WO2024071809A1 - 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글 - Google Patents

눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글 Download PDF

Info

Publication number
WO2024071809A1
WO2024071809A1 PCT/KR2023/014243 KR2023014243W WO2024071809A1 WO 2024071809 A1 WO2024071809 A1 WO 2024071809A1 KR 2023014243 W KR2023014243 W KR 2023014243W WO 2024071809 A1 WO2024071809 A1 WO 2024071809A1
Authority
WO
WIPO (PCT)
Prior art keywords
goggles
transparent
eye protection
heating element
transparent substrate
Prior art date
Application number
PCT/KR2023/014243
Other languages
English (en)
French (fr)
Inventor
이승택
이철주
Original Assignee
유한회사 대동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유한회사 대동 filed Critical 유한회사 대동
Publication of WO2024071809A1 publication Critical patent/WO2024071809A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/02Goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/02Goggles
    • A61F9/029Additional functions or features, e.g. protection for other parts of the face such as ears, nose or mouth; Screen wipers or cleaning devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to a transparent heating element for eye protection goggles and eye protection goggles including the same.
  • a transparent conductive film is used as a transparent heating element in the goggles to remove snow, prevent snowfall, or prevent fogging.
  • the transparent heating conductive film is used as a transparent oxide conductor (ITO).
  • ITO transparent oxide conductor
  • Indium Tin Oxide (Indium Tin Oxide) films are mainly used, and nanowire film films or films with a fine wire structure using conductive ink are also used.
  • an ITO transparent conductive film which is an oxide transparent conductor
  • electrodes are attached to the upper and lower edges of the transparent conductive film
  • electrode protection plates are attached to the surfaces of these electrodes
  • power supply lines are connected to the upper and lower electrodes, respectively.
  • a method was used to supply power from a power source and energize the transparent conductive film to increase the temperature of the goggles and dry the moisture condensed on the inner surface of the goggles.
  • the temperature is relatively low in the central area of such ski or motorcycle goggles, and the temperature is relatively high in the areas on both sides of the goggles, resulting in a temperature difference in these areas.
  • it is necessary to first increase the temperature to prevent fogging of the central part of the goggles.
  • Anti-fog lens structure and eye protection KR 10-1857804 B1
  • KR 10-1857804 B1 when a current is passed to raise the temperature of the central area to the level necessary to prevent fogging, more current flows in the areas on both sides, resulting in power loss. The harmful effects of this unnecessary consumption are being revealed.
  • the maximum heating temperature in all areas of the goggles is preferably 80 °C or lower.
  • the heating characteristics of conventional ITO goggles for snowmobiles were measured and confirmed as shown in Figures 1, 2, 3, and 4.
  • the maximum heating temperature of the electrode areas on both sides was 82 ⁇ 82. It was as high as 114 °C.
  • the maximum heating temperature was as high as 81 ⁇ 106 °C. This can also be confirmed through Table 1 below.
  • Patent Document 2 proposes a method of dividing the upper and lower electrodes, but in order to change the amount of current according to the distance between the upper and lower electrodes, it is necessary to introduce a new control element to control the power source, which makes the circuit complicated. This causes a problem in that the performance of required functions is degraded and manufacturing costs are high.
  • goggles with fine lines formed with a conductor with a volume resistivity of 9 ⁇ cm or less they were manufactured in the same way as conventional ITO goggles for snowmobiles, and in measuring heating characteristics, the heating temperature was measured at a constant voltage of 12 V.
  • the average heating temperature of the goggles in the fine line area was 61.4 °C and the maximum heating temperature was quite high at 121.8 °C. The reason is that the conductivity of the conductor forming the fine wire is good and the distance between the upper and lower electrodes is Because it changes.
  • a simple way to adjust the average and maximum heating temperature of the goggles in the fine line area is to change the power supply used, that is, from a 12 V constant voltage to a lower voltage power supply, but for snowmobile use, it is limited to 12 V constant voltage.
  • a simple way to lower the conductivity of ink is to add a large amount of organic polymers, such as dispersants or adhesion aids, as conductivity-inhibiting impurities. Adding conductivity-inhibiting impurities has a detrimental effect on the reproducibility, stability, and reliability of the ink's electrical characteristics, so it is good.
  • a conductive transparent heating material that can secure visibility and heat generation characteristics. Accordingly, the present inventors focused on the above technical requirements and developed a stable average heat generation temperature and maximum heat generation in the entire area of the goggles at a constant voltage of 12 V and by varying the voltage of the power source.
  • a transparent heating element for eye protection goggles that achieves a temperature of 80°C or lower was developed and the present invention was completed.
  • the present invention was invented to solve the above problems, and provides a transparent heating element for eye protection goggles with a maximum heating temperature of 80 °C or less and an average heating temperature of 30 to 60 °C, and eye protection goggles including the same. Make it a problem to solve.
  • the present invention includes: a rectangular transparent substrate; A grid pattern formed by applying a conductive water-based ink to the transparent substrate and forming a stack, and made of fine lines; and electrodes formed on both ends of the transparent substrate and connected to the grid pattern, wherein the conductive water-based ink includes metal nanoparticles with a size of 5 to 50 nm and a water-soluble solvent, and the metal The nanoparticles are protected with a dispersion stabilizer composed of branched polyalkyleneimine segments, polyoxyalkylene segments, and amine salts, so that the maximum heating temperature of the transparent substrate is 80 ° C. or less, and the average heating temperature of the fine lines is 30 ⁇ 30.
  • a transparent heating element for eye protection goggles characterized in that the temperature is 60°C.
  • the grid pattern is characterized by a line width of 0.5 to 10 ⁇ m and a pitch of 0.05 to 1.0 mm.
  • the grid pattern is characterized in that the maximum value of volume resistivity is 9 ⁇ cm.
  • the grid pattern is formed by applying the conductive water-based ink using imprint printing, screen printing, gravure printing, gravure offset printing, gravure reverse printing, or inkjet printing, and then firing.
  • the transparent substrate is characterized in that the vertical and horizontal length ratio is 1:2 to 5.
  • the conductive water-based ink is characterized in that it further contains metal particles having a size of 100 to 900 nm.
  • the water-soluble solvent is characterized in that it is at least one selected from alkylene glycol and glycerin.
  • the present invention provides eye protection goggles, characterized in that they include the transparent heating element.
  • the transparent heating element for eye protection goggles of the present invention as a means of solving the above problem, the average heating temperature satisfies a stable range of 30 to 60 °C in all areas of the goggles with a grid pattern made of fine lines, and the maximum heating temperature is 80 °C or less.
  • the maximum heating temperature is 80 °C or less.
  • the conductive water-based nano silver ink which enables the creation of a transparent heating element with good conductivity, has a good lattice pattern formation of fine lines and shows good conductivity with low-temperature firing, ensuring sufficient heat generation even under various operating voltages, such as low-voltage batteries. This has the effect of forming a grid pattern with excellent visibility.
  • Figure 1 is a thermal image measurement image of company A's ITO goggles.
  • Figure 2 is a thermal image measurement image of Company B's ITO goggles.
  • Figure 3 is a thermal image measurement image of Company C's ITO goggles.
  • Figure 4 is a thermal image measurement image of Company D's ITO goggles.
  • Figure 5 is a thermal imaging image of company E's nanowire goggles.
  • Figure 6 is a thermal image measurement image of goggles with fine lines formed with a good conductor.
  • Figure 7 is a thermal image measurement image of goggles in which fine lines are formed using a conductor with reduced conductivity.
  • Figure 8 shows the shape of goggles simplified to a rectangle or square.
  • Figure 9 is a TEM photo of silver nanoparticles.
  • Figure 10 is an optical micrograph of the lattice pattern after firing.
  • Figure 11 is a measurement point of the heating temperature of a transparent heating element using a thermal imaging camera.
  • Figure 12 is a photograph of the left and right vertical electrode plates of various goggle models.
  • Figure 13 is a photograph of the upper and lower horizontal electrode plates of various goggle models.
  • Figure 14 is a photograph of the heating temperature of the transparent heating element according to Example 1 measured using a thermal imaging camera.
  • Figure 15 is a photograph of the heating temperature of the transparent heating element according to Example 2 measured using a thermal imaging camera.
  • Figure 16 is a photograph of the heating temperature of the transparent heating element according to Example 3 measured using a thermal imaging camera.
  • Figure 17 is a photograph of the heating temperature of the transparent heating element according to Example 4 measured using a thermal imaging camera.
  • Figure 18 is a photograph of the heating temperature of the transparent heating element according to Example 5 measured using a thermal imaging camera.
  • Figure 19 is a photograph of the heating temperature of the transparent heating element according to Example 6 measured using a thermal imaging camera.
  • Figure 20 is a photograph of the heating temperature of the transparent heating element according to Example 7 measured using a thermal imaging camera.
  • Figure 21 is a photograph of the heating temperature of the transparent heating element according to Example 8 measured using a thermal imaging camera.
  • Figure 22 is a photograph of the heating temperature of the transparent heating element according to Example 9 measured using a thermal imaging camera.
  • Figure 23 is a photograph of the heating temperature of the transparent heating element according to Example 10 measured using a thermal imaging camera.
  • Figure 24 is a photograph of the heating temperature of the transparent heating element according to Comparative Example 1 measured using a thermal imaging camera.
  • Figure 25 is a photograph of the heating temperature of the transparent heating element according to Comparative Example 2 using a thermal imaging camera.
  • Figure 26 is a photograph of the heating temperature of the transparent heating element according to Comparative Example 3 measured using a thermal imaging camera.
  • Figure 27 is a photograph of the heating temperature of the transparent heating element according to Comparative Example 4 measured using a thermal imaging camera.
  • the present inventors used a metal nanoparticle dispersion stabilizer containing a metal nanoparticle protective polymer composed of branched polyalkyleneimine segments and polyoxyalkylene segments, and an amine salt composed of an amine and an inorganic acid.
  • a metal nanoparticle protective polymer composed of branched polyalkyleneimine segments and polyoxyalkylene segments
  • an amine salt composed of an amine and an inorganic acid.
  • the resistance between electrodes was reduced with the same effect of lowering the conductivity of the conductor by changing the position of the electrodes and the grid pattern.
  • a method of dropping that is, a method of reducing the current flow between electrodes, a method of reducing the deviation of resistance or current between electrodes by reducing the deviation of the distance between electrodes, and a method of changing the applied voltage.
  • the present invention provides a transparent heating element for eye protection goggles.
  • the transparent heating element of the present invention is a rectangular transparent substrate with a vertical and horizontal length ratio of 1:2 to 5, and fine lines with a line width of 0.5 to 10 ⁇ m and a pitch of 0.05 to 1.0 mm have a volume resistivity of 9 ⁇ cm or less. It is formed of a conductor to form a grid pattern, and electrodes connected to the fine lines are formed at both left and right ends or both upper and lower ends of the rectangular transparent substrate, and the highest heating temperature within the rectangular transparent substrate including the electrode is 80° C. or less.
  • the average heating temperature of the fine lines forming the grid pattern is 30 to 60 °C and the light transmittance is 95% or more.
  • the shape of eye protection goggles such as snowmobile goggles, ski goggles, or motorcycle goggles is made of a rectangular transparent substrate, and has visibility without obstructing the field of view of the user wearing the eye protection goggles.
  • the ratio of the length and width of the rectangular transparent substrate should be 1:2 to 5. It is preferable, and the range of 1:2.5 to 4.5 is most preferable.
  • fine lines using good conductors form a grid pattern, and by setting the wiring width of the fine lines to 0.5 to 10 ⁇ m, visibility is not deteriorated and it is comfortable for users wearing eye protection goggles. Does not block or obstruct vision. And by setting the line width to 0.5 to 10 ⁇ m and the wiring pitch to 0.05 to 1.0 mm, the actual light transmittance (light transmittance ignoring the transparent substrate) can be over 95%, and by changing the line width and pitch of the fine lines, the transparency of the transparent substrate can be improved.
  • the surface resistance value can be controlled.
  • the line width of the fine wire is 0.5 to 10 ⁇ m, which is a desirable range from the viewpoint of ensuring conductivity, and is more preferably 1.0 to 7 ⁇ m.
  • the pitch of the fine wires is 0.05 to 1.0 mm, which is a preferable range from the viewpoint of light transmittance of the transparent heating element, and is more preferable if it is 0.1 to 0.7 mm.
  • the grid pattern of very fine lines is strong against bending or curvature of the transparent substrate and is formed by a simple printing method, it is possible to reduce manufacturing costs by eliminating the need for waiting time for large vacuum equipment and vacuum processing such as ITO film forming. .
  • the grid pattern consisting of a net structure of fine lines has a line or mesh shape formed by a combination of a plurality of straight lines or curves and is intended to flexibly respond to changes such as heat shrinkage of the transparent substrate.
  • the mesh-shaped unit grid shape may be a triangle such as an equilateral triangle or scalene triangle, a square such as a square or rectangular rhombus, a polygon such as a hexagon or octagon, a circle, or a cone.
  • irregular polygonal or circular patterns can be applied to reduce moiré phenomenon.
  • Fine lines in a grid pattern composed of a net structure made of a good conductor are opaque, but appear transparent as light passes through the gaps between the fine lines or empty spaces in the mesh, resulting in the formation of a transparent heating element.
  • the fine lines formed on the rectangular transparent substrate of the present invention are made of a good conductor whose maximum volume resistivity is in the range of 9 ⁇ cm or less, and the electrodes connected to the fine lines are formed on the rectangular transparent substrate according to the voltage of the applied power source. It is formed at both ends of the left and right sides or both ends of the upper and lower sides, and the maximum heating temperature within the rectangular transparent substrate including the electrode is 80 °C or less, and the average heating temperature of the fine line portion is 30 to 60 °C. It is a transparent heating element for eye protection goggles. .
  • the highest heating temperature within the rectangular transparent substrate and the average heating temperature of the fine line portion depend on the amount of heat (Q). As shown in Equation 1 below, the amount of heat (Q) is proportional to the flow of current, and the flow of current forms the fine line. It is inversely proportional to the resistance of the conductor. And it can be seen that the amount of heat (Q) is proportional to the applied voltage (V).
  • I current
  • V voltage
  • R resistance
  • the current in order to obtain a maximum heating temperature of 80 °C or less and an average heating temperature of 30 to 60 °C, when using a conductor with good fine wire resistivity, the current must be controlled by various methods such as adjusting the length of the electrodes and the spacing between electrodes and adjusting the applied voltage of the electrode power source.
  • the target temperature can be achieved by controlling the flow.
  • the width:length ratio of the conventional snowmobile shield is approximately 3:1, so the width:length ratio is 3:1, 1:1, and 1:3 as shown in A, B, and C of Figure 8. It can be explained that the resistance value of the transparent substrate formed with fine lines between the electrodes is adjusted by adjusting the length of the electrodes formed on the left and right ends or the upper and lower ends of the rectangular transparent substrate and the spacing between the electrodes.
  • Equation 2 the unit of surface resistivity ( ⁇ s) between two electrodes is ⁇ / ⁇ , which is the resistance value per unit area.
  • ⁇ / ⁇ the resistance value per unit area.
  • Rs the surface resistance value
  • the unit of surface resistivity
  • W is the length of the electrode and L is the distance between electrodes.
  • the surface resistance of the transparent substrate between electrodes is inversely proportional to the length of the electrode. As the electrode becomes longer, the surface resistance of the transparent substrate decreases, and as the electrode length becomes shorter, the surface resistance of the transparent substrate increases. In addition, in proportion to the distance between electrodes, it can be seen that as the distance between electrodes becomes longer, the surface resistance of the transparent substrate increases, and as the distance between electrodes becomes shorter, the surface resistance of the transparent substrate decreases. Therefore, by adjusting the length of the electrodes formed on the left and right ends or the upper and lower ends of the rectangular transparent substrate or the distance between the electrodes, the surface resistance of the transparent substrate on which the grid pattern of fine lines between electrodes is formed can be adjusted, thereby controlling the flow of current. Therefore, the maximum heating temperature within the rectangular transparent substrate can be adjusted to 80 °C or less and the average heating temperature of the fine line portion can be adjusted to 30 ⁇ 60 °C.
  • Fine lines on a rectangular transparent substrate are formed using a highly conductive water-based ink (NIM-006) with a volume resistivity of 9 ⁇ cm or less.
  • NIM-006 highly conductive water-based ink
  • the length of the electrodes or between the electrodes is as shown in A, B, and C.
  • the surface resistance of the transparent substrate between electrodes changes.
  • the same high-conductivity water-based ink (NIM-006) was used, but as the length of the electrode and the distance between electrodes change due to changes in the position and pattern of the electrode, the surface resistance of the transparent substrate between electrodes increases by 9 times. Therefore, compared to A, in the case of C, the flow of current can be controlled while using highly conductive water-based ink, so excessive heat generation can be controlled.
  • the electrode C formed on the shorter upper and lower ends has the advantage of reducing the variation in the distance between electrodes and thus reducing the variation in resistance or current between electrodes. It also has the advantage of ensuring visibility without blocking or obstructing the view of a user wearing eye protection goggles.
  • the highest heating temperature in the electrode area on both sides was particularly high at 82 ⁇ 114 °C, and the heating characteristics of goggles made of nanowires were also measured and confirmed to have the highest heating temperature.
  • the temperature was high, ranging from 81 to 106 degrees Celsius.
  • the surface resistance of ITO for eye protection goggles is approximately 30 ⁇ / ⁇ .
  • a surface resistance of about 10 ⁇ / ⁇ is required.
  • the film thickness must be increased.
  • the heat quantity (Q) which represents the highest heating temperature within the rectangular transparent substrate and the average heating temperature of the fine line portion, is proportional to the applied voltage as shown in Equation 1 above and also depends on the flow of current. It is proportional. Therefore, by adjusting the voltage of the power supply applied to the electrodes formed on the long left and right ends of the rectangular substrate or the short upper and lower ends, the maximum heating temperature in the rectangular transparent substrate is 80 °C or less and the fine line portion is maintained.
  • the average heating temperature can be adjusted to 30 ⁇ 60 °C.
  • organic films that have low heat resistance on the transparent substrate and are easy to make thin, flexible, or lightweight include, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PC ( Since polycarbonate (polycarbonate) is mainly used, the maximum heating temperature within the transparent substrate is preferably 80 °C or lower, and even better is 70 °C or lower.
  • the average heating temperature of the fine line portion is preferably in the range of 30 to 60 °C, and more preferably in the range of 35 to 55 °C. there is.
  • the temperature deviation in the entire area of the fine line portion in the transparent substrate of the present invention is preferably ⁇ 10°C based on the average heating temperature of the fine line portion, and it is even better if it is ⁇ 5°C.
  • the conductor used in the transparent heating element for eye protection goggles of the present invention is a good conductor with a volume resistivity of 9 ⁇ cm or less, and protects metal nanoparticles composed of branched polyalkyleneimine segments and polyoxyalkylene segments.
  • a metal colloid solution composed to protect silver nanoparticles, which are metal nanoparticles, is used as a metal nanoparticle dispersion stabilizer containing a polymer and an amine salt composed of an amine and an inorganic acid.
  • Volume resistivity is expressed in Equation 3 and represents the inherent value of the conductor as the surface resistivity, which is the resistance per unit area, multiplied by the thickness of the conductive film.
  • the unit is ⁇ m or ⁇ cm, and the volume resistivity ( ⁇ v) and surface resistivity ( ⁇ s) are proportional. It's a relationship.
  • S is the cross-sectional area of the conductive film
  • t is the thickness of the cross-sectional area
  • W is the width of the cross-sectional area
  • L is the length of the conductive film.
  • the metal nanoparticle dispersion stabilizer of the present invention is composed of a metal nanoparticle protective polymer composed of branched polyalkyleneimine segments and polyoxyalkylene segments, and an amine salt composed of an amine and an inorganic acid. That is, the metal nanoparticle dispersion stabilizer of the present invention immobilizes the metal into nanoparticles by coordinating the nitrogen atom of the alkyleneimine of the polyalkyleneimine segment with the metal or metal ion, and forming a bond between the polyalkyleneimine and the amine salt.
  • metal nanoparticle dispersion stabilizer that improves dispersion stability by coordinating amines generated by amine salt exchange with metals or metal ions and immobilizing them on the surface of metal nanoparticles. Therefore, the metal colloidal solution in which the metal nanoparticle complex protected by the dispersion stabilizer of the present invention is dispersed exhibits high dispersion stability due to the dispersion stabilizer.
  • Amine salts which are composed of amines and inorganic acids, contribute to improved dispersion stability and good conductive performance.
  • Amine which is a component of amine salts, has a boiling point of 180°C or less, and more preferably 50°C to 130°C. This is because when the metal colloid solution of the present invention or a conductive material prepared by adjusting the solution with a conductive water-based ink is applied by printing on a transparent substrate and then fired at low temperature, the amine generated by amine exchange between polyalkyleneimine and amine salt is This is because it is easily removed at low temperatures and contributes to improving conductive performance.
  • the metal colloidal solution in which the metal nanoparticle complex protected by the dispersion stabilizer of the present invention is dispersed exhibits good conductivity even when fired at low temperatures.
  • the amine is a low molecular weight amine that can be easily removed at low temperatures, such as methylamine, dimethylamine, methylethylamine, ethylamine, diethylamine, propylamine, isopropylamine, butylamine, and isobutyl.
  • amines and pentylamines may be used.
  • the low-molecular-weight amine salt containing the low-molecular-weight amine may include, for example, hydrochloric acid, nitric acid, or sulfuric acid as an inorganic acid.
  • the polyalkyleneimine segment in the protective polymer of the present invention is a segment that can immobilize a metal into nanoparticles because the nitrogen atom site of the alkyleneimine is capable of coordinating with a metal or metal ion.
  • the polyalkyleneimine segment and the polyoxyalkylene segment have hydrophilicity, and the polyalkyleneimine segment coordinates with the metal.
  • the obtained metal colloid solution exhibits excellent dispersion stability and storage stability.
  • the particle size, stability, or conductivity of the metal nanoparticle complex are determined by the weight average molecular weight of the protective polymer used or the polyalkyleneimine segment. It is also affected by the number of alkylene imine units, the structure or composition ratio of the protective polymer, or the amount of metal nanoparticle dispersion stabilizer used.
  • the number of alkyleneimine units in the polyalkyleneimine segment is not particularly limited, but if the number of units is too small, the protective ability of the metal nanoparticle as a protective polymer tends to be insufficient, while if the number of units is too large, the metal nanoparticle and the protective polymer are likely to be insufficient.
  • the particle size of the formed metal nanoparticle complex tends to become large, which affects the dispersion stability. Accordingly, considering the ability to immobilize metal nanoparticles or prevent the nanoparticle complex from enlarging, the number of alkyleneimine units in the polyalkyleneimine segment may be 10 to 5,000, and more preferably in the range of 100 to 2,000. It can be.
  • the weight average molecular weight of the protective polymer composed of polyalkylene imine segments and polyoxyalkylene segments is preferably in the range of 500 to 150,000, and more preferably in the range of 1,000 to 100,000.
  • the usage ratio in the mixture of the protective polymer composed of the branched polyalkyleneimine segment and the polyoxyalkylene segment and the low molecular weight amine salt can improve good conductive performance and dispersion stability in low-temperature firing by adjusting the amine equivalent of the low-molecular-weight amine salt relative to the amine equivalent of the polyalkyleneimine segment.
