WO2024071284A1 - Solar cell module production method and solar cell module - Google Patents

Solar cell module production method and solar cell module Download PDF

Info

Publication number
WO2024071284A1
WO2024071284A1 PCT/JP2023/035356 JP2023035356W WO2024071284A1 WO 2024071284 A1 WO2024071284 A1 WO 2024071284A1 JP 2023035356 W JP2023035356 W JP 2023035356W WO 2024071284 A1 WO2024071284 A1 WO 2024071284A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
solar cell
inter
cell
sealing
Prior art date
Application number
PCT/JP2023/035356
Other languages
French (fr)
Japanese (ja)
Inventor
広平 小島
淳一 中村
徹 寺下
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024071284A1 publication Critical patent/WO2024071284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/15Organic photovoltaic [PV] modules; Arrays of single organic PV cells comprising both organic PV cells and inorganic PV cells

Definitions

  • the present invention relates to a method for manufacturing a solar cell module and a solar cell module.
  • Solar cell modules are known in which solar cells are sealed with a protective member such as glass or transparent resin and a sealing material.
  • Known types of solar cells include crystalline silicon solar cells that use a crystalline silicon substrate as the photoelectric conversion layer, and thin-film solar cells that use an inorganic thin film such as an amorphous silicon thin film as the photoelectric conversion layer.
  • thin-film solar cells are perovskite thin-film solar cells that use a perovskite thin film, which is an organic thin film (more specifically, an organic/inorganic hybrid thin film), as the photoelectric conversion layer.
  • multi-junction solar cell modules have become known in which photoelectric conversion layers with different bandgaps are stacked together in order to effectively utilize light in a wide wavelength range and increase the conversion efficiency of solar cells.
  • Patent Document 1 discloses a multi-junction solar cell in which two photoelectric conversion units each containing a different photoelectric conversion layer are stacked in a single solar cell.
  • this solar cell for example, a bottom cell containing a crystalline silicon substrate as a photoelectric conversion layer and a top cell containing a perovskite thin film as a photoelectric conversion layer are stacked in a single solar cell.
  • Patent Document 2 discloses a multi-junction solar cell module in which two types of solar cells, each of which contains a different photoelectric conversion layer, are stacked.
  • a crystalline silicon solar cell string composed of a bottom cell containing a crystalline silicon substrate as a photoelectric conversion layer, and a perovskite solar cell string composed of a top cell containing a perovskite thin film as a photoelectric conversion layer are stacked as two types of solar cell strings.
  • the heat resistance characteristics of the two types of solar cells may differ.
  • the heat resistance characteristics of crystalline silicon solar cells and perovskite solar cells are different. Therefore, when sealing the crystalline silicon solar cells and the perovskite solar cells, the perovskite solar cells may be damaged by heat, resulting in a decrease in output.
  • the present invention aims to provide a method for manufacturing a solar cell module that suppresses damage caused by heat during sealing, and a solar cell module.
  • the manufacturing method of the solar cell module according to the present invention is a manufacturing method of a solar cell module including a backside protective member, a backside sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving side sealing material, and a light-receiving side protective member, and includes the steps of: (i) stacking the backside protective member, the backside sealing material, the crystalline silicon solar cell, and the first inter-cell sealing material in order, and sealing the crystalline silicon solar cell to form a crystalline silicon solar cell.
  • the method includes a first sealing step of obtaining a perovskite solar cell sealing body, (ii) a second sealing step of stacking the light-receiving side protection member, the light-receiving side sealing material, the perovskite solar cell, and the second inter-cell sealing material in order, and sealing the perovskite solar cell to obtain a perovskite solar cell sealing body, and (iii) a third sealing step of stacking the crystalline silicon solar cell sealing body and the perovskite solar cell sealing body so that the first inter-cell sealing material and the second inter-cell sealing material are in contact with each other, and sealing them.
  • the sealing temperature in the second sealing step and the third sealing step is lower than the sealing temperature in the first sealing step.
  • the solar cell module according to the present invention is a solar cell module manufactured by the above-mentioned solar cell module manufacturing method, in which a backside protective member, a backside sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving side sealing material, and a light-receiving side protective member are stacked in this order, and the materials of the second inter-cell sealing material and the light-receiving side sealing material are different from the materials of the first inter-cell sealing material and the backside sealing material.
  • Another solar cell module is a solar cell module manufactured by the above-mentioned solar cell module manufacturing method, in which a backside protective member, a backside sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving side sealing material, and a light-receiving side protective member are stacked in this order, the materials of the second inter-cell sealing material and the light-receiving side sealing material are the same as the materials of the first inter-cell sealing material and the backside sealing material, and the cross-linking state of the second inter-cell sealing material and the light-receiving side sealing material is lower than the cross-linking state of the first inter-cell sealing material and the backside sealing material.
  • the present invention makes it possible to suppress damage caused by heat during sealing in the manufacture of solar cell modules.
  • FIG. 1 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
  • 5A to 5C are diagrams illustrating a first sealing step in the method for manufacturing the solar cell module according to the embodiment.
  • 5A to 5C are diagrams illustrating a first sealing step in the method for manufacturing the solar cell module according to the embodiment.
  • 5A to 5C are diagrams illustrating a second sealing step in the method for manufacturing the solar cell module according to the embodiment.
  • 5A to 5C are diagrams illustrating a second sealing step in the method for manufacturing the solar cell module according to the embodiment.
  • 5A to 5C are diagrams illustrating a third sealing step in the method for manufacturing the solar cell module according to the embodiment.
  • FIG. 1 is a schematic cross-sectional view of a solar cell module according to this embodiment.
  • the solar cell module 100 shown in Fig. 1 is a multi-junction (tandem) solar cell module in which a crystalline silicon solar cell 10 and a perovskite solar cell 20 are stacked via a first inter-cell sealing material 31 and a second inter-cell sealing material 32.
  • the solar cell module 100 includes a back-side protection member 51, a back-side sealing material 41, the crystalline silicon solar cell 10, the first inter-cell sealing material 31, the second inter-cell sealing material 32, the perovskite solar cell 20, a light-receiving side sealing material 42, and a light-receiving side protection member 52.
  • the light-receiving side protective member 52 covers the surface (light-receiving surface) of the perovskite solar cell 20 via the light-receiving side sealing material 42, thereby protecting the perovskite solar cell 20.
  • the shape of the light-receiving side protective member 52 is not particularly limited, but a plate or sheet shape is preferable since it indirectly covers the planar light-receiving surface.
  • the material of the light-receiving side protection member 52 is not particularly limited, but is preferably a material that is translucent and resistant to ultraviolet light, such as glass, acrylic, PET, PC, or ETFE.
  • the back protection member 51 covers the back surface of the crystalline silicon solar cell 10 via the back sealing material 41, thereby protecting the crystalline silicon solar cell 10.
  • the shape of the back protection member 51 is not particularly limited, but a plate or sheet shape is preferable since it indirectly covers the planar back surface.
  • the material of the back protection member 51 is not particularly limited, but is preferably a material that prevents the intrusion of water, etc. (highly waterproof). Examples include glass, a back sheet, etc.
  • the light-receiving side sealing material 42 seals and protects the perovskite solar cell 20, and is interposed between the light-receiving side surface of the perovskite solar cell 20 and the light-receiving side protective member 52.
  • the shape of the light-receiving side sealing material 42 is not particularly limited, and may be, for example, a sheet-like shape. This is because a sheet-like shape makes it easier to cover the surface of the planar perovskite solar cell 20.
  • the material of the light-receiving side sealing material 42 is not particularly limited, but it is preferable that it has the property of transmitting light (translucency).
  • the material of the light-receiving side sealing material 42 is preferable to have adhesiveness that bonds the perovskite solar cell 20 and the light-receiving side protective member 52.
  • Examples of such materials include translucent resins such as polyolefin, ethylene/vinyl acetate copolymer (EVA), acrylic resin, epoxy resin, and silicone resin.
  • the light-receiving side sealing material 42 may contain a cross-linking agent.
  • the backside sealing material 41 seals and protects the crystalline silicon solar cell 10, and is interposed between the backside surface of the crystalline silicon solar cell 10 and the backside protection member 51.
  • the shape of the backside sealing material 41 is not particularly limited, and may be, for example, a sheet-like shape. This is because the sheet-like shape makes it easier to cover the backside of the planar crystalline silicon solar cell 10.
  • the material of the backside sealing material 41 is not particularly limited, but it is preferable that it has the property of transmitting light (translucency). In addition, the material of the backside sealing material 41 is preferable that it has the adhesiveness to bond the crystalline silicon solar cell 10 and the backside protective member 51. Examples of such materials include translucent resins such as polyolefin, ethylene/vinyl acetate copolymer (EVA), acrylic resin, epoxy resin, and silicone resin. In addition, the backside sealing material 41 may contain a crosslinking agent.
  • the first inter-cell sealing material 31 seals and protects the crystalline silicon solar cell 10, and is interposed between the light-receiving surface of the crystalline silicon solar cell 10 and the second inter-cell sealing material 32.
  • the shape of the first inter-cell sealing material 31 is not particularly limited, and may be, for example, a sheet-like shape. This is because the sheet-like shape makes it easier to cover the light-receiving surface of the planar crystalline silicon solar cell 10.
  • the material of the first inter-cell sealing material 31 is not particularly limited, but it is preferable that it has the property of transmitting light (translucency). In addition, it is preferable that the material of the first inter-cell sealing material 31 has adhesiveness that bonds the crystalline silicon solar cell 10 and the second inter-cell sealing material 32. Examples of such materials include translucent resins such as polyolefin and ethylene/vinyl acetate copolymer (EVA). In addition, the backside sealing material 41 may contain a cross-linking agent.
  • the second inter-cell sealing material 32 seals and protects the perovskite solar cell 20, and is interposed between the back surface of the perovskite solar cell 20 and the first inter-cell sealing material 31.
  • the shape of the second inter-cell sealing material 32 is not particularly limited, and may be, for example, a sheet-like shape. This is because the sheet-like shape makes it easier to cover the back surface of the planar perovskite solar cell 20.
  • the material of the second inter-cell sealing material 32 is not particularly limited, but preferably has the property of transmitting light (translucency).
  • the material of the second inter-cell sealing material 32 preferably has adhesive properties that allow the perovskite solar cell 20 and the first inter-cell sealing material 31 to bond together. Examples of such materials include translucent resins such as polyolefin, ethylene/vinyl acetate copolymer (EVA), acrylic resin, epoxy resin, and silicone resin.
  • the light-receiving side sealing material 42 may contain a cross-linking agent.
  • the materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be different from the materials of the first inter-cell sealing material 31 and the back-side sealing material 41.
  • the melting points of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be lower than the melting points of the first inter-cell sealing material 31 and the back-side sealing material 41. This allows the sealing temperature in the second and third sealing steps described below to be lower than the sealing temperature in the first sealing step.
  • the material of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be the same as the material of the first inter-cell sealing material 31 and the back-side sealing material 41.
  • the sealing temperature in the second and third sealing steps described below is lower than the sealing temperature in the first sealing step, the cross-linked state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 will be lower than the cross-linked state of the first inter-cell sealing material 31 and the back-side sealing material 41.
  • the crystalline silicon solar cell 10 includes a semiconductor substrate as a photoelectric conversion layer.
  • the semiconductor substrate absorbs light and generates photocarriers.
  • the semiconductor substrate is a crystalline silicon substrate such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate may have a pyramidal micro-uneven structure, known as a texture structure, on the light-receiving surface. This reduces the reflection of incident light on the light-receiving surface, improving the light trapping effect in the semiconductor substrate.
  • a pyramidal micro-uneven structure known as a texture structure
  • the semiconductor substrate may also have a pyramidal micro-uneven structure, known as a texture structure, on the back side. This increases the efficiency of collecting light that passes through the semiconductor substrate without being absorbed.
  • Crystalline silicon solar cell 10 may be a diffusion type cell in which a second conductivity type diffusion layer is provided on the light receiving surface side of a first conductivity type single crystal silicon substrate, or a heterojunction cell in which a silicon-based thin film is provided on both sides of a first conductivity type single crystal silicon substrate.
  • the crystalline silicon solar cell 10 has a conductive silicon-based thin film formed on the light-receiving surface side of the photoelectric conversion layer, and a conductive silicon-based thin film formed on the back side of the photoelectric conversion layer.
  • the single crystal silicon substrate may be either p-type or n-type. When comparing holes and electrons, electrons have a higher mobility, so when an n-type single crystal silicon substrate is used, the conversion characteristics are particularly excellent.
  • the conductive silicon-based thin film is a p-type silicon-based thin film or an n-type silicon-based thin film.
  • an intrinsic silicon-based thin film is provided between the single crystal silicon substrate as the photoelectric conversion layer and the conductive silicon-based thin film.
  • an intrinsic silicon-based thin film is provided on the surface of the single crystal silicon substrate, it is possible to effectively perform surface passivation while suppressing the diffusion of impurities into the single crystal silicon substrate.
