WO2024071385A1 - Composite ceramic - Google Patents

Composite ceramic Download PDF

Info

Publication number
WO2024071385A1
WO2024071385A1 PCT/JP2023/035661 JP2023035661W WO2024071385A1 WO 2024071385 A1 WO2024071385 A1 WO 2024071385A1 JP 2023035661 W JP2023035661 W JP 2023035661W WO 2024071385 A1 WO2024071385 A1 WO 2024071385A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
alumina
zirconia
composite ceramic
composite
Prior art date
Application number
PCT/JP2023/035661
Other languages
French (fr)
Japanese (ja)
Inventor
翔士郎 早田
美奈子 泉
登志文 東
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024071385A1 publication Critical patent/WO2024071385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites

Definitions

  • the disclosed embodiments relate to composite ceramics.
  • Composite ceramics containing multiple ceramic particles with different main components are known.
  • the present applicant previously proposed a sintered body containing alumina particles and zirconia particles as a composite ceramic with high strength and toughness (see Patent Document 1).
  • the composite ceramic has a plurality of alumina particles, a plurality of zirconia particles, and a composite oxide phase of Si.
  • the alumina particles include prismatic particles.
  • the zirconia particles include spherical particles.
  • the composite ceramic includes a first contact portion between the prismatic particles and the spherical particles, where the surfaces of the prismatic particles and the spherical particles are in contact with each other at a portion of each other.
  • FIG. 1 is a cross-sectional view showing an example of a composite ceramic according to an embodiment.
  • FIG. 2 is a graph showing the relationship between the aspect ratio and the frequency of alumina particles contained in a composite ceramic.
  • FIG. 1 is a cross-sectional view showing an example of a composite ceramic according to an embodiment.
  • the composite ceramic 1 according to the embodiment has a plurality of alumina particles 10, a plurality of zirconia particles 12, and a composite oxide phase 14 of Si.
  • the composite ceramic 1 contains prismatic particles among a number of alumina particles 10.
  • the prismatic particles are particles whose main component is alumina. Hereinafter, they may be referred to as prismatic alumina particles 10.
  • the composite ceramic 1 includes a contact portion between a rectangular columnar alumina particle 10 and a spherical zirconia particle 12, where the particles are in contact with each other on part of their surfaces.
  • the contact portion is sometimes referred to as a first contact portion 12A.
  • the contact portion refers to a portion where a part of the surface of the rectangular columnar alumina particle 10 is in contact with a part of the spherical zirconia particle 12.
  • contact does not require any bonding strength between the part of the alumina particle 10 and the part of the zirconia particle 12.
  • it includes a state in which the part of the alumina particle 10 and the part of the zirconia particle 12 are displaced even with a low load, to a state in which the part of the alumina particle 10 and the part of the zirconia particle 12 are sintered and are less likely to be displaced.
  • a Si composite oxide phase 14 is present around the part of the alumina particle 10 and the part of the zirconia particle 12.
  • the Si composite oxide phase 14 in addition to glass such as borosilicate glass, aluminum silicate and zircon can be mentioned. It is preferable that at least one of borosilicate glass, aluminum silicate and zircon is present in the Si composite oxide phase 14.
  • the Si composite oxide phase 14 may be referred to as composite oxide phase 14.
  • This configuration makes it possible to obtain ceramics that are easily deformed. In other words, it is possible to obtain a composite ceramic 1 that is easily bent.
  • the composite ceramic 1 being easily deformed or easily bent means that the composite ceramic 1 has a large deformability when it is deformed from its initial shape.
  • the deformability is, for example, the amount of change in the position of the load point obtained by performing a three-point bending test on a test piece of the composite ceramic 1. This amount of change is the amount of deformation within the range in which the test piece of the composite ceramic 1 elastically deforms.
  • the deformability of the composite ceramic 1 is the maximum amount of deformation within the range in which the test piece does not break, but since this is performed in parallel with the three-point bending test as described below, for convenience, it is referred to as the amount of change at which the test piece breaks when the three-point bending test is performed on the test piece.
  • composite ceramic 1 has the property of being easily deformed is that while alumina particles are difficult to bend by themselves, composite ceramic 1 contains zirconia particles 12 that are easily elastically deformed along with alumina particles 10. Another reason why composite ceramic 1 is easily deformed is that it contains a Si composite oxide phase 14.
  • a composite oxide phase 14 of Si is present in the regions other than the alumina particles 10 and the zirconia particles 12.
  • the composite oxide phase 14 of Si is present around the alumina particles 10 and the zirconia particles 12.
  • the Si composite oxide phase 14 exists adjacent to the alumina particles 10 and the zirconia particles 12, in the composite ceramic 1, the binding forces between the alumina particles 10, between the zirconia particles 12, and between the alumina particles 10 and the zirconia particles 12 are weakened by the Si composite oxide phase 14.
  • the composite ceramic 1 has the property of being easily deformed because the composite ceramic 1 contains rectangular columnar alumina particles 10 and spherical zirconia particles 12, and is a combination of these two types of particles.
  • a crystalline structure is formed in which the surfaces of the rectangular columnar alumina particles 10 are in contact with the spherical zirconia particles 12.
  • the zirconia particles 12 are spherical, a portion of the surface of the spherical zirconia particles 12 is in contact with the surface of the rectangular columnar alumina particles 10.
  • the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 are in contact with each other over a small area.
  • the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 are in contact over a small area, so it is believed that the binding force between the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 is small and they are in a state where they can move easily relative to each other. Since the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 are in contact over such a small area, the binding force between the two particles is small. In this case, the proportion of the zirconia particles 12 in contact with the surface of the alumina particles 10 should be within the range shown below.
  • the ratio (L2/L1) be 1% or more and 10% or less. This makes it difficult for excessive constraints to occur between the alumina particle 10 and the zirconia particle 12. In this case, multiple zirconia particles 12 may be in contact with one surface (side) of one alumina particle 10.
  • the alumina particles 10 when the alumina particles 10 can be seen as being in contact with the zirconia particles 12, a thin Si composite oxide phase 14 may be present between the alumina particles 10 and the zirconia particles 12.
  • the thickness of the Si composite oxide phase 14 is preferably 0 ⁇ m or more and 1 ⁇ m or less, and particularly 0.5 ⁇ m or less.
  • both the alumina particles 10 and the zirconia particles 12 are prismatic and there are many areas where the alumina particles 10 and the zirconia particles 12 are in contact with each other at their sides, the contact area between the alumina particles 10 and the zirconia particles 12 becomes larger, and the binding force between them becomes stronger.
  • this composite ceramic 1 exhibits a property of being easily deformed is, first, that it contains zirconia particles 12 in its crystal structure, that it contains prismatic alumina particles 10 and spherical zirconia particles 12, and that the spherical zirconia particles 12 and the prismatic alumina particles 10 are in contact with each other at a portion of their surfaces.
  • the area in which the spherical zirconia particles 12 contact the rectangular columnar alumina particles 10 may be 1 to 20, or may be 1 to 10, when the contour length of the spherical zirconia particles 12 is 100.
  • the composite ceramic 1 is preferably a dense body.
  • dense body means that the porosity is 5% or less.
  • the porosity of the composite ceramic 1 can be calculated based on the results of observing a cross section of the composite ceramic 1 with a scanning electron microscope (SEM).
  • a method may be used in which a predetermined area of the cross section of the composite ceramic 1 is first determined, and the total area of the pores present within that predetermined area is then calculated. The total area of the pores is then divided by the predetermined area of the cross section to calculate the porosity.
  • the multiple alumina particles 10 include prismatic particles.
  • “prismatic” refers to a case where the cross section of the composite ceramic 1 is a vertically elongated polygonal shape when observed using an SEM.
  • a polygonal shape refers to a shape where at least two long sides and two short sides are seen within the outline of the cross section of the alumina particle 10 when observed. In this case, it is sufficient that the two long sides and the two short sides are arranged facing each other. The two long sides do not need to be parallel to each other. The two short sides do not need to be parallel to each other either. A part of the long side may be bent at a small angle to form part of a polygon. As long as the above-mentioned configuration is seen from the outside and it is recognized as a prismatic shape, a part of the long side may be partially curved.
  • the alumina particles 10 may have an aspect ratio of 1.5 or more, or even 2 or more.
  • the aspect ratio of the alumina particles 10 is preferably 3 or less, since this allows the composite ceramic 1 to be densified.
  • the aspect ratio of the alumina particles 10 is determined from the image (photograph) taken by observing the cross section of the composite ceramic 1 using a SEM. At this time, the particles appearing in the photographed area are identified as alumina particles 10 or zirconia particles 12 using energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • a photograph is selected that contains 10 to 20 alumina particles 10 identified by EDS analysis.
  • the length L1 of the longest diameter of each alumina particle 10 present in the selected photograph is measured.
  • the length L2 in the perpendicular direction at the center position of L1 is measured.
  • the ratio of L1 to L2 is calculated.
  • L1/L2 is the aspect ratio.
  • the spherical zirconia particles 12 are more likely to be arranged on the sides of the alumina particles 10, making it easier to obtain a composite ceramic 1 with higher deformation.
  • the average particle diameter of the alumina particles 10, including the rectangular columnar alumina particles 10, may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the average particle diameter of the alumina particles 10 is the average value ((L1+L2)/2) of the lengths L1 and L2 used to calculate the aspect ratio.
  • the average particle diameter of the alumina particles 10 is determined by measuring all the alumina particles 10 contained in a photograph showing about 10 to 20 alumina particles 10.
  • the area ratio of the rectangular columnar alumina particles 10 contained in the plurality of alumina particles 10 per unit area may be 5% or more and 10% or less.
  • the plurality of zirconia particles 12 includes spherical particles.
  • spherical means that when the cross section of the composite ceramic 1 is observed using an SEM, 80% or more of the entire contour of the zirconia particles 12 is curved.
  • the spherical zirconia particles 12 preferably have an aspect ratio of 1.1 or less.
  • the multiple zirconia particles 12 in addition to the alumina particles 10 and the zirconia particles 12 being in contact with each other at parts of their surfaces, it is also preferable that the multiple zirconia particles 12 also have parts in contact with each other at parts of their surfaces.
  • the multiple zirconia particles 12 include those having second contact parts 12B where the zirconia particles 12 are in contact with each other at parts of their surfaces.
  • the area where the spherical zirconia particles 12 are in contact with each other may be 1 to 20 times, and particularly 1 to 10 times, the contour length of one of the spherical zirconia particles 12 located on one side, where the contour length is 100.
  • the zirconia particles 12 that are in contact with the prismatic alumina particles 10 at a portion of their surfaces may be only spherical zirconia particles 12, but may also be pseudo-spherical zirconia particles 12, which will be described later. Alternatively, both the spherical zirconia particles 12 and the pseudo-spherical zirconia particles 12 may be in contact with the prismatic alumina particles 10 at a portion of their surfaces.
  • the composite ceramic 1 Since the zirconia particles 12 originally have a lower modulus of elasticity than the alumina particles 10, if there are small areas of contact between multiple zirconia particles 12, the composite ceramic 1 becomes more easily deformed.
  • the composite ceramic 1 is preferably such that three alumina particles 10 are in contact with each other, and one or more spherical zirconia particles 12 are in contact with any of the three alumina particles 10.
  • the three alumina particles 10 include one or more rectangular columnar alumina particles 10.
  • the first contact portion 12A is present more on the side face f2 than on the end face f1.
  • the end face f1 of the rectangular columnar alumina particle 10 is the portion corresponding to the short side when the cross section of the alumina particle 10 is observed.
  • the side face f2 of the rectangular columnar alumina particle 10 is the portion corresponding to the long side when the cross section of the alumina particle 10 is observed.
  • the multiple zirconia particles 12 may have portions on the surface of the alumina particle 10 where they are in point contact.
  • point contact refers to a state where the zirconia particle 12 is in contact with another particle over a length that is within 20%, within 10%, and particularly within 5% of the contour length of the zirconia particle 12.
  • the average particle diameter of the zirconia particles 12, including spherical and pseudo-spherical zirconia particles 12, is preferably 0.7 ⁇ m or more and 1 ⁇ m or less.
  • the average particle diameter of the zirconia particles 12 is also calculated as the average value ((L1 + L2) / 2) of the lengths L1 and L2 used to calculate the aspect ratio, as in the case of the alumina particles 10.
  • the average particle diameter of the zirconia particles 12 is determined by measuring all the zirconia particles 12 contained in a photograph showing about 10 to 20 alumina particles 10.
  • the Si composite oxide phase 14 is a grain boundary phase that surrounds the alumina particles 10 and the zirconia particles 12.
  • the Si composite oxide phase 14 may contain a small amount of crystalline phase. If the properties of the composite ceramic 1, such as the deflection amount, fracture toughness, and three-point bending strength, can be made equal to or greater than predetermined values, it is preferable that the Si composite oxide phase 14 is contained in a proportion that allows it to be evenly distributed around the alumina particles 10 and the zirconia particles 12. In this case, the proportion of the Si composite oxide phase 14 is preferably 1% or more and 7% or less in terms of area proportion.
  • the alumina particles 10, the zirconia particles 12, and the Si composite oxide phase 14 have different Young's moduli. Specifically, the Young's moduli increase in the order of Si composite oxide phase 14 ⁇ zirconia particles 12 ⁇ alumina particles 10.