  • the amine equivalent of the low-molecular-weight amine salt may preferably be in the range of 0.1 to 1.0 equivalents, and more preferably in the range of 0.2 to 0.9 equivalents, based on 1 equivalent of the amine of the polyalkyleneimine segment.
  • the polyoxyalkylene segment constituting the protective polymer of the present invention is a segment that exhibits high affinity with the solvent and maintains the storage stability of the colloidal solution when a hydrophilic medium such as water is used as a metal colloid solution.
  • Polyoxyalkylene segments can be used without particular limitation as long as they are generally commercially available or synthetic. However, when using a hydrophilic solvent, it is better to use a nonionic polymer in that a colloidal solution with excellent stability can be obtained.
  • polyoxyalkylene segment for example, polyoxyethylene segment or polyoxypropylene segment is good, and polyoxyethylene segment is more preferred because it is easy to obtain industrially.
  • the metal nanoparticle protective polymer of the present invention which consists of the polyalkylene imine segment and the polyoxyalkylene segment, cannot sufficiently protect the metal nanoparticles when used in too small an amount, so a good particulate metal colloid solution cannot be obtained.
  • the extra dispersion stabilizer interferes with the separation and purification process of metal nanoparticles, thereby worsening the separability of the tablets. Therefore, the metal nanoparticle protective polymer of the present invention is preferably used in an amount of 2 to 15 wt%, more preferably 3 to 10 wt%, based on the total weight of the metal nanoparticles, to disperse the metal colloid solution synthesized and obtained. It can improve stability and storage stability and show tablet separability.
  • the metal nanoparticle dispersion stabilizer of the present invention is composed of a metal nanoparticle protective polymer consisting of a polyalkyleneimine segment and a polyoxyalkylene segment and a low molecular weight amine salt, and the nitrogen of the alkyleneimine of the polyalkyleneimine segment
  • the atomic site coordinates with the metal or metal ion, and the amine produced by amine exchange between the polyalkylene imine and the amine salt coordinates with the metal or metal ion and is immobilized on the surface of the metal nanoparticle, showing dispersion stability.
  • the polyoxyalkylene segment shows good solvent affinity in hydrophilic solvents and high association power in hydrophobic solvents, contributing to the stabilization of metal nanoparticles or easy purification and separation. Accordingly, the metal colloidal solution in which metal nanoparticles protected by the dispersion stabilizer of the present invention are dispersed, or the conductive material prepared by adjusting the solution with conductive water-based ink, is capable of low-temperature firing and has excellent performance when applied by printing on a transparent substrate and then fired. It has challenging performance.
  • the quaternary amine unit in the polyalkyleneimine produced by amine exchange between a branched polyalkyleneimine and a low-molecular amine in the metal nanoparticle protective polymer has a weak bonding force, so it is attached to the surface of the metal nanoparticle to which it is coordinating. It is possible to easily separate (decouple) at low temperatures, making low-temperature firing possible. In addition, since it can be easily and completely separated at low temperatures, the protective polymer does not impede conductivity during the fusion process of the separated metal nanoparticles, resulting in good conductivity.
  • the conductive water-based ink which can implement a transparent heating element with good visibility and conductivity, has good fine line grid pattern formation and shows good conductivity with low-temperature firing.
  • Such low-temperature firing performance and good conductive performance are due to the dispersion stabilizer of metal nanoparticles composed of a mixture of a polymer having polyalkyleneimine segments and polyoxyalkylene segments having side yarns and a low-molecular-weight amine salt, which facilitates the formation of metal nanoparticles at low temperatures. This is because it is separated from the surface and subsequently the activated metal nanoparticles are firmly fused.
  • the conductive water-based ink of the present invention does not dissolve or swell general-purpose plastic substrates and has no odor or toxicity, so there is no deterioration of the working environment and no risk of fire or explosion.
  • electrically conductive water-based ink is printed using imprint printing, screen printing, and gravure printing, and is fired at a lower temperature compared to the conventional one to show good conductive performance, ensuring sufficient heat generation even under various operating voltages, such as low-voltage batteries. It is possible to form a grid pattern that exhibits excellent visibility.
  • the conductive water-based ink for a conductive transparent heating element of the present invention is reduced by adding a small amount of metal ions to a polymer solvent, and after a certain period of time, the remaining amount of metal ions is added again for reduction to obtain metal nanoparticles, and then an appropriate poor solvent is added.
  • Metal nanoparticles are produced by precipitating, purifying, and separating metal nanoparticles and adding low-molecular-weight amine salts to the concentrated liquid of the separated metal nanoparticles.
  • the raw material of the metal ion may be a metal salt or a metal ion solution.
  • the raw material of the metal ion may be a water-soluble metal compound.
  • Salts of a metal cation and an acid radical anion or a metal contained in the acid radical anion can be used.
  • Metal ions containing metal types such as transition metals can also be used, but among these metal ions, metal ions of silver, gold, and platinum are particularly good because they are spontaneously reduced at room temperature or under heating and converted into nonionic metal nanoparticles.
  • silver ions when using the obtained metal colloid solution as a conductive material, it is preferable to use silver ions from the viewpoint of the ability to develop conductivity and the anti-oxidation properties of the coating film obtained by printing and painting.
  • metal particles having a particle size of 100 to 900 nm may be used together with metal nanoparticles having a size of 5 to 50 nm.
  • Metal particles are relatively large in particle size compared to metal nanoparticles, and like metal nanoparticles, they are metal particles in a stable state that do not need to be protected on the surface with protective stabilizers.
  • any known dried powder can be used. For example, gold (Au), silver (Ag), and platinum (Pt) can be used. There is no need to worry about clogging during printing and grid patterns can be formed.
  • metal particles with a particle size of 100 to 900 nm, and among metal particles, silver particles in the form of thin film scales are preferable.
  • metal nanoparticles in combination with metal particles by using metal nanoparticles in combination with metal particles, it is easy to obtain a film having better volume resistance in thermal baking than when only metal nanoparticles are used.
  • Metal nanoparticles can completely fill the space between metal particles used together to form a film in a completely filled state.
  • the protective polymer When heated and fired in this state, the protective polymer is easily separated (decoupled) from the surface of the metal nanoparticles even at low temperatures, and fusion of the metal nanoparticles progresses.
  • the metal nanoparticles in the fully filled state fill the space between the metal particles to be used together, maintain the fully filled state, and become a fully sintered body integrated in the form of metal nanoparticles connecting the metal particles, thereby providing better conductive performance. indicates.
  • a binder resin may be used separately. The binder resin added at that time is unnecessary for fine lines during firing. Since it remains as a resistance component and impairs conductive performance, it is desirable to control the combined use of binder resin as a third component to the minimum necessary amount.
  • alkylene glycol or glycerin may be used as the water-soluble solvent.
  • alkylene glycols for example, alkylene glycols that are liquid at room temperature, such as ethylene glycol monoalkyl ether, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol, are preferable, and among them, 150 Alkylene glycol, which begins to volatilize above °C, is more preferable, and glycerin is also very good.
  • Water-soluble solvents such as alkylene glycols and glycerin with high volatile points have low vapor pressure at room temperature and do not volatilize easily, so they are excellent for producing various types of conductive water-based inks for printing. It has good miscibility with an aqueous solution of metal nanoparticles protected by a protective stabilizer composed of a mixture, does not cause phase separation, does not dissolve or swell various thermoplastic plastics, enables firing at low temperatures, and has low odor or toxicity. It's even better because it doesn't worsen the working environment.
  • the water-soluble solvent is preferably in the range of 2 to 20 wt% based on the total weight of the metal nanoparticles and metal particles protected with the protective stabilizer, and considering that it can improve printing characteristics, 3 to 8 wt% is more preferable.
  • Conductive water-based ink is a water-soluble solvent and an aqueous solution of metal nanoparticles protected by a dispersion stabilizer consisting of a mixture of a polymer having the polyalkylene imine segment and polyoxyalkylene segment and a low-molecular-weight amine salt having the side yarns, or a water-soluble solvent.
  • An aqueous solution of metal nanoparticles protected with a dispersion stabilizer consisting of a mixture of a polymer having polyalkylene imine segments and polyoxyalkylene segments and a low molecular weight amine salt is premixed with the metal particles and a water-soluble solvent, for example, as required. It can be manufactured by stirring and dispersing with a certain shear force.
  • a quaternary amine unit among polyalkyleneimines is generated through amine salt exchange between the added low molecular weight amine salt and the polyalkylene imine segment of the protective polymer.
  • the quaternary amine unit has a weak binding force, so it is easily separated (decoupled) from the surface of the metal nanoparticle to which it is coordinating, even at low temperatures. Accordingly, low-temperature sintering is possible while being easily and completely separated, and the protective polymer does not impede conductivity during the fusion process of the separated metal nanoparticles, resulting in good conductive performance.
  • low-molecular-weight amines produced by amine exchange between polyalkyleneimines and low-molecular-weight amines can also be immobilized on the surface of metal nanoparticles through coordination bonds with metals, contributing to improved dispersion stability.
  • the size of the metal nanoparticles included in the non-volatile content of the metal colloid solution obtained in the present invention is not particularly limited, but in order for the metal colloid solution to have better dispersion stability and conductivity, the size of the metal nanoparticles is 5 to 50 nm. It may be a fine particle in the range, preferably in the range of 10 to 40 nm. In general, metal nanoparticles in the tens of nanometer-sized region have characteristic optical absorption due to surface plasmons depending on the type of metal.
  • the average particle size in the present invention is the average value of metal nanoparticles measured by TEM using H-7500 manufactured by Hitachi Corporation, and then the sizes of about 100 particles are measured.
  • the transparent substrate used in the transparent heating element for eye protection goggles of the present invention there is no limitation to the type, but an organic film or a glass substrate can be used, and an organic film that has low heat resistance and is easy to make thin, flexible, or lightweight can be used.
  • the organic film for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PC (polycarbonate) can be used.
  • the method of forming fine lines on the transparent substrate of the transparent heating element for eye protection goggles of the present invention is, for example, an imprint printing method. It can be formed by screen printing, gravure printing, gravure offset printing, gravure reversal printing, and inkjet printing, and can be appropriately selected in terms of ease of manufacturing, performance of the transparent substrate being manufactured, and manufacturing cost.
  • the transparent heating element for eye protection goggles of the present invention can be used as eye protection goggles such as snowmobile goggles, ski goggles, or motorcycle goggles, and can be applied to various goggles other than the above types as long as the goggles can protect the eyes.
  • These eye protection goggles can be used regardless of the season, but they can be better applied in winter when snow removal, snow prevention, or fogging prevention are required.
  • fine lines using a good conductor with a volume resistivity of 9 ⁇ cm or less on a transparent substrate that has low heat resistance and is easy to make thin, flexible, and lightweight, a conductive transparent substrate is created that secures visibility and prevents fogging with appropriate heat generation performance. It is also possible to provide various transparent heat-generating devices for eye protection, including:
  • Solid content measurement method The content of non-volatile substances including metal nanoparticles contained in the silver nanoparticle centrifugal coagulation paste was measured. From the silver nanoparticle centrifugal coagulation paste prepared in the following examples, about 0.5 g of the agglomeration paste was dropped onto an aluminum dish, pre-dried at 60 degrees Celsius, and then dried at 180 degrees Celsius using a hot air dryer to remove the residual solvent. After drying for 30 minutes, the solid content was measured by calculating the difference in weight of the sample before and after drying.
  • Solid content (%) (Weight of sample after drying / Weight of sample before drying) ⁇ 100
  • Method for measuring volume resistance of a conductive water-based ink film After film formation and printing of a conductive water-based ink composition on a glass substrate was completed, the film was baked at 120°C for 30 minutes using a heat oven, and the volume resistance was measured using the fired film sample. The thickness of the obtained film sample was measured using an SEM (JSM-6490LV, manufactured by Japan Electronics Co., Ltd.), and the surface resistivity ( ⁇ / ⁇ ) was measured using a low resistor (U1252A, manufactured by Argyrant Technology Co., Ltd.) and a constant current constant voltage device (Kikusui Co., Ltd.). Product, PMX35-3A) was used to measure.
  • volume resistivity ( ⁇ cm) Surface resistivity ( ⁇ / ⁇ ) ⁇ Thickness (cm)
  • filter paper (5 ⁇ m) and silica gel or anhydrous magnesium sulfate were placed on it in a Buchner funnel, prepared for filtration, connected to a pressure pump, and then subjected to reduced pressure filtration. Reduced-pressure filtration was repeated approximately three times until the filtered reaction mixture became a clear solution.
  • the solvent was distilled from the filtered reaction mixture using a rotary evaporator. At this time, the cooling water was maintained at about 5 degrees Celsius and the temperature of the rotary evaporator bath was maintained at 40 degrees Celsius to produce 50.4 g of tosylated polyethylene glycol monomethyl ether (yield 78 degrees Celsius). %) was prepared.
  • ⁇ (ppm) 3.5 to 3.6 (m, PEGmethylene), 3.2 (s, 3H), 2.3 to 2.7 (m, bPEI ethylene)
  • amine salt 10.0 g of distilled water was added to 73.1 g of diethylamine (bp. 56°C) using an ice bath, and while stirring, 101.3 g of hydrochloric acid aqueous solution (36%) was slowly added and mixed to obtain a molar ratio of 1:1.
  • An aqueous solution of amine salt was prepared as a mixed solution.
  • the silver nanoparticle solution to which the aqueous amine salt solution was added was centrifuged at 3,000 rpm for 10 minutes using a centrifuge to prepare 86.2 g of silver nanoparticle centrifugation aggregation paste with a silver solid content of 89.0%.
  • Figure 9 shows the TEM measurement results of silver nanoparticles, and it is confirmed that the average particle size of the silver nanoparticles is 23 nm and that they are monodisperse, good crystalline particles.
  • NIM-006 a water-based ink for highly conductive fine line filling, was manufactured.
  • the volume resistance of the highly conductive water-based ink NIM-006 for filling fine lines prepared in this way was measured according to the volume resistance measurement method of the conductive water-based ink film described above and was 4.2 ⁇ cm.
  • a transparent trench PET film substrate for imprint printing having a lattice pattern composed of fine lines with a line width of 2.0 ⁇ m and a line spacing of 200 ⁇ m was printed using the imprint printing method using the highly conductive water-based ink NIM-006 for filling fine lines prepared in Preparation Example 3. Lines were filled and printed. After filling printing is completed, pre-drying is performed at 60°C for 5 minutes using a drying oven, and baking is performed at 120°C for 30 minutes using a heat oven to form a grid pattern consisting of fine lines with a line width of 2.0 ⁇ m and a spacing of 200 ⁇ m on the PET film. A conductive transparent heating substrate was obtained laminated on the substrate.
  • a screen printing method was performed on the left and right ends of the rectangular transparent substrate on which the grid pattern was formed using the water-based screen ink Sc-005 for electrodes prepared in Preparation Example 4 and left and right vertical electrode engraving of goggle model #2001 (see FIG. 12). Left and right vertical electrodes were printed.
  • pre-drying was performed at 60°C for 5 minutes using a drying oven, and baking was performed at 120°C for 30 minutes using a heat oven to obtain a transparent heating substrate with formed electrodes.
  • Heating temperature was measured at 30 points in total, including 24 points on the fine lines of the transparent heat-generating PET substrate and 6 points, 3 points on each electrode, using FLUKE's thermal imaging camera TI300Plus (see FIGS. 11 and 14).
  • a transparent heating substrate with electrodes was produced in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to the left and right vertical electrode plates of goggle model #2002 (see FIG. 12). After obtaining, a 12 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 15).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to the left and right vertical electrode plates of goggle model #2003 (see FIG. 12). After obtaining, a 12 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 16).
  • the electrodes were made in the same manner as in Example 1, except that the left and right vertical electrode plates of the goggle model #2001 used in Example 1 were changed to the left and right vertical electrodes of the long rectangular square goggle model #1001 (see FIG. 12). After obtaining this transparent heating substrate, the electrical and heating characteristics were measured by applying a voltage of 17 V to the fine wire in the same manner as in Example 1 (see FIG. 17).
  • Example 4 After obtaining a transparent heating substrate with electrodes formed in the same manner as in Example 4, the electrical characteristics and heat generation were measured in the same manner as in Example 4, except that a voltage of 17 V was applied to the fine wire and a voltage of 18 V was applied to the fine wire. The properties were measured (see Figure 18).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to upper and lower horizontal electrode plates of goggle model #2001 (see FIG. 13). After obtaining, a 4 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 19).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to upper and lower horizontal electrode plates of goggle model #2002 (see FIG. 13). After obtaining, a 4 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 20).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to upper and lower horizontal electrode plates of goggle model #2003 (see FIG. 13). After obtaining, a 4 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 21).
  • the electrodes were made in the same manner as in Example 1, except that the left and right vertical electrode plates of the goggle model #2001 used in Example 1 were changed to the top and bottom horizontal electrodes of the long rectangular square goggle model #1001 (see FIG. 13). After obtaining this transparent heating substrate, the electrical and heating characteristics were measured by applying a 4 V voltage to the fine wire in the same manner as in Example 1 (see FIG. 22).
  • Example 9 After obtaining a transparent heating substrate with electrodes formed in the same manner as in Example 9, the electrical characteristics and heat generation were measured in the same manner as in Example 9, except that a 4 V voltage was applied to the fine wire and a 2 V voltage was applied to the fine wire. The properties were measured (see Figure 23).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to upper and lower horizontal electrode plates of goggle model #2001 (see FIG. 13). After obtaining, a 12 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 24).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to upper and lower horizontal electrode plates of goggle model #2002 (see FIG. 13). After obtaining, a 12 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 25).
  • a transparent heating substrate with electrodes was prepared in the same manner as in Example 1, except that the left and right vertical electrode plates of goggle model #2001 used in Example 1 were changed to upper and lower horizontal electrode plates of goggle model #2003 (see FIG. 13). After obtaining, a 12 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical characteristics and heat generation characteristics were measured (see FIG. 26).
  • the electrodes were made in the same manner as in Example 1, except that the left and right vertical electrode plates of the goggle model #2001 used in Example 1 were changed to the top and bottom horizontal electrodes of the long rectangular square goggle model #1001 (see FIG. 13). After obtaining the formed fine wire transparent heat-generating substrate, a 6 V voltage was applied to the fine wire in the same manner as in Example 1, and the electrical and heat generation characteristics were measured (see FIG. 27).
  • Example 1 Example 2 Example 3
  • Example 4 Example 5 goggle type #2001 #2002 #2003 #1001 #1001 Electrode type vertical electrode vertical electrode vertical electrode vertical electrode vertical electrode electrode length (cm) 15.5 11.0 15.0 4.5 4.5 Distance between electrodes (cm) 31.8 29.4 33.2 24.0 24.0 applied voltage (V) 12.0 12.0 12.0 17.0 18.0 electric current (A) 0.32 0.33 0.34 0.34 0.36 Average fever temperature (°C) 40.1 41.9 42.3 52.9 58.1 highest fever temperature (°C) 48.7 56.8 55.9 61.3 66.2
  • Example 6 Example 7
  • Example 8 Example 9
  • Example 10 goggle type #2001 #2002 #2003 #1001 #1001 Electrode type horizontal electrode horizontal electrode horizontal electrode horizontal electrode horizontal electrode electrode length (cm) 29.7/25.0 25.0/28.9 24.5/25.8 25.0 25.0 Distance between electrodes (cm) 7.8 7.4 7.2 4.0 4.0 applied voltage (V) 4.0 4.0 4.0 4.0 2.0 electric current (A) 0.39 0.56 0.61 0.71 0.36 Average fever temperature (°C) 32.1 34.3 33.0 36.5 31.7 highest fever temperature (°C) 47.3 53.4 49.4 73.4 42.0
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 goggle type #2001 #2002 #2003 #1001 Electrode type horizontal electrode horizontal electrode horizontal electrode horizontal electrode electrode length (cm) 29.7/25.0 25.0/28.9 24.5/25.8 25.0 Distance between electrodes (cm) 7.8 7.4 7.2 4.0 applied voltage (V) 12.0 12.0 12.0 6.0 electric current (A) 1.13 1.63 1.75 1.05 Average fever temperature (°C) 46.5 56.5 51.6 44.0 highest fever temperature (°C) >110 >110 >110 >110 >110 >110 >110 >110 >110 >110 >110 >110 >110 >110 >110 >110
  • the electrode length at both left and right ends of the transparent substrate is 4.0 to 20.0 cm, more precisely 4.5 to 15.5 cm, and the distance between electrodes is 20 to 35 cm, more precisely 24.0 to 33.2 cm, Example 1 ⁇
  • the highly conductive water-based ink NIM-006 in various types of goggles as shown in 5 and using vertical electrodes on the left and right ends of the goggles with a short electrode length and a long inter-electrode distance, when applying the 12 V constant voltage used in snowmobiles or 18
  • goggles that satisfy the range of 30 ⁇ 60 °C and a maximum heating temperature of 80 °C or less of the transparent heating substrate with a grid pattern made of fine lines by controlling the flow of current to a low level even when applying a high voltage of V.
  • a transparent heating element was obtained.
  • the electrode length at both upper and lower ends of the transparent substrate is 24.0 to 30.0 cm, more precisely 24.5 to 29.7 cm, and the distance between electrodes is 4 to 8 cm, more precisely 4.0 to 7.8 cm,
  • Example 6 Highly conductive water-based ink NIM-006 is used in various types of goggles as shown in ⁇ 10, and the horizontal electrodes at the top and bottom of the goggles, which have a long electrode length and a short distance between electrodes, apply a voltage at a low voltage of 2 V to 4 V to prevent the flow of current.
  • a transparent heating element for eye protection goggles was obtained that satisfies the range of the average heating temperature of 30 ⁇ 60 °C and the maximum heating temperature of 80 °C or less of the transparent heating substrate equipped with a grid pattern made of fine lines.
  • the electrode length at both upper and lower ends of the transparent substrate is 24.0 to 30.0 cm, more precisely 24.5 to 29.7 cm, and the distance between electrodes is 4 to 8 cm, more precisely 4.0 to 7.8 cm
  • Comparative Example Highly conductive water-based ink NIM-006 is used in various types of goggles as shown in 1 to 4, and the same voltage of 12 V as in Examples 1 to 4 shown in Table 2 is applied to the horizontal electrodes at the top and bottom of the goggles with long electrode length and short inter-electrode distance.
  • Comparative Example 4 when 6 V was applied, the flow of current between electrodes increased, and as a result, it was not possible to obtain a transparent heating element for eye protection goggles that satisfied the heating characteristics, especially with a maximum heating temperature of 110 ° C. or higher.
  • the present invention provides a transparent heating element in which a sintered body of conductive water-based ink is present on a transparent substrate that can be formed to a required heating characteristic value while ensuring the visibility and heating characteristics of goggles.
  • the surface of the transparent substrate is formed of a sintered body of conductive water-based ink so that a grid pattern with a line width of 0.5 to 10 ⁇ m and a pitch of 0.05 to 1.0 m is good, the volume resistivity of the conductor is in the range of 9 ⁇ cm or less, and the electrode is It is formed at both long horizontal ends or both short vertical ends of a rectangular transparent substrate, and the maximum heating temperature within the rectangular transparent substrate, including the electrodes, is 80 °C or less, and the average heating temperature of the fine lines forming the grid pattern is 35 to 55 °C. It is characterized by a light transmittance of more than 95% in the area ignoring the transparent substrate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Otolaryngology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

