WO2024071047A1 - Polyfunctional vinyl resin, and production method, composition, and cured product of same - Google Patents

Polyfunctional vinyl resin, and production method, composition, and cured product of same Download PDF

Info

Publication number
WO2024071047A1
WO2024071047A1 PCT/JP2023/034756 JP2023034756W WO2024071047A1 WO 2024071047 A1 WO2024071047 A1 WO 2024071047A1 JP 2023034756 W JP2023034756 W JP 2023034756W WO 2024071047 A1 WO2024071047 A1 WO 2024071047A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl resin
formula
single bond
represented
polyfunctional vinyl
Prior art date
Application number
PCT/JP2023/034756
Other languages
French (fr)
Japanese (ja)
Inventor
昌己 大村
浩一郎 大神
ニランジャン クマール スレスタ
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024071047A1 publication Critical patent/WO2024071047A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes

Definitions

  • the present invention relates to a multifunctional vinyl resin, and more specifically to a multifunctional vinyl resin with excellent solvent solubility that is useful as an insulating material for electric and electronic components such as semiconductor encapsulation, laminates, and heat dissipation substrates, a method for producing the same, a resin composition, and a cured resin obtained by curing the same that has excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy.
  • the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, it does not contribute significantly to improving the thermal conductivity of the composite material, and a sufficient effect of improving thermal conductivity has not been obtained.
  • Patent Document 7 discloses a tetrafunctional or higher vinyl resin having a biphenyl skeleton as a multifunctional vinyl resin that combines high thermal conductivity with a low dielectric tangent, but does not disclose the solvent solubility of the multifunctional vinyl resin or the polyhydric hydroxyl resin that is its raw material, nor does it mention the effect of impurities such as remaining polar groups on thermal conductivity.
  • JP 2009-170493 A International Publication No. 2013/100172 Japanese Patent Application Laid-Open No. 11-147936 JP 2002-309067 A Japanese Patent Application Laid-Open No. 11-323162 Japanese Patent Application Laid-Open No. 9-118673 International Publication No. 2021/200414
  • the object of the present invention is to provide a vinyl resin composition that is useful for sealing electric and electronic components, circuit board materials, etc., and that gives a cured product that has excellent solvent solubility as well as excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, and to provide the cured product.
  • Another object is to provide a vinyl resin used in this vinyl resin composition and a polyhydric hydroxyl resin that is suitable as an intermediate for this vinyl resin.
  • the present invention relates to a polyfunctional vinyl resin represented by the following general formula (1), characterized in that the polyfunctional vinyl resin has a vinyl equivalent of 200 to 450 g/eq, a hydroxyl group equivalent of 5000 g/eq or more, and a total chlorine content of 1000 ppm or less.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO- or a divalent hydrocarbon group having 1 to 6 carbon atoms
  • X represents an aromatic ring selected from the group consisting of a benzene ring, a naphthalene ring and a biphenyl ring
  • n represents a number from 0 to 20.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond.
  • p and q each independently represent a number from 0 to 20.
  • the present invention also relates to a method for producing the polyfunctional vinyl resin, which comprises reacting 4,4'-dihydroxybiphenyl represented by formula (3) with an aromatic crosslinking agent represented by formula (4), and then further reacting the resulting mixture with a bifunctional phenol compound represented by formula (5) to obtain a polyhydric hydroxy resin represented by general formula (6), and then reacting the resulting polyhydric hydroxy resin with chloromethylstyrene.
  • X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond.
  • p and q each independently represent a number from 0 to 20.
  • the present invention relates to a polyhydric hydroxy resin represented by the following general formula (6) and having a hydroxyl group equivalent of 100 to 350 g/eq.
  • A, p and q have the above meanings.
  • the present invention relates to a polyfunctional vinyl resin composition containing the above-mentioned polyfunctional vinyl resin and a radical polymerization initiator as essential components, and to a polyfunctional vinyl resin cured product obtained by curing this polyfunctional vinyl resin composition.
  • the multifunctional vinyl resin of the present invention has excellent solvent solubility and is suitable for use in vinyl resin compositions and their cured products for applications such as lamination, molding, casting, and adhesion. Furthermore, the cured products also have excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, making them suitable for sealing electric and electronic components, as circuit board materials, etc.
  • Example 1 is a GPC chart of the multifunctional vinyl resin obtained in Example 1.
  • the polyfunctional vinyl resin of the present invention is a vinyl resin represented by general formula (1), characterized in that it has a vinyl equivalent of 200 to 450 g/eq, a hydroxyl group equivalent of 5000 g/eq or more, and a total chlorine content of 1000 ppm or less.
  • n is the number of repetitions (number average) and is a number from 0 to 20.
  • the vinyl resin of the present invention is usually a mixture of components having different values of the number of repetitions (n), and the average value (number average) of n is preferably in the range of 0.1 to 15, more preferably in the range of 0.5 to 10.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO- or a divalent hydrocarbon group having 1 to 6 carbon atoms
  • X represents an aromatic ring selected from the group consisting of a benzene ring, a naphthalene ring and a biphenyl ring. From the viewpoint of thermal conductivity, it is preferable that A is a single bond and X is a biphenyl ring.
  • the polyfunctional vinyl resin of the present invention has, with respect to the polar groups, a hydroxyl group equivalent of 5000 g/eq or more and a total chlorine content of 1000 ppm or less.