  • the zirconia particles 12 have a small contact area with the alumina particles 10, which have a high Young's modulus
  • the Si composite oxide phase 14, which has a lower Young's modulus than the alumina particles 10 and the zirconia particles 12 is present around the alumina particles 10 and the zirconia particles 12. This results in a composite ceramic 1 with a large deflection amount and high deformation.
  • high deformation means that when a three-point bending strength test is performed on a test piece with a width of 10 mm and a thickness of 0.05 mm, the deflection amount is 0.5 mm or more for a span of 10 mm.
  • the composite ceramic 1 preferably has a deflection amount of 0.7 mm or more.
  • the composite ceramic 1 may also have a fracture toughness of 3.5 MPa ⁇ m or more, particularly 3.8 MPa ⁇ m or more.
  • the composite ceramic 1 may also have a three-point bending strength of 750 MPa or more, particularly 800 MPa or more. This results in a high-strength composite ceramic 1.
  • This composite ceramic 1 has a fracture toughness of 3.5 MPa ⁇ m or more, a three-point bending strength of 750 MPa or more, and a deformability with a deflection of 0.7 mm or more.
  • the mass ratio of the alumina particles 10 contained in the composite ceramic 1 should be 60% or more and 85% or less.
  • the mass ratio of the zirconia particles 12 contained in the composite ceramic 1 is preferably 20% or more and 40% or less.
  • the mass ratio of the Si composite oxide phase 14 contained in the composite ceramic 1 is preferably 2.4% or more and 4.8% or less.
  • the volume fraction of the alumina particles 10 is preferably 70% or more and 75% or less
  • the volume fraction of the zirconia particles 12 is preferably 18% or more and 23% or less
  • the volume fraction of the Si composite oxide phase 14 is preferably 4% or more and 11% or less.
  • the density of the alumina particles 10 is 4 g/ cm3
  • the density of the zirconia particles 12 is 6 g/ cm3
  • the density of the Si composite oxide phase 14 is 2 g/ cm3 .
  • the composite ceramic 1 contains a first phase, alumina particles 10, a second phase, zirconia particles 12, and a third phase, a composite oxide phase 14 of Si, in a volume ratio of 4% to 11%, giving the composite ceramic 1 high strength but also flexibility.
  • the area ratio per unit area of the alumina particles 10 and zirconia particles 12 contained in the composite ceramic 1 is preferably 40% to 60% for the alumina particles 10 and 30% to 40% for the zirconia particles 12.
  • the remaining Si composite oxide phase 14 is preferably 5% to 20%.
  • the Si composite oxide phase 14 preferably contains alkaline earth elements (Mg, Ca) in addition to Si.
  • Si and the alkaline earth elements are contained as oxides.
  • the proportions of the alumina particles 10, the zirconia particles 12, and the Si composite oxide phase 14 contained in the composite ceramic 1 can be determined, for example, by ICP (Inductively Coupled Plasma) analysis.
  • ICP Inductively Coupled Plasma
  • aluminum (Al) is converted into Al2O3 to determine the proportion of the alumina particles 10.
  • zirconium (Zr) is converted into ZrO2 and used as the proportion of the zirconia particles 12.
  • the total amount of these three components calculated as SiO 2 , MgO and CaO, respectively, is the content of the remainder in the composite ceramic 1 .
  • the total amount of the alumina particles 10, the zirconia particles 12, and the remainder is taken as the total amount of the composite ceramic 1 (100 mass%).
  • the content of the alumina particles 10 and zirconia particles 12 is subtracted from the total amount to obtain the remaining content, and the content of the remaining amount is calculated as the content of the Si composite oxide phase 14.
  • the components contained in the Si composite oxide phase 14 can be detected by an analyzer attached to the electron microscope (Energy Dispersive X-ray Spectroscope (EDS)).
  • EDS Electronic X-ray Spectroscope
  • the fact that the Si composite oxide phase 14 is amorphous (glass) can be determined by electron beam diffraction attached to the electron microscope.
  • the composite ceramic 1 may also have a lower dielectric constant than zirconia. Specifically, the dielectric constant of the composite ceramic 1 may be 9 or more and 15 or less. Because the composite ceramic 1 has a lower dielectric constant than zirconia, for example, when the composite ceramic 1 is used as a substrate for mounting an element, the electrical characteristics of the mounted element are less likely to deteriorate.
  • the multiple zirconia particles 12 include spherical particles, but in this case, the spheres are not limited to particles that are close to perfect circles.
  • the term "spherical” refers to a shape in which, when the longest diameter D1 of the cross section of the zirconia particle 12 and the length D2 in the direction perpendicular to the direction of the longest diameter are measured, the ratio D2/D1 is 0.8 or more and 1 or less.
  • the zirconia particles 12 may have a cross-sectional shape close to a hexagon or octagon. In other words, the particles may have a pseudo-spherical shape.
  • micro-spherical particles refers to particles having an aspect ratio of more than 1.1 and 1.2 or less when the cross section of the composite ceramic 1 is observed with an SEM, and the curved portion accounts for 50% to 70% of the entire contour of the zirconia particle 12.
  • the pseudo-spherical shape may be referred to as pseudo-spherical.
  • the composite ceramic 1 may contain zirconia particles 12 that form a pseudo-spherical shape together with spherical zirconia particles 12.
  • the plurality of zirconia particles 12 may also include a portion where the plurality of zirconia particles 12 are in contact with each other at a portion of their surfaces.
  • the portion where the plurality of zirconia particles 12 are in contact with each other at a portion of their surfaces may be referred to as a second contact portion.
  • the plurality of zirconia particles 12 may have a portion where they are in point contact with each other.
  • alumina powder, zirconia powder, and glass powder were mixed in a given ratio and fired under given firing conditions (temperature) to obtain a sintered body.
  • the ratios of alumina particle powder, zirconia powder, and glass powder and the firing temperatures for samples No. 1 to 6 are shown in Table 1.
  • the Si composite oxide powder used was a mixed powder of SiO 2 , CaO (raw material: CaCO 3 ) and MgO (talc).
  • the mass ratio of SiO 2 , CaO (raw material: CaCO 3 ) and MgO (talc) in the mixed powder was 3:1:1.
  • the mixed powder used had an average particle size larger than that of the alumina powder.
  • the average particle size of the mixed powder was 1.3 times that of the alumina powder.
  • the average particle size of the CaCO3 was twice that of the SiO2 .
  • the average particle size of the MgO was four times that of the SiO2 .
  • the average particle size of the zirconia powder was 0.17 times that of the alumina powder.
  • raw material powders with the following average particle sizes were used: alumina powder had an average particle size of 1.4 ⁇ m, zirconia powder had an average particle size of 0.24 ⁇ m, SiO2 powder had an average particle size of 1.06 ⁇ m, CaO ( CaCO3 ) had an average particle size of 2.0 ⁇ m, and MgO (talc) had an average particle size of 4.16 ⁇ m.
  • composition analysis of the samples prepared after firing showed that all of them had compositions that matched the compounded composition.
  • Atomic absorption spectrometry and ICP analysis were used for the composition analysis.
  • all of the samples prepared after sintering had a porosity of 2% or less, and could be said to be dense bodies.
  • Table 2 shows the results of observing the cross sections of the sintered bodies of samples No. 1 to 6. Samples No. 1 to 6 were each produced under the conditions shown in Table 1.
  • the prepared sample was identified as composite ceramic 1 by the following method.
  • a rectangular region containing 10 to 20 alumina particles 10 was identified, and EDS was used to identify the main component of the particles present in this region, allowing the alumina particles 10 and zirconia particles 12 to be distinguished.
  • the longest diameter L1 and the length at right angles to the longest diameter L2 of each alumina particle 10 present on the selected photograph were measured, and the aspect ratio and average particle size were calculated.
  • the aspect ratio was calculated from the ratio L1/L2.
  • the average particle size was calculated from (L1+L2)/2.
  • the sintered composite ceramic 1 of samples No. 1 to 6 contained alumina particles 10 with an aspect ratio of 1.5 or more.
  • the following items were evaluated for the zirconia particles 12.
  • the items evaluated were the shape of the zirconia particles 12, the percentage of spherical particles among the multiple zirconia particles 12, the percentage of curved portions (proportion of the contour length) in the zirconia particles 12 identified as spherical particles, the aspect ratio, the average particle diameter, and the percentage of the number of portions showing the state of the first contact portion.
  • the aspect ratio and average particle size were evaluated using the same method as for the alumina particles 10.
  • the percentage of spherical particles in the zirconia particles 12 was calculated by dividing the number of zirconia particles 12 determined to be spherical by the total number of all zirconia particles 12 present in that region.
  • the zirconia particles 12 are said to be spherical when the aspect ratio of all the zirconia particles 12 whose aspect ratios have been measured is 1.1 or less, and the proportion of the length of the curved portion within the outline of the zirconia particles 12 is 80% or more.
  • the zirconia particles 12 are said to be pseudo-spherical when the aspect ratio of all the zirconia particles 12 whose aspect ratios have been measured is greater than 1.1 and less than 1.2, and the proportion of the length of the curved portion within the outline of the zirconia particles 12 is 50% or more and 70% or less.
  • the sintered bodies of composite ceramics 1 of samples No. 1 to 5 prepared contained spherical particles and pseudo-spherical particles, as shown in Table 2.
  • the percentage of the number of areas showing the state of the first contact portion 12A was determined by visually counting the number of areas in the photographs in which the above-mentioned evaluation was performed.
  • the sintered bodies of composite ceramic 1 of samples No. 1 to 5 all contained second contact portions 12B in which multiple zirconia particles 12 were in contact with each other at parts of their surfaces.
  • the area ratio of the Si composite oxide phase 14 was calculated by (A0-A1)/A0, where A0 is the total area of the photographs used in the above evaluation of the alumina particles 10 and zirconia particles 12, and A1 is the combined area of the alumina particles 10 and the zirconia particles 12.
  • Table 3 shows the results of measuring the properties of samples No. 1 to 6 and evaluating their applicability.
  • the deflection test to measure the amount of deflection was conducted in parallel with the three-point bending strength test. Specifically, a measurement sample was cut out from the prepared sample, and when the three-point bending strength test was conducted, the amount of deflection was determined as the amount of change from the flat state when the measurement sample broke.
  • the fracture toughness of each sample was measured in accordance with the indentation method (IF method) specified in JIS R1607-1995.
  • IF method indentation method
  • a sample with a thickness of 2 mm was separately prepared in addition to the measurement samples described above.
  • Samples No. 1 to 5 had a deflection of 0.5 mm or more, and a highly deformable composite ceramic 1 was obtained.
  • sample No. 6 had higher fracture toughness and three-point bending strength than samples No. 1 to 5, but the deflection was less than 0.5 mm, indicating that the composite ceramic 1 had poor deformability.
  • Sample No. 6 did not contain spherical or pseudo-spherical zirconia particles 12 as zirconia particles 12.
  • the area ratio of alumina particles 10 was 60% or more and 70% or less, and the area ratio of zirconia particles 12 was 30% or more and 40% or less.
  • the percentage of zirconia particles 12 forming the first contact portion 12A was 16% or more.
  • Figure 2 is a graph showing the relationship between the aspect ratio and frequency of alumina particles contained in composite ceramics.
  • Figure 2 shows the case of sample No. 1 as an example of composite ceramics.
  • the composite ceramics disclosed herein have two groups of alumina particles with different aspect ratios when the horizontal axis represents the aspect ratio and the vertical axis represents the frequency (number of particles). As shown in Figure 2, the alumina particles have two groups of peaks with different aspect ratios.
  • the following method was used to identify the prepared sample as a composite ceramic.
  • a rectangular area containing 70 to 100 alumina particles was identified, and an analyzer (EDS) attached to the electron microscope was used to identify the main component of the particles present in this area, thereby identifying the alumina particles.
  • EDS analyzer
  • the length L of the long axis of the alumina particle and the length S of the short axis that intersects with the long axis at a right angle were determined from the electron microscope photograph, and the ratio (L/S) was calculated to obtain the aspect ratio of the alumina particle.
  • the graph is plotted with an aspect ratio interval of 0.1.
  • the graph shows a first group with aspect ratios ranging from 1.3 to 2.2, and a second group with aspect ratios ranging from 2.6 to 2.8.
  • the aspect ratio is 0.2 or more, it is considered to have groups with different aspect ratios.
  • the range of aspect ratios 1.5 or less and the range of aspect ratios 1.7 or more are not considered to be groups with different aspect ratios.
  • Samples No. 1, No. 2 and No. 5 had a deflection of 0.81 mm or more.
  • the graph showing the relationship between the aspect ratio of alumina particles and their frequency shows two groups with different aspect ratios. This is because the mixed powder used has an average particle size larger than that of the alumina powder, and the composition of the mixed powder, which is a composite oxide of alumina powder, zirconia powder, and Si, is adjusted as shown in Table 1.
  • the composite ceramic is A composite oxide phase of alumina particles, zirconia particles, and Si is included.
  • the plurality of alumina particles include prismatic particles,
  • the plurality of zirconia particles includes spherical particles,
  • the prismatic particle and the spherical particle include a first contact portion where the particles are in contact with each other at a portion of their surfaces.
  • the plurality of zirconia particles may include those having a second contact portion in which the zirconia particles are in contact with each other at a portion of their surfaces.
  • the alumina particles may have an aspect ratio of 1.5 or more.
  • one or more of the spherical particles may be in contact with any of the three alumina particles that are in contact with each other.
  • the first contact portion when the surface of the prismatic particle is divided into an end face and a side face, the first contact portion may be present in greater numbers on the side face than on the end face.
  • the composite oxide phase of Si is present in an area other than the alumina particles and the zirconia particles,
  • the Si composite oxide phase may be present in an area ratio of 1% or more and 7% or less per unit area.
  • the alumina particles may have two groups with different aspect ratios.
  • the alumina particles may be 60% by mass or more and 85% by mass or less
  • the zirconia particles may be 20% by mass or more and 40% by mass or less
  • the Si composite oxide phase may be 2.4% by mass or more and 4.8% by mass or less.
  • the volume fraction of the alumina particles may be 70% or more and 75% or less
  • the volume fraction of the zirconia particles may be 18% or more and 23% or less
  • the volume fraction of the Si composite oxide phase may be 4% or more and 11% or less.