본 발명은 김서림 방지 기능을 가진 스노모빌용 고글, 스키용 고글, 오토바이용 고글 등의 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글에 관한 것이다. 이러한 본 발명은 눈보호 고글의 렌즈를 구성하고 있는 투명 기판의 표면에 전도성 잉크 또는 페이스트의 소성체로 미세선 구조의 직선 또는 곡선의 격자 패턴을 가지는 투명 발열체가 형성되어 있는 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글을 제공한다.

Description

눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글
본 발명은 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글에 관한 것이다.
겨울철 스노모빌용 고글, 스키용 고글, 오토바이용 고글 등의 사용 시에 고글에는 제설, 결설 방지나 김서림 방지를 위해 투명 도전막을 투명 발열체로 사용하는데, 그 투명 발열 도전막으로 산화물 투명 도전체인 ITO(Indium Tin Oxide)필름막이 주로 사용되고 있으며 나노와이어 필름막 또는 전도성 잉크를 사용한 미세선 구조의 필름막 등이 사용되고 있다.
고글의 김서림 발생을 방지하기 위하여, 산화물 투명 도전체인 ITO 투명 도전막을 설치하고, 이 투명 도전막의 상하 테두리에 전극을 고착하며 이들 전극의 표면에 전극 보호판을 고착하고 상하 전극에 각각 전력 공급선을 접속하여 전원으로부터 전력을 공급하여 투명 도전막에 통전함으로서 고글의 온도를 상승시키고 상기 고글 내면에 응결되는 수분을 건조시키는 방법을 사용하였다.
이와 같은 스키나 오토바이용 고글의 중앙부 영역에서는 상대적으로 온도가 낮아지고 고글의 양측부 영역에서는 상대적으로 온도가 높아져 이들 영역에서 온도차가 발생한다. 헬멧 착용자의 시야를 확보하기 위해서는 우선 온도를 상승시켜 고글 중앙부의 흐려짐을 방지할 필요가 있다. 특허문헌 1인 "김서림 방지 렌즈 구조물과 눈용 보호구(KR 10-1857804 B1)"에서는 중앙부 영역의 온도를 김서림 방지에 필요한 정도까지 상승시키기 위한 전류를 흐르게 하면 양측부의 영역에는 그 이상의 전류가 흐르게 되어 전력이 쓸데없이 소비되는 폐해가 발생함을 개시하고 있다.
고글에는 경량성, 유연성의 관점에서 내열성이 약한 PET(폴리에틸렌 테레프탈레이트와 같은 투명 기판이 사용되므로 고글의 모든 영역에서 최고 발열온도는 80 ℃ 이하가 바람직하다. 그러나 중앙부 영역의 온도 상승 시에 양측부 영역의 최고 발열온도가 개시되어 있지 않아서 도 1, 도 2, 도 3 및 도 4와 같이 종래 스노모빌용 ITO 고글들의 발열특성을 측정하여 확인한 결과, 특히 양측부 전극 영역의 최고 발열온도는 82 ~ 114 ℃로 높았다. 그리고 도 5의 나노와이어로 구성된 고글들의 발열특성도 측정하여 확인한 결과 또한 최고 발열온도는 81 ~ 106 ℃로 높았다. 이는 하기 표 1을 통해서도 확인할 수 있다.
A사
ITO
B사
ITO
C사
ITO
D사
ITO
E사
나노와이어
전압(V) 12.0 12.0 12.0 12.0 12.0
전류(A) 0.851 0.575 0.851 1.117 0.800
최고
발열온도
(℃)
82.5 114.0 87.1 81.6 105.5
고글
평균온도
(℃)
49.4 38.7 50.0 58.2 51.2
고글은 장소에 따라 고글 상하의 전극간의 거리가 다르기 때문에 고글의 중심부는 안면의 코 부위를 피해서 안면을 덮기 때문에 상하 전극간의 거리가 짧게 되어 저항이 작아지게 됨으로서 고글의 중심부에는 더 큰 전류가 흘러서 온도가 높아지게 된다. 흐림 방지를 위해 최저 필요한 표면 온도를 유지하고 배터리 수명을 최대한 길게 하기 위해서는 고글의 전면에 거처 균일하게 가열하는 것이 필요하다. 이를 위해 특허문헌 2인 "보호 안경용 pwm 가열 시스템(JP 2017-040930 A)"에서는 상하의 전극을 세분화하여 상하 전극간의 거리에 따라서 흐르는 전류량을 변화하여 가열면의 온도를 균일화시키고자 하였다.
상기 특허문헌 2에서는 상하의 전극을 각각 분활하는 방법을 제안한 것이나 상하 전극간의 거리에 따라 전류량을 변화시키기 위해서는 전원을 제어하기 위한 새로운 제어 소자의 도입이 필요하고 그로 인해서 회로가 복잡하게 되어야 하는 등의 어려움이 발생하여 요구 기능의 성능 저하는 물론 제조 경비가 많이 소모되는 문제점이 있다.
그리고 체적저항율이 9 μΩ·cm 이하의 범위인 도전체로 미세선을 형성한 고글의 경우도 종래 스노모빌용 ITO 고글들과 같은 방법으로 제작하여 발열특성 측정에 있어서 동일하게 12 V 정전압에서 발열온도를 측정한 결과(도 6), 미세선 영역의 고글 평균 발열온도는 61.4 ℃이고 최고 발열온도는 121.8 ℃로 상당히 높았고, 그 이유는 미세선을 형성하는 도전체의 전도성이 양호하며 상하 전극간의 거리가 변동되기 때문이다.
여기서 미세선 영역의 고글 평균 발열온도와 최고 발열온도를 조절하는 간단한 방법으로는 사용하는 전원 즉 12 V 정전압에서 더 낮은 전압의 전원으로 교환하는 방법이 있으나 스노모빌 사용상에는 12 V 정전압으로 제한된다.
그래서 미세선을 형성하는 도전체의 전도성을 떨어뜨리는 방법으로 전도성을 떨어뜨린 도전체를 사용해서 실드를 제작하여 스노모빌 경우의 12 V 정전압에서 발열온도를 측정한 결과, 미세선 영역의 고글 평균 발열온도는 48.6 ℃이고 최고 발열온도는 71.9 ℃가 되는 것을 확인했고 그것은 전도성을 떨어뜨린 결과 전류가 적게 흘러서 발열이 억제되었음을 의미한다(도 7).
잉크의 전도성을 낮추는 간편한 방법으로 분산제 또는 부착조제 등 유기 고분자를 전도성 저해 불순물로 다량 첨가하는 방법이 있는데, 전도성 저해 불순물을 첨가하게 되면 잉크 전기특성의 재현성, 안정성 및 신뢰성에 불리하게 작용하므로, 양호한 시인성과 발열특성을 확보 가능한 도전성 투명 발열체가 요구되고 있어, 이에 본 발명자들은 상기의 기술적 요구에 착안하여 12 V 정전압에서 그리고 전원의 전압을 가변시키는 방법에서 고글 전체 영역의 안정적인 평균 발열온도 및 최고 발열온도가 80 ℃ 이하가 실현되는 눈보호 고글용 투명 발열체를 개발하고 본 발명을 완성하였다.
본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 최대 발열온도가 80 ℃ 이하이고, 평균 발열온도가 30 ~ 60 ℃인 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글을 제공하는 것을 기술적 해결과제로 한다.
상기의 기술적 과제를 해결하기 위하여 본 발명은, 장방형 투명 기판; 상기 투명 기판에 도전성 수성 잉크가 도포되어 적층 형성되고, 미세선으로 이루어진 격자 패턴; 및 상기 투명 기판의 양단부에 형성되어 상기 격자 패턴과 연결되는 전극;을 포함하되, 상기 도전성 수성 잉크는, 5 ~ 50 nm의 크기를 갖는 금속 나노입자와, 수용성 용제를 포함하여 이루어지고, 상기 금속 나노입자는, 분지형 폴리알킬렌이민 세그먼트, 폴리옥시알킬렌 세그먼트 및 아민산염으로 구성된 분산 안정제로 보호되어, 상기 투명 기판의 최대 발열온도가 80 ℃ 이하이고, 상기 미세선의 평균 발열온도가 30 ~ 60 ℃인 것을 특징으로 하는, 눈보호 고글용 투명 발열체를 제공한다.
본 발명에 있어서, 상기 격자 패턴은, 선폭이 0.5 ~ 10 ㎛이고, 피치가 0.05 ~ 1.0 mm인 것을 특징으로 한다.
본 발명에 있어서, 상기 격자 패턴은, 체적저항률의 최대값이 9 μΩ·cm인 것을 특징으로 한다.
본 발명에 있어서, 상기 격자 패턴은, 상기 도전성 수성 잉크를 임프린트 인쇄, 스크린 인쇄, 그라비아 인쇄, 그라비아 옵셋 인쇄, 그라비아 반전 인쇄 또는 잉크젯 인쇄의 방법으로 도포한 후 소성하여 형성되는 것을 특징으로 한다.
본 발명에 있어서, 상기 투명 기판은, 세로와 가로의 길이 비율이 1 : 2 ~ 5인 것을 특징으로 한다.
본 발명에 있어서, 상기 도전성 수성 잉크는, 100 ~ 900 nm의 크기를 갖는 금속 입자를 더 포함하여 이루어지는 것을 특징으로 한다.
본 발명에 있어서, 상기 수용성 용제는, 알킬렌글리콜 및 글리세린 중에서 선택되는 1종 이상인 것을 특징으로 한다.
상기의 다른 기술적 과제를 해결하기 위하여 본 발명은, 상기 투명 발열체를 포함하는 것을 특징으로 하는, 눈보호 고글을 제공한다.
상기 과제의 해결 수단에 의한 본 발명의 눈보호 고글용 투명 발열체에 따르면, 미세선으로 이루어진 격자 패턴의 고글 모든 영역에서 평균 발열온도가 안정적인 30 ~ 60 ℃ 범위를 만족하고, 최고 발열온도 80 ℃ 이하를 달성하여 투명 기판에 양호한 시인성과 발열특성을 확보함으로서, 김서림 방지 기능을 갖는 스노모빌용 고글, 스키용 고글 또는 오토바이용 고글 등 눈보호 고글로 활용할 수 있다.
특히 양호한 전도성의 투명 발열체를 구현할 수 있도록 하는 도전성 수성 나노 은잉크는 미세선의 격자 패턴 형성이 양호하며 저온 소성과 함께 양호한 도전성을 나타내기 때문에, 저 전압의 배터리 등 다양한 사용 전압 하에서도 충분한 발열량을 확보할 수 있으며 우수한 시인성의 격자 패턴 형성이 가능한 효과가 있다.
도 1은 A사 ITO 고글의 열화상 측정 영상 사진이다.
도 2는 B사 ITO 고글의 열화상 측정 영상 사진이다.
도 3은 C사 ITO 고글의 열화상 측정 영상 사진이다.
도 4는 D사 ITO 고글의 열화상 측정 영상 사진이다.
도 5는 E사 나노와이어 고글의 열화상 측정 영상 사진이다.
도 6은 양호한 도전체로 미세선을 형성한 고글의 열화상 측정 영상 사진이다.
도 7은 전도성을 떨어뜨린 도전체로 미세선을 형성한 고글의 열화상 측정 영상 사진이다.
도 8은 직사각형 또는 정사각형으로 단순화한 고글의 형상이다.
도 9는 은 나노입자의 TEM 사진이다.
도 10은 소성 후 격자 패펀의 광학 현미경 사진이다.
도 11은 열화상 카메라를 사용한 투명 발열체의 발열온도 측정 포인트이다.
도 12는 각종 고글 모델의 좌우 세로전극 제판의 사진이다.
도 13은 각종 고글 모델의 상하 가로전극 제판의 사진이다.
도 14는 실시예 1에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 15는 실시예 2에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 16은 실시예 3에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 17은 실시예 4에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 18은 실시예 5에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 19는 실시예 6에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 20은 실시예 7에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 21은 실시예 8에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 22는 실시예 9에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 23은 실시예 10에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 24는 비교예 1에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 25는 비교예 2에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 26은 비교예 3에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
도 27은 비교예 4에 따른 투명 발열체를 열화상 카메라를 사용한 발열온도 측정 사진이다.
본 발명을 설명하기에 앞서, 본 발명자들은 분지형 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 이루어지는 금속 나노입자 보호폴리머와, 아민과 무기산으로 이루어지는 아민산염을 포함하는 금속 나노입자 분산 안정제로 은 나노입자가 보호되도록 구성되는 고전도성 수성 잉크를 사용하여, 종래 스노모빌용 ITO 고글들의 발열특성 측정과 동일하게 12 V 정전압 사용에서 그리고 전원의 전압을 가변시키는 방법에서 미세선이 구비된 고글의 모든 영역에서 안정적인 평균 발열온도 30 ~ 60 ℃와 최고 발열온도 80 ℃ 이하를 달성하기 어려웠던 점들을 극복하기 위하여, 전극의 위치 및 격자 패턴의 변화로 도전체의 전도성을 떨어뜨리는 동일한 효과로 전극간의 저항을 떨어뜨리는 방법 즉 전극간의 전류 흐름을 적게하는 방법과 전극간 거리의 편차를 줄여 전극간 저항 또는 전류의 편차를 적게 하는 방법, 그리고 인가 전압을 변화시키는 방법 등을 연구해 보았다.
즉 본 발명은 눈보호 고글용 투명 발열체를 제공한다. 본 발명의 투명 발열체는 세로와 가로의 길이 비율이 1 : 2 ~ 5인 장방형의 투명 기판에, 선폭이 0.5 ~ 10μm이고 피치가 0.05 ~ 1.0 mm인 미세선이 체적저항율 9 μΩ·cm 이하 범위인 도전체로 형성되어 격자 패턴을 구성하고, 상기 미세선에 연결된 전극이 장방형 투명 기판의 좌우측의 양단부 또는 상하측의 양단부에 형성되어 있으며, 전극을 포함하여 장방형 투명 기판 내의 최고 발열온도가 80 ℃ 이하이고 격자 패턴을 이루는 미세선 부분의 평균 발열온도가 30 ~ 60 ℃이며 광투과율이 95% 이상인 것을 특징으로 한다.
본 발명의 장방형 투명 기판에 있어서, 스노모빌용 고글, 스키용 고글 또는 오토바이용 고글 등의 눈보호 고글의 형상은 장방형 투명 기판으로 되어 있으며, 눈보호 고글을 착용한 사용자의 시야를 방해하지 않고 시인성을 확보하고, 투평 기판의 좌우측의 양단부 또는 상하측의 양단부에 형성되는 전극의 길이와 전극간 거리를 적절하게 확보하기 위하여, 장방형 투명 기판의 세로와 가로의 길이 비율은 1 : 2 ~ 5인 것이 바람직하고, 1 : 2.5 ~ 4.5의 범위가 가장 바람직하다.
본 발명의 장방형 투명 기판은 양호한 도전체를 사용한 미세선이 격자 패턴을 형성하고 있고, 미세선을 구성하는 배선폭을 0.5 ~ 10 μm로 함으로서 시인성이 나빠지지 않게 하고 눈보호 고글을 착용한 사용자의 시야를 막거나 방해하지 않는다. 그리고 선폭을 0.5 ~ 10 μm로 하고 그 배선 피치를 0.05 ~ 1.0 mm로 함으로서 실제 광투과율(투명 기판을 무시한 광투과율)을 95 % 이상으로 할 수 있고, 미세선의 선폭과 피치를 변화시킴으로서 투명 기판의 표면저항값을 제어할 수 있다. 미세선의 선폭은 0.5 ~ 10 μm이면 도전성의 확보 관점에서 바람직한 범위인데, 1.0 ~ 7 μm 범위인 것이 더 바람직하다. 미세선의 피치는 0.05 ~ 1.0 mm이면 투명 발열체의 광투과율의 관점에서 바람직한 범위인데, 0.1 ~ 0.7 mm이면 더욱 바람직하다.
미세선의 선폭과 미세선 간의 피치를 상기 범위 내에서 조절함으로서, 저 전압의 전원 등 다양한 전압 조건 하에서 충분한 발열량을 확보할 수 있으며, 네트상 격자 패턴 막의 표면저항값을 제어할 수 있다. 그 결과 네트 구조로 이루어진 격자 패턴 막의 충분한 발열량을 균일하게 제어할 수가 있다.
또한, 아주 미세한 미세선의 격자 패턴은 투명 기판의 휨이나 굴곡에 대해서 강하고 간편한 인쇄법으로 형성되기 때문에 ITO 제막과 같은 대형 진공 장치 및 진공 처리로 대기 시간을 필요로 하지 않는 등 제조 경비 절감이 가능해진다.
본 발명에 따른 미세선이 네트 구조로 이루어진 격자 패턴은, 복수의 직선 또는 곡선의 조합에 의한 선 또는 메쉬 형상이며 투명 기판의 열수축 등 변화에 유연하게 대응하기 위한 것이다. 예를 들면 메쉬 형상의 단위격자 형상은 정삼각형이나 부등변삼각형 등의 삼각형, 정방형 또는 장방형 마름모 등의 사각형, 육각형 또는 팔각형 등의 다각형, 원, 원추 등이 적용될 수 있다. 또한 모아레 현상을 경감하기 위해 불규칙적인 다각형 또는 원형의 패턴도 적용 가능하다. 양호한 도전체로 구성되는 네트 구조로 이루어진 격자 패턴의 미세선은 불투명이나 미세선 간의 간격이나 메쉬의 빈공간을 통해서 빛이 통하게 되어 투명하게 보이기 때문에, 결과적으로 투명 발열체를 형성하게 된다.