  • the polyfunctional vinyl resin of the present invention can be obtained by reacting a polyhydric hydroxyl resin with chloromethylstyrene, but if the amount of unreacted hydroxyl groups remaining is less than 5000 g/eq, the curing is insufficient, and the thermal conductivity and heat resistance are reduced.
  • the hydroxyl groups are polar groups, the remaining hydroxyl groups inhibit the reduction of the dielectric constant and the dielectric loss tangent.
  • the hydroxyl equivalent is preferably 10,000 g/eq or more, more preferably 12,000 g/eq or more.
  • the chlorine components are derived from chloromethylstyrene and crosslinking agents in polyhydric hydroxy resins. These are difficult to remove when the vinyl resin has low solvent solubility. If the chlorine components remain in an amount of more than 1000 ppm, they tend to inhibit the reduction of dielectric constant and dielectric loss tangent, and inhibit the curing reaction, thereby decreasing thermal conductivity and heat resistance.
  • the total chlorine content is preferably 700 ppm or less, more preferably 500 ppm or less.
  • the polyfunctional vinyl resin of the present invention is preferably a polyfunctional vinyl resin represented by general formula (2).
  • p and q are the repeating numbers (number average) and are numbers from 0 to 20. Preferably, it is a mixture of components with different values of p and q.
  • the ratio (molar ratio) of p/(p+q) is preferably 0.50 to 0.95, more preferably 0.70 to 0.95. If it is less than 0.50, the effect of heat resistance and high thermal conductivity is small, and if it is more than 0.95, the crystallinity becomes strong and the solvent solubility decreases.
  • the average value of p is preferably 0.1 to 10, more preferably 0.5 to 5.
  • the average value of q is preferably 0.1 to 5, more preferably 0.1 to 2.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms. It is preferable that the substitution positions of the two vinylbenzyl ether groups bonded to the biphenyl structure having A include at least the 2,2' form.
  • the substitution positions of the two vinylbenzyl ether groups bonded thereto are preferably the 4,4' and 2,2' positions, and the ratio of the biphenyl at both ends is preferably 40 to 90 mol % at the 2,2' positions relative to the total.
  • A is other than a single bond, i.e., when both ends of the vinyl resin are other than biphenyl rings, for example, when the vinyl resin has a diphenylmethane structure, it is preferable that the substitution positions of the two vinylbenzyl ether groups bonded thereto are 30 to 100 mol % at the 4,4' positions.
  • the polyfunctional vinyl resin represented by the above formula (2) can be produced by reacting a polyhydric hydroxy resin represented by the formula (6) with chloromethylstyrene.
  • A, p, q, and the ratio of p/(p+q) are the same as those of the polyfunctional vinyl resin.
  • the polyhydric hydroxyl resin of the present invention represented by formula (6) preferably has a hydroxyl group equivalent of 100 to 350 g/eq. These polyhydric hydroxyl groups are partially or entirely vinylized to form the polyfunctional vinyl resin of the present invention represented by formula (2).
  • this polyhydric hydroxy resin can be produced by reacting 4,4'-dihydroxybiphenyl represented by formula (3) with an aromatic crosslinking agent having a biphenyl structure represented by formula (4), and then reacting the resulting mixture with a bifunctional phenol compound represented by formula (5).
  • X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
  • A represents a single bond, an oxygen atom, a sulfur atom, --SO ⁇ SUB>2 ⁇ /SUB>-, --CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms.
  • the molar ratio of 4,4'-dihydroxybiphenyl represented by formula (3) and the bifunctional phenol compound represented by formula (5) when the synthesis raw materials are charged is preferably 0.50 to 0.95, more preferably 0.70 to 0.95, for 4,4'-dihydroxybiphenyl. If the ratio of 4,4'-dihydroxybiphenyl is less than this range, the heat resistance and high thermal conductivity are insufficient, and if it is more than this range, the solvent solubility is reduced due to strong crystallinity.
  • bifunctional phenol compound of formula (5) examples include 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, dihydroxydiphenylmethanes, and 2,2-bis(4-hydroxyphenyl)propane.
  • 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, and dihydroxydiphenylmethanes are preferred from the viewpoint of solvent solubility.
  • the dihydroxydiphenylmethane may be a mixture of ortho, meta, and para, but isomer ratios of 4,4'-dihydroxydiphenylmethane of 40% or less are preferred. If the amount of 4,4'-dihydroxydiphenylmethane is large, there is a concern that the crystallinity will be high and the solvent solubility will decrease.
  • X represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
  • aromatic condensing agents include 4,4'-bishydroxymethylbiphenyl, 4,4'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, 4,4'-bismethoxymethylbiphenyl, and 4,4'-bisethoxymethylbiphenyl.
  • 4,4'-bishydroxymethylbiphenyl or 4,4'-bischloromethylbiphenyl is preferred, and from the viewpoint of reducing ionic impurities, 4,4'-bishydroxymethylbiphenyl or 4,4'-bismethoxymethylbiphenyl is preferred.
  • the reaction between phenols and aromatic condensing agents can be carried out without a catalyst or in the presence of an acid catalyst such as an inorganic acid or an organic acid.
  • an acid catalyst such as an inorganic acid or an organic acid.
  • the reaction can be carried out without a catalyst, but it is generally better to carry out the reaction in the presence of an acid catalyst to suppress side reactions such as the reaction of a chloromethyl group with a hydroxyl group to form an ether bond.
  • This acid catalyst can be appropriately selected from well-known inorganic and organic acids, and examples of such acid catalysts include mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
  • mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid
  • organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethasulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
  • this reaction is carried out at 100 to 250°C for 1 to 20 hours. It is preferably carried out at 100 to 180°C, and more preferably at 140 to 180°C. If the reaction temperature is low, the reactivity will be poor and it will take time, and if the reaction temperature is high, there is a risk of the resin decomposing.
