an SRI table.
Scheme B: Reinterpreting the Parameters when DFT-s-OFDM is Applied
In some examples, the parameters may be set according to the current 3GPP specification. For example, a parameter may be initially set for CP-OFDM transmission, and the transmission waveform needs to subsequently be dynamically switched to DFT-s-OFDM. In this case, the parameters may be reinterpreted, i.e. interpreted differently, when DFT-s-OFDM is applied, while they are interpreted in the same way as legacy when CP-OFDM is applied.
Generally, the bit width of a parameter or a field required for CP-OFDM is larger than DFT-s-OFDM. Therefore, in this scheme, the set of parameters is configured or indicated for a CG PUSCH transmission with CP-OFDM waveform.  That is, the transformPrecoder in the CG configuration is enabled. Similarly, if waveforms can be switched between different PUSCH repetitions, the set of parameters indicated is also for CP-OFDM waveform. Then, if CP-OFDM is indicated in a DCI and applied to subsequent PUSCH transmissions, the interpretation of these parameters is the same as in legacy; but if DFT-s-OFDM is indicated in a DCI and applied to subsequent PUSCH transmissions, these parameters may be interpreted as follows:
dmrs-Type: The parameter may be set type 2 or absent. In this scheme, the UE always assumes that DMRS type 1 is used for the CG PUSCH transmission or the remaining PUSCH repetitions when DFT-s-OFDM is applied.
Frequency domain resource assignment: The number of scheduled RBs may be any value, but if DFT-s-OFDM waveform is applied, the UE assumes the number of scheduled RBs is the largest value which is smaller than the indicated number of RBs and is multiples of 2, 3 or 5. Alternatively, the UE may assume the number of scheduled RBs is the smallest value which is larger than the indicated number of RBs and is multiples of 2, 3 or 5. In an example, the scheduled number of RBs is defined as
Figure PCTCN2022130362-appb-000003
where α 2, α 3, α 5 are a set of non-negative integers. Thus, possible values of the scheduled number of RBs are multiples of 2, 3, or 5.
Antenna ports: The number of indicated antenna ports may be up to 8 as in legacy, but if DFT-s-OFDM waveform is applied, the UE assumes that one of the indicated DMRS port is used for the PUSCH transmission based on a predefined rule, for example, always the first or the last indicated DMRS port.
Precoding information and number of layers: For a CG PUSCH transmission that supports the dynamic switching waveform or PUSCH repetitions support waveform switching between different repetitions, the following options are provided for precoding information and number of layers:
In a first option B1, the precoder matrix for PUSCH transmission with DFT-s-OFDM is one column of the precoder corresponding to CP-OFDM based on a predefined rule, for example, always the first or the last column. Assuming that the precoder for PUSCH transmission with CP-OFDM is determined as
Figure PCTCN2022130362-appb-000004
Figure PCTCN2022130362-appb-000005
then if DFT-s-OFDM is applied, the precoder is
Figure PCTCN2022130362-appb-000006
where the coefficient of the precoder is adjusted so that the total power is same.
In a second option B2, the value of the field may set as the valid values in precoding information and number of layers table corresponding to CP-OFDM. However, for PUSCH transmission with DFT-s-OFDM, the value of this field is determined as mod (value of Precoding information and number of layers field, total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM) . For example, the assumption is the same as in the option A2, and then the value of this field may be one value from 0 to 61 as in Table 7.3.1.1.2-2 in TS 38.212. If the value of Precoding information and number of layers equals to 39 in the activation DCI for a CG type 2 PUSCH or in the CG configuration for a CG type 1 PUSCH and if DFT-s-OFDM is applied, then entry 11 which equals to mod (39, 28) in Table 7.3.1.1.2-3 in TS 38.212 is used for the PUSCH transmission, where 28 is the total number of valid entries in Table 7.3.1.1.2-3. That is, the precoder index is 11 in Table 6.3.1.5-2 in TS 38.211.
SRS resource indicator: The possible values of the parameter may be the same as in legacy, but one SRI indicated by SRS resource indicator is used to determine the SRS resource for PUSCH transmission with DFT-s-OFDM based on a predefined rule, for example, always the first or the last indicated SRI.
Modulation and coding scheme: There is no restriction on the value of the field. However, if the value indicates an entry that is not available in the MCS table corresponding to DFT-s-OFDM, the UE always assumes the last entry in the MCS table corresponding to DFT-s-OFDM is used to determine the modulation order and the code rate for the PUSCH transmission. In this scheme, when the DFT-s-OFDM is the waveform indicated by DCI, the values of one or more of the parameters for the PUSCH transmission may be interpreted based on a modified interpretation.