본 발명의 장방형 투명 기판에 형성된 미세선은 체적저항률의 최대값이 9 μΩ·cm 이하의 범위인 양호한 도전체로 형성되어 있고, 그 미세선에 연결된 전극은 인가되는 전원의 전압에 따라 장방형 투명 기판의 좌우측의 양단부 또는 상하측의 양단부에 형성되어 있으며, 전극을 포함하여 장방형 투명 기판 내의 최고 발열온도가 80 ℃ 이하이며 미세선 부분의 평균 발열온도가 30 ~ 60 ℃인 눈보호 고글용 투명 발열체가 된다.
장방형 투명 기판 내의 최고 발열온도와 미세선 부분의 평균 발열온도는 열량(Q)에 의존하는데, 하기 식 1과 같이 열량(Q)은 전류의 흐름에 비례하며, 전류의 흐름은 미세선을 형성하는 도전체의 저항에 반비례한다. 그리고 열량(Q)은 인가 전압(V)에도 비례함을 알 수 있다.
[식 1]
열량(Q) = I2R = IV, V = IR, I = V/R
여기서 I는 전류, V는 전압, R은 저항이다.
그래서 최고 발열온도 80 ℃ 이하 및 평균 발열온도 30 ~ 60 ℃를 얻기 위해서는 미세선의 저항율이 양호한 도전체를 사용할 경우 전극의 길이와 전극간 간격 조절 및 전극 전원의 인가 전압 조절 등의 다양한 방법으로 전류의 흐름을 제어하여 목표 온도를 달성할 수 있다.
도 1 ~ 7과 같이 종래 스노모빌 실드의 가로 : 세로 길이 비율은 대략 3 : 1이므로 도 8의 A, B 및 C에서와 같이 가로 : 세로 길이 비가 3 : 1, 1 : 1 및 1 : 3인 사각형으로 하여 장방형 투명 기판의 좌우측 양단부 또는 상하측 양단부에 형성되는 전극의 길이와 전극간 간격 조절에 의해, 전극간에 미세선으로 형성된 투명 기판의 저항값이 조절되는 것을 설명할 수 있다.
하기 식 2에 나타낸 것과 같이 두 전극간 표면저항율(ρs)의 단위는 Ω/□이며 단위 면적당의 저항값이다. 그리고 표면저항값(Rs)은 표면저항이라고도 하며 단위는 Ω이다.
[식 2]
ρs = (V/I) × (W/L) Ω/□
Rs = V/I
Rs = ρs × (L/W) Ω
여기서 W는 전극의 길이이며 L은 전극간 거리이다.
식 2에서와 같이 전극간 투명 기판의 표면저항은 전극의 길이에 반비례하여 전극이 길어지면 투명 기판의 표면저항은 낮아지며, 전극 길이가 짧아지면 투명 기판의 표면저항은 높아진다. 그리고 전극간 간격 즉 전극간 거리에는 비례하여 전극간 거리가 길어지면 투명 기판의 표면저항은 높아지며, 전극간 거리가 짧아지면 투명 기판의 표면저항은 낮아짐을 알 수 있다. 그래서 장방형 투명 기판의 좌우측 양단부 또는 상하측 양단부에 형성되는 전극의 길이 또는 전극간 거리 조절에 의해 전극간 미세선의 격자 패턴이 형성된 투명 기판의 표면저항을 조절 할 수 있으며, 그로 인해 전류의 흐름을 제어하여 장방형 투명 기판 내의 최고 발열온도 80 ℃ 이하와 미세선 부분의 평균 발열온도 30 ~ 60 ℃로 조절할 수 있다.
장방형 투명 기판의 미세선이 체적저항율 9 μΩ·cm 이하의 고전도성 수성 잉크(NIM-006)를 사용하여 형성된 동일한 전도도의 투명전극 필름을 사용하여 A, B 및 C와 같이 전극의 길이 또는 전극간 거리를 달리했을 때 전극간 투명 기판의 표면저항이 달라진다.
식 2의 Rs = ρs × (L/W)로 전극간 투명 기판의 표면저항을 나타낼 수 있고, ρs는 고전도성 수성 잉크(NIM-006)을 사용하여 미세선의 격자 패턴을 형성한 장방형 투명 기판의 표면저항율이다. 여기서 A의 경우 전극간 투명 기판의 표면저항 RsA = ρs × (1/3) = 1/3 ρs이고, B의 경우 전극간 투명 기판의 표면저항 RsB = ρs × (1/1) = 1 ρs이고, C의 경우 전극간 투명 기판의 표면저항 RsC = ρs × (3/1) = 3 ρs이다. 즉 A에 비해서 C의 경우 동일한 고전도성 수성 잉크(NIM-006)을 사용했으나 전극의 위치와 패턴 변화로 전극의 길이와 전극간 거리가 달라짐에 따라 전극간 투명 기판의 표면저항은 9 배가 높아진다. 그리하여 A에 비해서 C의 경우 고전도성 수성 잉크를 사용하면서도 전류의 흐름을 제어할 수 있어 과도한 발열량을 제어할 수 있다. 또한 장방형 투명 기판의 길이가 긴 좌우측 양단부에 형성된 전극 A에 비해서 길이가 짧은 상하측 양단부에 형성된 전극 C의 경우가 전극간 거리의 편차를 줄여 전극간 저항 또는 전류의 편차를 적게 할 수 있는 장점이 있고 또한 눈보호 고글을 착용한 사용자의 시야를 막거나 방해하지 않고 시인성을 확보 할 수 있는 장점이 있다.
전술한 바 있듯이, 종래 스노모빌용 ITO 고글들의 발열특성을 측정한 결과 특히 양측부 전극 영역의 최고 발열온도는 82 ~ 114 ℃로 높았고 나노와이어로 구성된 고글의 발열특성도 측정하여 확인한 결과도 최고 발열온도 81 ~ 106 ℃로 높았다. 현재 눈보호 고글용 ITO의 표면저항은 대략 30 Ω/□이며, ITO로 길이가 짧은 세로전극을 적용하려면 표면저항은 10 Ω/□ 정도 필요하며 ITO 막으로 저 표면저항막을 형성하기 위해서는 막 두께를 0.5 μm 이상으로 두껍게 증착해야 하기 때문에 제조비용의 상승 및 광투과도 저하 문제로 시인성이 떨어져서 적용이 어렵다. 또한 나노와이어도 표면저항을 양호하게 하기 위해서는 더 고농도의 나노와이어를 사용해야 하며 이로 인한 제조비용의 상승 및 헤이즈 증가 문제로 시인성이 떨어져 적용이 힘들다.
상기 고전도성 수성 잉크(NIM-006)을 사용하여 장방형 투명 기판 내의 최고 발열온도 및 미세선 부분의 평균 발열온도를 나타내는 열량(Q)은 상기 식 1과 같이 인가 전압에 비례하며 또한 전류의 흐름에 비례한다. 그래서 장방형 기판의 길이가 긴 좌우측 양단부에 형성되는 전극 또는 길이가 짧은 상하측 양단부에 형성되는 전극에 인가하는 전원의 전압을 조절하는 방법으로 장방형 투명 기판 내의 최고 발열온도 80 ℃ 이하 및 미세선 부분의 평균 발열온도 30 ~ 60 ℃로 조절할 수 있다.
본 발명의 장방형 투명 기판 내의 최고 발열온도에 있어서, 투명 기판에 내열성이 낮고 박막화, 유연화 또는 경량화가 용이한 유기 필름으로서 예를들면, PET(폴리에틸렌 테레프탈레이트), PEN(폴리에틸렌 나프탈레이트), PC(폴리카보네이트)등이 주로 사용되기 때문에, 투명 기판 내의 최고 발열온도는 80 ℃ 이하가 좋고 70 ℃ 이하면 더욱 좋다.
그리고 본 발명의 투명 발열체로 된 눈보호 고글은 제설, 결설 방지나 김서림 방지가 요구되므로 미세선 부분의 평균 발열온도는 30 ~ 60 ℃ 범위가 바람직하고, 더욱 바람직하게는 35 ~ 55 ℃ 범위일 수 있다.
스노모빌이나 스키나 오토바이용 고글의 중앙부 또는 양측부 등의 영역에 따라서 상대적으로 온도가 높아지거나 또는 온도가 낮아지는 온도차가 발생하면 김서림 등으로 발생되는 헬멧 착용자의 시야를 항상 확보하기 위해서는 고글의 전 영역에서 우선 온도를 상승시켜 고글의 김서림을 방지할 필요가 있다. 그러나 온도가 낮은 영역의 온도를 김서림 방지를 위해 상승시켜 많은 전류를 흐르게 하면 온도가 높은 영역에는 필요 이상의 전류가 흐르게 되어 전력의 소비는 물론 투명 기판 내의 최고 발열온도 및 미세선 부분의 평균 발열온도가 높아지는 폐해가 발생한다. 그래서 본 발명의 투명 기판 내의 미세선 부분의 전 영역에서의 온도 편차는 미세선 부분의 평균 발열온도를 기준으로 ± 10 ℃가 바람직하며 ± 5 ℃로 하면 더욱 좋다.
본 발명의 눈보호 고글용 투명 발열체에 사용하는 도전체로는 체적저항율이 9 μΩ·cm 이하의 범위인 양호한 도전체이며, 분지형 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 이루어지는 금속 나노입자 보호폴리머와, 아민과 무기산으로 이루어지는 아민산염을 포함하는 금속 나노입자 분산 안정제로 금속 나노입자인 은 나노입자가 보호되도록 구성되는 금속 콜로이드 용액을 사용한다.
체적저항율은 식 3으로 표현되며 단위 면적당 저항인 표면저항율에 도전막의 두께를 곱한 값으로 전도체 고유의 값을 나타내며 단위는 Ωm 또는 μΩ·cm이고, 체적저항율(ρv)과 표면저항율(ρs)은 비례 관계이다.
[식 3]
R = ρv × (L/S)
ρv × (L/t × W) = ρv/t × (L/W) = ρs × (L/W)
ρv/t = ρs, ρv = ρs × t
여기서 S는 도전막의 단면적, t는 단면적의 두께, W는 단면적의 폭, L은 도전막의 길이이다.
본 발명의 금속 나노입자 분산 안정제로는, 분지형 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 이루어지는 금속 나노입자 보호폴리머와, 아민 및 무기산으로 이루어지는 아민산염을 포함하여 구성된다. 즉, 본 발명의 금속 나노입자 분산 안정제는 폴리알킬렌이민 세그먼트의 알킬렌이민의 질소원자 부위가 금속 또는 금속이온과 배위결합하여 금속을 나노입자로 고정화하고, 상기 폴리알킬렌이민과 아민산염 사이에 아민산염 교환으로 생성되는 아민이 금속 또는 금속이온과 배위결합하여 금속 나노입자의 표면에 고정화됨으로서 분산 안정성을 높이도록 한 금속 나노입자 분산 안정제이다. 따라서 본 발명의 분산 안정제로 보호되는 금속 나노입자 복합체가 분산되는 금속 콜로이드 용액은 상기 분산 안정제에 의한 높은 분산 안정성을 나타내게 된다.
아민과 무기산으로 구성되는 아민산염은 분산 안정성 향상과 양호한 도전성능에 기여하는 것으로, 아민산염의 구성성분인 아민은 끓는점이 180 ℃ 이하의 범위이면 좋고 50 ℃ ~ 130 ℃의 범위이면 더욱 바람직하다. 왜냐하면 본 발명의 금속 콜로이드 용액 또는 그 용액을 도전성 수성 잉크로 조절한 도전성 재료를 투명 기판 위에 인쇄를 통해 도포한 후 저온 소성할 때 폴리알킬렌이민과 아민산염 사이에 아민산염 교환으로 생성된 아민이 저온에서 용이하게 제거되어 도전성능 향상에 기여하기 때문이다. 따라서 본 발명의 분산 안정제로 보호되는 금속 나노입자 복합체가 분산되는 금속 콜로이드 용액은 저온 소성에도 양호한 도전성을 나타내게 된다. 바람직하게는 상기 아민은 저온에서 용이하게 제거될 수 있는 저분자 아민으로서 예를 들면 메틸아민, 디메틸아민, 메틸에틸아민, 에틸아민, 디에틸아민, 프로 필아민, 이소프로필아민, 부틸아민, 이소부틸아민 및 펜틸아민 중에서 1종 이상이 사용될 수 있다. 또한 상기 저분자 아민을 포함하는 저분자 아민산염은 무기산으로서 예를 들면 염산, 질산 또는 황산 등을 포함할 수 있다.
또한 상기 본 발명의 보호폴리머 중의 폴리알킬렌이민 세그먼트는 알킬렌이민의 질소원자 부위가 금속 또는 금속이온과 배위결합이 가능하기 때문에 금속을 나노입자로 고정화할 수 있는 세그먼트이다. 이로서 본 발명의 보호폴리머로 보호된 금속 나노입자의 복합체를 친수성 용매 중에서 제조 또는 보존할 경우에 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트가 친수성을 가짐과 동시에 폴리알킬렌이민 세그먼트는 금속과 배위결합 함으로서 금속 나노입자의 표면에 고정화되는 반면 폴리옥시알킬렌 세그먼트는 용매 내에서 자유롭게 활발히 운동함으로서 금속 나노입자 간의 반발력이 되어, 그 결과 얻어진 금속 콜로이드 용액에 우수한 분산 안정성과 보존 안정성을 발휘하게 된다.
또한 본 발명의 분산 안정제로 보호되는 금속 나노입자 복합체를 포함하는 금속 콜로이드 용액에 있어서, 상기 금속 나노입자 복합체의 입자경, 안정성 또는 전도성 등은 사용하는 보호폴리머의 중량평균분자량 또는 폴리알킬렌이민 세그먼트의 알킬렌이민 단위수 또는 보호폴리머의 구조나 조성비 또는 금속 나노입자 분산 안정제의 사용량 등에 의해도 영향을 받는다. 따라서 상기 폴리알킬렌이민 세그먼트의 알킬렌이민 단위수는 특별히 한정되지 않지만 단위수가 너무 적으면 보호폴리머로서 금속 나노입자의 보호 능력이 불충분하게 되기 쉽고, 반면 단위수가 너무 많으면 금속 나노입자와 보호폴리머로 이루어진 금속 나노입자 복합체의 입자경이 커지기 쉬워 분산 안정성에 영향을 미치게 된다. 이에 따라 금속 나노입자의 고정화 능력 또는 나노입자 복합체의 거대화를 막는 능력 등을 감안할 때 상기 폴리알킬렌이민 세그먼트의 알킬렌이민 단위수는 10 ~ 5,000일 수 있으며, 보다 바람직하게는 100 ~ 2,000의 범위일 수 있다.
중량평균분자량이 너무 적으면 보호폴리머로서 금속 나노입자의 보호 능력 저하 등으로 분산 안정성이 나빠지고 반면 중량평균분자량이 너무 크면 나노입자가 응집되는 등에 의해 콜로이드 용액에 있어서 금속 나노입자 복합체의 입자경 또는 안정성에 저해 요인이 된다. 따라서 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 구성된 보호폴리머의 중량평균분자량은 500 ~ 150,000의 범위이면 좋고 보다 바람직하게는 1,000 ~ 100,000의 범위이면 더욱 바람직하다. 또한 상술한 바와 같이 폴리알킬렌이민 세그먼트의 알킬렌이민 단위수가 100 ~ 2,000의 범위일 때, 분지형 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 구성된 보호폴리머와 저분자 아민산염의 혼합물 내의 사용비는, 폴리알킬렌이민 세그먼트의 아민 당량에 대한 저분자 아민산염의 아민 당량을 조절하여 저온 소성에서의 양호한 도전성능과 분산 안정성을 향상시킬 수 있다. 이때 바람직하게는 폴리알킬렌이민 세그먼트의 아민 1 당량에 대해서 저분자 아민산염의 아민 당량이 0.1 ~ 1.0 당량의 범위이면 되고, 더욱 바람직하게는 0.2 ~ 0.9 당량의 범위일 수 있다.
또한 본 발명의 보호폴리머를 구성하는 폴리옥시알킬렌 세그먼트는 금속 콜로이드 용액으로서 물 등의 친수성 매체를 사용할 경우에 용매와의 높은 친화성을 나타내며 콜로이드 용액의 보존 안정성을 유지하는 세그먼트이다. 폴리옥시알킬렌 세그먼트는 일반적으로 시판 또는 합성 가능한 것이라면 특히 한정하지 않고 사용할 수 있으나 친수성 용매를 사용하는 경우 안정성에 뛰어난 콜로이드 용액을 얻을 수 있다는 점에서 비이온성 폴리머로 된 것이 좋다. 상기 폴리옥시알킬렌 세그먼트로서는, 예를 들면 폴리옥시에틸렌 세그먼트 또는 폴리옥시프로필렌 세그먼트가 좋고 공업적으로 구하기 쉬운 점에서 폴리옥시에틸렌 세그먼트가 더욱 좋다. 또한 상기 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 구성되는 본 발명의 금속 나노입자 보호폴리머는 너무 적은 양을 사용할 경우 금속 나노입자들을 충분히 보호할 수 없어 양호한 입자상의 금속 콜로이드 용액을 얻을 수 없고 또한 많은 양을 사용할 경우에는 금속 나노입자의 분리 정제과정에서 여분의 분산 안정제가 분리를 방해하여 정제 분리성을 악화시키게 된다. 따라서 본 발명의 금속 나노입자 보호폴리머는 금속 나노입자의 총 중량에 대하여 2 ~ 15 wt%로 사용되는 것이 바람직하고, 더욱 바람직하게는 3 ~ 10 wt% 사용되도록 하여야 합성되어 얻어지는 금속 콜로이드 용액의 분산 안정성과 보존 안정성을 향상하고 정제 분리성을 나타낼 수 있다.
상술한 바와 같이, 본 발명의 금속 나노입자 분산 안정제는 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트로 이루어지는 금속 나노입자 보호폴리머와 저분자 아민산염으로 이루어져, 폴리알킬렌이민 세그먼트의 알킬렌이민의 질소원자 부위가 금속 또는 금속이온과 배위결합하고, 상기 폴리알킬렌이민과 아민산염 사이에 아민산염 교환으로 생성되는 아민이 금속 또는 금속이온과 배위결합하여 금속 나노입자의 표면에 고정화됨으로서 분산 안정성을 나타내면서, 폴리옥시알킬렌 세그먼트는 친수성 용매 중에서는 용매와 양호한 친화성을 나타내며 소수성 용매 중에서는 높은 회합력을 나타내어 금속 나노입자의 안정화 또는 용이한 정제 분리성에 기여한다. 이에 따라 본 발명의 분산 안정제로 보호되는 금속 나노입자가 분산된 금속 콜로이드 용액 또는 그 용액을 도전성 수성 잉크로 조절한 도전성 재료는 투명 기판 위에 인쇄를 통해 도포한 후 소성할 때 저온 소성이 가능하며 양호한 도전성능을 가지게 된다. 즉, 금속 나노입자 보호폴리머 중 분지형 폴리알킬렌이민과 저분자 아민산염 사이에 아민산염 교환으로 생성된 폴리알킬렌이민 중의 4급 아민 단위는 그 결합력이 약하기 때문에 배위결합하고 있는 금속 나노입자의 표면에서 저온에서 용이하게 분리(디커플링)할 수 있게 되어 저온 소성이 가능하게 된다. 또한 저온에서 용이하게 완전히 분리될 수 있어 보호폴리머가 분리된 금속 나노입자들끼리의 융착 과정에서 도전성을 저해하지 않기 때문에 양호한 도전성능을 가지게 된다.