  • the solvent used during the reaction may be, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, or aromatic compounds such as benzene, toluene, chlorobenzene, or dichlorobenzene, of which ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly preferred.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, or aromatic compounds such as benzene, toluene, chlorobenzene, or dichlorobenzene, of which ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly
  • the solvent may be removed from the resulting polyhydric hydroxyl resin by methods such as vacuum distillation, washing with water, or reprecipitation in a poor solvent, but the solvent may also be left in the resin and used as a raw material for the vinylization reaction.
  • the polyfunctional vinyl resin of the present invention can be suitably obtained by reacting a polyhydric hydroxy resin with an aromatic vinylating agent.
  • the vinyl resin of the present invention represented by the above formula (2) can be obtained by reacting a polyhydric hydroxy resin represented by the above formula (6) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction.
  • Aromatic vinylating agents are preferably halomethylstyrenes, particularly chloromethylstyrene.
  • Other examples include bromomethylstyrene and its isomers, and those with substituents.
  • the substitution position of the halomethyl compound for example, in the case of halomethylstyrene, the 4-position is preferred, and it is preferable that the 4-position compound accounts for 60% or more by weight of the total.
  • the reaction between the polyhydric hydroxy resin and the aromatic vinylating agent can be carried out in the absence of a solvent or in the presence of a solvent.
  • the reaction can be carried out by adding the aromatic vinylating agent to the polyhydric hydroxy resin, adding a metal hydroxide, and removing the generated metal salt by a method such as filtration or washing with water.
  • the solvent include, but are not limited to, methyl ethyl ketone, benzene, toluene, xylene, methyl isobutyl ketone, diethylene glycol dimethyl ether, cyclopentanone, cyclohexanone, etc. From the viewpoint of reactivity, methyl ethyl ketone is preferable.
  • Specific examples of the metal hydroxide include, but are not limited to, sodium hydroxide, potassium hydroxide, etc.
  • the vinylization reaction is carried out at a temperature of 90°C or less, preferably 70°C or less. If the temperature is higher than this, the heat of the vinyl benzyl ether group will cause self-polymerization, making it difficult to control the reaction.
  • polymerization inhibitors such as quinones, nitro compounds, nitrophenols, nitroso and nitrone compounds, and oxygen may be used.
  • the end point of the reaction can be determined by tracking the remaining amount of halomethylstyrene as an aromatic vinylating agent using various chromatograms such as GPC, and the reaction rate can be adjusted by the type and amount of metal hydroxide, the addition rate, solids concentration, etc.
  • it is desirable to purify the resulting polyfunctional vinyl resin by removing the solvent, etc., by a method such as distillation under reduced pressure, washing with water, or reprecipitation in a poor solvent.
  • the polyfunctional vinyl resin of the present invention can be cured alone, it is also suitable to use it as a polyfunctional resin composition containing various additives.
  • a radical polymerization initiator such as an azo compound or an organic peroxide may be blended to effect curing.
  • the polyfunctional vinyl resin of the present invention can be blended with other vinyl resins and other thermosetting resins, such as epoxy resins, oxetane resins, maleimide resins, acrylate resins, polyester resins, polyurethane resins, polyphenylene ether resins, and benzoxazine resins.
  • thermosetting resins such as epoxy resins, oxetane resins, maleimide resins, acrylate resins, polyester resins, polyurethane resins, polyphenylene ether resins, and benzoxazine resins.
  • the polyfunctional vinyl resin composition may contain fillers such as glass cloth, carbon fiber, alumina, and boron nitride to increase thermal conductivity.
  • thermal conductivity is preferably 20 W/m.K or more, more preferably 30 W/m.K or more, and even more preferably 50 W/m.K or more. At least a portion of the inorganic filler, preferably 50 wt% or more, has a thermal conductivity of 20 W/m.K or more.
  • the average thermal conductivity of the inorganic filler as a whole increases in the order of desirability: 20 W/m.K or more, 30 W/m.K or more, and 50 W/m.K or more.
  • inorganic fillers with such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide.
  • additives may be added to improve adhesive strength and ease of handling of the composition, such as silane coupling agents, defoamers, internal release agents, and flow control agents.
  • the polyfunctional vinyl resin or polyfunctional vinyl resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone, impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper, and heated and dried to obtain a prepreg, which can then be hot-press molded to obtain a cured product.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone
  • the resin can be applied onto a sheet-like material such as copper foil, stainless steel foil, polyimide film, or polyester film to form a laminate, and the resin sheet obtained by heating and drying can be subjected to heat press molding to obtain a cured product.
  • a sheet-like material such as copper foil, stainless steel foil, polyimide film, or polyester film
  • GPC Measurement A main body (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with four columns (TSKgel Super Multipore HZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set to 40°C. Tetrahydrofuran (THF) was used as the eluent, the flow rate was set to 0.35 mL/min, and a differential refractive index detector was used as the detector. 50 ⁇ L of the measurement sample was prepared by dissolving 0.1 g of sample in 10 mL of THF and filtering through a microfilter. Data processing was performed using GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation.
  • THF Tetrahydrofuran
  • Solvent solubility 2 g of resin and 1 g of cyclohexanone were weighed and placed in a sample bottle, and after heating and dissolving, the temperature was gradually lowered in a thermostatic chamber, and the temperature in the chamber at which the resin precipitated was measured. The higher the precipitation temperature (°C), the poorer the solvent solubility.