Abstract

This composite ceramic includes a plurality of alumina particles, a plurality of zirconia particles, and an Si composite oxide phase. The plurality of alumina particles includes prismatic particles. The plurality of zirconia particles includes spherical particles. Particles having a first contact part in which the surface of a prismatic particle and the surface of a spherical particle are partially in contact with each other are included.

Description

複合セラミックスComposite Ceramics
 開示の実施形態は、複合セラミックスに関する。 The disclosed embodiments relate to composite ceramics.
 主成分の異なる複数のセラミックス粒子を含有する複合セラミックスが知られている。例えば、本出願人は、以前、強度と靭性の高い複合セラミックスとして、アルミナ粒子とジルコニア粒子とを含む焼結体を提案した(特許文献1を参照)。 Composite ceramics containing multiple ceramic particles with different main components are known. For example, the present applicant previously proposed a sintered body containing alumina particles and zirconia particles as a composite ceramic with high strength and toughness (see Patent Document 1).
国際公開第2006/080473号International Publication No. 2006/080473
 実施形態の一態様に係る複合セラミックスは、複数のアルミナ粒子と、複数のジルコニア粒子と、Siの複合酸化物相とを有する。前記複数のアルミナ粒子は、角柱状の粒子を含む。前記複数のジルコニア粒子は、球状の粒子を含む。前記角柱状の粒子と前記球状の粒子との間で、互いの表面の一部で接触した第1の接触部を有しているものが含まれる。 The composite ceramic according to one embodiment has a plurality of alumina particles, a plurality of zirconia particles, and a composite oxide phase of Si. The alumina particles include prismatic particles. The zirconia particles include spherical particles. The composite ceramic includes a first contact portion between the prismatic particles and the spherical particles, where the surfaces of the prismatic particles and the spherical particles are in contact with each other at a portion of each other.
図1は、実施形態に係る複合セラミックスの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a composite ceramic according to an embodiment. 図2は、複合セラミックスに含まれるアルミナ粒子について、そのアスペクト比と頻度との関係を示したグラフである。FIG. 2 is a graph showing the relationship between the aspect ratio and the frequency of alumina particles contained in a composite ceramic.
 上述の複合セラミックスでは、例えば変形性に乏しく、改善の余地があった。 The composite ceramics mentioned above, for example, had poor deformability and there was room for improvement.
 そこで、高変形の複合セラミックスの提供が期待されている。 Therefore, there is a need to develop composite ceramics with high deformation properties.
 以下、添付図面を参照して、本願の開示する複合セラミックスの実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。 Below, embodiments of the composite ceramic disclosed in the present application will be described with reference to the attached drawings. Note that the present disclosure is not limited to the embodiments shown below.
 図1は、実施形態に係る複合セラミックスの一例を示す断面図である。図1に示すように、実施形態に係る複合セラミックス1は、複数のアルミナ粒子10と、複数のジルコニア粒子12と、Siの複合酸化物相14とを有する。 FIG. 1 is a cross-sectional view showing an example of a composite ceramic according to an embodiment. As shown in FIG. 1, the composite ceramic 1 according to the embodiment has a plurality of alumina particles 10, a plurality of zirconia particles 12, and a composite oxide phase 14 of Si.
 複合セラミックス1は、複数のアルミナ粒子10の中に角柱状の粒子を含む。角柱状の粒子はアルミナを主成分とする粒子である。以下では、角柱状のアルミナ粒子10と記すことがある。 The composite ceramic 1 contains prismatic particles among a number of alumina particles 10. The prismatic particles are particles whose main component is alumina. Hereinafter, they may be referred to as prismatic alumina particles 10.
 複合セラミックス1は、角柱状のアルミナ粒子10と球状のジルコニア粒子12との間で、互いの表面の一部で接触した接触部を有しているものを含む。ここで、接触部のことを第1の接触部12Aと記すことがある。 The composite ceramic 1 includes a contact portion between a rectangular columnar alumina particle 10 and a spherical zirconia particle 12, where the particles are in contact with each other on part of their surfaces. Here, the contact portion is sometimes referred to as a first contact portion 12A.
 ここで、接触部とは、角柱状のアルミナ粒子10の表面の一部に球状のジルコニア粒子12の一部が接している部分のことをいう。この場合、接しているとは、アルミナ粒子10の一部とジルコニア粒子12の一部との間の結合力は問わない。例えば、アルミナ粒子10の一部とジルコニア粒子12の一部との間が低荷重でもずれるような状態から、アルミナ粒子10の一部とジルコニア粒子12の一部との間が焼結し、ずれが生じにくい状態まで含む意である。これらの場合、アルミナ粒子10の一部とジルコニア粒子12の一部の周囲には、Siの複合酸化物相14が存在する方がよい。 Here, the contact portion refers to a portion where a part of the surface of the rectangular columnar alumina particle 10 is in contact with a part of the spherical zirconia particle 12. In this case, contact does not require any bonding strength between the part of the alumina particle 10 and the part of the zirconia particle 12. For example, it includes a state in which the part of the alumina particle 10 and the part of the zirconia particle 12 are displaced even with a low load, to a state in which the part of the alumina particle 10 and the part of the zirconia particle 12 are sintered and are less likely to be displaced. In these cases, it is preferable that a Si composite oxide phase 14 is present around the part of the alumina particle 10 and the part of the zirconia particle 12.
 Siの複合酸化物相14としては、ホウケイ酸ガラスに代表されるガラスの他、アルミニウムシリケートおよびジルコンを挙げることができる。Siの複合酸化物相14には、ホウケイ酸ガラス、アルミニウムシリケートおよびジルコンのうちの少なくとも1つが存在するのがよい。以下、Siの複合酸化物相14を、複合酸化物相14と称する場合がある。 As the Si composite oxide phase 14, in addition to glass such as borosilicate glass, aluminum silicate and zircon can be mentioned. It is preferable that at least one of borosilicate glass, aluminum silicate and zircon is present in the Si composite oxide phase 14. Hereinafter, the Si composite oxide phase 14 may be referred to as composite oxide phase 14.
 このような構成によれば、変形しやすいセラミックスを得ることができる。言い換えると、曲がりやすい複合セラミックス1を得ることができる。 This configuration makes it possible to obtain ceramics that are easily deformed. In other words, it is possible to obtain a composite ceramic 1 that is easily bent.
 ここで、複合セラミックス1が変形しやすいまたは曲がりやすいとは、複合セラミックス1を初期形状から変形させたときの変形能が大きいということである。変形能とは、例えば、複合セラミックス1の試験片について3点曲げ試験を行って得られる、荷重点の位置の変化量のことである。この変化量とは、複合セラミックス1の試験片が弾性変形する範囲内での変形量のことである。複合セラミックス1の変形能とは、試験片が破壊しない範囲における変形量の最大値のことであるが、ここでは、後述するように、3点曲げ試験に並行して行うことから、便宜上、試験片について、3点曲げ試験を行ったときに、試験片が破断したときの変化量とする。 Here, the composite ceramic 1 being easily deformed or easily bent means that the composite ceramic 1 has a large deformability when it is deformed from its initial shape. The deformability is, for example, the amount of change in the position of the load point obtained by performing a three-point bending test on a test piece of the composite ceramic 1. This amount of change is the amount of deformation within the range in which the test piece of the composite ceramic 1 elastically deforms. The deformability of the composite ceramic 1 is the maximum amount of deformation within the range in which the test piece does not break, but since this is performed in parallel with the three-point bending test as described below, for convenience, it is referred to as the amount of change at which the test piece breaks when the three-point bending test is performed on the test piece.
 複合セラミックス1が変形しやすい性質を有するのは、アルミナ粒子はそれ自体では曲がりにくいが、この複合セラミックス1がアルミナ粒子10とともに弾性変形しやすいジルコニア粒子12を含んでいることに起因する。また、複合セラミックス1がSiの複合酸化物相14を有していることも、複合セラミックス1が変形しやすい一因である。 The reason why composite ceramic 1 has the property of being easily deformed is that while alumina particles are difficult to bend by themselves, composite ceramic 1 contains zirconia particles 12 that are easily elastically deformed along with alumina particles 10. Another reason why composite ceramic 1 is easily deformed is that it contains a Si composite oxide phase 14.
 複合セラミックス1は、アルミナ粒子10およびジルコニア粒子12を除く領域にSiの複合酸化物相14が存在している。言い換えると、Siの複合酸化物相14は、アルミナ粒子10およびジルコニア粒子12の周囲に存在している。 In the composite ceramic 1, a composite oxide phase 14 of Si is present in the regions other than the alumina particles 10 and the zirconia particles 12. In other words, the composite oxide phase 14 of Si is present around the alumina particles 10 and the zirconia particles 12.
 アルミナ粒子10およびジルコニア粒子12に隣接してSiの複合酸化物相14が存在していることから、複合セラミックス1は、アルミナ粒子10同士、ジルコニア粒子12同士、アルミナ粒子10とジルコニア粒子12との間における拘束力がSiの複合酸化物相14によって弱められる。 Since the Si composite oxide phase 14 exists adjacent to the alumina particles 10 and the zirconia particles 12, in the composite ceramic 1, the binding forces between the alumina particles 10, between the zirconia particles 12, and between the alumina particles 10 and the zirconia particles 12 are weakened by the Si composite oxide phase 14.
 また、複合セラミックス1が変形しやすい性質を有するのは、複合セラミックス1が角柱状のアルミナ粒子10と球状のジルコニア粒子12とを含んでおり、これら2種類の粒子の組合せであることにも起因する。 In addition, the composite ceramic 1 has the property of being easily deformed because the composite ceramic 1 contains rectangular columnar alumina particles 10 and spherical zirconia particles 12, and is a combination of these two types of particles.
 複合セラミックス1の場合、角柱状のアルミナ粒子10の表面に球状のジルコニア粒子12が接触した結晶組織を成している。この場合、ジルコニア粒子12が球状であることから、角柱状のアルミナ粒子10の表面には、球状のジルコニア粒子12の表面の一部が接触している。言い換えると、角柱状のアルミナ粒子10および球状のジルコニア粒子12は、わずかな面積で接触している。 In the case of the composite ceramic 1, a crystalline structure is formed in which the surfaces of the rectangular columnar alumina particles 10 are in contact with the spherical zirconia particles 12. In this case, since the zirconia particles 12 are spherical, a portion of the surface of the spherical zirconia particles 12 is in contact with the surface of the rectangular columnar alumina particles 10. In other words, the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 are in contact with each other over a small area.
 複合セラミックス1は、角柱状のアルミナ粒子10と球状のジルコニア粒子12とが少ない面積で接触していることから、角柱状のアルミナ粒子10と球状のジルコニア粒子12との間は拘束力が小さく、互いに動きやすい状態にあると考えられる。角柱状のアルミナ粒子10と球状のジルコニア粒子12とが、このように小さい面積で接触していることから、両方の粒子同士の拘束力が小さくなる。この場合、アルミナ粒子10の表面にジルコニア粒子12が接している割合は、以下に示す範囲であるのがよい。 In the composite ceramic 1, the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 are in contact over a small area, so it is believed that the binding force between the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 is small and they are in a state where they can move easily relative to each other. Since the rectangular columnar alumina particles 10 and the spherical zirconia particles 12 are in contact over such a small area, the binding force between the two particles is small. In this case, the proportion of the zirconia particles 12 in contact with the surface of the alumina particles 10 should be within the range shown below.
 例えば、複合セラミックス1の断面を観察したときに、アルミナ粒子10の表面のうち、ジルコニア粒子12が接している方の表面の長さ(写真からは辺となる長さ)をL1とし、一方、そのアルミナ粒子10とジルコニア粒子12との接触面の長さ(断面視では辺となる長さ)をL2としたときに、その比(L2/L1)が1%以上10%以下であるのがよい。これにより、アルミナ粒子10とジルコニア粒子12との間で両粒子同士による過度の拘束が発生しにくくなる。この場合、1個のアルミナ粒子10の1つの表面(辺)には、複数のジルコニア粒子12が接していてもよい。 For example, when observing the cross section of the composite ceramic 1, if the length of the surface of the alumina particle 10 that is in contact with the zirconia particle 12 (the length that forms a side in a photograph) is L1, and the length of the contact surface between the alumina particle 10 and the zirconia particle 12 (the length that forms a side in a cross section) is L2, then it is preferable that the ratio (L2/L1) be 1% or more and 10% or less. This makes it difficult for excessive constraints to occur between the alumina particle 10 and the zirconia particle 12. In this case, multiple zirconia particles 12 may be in contact with one surface (side) of one alumina particle 10.
 また、アルミナ粒子10にジルコニア粒子12が接している状態と見ることができる場合に、アルミナ粒子10とジルコニア粒子12との間にSiの複合酸化物相14が薄く介在していてもよい。この場合のSiの複合酸化物相14の厚みとしては、0μm以上1μm以下、特には、0.5μm以下であるのがよい。 In addition, when the alumina particles 10 can be seen as being in contact with the zirconia particles 12, a thin Si composite oxide phase 14 may be present between the alumina particles 10 and the zirconia particles 12. In this case, the thickness of the Si composite oxide phase 14 is preferably 0 μm or more and 1 μm or less, and particularly 0.5 μm or less.
 反対に、アルミナ粒子10およびジルコニア粒子12の両方が角柱状であり、アルミナ粒子10およびジルコニア粒子12が側面同士で接触している部分が多い場合には、アルミナ粒子10とジルコニア粒子12との間の接触面積が大きくなることから、両者間の拘束力が強くなる。 On the other hand, if both the alumina particles 10 and the zirconia particles 12 are prismatic and there are many areas where the alumina particles 10 and the zirconia particles 12 are in contact with each other at their sides, the contact area between the alumina particles 10 and the zirconia particles 12 becomes larger, and the binding force between them becomes stronger.
 この複合セラミックス1が変形しやすい性質を示すのは、まず、結晶組織中にジルコニア粒子12を含んでいること、角柱状を成すアルミナ粒子10と球状のジルコニア粒子12とが含まれていること、球状のジルコニア粒子12が角柱状を成すアルミナ粒子10に対して、互いの表面の一部で接触した状態にあること、という理由による。 The reason why this composite ceramic 1 exhibits a property of being easily deformed is, first, that it contains zirconia particles 12 in its crystal structure, that it contains prismatic alumina particles 10 and spherical zirconia particles 12, and that the spherical zirconia particles 12 and the prismatic alumina particles 10 are in contact with each other at a portion of their surfaces.
 なお、角柱状を成すアルミナ粒子10に対して球状のジルコニア粒子12が接している範囲としては、球状のジルコニア粒子12の輪郭の長さを100としたときに、1以上20以下であればよく、1以上10以下であってもよい。 The area in which the spherical zirconia particles 12 contact the rectangular columnar alumina particles 10 may be 1 to 20, or may be 1 to 10, when the contour length of the spherical zirconia particles 12 is 100.