본 발명에서 양호한 시야성 및 전도성의 투명 발열체를 구현할 수 있는 도전성 수성 잉크는 미세선의 격자 패턴 형성이 양호하며 저온 소성과 함께 양호한 도전성을 나타낸다. 이러한 저온 소성 성능과 양호한 도전성능은 측사를 가지는 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트를 가지는 폴리머와, 저분자 아민산염의 혼합물로 구성되는 금속 나노입자의 분산 안정제가 저온에서 용이하게 금속 나노입자의 표면에서 이탈되기 때문이며 뒤 이어서 활성화된 금속 나노입자들이 견고하게 융착되기 때문이다.
또한 본 발명의 도전성 수성 잉크는 종래 유성 잉크와 달리 범용의 플라스틱 기판을 용해하거나 팽윤시키지 않으며 냄새나 독성이 없어 작업환경의 악화가 없고 화재 및 폭발 등의 위험성도 없다. 그리고 전기 도전성 수성 잉크는 임프린트 인쇄법, 스크린 인쇄법, 그라비아 인쇄법 등으로 인쇄되며 종래와 비교하여 저온에서 소성하여 양호한 도전성능을 나타내기 때문에 저 전압의 배터리 등 다양한 사용 전압 하에서도 충분한 발열량을 확보할 수 있으며 우수한 시야성을 발현하는 격자 패턴 형성이 가능하다.
본 발명의 전도성 투명 발열체용 도전성 수성 잉크는 폴리머의 용매 중에 일부 소량의 금속이온을 첨가 환원하고 일정 시간 후 나머지 전량의 금속이온을 재 첨가하여 환원해서 금속 나노입자를 얻은 다음 적절한 빈용매를 첨가하여 금속 나노입자를 침전시켜 정제 분리하고 그 분리한 금속 나노입자의 농축액에 저분자 아민산염을 첨가하여 금속 나노입자를 제조한다. 금속이온의 원료로는 금속의 염, 또는 금속의 이온 용액일 수 있는데 금속이온의 원료로는 수용성 금속화합물이면 좋고 금속 양이온과 산기 음이온의 염류 또는 금속이 산기 음이온 중에 포함되는 것 등을 사용할 수가 있으며, 전이금속 등의 금속 종류를 가지는 금속이온도 사용할 수 있으나 이러한 금속이온 중에서 특히 은, 금, 백금의 금속이온은 실온 또는 가열 상태에서 자발적으로 환원되어 비이온성 금속 나노입자로 변환되기 때문에 좋다. 또, 얻어지는 금속 콜로이드 용액을 도전 재료로서 사용하는 경우에 도전성의 발현능력이나 인쇄, 도장하여 얻어지는 도막의 산화방지성의 관점에서 은 이온을 사용하는 것이 바람직하다.
본 발명의 도전성 수성 잉크에는 100 ~ 900 nm 입자 크기를 갖는 금속 입자가 5 ~ 50nm 크기를 갖는 금속 나노입자와 함께 사용될 수 있다. 금속 입자는 금속 나노입자에 비해서 입자 크기가 상대적으로 상당히 크고 금속 나노입자와 같이 보호 안정제 등으로 표면을 보호할 필요 없는 안정한 상태의 금속 입자이다. 금속 입자로서는 알려진 건조된 상태의 분체는 어떠한 것이라도 사용 가능하며, 예를 들면 금(Au), 은(Ag) 및 백금(Pt) 등이 될 수 있으며, 인쇄 시 막힐 염려가 없고 격자 패턴 형성이 가능하고, 소성 후의 저항값이 낮고 표면 평활성이 우수한 미세선 형성이 가능한 점들을 감안할 때 입자 크기가 100 ~ 900 nm인 금속 입자 그리고 금속 입자 중에서도 박막 인편상의 은 입자가 바람직하다.
본 발명에 있어서, 금속 나노입자는 금속 입자와 병용함으로서 금속 나노입자만을 사용하는 경우보다 열 소성에서 더욱 양호한 체적저항을 갖는 피막을 얻기 쉽다. 금속 나노입자는 함께 사용되는 금속 입자 사이의 공간을 완전히 채워서 완전한 충진 상태의 제막을 형성할 수 있다. 이 상태에서 가열 소성하게 되면 금속 나노입자의 표면에서 보호폴리머가 저온에서도 용이하게 분리(디커플링)하게 되고 금속 나노입자들끼리의 융착이 진행된다. 이때 완전 충진 상태의 제막 중의 금속 나노입자는 함께 사용하게 되는 금속 입자 사이의 공간을 채우고 완전 충진 상태를 유지하며 금속 입자들을 금속 나노입자가 연결하는 형태로 일체화된 완전 소성체가 되어 더욱 양호한 도전 성능을 나타낸다. 금속 나노입자와 금속 입자의 사용 비율은 특히 제한되어 있지는 않지만 질량 비로 금속 나노입자 : 금속 입자 = 10 : 90 ~ 80 : 20이 좋고 금속 나노입자의 사용 비율이 적어도 양호한 체적저항이 얻어질 수 있다는 점을 고려해서 질량 비로 금속 나노입자 : 금속 입자 = 15 : 85 ~ 40 : 60이 더욱 바람직하다.
도전성 수성 잉크를 제조함에 있어서, 고형분의 질량 기준에서 보호 안정제로 보호된 금속 나노입자와 금속 입자의 합계를 40 wt% 이상이 되도록 함유시키는 것이 좋고, 바람직하게는 40 ~ 95 wt%가 되도록 함유시키는 것이 더욱 바람직하다. 미세선의 제반 물성을 고려하여 인쇄 특성을 향상시키기 위해서는 도전성 수성 잉크 조성 중에 고형분을 조절하는 방법이 유효하며 그러기 위해서 별도로 바인더 수지를 병용하는 경우가 있는데 그때 첨가한 바인더 수지는 소성 시에 미세선 중에 불필요한 저항 성분으로 남게 되어 도전 성능을 저해하므로 제3성분으로의 바인더 수지 병용은 필요 최소량으로 조절하는 것이 바람직하다.
본 발명에 있어서 수용성 용제로서는 알킬렌글리콜계, 글리세린 중 1종 이상이 사용될 수 있다. 알킬렌글리콜계로서는 예를 들면 에틸렌글리콜모노알킬에테르, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 디프로피렌글리콜, 트리프로피렌글리콜 등의 상온에서 액체인 알킬렌글리콜이 바람직하고, 그중에서도 150℃ 이상에서 휘발이 시작되는 알킬렌글리콜이 더욱 바람직하고 또한 글리세린도 아주 좋다. 휘발점이 높은 알킬렌글리콜과 글리세린 같은 수용성 용제는 실온에서 증기압이 낮고 휘발이 잘 안되기 때문에 각종 인쇄용 도전성 수성 잉크 제조에 우수하며 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트를 가지는 폴리머와 저분자 아민산염의 혼합물로 구성되는 보호 안정제로 보호된 금속 나노입자 수용액과의 혼합성이 양호하고 상분리 등을 일으키지 않으며 각종 열가소성 플라스틱을 용해시키거나 팽윤시키지 않을 뿐만 아니라, 저온에서 소성이 가능하게 하고 냄새나 독성이 적어 작업 환경을 악화시키지 않아서 더욱 좋다.
수용성 용제는 보호 안정제로 보호된 금속 나노입자와 금속 입자의 합계 총 중량에 대하여 2 ~ 20 wt% 범위가 바람직하고, 인쇄 특성을 향상시킬 수 있음을 고려하여 3 ~ 8 wt%가 더욱 바람직하다.
도전성 수성 잉크는 상기의 측사를 가지는 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트를 가지는 폴리머와 저분자 아민산염의 혼합물로 구성되는 분산 안정제로 보호된 금속 나노입자 수용액과 수용성 용제를, 또는 측사를 가지는 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트를 가지는 폴리머와 저분자 아민산염의 혼합물로 구성되는 분산 안정제로 보호된 금속 나노입자 수용액과 금속 입자와 수용성 용제를, 예를 들면 필요에 따라 예비혼합한 다음 일정 전단력으로 교반 분산하여 제조할 수 있다.
상기와 같은 방법으로 제조된 금속 나노입자는 첨가된 저분자 아민산염과 보호폴리머의 폴리알킬렌이민 세그먼트 사이에 아민산염 교환으로 폴리알킬렌이민 중 4급 아민 단위가 생성된다. 생성된 폴리알킬렌이민 중에서 4급 아민 단위는 그 결합력이 약하기 때문에 배위결합하고 있는 금속 나노입자의 표면에서 저온에서도 용이하게 분리(디커플링)하게 된다. 이에 따라, 저온 소성이 가능하면서도 용이하고 완전히 분리하게 되어 이후 보호폴리머가 분리된 금속 나노입자들끼리의 융착 과정에서 도전성을 저해하지 않기 때문에 양호한 도전 성능을 가지게 된다. 그리고 폴리알킬렌이민과 저분자 아민산염 사이에 아민산염 교환으로 생성된 저분자 아민도 금속과 배위결합으로 금속 나노입자의 표면에 고정화가 가능하여 분산 안정성 향상에 기여할 수 있다.
본 발명에서 얻어지는 금속 콜로이드 용액의 불휘발분에 포함되는 금속 나노입자의 크기는 특별히 한정되는 것은 아니나, 금속 콜로이드 용액이 더 우수한 분산 안정성 및 도전성 등을 갖게 하기 위하여 금속 나노입자의 크기는 5 ~ 50 nm 범위의 미립자일 수 있으며, 바람직하게는 10 ~ 40 nm 범위일 수 있다. 일반적으로 수십 나노미터 크기 영역에 있는 금속 나노입자는 그 금속 종류에 따라 표면 플라즈몬에 기인하여 특징적인 광학 흡수를 갖는다. 이에, 본 발명에서 얻어지는 금속 콜로이드 용액의 플라즈몬 흡수를 측정함으로서 용액 내에 금속이 나노미터 크기의 미립자로 존재함을 확인할 수 있고, 상기 용액의 투과전자현미경(TEM) 사진 등에 의해서 그 평균 입자 크기나 분포 폭 등을 확인할 수 있다. 단, 본 발명에서의 평균 입자 크기는 금속 나노입자를 히타치 주식회사 제품 H-7500을 사용하여 TEM 측정한 후 약 100개 정도 입자의 크기를 측정하여 평균한 값을 사용한다.
본 발명의 눈보호 고글용 투명 발열체에 사용되는 투명 기판에 있어서, 그 종류에는 제한은 없지만 유기 필름 또는 유리 기판이 사용될 수 있으며, 내열성이 낮고 박막화, 유연화 또는 경량화가 용이한 유기 필름이 사용될 수 있다. 유기 필름으로서는 예를들면, PET(폴리에틸렌 테레프탈레이트), PEN(폴리에틸렌 나프탈레이트) 또는 PC(폴리카보네이트) 등이 사용될 수 있다.
본 발명의 눈보호 고글용 투명 발열체의 투명 기판에 미세선을 형성하는 방법은 예를 들면, 임프린트 인쇄법. 스크린 인쇄법, 그라비아 인쇄법, 그라비아 옵셋 인쇄법, 그라비아 반전 인쇄법, 잉크젯 인쇄법에 의해 형성될 수 있으며 제조의 간편성과 제작되는 투명 기판의 성능, 제조경비 등의 관점에서 적절히 선택 할 수 있다.
본 발명의 눈보호 고글용 투명 발열체는 스노모빌용 고글, 스키용 고글 또는 오토바이용 고글과 같은 눈보호 고글로 사용될 수 있으며, 눈을 보호할 수 있는 고글이라면 상기 종류 외에 다양한 고글에 적용 가능하다. 이러한 눈보호 고글은 계절에 상관없이 사용 가능하나 제설, 결설 방지나 김서림 방지가 요구되는 겨울용으로 더욱 잘 적용될 수 있다. 또한 내열성이 낮고 박막화나 유연화 및 경량화가 용이한 투명 기판 위에 체적저항율이 9 μΩ·cm 이하인 양호한 도전체를 사용하여 미세선을 형성함으로서 시야를 확보하고 적절한 발열성능으로 김서림이 방지된 전도성 투명 기판을 포함하는 각종 눈보호용 투명 발열 디바이스를 제공할 수도 있다.
이하, 본 발명의 실시예를 더욱 상세하게 설명하면 다음과 같다. 단, 이하의 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
사용한 분석 기기류 및 측정방법
1H-NMR: 일본전자 주식회사 제품, JNM ECP-400, 400㎐
GPC 측정: Waters Corporation 제품, ACQUITY APC Core System
TEM 측정: 히타치 주식회사 제품, H-7500
SEM 측정: 일본전자 주식회사 제품, JSM-6490LV
체적저항율 측정: 기쿠수이 주식회사 제품, PMX35-3A와 아지랜트테크놀로지 주식회사 제품, U1252A
고형분 측정방법: 은 나노입자 원심분리 응집 페이스트 중에 포함되는 금속 나노입자를 포함하는 비휘발성 물질의 함량을 측정하였다. 하기 실시예에서 제조하는 은 나노입자 원심분리 응집 페이스트로부터 약 0.5 g의 응집 페이스트를 알루미늄 디쉬에 떨어뜨린 뒤 섭씨 60 도 하에서 예비건조 한 후 잔류 용제를 제거하기 위해 열풍 건조기를 사용하여 섭씨 180 도 하에서 30 분간 건조한 뒤, 건조 전과 건조 후 시료의 무게 차이를 계산하여 고형분을 측정하였다.
고형분(%) = (건조 후 시료의 무게 / 건조 전 시료의 무게) × 100
도전성 수성 잉크 피막의 체적저항 측정방법: 유리 기판 위에 도전성 수성 잉크 조성물을 제막 인쇄 완료 후 열 오븐을 사용하여 120 ℃에서 30 분간 소성하고, 소성한 피막 샘플을 이용하여 체적저항 측정을 실시하였다. 얻어진 피막 샘플의 두께는 SEM(일본전자 주식회사 제품, JSM-6490LV)을 사용하여 측정하고, 표면저항률(Ω/□)은 저 저항기(아지랜트테크놀로지 주식회사 제품, U1252A)와 정전류 정전압기(기쿠수이 주식회사 제품, PMX35-3A)를 이용하여 측정했다.
체적저항률(Ωㆍcm) = 표면저항률(Ω / □) × 두께(cm)
제조예 1: 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트의 폴리머 합성
하기 반응은 모두 질소 분위기 하에서 이루어졌다. 모노메톡시폴리에틸렌 글리콜(Mn = 2,000) 60.0 g와 톨루엔 420.0 ㎖을 계량한 후 반응기에 투입하고, 교반속도 200 rpm 하에서 반응액 내부 온도를 약 섭씨 60 도로 가열하여 용해된 것을 확인한 후, 반응액 내부 온도를 섭씨 18 도 이하로 낮췄다. 이후, 분쇄한 수산화칼륨 4.0의 톨루엔 현탁액 20.0 ㎖를 반응기에 첨가하는데 이때 반응액의 온도는 섭씨 18 도에서 섭씨 25 도 사이로 유지됨을 확인하였다. 이어서 반응용기 내부에 p-톨루엔설포닐클로라이드 17.2 g을 소량씩 첨가한 후 분쇄한 수산화칼륨 12.0의 톨루엔 현탁액 60.0 ㎖를 서서히 투입하였고, 반응용기에 톨루엔 현탁액을 첨가할 때마다 반응용액의 온도가 섭씨 18 도에서 섭씨 25 도 사이에서 유지되는지 확인하였다. 다시 반응용기에 p-톨루엔설포닐클로라이드 2.0 g을 투입하고, 이어서 분쇄한 수산화칼륨 8.0의 톨루엔 현탁액 40.0 ㎖를 투입하였다. 마찬가지로, 반응액의 온도는 섭씨 18 도에서 섭씨 25 도 사이로 유지되는 것을 확인한 뒤, 30 분간 더 교반 반응하여 제조하였다.
상기 반응액을 여과하기 위해 뷰흐너 깔대기에 여과지(5 ㎛)와 그 위에 실리카겔 또는 무수황산마그네슘을 놓고 필터링을 준비하여 감압펌프를 연결한 후 감압여과를 실시하였다. 여과된 반응혼합액이 맑은 용액이 될때까지 약 3 회 감압여과를 반복하였다.
여과된 반응혼합액은 로터리 에바포레이터를 이용하여 용매를 증류하였으며 이때 냉각수는 약 섭씨 5 도, 로터리 에바포레이터 배스의 온도는 섭씨 40 도를 유지하여 토실화 폴리에틸렌글리콜 모노메틸에테르 50.4 g(수율 78 %)을 제조하였다.
제조한 생성물에 대한 1H-NMR(400M㎐) 측정결과는 다음과 같다.
1H-NMR(D2O) 측정결과:
δ(ppm) = 7.8(d, 2H), 7.2(d, 2H), 4.2(t, 2H), 3.7 ~ 3.8(m, PEG메틸렌), 3.5(s, 3H)
이어서 측사 폴리에틸렌이민에 폴리에틸렌글리콜을 그라프트화 반응시켜 목표 폴리머를 제조하였다. 하기 반응은 모두 질소 분위기 하에서 이루어졌다. 디메틸아세트아미드 380 g을 반응기에 투입하고 교반속도 200 rpm 하에서 서서히 가온하고, 측사 폴리에틸렌이민(Mn = 10,000) 73.0 g 투입한 뒤 용해하고, 앞서 제조한 토실화폴리에틸렌글리콜 모노메틸에테르 48.0 g을 투입해 용해하고, 다시 디메틸아세트아미드 100.0 g을 투입하였다. 반응액의 온도는 섭씨 120 도까지 상승하여 유지하고 약 6 시간 동안 교반 반응을 유지하여 제조하였다.
상기 반응액을 여과한 후 감압 용매 제거장치를 사용하여 디메틸아세트아미드 등의 용매를 증류 제거하였다.
이어서 상기 반응용기에 증류수를 약 320.0 g 첨가하여 잘 용해시킨 후 로카 장치를 이용하여 생성물 수용액을 여과하였다. 이 때 제조된 폴리머 생성물은 25 %의 수용액 상태로 437.0 g을 조제하여 보관하였다.
제조한 생성물에 대한 1H-NMR(400㎐) 및 GPC 측정결과는 다음과 같다.
1H-NMR(D2O) 측정결과:
δ(ppm) = 3.5 ~ 3.6(m, PEG메틸렌), 3.2(s, 3H), 2.3 ~ 2.7(m, bPEI에틸렌)
GPC 측정결과:
Rt = 23.586, Mw = 16,480
제조예 2: 은 나노입자 원심분리 응집 페이스트의 합성
하기 반응은 모두 질소 분위기 하에서 이루어졌다. 증류수 284 g을 반응기에 투입하고 교반 속도를 100 rpm으로 작동시키고 제조예 1에서 제조한 폴리머 수용액 23.04 g을 투입하고 디메틸에탄올아민 181.2 g을 투입한 뒤, 반응액을 가온하여 온도가 섭씨 40 도에 도달한 것을 확인한 후 교반 속도를 200 rpm으로 조절하였다. 이후 질산은 115.2 g에 증류수 192 g을 투입하여 미리 교반 용해시켜둔 질산은 수용액을 30 분에 걸쳐 적하하기 시작하는데, 상기 제조한 질산은 수용액의 약 2 %에 해당하는 양을 3 분간 적하하였고 이후 3 분간 적하를 멈추고 충분히 교반하여 반응시킨 후 나머지 질산은 수용액을 24 분간 적하하였다. 질산은 수용액 적하를 완료한 후 반응액을 가온하여 온도가 섭씨 50 도에 도달하는 시점부터 약 3 시간에 걸쳐 교반 반응을 유지한 후 다시 섭씨 30 도로 냉각하여 해당 온도에 도달한 것을 확인한 후 반응을 종료하였다.