  • Tg Glass transition temperature
  • Td5 5% weight loss temperature
  • carbon residue ratio Using a thermogravimetric/differential thermal analyzer (EXSTAR TG/DTA7300, manufactured by SII Nano Technology), the 5% weight loss temperature (Td5) was measured under conditions of a nitrogen atmosphere and a heating rate of 10°C/min. The weight loss at 700°C was also measured and calculated as the carbon residue ratio.
  • Thermal Conductivity was measured by a non-steady hot wire method using a NETZSCH LFA447 type thermal conductivity meter.
  • Example 1 Into a 1000 ml four-neck flask, 65.3 g (0.35 mol) of 4,4'-dihydroxybiphenyl (structural formula below), Diethylene glycol dimethyl ether 121.2 g, 4,4'-bischloromethylbiphenyl (structural formula below) 58.7 g (0.23 mol) The mixture was heated to 170° C.
  • dihydroxydiphenylmethane (4,4'-dihydroxydiphenylmethane (structural formula below): 36.2%, 2,4'-dihydroxydiphenylmethane: 46.6%, 2,2'-dihydroxydiphenylmethane: 17.2%) was added. was reacted to produce a polyhydric hydroxy resin (hydroxyl group equivalent: 129 g/eg). After the reaction was completed, 50.7 g of diethylene glycol dimethyl ether was recovered, 320 g of methyl ethyl ketone, and 135.5 g of chloromethylstyrene (structure shown below).
  • the mixture was heated to 60°C, and 49.8 g of potassium hydroxide dissolved in 150 g of methanol was added dropwise over 3 hours, followed by further reaction for 6 hours. After the reaction was completed, the mixture was filtered, the solvent was removed, and the mixture was reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain 141 g of a white solid vinyl resin (vinyl resin A).
  • the vinyl equivalent of vinyl resin A was 275 g/eg., the hydroxyl equivalent was 15,000 g/eg., and the total chlorine was 300 ppm.
  • the GPC chart of the obtained multifunctional vinyl resin is shown in Figure 1. According to the charging ratio, the ratio (molar ratio) of p/(p+q) was 0.93, p was 4.2, and q was 0.3.
  • Example 2 instead of dihydroxydiphenylmethane, 7.3 g (0.04 mol) of 2,2'-dihydroxybiphenyl (structural formula below) The reaction was carried out in the same manner as in Example 1, except that polyhydric hydroxyl resin (hydroxyl equivalent: 116 g/eg) and further polyfunctional vinyl resin (138 g) were obtained (vinyl resin B).
  • the vinyl equivalent of vinyl resin B was 262 g/eg., the hydroxyl equivalent was 13,000 g/eg., and the total chlorine was 340 ppm.
  • the ratio (molar ratio) of p/(p+q) was 0.93, p was 4.0, and q was 0.3.
  • Example 3 instead of 4,4'-bischloromethylbiphenyl, 40.2 g (0.23 mol) of p-xylylene dichloride
  • the reaction was carried out in the same manner as in Example 1, except that polyhydric hydroxyl resin (hydroxyl equivalent: 105 g/eg) and 129 g of polyfunctional vinyl resin were obtained (vinyl resin C).
  • the vinyl equivalent of vinyl resin C was 252 g/eg., the hydroxyl equivalent was 13,400 g/eg., and the total chlorine was 320 ppm.
  • the ratio (molar ratio) of p/(p+q) was 0.93, p was 3.7, and q was 0.3.
  • the obtained resin was dissolved in toluene, neutralized, and washed with water to obtain 172 g of a multifunctional vinyl resin (vinyl resin D).
  • the vinyl equivalent of the obtained vinyl resin D was 256 g/eq., the hydroxyl equivalent was 1500 g/eq., and the total chlorine was 1270 ppm.
  • Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that 58.9 g of 4,4'-bis(chloromethyl)biphenyl was used and 63.0 g of phenol was used instead of 4,4'-dihydroxybiphenyl, to obtain 160 g of a multifunctional vinyl resin (vinyl resin E).
  • the vinyl equivalent of the obtained vinyl resin E was 331 g/eq, the hydroxyl equivalent was 2100 g/eq, and the total chlorine was 1680 ppm.
  • Example 3 The same procedure as in Example 1 was carried out except that 320 g of diethylene glycol dimethyl ether was used instead of 320 g of methyl ethyl ketone, and the reaction with chloromethylstyrene was carried out at 80°C, to obtain 135 g of a multifunctional vinyl resin (vinyl resin F).
  • the vinyl equivalent of vinyl resin F was 95 g/eg., the hydroxyl equivalent was 1000 g/eg., and the total chlorine was 260 ppm.
  • the ratio (molar ratio) of p/(p+q) was 0.90, and the mixture was in the range of p to 10 and q to 4.
  • Example 4 The same operation as in Example 1 was carried out, except that reprecipitation with methanol was not carried out in the operation after the end of the reaction in Example 1, to obtain 150 g of a multifunctional vinyl resin (vinyl resin G).
  • the vinyl equivalent of vinyl resin G was 285 g/eg., the hydroxyl equivalent was 16,000 g/eg., and the total chlorine was 3,000 ppm.
  • the ratio (molar ratio) of p/(p+q) was 0.90, and it was a mixture in which p was in the range of 0 to 8 and q was in the range of 0 to 2.
  • vinyl resin H a multifunctional vinyl resin
  • the vinyl equivalent of vinyl resin H was 217 g/eg., the hydroxyl equivalent was 17000 g/eg., and the total chlorine was 400 ppm.
  • Examples 4 to 6, Comparative Examples 6 to 11 As the polyfunctional vinyl resin, vinyl resins A to H and vinyl resin I (OPE-2ST: manufactured by Mitsubishi Gas Chemical Company, Inc., vinyl group equivalent: 590.0 g / eq, number average molecular weight 1187) obtained in Examples 1 to 3 and Comparative Examples 1 to 5 were used, and Perbutyl P (manufactured by NOF Corporation), an organic peroxide, was used as a curing accelerator (radical polymerization initiator), and Adeka STAB AO-60 (manufactured by ADEKA Corporation) was used as an antioxidant in the blending ratio shown in Table 1. The composition was applied to a PET film and dried at 130 ° C. for 5 minutes to obtain a resin composition. The composition removed from the PET film was sandwiched between mirror plates and cured under reduced pressure at 130 ° C. for 15 minutes and at 210 ° C. for 80 minutes while applying a pressure of 2 MPa. The properties of the obtained cured product are shown in Table 1.
  • the multifunctional vinyl resin of the example exhibited excellent physical properties, including high thermal conductivity, low dielectric constant, and low dielectric tangent.
  • the multifunctional vinyl resin of the present invention is useful as an electronic material for high-speed communication devices, as it easily dissipates heat from electronic components and wiring and has little signal loss.