  • an intrinsic amorphous silicon thin film as an intrinsic silicon-based thin film on the surface of the single crystal silicon substrate, a high passivation effect can be obtained for the surface of the single crystal silicon substrate.
  • the crystalline silicon solar cell 10 may be a double-sided electrode type (also called double-sided junction type) cell, or a back electrode type (also called back junction type or back contact type) cell. Note that a back electrode type cell can improve the output of the solar cell module and can also improve the design of the solar cell module compared to a double-sided electrode type cell.
  • the crystalline silicon solar cell 10 may be a large-sized semiconductor substrate (wafer) of a specified size (e.g., a 6-inch semi-square shape), or it may be a half-cut cell in which a large-sized semiconductor substrate (wafer) is cut in two.
  • a large-sized semiconductor substrate e.g., a 6-inch semi-square shape
  • a half-cut cell in which a large-sized semiconductor substrate (wafer) is cut in two.
  • the semiconductor substrate may have a pyramidal fine uneven structure, called a texture structure, on the light-receiving surface side. This allows the crystalline silicon solar cell 10 to have an uneven structure on the light-receiving surface side.
  • the perovskite solar cell 20 includes a thin-film semiconductor layer as a photoelectric conversion layer.
  • the semiconductor layer absorbs light and generates photocarriers.
  • the semiconductor layer has a band gap different from that of the semiconductor substrate of the crystalline silicon solar cell 10 described above. Therefore, the semiconductor substrate and the semiconductor layer have spectral sensitivity characteristics in different wavelength ranges. Therefore, in the solar cell module 100 in which the crystalline silicon solar cell 10 and the perovskite solar cell 20 described above are stacked, light with a wider wavelength can be contributed to photoelectric conversion.
  • examples of the thin film that constitutes the semiconductor layer include organic semiconductor thin films, and more specifically, organic-inorganic hybrid semiconductor thin films.
  • organic-inorganic hybrid semiconductor thin films include perovskite thin films that contain a photosensitive material with a perovskite crystal structure.
  • the compound constituting the perovskite crystal material is represented by the general formula R 1 NH 3 M 1 X 3 or HC(NH 2 ) 2 M 1 X 3.
  • R 1 is an alkyl group, preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group.
  • M 1 is a divalent metal ion, preferably Pb or Sn.
  • X is a halogen, and examples of such halogen include F, Cl, Br, and I. All three Xs may be the same halogen element, or multiple halogens may be mixed.
  • a preferred example of a compound constituting a perovskite crystal material is a compound represented by the formula CH 3 NH 3 Pb(I 1-x Br x ) 3 (where 0 ⁇ x ⁇ 1).
  • the spectral sensitivity characteristics of the perovskite material can be changed by changing the type and ratio of halogen.
  • Perovskite semiconductor thin films can be formed by various dry processes or solution film formation such as spin coating.
  • the perovskite solar cell 20 may be formed on a highly transparent film-like substrate.
  • substrate materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), glass, etc.
  • the perovskite solar cell 20 has a perovskite layer as a photoelectric conversion layer and a charge transport layer.
  • One of the charge transport layers is a hole transport layer, and the other is an electron transport layer.
  • Examples of materials for the hole transport layer include polythiophene derivatives such as poly-3-hexylthiophene (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT), fluorene derivatives such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), carbazole derivatives such as polyvinylcarbazole, triphenylamine derivatives, diphenylamine derivatives, polysilane derivatives, and polyaniline derivatives.
  • P3HT poly-3-hexylthiophene
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • fluorene derivatives such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene
  • Examples of materials for the electron transport layer include metal oxides such as titanium oxide, zinc oxide, niobium oxide, zirconium oxide, and aluminum oxide.
  • the perovskite solar cell 20 is formed with electrodes for extracting photogenerated carriers.
  • the electrodes may include a transparent electrode and a metal electrode, or may include only a transparent electrode, or may include only a metal electrode.
  • Metal oxides such as ITO, zinc oxide, and tin oxide are preferably used as materials for the transparent electrodes.
  • Silver, copper, aluminum, and the like are preferably used as materials for the metal electrodes.
  • FIGS. 2 and 3 are diagrams showing a first sealing step in the method for manufacturing a solar cell module according to this embodiment
  • Figures 4 and 5 are diagrams showing a second sealing step in the method for manufacturing a solar cell module according to this embodiment.
  • Figure 6 is a diagram showing a third sealing step in the method for manufacturing a solar cell module according to this embodiment.
  • the back protection member 51, the back sealing material 41, the crystalline silicon solar cell 10, the first inter-cell sealing material 31, the release sheet 62, and the glass plate 61 are stacked in this order.
  • the stacked structure is heated and pressurized in a vacuum using, for example, a laminator device, to seal the crystalline silicon solar cell 10.
  • the glass plate 61 is peeled off by peeling off the release sheet 62, thereby obtaining the crystalline silicon solar cell sealed body 110 shown in FIG. 3 (first sealing process).
  • the sealing temperature in the first sealing step is, for example, 100°C or higher and 180°C or lower. That is, the sealing temperature in the first sealing step is higher than the sealing temperatures in the second and third sealing steps described below. This allows the sealing temperature in the first sealing step to be higher than the melting points of the back-side sealing material 41 and the first inter-cell sealing material 31, and also increases the cross-linking state of the back-side sealing material 41 and the first inter-cell sealing material 31. This allows the crystalline silicon solar cell 10 to be adequately sealed.
  • the release sheet 62 and the flat glass plate 61 do not necessarily have to be used. However, by using the flat glass plate 61, the first inter-cell sealing material 31 side can be made flat, and the generation of air bubbles on the first inter-cell sealing material 31 side in the third sealing step described below can be suppressed. Furthermore, by using the release sheet 62, the flat glass plate 61 can be easily peeled off.
  • the light-receiving side protective member 52, the light-receiving side sealing material 42, the perovskite solar cell 20, and the second inter-cell sealing material 32 are stacked in this order.
  • the stacked structure is heated and pressurized in a vacuum using, for example, a laminator device, to seal the perovskite solar cell 20. This results in the perovskite solar cell sealed body 120 shown in FIG. 5 (second sealing process).
  • the sealing temperature in the second sealing step is, for example, above room temperature and below 100°C. That is, the sealing temperature in the second sealing step is lower than the sealing temperature in the first sealing step. This makes it possible to prevent damage to the perovskite solar cell 20.
  • the cross-linking state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be low. This makes it possible to improve the adhesion between the second inter-cell sealing material 32 and the first inter-cell sealing material 31 in the third sealing step described below.
  • a release sheet and a glass flat plate may be used on the second inter-cell sealing material 32 side.
  • the crystalline silicon solar cell sealing body 110 and the perovskite solar cell sealing body 120 are stacked so that the first inter-cell sealing material 31 and the second inter-cell sealing material 32 are in contact with each other.
  • the stacked body is then sealed by, for example, heating and pressing under vacuum using a laminator device. This results in the solar cell module 100 shown in FIG. 1 (third sealing process).
  • the sealing temperature in the third sealing step is, for example, from room temperature to 100°C. In other words, the sealing temperature in the third sealing step is lower than the sealing temperature in the first sealing step. This makes it possible to prevent damage to the perovskite solar cell 20.
  • the cross-linked state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 will be lower than the cross-linked state of the first inter-cell sealing material 31 and the back-side sealing material 41.
  • the cross-linking rate is an example of an indicator of the cross-linking state of the sealing material.
  • the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is 60% or more and 90% or less
  • the cross-linking rate of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 is 0% or more and 50% or less.
  • the cure shrinkage of the sealing material caused by cross-linking can cause stress from the sealing material to the film-like substrate, resulting in undulations in the film-like substrate.
  • undulations occur in the film-like substrate, this can cause the wiring to peel off.
  • the cross-linking rate of the sealing material 32, 42 on the perovskite solar cell 20 side is low, between 0% and 50%, the cure shrinkage of the sealing material 32, 42 caused by cross-linking is suppressed, the generation of stress from the sealing material 32, 42 to the film-like substrate is suppressed, and the generation of undulations in the film-like substrate is suppressed. Therefore, peeling of the wiring caused by undulations in the film-like substrate can be suppressed, and a good appearance can be obtained.
  • the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is 60% or more, the sealing materials 31, 41 will not flow after the first sealing step, and therefore peeling and loss of sealing material between the crystalline silicon solar cell 10 and the first inter-cell sealing material 31, or between the crystalline silicon solar cell 10 and the back-side sealing material 41, which occurs due to the sealing materials 31, 41 flowing in the third sealing step, can be suppressed.
  • the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 exceeds 90%, the adhesive strength between the first inter-cell sealing material 31 and the second inter-cell sealing material 32 will decrease in the third sealing step.
  • the cross-linked state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 in the solar cell module 100 is lower than the cross-linked state of the first inter-cell sealing material 31 and the back-side sealing material 41.
  • the melting points of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be higher than the sealing temperatures in the second and third sealing steps.
  • the second sealing step and the third sealing step may be performed simultaneously.
  • the crystalline silicon solar cell 10 may be a back electrode type (also called a back junction type or back contact type) cell. This allows all wiring materials to be disposed on the back side, improving the flatness of the first inter-cell sealing material 31 side (because unevenness caused by the wiring materials is eliminated), and making it possible to suppress the generation of air bubbles on the first inter-cell sealing material 31 side in the third sealing step.
  • the sealing temperature in the second sealing step of sealing the perovskite solar cell and the third sealing step of sealing the perovskite solar cell and the crystalline silicon solar cell are lower than the sealing temperature in the first sealing step of sealing the crystalline silicon solar cell.
  • Example 1 Using the manufacturing method of the solar cell module of this embodiment, a solar cell module of this embodiment was fabricated as Example 1. Details of the solar cell module of Example 1 and the manufacturing method thereof are as follows. Material of rear protection member 51 and light-receiving side protection member 52: glass Material of first inter-cell sealing material 31 and rear sealing material 41: polyolefin resin, cross-linking rate 82% Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42: polyolefin resin, cross-linking rate 0% Perovskite solar cell 20: formed on a film-like substrate Temperature in the first sealing step: 160 degrees Temperature in the second and third sealing steps: 100 degrees
  • Example 2 The solar cell module and the manufacturing method thereof in the second embodiment are different from those in the first embodiment in the following respects.
  • Materials of the first inter-cell sealing material 31 and the back-side sealing material 41 polyolefin resin, cross-linking rate 70%
  • Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 polyolefin resin, cross-linking rate 9%
  • Temperature in the first sealing step 150 degrees
  • Temperature in the second and third sealing steps 120 degrees
  • Comparative Example 1 In Comparative Example 1, the solar cell module and the manufacturing method thereof differ from those in Example 1 in the following respects.
  • Materials of the first inter-cell sealing material 31 and the back-side sealing material 41 polyolefin resin, cross-linking rate 86%
  • Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 polyolefin resin, cross-linking rate 74%
  • Temperature in the second and third sealing steps 160 degrees
  • Comparative Example 2 In Comparative Example 2, the solar cell module and the manufacturing method thereof differ from those in Example 1 in the following respects.
  • Materials of the first inter-cell sealing material 31 and the back-side sealing material 41 polyolefin resin, cross-linking rate 0%
  • Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 polyolefin resin, cross-linking rate 0%
  • Temperature of the first sealing step 100 degrees
  • the second sealing temperature was high and the cross-linking rate of the sealing materials 32, 42 on the perovskite solar cell side was high at 74%, so that the curing shrinkage of the sealing material caused by cross-linking caused stress to be generated from the sealing material to the film-like substrate of the perovskite solar cell, and undulation occurred in the film-like substrate of the perovskite solar cell.
  • the second sealing temperature was low and the cross-linking rate of the sealing materials 32, 42 on the perovskite solar cell side was low at 0% or more and 50% or less, so that the curing shrinkage of the sealing materials 32, 42 caused by cross-linking was suppressed, the generation of stress from the sealing materials 32, 42 to the film-like substrate of the perovskite solar cell was suppressed, and undulation of the film-like substrate of the perovskite solar cell was suppressed.
  • the first sealing temperature was low, so in the first sealing step, the sealing material did not flow into the relatively large step in the wiring location of the crystalline silicon solar cell, and the sealing material came off at this step, resulting in poor appearance after sealing.
  • the first sealing temperature was high, so in the first sealing step, the sealing material came off at the relatively large step in the wiring location of the crystalline silicon solar cell, and the sealing material came off at this step, resulting in poor appearance after sealing.
  • the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is high, so the sealing materials 31, 41 do not flow after the first sealing step, and it is believed that peeling and loss of sealing material between the crystalline silicon solar cell 10 and the first inter-cell sealing material 31, or between the crystalline silicon solar cell 10 and the back-side sealing material 41, is suppressed.
  • the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is 90% or less, so it is believed that adhesive strength between the first inter-cell sealing material 31 and the second inter-cell sealing material 32 is obtained in the third sealing step.
  • Crystalline silicon solar cell 20 Perovskite solar cell 31 First inter-cell sealing material 32 Second inter-cell sealing material 41 Back side sealing material 42 Light-receiving side sealing material 51 Back side protection member 52 Light-receiving side protection member 61 Glass flat plate 62 Release sheet 100
  • Solar cell module 110 Crystalline silicon solar cell sealed body 120 Perovskite solar cell sealed body