The modified interpretation may include: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one  DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
The modified interpretation may further include: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power; or for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM; or for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
An example is given below to illustrate the reinterpretation of the above parameters. In the example, a DCI format 0_1 activates a codebook based CG type 2 PUSCH transmission. The transformPrecoder is configured as disabled and the resource allocation scheme is configured as resourceAllocationType1 in the CG configuration. And the mcs-Table and mcs-TableTransformPrecoder for CP-OFDM and DFT-s-OFDM are both configured as qam64LowSE. The number of SRS ports of an SRS resource used for codebook based PUSCH transmission is 4 and the full power transmission mode is not configured. Further, the maximum rank of CP-OFDM PUSCH transmission is 2 and the codebook subset is configured as fullyAndPartialAndNonCoherent. The DMRS type is configured as type 1 and the maximum length of DMRS is one. It is assumed that the following parameters are indicated as in Table 1 in DCI format 0_1, then the interpretation of these fields needs to be enhanced as in the fourth column when DFT-s-OFDM waveform is applied.
Table 1 Interpretation of certain fields in the activation DCI for CG type 2 PUSCH transmission with dynamic waveform switching
Figure PCTCN2022130362-appb-000007
Figure PCTCN2022130362-appb-000008
Figure PCTCN2022130362-appb-000009
Determination of DCI used for indicating waveform for a PUSCH transmission
For CG PUSCH, the UL grant is semi-statically configured or indicated in an activation DCI. If dynamic waveform switching is applied to a CG PUSCH transmission or a plurality of PUSCH repetitions, then which DCI is used to indicate the waveform of the PUSCH needs to be determined to avoid ambiguous understanding between the UE and the gNB.
Firstly, the gap between the first symbol, or starting symbol, of PUSCH transmission and the last symbol, or ending symbol, of the DCI which indicates the waveform, should be larger than a threshold, since it may take some time for the UE to prepare for the PUSCH transmission with the indicated waveform. The threshold should be no less than the PUSCH preparation time as indicated in TS 38.214. If there are more than one DCIs satisfying the requirement, the DCI which is the latest to the PUSCH transmission is used to indicate the waveform for the CG PUSCH transmission or the remaining PUSCH repetitions.
Figure 4 is a schematic block diagram illustrating an example of waveform determination for CG type 1 PUSCH in accordance with some implementations of the present disclosure. In this example, supposing a CG type 1 PUSCH is transmitted with periodicity of 8 slots, and the transformPrecoder in the CG configuration is disabled, then the CG type 1 PUSCH is transmitted with CP-OFDM.
As shown in Figure 4, three DCIs, DCI #1 411, DCI #2 412 and DCI #3 413 are transmitted by the gNB, and two PUSCHs, PUSCH#1 401 and PUSCH #2 402, are transmitted by the UE. At time t1, the DCI #1 411 indicates DFT-s-OFDM will be used for the following PUSCH transmission; at time t2, the DCI #2 412 indicates CP-OFDM will be used for the following PUSCH transmission; and at time t3, the DCI #3 413 indicates DFT-s-OFDM will be used for the following PUSCH  transmission. The gap 1 is the gap between the first symbol of PUSCH #1 401 and the last symbol of DCI #1 411. In the example, it is assumed that the gap 1 is smaller than the threshold which is used for preparing PUSCH #1 401 transmission with DFT-s-OFDM. Thus, the PUSCH #1 is still transmitted with CP-OFDM. Similarly, gap 2 and gap 3 are gaps between the first symbol of PUSCH #2 402 and the last symbol of DCI #2 412 and DCI #3 413, respectively. In this example, it is assumed that both gap 2 and gap 3 are larger than the threshold. Thus, the PUSCH #2 402 will be transmitted with DFT-s-OFDM as indicated in DCI #3 413 since it is latest to the PUSCH #2 402 transmission.
If dynamic waveform switching is applied to a CG PUSCH transmission or a plurality of PUSCH repetitions, the mechanism may also be applied to indicate the waveform for PUSCHs in Carrier Aggregation (CA) scenario. That is, the waveform indicated in a DCI may be applied to more than one PUSCH transmissions in more than one BWPs of more than one carriers. Then, the threshold should be determined based on the carrier with smallest SCS configuration.