Abstract

Provided is a vinyl resin that has excellent solubility against solvents, that provides a cured product having excellent heat resistance, thermal degradation stability, thermal conductivity, low permittivity, low dielectric loss tangent, and fire resistance, and that is useful for sealing electric/electronic components, and useful as circuit board materials and the like. This polyfunctional vinyl resin is represented by general formula (1) and is characterized by having a vinyl equivalent of 200-450 g/eq, a hydroxyl equivalent of 5000 g/eq or more, and a total chlorine amount of 1000 ppm or less.

Description

多官能ビニル樹脂、その製造方法、組成物及び硬化物Polyfunctional vinyl resin, its production method, composition and cured product
 本発明は、多官能ビニル樹脂に関し、詳しくは、半導体封止、積層板、放熱基板等の電気・電子部品用絶縁材料に有用な溶剤溶解性に優れた多官能ビニル樹脂、その製造方法、樹脂組成物、及びそれらを硬化させて得られる耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に優れる樹脂硬化物に関する。 The present invention relates to a multifunctional vinyl resin, and more specifically to a multifunctional vinyl resin with excellent solvent solubility that is useful as an insulating material for electric and electronic components such as semiconductor encapsulation, laminates, and heat dissipation substrates, a method for producing the same, a resin composition, and a cured resin obtained by curing the same that has excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy.
 通信機器に用いられるプリント基板、封止材、注型材などは通信速度、通信量の増大にともない信号伝送速度の向上のため高速通信技術が盛んに研究されている。このような用途における電子材料には誘電損失を低減できる材料が求められており、プリント基板用途では加えて多層化が可能な硬化性樹脂が求められている。 In order to improve signal transmission speeds in response to increases in communication speeds and data volumes, there has been active research into high-speed communication technology for printed circuit boards, sealing materials, and casting materials used in communication devices. Electronic materials for such applications require materials that can reduce dielectric loss, and for printed circuit board applications, there is also a demand for curable resins that can be multi-layered.
 一方で、このような情報量の多いデータを処理する電子演算部品からの発熱は多く、熱蓄積によって電子演算部品の処理速度低下など不具合が発生する為、プリント基板ではヒートシンク等により適宜冷却する技術として銅コイン、銅インレイ等の伝熱部材を組み込む方法や(特許文献1)、配合するフィラーの形状を特殊なものにする(特許文献2)など様々な工夫が知られている。しかし、このような方法は重量の増加や機器の大型化につながり好ましくなかった。 On the other hand, electronic computing components that process such large amounts of data generate a lot of heat, and heat accumulation can cause problems such as a slowdown in the processing speed of electronic computing components, so various techniques are known for appropriately cooling printed circuit boards using heat sinks, etc., such as incorporating heat transfer components such as copper coins and copper inlays (Patent Document 1) and using special shapes for the fillers used (Patent Document 2). However, such methods are undesirable as they lead to increased weight and larger equipment.
 また、封止材組成物では熱伝導率を高める方法として各種フィラーの種類と量を検討することで電子演算部品からの熱を除熱する方法がとられており、例えば、熱伝導率の大きい結晶シリカ、窒化珪素、窒化アルミニウム、球状アルミナ粉末等の無機充填材を含有させるなどの試みがなされている(特許文献3、4)。ところが、無機充填材の含有率を上げていくと成形時の粘度上昇とともに流動性が低下し、成形性が損なわれるという問題が生じる。従って、単に無機充填材の含有率を高める方法には限界があった。 Furthermore, in order to increase the thermal conductivity of sealing material compositions, methods have been adopted in which the types and amounts of various fillers are examined to remove heat from electronic computing components. For example, attempts have been made to include inorganic fillers with high thermal conductivity such as crystalline silica, silicon nitride, aluminum nitride, and spherical alumina powder (Patent Documents 3 and 4). However, as the content of inorganic fillers is increased, the viscosity during molding increases and the fluidity decreases, causing problems such as impaired moldability. Therefore, there are limitations to the method of simply increasing the content of inorganic fillers.
 上記背景から、マトリックス樹脂自体の高熱伝導率化によって組成物の熱伝導率を向上する方法も検討されている。例えば、剛直なメソゲン基を有する液晶性のエポキシ樹脂およびそれを用いたエポキシ樹脂組成物が提案されている(特許文献5、6)。しかし、これらのエポキシ樹脂組成物に用いる硬化剤としては、芳香族ジアミン化合物を用いており、無機充填材の高充填率化に限界があるとともに、電気絶縁性の点でも問題があった。また、芳香族ジアミン化合物を用いた場合、硬化物の液晶性は確認できるものの、硬化物の結晶化度は低く、高熱伝導性、低熱膨張性、低吸湿性等の点で十分ではなかった。さらには液晶性発現のために、強力な磁場をかけて分子を配向させる必要があり、工業的に広く利用するためには設備的にも大きな制約があった。また、無機充填材との配合系では、マトリックス樹脂の熱伝導率に比べて無機充填材の熱伝導率が圧倒的に大きく、マトリックス樹脂自体の熱伝導率を高くしても、複合材料としての熱伝導率向上には大きく寄与しないという現実があり、十分な熱伝導率向上効果は得られていなかった。 In light of the above background, methods for improving the thermal conductivity of a composition by increasing the thermal conductivity of the matrix resin itself have also been studied. For example, liquid crystalline epoxy resins having rigid mesogen groups and epoxy resin compositions using them have been proposed (Patent Documents 5 and 6). However, aromatic diamine compounds are used as curing agents for these epoxy resin compositions, which limits the high filling rate of inorganic fillers and also poses problems in terms of electrical insulation. In addition, when aromatic diamine compounds are used, although the liquid crystallinity of the cured product can be confirmed, the crystallinity of the cured product is low, and it is not sufficient in terms of high thermal conductivity, low thermal expansion, low moisture absorption, etc. Furthermore, in order to express liquid crystallinity, it is necessary to apply a strong magnetic field to orient the molecules, and there are significant restrictions in terms of equipment for widespread industrial use. In addition, in a compounding system with an inorganic filler, the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, it does not contribute significantly to improving the thermal conductivity of the composite material, and a sufficient effect of improving thermal conductivity has not been obtained.
 特許文献7には、高熱伝導性と低誘電正接を両立する多官能ビニル樹脂として、ビフェニル骨格を有する4官能以上のビニル樹脂が開示されているが、その多官能ビニル樹脂およびその原料となる多価ヒドロキシ樹脂の溶剤溶解性について記載されておらず、残存する極性基等の不純物が熱伝導率に及ぼす影響については一切触れられていない。 Patent Document 7 discloses a tetrafunctional or higher vinyl resin having a biphenyl skeleton as a multifunctional vinyl resin that combines high thermal conductivity with a low dielectric tangent, but does not disclose the solvent solubility of the multifunctional vinyl resin or the polyhydric hydroxyl resin that is its raw material, nor does it mention the effect of impurities such as remaining polar groups on thermal conductivity.
特開2009-170493号公報JP 2009-170493 A 国際公開2013/100172号International Publication No. 2013/100172 特開平11-147936号公報Japanese Patent Application Laid-Open No. 11-147936 特開2002-309067号公報JP 2002-309067 A 特開平11-323162号公報Japanese Patent Application Laid-Open No. 11-323162 特開平9-118673号公報Japanese Patent Application Laid-Open No. 9-118673 国際公開2021/200414号International Publication No. 2021/200414
 本発明の目的は、溶剤溶解性に優れるとともに、耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に優れた硬化物を与える電気・電子部品類の封止、回路基板材料等に有用なビニル樹脂組成物を提供すること、及びその硬化物を提供することにある。また、他の目的はこのビニル樹脂組成物に使用されるビニル樹脂と、このビニル樹脂の中間体として適する多価ヒドロキシ樹脂を提供することにある。 The object of the present invention is to provide a vinyl resin composition that is useful for sealing electric and electronic components, circuit board materials, etc., and that gives a cured product that has excellent solvent solubility as well as excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, and to provide the cured product. Another object is to provide a vinyl resin used in this vinyl resin composition and a polyhydric hydroxyl resin that is suitable as an intermediate for this vinyl resin.
 本発明者等は、鋭意検討し、特定の構造を有する多官能ビニル樹脂が、上記の課題を解決することが期待されること、そしてその硬化物が耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に効果を発現することを見出した。 The inventors conducted extensive research and discovered that a multifunctional vinyl resin with a specific structure is expected to solve the above problems, and that the cured product exhibits excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy.
 すなわち、本発明は、下記一般式(1)で表される多官能ビニル樹脂であって、ビニル当量が200~450g/eqであり、水酸基当量が5000g/eq以上であり、全塩素量が1000ppm以下であることを特徴とする多官能ビニル樹脂である。
Figure JPOXMLDOC01-appb-C000008