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a solar cell module production method that minimizes damage from heat during sealing. This solar cell module production method comprises: a first sealing step for obtaining a crystal silicon-based solar cell sealed body by sequentially stacking a rear-side protective member 51, a rear-side sealing material 41, a crystal silicon-based solar cell 10, and a first inter-cell sealing material 31, and then by sealing the crystal silicon-based solar cell 10; a second sealing step for obtaining a perovskite solar cell sealed body by sequentially stacking a light-receiving-side protective member 52, a light-receiving-side sealing material 42, a perovskite-based solar cell 20, and a second inter-cell sealing material 32, and then by sealing the perovskite-based solar cell 20; and a third sealing step for stacking the crystal silicon-based solar cell sealed body and the perovskite solar cell sealed body, and then sealing the resulting product. The sealing temperatures in the second sealing step and the third sealing step are lower than the sealing temperature in the first sealing step.

Description

太陽電池モジュールの製造方法、および、太陽電池モジュールMethod for manufacturing solar cell module, and solar cell module
 本発明は、太陽電池モジュールの製造方法および太陽電池モジュールに関する。 The present invention relates to a method for manufacturing a solar cell module and a solar cell module.
 太陽電池セルを、ガラスまたは透明樹脂等の保護部材および封止材によって封止した太陽電池モジュールが知られている。太陽電池セルとしては、光電変換層として結晶シリコン基板を用いた結晶シリコン系太陽電池セル、光電変換層としてアモルファスシリコン薄膜等の無機系薄膜を用いた薄膜系太陽電池セルが知られている。また、薄膜系太陽電池として、光電変換層として有機系薄膜(詳細には、有機/無機ハイブリット系薄膜)であるペロブスカイト薄膜を用いたペロブスカイト薄膜系太陽電池セルが知られている。 Solar cell modules are known in which solar cells are sealed with a protective member such as glass or transparent resin and a sealing material. Known types of solar cells include crystalline silicon solar cells that use a crystalline silicon substrate as the photoelectric conversion layer, and thin-film solar cells that use an inorganic thin film such as an amorphous silicon thin film as the photoelectric conversion layer. Also known as thin-film solar cells are perovskite thin-film solar cells that use a perovskite thin film, which is an organic thin film (more specifically, an organic/inorganic hybrid thin film), as the photoelectric conversion layer.
 また、近年、広波長範囲の光を有効に利用して太陽電池セルの変換効率を高める目的で、バンドギャップが異なる光電変換層をスタックした多接合(タンデム)型太陽電池モジュールが知られている。 In recent years, multi-junction (tandem) solar cell modules have become known in which photoelectric conversion layers with different bandgaps are stacked together in order to effectively utilize light in a wide wavelength range and increase the conversion efficiency of solar cells.
 例えば、特許文献1には、単一の太陽電池セルにおいて、異なる光電変換層を含む2つの光電変換部をスタックした多接合型太陽電池セルが開示されている。この太陽電池セルでは、例えば、光電変換層として結晶シリコン基板を含むボトムセルと、光電変換層としてペロブスカイト薄膜を含むトップセルとが、単一の太陽電池セルにおいてスタックされている。 For example, Patent Document 1 discloses a multi-junction solar cell in which two photoelectric conversion units each containing a different photoelectric conversion layer are stacked in a single solar cell. In this solar cell, for example, a bottom cell containing a crystalline silicon substrate as a photoelectric conversion layer and a top cell containing a perovskite thin film as a photoelectric conversion layer are stacked in a single solar cell.
 一方、特許文献2には、異なる光電変換層をそれぞれ含む2種類の太陽電池セルをスタックした多接合型太陽電池モジュールが開示されている。この太陽電池モジュールでは、例えば、光電変換層として結晶シリコン基板を含むボトムセルから構成された結晶シリコン系太陽電池ストリングと、光電変換層としてペロブスカイト薄膜を含むトップセルから構成されたペロブスカイト系太陽電池ストリングとが、2種類の太陽電池ストリングとしてスタックされている。 On the other hand, Patent Document 2 discloses a multi-junction solar cell module in which two types of solar cells, each of which contains a different photoelectric conversion layer, are stacked. In this solar cell module, for example, a crystalline silicon solar cell string composed of a bottom cell containing a crystalline silicon substrate as a photoelectric conversion layer, and a perovskite solar cell string composed of a top cell containing a perovskite thin film as a photoelectric conversion layer are stacked as two types of solar cell strings.
特開2018-11058号公報JP 2018-11058 A 特開2018-157176号公報JP 2018-157176 A
 特許文献2に記載のように、異なる光電変換層をそれぞれ含む2種類の太陽電池セルをスタックした多接合型太陽電池モジュールでは、2種類の太陽電池セルの耐熱特性が異なることがある。例えば、結晶シリコン系太陽電池セルとペロブスカイト系太陽電池セルとでは、耐熱特性が異なる。そのため、結晶シリコン系太陽電池セルとペロブスカイト系太陽電池セルとを封止する際、熱によってペロブスカイト系太陽電池セルがダメージを受け、出力が低下してしまうことがあった。 As described in Patent Document 2, in a multi-junction solar cell module in which two types of solar cells, each containing a different photoelectric conversion layer, are stacked, the heat resistance characteristics of the two types of solar cells may differ. For example, the heat resistance characteristics of crystalline silicon solar cells and perovskite solar cells are different. Therefore, when sealing the crystalline silicon solar cells and the perovskite solar cells, the perovskite solar cells may be damaged by heat, resulting in a decrease in output.
 本発明は、封止時の熱によるダメージを抑制する太陽電池モジュールの製造方法および太陽電池モジュールを提供することを目的とする。 The present invention aims to provide a method for manufacturing a solar cell module that suppresses damage caused by heat during sealing, and a solar cell module.
 本発明に係る太陽電池モジュールの製造方法は、裏側保護部材と、裏側封止材と、結晶シリコン系太陽電池セルと、第1セル間封止材と、第2セル間封止材と、ペロブスカイト系太陽電池セルと、受光側封止材と、受光側保護部材とを備える太陽電池モジュールの製造方法であって、(i)前記裏側保護部材と、前記裏側封止材と、前記結晶シリコン系太陽電池セルと、前記第1セル間封止材とを順にスタックし、前記結晶シリコン系太陽電池セルを封止して結晶シリコン系太陽電池セル封止体を得る第1封止工程と、(ii)前記受光側保護部材と、前記受光側封止材と、前記ペロブスカイト系太陽電池セルと、前記第2セル間封止材とを順にスタックし、前記ペロブスカイト系太陽電池セルを封止してペロブスカイト太陽電池セル封止体を得る第2封止工程と、(iii)前記結晶シリコン系太陽電池セル封止体と前記ペロブスカイト太陽電池セル封止体とを、前記第1セル間封止材と前記第2セル間封止材とが接するようにスタックし、封止する第3封止工程とを含む。前記第2封止工程および前記第3封止工程における封止温度は、前記第1封止工程における封止温度よりも低い。 The manufacturing method of the solar cell module according to the present invention is a manufacturing method of a solar cell module including a backside protective member, a backside sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving side sealing material, and a light-receiving side protective member, and includes the steps of: (i) stacking the backside protective member, the backside sealing material, the crystalline silicon solar cell, and the first inter-cell sealing material in order, and sealing the crystalline silicon solar cell to form a crystalline silicon solar cell. The method includes a first sealing step of obtaining a perovskite solar cell sealing body, (ii) a second sealing step of stacking the light-receiving side protection member, the light-receiving side sealing material, the perovskite solar cell, and the second inter-cell sealing material in order, and sealing the perovskite solar cell to obtain a perovskite solar cell sealing body, and (iii) a third sealing step of stacking the crystalline silicon solar cell sealing body and the perovskite solar cell sealing body so that the first inter-cell sealing material and the second inter-cell sealing material are in contact with each other, and sealing them. The sealing temperature in the second sealing step and the third sealing step is lower than the sealing temperature in the first sealing step.
 本発明に係る太陽電池モジュールは、上記の太陽電池モジュールの製造方法によって製造された太陽電池モジュールであって、裏側保護部材と、裏側封止材と、結晶シリコン系太陽電池セルと、第1セル間封止材と、第2セル間封止材と、ペロブスカイト系太陽電池セルと、受光側封止材と、受光側保護部材とが順にスタックされており、前記第2セル間封止材および前記受光側封止材の材料は、前記第1セル間封止材および前記裏側封止材の材料と異なる。 The solar cell module according to the present invention is a solar cell module manufactured by the above-mentioned solar cell module manufacturing method, in which a backside protective member, a backside sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving side sealing material, and a light-receiving side protective member are stacked in this order, and the materials of the second inter-cell sealing material and the light-receiving side sealing material are different from the materials of the first inter-cell sealing material and the backside sealing material.
 本発明に係る別の太陽電池モジュールは、上記の太陽電池モジュールの製造方法によって製造された太陽電池モジュールであって、裏側保護部材と、裏側封止材と、結晶シリコン系太陽電池セルと、第1セル間封止材と、第2セル間封止材と、ペロブスカイト系太陽電池セルと、受光側封止材と、受光側保護部材とが順にスタックされており、前記第2セル間封止材および前記受光側封止材の材料は、前記第1セル間封止材および前記裏側封止材の材料と同じであり、前記第2セル間封止材および前記受光側封止材の架橋状態は、前記第1セル間封止材および前記裏側封止材の架橋状態よりも低い。 Another solar cell module according to the present invention is a solar cell module manufactured by the above-mentioned solar cell module manufacturing method, in which a backside protective member, a backside sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving side sealing material, and a light-receiving side protective member are stacked in this order, the materials of the second inter-cell sealing material and the light-receiving side sealing material are the same as the materials of the first inter-cell sealing material and the backside sealing material, and the cross-linking state of the second inter-cell sealing material and the light-receiving side sealing material is lower than the cross-linking state of the first inter-cell sealing material and the backside sealing material.
 本発明によれば、太陽電池モジュールの製造において、封止時の熱によるダメージを抑制することができる。 The present invention makes it possible to suppress damage caused by heat during sealing in the manufacture of solar cell modules.
本実施形態に係る太陽電池モジュールの概略断面図である。1 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention. 本実施形態に係る太陽電池モジュールの製造方法における第1封止工程を示す図である。5A to 5C are diagrams illustrating a first sealing step in the method for manufacturing the solar cell module according to the embodiment. 本実施形態に係る太陽電池モジュールの製造方法における第1封止工程を示す図である。5A to 5C are diagrams illustrating a first sealing step in the method for manufacturing the solar cell module according to the embodiment. 本実施形態に係る太陽電池モジュールの製造方法における第2封止工程を示す図である。5A to 5C are diagrams illustrating a second sealing step in the method for manufacturing the solar cell module according to the embodiment. 本実施形態に係る太陽電池モジュールの製造方法における第2封止工程を示す図である。5A to 5C are diagrams illustrating a second sealing step in the method for manufacturing the solar cell module according to the embodiment. 本実施形態に係る太陽電池モジュールの製造方法における第3封止工程を示す図である。5A to 5C are diagrams illustrating a third sealing step in the method for manufacturing the solar cell module according to the embodiment.
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Below, an example of an embodiment of the present invention will be described with reference to the attached drawings. Note that the same reference numerals will be used to refer to the same or equivalent parts in each drawing. For convenience, hatching and component reference numerals may be omitted, in which case other drawings should be referenced.
(太陽電池モジュール)
 図1は、本実施形態に係る太陽電池モジュールの概略断面図である。図1に示す太陽電池モジュール100は、結晶シリコン系太陽電池セル10とペロブスカイト系太陽電池セル20とが第1セル間封止材31および第2セル間封止材32を介してスタックされた多接合型(タンデム型)の太陽電池モジュールである。太陽電池モジュール100は、裏側保護部材51と、裏側封止材41と、結晶シリコン系太陽電池セル10と、第1セル間封止材31と、第2セル間封止材32と、ペロブスカイト系太陽電池セル20と、受光側封止材42と、受光側保護部材52とを備える。
(Solar cell module)
Fig. 1 is a schematic cross-sectional view of a solar cell module according to this embodiment. The solar cell module 100 shown in Fig. 1 is a multi-junction (tandem) solar cell module in which a crystalline silicon solar cell 10 and a perovskite solar cell 20 are stacked via a first inter-cell sealing material 31 and a second inter-cell sealing material 32. The solar cell module 100 includes a back-side protection member 51, a back-side sealing material 41, the crystalline silicon solar cell 10, the first inter-cell sealing material 31, the second inter-cell sealing material 32, the perovskite solar cell 20, a light-receiving side sealing material 42, and a light-receiving side protection member 52.
 受光側保護部材52は、受光側封止材42を介して、ペロブスカイト系太陽電池セル20の表面(受光面)を覆って、ペロブスカイト系太陽電池セル20を保護する。受光側保護部材52の形状としては、特に限定されるものではないが、面状の受光面を間接的に覆う点から、板状またはシート状が好ましい。 The light-receiving side protective member 52 covers the surface (light-receiving surface) of the perovskite solar cell 20 via the light-receiving side sealing material 42, thereby protecting the perovskite solar cell 20. The shape of the light-receiving side protective member 52 is not particularly limited, but a plate or sheet shape is preferable since it indirectly covers the planar light-receiving surface.
 受光側保護部材52の材料としては、特に限定されるものではないが、透光性を有しつつも紫外光に耐性の有る材料が好ましく、例えば、ガラス、アクリル、PET、PC、またはETFE等が挙げられる。 The material of the light-receiving side protection member 52 is not particularly limited, but is preferably a material that is translucent and resistant to ultraviolet light, such as glass, acrylic, PET, PC, or ETFE.