Thus, when the UE receives a plurality of instances of DCI, and the transmission waveform may be determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold. The transmission waveform may be applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
The determination of the waveform for DG PUSCH may also be considered. Generally, the DCI for scheduling the PUSCH also indicates the waveform for the scheduled PUSCH transmission. However, if after the scheduling DCI, there is another DCI indicating a waveform for the following PUSCH transmission, and the gap between the another DCI and the scheduled PUSCH is larger than the threshold, how to determine the waveform for the scheduled PUSCH in such cases also needs to be resolved.
The reasonable rule is that for DG PUSCH, the waveform should follow the indication in the scheduling DCI, since the indications, for example the FDRA, the antenna ports, the PMI, the SRI and so on, in the scheduling DCI may not match the waveform indicated in other DCIs.
Figure 5 is a schematic block diagram illustrating an example of waveform determination for DG PUSCH in accordance with some implementations of the present disclosure.
In Figure 5, a DCI #1 511 schedules a PUSCH #1 501 transmission and the indicated waveform is CP-OFDM for example; and at a later time, a DCI #2 512 indicates DFT-s-OFDM will be used for following PUSCH transmission. The gap 1 equals to K 2 which is indicated in DCI #1 511, and the gap 2 is the gap between the first symbol of PUSCH #1 501 and the last symbol of DCI #2 512. Here, it is assumed that the gap 2 is larger than the threshold. In this case, PUSCH #1 501 will be transmitted with CP-OFDM waveform indicated in DCI #1 511 since the parameters indicated in DCI #1 511 (i.e., the scheduling DCI) are dedicated for CP-OFDM and they may not be suitable for PUSCH transmission with DFT-s-OFDM.
In this example, the transmission waveform is determined as CP-OFDM waveform indicated in an earlier DCI for scheduling the PUSCH transmission when the PUSCH transmission is a DG PUSCH transmission.
Figure 6 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by UE 200 in accordance with some implementations of the present disclosure.
At step 602, the receiver 214 of UE 200 receives a signaling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission.
At step 604, the processor 202 of UE 200 determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission.
At step 606, the transmitter 212 of UE 200 transmits the PUSCH transmission with the transmission waveform determined by the processor.
Figure 7 is a flow chart illustrating steps of dynamic waveform switching for a PUSCH by gNB 300 in accordance with some implementations of the present disclosure.
At step 702, the transmitter 312 of gNB 300 transmits a signaling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission.
At step 704, the processor 302 of gNB 300 determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission.
At step 706, the receiver 314 of gNB 300 receives the PUSCH transmission according to the transmission waveform determined by the processor.
In one aspect, some items as examples of the disclosure concerning UE may be summarized as follows:
1. An apparatus, comprising:
a receiver that receives a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
a transmitter that transmits the PUSCH transmission with the transmission waveform determined by the processor.
2. The apparatus of item 1, wherein the PUSCH transmission is a Configured Grant (CG) PUSCH transmission, the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform, and the set of parameters comprises one or more of:
resourceAllocation, for indicating resource allocation scheme in frequency domain;
DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain;
Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain;
Antenna port, for indicating a DMRS port;
precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix;
SRS resource indicator, for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and
mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
3. The apparatus of item 1 or 2, wherein one or more of the parameters are configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
4. The apparatus of item 3, wherein the DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
5. The apparatus of item 3, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to entries corresponding to one layer.
6. The apparatus of item 3, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to be less than minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
7. The apparatus of item 3, wherein, for non-codebook based PUSCH transmission, the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
8. The apparatus of item 1 or 2, wherein the indicated waveform is Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s- OFDM) waveform, and values of one or more of the parameters are interpreted based on a modified interpretation.
9. The apparatus of item 8, wherein the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
10. The apparatus of item 8, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
11. The apparatus of item 8, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
12. The apparatus of item 8, wherein the modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
13. The apparatus of item 1, wherein the receiver receives a plurality of instances of DCI, and the transmission waveform is determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold.
14. The apparatus of item 13, wherein the transmission waveform is applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
15. The apparatus of item 1, wherein the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission, the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission, and the transmission waveform is determined as the initial waveform.
In another aspect, some items as examples of the disclosure concerning gNB may be summarized as follows:
16. An apparatus, comprising:
a transmitter that transmits a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
a receiver that receives the PUSCH transmission according to the transmission waveform determined by the processor.