 複合セラミックス1は、緻密体であるのがよい。ここで、「緻密体」とは、気孔率が5%以下であることをいう。複合セラミックス1の気孔率は、複合セラミックス1の断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察した結果に基づいて算出することができる。 The composite ceramic 1 is preferably a dense body. Here, "dense body" means that the porosity is 5% or less. The porosity of the composite ceramic 1 can be calculated based on the results of observing a cross section of the composite ceramic 1 with a scanning electron microscope (SEM).
 複合セラミックス1の気孔率の測定には、例えば、まず、複合セラミックス1の断面の所定の面積を定め、その所定の面積内に存在する気孔の総面積を求める。次いで、その気孔の総面積を断面の所定の面積で除して気孔率を求める、という方法を用いるとよい。 To measure the porosity of the composite ceramic 1, for example, a method may be used in which a predetermined area of the cross section of the composite ceramic 1 is first determined, and the total area of the pores present within that predetermined area is then calculated. The total area of the pores is then divided by the predetermined area of the cross section to calculate the porosity.
 繰り返しになるが、複数のアルミナ粒子10は、角柱状の粒子を含む。ここで、「角柱状」とは、複合セラミックス1の断面を、SEMを用いて観察したときに、その断面が縦長の多角形の形状となっている場合のことをいう。多角形の形状とは、アルミナ粒子10の断面を観察したときに、その輪郭の中に、少なくとも2つの長辺と2つの短辺とが見られるものをいう。この場合、2つの長辺および2つの短辺は、それぞれで向かい合うように配置されていればよい。2つの長辺が互いに平行である必要はない。2つの短辺についても互いに平行である必要はない。長辺の一部は、小さい角度で折れ曲がって、この部分で多角形の一部を形成しているものでもよい。外観的に見て、上記した構成を有していて、角柱状と認められるのであれば、長辺の一部が部分的に湾曲した形状となっていてもよい。 To repeat, the multiple alumina particles 10 include prismatic particles. Here, "prismatic" refers to a case where the cross section of the composite ceramic 1 is a vertically elongated polygonal shape when observed using an SEM. A polygonal shape refers to a shape where at least two long sides and two short sides are seen within the outline of the cross section of the alumina particle 10 when observed. In this case, it is sufficient that the two long sides and the two short sides are arranged facing each other. The two long sides do not need to be parallel to each other. The two short sides do not need to be parallel to each other either. A part of the long side may be bent at a small angle to form part of a polygon. As long as the above-mentioned configuration is seen from the outside and it is recognized as a prismatic shape, a part of the long side may be partially curved.
 アルミナ粒子10は、アスペクト比が1.5以上、さらに、2以上であってもよい。この場合、アルミナ粒子10のアスペクト比は、複合セラミックス1を緻密化できるという理由から3以下であるのがよい。 The alumina particles 10 may have an aspect ratio of 1.5 or more, or even 2 or more. In this case, the aspect ratio of the alumina particles 10 is preferably 3 or less, since this allows the composite ceramic 1 to be densified.
 アルミナ粒子10のアスペクト比は、複合セラミックス1の断面を、SEMを用いて観察し、撮影した画像(写真)から求める。このとき、撮影した領域に現れた粒子がアルミナ粒子10であるかジルコニア粒子12であるかの同定は、エネルギー分散X線分光法(Energy Dispersive X-ray Spectroscope:EDS)を用いて行う。 The aspect ratio of the alumina particles 10 is determined from the image (photograph) taken by observing the cross section of the composite ceramic 1 using a SEM. At this time, the particles appearing in the photographed area are identified as alumina particles 10 or zirconia particles 12 using energy dispersive X-ray spectroscopy (EDS).
 具体的には、まず、EDS分析により同定されたアルミナ粒子10が10~20個ほど写った写真を選択する。次に、選択した写真上に存在する個々のアルミナ粒子10の最長径の長さL1を測定する。次に、L1を測定したアルミナ粒子10について、L1の中央の位置における直角方向の長さL2を測定する。次いで、L1とL2との比(L1/L2)を求める。L1/L2がアスペクト比である。 Specifically, first, a photograph is selected that contains 10 to 20 alumina particles 10 identified by EDS analysis. Next, the length L1 of the longest diameter of each alumina particle 10 present in the selected photograph is measured. Next, for each alumina particle 10 whose L1 has been measured, the length L2 in the perpendicular direction at the center position of L1 is measured. Next, the ratio of L1 to L2 (L1/L2) is calculated. L1/L2 is the aspect ratio.
 アルミナ粒子10のアスペクト比が大きい場合、つまり、アルミナ粒子10が細長い形状を有する場合には、球状のジルコニア粒子12はアルミナ粒子10の側面に配置しやすくなることから、より高変形の複合セラミックス1が得られやすくなる。 When the aspect ratio of the alumina particles 10 is large, that is, when the alumina particles 10 have an elongated shape, the spherical zirconia particles 12 are more likely to be arranged on the sides of the alumina particles 10, making it easier to obtain a composite ceramic 1 with higher deformation.
 ここで、アルミナ粒子10は、角柱状のアルミナ粒子10も含めたときの平均粒子径が0.5μm以上3μm以下であってもよい。この場合、アルミナ粒子10の平均粒子径は、アスペクト比の算出に用いた長さL1および長さL2の平均値((L1+L2)/2)を用いる。アルミナ粒子10の平均粒子径は、アルミナ粒子10が10~20個ほど写った写真に含まれる全部のアルミナ粒子10を測定して求める。 Here, the average particle diameter of the alumina particles 10, including the rectangular columnar alumina particles 10, may be 0.5 μm or more and 3 μm or less. In this case, the average particle diameter of the alumina particles 10 is the average value ((L1+L2)/2) of the lengths L1 and L2 used to calculate the aspect ratio. The average particle diameter of the alumina particles 10 is determined by measuring all the alumina particles 10 contained in a photograph showing about 10 to 20 alumina particles 10.
 複数のアルミナ粒子10中に含まれる角柱状のアルミナ粒子10は、単位面積当たりの面積割合が5%以上10%以下であってもよい。 The area ratio of the rectangular columnar alumina particles 10 contained in the plurality of alumina particles 10 per unit area may be 5% or more and 10% or less.
 複数のジルコニア粒子12は、球状の粒子を含む。ここで、「球状」とは、複合セラミックス1の断面を、SEMを用いて観察したときに、ジルコニア粒子12の全輪郭のうち、湾曲状を有する部分が80%以上含まれることをいう。 The plurality of zirconia particles 12 includes spherical particles. Here, "spherical" means that when the cross section of the composite ceramic 1 is observed using an SEM, 80% or more of the entire contour of the zirconia particles 12 is curved.
 なお、球状のジルコニア粒子12は、上記の湾曲状を有する部分が80%以上という条件に加えて、アスペクト比が1.1以下であるものがよい。この場合、複合セラミックス1においては、アルミナ粒子10とジルコニア粒子12とが互いの表面の一部で接した状態の他に、複数のジルコニア粒子12同士においても互いの表面の一部で接触した部分が存在するのがよい。言い換えると、複数のジルコニア粒子12の中に、ジルコニア粒子12同士が、互いの表面の一部で接触した第2の接触部12Bを有しているものが含まれるのがよい。 In addition to the condition that the curved portion is 80% or more, the spherical zirconia particles 12 preferably have an aspect ratio of 1.1 or less. In this case, in the composite ceramic 1, in addition to the alumina particles 10 and the zirconia particles 12 being in contact with each other at parts of their surfaces, it is also preferable that the multiple zirconia particles 12 also have parts in contact with each other at parts of their surfaces. In other words, it is preferable that the multiple zirconia particles 12 include those having second contact parts 12B where the zirconia particles 12 are in contact with each other at parts of their surfaces.
 第2の接触部12Bについても球状のジルコニア粒子12同士が接している範囲は、一方に位置する球状のジルコニア粒子12の輪郭の長さを100としたときに、その輪郭の長さの1以上20以下、特に、1以上10以下の長さほどあればよい。 For the second contact portion 12B, the area where the spherical zirconia particles 12 are in contact with each other may be 1 to 20 times, and particularly 1 to 10 times, the contour length of one of the spherical zirconia particles 12 located on one side, where the contour length is 100.
 なお、角柱状のアルミナ粒子10と互いの表面の一部で接触しているジルコニア粒子12としては、球状のジルコニア粒子12のみであってもよいが、後述する擬球状のジルコニア粒子12であってもよい。あるいは、球状のジルコニア粒子12と擬球状のジルコニア粒子12の両方が角柱状のアルミナ粒子10に互いの表面の一部で接触している状態となっていてもよい。 The zirconia particles 12 that are in contact with the prismatic alumina particles 10 at a portion of their surfaces may be only spherical zirconia particles 12, but may also be pseudo-spherical zirconia particles 12, which will be described later. Alternatively, both the spherical zirconia particles 12 and the pseudo-spherical zirconia particles 12 may be in contact with the prismatic alumina particles 10 at a portion of their surfaces.
 ジルコニア粒子12は元々アルミナ粒子10よりも弾性率が低いため、複数のジルコニア粒子12間において小さい面積で接している部分が存在すると、複合セラミックス1はより変形しやすくなる。この場合、複合セラミックス1は、3個のアルミナ粒子10が互いに接するようにして存在し、この3個のアルミナ粒子10のいずれかに対して、球状のジルコニア粒子12が1個以上接しているのがよい。この場合、3個のアルミナ粒子10の中には、角柱状のアルミナ粒子10が1個以上含まれるのがよい。 Since the zirconia particles 12 originally have a lower modulus of elasticity than the alumina particles 10, if there are small areas of contact between multiple zirconia particles 12, the composite ceramic 1 becomes more easily deformed. In this case, the composite ceramic 1 is preferably such that three alumina particles 10 are in contact with each other, and one or more spherical zirconia particles 12 are in contact with any of the three alumina particles 10. In this case, it is preferable that the three alumina particles 10 include one or more rectangular columnar alumina particles 10.
 さらに、この複合セラミックス1においては、角柱状のアルミナ粒子10の表面を端面f1と側面f2とに分けたときに、第1の接触部12Aは、端面f1よりも側面f2に多く存在するのがよい。ここで、角柱状のアルミナ粒子10の端面f1は、アルミナ粒子10の断面を観察したときに短辺に対応する部分である。一方、角柱状のアルミナ粒子10の側面f2は、アルミナ粒子10の断面を観察したときに長辺に対応する部分である。また、角柱状のアルミナ粒子10を含むアルミナ粒子10が3個含まれる単位面積当たりに、球状のジルコニア粒子12が1つ以上存在していればよい。 Furthermore, in this composite ceramic 1, when the surface of the rectangular columnar alumina particle 10 is divided into an end face f1 and a side face f2, it is preferable that the first contact portion 12A is present more on the side face f2 than on the end face f1. Here, the end face f1 of the rectangular columnar alumina particle 10 is the portion corresponding to the short side when the cross section of the alumina particle 10 is observed. On the other hand, the side face f2 of the rectangular columnar alumina particle 10 is the portion corresponding to the long side when the cross section of the alumina particle 10 is observed. Also, it is sufficient that one or more spherical zirconia particles 12 are present per unit area containing three alumina particles 10, including the rectangular columnar alumina particles 10.
 また、上記を言い換えて表現すると、複数のジルコニア粒子12は、アルミナ粒子10の表面上において、点接触状に接触している部分を有していてもよい。ここで、「点接触状に接触」とは、ジルコニア粒子12の輪郭の長さのうち20%以内、10%以内、特には5%以内の長さで別の粒子に接触している状態のことをいう。 In other words, the multiple zirconia particles 12 may have portions on the surface of the alumina particle 10 where they are in point contact. Here, "point contact" refers to a state where the zirconia particle 12 is in contact with another particle over a length that is within 20%, within 10%, and particularly within 5% of the contour length of the zirconia particle 12.
 球状および擬球体状のジルコニア粒子12を含んだジルコニア粒子12の平均粒子径は、0.7μm以上1μm以下であるのがよい。この場合、ジルコニア粒子12の平均粒子径もまた、アルミナ粒子10の場合と同様に、アスペクト比の算出に用いられる長さL1および長さL2の平均値((L1+L2)/2)として算出した値を用いる。ジルコニア粒子12の平均粒子径は、アルミナ粒子10が10~20個ほど写った写真に含まれる全部のジルコニア粒子12を測定して求める。 The average particle diameter of the zirconia particles 12, including spherical and pseudo-spherical zirconia particles 12, is preferably 0.7 μm or more and 1 μm or less. In this case, the average particle diameter of the zirconia particles 12 is also calculated as the average value ((L1 + L2) / 2) of the lengths L1 and L2 used to calculate the aspect ratio, as in the case of the alumina particles 10. The average particle diameter of the zirconia particles 12 is determined by measuring all the zirconia particles 12 contained in a photograph showing about 10 to 20 alumina particles 10.
 Siの複合酸化物相14は、アルミナ粒子10およびジルコニア粒子12を包む粒界相である。Siの複合酸化物相14は、少量の結晶相を含んでもよい。Siの複合酸化物相14は、複合セラミックス1のたわみ量、破壊靭性、3点曲げ強度などの諸特性を所定値以上にできるのであれば、アルミナ粒子10およびジルコニア粒子12の周囲にまんべんなく存在するほどの割合で含まれているのがよい。この場合、Siの複合酸化物相14の割合としては、面積割合で1%以上7%以下がよい。 The Si composite oxide phase 14 is a grain boundary phase that surrounds the alumina particles 10 and the zirconia particles 12. The Si composite oxide phase 14 may contain a small amount of crystalline phase. If the properties of the composite ceramic 1, such as the deflection amount, fracture toughness, and three-point bending strength, can be made equal to or greater than predetermined values, it is preferable that the Si composite oxide phase 14 is contained in a proportion that allows it to be evenly distributed around the alumina particles 10 and the zirconia particles 12. In this case, the proportion of the Si composite oxide phase 14 is preferably 1% or more and 7% or less in terms of area proportion.
 アルミナ粒子10、ジルコニア粒子12およびSiの複合酸化物相14は、ヤング率が互いに異なる。具体的には、Siの複合酸化物相14<ジルコニア粒子12<アルミナ粒子10の順にヤング率が大きくなる。上記したように、実施形態に係る複合セラミックス1において、ジルコニア粒子12は、高ヤング率のアルミナ粒子10に対して接触面積が小さく、また、アルミナ粒子10およびジルコニア粒子12の周囲には、これらよりもヤング率の低いSiの複合酸化物相14が存在する。これにより、たわみ量が大きく、高変形の複合セラミックス1が得られる。ここで、「高変形」とは、幅10mm、厚み0.05mmの試験片で3点曲げ強度試験を行ったときに、スパン10mmに対して、たわみ量が0.5mm以上であることをいう。具体例によれば、この複合セラミックス1は、たわみ量が0.7mm以上であるのがよい。 The alumina particles 10, the zirconia particles 12, and the Si composite oxide phase 14 have different Young's moduli. Specifically, the Young's moduli increase in the order of Si composite oxide phase 14 < zirconia particles 12 < alumina particles 10. As described above, in the composite ceramic 1 according to the embodiment, the zirconia particles 12 have a small contact area with the alumina particles 10, which have a high Young's modulus, and the Si composite oxide phase 14, which has a lower Young's modulus than the alumina particles 10 and the zirconia particles 12, is present around the alumina particles 10 and the zirconia particles 12. This results in a composite ceramic 1 with a large deflection amount and high deformation. Here, "high deformation" means that when a three-point bending strength test is performed on a test piece with a width of 10 mm and a thickness of 0.05 mm, the deflection amount is 0.5 mm or more for a span of 10 mm. According to a specific example, the composite ceramic 1 preferably has a deflection amount of 0.7 mm or more.