상기 반응액에서 합성된 은 나노입자들을 정제 분리하기 위해 아세톤 3,200 g에 위 합성 혼합액 800 g을 첨가하여 약 5 분간 교반 후 일정 시간 정치하여 은 나노입자들을 침강 분리하였다. 이어서 아세톤 1,200 g에 위 침강 분리액을 첨가하여 약 5 분간 교반 후 일정 시간 정치하여 은 나노입자들을 재차 침강 분리하였다. 분리층을 확인한 후 투명한 상층 용액을 분리 제거하고 이어서 분리한 은 나노입자 용액에 미리 제조해 준비한 아민산염 수용액 4.7 g을 첨가하여 교반하였다. 상기 아민산염의 제조는 얼음욕조를 사용하여 디에틸아민(bp. 56 ℃) 73.1 g에 증류수 10.0 g을 첨가하여 교반하면서 염산수용액(36 %) 101.3 g을 서서히 첨가 혼합하여 몰 비 1 : 1의 혼합용액으로 아민산염의 수용액을 제조하여 준비하였다. 그리고 상기의 아민산염 수용액을 첨가한 은 나노입자 용액은 원심분리기를 사용하여 3,000 rpm에서 10 분간 원심분리하여 은 고형분 89.0 %의 은 나노입자 원심분리 응집 페이스트를 86.2 g 제조하였다.
도 9는 은 나노입자의 TEM 측정 결과를 나타낸 것으로, 은 나노입자의 평균 입자 크기가 23 nm이고, 단분산의 양호한 결정성 입자임이 확인된다.
제조예 3: 미세선 충전용 고전도성 수성 잉크 NIM-006의 제조
상기 제조예 2에서 얻은 측사 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트를 가지는 폴리머와 저분자 아민산염의 혼합물로 구성되는 보호 안정제로 보호된 금속 나노입자의 원심분리 응집 페이스트 83.0 g(불휘발분 89 %)과 글리세린 5.2 g과 증류수 6.2 g과 에틸렌글리콜 모노부틸에테르 3.0 g을 용기에 넣고 잘 저으며 예비혼합을 실시했다. 예비혼합시킨 나노입자 응집 페이스트의 혼합물을 사용하여 감압 하에서 저 휘발점 휘발성 용제를 제거했다. 이어서 다시 잘 저으며 예비혼합을 시킨 후 소포제 0.34 g(Antimussol UDF, Archroma사 제품)을 추가해 고속 분산기를 사용하여 혼련 분산하고 뒤이어 계면활성제 0.02 g(SM-3310P, 한국 KCC 주식회사 제품)을 넣고 추가 분산하여 고도전성 미세선 충전용 수성 잉크 NIM-006을 제조했다. 이와 같이 제조된 고도전성 미세선 충전용 수성 잉크 NIM-006의 체적저항은 상기의 도전성 수성 잉크 피막의 체적저항 측정방법에 따라 측정한 결과 4.2 μΩcm였다.
제조예 4: 장방형 투명 기판의 전극용 스크린 수성 잉크 Sc-005의 제조
상기 제조예 2에서 얻은 측사 폴리알킬렌이민 세그먼트와 폴리옥시알킬렌 세그먼트를 가지는 폴리머와 저분자 아민산염의 혼합물로 구성되는 보호 안정제로 보호된 금속 나노입자의 원심분리 응집 페이스트 74.2 g(불휘발분 89 %)과 글리세린 4.6 g과 증류수 9.0 g과 에틸렌글리콜 모노부틸에테르 2.7 g과 에폭시계 바인더 수지 7.0 g을 용기에 넣고 잘 저으며 예비혼합을 실시했다. 예비혼합시킨 나노입자 응집 페이스트의 혼합물을 사용하여 감압 하에서 저 휘발점 휘발성 용제를 제거했다. 이어서 다시 잘 저으며 예비혼합을 시킨 후 소포제 0.30 g(Antimussol UDF, Archroma사 제품)와 증점제 0.04 g을 추가해 고속 분산기를 사용하여 혼련 분산하고 뒤이어 계면활성제 0.02 g(SM-3310P, 한국 KCC 주식회사 제품)을 넣고 추가 분산하여 투명 기판의 전극용 스크린 수성 잉크 Sc-005를 제조했다. 이와 같이 제조된 전극용 스크린 수성 잉크 Sc-005의 체적저항은 상기의 도전성 수성 잉크 피막의 체적저항 측정방법에 따라 측정한 결과 8.1 μΩcm였다.
실시예 1
선폭 2.0 ㎛과 선 간격 200 ㎛인 미세선으로 이루어진 격자 패턴을 가지는 임프린트 인쇄용 투명 트렌치 PET 필름 기판 위에 제조예 3에서 제조한 고도전성 미세선 충전용 수성 잉크 NIM-006을 사용하여 임프린트 인쇄 방법으로 미세선을 충전 인쇄하였다. 충전 인쇄 완료 후 건조용 오븐을 사용하여 60 ℃에서 5 분간 예비건조를 하고 열 오븐을 사용하여 120 ℃에서 30 분간 소성하여 미세선의 선폭 2.0 ㎛과 간격 200 ㎛의 미세선으로 구성된 격자 패턴이 PET 필름 기판 위에 적층된 전도성 투명 발열 기판을 얻었다.
계속해서 상기 격자 패턴이 형성된 장방형 투명 기판의 좌단과 우단에 제조예 4에서 제조한 전극용 스크린 수성 잉크 Sc-005와 고글 모델 #2001의 좌우 세로전극 제판(도 12 참조)을 사용하여 스크린 인쇄 방법으로 좌우 세로전극을 인쇄하였다. 인쇄 완료 후 건조용 오븐을 사용하여 60 ℃에서 5 분간 예비건조를 하고 열 오븐을 사용하여 120 ℃에서 30 분간 소성하여 전극이 형성된 투명 발열 기판을 얻었다.
소성 후의 격자 패턴은 도 10의 광학 현미경 사진에 의해 확인했고 투과율은 Linshang사의 투과율 측정기 LS162를 사용하여 측정한 결과, 투명 트렌치 PET 필름 기판을 무시한 투과율은 95.5 %였다.
그리고 전극이 형성된 투명 발열 기판에 전원을 접속하고 미세선에 12 V 전압을 인가하며 전기특성 및 발열특성을 측정했다. 발열온도 측정은 FLUKE사의 열화상 카메라 TI300Plus를 사용하여 투명 발열 PET 기판의 미세선 위 24 개소와 각 전극 위 3 개소씩 6 개소로 총 30 개소를 측정했다(도 11 및 도 14 참조).
실시예 2
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2002의 좌우 세로전극 제판(도 12 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 12 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 15 참조).
실시예 3
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2003의 좌우 세로전극 제판(도 12 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 12 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 16 참조).
실시예 4
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 폭이 긴 직사각형 정방형 고글 모델 #1001의 좌우 세로전극 제판(도 12 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 17 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 17 참조).
실시예 5
상기 실시예 4와 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 미세선에 17 V 전압 인가를 미세선에 18 V 전압 인가로 한 것 이외에는 실시예 4와 동일한 방법으로 전기특성 및 발열특성을 측정했다(도 18 참조).
실시예 6
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2001의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 4 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 19 참조).
실시예 7
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2002의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 4 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 20 참조).
실시예 8
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2003의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 4 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 21 참조).
실시예 9
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 폭이 긴 직사각형 정방형 고글 모델 #1001의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 4 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 22 참조).
실시예 10
상기 실시예 9와 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 미세선에 4 V 전압 인가를 미세선에 2 V 전압 인가로 한 것 이외에는 실시예 9와 동일한 방법으로 전기특성 및 발열특성을 측정했다(도 23 참조).
비교예 1
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2001의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 12 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 24 참조).
비교예 2
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2002의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 12 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 25 참조).
비교예 3
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 고글 모델 #2003의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 12 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 26 참조).
비교예 4
상기 실시예 1에서 사용된 고글 모델 #2001의 좌우 세로전극 제판을 폭이 긴 직사각형 정방형 고글 모델 #1001의 상하 가로전극 제판(도 13 참조)으로 한 것 이외에는 실시예 1과 동일한 방법으로 실시하여 전극이 형성된 미세선 투명 발열 기판을 얻은 후, 실시예 1과 동일한 방법으로 미세선에 6 V 전압을 인가하며 전기특성 및 발열특성을 측정했다(도 27 참조).
상기 실시예 1 ~ 10과, 비교예 1 ~ 4를 정리하여 하기 표 2 ~ 4에 나타내었다.
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
고글 형태 #2001 #2002 #2003 #1001 #1001
전극 형태 세로전극 세로전극 세로전극 세로전극 세로전극
전극 길이
(cm)
15.5 11.0 15.0 4.5 4.5
전극간 거리
(cm)
31.8 29.4 33.2 24.0 24.0
인가 전압
(V)
12.0 12.0 12.0 17.0 18.0
전류
(A)
0.32 0.33 0.34 0.34 0.36
평균 발열온도
(℃)
40.1 41.9 42.3 52.9 58.1
최고 발열온도
(℃)
48.7 56.8 55.9 61.3 66.2
실시예 6 실시예 7 실시예 8 실시예 9 실시예 10
고글 형태 #2001 #2002 #2003 #1001 #1001
전극 형태 가로전극 가로전극 가로전극 가로전극 가로전극
전극 길이
(cm)
29.7/25.0 25.0/28.9 24.5/25.8 25.0 25.0
전극간 거리
(cm)
7.8 7.4 7.2 4.0 4.0
인가 전압
(V)
4.0 4.0 4.0 4.0 2.0
전류
(A)
0.39 0.56 0.61 0.71 0.36
평균 발열온도
(℃)
32.1 34.3 33.0 36.5 31.7
최고 발열온도
(℃)
47.3 53.4 49.4 73.4 42.0
비교예 1 비교예 2 비교예 3 비교예 4
고글 형태 #2001 #2002 #2003 #1001
전극 형태 가로전극 가로전극 가로전극 가로전극
전극 길이
(cm)
29.7/25.0 25.0/28.9 24.5/25.8 25.0
전극간 거리
(cm)
7.8 7.4 7.2 4.0
인가 전압
(V)
12.0 12.0 12.0 6.0
전류
(A)
1.13 1.63 1.75 1.05
평균 발열온도
(℃)
46.5 56.5 51.6 44.0
최고 발열온도
(℃)
>110 >110 >110 >110
표 2를 참조하면, 투명 기판의 좌우측 양단부의 전극 길이는 4.0 ~ 20.0 cm, 더욱 정확하게는 4.5 ~ 15.5 cm이고, 전극간 거리는 20 ~ 35 cm, 더욱 정확하게는 24.0 ~ 33.2 cm로서, 실시예 1 ~ 5와 같이 각종 고글 형태에서 고전도성 수성 잉크 NIM-006을 사용하며 전극 길이를 짧게 하고 전극간 거리를 길게 한 고글 좌우단의 세로전극을 사용한 결과, 스노모빌에서 사용되는 12 V 정전압 인가에서 또는 18 V의 고전압 인가에서도 전류의 흐름을 낮게 조절하여 미세선으로 이루어진 격자 패턴이 구비된 투명 발열 기판의 평균 발열온도가 30 ~ 60 ℃이며 최고 발열온도가 80 ℃ 이하의 범위에 만족하는 눈보호 고글용 투명 발열체를 얻었다.
표 3을 참조하면, 투명 기판의 상하측 양단부의 전극 길이는 24.0 ~ 30.0 cm, 더욱 정확하게는 24.5 ~ 29.7 cm이고, 전극간 거리는 4 ~ 8 cm, 더욱 정확하게는 4.0 ~ 7.8 cm로서, 실시예 6 ~ 10과 같이 각종 고글 형태에서 고전도성 수성 잉크 NIM-006을 사용하며 전극 길이가 길고 전극간 거리가 짧은 고글 상하단의 가로전극에서는 전압을 2 V에서 4 V의 낮은 전압으로 인가하며 전류의 흐름을 낮게 조절한 결과, 미세선으로 이루어진 격자 패턴이 구비된 투명 발열 기판의 평균 발열온도 30 ~ 60 ℃와 최고 발열온도가 80 ℃ 이하의 범위에 만족하는 눈보호 고글용 투명 발열체를 얻었다.
그러나 표 4를 참조하면, 투명 기판의 상하측 양단부의 전극 길이는 24.0 ~ 30.0 cm, 더욱 정확하게는 24.5 ~ 29.7 cm이고, 전극간 거리는 4 ~ 8 cm, 더욱 정확하게는 4.0 ~ 7.8 cm로서, 비교예 1 ~ 4와 같이 각종 고글 형태에서 고전도성 수성 잉크 NIM-006을 사용하며 전극 길이가 길고 전극간 거리가 짧은 고글 상하단의 가로전극에서 표 2에 기재된 실시예 1 ~ 4와 같은 동일 전압 12 V를 비교예 4는 6 V로 인가하게 되면 전극간 전류의 흐름을 많아진 결과, 특히 최고 발열온도가 110 ℃ 이상으로 발열특성을 만족하는 눈보호 고글용 투명 발열체를 얻을 수 없었다.
실시예 1 ~ 10과 비교예 1 ~ 4의 결과, 각종 고글 형태에서 고전도성 수성 잉크 NIM-006을 사용하면서, 전극의 길이, 전극간 거리, 전극에 인가하는 전압의 조절, 전극의 형태 등을 적절히 조절함으로서 전류의 흐름을 제어하여 투명 발열 기판의 평균 발열온도 30 ~ 60 ℃와 최고 발열온도가 80 ℃ 이하의 범위에 만족하는 눈보호 고글용 투명 발열체를 제조할 수 있음을 알 수 있다.
정리하면, 본 발명은 투명 기판 위에 고글의 시인성과 발열특성을 확보하면서 필요로 하는 발열특성 값으로 형성 가능한 도전성 수성 잉크의 소성체가 존재하는 투명 발열체를 제공한다. 투명 기판의 표면에 선폭 0.5 ~ 10 μm이고, 피치 0.05 ~ 1.0 mm의 격자 패턴이 양호하도록 도전성 수성 잉크의 소성체로 형성되어 있고, 도전체의 체적저항율이 9 μΩ·cm 이하의 범위이고, 전극이 장방형 투명 기판의 긴 가로쪽 양끝단 또는 짧은 세로쪽 양끝단에 형성되어 있으며 전극을 포함하여 장방형 투명 기판 내의 최고 발열온도가 80 ℃ 이하이며, 격자 패턴을 이루는 미세선의 평균 발열온도가 35 ~ 55 ℃이며, 투명 기판을 무시한 부분의 광투과율이 95 % 이상인 것에 특징이 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다. 본 발명의 보호 범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (8)