17. The apparatus of item 16, wherein the PUSCH transmission is a Configured Grant (CG) PUSCH transmission, the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform, and the set of parameters comprises one or more of:
resourceAllocation, for indicating resource allocation scheme in frequency domain;
DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain;
Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain;
Antenna port, for indicating a DMRS port;
precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix;
SRS resource indicator, for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and
mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
18. The apparatus of item 16 or 17, wherein one or more of the parameters are configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
19. The apparatus of item 18, wherein the DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
20. The apparatus of item 18, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to entries corresponding to one layer.
21. The apparatus of item 18, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to be less than minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
22. The apparatus of item 18, wherein, for non-codebook based PUSCH transmission, the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
23. The apparatus of item 16 or 17, wherein the indicated waveform is Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform, and values of one or more of the parameters are interpreted based on a modified interpretation.
24. The apparatus of item 23, wherein the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
25. The apparatus of item 23, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
26. The apparatus of item 23, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
27. The apparatus of item 23, wherein the modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
28. The apparatus of item 16, wherein the transmitter transmits a plurality of instances of DCI, and the transmission waveform is determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold.
29. The apparatus of item 28, wherein the transmission waveform is applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
30. The apparatus of item 16, wherein the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission, the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission, and the transmission waveform is determined as the initial waveform.
In a further aspect, some items as examples of the disclosure concerning a method of UE may be summarized as follows:
31. A method, comprising:
receiving, by a receiver, a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
transmitting, by a transmitter, the PUSCH transmission with the transmission waveform determined by the processor.
32. The method of item 31, wherein the PUSCH transmission is a Configured Grant (CG) PUSCH transmission, the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform, and the set of parameters comprises one or more of:
resourceAllocation, for indicating resource allocation scheme in frequency domain;
DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain;
Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain;
Antenna port, for indicating a DMRS port;
precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix;
SRS resource indicator, for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and
mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
33. The method of item 31 or 32, wherein one or more of the parameters are configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
34. The method of item 33, wherein the DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values  in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
35. The method of item 33, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to entries corresponding to one layer.
36. The method of item 33, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to be less than minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
37. The method of item 33, wherein, for non-codebook based PUSCH transmission, the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
38. The method of item 31 or 32, wherein the indicated waveform is Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform, and values of one or more of the parameters are interpreted based on a modified interpretation.
39. The method of item 38, wherein the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
40. The method of item 38, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
41. The method of item 38, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where  X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
42. The method of item 38, wherein the modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
43. The method of item 31, wherein the receiver receives a plurality of instances of DCI, and the transmission waveform is determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold.
44. The method of item 43, wherein the transmission waveform is applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
45. The method of item 31, wherein the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission, the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission, and the transmission waveform is determined as the initial waveform.
In a yet further aspect, some items as examples of the disclosure concerning a method of gNB may be summarized as follows:
46. A method, comprising:
transmitting, by a transmitter, a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
receiving, by a receiver, the PUSCH transmission according to the transmission waveform determined by the processor.
47. The method of item 46, wherein the PUSCH transmission is a Configured Grant (CG) PUSCH transmission, the initial waveform is Cyclic Prefix Orthogonal  Frequency Division Multiplexing (CP-OFDM) waveform, and the set of parameters comprises one or more of:
resourceAllocation, for indicating resource allocation scheme in frequency domain;
DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain;
Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain;
Antenna port, for indicating a DMRS port;
precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix;
SRS resource indicator, for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and
mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
48. The method of item 46 or 47, wherein one or more of the parameters are configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
49. The method of item 48, wherein the DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
50. The method of item 48, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to entries corresponding to one layer.
51. The method of item 48, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to be less than minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
52. The method of item 48, wherein, for non-codebook based PUSCH transmission, the SRS resource indicator is restricted to entries which include one SRI in an SRI table.
53. The method of item 46 or 47, wherein the indicated waveform is Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform, and values of one or more of the parameters are interpreted based on a modified interpretation.
54. The method of item 53, wherein the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
55. The method of item 53, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
56. The method of item 53, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
57. The method of item 53, wherein the modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
58. The method of item 46, wherein the transmitter transmits a plurality of instances of DCI, and the transmission waveform is determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol  of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold.
59. The method of item 58, wherein the transmission waveform is applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
60. The method of item 46, wherein the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission, the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission, and the transmission waveform is determined as the initial waveform.