 裏側保護部材51は、裏側封止材41を介して、結晶シリコン系太陽電池セル10の裏面を覆って、結晶シリコン系太陽電池セル10を保護する。裏側保護部材51の形状としては、特に限定されるものではないが、面状の裏面を間接的に覆う点から、板状またはシート状が好ましい。 The back protection member 51 covers the back surface of the crystalline silicon solar cell 10 via the back sealing material 41, thereby protecting the crystalline silicon solar cell 10. The shape of the back protection member 51 is not particularly limited, but a plate or sheet shape is preferable since it indirectly covers the planar back surface.
 裏側保護部材51の材料としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材料が好ましい。例えば、ガラス、バックシート等が挙げられる。 The material of the back protection member 51 is not particularly limited, but is preferably a material that prevents the intrusion of water, etc. (highly waterproof). Examples include glass, a back sheet, etc.
 受光側封止材42は、ペロブスカイト系太陽電池セル20を封止して保護するもので、ペロブスカイト系太陽電池セル20の受光側の面と受光側保護部材52との間に介在する。受光側封止材42の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状のペロブスカイト系太陽電池セル20の表面を被覆しやすいためである。 The light-receiving side sealing material 42 seals and protects the perovskite solar cell 20, and is interposed between the light-receiving side surface of the perovskite solar cell 20 and the light-receiving side protective member 52. The shape of the light-receiving side sealing material 42 is not particularly limited, and may be, for example, a sheet-like shape. This is because a sheet-like shape makes it easier to cover the surface of the planar perovskite solar cell 20.
 受光側封止材42の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、受光側封止材42の材料は、ペロブスカイト系太陽電池セル20と受光側保護部材52とを接着させる接着性を有すると好ましい。このような材料としては、例えば、ポリオレフィン、エチレン/酢酸ビニル共重合体(EVA)、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂等の透光性樹脂が挙げられる。また、受光側封止材42は架橋剤を含んでいてもよい。 The material of the light-receiving side sealing material 42 is not particularly limited, but it is preferable that it has the property of transmitting light (translucency). In addition, the material of the light-receiving side sealing material 42 is preferable to have adhesiveness that bonds the perovskite solar cell 20 and the light-receiving side protective member 52. Examples of such materials include translucent resins such as polyolefin, ethylene/vinyl acetate copolymer (EVA), acrylic resin, epoxy resin, and silicone resin. In addition, the light-receiving side sealing material 42 may contain a cross-linking agent.
 裏側封止材41は、結晶シリコン系太陽電池セル10を封止して保護するもので、結晶シリコン系太陽電池セル10の裏側の面と裏側保護部材51との間に介在する。裏側封止材41の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の結晶シリコン系太陽電池セル10の裏面を被覆しやすいためである。 The backside sealing material 41 seals and protects the crystalline silicon solar cell 10, and is interposed between the backside surface of the crystalline silicon solar cell 10 and the backside protection member 51. The shape of the backside sealing material 41 is not particularly limited, and may be, for example, a sheet-like shape. This is because the sheet-like shape makes it easier to cover the backside of the planar crystalline silicon solar cell 10.
 裏側封止材41の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、裏側封止材41の材料は、結晶シリコン系太陽電池セル10と裏側保護部材51とを接着させる接着性を有すると好ましい。このような材料としては、例えば、ポリオレフィン、エチレン/酢酸ビニル共重合体(EVA)、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂等の透光性樹脂が挙げられる。また、裏側封止材41は架橋剤を含んでいてもよい。 The material of the backside sealing material 41 is not particularly limited, but it is preferable that it has the property of transmitting light (translucency). In addition, the material of the backside sealing material 41 is preferable that it has the adhesiveness to bond the crystalline silicon solar cell 10 and the backside protective member 51. Examples of such materials include translucent resins such as polyolefin, ethylene/vinyl acetate copolymer (EVA), acrylic resin, epoxy resin, and silicone resin. In addition, the backside sealing material 41 may contain a crosslinking agent.
 第1セル間封止材31は、結晶シリコン系太陽電池セル10を封止して保護するもので、結晶シリコン系太陽電池セル10の受光側の面と第2セル間封止材32との間に介在する。第1セル間封止材31の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の結晶シリコン系太陽電池セル10の受光面を被覆しやすいためである。 The first inter-cell sealing material 31 seals and protects the crystalline silicon solar cell 10, and is interposed between the light-receiving surface of the crystalline silicon solar cell 10 and the second inter-cell sealing material 32. The shape of the first inter-cell sealing material 31 is not particularly limited, and may be, for example, a sheet-like shape. This is because the sheet-like shape makes it easier to cover the light-receiving surface of the planar crystalline silicon solar cell 10.
 第1セル間封止材31の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、第1セル間封止材31の材料は、結晶シリコン系太陽電池セル10と第2セル間封止材32とを接着させる接着性を有すると好ましい。このような材料としては、例えば、ポリオレフィン、エチレン/酢酸ビニル共重合体(EVA)等の透光性樹脂が挙げられる。また、裏側封止材41は架橋剤を含んでいてもよい。 The material of the first inter-cell sealing material 31 is not particularly limited, but it is preferable that it has the property of transmitting light (translucency). In addition, it is preferable that the material of the first inter-cell sealing material 31 has adhesiveness that bonds the crystalline silicon solar cell 10 and the second inter-cell sealing material 32. Examples of such materials include translucent resins such as polyolefin and ethylene/vinyl acetate copolymer (EVA). In addition, the backside sealing material 41 may contain a cross-linking agent.
 第2セル間封止材32は、ペロブスカイト系太陽電池セル20を封止して保護するもので、ペロブスカイト系太陽電池セル20の裏側の面と第1セル間封止材31との間に介在する。第2セル間封止材32の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状のペロブスカイト系太陽電池セル20の裏面を被覆しやすいためである。 The second inter-cell sealing material 32 seals and protects the perovskite solar cell 20, and is interposed between the back surface of the perovskite solar cell 20 and the first inter-cell sealing material 31. The shape of the second inter-cell sealing material 32 is not particularly limited, and may be, for example, a sheet-like shape. This is because the sheet-like shape makes it easier to cover the back surface of the planar perovskite solar cell 20.
 第2セル間封止材32の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、第2セル間封止材32の材料は、ペロブスカイト系太陽電池セル20と第1セル間封止材31とを接着させる接着性を有すると好ましい。このような材料としては、例えば、ポリオレフィン、エチレン/酢酸ビニル共重合体(EVA)、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂等の透光性樹脂が挙げられる。また、受光側封止材42は架橋剤を含んでいてもよい。 The material of the second inter-cell sealing material 32 is not particularly limited, but preferably has the property of transmitting light (translucency). In addition, the material of the second inter-cell sealing material 32 preferably has adhesive properties that allow the perovskite solar cell 20 and the first inter-cell sealing material 31 to bond together. Examples of such materials include translucent resins such as polyolefin, ethylene/vinyl acetate copolymer (EVA), acrylic resin, epoxy resin, and silicone resin. In addition, the light-receiving side sealing material 42 may contain a cross-linking agent.
 第2セル間封止材32および受光側封止材42の材料は、第1セル間封止材31および裏側封止材41の材料と異なっていてもよい。すなわち、第2セル間封止材32および受光側封止材42の融点は、第1セル間封止材31および裏側封止材41の融点よりも低くてもよい。これにより、後述する第2封止工程および第3封止工程における封止温度を、第1封止工程における封止温度よりも低くすることができる。 The materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be different from the materials of the first inter-cell sealing material 31 and the back-side sealing material 41. In other words, the melting points of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be lower than the melting points of the first inter-cell sealing material 31 and the back-side sealing material 41. This allows the sealing temperature in the second and third sealing steps described below to be lower than the sealing temperature in the first sealing step.
 或いは、第2セル間封止材32および受光側封止材42の材料は、第1セル間封止材31および裏側封止材41の材料と同じであってもよい。この場合、後述する第2封止工程および第3封止工程における封止温度を、第1封止工程における封止温度よりも低くすると、第2セル間封止材32および受光側封止材42の架橋状態は、第1セル間封止材31および裏側封止材41の架橋状態よりも低くなる。 Alternatively, the material of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be the same as the material of the first inter-cell sealing material 31 and the back-side sealing material 41. In this case, if the sealing temperature in the second and third sealing steps described below is lower than the sealing temperature in the first sealing step, the cross-linked state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 will be lower than the cross-linked state of the first inter-cell sealing material 31 and the back-side sealing material 41.
<<結晶シリコン系太陽電池セル>>
 結晶シリコン系太陽電池セル10は、光電変換層として半導体基板を含む。半導体基板は光を吸収して、光キャリアを発生させる。半導体基板は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン基板である。
<<Crystalline silicon solar cells>>
The crystalline silicon solar cell 10 includes a semiconductor substrate as a photoelectric conversion layer. The semiconductor substrate absorbs light and generates photocarriers. The semiconductor substrate is a crystalline silicon substrate such as single crystal silicon or polycrystalline silicon.
 半導体基板は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、受光面において入射光の反射が低減し、半導体基板における光閉じ込め効果が向上する。 The semiconductor substrate may have a pyramidal micro-uneven structure, known as a texture structure, on the light-receiving surface. This reduces the reflection of incident light on the light-receiving surface, improving the light trapping effect in the semiconductor substrate.
 また、半導体基板は、裏面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、半導体基板に吸収されず通過してしまった光の回収効率が高まる。 The semiconductor substrate may also have a pyramidal micro-uneven structure, known as a texture structure, on the back side. This increases the efficiency of collecting light that passes through the semiconductor substrate without being absorbed.
 結晶シリコン系太陽電池セル10としては、第1導電型単結晶シリコン基板の受光面側に第2導電型の拡散層を設けた拡散型セルや、第1導電型単結晶シリコン基板の両面にシリコン系薄膜を設けたヘテロ接合セル等が挙げられる。 Crystalline silicon solar cell 10 may be a diffusion type cell in which a second conductivity type diffusion layer is provided on the light receiving surface side of a first conductivity type single crystal silicon substrate, or a heterojunction cell in which a silicon-based thin film is provided on both sides of a first conductivity type single crystal silicon substrate.
 単結晶シリコン基板の表裏にシリコン系薄膜を備えるヘテロ接合セルの場合、結晶シリコン系太陽電池セル10は、光電変換層の受光面側に形成された導電型シリコン系薄膜と、光電変換層の裏面側に形成された導電型シリコン系薄膜とを有する。 In the case of a heterojunction cell with silicon-based thin films on the front and back of a single crystal silicon substrate, the crystalline silicon solar cell 10 has a conductive silicon-based thin film formed on the light-receiving surface side of the photoelectric conversion layer, and a conductive silicon-based thin film formed on the back side of the photoelectric conversion layer.
 単結晶シリコン基板は、p型でもn型でもよい。正孔と電子とを比較した場合、電子の方が移動度が大きいため、n型単結晶シリコン基板を用いた場合は、特に変換特性に優れる。導電型シリコン系薄膜は、p型シリコン系薄膜またはn型シリコン系薄膜である。 The single crystal silicon substrate may be either p-type or n-type. When comparing holes and electrons, electrons have a higher mobility, so when an n-type single crystal silicon substrate is used, the conversion characteristics are particularly excellent. The conductive silicon-based thin film is a p-type silicon-based thin film or an n-type silicon-based thin film.
 光電変換層としての単結晶シリコン基板と導電型シリコン系薄膜との間には、真性シリコン系薄膜が設けられていることが好ましい。単結晶シリコン基板の表面に真性シリコン系薄膜が設けられることにより、単結晶シリコン基板への不純物の拡散を抑えつつ表面パッシベーションを有効に行うことができる。単結晶シリコン基板の表面に真性シリコン系薄膜として真性非晶質シリコン薄膜が設けられることにより、単結晶シリコン基板の表面に対する高いパッシベーション効果が得られる。 It is preferable that an intrinsic silicon-based thin film is provided between the single crystal silicon substrate as the photoelectric conversion layer and the conductive silicon-based thin film. By providing an intrinsic silicon-based thin film on the surface of the single crystal silicon substrate, it is possible to effectively perform surface passivation while suppressing the diffusion of impurities into the single crystal silicon substrate. By providing an intrinsic amorphous silicon thin film as an intrinsic silicon-based thin film on the surface of the single crystal silicon substrate, a high passivation effect can be obtained for the surface of the single crystal silicon substrate.
 結晶シリコン系太陽電池セル10は、両面電極型(両面接合型ともいう。)のセルであってもよいし、裏面電極型(裏面接合型、バックコンタクト型ともいう。)のセルであってもよい。なお、裏面電極型のセルの場合、両面電極型のセルと比較して、太陽電池モジュールの出力を向上することができ、また太陽電池モジュールの意匠性を向上することができる。 The crystalline silicon solar cell 10 may be a double-sided electrode type (also called double-sided junction type) cell, or a back electrode type (also called back junction type or back contact type) cell. Note that a back electrode type cell can improve the output of the solar cell module and can also improve the design of the solar cell module compared to a double-sided electrode type cell.
 結晶シリコン系太陽電池セル10は、規定サイズ(例えば、6インチのセミスクエア形状)の大判半導体基板(Wafer)であってもよいし、大判半導体基板(Wafer)を2つに切断したハーフカットセルであってもよい。 The crystalline silicon solar cell 10 may be a large-sized semiconductor substrate (wafer) of a specified size (e.g., a 6-inch semi-square shape), or it may be a half-cut cell in which a large-sized semiconductor substrate (wafer) is cut in two.