 また、複合セラミックス1は、破壊靭性が3.5MPa・√m以上、特に、3.8MPa・√m以上であってもよい。また、複合セラミックス1は、3点曲げ強度が750MPa以上、特に800MPa以上であってもよい。これにより、高強度の複合セラミックス1が得られる。この複合、複合セラミックス1は、破壊靭性が3.5MPa・√m以上、3点曲げ強度が750MPa以上でありながら、たわみ量が0.7mm以上の変形能を有する。 The composite ceramic 1 may also have a fracture toughness of 3.5 MPa·√m or more, particularly 3.8 MPa·√m or more. The composite ceramic 1 may also have a three-point bending strength of 750 MPa or more, particularly 800 MPa or more. This results in a high-strength composite ceramic 1. This composite ceramic 1 has a fracture toughness of 3.5 MPa·√m or more, a three-point bending strength of 750 MPa or more, and a deformability with a deflection of 0.7 mm or more.
 この場合、複合セラミックス1中に含まれるアルミナ粒子10の質量比は、60%以上85%以下がよい。 In this case, the mass ratio of the alumina particles 10 contained in the composite ceramic 1 should be 60% or more and 85% or less.
 複合セラミックス1中に含まれるジルコニア粒子12の質量比は、20%以上40%以下がよい。 The mass ratio of the zirconia particles 12 contained in the composite ceramic 1 is preferably 20% or more and 40% or less.
 複合セラミックス1中に含まれるSiの複合酸化物相14の質量比は、2.4%以上4.8%以下がよい。 The mass ratio of the Si composite oxide phase 14 contained in the composite ceramic 1 is preferably 2.4% or more and 4.8% or less.
 また、複合セラミックス1中に含まれるアルミナ粒子10、ジルコニア粒子12およびSiの複合酸化物相14の含有割合を体積換算した場合には、アルミナ粒子10の体積分率は70%以上75%以下、ジルコニア粒子12の体積分率は18%以上23%以下、Siの複合酸化物相14の体積分率は4%以上11%以下であるのがよい。この場合、アルミナ粒子10の密度は4g/cm、ジルコニア粒子12の密度は6g/cm、Siの複合酸化物相14の密度は2g/cmとする。 When the contents of the alumina particles 10, the zirconia particles 12 and the Si composite oxide phase 14 contained in the composite ceramic 1 are converted into volume fractions, the volume fraction of the alumina particles 10 is preferably 70% or more and 75% or less, the volume fraction of the zirconia particles 12 is preferably 18% or more and 23% or less, and the volume fraction of the Si composite oxide phase 14 is preferably 4% or more and 11% or less. In this case, the density of the alumina particles 10 is 4 g/ cm3 , the density of the zirconia particles 12 is 6 g/ cm3 , and the density of the Si composite oxide phase 14 is 2 g/ cm3 .
 複合セラミックス1は、第1の相であるアルミナ粒子10および第2の相であるジルコニア粒子12に加えて、Siの複合酸化物相14からなる第3の相を体積比で4%以上11%以下の割合で含んでいることで、高強度ながらも曲がりやすい性質を有するものとなる。 The composite ceramic 1 contains a first phase, alumina particles 10, a second phase, zirconia particles 12, and a third phase, a composite oxide phase 14 of Si, in a volume ratio of 4% to 11%, giving the composite ceramic 1 high strength but also flexibility.
 さらに、複合セラミックス1を構成しているアルミナ粒子10、ジルコニア粒子12およびSiの複合酸化物相14の割合を面積割合で表した場合には、以下のようになる。 Furthermore, when the proportions of the alumina particles 10, zirconia particles 12, and Si composite oxide phase 14 that make up the composite ceramic 1 are expressed as area proportions, they are as follows:
 複合セラミックス1中に含まれるアルミナ粒子10およびジルコニア粒子12の単位面積当たりの面積割合は、アルミナ粒子10が40%以上60%以下、ジルコニア粒子12が30%以上40%以下であるのがよい。残部のSiの複合酸化物相14は5%以上20%以下であるのがよい。 The area ratio per unit area of the alumina particles 10 and zirconia particles 12 contained in the composite ceramic 1 is preferably 40% to 60% for the alumina particles 10 and 30% to 40% for the zirconia particles 12. The remaining Si composite oxide phase 14 is preferably 5% to 20%.
 なお、Siの複合酸化物相14は、Siの他にアルカリ土類元素(Mg、Ca)を含むものがよい。この場合、Siおよびアルカリ土類元素は酸化物として含まれる。 The Si composite oxide phase 14 preferably contains alkaline earth elements (Mg, Ca) in addition to Si. In this case, Si and the alkaline earth elements are contained as oxides.
 複合セラミックス1に含まれるアルミナ粒子10、ジルコニア粒子12およびSiの複合酸化物相14の割合は、例えば、ICP(Inductively Coupled Plasma)分析によって求めることができる。ICP分析によって確認できた複数の元素の中からアルミニウム(Al)をAlとして換算してアルミナ粒子10の割合とする。 The proportions of the alumina particles 10, the zirconia particles 12, and the Si composite oxide phase 14 contained in the composite ceramic 1 can be determined, for example, by ICP (Inductively Coupled Plasma) analysis. Among the multiple elements confirmed by the ICP analysis, aluminum (Al) is converted into Al2O3 to determine the proportion of the alumina particles 10.
 同様に、ICP分析によって確認できた複数の元素の中からジルコニウム(Zr)をZrOとして換算してジルコニア粒子12の割合とする。 Similarly, among the multiple elements confirmed by ICP analysis, zirconium (Zr) is converted into ZrO2 and used as the proportion of the zirconia particles 12.
 残りの元素が例えば、Si、MgおよびCaであれば、Si、MgおよびCaをそれぞれSiO、MgOおよびCaOとして換算した、これら3つの成分の合計量が、複合セラミックス1中における残部の含有量となる。 For example, if the remaining elements are Si, Mg and Ca, the total amount of these three components calculated as SiO 2 , MgO and CaO, respectively, is the content of the remainder in the composite ceramic 1 .
 次に、アルミナ粒子10、ジルコニア粒子12および残部のそれぞれの割合の合計量を複合セラミックス1の全量(100質量%)とする。 Next, the total amount of the alumina particles 10, the zirconia particles 12, and the remainder is taken as the total amount of the composite ceramic 1 (100 mass%).
 次に、全量からアルミナ粒子10およびジルコニア粒子12の含有量を引いた部分を残部の含有量とし、その残部の含有量をSiの複合酸化物相14の含有量として求める。 Next, the content of the alumina particles 10 and zirconia particles 12 is subtracted from the total amount to obtain the remaining content, and the content of the remaining amount is calculated as the content of the Si composite oxide phase 14.
 Siの複合酸化物相14に含まれる成分は、電子顕微鏡に付設の分析器(エネルギー分散X線分光計(Energy Dispersive X-ray Spectroscope:EDS)によって検出できる。Siの複合酸化物相14が非晶質(ガラス)であることは、電子顕微鏡に付設の電子線回折によって判定できる。 The components contained in the Si composite oxide phase 14 can be detected by an analyzer attached to the electron microscope (Energy Dispersive X-ray Spectroscope (EDS)). The fact that the Si composite oxide phase 14 is amorphous (glass) can be determined by electron beam diffraction attached to the electron microscope.
 また、複合セラミックス1は、比誘電率がジルコニアよりも低くてもよい。具体的には、複合セラミックス1の比誘電率は、9以上15以下であってもよい。複合セラミックス1の比誘電率がジルコニアよりも低いことにより、例えば、素子を実装する基板として複合セラミックス1を使用したときに、実装する素子の電気的特性が低下しにくくなる。 The composite ceramic 1 may also have a lower dielectric constant than zirconia. Specifically, the dielectric constant of the composite ceramic 1 may be 9 or more and 15 or less. Because the composite ceramic 1 has a lower dielectric constant than zirconia, for example, when the composite ceramic 1 is used as a substrate for mounting an element, the electrical characteristics of the mounted element are less likely to deteriorate.
 また、複数のジルコニア粒子12は、上述したように、球状の粒子を含むものとなっているが、この場合、球状とは真円に近いものに限らない。 As described above, the multiple zirconia particles 12 include spherical particles, but in this case, the spheres are not limited to particles that are close to perfect circles.
 球状とは、ジルコニア粒子12の断面の最長径D1とその最長径を指す方向に対して直角な方向の長さD2を測定したときに、D2/D1比が0.8以上1以下であるような形状であるものとなる。この場合、例えば、断面の形状が六角形や八角形に近い形状のジルコニア粒子12が含まれていてもよい。言い換えると、擬球体の形状の粒子を含んでもよい。ここで、「擬球体の形状の粒子」とは、複合セラミックス1の断面をSEMで観察したときに、アスペクト比は1.1より大きく1.2以下であり、ジルコニア粒子12の全輪郭のうち、湾曲状を有する部分が50%以上70%以下であるもののことをいう。 The term "spherical" refers to a shape in which, when the longest diameter D1 of the cross section of the zirconia particle 12 and the length D2 in the direction perpendicular to the direction of the longest diameter are measured, the ratio D2/D1 is 0.8 or more and 1 or less. In this case, for example, the zirconia particles 12 may have a cross-sectional shape close to a hexagon or octagon. In other words, the particles may have a pseudo-spherical shape. Here, "pseudo-spherical particles" refers to particles having an aspect ratio of more than 1.1 and 1.2 or less when the cross section of the composite ceramic 1 is observed with an SEM, and the curved portion accounts for 50% to 70% of the entire contour of the zirconia particle 12.
 ここで、擬球体の形状のことを、擬球状という場合がある。複合セラミックス1には、球状のジルコニア粒子12とともに擬球状を成すジルコニア粒子12が含まれていてもよい。 Here, the pseudo-spherical shape may be referred to as pseudo-spherical. The composite ceramic 1 may contain zirconia particles 12 that form a pseudo-spherical shape together with spherical zirconia particles 12.
 また、複数のジルコニア粒子12は、複数のジルコニア粒子12同士が互いの表面の一部で接触した状態である部分が含まれていてもよい。複数のジルコニア粒子12同士が互いの表面の一部で接触した状態である部分のことを第2の接触部と記す場合がある。言い換えると、複数のジルコニア粒子12同士が点接触状に接触している部分を有してもよい。 The plurality of zirconia particles 12 may also include a portion where the plurality of zirconia particles 12 are in contact with each other at a portion of their surfaces. The portion where the plurality of zirconia particles 12 are in contact with each other at a portion of their surfaces may be referred to as a second contact portion. In other words, the plurality of zirconia particles 12 may have a portion where they are in point contact with each other.
[実施例]
 試料No.1~6を作製し、その特性について評価した。
[Example]
Samples No. 1 to 6 were prepared and their characteristics were evaluated.
 まず、アルミナ粉末、ジルコニア粉末およびガラス粉末を、所定の割合でそれぞれ混合し、所定の焼成条件(温度)でそれぞれ焼成し、焼結体を得た。試料No.1~6におけるアルミナ粒子粉末、ジルコニア粉末およびガラス粉末の割合および焼成温度を表1に示した。 First, alumina powder, zirconia powder, and glass powder were mixed in a given ratio and fired under given firing conditions (temperature) to obtain a sintered body. The ratios of alumina particle powder, zirconia powder, and glass powder and the firing temperatures for samples No. 1 to 6 are shown in Table 1.
 Siの複合酸化物粉末としては、SiO、CaO(原料はCaCO)およびMgO(タルク)の混合粉末を用いた。混合粉末におけるSiO、CaO(原料はCaCO)およびMgO(タルク)の割合は、質量比で3:1:1とした。 The Si composite oxide powder used was a mixed powder of SiO 2 , CaO (raw material: CaCO 3 ) and MgO (talc). The mass ratio of SiO 2 , CaO (raw material: CaCO 3 ) and MgO (talc) in the mixed powder was 3:1:1.
 この混合粉末としては、平均粒径がアルミナ粉末の平均粒径よりも大きいものを用いた。混合粉末の平均粒径は、アルミナ粉末の平均粒径を1としたときに1.3倍であった。CaCOの平均粒径は、SiOの平均粒径の2倍のものを用いた。MgOの平均粒径は、SiOの平均粒径の4倍のものを用いた。ジルコニア粉末の平均粒径は、アルミナ粉末の平均粒径を1としたときに、0.17倍であるものを用いた。 The mixed powder used had an average particle size larger than that of the alumina powder. The average particle size of the mixed powder was 1.3 times that of the alumina powder. The average particle size of the CaCO3 was twice that of the SiO2 . The average particle size of the MgO was four times that of the SiO2 . The average particle size of the zirconia powder was 0.17 times that of the alumina powder.
 具体的には、以下に示す平均粒径の原料粉末を用いた。アルミナ粉末の平均粒径は1.4μm、ジルコニア粉末の平均粒径は0.24μm、SiO粉末の平均粒径は1.06μm、CaO(CaCO)の平均粒径は2.0μmおよびMgO(タルク)の平均粒径は4.16μmであった。 Specifically, raw material powders with the following average particle sizes were used: alumina powder had an average particle size of 1.4 μm, zirconia powder had an average particle size of 0.24 μm, SiO2 powder had an average particle size of 1.06 μm, CaO ( CaCO3 ) had an average particle size of 2.0 μm, and MgO (talc) had an average particle size of 4.16 μm.
 なお、作製した焼成後の試料は、組成分析の結果、いずれも調合組成に一致する組成となっていた。組成分析には、原子吸光分析およびICP分析を用いた。また、作製した焼結後の試料は、いずれも気孔率が2%以下であり、緻密体と言えるものとなっていた。 Furthermore, composition analysis of the samples prepared after firing showed that all of them had compositions that matched the compounded composition. Atomic absorption spectrometry and ICP analysis were used for the composition analysis. Furthermore, all of the samples prepared after sintering had a porosity of 2% or less, and could be said to be dense bodies.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2は、試料No.1~6の焼結体の断面を観察した結果である。試料No.1~6は、表1に示した条件によりそれぞれ作製されたものである。 Table 2 shows the results of observing the cross sections of the sintered bodies of samples No. 1 to 6. Samples No. 1 to 6 were each produced under the conditions shown in Table 1.
 まず、作製した試料から、以下の方法により、複合セラミックス1であることを特定するようにした。アルミナ粒子10が10~20個ほど入る矩形状の領域を特定し、EDSを用いて、この領域内に存在する粒子の主成分の同定を行い、アルミナ粒子10、ジルコニア粒子12を区別するようにした。 First, the prepared sample was identified as composite ceramic 1 by the following method. A rectangular region containing 10 to 20 alumina particles 10 was identified, and EDS was used to identify the main component of the particles present in this region, allowing the alumina particles 10 and zirconia particles 12 to be distinguished.
 次に、選択した写真上に存在する個々のアルミナ粒子10の最長径の長さL1と、その直角方向の長さL2を測定し、アスペクト比および平均粒子径を求めた。アスペクト比はL1/L2の比から求めた。平均粒子径は(L1+L2)/2から求めた。 Next, the longest diameter L1 and the length at right angles to the longest diameter L2 of each alumina particle 10 present on the selected photograph were measured, and the aspect ratio and average particle size were calculated. The aspect ratio was calculated from the ratio L1/L2. The average particle size was calculated from (L1+L2)/2.
 試料No.1~6の複合セラミックス1の焼結体は、SEMを用いた観察の結果、いずれの試料も角柱状のアルミナ粒子10を含むものであった。試料No.1~6の複合セラミックス1の焼結体には、アスペクト比が1.5以上のアルミナ粒子10が含まれていた。 SEM observation of the sintered composite ceramic 1 of samples No. 1 to 6 showed that all samples contained rectangular columnar alumina particles 10. The sintered composite ceramic 1 of samples No. 1 to 6 contained alumina particles 10 with an aspect ratio of 1.5 or more.
 ジルコニア粒子12については、以下の項目の評価を行った。評価した項目は、ジルコニア粒子12の形状、複数のジルコニア粒子12の中で球状粒子となっている個数の割合、球状粒子と特定したジルコニア粒子12における湾曲部分の割合(輪郭の長さの割合)、アスペクト比、平均粒子径、第1の接触部の状態を示している箇所の個数割合である。 The following items were evaluated for the zirconia particles 12. The items evaluated were the shape of the zirconia particles 12, the percentage of spherical particles among the multiple zirconia particles 12, the percentage of curved portions (proportion of the contour length) in the zirconia particles 12 identified as spherical particles, the aspect ratio, the average particle diameter, and the percentage of the number of portions showing the state of the first contact portion.