 式(1)中、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-又は二価の炭素数1~6の炭化水素基を示し、Xはベンゼン環、ナフタレン環及びビフェニル環の群から選択される芳香環であり、nは0~20の数を示す。
That is, the present invention relates to a polyfunctional vinyl resin represented by the following general formula (1), characterized in that the polyfunctional vinyl resin has a vinyl equivalent of 200 to 450 g/eq, a hydroxyl group equivalent of 5000 g/eq or more, and a total chlorine content of 1000 ppm or less.
Figure JPOXMLDOC01-appb-C000008

In formula (1), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO- or a divalent hydrocarbon group having 1 to 6 carbon atoms, X represents an aromatic ring selected from the group consisting of a benzene ring, a naphthalene ring and a biphenyl ring, and n represents a number from 0 to 20.
 下記一般式(2)で表される多官能ビニル樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000009

 式(2)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示し、少なくとも1つは単結合以外である。pおよびqはそれぞれ独立して0~20の数を示す。
It is preferably a polyfunctional vinyl resin represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000009

In formula (2), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond. p and q each independently represent a number from 0 to 20.
 また、本発明は、上記多官能ビニル樹脂を製造する方法であって、式(3)で表される4,4’-ジヒドロキシビフェニルと、式(4)で表される芳香族架橋剤を反応させた後、式(5)で表される二官能フェノール化合物を更に反応させて一般式(6)で表される多価ヒドロキシ樹脂を得て、この多価ヒドロキシ樹脂とクロロメチルスチレンと反応させることを特徴とする多官能ビニル樹脂の製造方法である。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

 式(4)において、Xは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000012

 式(5)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示す。
Figure JPOXMLDOC01-appb-C000013

 式(6)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示し、少なくとも1つは単結合以外である。pおよびqはそれぞれ独立して0~20の数を示す。
The present invention also relates to a method for producing the polyfunctional vinyl resin, which comprises reacting 4,4'-dihydroxybiphenyl represented by formula (3) with an aromatic crosslinking agent represented by formula (4), and then further reacting the resulting mixture with a bifunctional phenol compound represented by formula (5) to obtain a polyhydric hydroxy resin represented by general formula (6), and then reacting the resulting polyhydric hydroxy resin with chloromethylstyrene.
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

In formula (4), X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000012

In formula (5), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000013

In formula (6), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond. p and q each independently represent a number from 0 to 20.
 本発明は、下記一般式(6)で表され、水酸基当量が100~350g/eqであることを特徴とする多価ヒドロキシ樹脂である。
Figure JPOXMLDOC01-appb-C000014

 式(6)において、A、pおよびqは上記の意味である。
The present invention relates to a polyhydric hydroxy resin represented by the following general formula (6) and having a hydroxyl group equivalent of 100 to 350 g/eq.
Figure JPOXMLDOC01-appb-C000014

In formula (6), A, p and q have the above meanings.
 さらに、本発明は、上記多官能ビニル樹脂とラジカル重合開始剤とを必須成分として含有する多官能ビニル樹脂組成物であり、この多官能ビニル樹脂組成物を硬化してなる多官能ビニル樹脂硬化物に関する。 Furthermore, the present invention relates to a polyfunctional vinyl resin composition containing the above-mentioned polyfunctional vinyl resin and a radical polymerization initiator as essential components, and to a polyfunctional vinyl resin cured product obtained by curing this polyfunctional vinyl resin composition.
 本発明の多官能ビニル樹脂は、溶剤溶解性に優れ、積層、成形、注型、接着等の用途に使用されるビニル樹脂組成物及びその硬化物に適する。そして、この硬化物は耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性にも優れたものとなるので、電気・電子部品類の封止、回路基板材料等に好適である。 The multifunctional vinyl resin of the present invention has excellent solvent solubility and is suitable for use in vinyl resin compositions and their cured products for applications such as lamination, molding, casting, and adhesion. Furthermore, the cured products also have excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, making them suitable for sealing electric and electronic components, as circuit board materials, etc.
実施例1で得られた多官能ビニル樹脂のGPCチャートである。1 is a GPC chart of the multifunctional vinyl resin obtained in Example 1.
 以下、本発明を詳細に説明する。 The present invention is explained in detail below.
 本発明の多官能ビニル樹脂は、一般式(1)で表されるビニル樹脂であって、ビニル当量が200~450g/eqであり、水酸基当量が5000g/eq以上であり、全塩素量が1000ppm以下であることを特徴とするビニル樹脂である。
Figure JPOXMLDOC01-appb-C000015