 上述したように、半導体基板は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、結晶シリコン系太陽電池セル10は、受光面側に凹凸構造を有してもよい。 As described above, the semiconductor substrate may have a pyramidal fine uneven structure, called a texture structure, on the light-receiving surface side. This allows the crystalline silicon solar cell 10 to have an uneven structure on the light-receiving surface side.
<<ペロブスカイト系太陽電池セル>>
 ペロブスカイト系太陽電池セル20は、光電変換層として薄膜の半導体層を含む。半導体層は光を吸収して、光キャリアを発生させる。半導体層は、上述した結晶シリコン系太陽電池セル10の半導体基板と異なるバンドギャップを有する。そのため、上述した半導体基板と半導体層とは、異なる波長範囲に分光感度特性を有する。したがって、上述した結晶シリコン系太陽電池セル10と、ペロブスカイト系太陽電池セル20とがスタックされた太陽電池モジュール100では、より広い波長の光を光電変換に寄与させることができる。
<<Perovskite-based solar cells>>
The perovskite solar cell 20 includes a thin-film semiconductor layer as a photoelectric conversion layer. The semiconductor layer absorbs light and generates photocarriers. The semiconductor layer has a band gap different from that of the semiconductor substrate of the crystalline silicon solar cell 10 described above. Therefore, the semiconductor substrate and the semiconductor layer have spectral sensitivity characteristics in different wavelength ranges. Therefore, in the solar cell module 100 in which the crystalline silicon solar cell 10 and the perovskite solar cell 20 described above are stacked, light with a wider wavelength can be contributed to photoelectric conversion.
 具体的には、半導体層を構成する薄膜としては、有機半導体薄膜、詳細には有機無機ハイブリッド半導体薄膜が挙げられる。有機無機ハイブリッド半導体薄膜としては、ペロブスカイト型結晶構造の感光性材料を含有するペロブスカイト薄膜が挙げられる。 Specifically, examples of the thin film that constitutes the semiconductor layer include organic semiconductor thin films, and more specifically, organic-inorganic hybrid semiconductor thin films. Examples of organic-inorganic hybrid semiconductor thin films include perovskite thin films that contain a photosensitive material with a perovskite crystal structure.
 ペロブスカイト型結晶材料を構成する化合物は、一般式RNHまたはHC(NHで表される。式中、Rはアルキル基であり、炭素数1~5のアルキル基が好ましく、特にメチル基が好ましい。Mは2価の金属イオンであり、PbやSnが好ましい。Xはハロゲンであり、F,Cl,Br,Iが挙げられる。なお、3個のXは、全て同一のハロゲン元素であってもよく、複数のハロゲンが混在していてもよい。 The compound constituting the perovskite crystal material is represented by the general formula R 1 NH 3 M 1 X 3 or HC(NH 2 ) 2 M 1 X 3. In the formula, R 1 is an alkyl group, preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group. M 1 is a divalent metal ion, preferably Pb or Sn. X is a halogen, and examples of such halogen include F, Cl, Br, and I. All three Xs may be the same halogen element, or multiple halogens may be mixed.
 ペロブスカイト型結晶材料を構成する化合物の好ましい例として、式CHNHPb(I1-xBrで(ただし、0≦x≦1)表される化合物が挙げられる。ペロブスカイト材料は、ハロゲンの種類や比率を変更することにより、分光感度特性を変化させることができる。ペロブスカイト半導体薄膜は、各種のドライプロセスや、スピンコート等の溶液製膜により形成できる。 A preferred example of a compound constituting a perovskite crystal material is a compound represented by the formula CH 3 NH 3 Pb(I 1-x Br x ) 3 (where 0≦x≦1). The spectral sensitivity characteristics of the perovskite material can be changed by changing the type and ratio of halogen. Perovskite semiconductor thin films can be formed by various dry processes or solution film formation such as spin coating.
 ペロブスカイト系太陽電池セル20は、高透過のフィルム状の基材上に形成されていてもよい。基材の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ガラス等が挙げられる。 The perovskite solar cell 20 may be formed on a highly transparent film-like substrate. Examples of substrate materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), glass, etc.
 ペロブスカイト系太陽電池セル20は、光電変換層としてのペロブスカイト層と、電荷輸送層を有する。電荷輸送層は、一方が正孔輸送層であり、他方が電子輸送層である。 The perovskite solar cell 20 has a perovskite layer as a photoelectric conversion layer and a charge transport layer. One of the charge transport layers is a hole transport layer, and the other is an electron transport layer.
 正孔輸送層の材料としては、例えば、ポリ-3-ヘキシルチオフェン(P3HT)、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等のポリチオフェン誘導体、2,2’,7,7’-テトラキス-(N,N-ジ-p-メトキシフェニルアミン)-9,9’-スピロビフルオレン(Spiro-OMeTAD)等のフルオレン誘導体、ポリビニルカルバゾール等のカルバゾール誘導体、トリフェニルアミン誘導体、ジフェニルアミン誘導体、ポリシラン誘導体、ポリアニリン誘導体等が挙げられる。 Examples of materials for the hole transport layer include polythiophene derivatives such as poly-3-hexylthiophene (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT), fluorene derivatives such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), carbazole derivatives such as polyvinylcarbazole, triphenylamine derivatives, diphenylamine derivatives, polysilane derivatives, and polyaniline derivatives.
 電子輸送層の材料としては、例えば、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化アルミニウム等の金属酸化物が挙げられる。 Examples of materials for the electron transport layer include metal oxides such as titanium oxide, zinc oxide, niobium oxide, zirconium oxide, and aluminum oxide.
 ペロブスカイト系太陽電池セル20には、光生成キャリアを取り出すための電極が形成されている。電極は、透明電極と金属電極とを含んでいてもよいし、透明電極のみを含んでいてもよいし、金属電極のみを含んでいてもよい。透明電極の材料としては、ITO、酸化亜鉛、酸化スズ等の金属酸化物が好ましく用いられる。金属電極の材料としては、銀、銅、アルミニウム等が好ましく用いられる。 The perovskite solar cell 20 is formed with electrodes for extracting photogenerated carriers. The electrodes may include a transparent electrode and a metal electrode, or may include only a transparent electrode, or may include only a metal electrode. Metal oxides such as ITO, zinc oxide, and tin oxide are preferably used as materials for the transparent electrodes. Silver, copper, aluminum, and the like are preferably used as materials for the metal electrodes.
(太陽電池モジュールの製造方法)
 次に、図2~図6を参照して、本実施形態に係る太陽電池モジュールの製造方法について説明する。図2および図3は、本実施形態に係る太陽電池モジュールの製造方法における第1封止工程を示す図であり、図4および図5は、本実施形態に係る太陽電池モジュールの製造方法における第2封止工程を示す図である。図6は、本実施形態に係る太陽電池モジュールの製造方法における第3封止工程を示す図である。
(Method of manufacturing solar cell module)
Next, a method for manufacturing a solar cell module according to this embodiment will be described with reference to Figures 2 to 6. Figures 2 and 3 are diagrams showing a first sealing step in the method for manufacturing a solar cell module according to this embodiment, and Figures 4 and 5 are diagrams showing a second sealing step in the method for manufacturing a solar cell module according to this embodiment. Figure 6 is a diagram showing a third sealing step in the method for manufacturing a solar cell module according to this embodiment.
 まず、図2に示すように、裏側保護部材51と、裏側封止材41と、結晶シリコン系太陽電池セル10と、第1セル間封止材31と、剥離シート62と、ガラス平板61とを、順にスタックする。次に、スタックしたそれを、例えばラミネータ装置を用いて真空状態で加熱および加圧プレスすることにより、結晶シリコン系太陽電池セル10を封止する。次に、剥離シート62を剥離することによってガラス平板61を剥離して、図3に示す結晶シリコン系太陽電池セル封止体110を得る(第1封止工程)。 First, as shown in FIG. 2, the back protection member 51, the back sealing material 41, the crystalline silicon solar cell 10, the first inter-cell sealing material 31, the release sheet 62, and the glass plate 61 are stacked in this order. Next, the stacked structure is heated and pressurized in a vacuum using, for example, a laminator device, to seal the crystalline silicon solar cell 10. Next, the glass plate 61 is peeled off by peeling off the release sheet 62, thereby obtaining the crystalline silicon solar cell sealed body 110 shown in FIG. 3 (first sealing process).
 第1封止工程における封止温度は、例えば100℃以上180℃以下である。すなわち、第1封止工程における封止温度は、後述する第2封止工程および第3封止工程における封止温度よりも高い。これにより、第1封止工程における封止温度を裏側封止材41および第1セル間封止材31の融点よりも高くすることができ、また、裏側封止材41および第1セル間封止材31の架橋状態を高めることができる。そのため、結晶シリコン系太陽電池セル10を十分に封止することができる。 The sealing temperature in the first sealing step is, for example, 100°C or higher and 180°C or lower. That is, the sealing temperature in the first sealing step is higher than the sealing temperatures in the second and third sealing steps described below. This allows the sealing temperature in the first sealing step to be higher than the melting points of the back-side sealing material 41 and the first inter-cell sealing material 31, and also increases the cross-linking state of the back-side sealing material 41 and the first inter-cell sealing material 31. This allows the crystalline silicon solar cell 10 to be adequately sealed.
 なお、剥離シート62およびガラス平板61は用いられなくてもよい。ただし、ガラス平板61を用いることにより、第1セル間封止材31側を平坦にすることができ、後述する第3封止工程における第1セル間封止材31側の気泡の発生を抑制することができる。また、剥離シート62を用いることにより、ガラス平板61の剥離を容易に行うことができる。 The release sheet 62 and the flat glass plate 61 do not necessarily have to be used. However, by using the flat glass plate 61, the first inter-cell sealing material 31 side can be made flat, and the generation of air bubbles on the first inter-cell sealing material 31 side in the third sealing step described below can be suppressed. Furthermore, by using the release sheet 62, the flat glass plate 61 can be easily peeled off.
 次に、図4に示すように、受光側保護部材52と、受光側封止材42と、ペロブスカイト系太陽電池セル20と、第2セル間封止材32とを順にスタックする。次に、スタックしたそれを、例えばラミネータ装置を用いて真空状態で加熱および加圧プレスすることにより、ペロブスカイト系太陽電池セル20を封止する。これにより、図5に示すペロブスカイト太陽電池セル封止体120を得る(第2封止工程)。 Next, as shown in FIG. 4, the light-receiving side protective member 52, the light-receiving side sealing material 42, the perovskite solar cell 20, and the second inter-cell sealing material 32 are stacked in this order. Next, the stacked structure is heated and pressurized in a vacuum using, for example, a laminator device, to seal the perovskite solar cell 20. This results in the perovskite solar cell sealed body 120 shown in FIG. 5 (second sealing process).
 第2封止工程における封止温度は、例えば室温以上100℃以下である。すなわち、第2封止工程における封止温度は、第1封止工程における封止温度よりも低い。これにより、ペロブスカイト系太陽電池セル20にダメージが生じることを抑制することができる。なお、第2セル間封止材32および受光側封止材42の架橋状態は低くてもよい。これにより、後述する第3封止工程において、第2セル間封止材32と第1セル間封止材31との密着性を高めることができる。 The sealing temperature in the second sealing step is, for example, above room temperature and below 100°C. That is, the sealing temperature in the second sealing step is lower than the sealing temperature in the first sealing step. This makes it possible to prevent damage to the perovskite solar cell 20. The cross-linking state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be low. This makes it possible to improve the adhesion between the second inter-cell sealing material 32 and the first inter-cell sealing material 31 in the third sealing step described below.
 なお、第2封止工程でも、第1封止工程と同様に、第2セル間封止材32側に剥離シートおよびガラス平板が用いられてもよい。 In the second sealing process, as in the first sealing process, a release sheet and a glass flat plate may be used on the second inter-cell sealing material 32 side.
 次に、図6に示すように、結晶シリコン系太陽電池セル封止体110とペロブスカイト太陽電池セル封止体120とを、第1セル間封止材31と第2セル間封止材32とが接するようにスタックする。次に、スタックしたそれを、例えばラミネータ装置を用いて真空状態で加熱および加圧プレスすることにより、封止する。これにより、図1に示す太陽電池モジュール100が得られる(第3封止工程)。 Next, as shown in FIG. 6, the crystalline silicon solar cell sealing body 110 and the perovskite solar cell sealing body 120 are stacked so that the first inter-cell sealing material 31 and the second inter-cell sealing material 32 are in contact with each other. The stacked body is then sealed by, for example, heating and pressing under vacuum using a laminator device. This results in the solar cell module 100 shown in FIG. 1 (third sealing process).
 第3封止工程における封止温度は、例えば室温以上100℃以下である。すなわち、第3封止工程における封止温度は、第1封止工程における封止温度よりも低い。これにより、ペロブスカイト系太陽電池セル20にダメージが生じることを抑制することができる。 The sealing temperature in the third sealing step is, for example, from room temperature to 100°C. In other words, the sealing temperature in the third sealing step is lower than the sealing temperature in the first sealing step. This makes it possible to prevent damage to the perovskite solar cell 20.
 なお、第2セル間封止材32および受光側封止材42の材料が、第1セル間封止材31および裏側封止材41の材料と同じである場合、太陽電池モジュール100において、第2セル間封止材32および受光側封止材42の架橋状態は、第1セル間封止材31および裏側封止材41の架橋状態よりも低くなる。 In addition, if the materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 are the same as the materials of the first inter-cell sealing material 31 and the back-side sealing material 41, in the solar cell module 100, the cross-linked state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 will be lower than the cross-linked state of the first inter-cell sealing material 31 and the back-side sealing material 41.
 封止材の架橋状態の指標としては、例えば架橋率(ゲル分率)が挙げられる。例えば、第1セル間封止材31および裏側封止材41の架橋率は60%以上90%以下であり、第2セル間封止材32および受光側封止材42の架橋率は0%以上50%以下であると好ましい。 The cross-linking rate (gel fraction) is an example of an indicator of the cross-linking state of the sealing material. For example, it is preferable that the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is 60% or more and 90% or less, and the cross-linking rate of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 is 0% or more and 50% or less.