Various embodiments and/or examples are disclosed to provide exemplary and explanatory information to enable a person of ordinary skill in the art to put the disclosure into practice. Features or components disclosed with reference to one embodiment or example are also applicable to all embodiments or examples unless specifically indicated otherwise.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. An apparatus, comprising:
    a receiver that receives a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
    a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
    a transmitter that transmits the PUSCH transmission with the transmission waveform determined by the processor.
  2. The apparatus of claim 1, wherein the PUSCH transmission is a Configured Grant (CG) PUSCH transmission, the initial waveform is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform, and the set of parameters comprises one or more of:
    resourceAllocation, for indicating resource allocation scheme in frequency domain;
    DMRS-type, for indicating a Demodulation Reference Signal (DMRS) pattern in frequency domain;
    Frequency domain resource assignment (FDRA) , for indicating a resource in frequency domain;
    Antenna port, for indicating a DMRS port;
    precodingAndNumberOfLayers, for indicating number of layers and a precoder matrix;
    SRS resource indicator, for indicating a Sounding Reference Signal (SRS) resource used for codebook or non-codebook PUSCH transmission; and
    mcsAndTBS, used for indicating a Modulation and Coding Scheme (MCS) value.
  3. The apparatus of claim 1 or 2, wherein one or more of the parameters are configured with restricted values, which are selected from a subset of allowable values for configuration of CP-OFDM waveform.
  4. The apparatus of claim 3, wherein the DMRS type is restricted to type 1; number of Resource Blocks (RBs) indicated by the FDRA is restricted to multiples of 2, 3, or 5; the Antenna port is restricted to entries which include one DMRS port in an antenna port table; for non-codebook based transmission, the value of the SRS resource indicator is restricted to be less than minimum number of effective values in SRI tables corresponding to different waveforms; and/or value of the mcsAndTBS is restricted to be less than minimum number of effective values in MCS tables corresponding to different waveforms.
  5. The apparatus of claim 3, wherein, for codebook based PUSCH transmission, the precodingAndNumberOfLayers is restricted to be less than minimum number of effective values in precoding information and number of layers tables corresponding to different waveforms.
  6. The apparatus of claim 1 or 2, wherein the indicated waveform is Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform, and values of one or more of the parameters are interpreted based on a modified interpretation.
  7. The apparatus of claim 6, wherein the modified interpretation comprises: the DMRS type is interpreted as type 1 irrespective of the value of DMRS type; number of RBs of the PUSCH transmission is interpreted as a largest value which is multiples of 2, 3, or 5, without exceeding the number of RBs indicated by the FDRA; the Antenna port is interpreted as one DMRS port indicated by the Antenna port; and/or the MCS is interpreted as 27 where the mcsAndTBS indicates a value which is not a valid entry in the MCS table corresponding to DFT-s-OFDM.
  8. The apparatus of claim 6, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the precoder matrix of the PUSCH transmission is interpreted as one column  corresponding to the precoder matrix indicated by precodingAndNumberOfLayers, with coefficient adjusted to maintain power.
  9. The apparatus of claim 6, wherein the modified interpretation comprises: for codebook based PUSCH transmission, the number of layer is interpreted as one, and the value of precodingAndNumberOfLayers is determined as mod (X, Y) , where X is the value of precodingAndNumberOfLayers, and Y is total number of valid entries in Precoding information and number of layers table corresponding to DFT-s-OFDM.
  10. The apparatus of claim 6, wherein the modified interpretation comprises: for non-codebook based PUSCH transmission, one SRI indicated by SRS resource indicator is used for determining SRS source for the PUSCH transmission.
  11. The apparatus of claim 1, wherein the receiver receives a plurality of instances of DCI, and the transmission waveform is determined according to a latest DCI relative to the PUSCH transmission, provided that a gap between a last symbol of the DCI and a starting symbol of the PUSCH transmission is larger than a threshold.
  12. The apparatus of claim 11, wherein the transmission waveform is applied to more than one PUSCH transmissions in more than one Bandwidth Parts (BWPs) of more than one carriers, and the threshold is determined based on the carrier with smallest Subcarrier Spacing (SCS) configuration.
  13. The apparatus of claim 1, wherein the PUSCH transmission is a Dynamic Grant (DG) PUSCH transmission, the initial waveform is indicated in an earlier DCI for scheduling the PUSCH transmission, and the transmission waveform is determined as the initial waveform.
  14. An apparatus, comprising:
    a transmitter that transmits a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
    a processor that determines a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
    a receiver that receives the PUSCH transmission according to the transmission waveform determined by the processor.