 アスペクト比および平均粒子径の評価は、アルミナ粒子10の場合と同様の方法を用いた。ジルコニア粒子12における球状粒子の個数割合は、球状と判定したジルコニア粒子12の個数を、その領域内に存在するすべてのジルコニア粒子12の総数により除して求めた。 The aspect ratio and average particle size were evaluated using the same method as for the alumina particles 10. The percentage of spherical particles in the zirconia particles 12 was calculated by dividing the number of zirconia particles 12 determined to be spherical by the total number of all zirconia particles 12 present in that region.
 ここで、ジルコニア粒子12が球状というのは、アスペクト比を測定したすべてのジルコニア粒子12について、アスペクト比が1.1以下であり、かつ、ジルコニア粒子12の輪郭の中に湾曲状の部分の長さの割合が80%以上となっているものとした。ジルコニア粒子12が擬球状というのは、アスペクト比を測定したすべてのジルコニア粒子12について、アスペクト比が1.1より大きく1.2以下であり、かつ、ジルコニア粒子12の輪郭の中に湾曲状の部分の長さの割合が50%以上70%以下となっているものとした。 Here, the zirconia particles 12 are said to be spherical when the aspect ratio of all the zirconia particles 12 whose aspect ratios have been measured is 1.1 or less, and the proportion of the length of the curved portion within the outline of the zirconia particles 12 is 80% or more. The zirconia particles 12 are said to be pseudo-spherical when the aspect ratio of all the zirconia particles 12 whose aspect ratios have been measured is greater than 1.1 and less than 1.2, and the proportion of the length of the curved portion within the outline of the zirconia particles 12 is 50% or more and 70% or less.
 作製した試料No.1~5の複合セラミックス1の焼結体は、表2に示すように、いずれも球状粒子および擬球状の粒子を含むものであった。 The sintered bodies of composite ceramics 1 of samples No. 1 to 5 prepared contained spherical particles and pseudo-spherical particles, as shown in Table 2.
 第1の接触部12Aの状態を示している箇所の個数割合は、上記した評価を行った写真から目視でカウントして求めた。なお、作製した試料のうち、試料No.1~5の複合セラミックス1の焼結体中は、いずれも複数のジルコニア粒子12同士が互いの表面の一部で接触した第2の接触部12Bを含むものでもあった。 The percentage of the number of areas showing the state of the first contact portion 12A was determined by visually counting the number of areas in the photographs in which the above-mentioned evaluation was performed. Of the samples produced, the sintered bodies of composite ceramic 1 of samples No. 1 to 5 all contained second contact portions 12B in which multiple zirconia particles 12 were in contact with each other at parts of their surfaces.
 Siの複合酸化物相14の面積割合は、アルミナ粒子10およびジルコニア粒子12について、上記評価に用いた写真の全領域の面積をA0とし、アルミナ粒子10の面積とジルコニア粒子12の面積とを合わせた面積をA1として、(A0-A1)/A0より求めた。 The area ratio of the Si composite oxide phase 14 was calculated by (A0-A1)/A0, where A0 is the total area of the photographs used in the above evaluation of the alumina particles 10 and zirconia particles 12, and A1 is the combined area of the alumina particles 10 and the zirconia particles 12.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3は、試料No.1~6の特性をそれぞれ測定し、適用性を評価した結果を示している。たわみ量を測定するたわみ試験は、3点曲げ強度試験に並行して行った。具体的には、作製した試料から測定用試料を切り出し、3点曲げ強度試験を行った際に、測定用試料が破断したときの平坦な状態からの変化量をたわみ量とした。測定用試料のサイズは、おおむねL=20mm、W=4mm、t=50μmとした。 Table 3 shows the results of measuring the properties of samples No. 1 to 6 and evaluating their applicability. The deflection test to measure the amount of deflection was conducted in parallel with the three-point bending strength test. Specifically, a measurement sample was cut out from the prepared sample, and when the three-point bending strength test was conducted, the amount of deflection was determined as the amount of change from the flat state when the measurement sample broke. The size of the measurement sample was approximately L = 20 mm, W = 4 mm, t = 50 μm.
 また、各試料の破壊靱性は、JIS R1607-1995に規定される圧子圧入法(IF法)に準拠して測定した。この場合、上記した測定用試料とは別に、厚みが2mmとなる試料を別途作製した。 The fracture toughness of each sample was measured in accordance with the indentation method (IF method) specified in JIS R1607-1995. In this case, a sample with a thickness of 2 mm was separately prepared in addition to the measurement samples described above.
 表3中、適用性が特に良好なものを◎とし、適用性が良好なものを○、適用不可のものを×として3段階で評価した。なお、上記した3段階評価のうち、◎および○を、複合セラミックス1としての規準を満たしている評価とする。 In Table 3, the applicability was evaluated on a three-point scale, with ◎ being particularly good, ○ being good, and × being inapplicable. Of the three-point scale evaluations mentioned above, ◎ and ○ are considered to be evaluations that meet the criteria for composite ceramic 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試料No.1~5では、たわみ量が0.5mm以上であり、高変形の複合セラミックス1が得られた。これに対し、試料No.6では、破壊靭性および3点曲げ強度は試料No.1~5よりも高いものの、たわみ量が0.5mm未満であり、変形性に乏しい複合セラミックス1であることがわかった。 Samples No. 1 to 5 had a deflection of 0.5 mm or more, and a highly deformable composite ceramic 1 was obtained. In contrast, sample No. 6 had higher fracture toughness and three-point bending strength than samples No. 1 to 5, but the deflection was less than 0.5 mm, indicating that the composite ceramic 1 had poor deformability.
 試料No.6は、ジルコニア粒子12として、球状および擬球状のジルコニア粒子12を含まないものであった。 Sample No. 6 did not contain spherical or pseudo-spherical zirconia particles 12 as zirconia particles 12.
 試料No.1~3および5は、アルミナ粒子10の面積割合が60%以上70%以下、ジルコニア粒子12の面積割合が30%以上40%以下であった。 In samples Nos. 1 to 3 and 5, the area ratio of alumina particles 10 was 60% or more and 70% or less, and the area ratio of zirconia particles 12 was 30% or more and 40% or less.
 試料No.1、3および5は、第1の接触部12Aを形成しているジルコニア粒子12の個数割合が16%以上であった。 In samples No. 1, 3, and 5, the percentage of zirconia particles 12 forming the first contact portion 12A was 16% or more.
 試料No.1~5の複合セラミックスの焼結体には、互いに接するようにして存在する3個のアルミナ粒子10のいずれかに対して、球状のジルコニア粒子12が1個以上接している部分がみられた。 In the sintered composite ceramics of samples No. 1 to 5, there were areas in which one or more spherical zirconia particles 12 were in contact with any of the three alumina particles 10 that were in contact with each other.
 また、試料No.1~5の複合セラミックスの焼結体には、角柱状のアルミナ粒子10の表面を端面と側面とに分けたときに、第1の接触部は端面よりも側面に多く存在する状態となっていた。 In addition, in the sintered composite ceramics of samples No. 1 to 5, when the surface of the rectangular columnar alumina particle 10 was divided into end faces and side faces, the first contact portion was present more on the side faces than on the end faces.
 図2は、複合セラミックスに含まれるアルミナ粒子について、そのアスペクト比と頻度との関係を示したグラフである。図2は、複合セラミックスの一例として、試料No.1の場合を示したものである。 Figure 2 is a graph showing the relationship between the aspect ratio and frequency of alumina particles contained in composite ceramics. Figure 2 shows the case of sample No. 1 as an example of composite ceramics.
 本開示の複合セラミックスは、アルミナ粒子について、横軸にアスペクト比を取り、縦軸に、その頻度(個数)を取ったときに、アスペクト比の異なる2つの群を有している。図2に示すように、アルミナ粒子は、アスペクト比の異なる2つの山の群を有している。 The composite ceramics disclosed herein have two groups of alumina particles with different aspect ratios when the horizontal axis represents the aspect ratio and the vertical axis represents the frequency (number of particles). As shown in Figure 2, the alumina particles have two groups of peaks with different aspect ratios.
 この場合、作製した試料から、以下の方法により、複合セラミックスであることを特定するようにした。アルミナ粒子が70~100個ほど入る矩形状の領域を特定し、電子顕微鏡に付設の分析器(EDS)を用いて、この領域内に存在する粒子の主成分の同定を行い、アルミナ粒子を特定した。 In this case, the following method was used to identify the prepared sample as a composite ceramic. A rectangular area containing 70 to 100 alumina particles was identified, and an analyzer (EDS) attached to the electron microscope was used to identify the main component of the particles present in this area, thereby identifying the alumina particles.
 次に、電子顕微鏡写真からアルミナ粒子の長軸の長さLとその長軸に対して直角な方向に交差している短軸の長さSとを求め、その比(L/S)を求め、アルミナ粒子のアスペクト比とした。 Next, the length L of the long axis of the alumina particle and the length S of the short axis that intersects with the long axis at a right angle were determined from the electron microscope photograph, and the ratio (L/S) was calculated to obtain the aspect ratio of the alumina particle.
 この場合、グラフは、アスペクト比の間隔を0.1としてプロットした。グラフには、アスペクト比が1.3以上2.2以下の範囲の第1群と、アスペクト比が2.6以上2.8以下の範囲の第2群とが示されている。この評価では、アスペクト比が0.2以上となっているときに、アスペクト比が異なる群を有するものとしている。 In this case, the graph is plotted with an aspect ratio interval of 0.1. The graph shows a first group with aspect ratios ranging from 1.3 to 2.2, and a second group with aspect ratios ranging from 2.6 to 2.8. In this evaluation, when the aspect ratio is 0.2 or more, it is considered to have groups with different aspect ratios.
 このため、グラフにおいて、アスペクト比が1.6より大きく、1.7以下の範囲の頻度が0であっても、アスペクト比が1.5以下の範囲と、1.7以上の範囲との間では、アスペクト比が異なる群とはしていない。 For this reason, even if the frequency of the aspect ratio range is 0 for the range between 1.6 and 1.7 or less in the graph, the range of aspect ratios 1.5 or less and the range of aspect ratios 1.7 or more are not considered to be groups with different aspect ratios.
 試料No.1の他、試料No.2および試料No.5についても、アスペクト比とその頻度との関係を評価したときに、図2に示したような2つの異なる群を有するものとなっていた。 When the relationship between the aspect ratio and its frequency was evaluated for sample No. 1, as well as for sample No. 2 and sample No. 5, they were found to have two different groups as shown in Figure 2.
 試料No.1、No.2およびNo.5は、たわみ量が0.81mm以上であった。 Samples No. 1, No. 2 and No. 5 had a deflection of 0.81 mm or more.
 アルミナ粒子のアスペクト比とその頻度との関係を示したグラフにおいて、アスペクト比が異なる2つの群を有するものになったのは、混合粉末として、平均粒径がアルミナ粉末の平均粒径よりも大きいものを用い、さらに、アルミナ粉末、ジルコニア粉末およびSiの複合酸化物となる混合粉末の組成を表1のように調整したことに起因する。 The graph showing the relationship between the aspect ratio of alumina particles and their frequency shows two groups with different aspect ratios. This is because the mixed powder used has an average particle size larger than that of the alumina powder, and the composition of the mixed powder, which is a composite oxide of alumina powder, zirconia powder, and Si, is adjusted as shown in Table 1.
 一実施形態において、(1)複合セラミックスは、
 複数のアルミナ粒子と、複数のジルコニア粒子と、Siの複合酸化物相とを有し、
 前記複数のアルミナ粒子は、角柱状の粒子を含み、
 前記複数のジルコニア粒子は、球状の粒子を含み、
 前記角柱状の粒子と前記球状の粒子との間で、互いの表面の一部で接触した第1の接触部を有しているものが含まれる。
In one embodiment, (1) the composite ceramic is
A composite oxide phase of alumina particles, zirconia particles, and Si is included.
The plurality of alumina particles include prismatic particles,
The plurality of zirconia particles includes spherical particles,
The prismatic particle and the spherical particle include a first contact portion where the particles are in contact with each other at a portion of their surfaces.
 (2)上記(1)の複合セラミックスにおいて、複数の前記ジルコニア粒子の中には、前記ジルコニア粒子同士が、互いの表面の一部で接触した第2の接触部を有しているものが含まれてもよい。 (2) In the composite ceramic of (1) above, the plurality of zirconia particles may include those having a second contact portion in which the zirconia particles are in contact with each other at a portion of their surfaces.
 (3)上記(1)または(2)の複合セラミックスにおいて、前記アルミナ粒子は、アスペクト比が1.5以上であってもよい。 (3) In the composite ceramic of (1) or (2) above, the alumina particles may have an aspect ratio of 1.5 or more.
 (4)上記(1)~(3)のいずれか1つの複合セラミックスにおいて、互いに接するようにして存在する3個の前記アルミナ粒子のいずれかに対して、前記球状の粒子が1個以上接していてもよい。 (4) In any one of the composite ceramics (1) to (3) above, one or more of the spherical particles may be in contact with any of the three alumina particles that are in contact with each other.
 (5)上記(1)~(4)のいずれか1つの複合セラミックスにおいて、前記角柱状の粒子の表面を端面と側面とに分けたときに、前記第1の接触部は、前記端面よりも前記側面に多く存在してもよい。 (5) In any one of the composite ceramics (1) to (4) above, when the surface of the prismatic particle is divided into an end face and a side face, the first contact portion may be present in greater numbers on the side face than on the end face.
 (6)上記(1)~(5)のいずれか1つの複合セラミックスにおいて、前記Siの複合酸化物相は、前記アルミナ粒子および前記ジルコニア粒子を除く領域に存在しており、
 前記Siの複合酸化物相は、単位面積当たり1%以上7%以下の面積割合で存在してもよい。
(6) In the composite ceramic according to any one of (1) to (5), the composite oxide phase of Si is present in an area other than the alumina particles and the zirconia particles,
The Si composite oxide phase may be present in an area ratio of 1% or more and 7% or less per unit area.
 (7)上記(1)~(6)のいずれか1つの複合セラミックスにおいて、前記アルミナ粒子は、アスペクト比の異なる2つの群を有してもよい。 (7) In any one of the composite ceramics (1) to (6) above, the alumina particles may have two groups with different aspect ratios.
 (8)上記(1)~(7)のいずれか1つの複合セラミックスにおいて、前記アルミナ粒子は60質量%以上85質量%以下、前記ジルコニア粒子は20質量%以上40質量%以下、前記Siの複合酸化物相は2.4質量%以上4.8質量%以下であってもよい。 (8) In any one of the composite ceramics (1) to (7) above, the alumina particles may be 60% by mass or more and 85% by mass or less, the zirconia particles may be 20% by mass or more and 40% by mass or less, and the Si composite oxide phase may be 2.4% by mass or more and 4.8% by mass or less.
 (9)上記(1)~(8)のいずれか1つの複合セラミックスにおいて、前記アルミナ粒子の体積分率は70%以上75%以下、前記ジルコニア粒子の体積分率は18%以上23%以下、前記Siの複合酸化物相の体積分率は4%以上11%以下であってもよい。 (9) In any one of the composite ceramics (1) to (8) above, the volume fraction of the alumina particles may be 70% or more and 75% or less, the volume fraction of the zirconia particles may be 18% or more and 23% or less, and the volume fraction of the Si composite oxide phase may be 4% or more and 11% or less.
 さらなる効果や他の態様は、当業者によって容易に導き出すことができる。このため、本開示のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further advantages and other aspects may be readily derived by those skilled in the art. Thus, the disclosure in its broader aspects is not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and equivalents thereof.
  1 複合セラミックス
 10 アルミナ粒子
 12 ジルコニア粒子
 12A 第1の接触部
 12B 第2の接触部
 14 Siの複合酸化物相
REFERENCE SIGNS LIST 1 Composite ceramic 10 Alumina particle 12 Zirconia particle 12A First contact portion 12B Second contact portion 14 Si composite oxide phase