 ここで、上述したようにペロブスカイト系太陽電池セルをフィルム状の基材上に形成する場合、封止工程において、架橋に起因する封止材の硬化収縮により、封止材からフィルム状の基材に応力が発生し、フィルム状の基材にうねりが発生することがある。フィルム状の基材にうねりが発生すると、配線の剥がれが発生することがある。 When forming a perovskite solar cell on a film-like substrate as described above, during the sealing process, the cure shrinkage of the sealing material caused by cross-linking can cause stress from the sealing material to the film-like substrate, resulting in undulations in the film-like substrate. When undulations occur in the film-like substrate, this can cause the wiring to peel off.
 この点に関し、ペロブスカイト系太陽電池セル20側の封止材32,42の架橋率が0%以上50%以下と低いと、架橋に起因する封止材32,42の硬化収縮が抑制され、封止材32,42からフィルム状の基材への応力の発生が抑制され、フィルム状の基材のうねりの発生が抑制される。そのため、フィルム状の基材のうねりによる配線の剥がれを抑制することができ、また、良好な外観を得ることができる。 In this regard, if the cross-linking rate of the sealing material 32, 42 on the perovskite solar cell 20 side is low, between 0% and 50%, the cure shrinkage of the sealing material 32, 42 caused by cross-linking is suppressed, the generation of stress from the sealing material 32, 42 to the film-like substrate is suppressed, and the generation of undulations in the film-like substrate is suppressed. Therefore, peeling of the wiring caused by undulations in the film-like substrate can be suppressed, and a good appearance can be obtained.
 第1セル間封止材31および裏側封止材41の架橋率が60%以上であると、第1封止工程後において封止材31,41は流動しなくなるため、第3封止工程において封止材31,41が流動することによって発生する結晶シリコン系太陽電池セル10と第1セル間封止材31間、または結晶シリコン系太陽電池セル10と裏側封止材41間の剥離および封止材抜けを抑制することができる。なお、第1セル間封止材31および裏側封止材41の架橋率が90%を超えると、第3封止工程において第1セル間封止材31と第2セル間封止材32との接着強度が低下する。 If the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is 60% or more, the sealing materials 31, 41 will not flow after the first sealing step, and therefore peeling and loss of sealing material between the crystalline silicon solar cell 10 and the first inter-cell sealing material 31, or between the crystalline silicon solar cell 10 and the back-side sealing material 41, which occurs due to the sealing materials 31, 41 flowing in the third sealing step, can be suppressed. Note that if the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 exceeds 90%, the adhesive strength between the first inter-cell sealing material 31 and the second inter-cell sealing material 32 will decrease in the third sealing step.
 一方、第2セル間封止材32および受光側封止材42の材料が、第1セル間封止材31および裏側封止材41の材料と異なり、第2セル間封止材32および受光側封止材42の融点が、第1セル間封止材31および裏側封止材41の融点よりも低い場合でも、太陽電池モジュール100において、第2セル間封止材32および受光側封止材42の架橋状態は、第1セル間封止材31および裏側封止材41の架橋状態よりも低くなることが好ましい。この場合、例えば、第2セル間封止材32および受光側封止材42の融点が、第2封止工程および第3封止工程の封止温度よりも高くてもよい。 On the other hand, even if the materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 are different from the materials of the first inter-cell sealing material 31 and the back-side sealing material 41 and the melting points of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 are lower than the melting points of the first inter-cell sealing material 31 and the back-side sealing material 41, it is preferable that the cross-linked state of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 in the solar cell module 100 is lower than the cross-linked state of the first inter-cell sealing material 31 and the back-side sealing material 41. In this case, for example, the melting points of the second inter-cell sealing material 32 and the light-receiving side sealing material 42 may be higher than the sealing temperatures in the second and third sealing steps.
 なお、上述した第2封止工程と第3封止工程とは、同時に行われてもよい。
 また、結晶シリコン系太陽電池セル10は、裏面電極型(裏面接合型、バックコンタクト型ともいう。)のセルであってもよい。これにより、配線材を全て裏側に配置することができ、(配線材由来の凹凸が無くなるため)第1セル間封止材31側の平坦性が上がり、第3封止工程での第1セル間封止材31側の気泡の発生を抑制することが可能となる。
The second sealing step and the third sealing step may be performed simultaneously.
Furthermore, the crystalline silicon solar cell 10 may be a back electrode type (also called a back junction type or back contact type) cell. This allows all wiring materials to be disposed on the back side, improving the flatness of the first inter-cell sealing material 31 side (because unevenness caused by the wiring materials is eliminated), and making it possible to suppress the generation of air bubbles on the first inter-cell sealing material 31 side in the third sealing step.
 以上説明したように、本実施形態の太陽電池モジュール100の製造方法によれば、ペロブスカイト系太陽電池セルを封止する第2封止工程における封止温度、および、ペロブスカイト系太陽電池セルおよび結晶シリコン系太陽電池セルを封止する第3封止工程における封止温度は、結晶シリコン系太陽電池セルを封止する第1封止工程における封止温度よりも低い。これにより、結晶シリコン系太陽電池セルとペロブスカイト系太陽電池セルとを封止する際、熱によってペロブスカイト系太陽電池セルがダメージを受けることを抑制することができ、太陽電池モジュールの出力が低下することを抑制することができる。 As described above, according to the manufacturing method of the solar cell module 100 of this embodiment, the sealing temperature in the second sealing step of sealing the perovskite solar cell and the third sealing step of sealing the perovskite solar cell and the crystalline silicon solar cell are lower than the sealing temperature in the first sealing step of sealing the crystalline silicon solar cell. This makes it possible to prevent the perovskite solar cell from being damaged by heat when sealing the crystalline silicon solar cell and the perovskite solar cell, and to prevent a decrease in the output of the solar cell module.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment and various modifications and variations are possible.
 以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically explained below based on examples, but the present invention is not limited to the following examples.
(実施例1)
 本実施形態の太陽電池モジュールの製造方法を用いて、本実施形態の太陽電池モジュールを実施例1として作製した。実施例1の太陽電池モジュールおよびその製造方法の詳細は以下の通りである。
裏側保護部材51および受光側保護部材52の材料:ガラス
第1セル間封止材31および裏側封止材41の材料:ポリオレフィン系樹脂、架橋率82%
第2セル間封止材32および受光側封止材42の材料:ポリオレフィン系樹脂、架橋率0%
ペロブスカイト系太陽電池セル20:フィルム状の基材上に形成
第1封止工程の温度:160度
第2封止工程および第3封止工程の温度:100度
Example 1
Using the manufacturing method of the solar cell module of this embodiment, a solar cell module of this embodiment was fabricated as Example 1. Details of the solar cell module of Example 1 and the manufacturing method thereof are as follows.
Material of rear protection member 51 and light-receiving side protection member 52: glass Material of first inter-cell sealing material 31 and rear sealing material 41: polyolefin resin, cross-linking rate 82%
Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42: polyolefin resin, cross-linking rate 0%
Perovskite solar cell 20: formed on a film-like substrate Temperature in the first sealing step: 160 degrees Temperature in the second and third sealing steps: 100 degrees
(実施例2)
 実施例2では、実施例1の太陽電池モジュールおよびその製造方法において、以下の点が異なる。
第1セル間封止材31および裏側封止材41の材料:ポリオレフィン系樹脂、架橋率70%
第2セル間封止材32および受光側封止材42の材料:ポリオレフィン系樹脂、架橋率9%
第1封止工程の温度:150度
第2封止工程および第3封止工程の温度:120度
Example 2
The solar cell module and the manufacturing method thereof in the second embodiment are different from those in the first embodiment in the following respects.
Materials of the first inter-cell sealing material 31 and the back-side sealing material 41: polyolefin resin, cross-linking rate 70%
Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42: polyolefin resin, cross-linking rate 9%
Temperature in the first sealing step: 150 degrees Temperature in the second and third sealing steps: 120 degrees
(比較例1)
 比較例1では、実施例1の太陽電池モジュールおよびその製造方法において、以下の点が異なる。
第1セル間封止材31および裏側封止材41の材料:ポリオレフィン系樹脂、架橋率86%
第2セル間封止材32および受光側封止材42の材料:ポリオレフィン系樹脂、架橋率74%
第2封止工程および第3封止工程の温度:160度
(Comparative Example 1)
In Comparative Example 1, the solar cell module and the manufacturing method thereof differ from those in Example 1 in the following respects.
Materials of the first inter-cell sealing material 31 and the back-side sealing material 41: polyolefin resin, cross-linking rate 86%
Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42: polyolefin resin, cross-linking rate 74%
Temperature in the second and third sealing steps: 160 degrees
(比較例2)
 比較例2では、実施例1の太陽電池モジュールおよびその製造方法において、以下の点が異なる。
第1セル間封止材31および裏側封止材41の材料:ポリオレフィン系樹脂、架橋率0%
第2セル間封止材32および受光側封止材42の材料:ポリオレフィン系樹脂、架橋率0%
第1封止工程の温度:100度
(Comparative Example 2)
In Comparative Example 2, the solar cell module and the manufacturing method thereof differ from those in Example 1 in the following respects.
Materials of the first inter-cell sealing material 31 and the back-side sealing material 41: polyolefin resin, cross-linking rate 0%
Materials of the second inter-cell sealing material 32 and the light-receiving side sealing material 42: polyolefin resin, cross-linking rate 0%
Temperature of the first sealing step: 100 degrees
(評価)
 実施例および比較例の太陽電池モジュールにおいて、封止後のペロブスカイトのうねりの有無を目視で確認した。また、実施例および比較例の太陽電池モジュールにおいて、封止後の外観不良(封止材抜け)の有無を目視で確認した。これらの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(evaluation)
In the solar cell modules of the examples and the comparative examples, the presence or absence of waviness of the perovskite after sealing was visually confirmed. In addition, in the solar cell modules of the examples and the comparative examples, the presence or absence of appearance defects (missing sealing material) after sealing was visually confirmed. These evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1では、第2封止温度が高く、ペロブスカイト系太陽電池セル側の封止材32,42の架橋率が74%と高いため、架橋に起因する封止材の硬化収縮により、封止材からペロブスカイト系太陽電池セルのフィルム状の基材に応力が発生し、ペロブスカイト系太陽電池セルのフィルム状の基材にうねりが発生した。これに対して、実施例1、2では、第2封止温度が低く、ペロブスカイト系太陽電池セル側の封止材32,42の架橋率が0%以上50%以下と低いため、架橋に起因する封止材32,42の硬化収縮が抑制され、封止材32,42からペロブスカイト系太陽電池セルのフィルム状の基材への応力の発生が抑制され、ペロブスカイト系太陽電池セルのフィルム状の基材のうねりの発生が抑制された。 As shown in Table 1, in Comparative Example 1, the second sealing temperature was high and the cross-linking rate of the sealing materials 32, 42 on the perovskite solar cell side was high at 74%, so that the curing shrinkage of the sealing material caused by cross-linking caused stress to be generated from the sealing material to the film-like substrate of the perovskite solar cell, and undulation occurred in the film-like substrate of the perovskite solar cell. In contrast, in Examples 1 and 2, the second sealing temperature was low and the cross-linking rate of the sealing materials 32, 42 on the perovskite solar cell side was low at 0% or more and 50% or less, so that the curing shrinkage of the sealing materials 32, 42 caused by cross-linking was suppressed, the generation of stress from the sealing materials 32, 42 to the film-like substrate of the perovskite solar cell was suppressed, and undulation of the film-like substrate of the perovskite solar cell was suppressed.
 比較例2では、第1封止温度が低いため、第1封止工程において、結晶シリコン系太陽電池セルの配線箇所における比較的に大きな段差部分に封止材が流れず、この段差部分に封止材抜けが発生し、封止後の外観不良が発生した。これに対して、実施例1、2では、第1封止温度が高いため、第1封止工程において、結晶シリコン系太陽電池セルの配線箇所における比較的に大きな段差部分に封止材が流れ、この段差部分に封止材抜けの発生が抑制され、封止後の外観不良の発生が抑制された。 In Comparative Example 2, the first sealing temperature was low, so in the first sealing step, the sealing material did not flow into the relatively large step in the wiring location of the crystalline silicon solar cell, and the sealing material came off at this step, resulting in poor appearance after sealing. In contrast, in Examples 1 and 2, the first sealing temperature was high, so in the first sealing step, the sealing material came off at the relatively large step in the wiring location of the crystalline silicon solar cell, and the sealing material came off at this step, resulting in poor appearance after sealing.
 また、実施例1、2では、第1セル間封止材31および裏側封止材41の架橋率が高いため、第1封止工程後において封止材31,41が流動しなくなり、結晶シリコン系太陽電池セル10と第1セル間封止材31間、または結晶シリコン系太陽電池セル10と裏側封止材41間の剥離および封止材抜けが抑制されると考えられる。また、実施例1、2では、第1セル間封止材31および裏側封止材41の架橋率が90%以下であるため、第3封止工程において第1セル間封止材31と第2セル間封止材32との接着強度が得られると考えられる。 In addition, in Examples 1 and 2, the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is high, so the sealing materials 31, 41 do not flow after the first sealing step, and it is believed that peeling and loss of sealing material between the crystalline silicon solar cell 10 and the first inter-cell sealing material 31, or between the crystalline silicon solar cell 10 and the back-side sealing material 41, is suppressed. In addition, in Examples 1 and 2, the cross-linking rate of the first inter-cell sealing material 31 and the back-side sealing material 41 is 90% or less, so it is believed that adhesive strength between the first inter-cell sealing material 31 and the second inter-cell sealing material 32 is obtained in the third sealing step.
 10 結晶シリコン系太陽電池セル
 20 ペロブスカイト系太陽電池セル
 31 第1セル間封止材
 32 第2セル間封止材
 41 裏側封止材
 42 受光側封止材
 51 裏側保護部材
 52 受光側保護部材
 61 ガラス平板
 62 剥離シート
 100 太陽電池モジュール
 110 結晶シリコン系太陽電池セル封止体
 120 ペロブスカイト太陽電池セル封止体
REFERENCE SIGNS LIST 10 Crystalline silicon solar cell 20 Perovskite solar cell 31 First inter-cell sealing material 32 Second inter-cell sealing material 41 Back side sealing material 42 Light-receiving side sealing material 51 Back side protection member 52 Light-receiving side protection member 61 Glass flat plate 62 Release sheet 100 Solar cell module 110 Crystalline silicon solar cell sealed body 120 Perovskite solar cell sealed body