 nは繰り返し数(数平均)であり、0~20の数を示す。本発明のビニル樹脂は、通常、繰返し数(n)の値が異なる成分の混合物であり、nの平均値(数平均)が好ましくは0.1~15の範囲であり、より好ましくは0.5~10の範囲である。Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-又は二価の炭素数1~6の炭化水素基を示し、Xはベンゼン環、ナフタレン環及びビフェニル環の群から選択される芳香環である。熱伝導率の観点から、Aは単結合、Xはビフェニル環が好ましい。
The polyfunctional vinyl resin of the present invention is a vinyl resin represented by general formula (1), characterized in that it has a vinyl equivalent of 200 to 450 g/eq, a hydroxyl group equivalent of 5000 g/eq or more, and a total chlorine content of 1000 ppm or less.
Figure JPOXMLDOC01-appb-C000015

n is the number of repetitions (number average) and is a number from 0 to 20. The vinyl resin of the present invention is usually a mixture of components having different values of the number of repetitions (n), and the average value (number average) of n is preferably in the range of 0.1 to 15, more preferably in the range of 0.5 to 10. A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO- or a divalent hydrocarbon group having 1 to 6 carbon atoms, and X represents an aromatic ring selected from the group consisting of a benzene ring, a naphthalene ring and a biphenyl ring. From the viewpoint of thermal conductivity, it is preferable that A is a single bond and X is a biphenyl ring.
 本発明の多官能ビニル樹脂は、ビニル当量が200~450g/eqである。好ましくは230~300g/eq、より好ましくは240~280g/eqである。この範囲より小さい場合、n=0の含有率が高くなることから、結晶成分増加による溶剤溶解性の低下が懸念され、また、硬化後の分子運動の拘束力低下による耐熱性、熱伝導率の低下が懸念される。一方、この範囲より大きい場合、反応性が低下し、均一な硬化物を得ることが困難となる懸念がある。 The polyfunctional vinyl resin of the present invention has a vinyl equivalent of 200 to 450 g/eq. It is preferably 230 to 300 g/eq, and more preferably 240 to 280 g/eq. If it is less than this range, the content of n=0 will be high, and there is concern that the increase in crystalline components will result in a decrease in solvent solubility, and that the reduced restraining force of molecular motion after curing will result in a decrease in heat resistance and thermal conductivity. On the other hand, if it is greater than this range, there is concern that the reactivity will decrease, making it difficult to obtain a uniform cured product.
 本発明の多官能ビニル樹脂は、極性基に関して、水酸基当量が5000g/eq以上であり、全塩素量が1000ppm以下である。
 本発明の多官能ビニル樹脂は、多価ヒドロキシ樹脂とクロロメチルスチレンと反応させることで得ることができるが、その際に未反応で残存する水酸基が5000g/eqより小さい場合、硬化が不十分となり、熱伝導率および耐熱性が低下する。また、水酸基は極性基であることから、その残存は誘電率、誘電正接の低減を阻害する。水酸基当量が、好ましくは10,000g/eq以上、より好ましくは12,000g/eq以上である。
 一方、塩素成分としてはクロロメチルスチレン由来によるもの、多価ヒドロキシ樹脂中の架橋剤由来によるものがある。これらは、ビニル樹脂の溶剤溶解性が低い場合、除去することが困難である。1000ppmより多く塩素成分が残存する場合、誘電率、誘電正接の低減を阻害し、硬化反応を阻害することで熱伝導率、耐熱性を低下する傾向がある。全塩素量が、好ましくは700ppm以下、より好ましくは500ppm以下である。
The polyfunctional vinyl resin of the present invention has, with respect to the polar groups, a hydroxyl group equivalent of 5000 g/eq or more and a total chlorine content of 1000 ppm or less.
The polyfunctional vinyl resin of the present invention can be obtained by reacting a polyhydric hydroxyl resin with chloromethylstyrene, but if the amount of unreacted hydroxyl groups remaining is less than 5000 g/eq, the curing is insufficient, and the thermal conductivity and heat resistance are reduced. In addition, since the hydroxyl groups are polar groups, the remaining hydroxyl groups inhibit the reduction of the dielectric constant and the dielectric loss tangent. The hydroxyl equivalent is preferably 10,000 g/eq or more, more preferably 12,000 g/eq or more.
On the other hand, the chlorine components are derived from chloromethylstyrene and crosslinking agents in polyhydric hydroxy resins. These are difficult to remove when the vinyl resin has low solvent solubility. If the chlorine components remain in an amount of more than 1000 ppm, they tend to inhibit the reduction of dielectric constant and dielectric loss tangent, and inhibit the curing reaction, thereby decreasing thermal conductivity and heat resistance. The total chlorine content is preferably 700 ppm or less, more preferably 500 ppm or less.
 本発明の多官能ビニル樹脂は、一般式(2)で表される多官能ビニル樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000016

 pおよびqは繰り返し数(数平均)であり、0~20の数を示す。好ましくは、pおよびqの値が異なる成分の混合物である。p/(p+q)の比率(モル比)は、0.50~0.95が好ましく、0.70~0.95がより好ましい。0.50未満の場合は、耐熱性、高熱伝導性の効果が小さく、0.95より大きい場合は結晶性が強くなり、溶剤溶解性が低下する。pの平均値は0.1~10が好ましく、より好ましくは0.5~5である。qの平均値は0.1~5が好ましく、より好ましくは、0.1~2である。
 Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示す。Aを有するビフェニル構造に結合する2つのビニルベンジルエーテル基の置換位置が、少なくとも2,2’体を含むことが望ましい。一般式(1)において、Aが単結合、すなわち両末端がビフェニル環の場合、その結合する2つのビニルベンジルエーテル基の置換位置は、4,4’位と2,2’位であることが好ましく、その両末端ビフェニルの比率は2,2’位が全体の40~90モル%であることが好ましい。Aが単結合以外、すなわちビニル樹脂の両末端がビフェニル環以外、例えばジフェニルメタン構造の場合は、その結合する2つのビニルベンジルエーテル基の置換位置は、4,4’位が30~100モル%が好ましい。
The polyfunctional vinyl resin of the present invention is preferably a polyfunctional vinyl resin represented by general formula (2).
Figure JPOXMLDOC01-appb-C000016