Claims (9)

  1.  複数のアルミナ粒子と、複数のジルコニア粒子と、Siの複合酸化物相とを有し、
     前記複数のアルミナ粒子は、角柱状の粒子を含み、
     前記複数のジルコニア粒子は、球状の粒子を含み、
     前記角柱状の粒子と前記球状の粒子との間で、互いの表面の一部で接触した第1の接触部を有しているものが含まれる
     複合セラミックス。
    A composite oxide phase of alumina particles, zirconia particles, and Si is included.
    The plurality of alumina particles include prismatic particles,
    The plurality of zirconia particles includes spherical particles,
    The composite ceramics include a composite ceramic having a first contact portion between the prismatic particle and the spherical particle, where the particles are in contact with each other at a portion of their surfaces.
  2.  複数の前記ジルコニア粒子の中には、前記ジルコニア粒子同士が、互いの表面の一部で接触した第2の接触部を有しているものが含まれる
     請求項1に記載の複合セラミックス。
    The composite ceramic according to claim 1 , wherein the plurality of zirconia particles include those having a second contact portion where the zirconia particles are in contact with each other at a part of their surfaces.
  3.  前記アルミナ粒子は、アスペクト比が1.5以上である
     請求項1または2に記載の複合セラミックス。
    The composite ceramic according to claim 1 or 2, wherein the alumina particles have an aspect ratio of 1.5 or more.
  4.  互いに接するようにして存在する3個の前記アルミナ粒子のいずれかに対して、前記球状の粒子が1個以上接している
     請求項1~3のいずれか1つに記載の複合セラミックス。
    4. The composite ceramic according to claim 1, wherein one or more of said spherical particles are in contact with any one of three of said alumina particles that are in contact with each other.
  5.  前記角柱状の粒子の表面を端面と側面とに分けたときに、前記第1の接触部は、前記端面よりも前記側面に多く存在する
     請求項1~4のいずれか1つに記載の複合セラミックス。
    5. The composite ceramic according to claim 1, wherein when a surface of the prismatic particle is divided into an end face and a side face, the first contact portion is present in a larger amount on the side face than on the end face.
  6.  前記Siの複合酸化物相は、前記アルミナ粒子および前記ジルコニア粒子を除く領域に存在しており、
     前記Siの複合酸化物相は、単位面積当たり1%以上7%以下の面積割合で存在する
     請求項1~5のいずれか1つに記載の複合セラミックス。
    the Si composite oxide phase is present in a region excluding the alumina particles and the zirconia particles,
    The composite ceramic according to any one of claims 1 to 5, wherein the Si composite oxide phase is present in an area ratio of 1% to 7% per unit area.
  7.  前記アルミナ粒子は、アスペクト比の異なる2つの群を有する
     請求項1~6のいずれか1つに記載の複合セラミックス。
    The composite ceramic according to any one of claims 1 to 6, wherein the alumina particles have two groups having different aspect ratios.
  8.  前記アルミナ粒子は60質量%以上85質量%以下、前記ジルコニア粒子は20質量%以上40質量%以下、前記Siの複合酸化物相は2.4質量%以上4.8質量%以下である
     請求項1~7のいずれか1つに記載の複合セラミックス。
    The composite ceramic according to any one of claims 1 to 7, wherein the alumina particles are 60 mass% or more and 85 mass% or less, the zirconia particles are 20 mass% or more and 40 mass% or less, and the Si composite oxide phase is 2.4 mass% or more and 4.8 mass% or less.
  9.  前記アルミナ粒子の体積分率は70%以上75%以下、前記ジルコニア粒子の体積分率は18%以上23%以下、前記Siの複合酸化物相の体積分率は4%以上11%以下である
     請求項1~8のいずれか1つに記載の複合セラミックス。
    The composite ceramic according to any one of claims 1 to 8, wherein the volume fraction of the alumina particles is 70% or more and 75% or less, the volume fraction of the zirconia particles is 18% or more and 23% or less, and the volume fraction of the Si composite oxide phase is 4% or more and 11% or less.
PCT/JP2023/035661 2022-09-29 2023-09-29 Composite ceramic WO2024071385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156868 2022-09-29
JP2022-156868 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071385A1 true WO2024071385A1 (en) 2024-04-04