Claims (8)

  1.  裏側保護部材と、裏側封止材と、結晶シリコン系太陽電池セルと、第1セル間封止材と、第2セル間封止材と、ペロブスカイト系太陽電池セルと、受光側封止材と、受光側保護部材とを備える太陽電池モジュールの製造方法であって、
     前記裏側保護部材と、前記裏側封止材と、前記結晶シリコン系太陽電池セルと、前記第1セル間封止材とを順にスタックし、前記結晶シリコン系太陽電池セルを封止して結晶シリコン系太陽電池セル封止体を得る第1封止工程と、
     前記受光側保護部材と、前記受光側封止材と、前記ペロブスカイト系太陽電池セルと、前記第2セル間封止材とを順にスタックし、前記ペロブスカイト系太陽電池セルを封止してペロブスカイト太陽電池セル封止体を得る第2封止工程と、
     前記結晶シリコン系太陽電池セル封止体と前記ペロブスカイト太陽電池セル封止体とを、前記第1セル間封止材と前記第2セル間封止材とが接するようにスタックし、封止する第3封止工程と、
    を含み、
     前記第2封止工程および前記第3封止工程における封止温度は、前記第1封止工程における封止温度よりも低い、
    太陽電池モジュールの製造方法。
    A method for manufacturing a solar cell module including a back-side protective member, a back-side sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving-side sealing material, and a light-receiving-side protective member,
    a first sealing step of sequentially stacking the backside protection member, the backside sealing material, the crystalline silicon solar cell, and the first inter-cell sealing material, and sealing the crystalline silicon solar cell to obtain a crystalline silicon solar cell sealed body;
    a second sealing step of sequentially stacking the light-receiving-side protection member, the light-receiving-side sealing material, the perovskite solar cell, and the second inter-cell sealing material, and sealing the perovskite solar cell to obtain a sealed perovskite solar cell body;
    a third sealing step of stacking and sealing the crystalline silicon solar cell sealing body and the perovskite solar cell sealing body such that the first inter-cell sealing material and the second inter-cell sealing material are in contact with each other;
    Including,
    a sealing temperature in the second sealing step and the third sealing step is lower than a sealing temperature in the first sealing step;
    A method for manufacturing a solar cell module.
  2.  前記第2セル間封止材および前記受光側封止材の材料は、前記第1セル間封止材および前記裏側封止材の材料と異なり、
     前記第2セル間封止材および前記受光側封止材の融点は、前記第1セル間封止材および前記裏側封止材の融点よりも低い、
    請求項1に記載の太陽電池モジュールの製造方法。
    the second inter-cell sealing material and the light-receiving side sealing material are made of different materials than the first inter-cell sealing material and the back-side sealing material,
    the melting points of the second inter-cell sealing material and the light-receiving side sealing material are lower than the melting points of the first inter-cell sealing material and the back-side sealing material;
    The method for manufacturing the solar cell module according to claim 1 .
  3.  前記第2セル間封止材および前記受光側封止材の材料は、前記第1セル間封止材および前記裏側封止材の材料と同じであり、
     前記第2セル間封止材および前記受光側封止材の架橋状態は、前記第1セル間封止材および前記裏側封止材の架橋状態よりも低い、
    請求項1に記載の太陽電池モジュールの製造方法。
    the second inter-cell sealing material and the light-receiving side sealing material are made of the same material as the first inter-cell sealing material and the back-side sealing material,
    a cross-linked state of the second inter-cell sealing material and the light-receiving side sealing material is lower than a cross-linked state of the first inter-cell sealing material and the back-side sealing material;
    The method for manufacturing the solar cell module according to claim 1 .
  4.  前記第1セル間封止材および前記裏側封止材の架橋率は60%以上90%以下であり、
     前記第2セル間封止材および前記受光側封止材の架橋率は0%以上50%以下である、
    請求項3に記載の太陽電池モジュールの製造方法。
    the cross-linking rate of the first inter-cell sealing material and the back-side sealing material is 60% or more and 90% or less;
    a cross-linking rate of the second inter-cell sealing material and the light-receiving side sealing material is 0% or more and 50% or less;
    The method for manufacturing the solar cell module according to claim 3 .
  5.  前記第1封止工程では、
      前記裏側保護部材と、前記裏側封止材と、前記結晶シリコン系太陽電池セルと、前記第1セル間封止材と、剥離シートと、ガラス平板とを順にスタックし、前記結晶シリコン系太陽電池セルを封止し、
      前記剥離シートを剥離することによって前記ガラス平板を剥離して、前記結晶シリコン系太陽電池セル封止体を得る、
    請求項1に記載の太陽電池モジュールの製造方法。
    In the first sealing step,
    The back side protection member, the back side sealing material, the crystalline silicon solar cell, the first inter-cell sealing material, a release sheet, and a glass plate are stacked in this order to seal the crystalline silicon solar cell;
    The release sheet is peeled off to peel off the glass plate, thereby obtaining the crystalline silicon solar cell sealed body.
    The method for manufacturing the solar cell module according to claim 1 .
  6.  前記結晶シリコン系太陽電池セルは、裏面電極型の太陽電池セルである、請求項1に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 1, wherein the crystalline silicon solar cell is a back electrode type solar cell.
  7.  請求項1、2、5、6のいずれか1項に記載の太陽電池モジュールの製造方法によって製造された太陽電池モジュールであって、
     裏側保護部材と、裏側封止材と、結晶シリコン系太陽電池セルと、第1セル間封止材と、第2セル間封止材と、ペロブスカイト系太陽電池セルと、受光側封止材と、受光側保護部材とが順にスタックされており、
     前記第2セル間封止材および前記受光側封止材の材料は、前記第1セル間封止材および前記裏側封止材の材料と異なる、
    太陽電池モジュール。
    A solar cell module manufactured by the method for manufacturing a solar cell module according to any one of claims 1 to 6,
    a back-side protection member, a back-side sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving-side sealing material, and a light-receiving-side protection member are stacked in this order;
    the second inter-cell sealing material and the light-receiving side sealing material are made of different materials than the first inter-cell sealing material and the back side sealing material;
    Solar cell module.
  8.  請求項1、3~6のいずれか1項に記載の太陽電池モジュールの製造方法によって製造された太陽電池モジュールであって、
     裏側保護部材と、裏側封止材と、結晶シリコン系太陽電池セルと、第1セル間封止材と、第2セル間封止材と、ペロブスカイト系太陽電池セルと、受光側封止材と、受光側保護部材とが順にスタックされており、
     前記第2セル間封止材および前記受光側封止材の材料は、前記第1セル間封止材および前記裏側封止材の材料と同じであり、
     前記第2セル間封止材および前記受光側封止材の架橋状態は、前記第1セル間封止材および前記裏側封止材の架橋状態よりも低い、
    太陽電池モジュール。
    A solar cell module manufactured by the method for manufacturing a solar cell module according to any one of claims 1 and 3 to 6,
    a back-side protection member, a back-side sealing material, a crystalline silicon solar cell, a first inter-cell sealing material, a second inter-cell sealing material, a perovskite solar cell, a light-receiving-side sealing material, and a light-receiving-side protection member are stacked in this order;
    the second inter-cell sealing material and the light-receiving side sealing material are made of the same material as the first inter-cell sealing material and the back-side sealing material,
    a cross-linked state of the second inter-cell sealing material and the light-receiving side sealing material is lower than a cross-linked state of the first inter-cell sealing material and the back-side sealing material;
    Solar cell module.
PCT/JP2023/035356 2022-09-28 2023-09-28 Solar cell module production method and solar cell module WO2024071284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154903 2022-09-28
JP2022-154903 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071284A1 true WO2024071284A1 (en) 2024-04-04