  15. A method, comprising:
    receiving, by a receiver, a signalling indicating a waveform for a subsequent Physical Uplink Shared Channel (PUSCH) transmission, the indicated waveform being different from an initial waveform of the PUSCH transmission;
    determining, by a processor, a transmission waveform of the PUSCH transmission according to the indicated waveform and/or a set of parameters for the PUSCH transmission; and
    transmitting, by a transmitter, the PUSCH transmission with the transmission waveform determined by the processor.
PCT/CN2022/130362 2022-11-07 2022-11-07 Methods and apparatus of dynamic waveform switching for pusch WO2024073918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130362 WO2024073918A1 (en) 2022-11-07 2022-11-07 Methods and apparatus of dynamic waveform switching for pusch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130362 WO2024073918A1 (en) 2022-11-07 2022-11-07 Methods and apparatus of dynamic waveform switching for pusch

Publications (1)

Publication Number Publication Date
WO2024073918A1 true WO2024073918A1 (en) 2024-04-11

Family

ID=90607524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130362 WO2024073918A1 (en) 2022-11-07 2022-11-07 Methods and apparatus of dynamic waveform switching for pusch

Country Status (1)

Country Link
WO (1) WO2024073918A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792422A (en) * 2016-09-30 2019-05-21 Lg 电子株式会社 The method and its equipment of signal are sent or received in a wireless communication system
CN109906571A (en) * 2016-11-04 2019-06-18 华为技术有限公司 Data transmission method and device
CN110089180A (en) * 2017-01-06 2019-08-02 高通股份有限公司 The emission detection reference signal in new radio
CN113574924A (en) * 2019-03-26 2021-10-29 高通股份有限公司 Waveform configuration and indication for uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792422A (en) * 2016-09-30 2019-05-21 Lg 电子株式会社 The method and its equipment of signal are sent or received in a wireless communication system
CN109906571A (en) * 2016-11-04 2019-06-18 华为技术有限公司 Data transmission method and device
CN110089180A (en) * 2017-01-06 2019-08-02 高通股份有限公司 The emission detection reference signal in new radio
CN113574924A (en) * 2019-03-26 2021-10-29 高通股份有限公司 Waveform configuration and indication for uplink transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (NTT DOCOMO, INC.): "Summary on Rel-17 TEIs", 3GPP DRAFT; R1-2109722, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 21 October 2021 (2021-10-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052065826 *

Similar Documents

Publication Publication Date Title
US11589393B2 (en) Random access configuration
US11540227B2 (en) Power control configuration for uplink transmissions
CN113519137A (en) Method and apparatus for multi-beam operation
KR20240001287A (en) Synchronization signal block selection
WO2021035423A1 (en) Apparatus and method of tci states configuration and activation or deactivation
CN114175783A (en) Apparatus and method for PUCCH repetition using multi-beam
WO2024073918A1 (en) Methods and apparatus of dynamic waveform switching for pusch
WO2022027446A1 (en) Apparatus and methods of simultaneous ue rx beam refinement
EP4136784A1 (en) Channel state information processing and reporting
CN115398830A (en) Channel state information processing and reporting
WO2023168654A1 (en) Methods and apparatus of dynamic switching of waveforms
WO2023151025A1 (en) Methods and apparatus of resource mapping for ptrs
WO2023206582A1 (en) Methods and apparatus of power boosting for dmrs and ptrs
WO2024073954A1 (en) Methods and apparatus of reporting phr for supporting dynamic waveform switching
WO2023133790A1 (en) Methods and apparatus of signalling for indicating dmrs ports
WO2023206135A1 (en) Methods and apparatus of dmrs sequence generation
WO2023279365A1 (en) Methods and apparatus of monitoring pdcch scheduling common information with multiple trp transmission
WO2023115470A1 (en) Methods and apparatus of beam determination of pusch scheduled or activated with dci format 0_0 where two common beams are indicated for ul transmission
WO2024016302A1 (en) Methods and apparatus of srs resource mapping hopping
WO2023130361A1 (en) Methods and apparatus of resource mapping for dmrs ports
WO2022236590A1 (en) Methods and apparatus of pdsch processing procedure time derivation for harq-ack feedback of pdsch scheduled by enhanced pdcch e
WO2023077361A1 (en) Methods and apparatus of monitoring behaviour determination for overlapping epdcch and csi-rs/ssb/pdsch/pdcch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961275

Country of ref document: EP

Kind code of ref document: A1