  1. 장방형 투명 기판;
    상기 투명 기판에 도전성 수성 잉크가 도포되어 적층 형성되고, 미세선으로 이루어진 격자 패턴; 및
    상기 투명 기판의 양단부에 형성되어 상기 격자 패턴과 연결되는 전극;을 포함하되,
    상기 도전성 수성 잉크는, 5 ~ 50 nm의 크기를 갖는 금속 나노입자와, 수용성 용제를 포함하여 이루어지고,
    상기 금속 나노입자는, 분지형 폴리알킬렌이민 세그먼트, 폴리옥시알킬렌 세그먼트 및 아민산염으로 구성된 분산 안정제로 보호되어,
    상기 투명 기판의 최대 발열온도가 80 ℃ 이하이고, 상기 미세선의 평균 발열온도가 30 ~ 60 ℃인 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  2. 제1 항에 있어서,
    상기 격자 패턴은, 선폭이 0.5 ~ 10 ㎛이고, 피치가 0.05 ~ 1.0 mm인 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  3. 제1 항에 있어서,
    상기 격자 패턴은, 체적저항률의 최대값이 9 μΩ·cm인 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  4. 제1 항에 있어서,
    상기 격자 패턴은, 상기 도전성 수성 잉크를 임프린트 인쇄, 스크린 인쇄, 그라비아 인쇄, 그라비아 옵셋 인쇄, 그라비아 반전 인쇄 또는 잉크젯 인쇄의 방법으로 도포한 후 소성하여 형성되는 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  5. 제1 항에 있어서,
    상기 투명 기판은, 세로와 가로의 길이 비율이 1 : 2 ~ 5인 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  6. 제1 항에 있어서,
    상기 도전성 수성 잉크는, 100 ~ 900 nm의 크기를 갖는 금속 입자를 더 포함하여 이루어지는 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  7. 제1 항에 있어서,
    상기 수용성 용제는, 알킬렌글리콜 및 글리세린 중에서 선택되는 1종 이상인 것을 특징으로 하는, 눈보호 고글용 투명 발열체.
  8. 제1 항 내지 제7 항 중 어느 한 항에 따른 투명 발열체를 포함하는 것을 특징으로 하는, 눈보호 고글.
PCT/KR2023/014243 2022-09-27 2023-09-20 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글 WO2024071809A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0122360 2022-09-27
KR1020220122360A KR20240043365A (ko) 2022-09-27 2022-09-27 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글