Family

ID=90478045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035356 WO2024071284A1 (en) 2022-09-28 2023-09-28 Solar cell module production method and solar cell module

Country Status (1)

Country Link
WO (1) WO2024071284A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074039A1 (en) * 2004-01-28 2005-08-11 Kyocera Corporation Solar battery module and photovoltaic generation device
JP2007157980A (en) * 2005-12-05 2007-06-21 Toyota Motor Corp Solar battery module
WO2016208034A1 (en) * 2015-06-25 2016-12-29 株式会社 東芝 Solar cell module
US20170162731A1 (en) * 2015-12-07 2017-06-08 Industrial Technology Research Institute Photovoltaic module
WO2019180854A1 (en) * 2018-03-20 2019-09-26 株式会社 東芝 Multi-junction solar cell module and solar power generation system
CN112635595A (en) * 2020-12-31 2021-04-09 福斯特(滁州)新材料有限公司 Photovoltaic module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074039A1 (en) * 2004-01-28 2005-08-11 Kyocera Corporation Solar battery module and photovoltaic generation device
JP2007157980A (en) * 2005-12-05 2007-06-21 Toyota Motor Corp Solar battery module
WO2016208034A1 (en) * 2015-06-25 2016-12-29 株式会社 東芝 Solar cell module
US20170162731A1 (en) * 2015-12-07 2017-06-08 Industrial Technology Research Institute Photovoltaic module
WO2019180854A1 (en) * 2018-03-20 2019-09-26 株式会社 東芝 Multi-junction solar cell module and solar power generation system
CN112635595A (en) * 2020-12-31 2021-04-09 福斯特(滁州)新材料有限公司 Photovoltaic module

Similar Documents

Publication Publication Date Title
CN1112734C (en) Solar cell module having surface coating material for three-layer structure
TWI405339B (en) Photovoltaic cell module
TWI576861B (en) Conductive aluminum pastes and the fabrication method thereof, the solar cell and the module thereof
EP3754729B1 (en) Solar cell module comprising perovskite solar cell and manufacturing method thereof
US20120152327A1 (en) Method of manufacturing solar modules
EP1921684A1 (en) Solar cell module and process for manufacture thereof
US20130098429A1 (en) Solar cell module
JP6917990B2 (en) Solar cells, their manufacturing methods, and solar cell modules
US20110139225A1 (en) Shaped photovoltaic module
JP6986418B2 (en) Manufacturing method of laminated photoelectric conversion device and laminated photoelectric conversion device module
JP2012089663A (en) Solar cell module and manufacturing method of the same
KR20190115382A (en) Solar cell module and manufacturing method for the same
US20110259415A1 (en) Backsheet for a photovoltaic module
US11404593B2 (en) Double-sided electrode type solar cell and solar cell module
JP2016186156A (en) Wall material integrated with solar cell
WO2024071284A1 (en) Solar cell module production method and solar cell module
JP6995828B2 (en) Solar cell module
WO2014050193A1 (en) Photoelectric conversion module
KR20090105822A (en) Thin-film photovoltaic cells and method for manufacturing thereof, thin-film photovoltaic cells module
JP2015138829A (en) Solar battery module
WO2023037885A1 (en) Solar battery device and solar battery module
WO2023181733A1 (en) Stack-type solar cell string, solar cell module, and method for manufacturing solar cell module
JP5633412B2 (en) Solar cell module and mounting method
TWM416200U (en) Solar cell module
WO2023127382A1 (en) Solar cell device and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872506

Country of ref document: EP

Kind code of ref document: A1