Family

ID=90478136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035661 WO2024071385A1 (en) 2022-09-29 2023-09-29 Composite ceramic

Country Status (1)

Country Link
WO (1) WO2024071385A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159568A (en) * 1998-11-20 2000-06-13 Ngk Spark Plug Co Ltd Alumina-based sintered product and its production
WO2006080473A1 (en) * 2005-01-27 2006-08-03 Kyocera Corporation Composite ceramic and method for producing same
JP2011241131A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc Ceramic sintered body, light-reflecting article, and package for storing light-emitting element
WO2019208438A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
WO2020022425A1 (en) * 2018-07-27 2020-01-30 京セラ株式会社 Aluminous porcelain and ceramic heater
WO2020115868A1 (en) * 2018-12-06 2020-06-11 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor device
CN112142450A (en) * 2020-09-16 2020-12-29 南充三环电子有限公司 Zirconia composite alumina ceramic sintered body and preparation method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159568A (en) * 1998-11-20 2000-06-13 Ngk Spark Plug Co Ltd Alumina-based sintered product and its production
WO2006080473A1 (en) * 2005-01-27 2006-08-03 Kyocera Corporation Composite ceramic and method for producing same
JP2011241131A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc Ceramic sintered body, light-reflecting article, and package for storing light-emitting element
WO2019208438A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
WO2020022425A1 (en) * 2018-07-27 2020-01-30 京セラ株式会社 Aluminous porcelain and ceramic heater
WO2020115868A1 (en) * 2018-12-06 2020-06-11 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor device
CN112142450A (en) * 2020-09-16 2020-12-29 南充三环电子有限公司 Zirconia composite alumina ceramic sintered body and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Rice Comparison of physical property-porosity behaviour with minimum solid area models
Hynes et al. High‐Temperature Compressive Creep of Polycrystalline Mullite
EP3689838A1 (en) Ceramic, probe guidance component, probe card, and package inspecting socket
EP3418428B1 (en) Ceramic laminate, ceramic insulating substrate, and method for manufacturing ceramic laminate
JP6885972B2 (en) Wafer transfer holder
WO2014115855A1 (en) Bonding capillary
WO2024071385A1 (en) Composite ceramic
WO2021070502A1 (en) High-ductility molybdenum alloy material
CN109942316A (en) A kind of enhancing zirconium dioxide surface hides the coating process of color porcelain shear strength
US9330806B2 (en) Semiconductive ceramic sintered compact
KR101335866B1 (en) Sintered compact and cutting tool
Konopka et al. Fracture toughness of Al2O3-Ni composites with nickel aluminate spinel phase NiAl2O4
US10586627B2 (en) Spark plug
JP3255011B2 (en) Multilayer ceramic electronic components
KR102097955B1 (en) Silicon nitride sintered body and cutting insert
JP5614603B1 (en) Bonding capillary
US5866491A (en) Low frictional ceramic material for sliding member
Bleay et al. Microstructure property relationship in Pyrex glass composites reinforced with Nicalon fibres
Yurdakul Production and characterization of ceramic bushings from alumina-toughened yttrium-stabilized tetragonal zirconia composites for projection welding applications
Yoshimatsu et al. Mechanical properties of zirconia-alumina composite ceramics prepared from Zr-Al metallo-organic compounds
JP7328360B2 (en) Heat resistant material
US20210101840A1 (en) Composite ceramic layered body and manufacturing method
WO2023232806A1 (en) Zirconia ceramics
Tokunaga et al. Effect of polymorphism of SiO2 addition on mechanical properties of Feldspathic porcelains
JP2812546B2 (en) Ceramics molded body and method of manufacturing ceramics molded body