Publications (1)

Publication Number Publication Date
WO2024071809A1 true WO2024071809A1 (ko) 2024-04-04

Family

ID=90478601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014243 WO2024071809A1 (ko) 2022-09-27 2023-09-20 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글

Country Status (2)

Country Link
KR (1) KR20240043365A (ko)
WO (1) WO2024071809A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156476B1 (ko) * 2009-11-10 2012-06-18 주식회사 엔엔피 투명발열 글라스 제조방법
US20180053911A1 (en) * 2015-03-13 2018-02-22 Konica Minolta, Inc. Transparent electrode, method for manufacturing transparent electrode, and organic electroluminescence element
KR20180055490A (ko) * 2016-11-17 2018-05-25 한국과학기술원 투명 발열체 및 이의 제조 방법
KR20190074747A (ko) * 2017-12-20 2019-06-28 (주)아이엠 결로 방지 초박막형 고글용 발열 디바이스 및 이의 제작 방법
KR102312406B1 (ko) * 2020-07-08 2021-10-13 유한회사 대동 스크린 인쇄용 도전성 수성 잉크 조성물, 이를 이용하여 제조되는 도전성 패턴 및 이를 포함하는 도전성 디바이스

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344346B2 (ja) 2009-12-02 2013-11-20 山本光学株式会社 防曇レンズ類及び眼用保護具
US8566962B2 (en) 2012-02-16 2013-10-29 David McCulloch PWM heating system for eye shield

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156476B1 (ko) * 2009-11-10 2012-06-18 주식회사 엔엔피 투명발열 글라스 제조방법
US20180053911A1 (en) * 2015-03-13 2018-02-22 Konica Minolta, Inc. Transparent electrode, method for manufacturing transparent electrode, and organic electroluminescence element
KR20180055490A (ko) * 2016-11-17 2018-05-25 한국과학기술원 투명 발열체 및 이의 제조 방법
KR20190074747A (ko) * 2017-12-20 2019-06-28 (주)아이엠 결로 방지 초박막형 고글용 발열 디바이스 및 이의 제작 방법
KR102312406B1 (ko) * 2020-07-08 2021-10-13 유한회사 대동 스크린 인쇄용 도전성 수성 잉크 조성물, 이를 이용하여 제조되는 도전성 패턴 및 이를 포함하는 도전성 디바이스

Also Published As

Publication number Publication date
KR20240043365A (ko) 2024-04-03

Similar Documents

Publication Publication Date Title
US6406646B1 (en) Resistive paste for the formation of electrically heat-generating thick film
KR100599891B1 (ko) 개선된 대전방지특성을 갖는 대전방지 세라머 하드코트조성물
TWI497739B (zh) A conductive paste and a solar cell element using the conductive paste
WO2015037798A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014092501A1 (ko) 공중합물 캡핑제를 이용한 은 나노와이어 제조방법
CN112266272B (zh) 基于低温共烧陶瓷技术的表面贴装保险丝及其制备方法
WO2019198929A1 (ko) 구리 기반 전도성 페이스트 및 그 제조방법
JP6119763B2 (ja) 導電性基板用金属粒子分散体及びその製造方法、並びに導電性基板の製造方法
WO2013169087A1 (ko) 전도성 고분자 잉크 조성물 및 이를 포함하는 유기태양전지
WO2024071809A1 (ko) 눈보호 고글용 투명 발열체, 이를 포함하는 눈보호 고글
US5190698A (en) Poly(alkylene oxide)vinyl carboxylic ester containing polymer/inorganic oxide composites and methods of making
WO2018186603A1 (en) Electrochemical mirror
JP5504846B2 (ja) 導電性ペースト組成物及び該組成物を用いた電極の製造方法
US6617789B2 (en) Glass for covering electrodes and plasma display panel
JP2014177515A (ja) 透明導電性コーティング組成物、及び透明導電性膜
US9437754B2 (en) Method of manufacturing electrical device
WO2021221173A1 (ja) 厚膜抵抗ペースト、厚膜抵抗体、及び電子部品
CA1334238C (en) Antistatic and electrically conducting composition
WO2023149719A1 (ko) 전도성 투명 발열 구조체, 이를 포함하는 전도성 투명 발열 디바이스
WO2022010267A1 (ko) 스크린 인쇄용 도전성 수성 잉크 조성물, 이를 이용하여 제조되는 도전성 패턴 및 이를 포함하는 도전성 디바이스
JP2005263859A (ja) 導電性インキペースト
CN112635096B (zh) 一种片式电阻用银浆
WO2015046843A1 (ko) 금속 나노와이어를 함유하는 전도성 코팅 조성물 및 이를 이용한 전도성 필름의 형성방법
JP6755247B2 (ja) 太陽電池電極形成用組成物及び当該組成物から製造された電極
WO2016175510A1 (ko) 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872927

Country of ref document: EP

Kind code of ref document: A1