p and q are the repeating numbers (number average) and are numbers from 0 to 20. Preferably, it is a mixture of components with different values of p and q. The ratio (molar ratio) of p/(p+q) is preferably 0.50 to 0.95, more preferably 0.70 to 0.95. If it is less than 0.50, the effect of heat resistance and high thermal conductivity is small, and if it is more than 0.95, the crystallinity becomes strong and the solvent solubility decreases. The average value of p is preferably 0.1 to 10, more preferably 0.5 to 5. The average value of q is preferably 0.1 to 5, more preferably 0.1 to 2.
A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms. It is preferable that the substitution positions of the two vinylbenzyl ether groups bonded to the biphenyl structure having A include at least the 2,2' form. In the general formula (1), when A is a single bond, i.e., when both ends are biphenyl rings, the substitution positions of the two vinylbenzyl ether groups bonded thereto are preferably the 4,4' and 2,2' positions, and the ratio of the biphenyl at both ends is preferably 40 to 90 mol % at the 2,2' positions relative to the total. When A is other than a single bond, i.e., when both ends of the vinyl resin are other than biphenyl rings, for example, when the vinyl resin has a diphenylmethane structure, it is preferable that the substitution positions of the two vinylbenzyl ether groups bonded thereto are 30 to 100 mol % at the 4,4' positions.
 上記式(2)で表される多官能ビニル樹脂は、式(6)で表される多価ヒドロキシ樹脂とクロロメチルスチレンを反応することにより製造することができる。
Figure JPOXMLDOC01-appb-C000017

 式(6)の多価ヒドロキシ樹脂において、A、p、q、p/(p+q)の比率は、上記多官能ビニル樹脂と同様である。
 本発明の式(6)で表される多価ヒドロキシ樹脂は、水酸基当量が好ましくは100~350g/eqである。これらの多価水酸基が、部分的又は全体的にビニル化されることによって、本発明の式(2)で表される多官能ビニル樹脂となる。
The polyfunctional vinyl resin represented by the above formula (2) can be produced by reacting a polyhydric hydroxy resin represented by the formula (6) with chloromethylstyrene.
Figure JPOXMLDOC01-appb-C000017

In the polyhydric hydroxyl resin of formula (6), A, p, q, and the ratio of p/(p+q) are the same as those of the polyfunctional vinyl resin.
The polyhydric hydroxyl resin of the present invention represented by formula (6) preferably has a hydroxyl group equivalent of 100 to 350 g/eq. These polyhydric hydroxyl groups are partially or entirely vinylized to form the polyfunctional vinyl resin of the present invention represented by formula (2).
 この多価ヒドロキシ樹脂は、下記式(7)に示す通り、式(3)で表される4,4’-ジヒドロキシビフェニルと式(4)で表されるビフェニル構造を有する芳香族架橋剤とを反応させた後、式(5)で表される二官能のフェノール化合物と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

 ここで、Xは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000020

 ここで、Aは単結合、酸素原子、硫黄原子、-SO<SUB>2</SUB>-、-CO-、または二価の炭素数1~6の炭化水素を示す。
Figure JPOXMLDOC01-appb-C000021
As shown in formula (7) below, this polyhydric hydroxy resin can be produced by reacting 4,4'-dihydroxybiphenyl represented by formula (3) with an aromatic crosslinking agent having a biphenyl structure represented by formula (4), and then reacting the resulting mixture with a bifunctional phenol compound represented by formula (5).
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

Here, X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000020

Here, A represents a single bond, an oxygen atom, a sulfur atom, --SO<SUB>2</SUB>-, --CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000021
 合成原料の式(3)で表される4,4’-ジヒドロキシビフェニルと式(5)で表される二官能のフェノール化合物の仕込み時のモル比率は、4,4’-ジヒドロキシビフェニルが0.50~0.95が好ましく、0.70~0.95がより好ましい。4,4’-ジヒドロキシビフェニルの比率がこの範囲より少ない場合は、耐熱性、高熱伝導性が不十分であり、多い場合は結晶性が強いために溶剤溶解性が低下する。
 式(5)の二官能フェノール化合物としては、具体的には、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルメタン類、2,2-ビス(4-ヒドロキシフェニル)プロパンであり、特に、溶剤溶解性の点から2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルメタン類が好ましい。ジヒドロキシジフェニルメタン類はオルト、メタ、パラの混合物でもよいが、異性体比が4,4’-ジヒドロキシジフェニルメタンが40%以下であるものが好ましい。4,4’-ジヒドロキシジフェニルメタンが多いと結晶性が強く、溶剤溶解性が低下する懸念がある。
The molar ratio of 4,4'-dihydroxybiphenyl represented by formula (3) and the bifunctional phenol compound represented by formula (5) when the synthesis raw materials are charged is preferably 0.50 to 0.95, more preferably 0.70 to 0.95, for 4,4'-dihydroxybiphenyl. If the ratio of 4,4'-dihydroxybiphenyl is less than this range, the heat resistance and high thermal conductivity are insufficient, and if it is more than this range, the solvent solubility is reduced due to strong crystallinity.
Specific examples of the bifunctional phenol compound of formula (5) include 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, dihydroxydiphenylmethanes, and 2,2-bis(4-hydroxyphenyl)propane. In particular, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, and dihydroxydiphenylmethanes are preferred from the viewpoint of solvent solubility. The dihydroxydiphenylmethane may be a mixture of ortho, meta, and para, but isomer ratios of 4,4'-dihydroxydiphenylmethane of 40% or less are preferred. If the amount of 4,4'-dihydroxydiphenylmethane is large, there is a concern that the crystallinity will be high and the solvent solubility will decrease.
 上記式(3)で表される芳香族架橋剤において、Xは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。芳香族系縮合剤として、具体的には、4,4’-ビスヒドロキシメチルビフェニル、4,4’-ビスクロロメチルビフェニル、4,4’-ビスブロモメチルビフェニル、4,4’-ビスメトキシメチルビフェニル、4,4’-ビスエトキシメチルビフェニルが挙げられる。反応性の観点からは、4,4’-ビスヒドロキシメチルビフェニル、又は4,4’-ビスクロロメチルビフェニルが好ましく、イオン性不純分低減の観点からは、4,4’-ビスヒドロキシメチルビフェニル、又は4,4’-ビスメトキシメチルビフェニルが好ましい。 In the aromatic crosslinking agent represented by the above formula (3), X represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms. Specific examples of aromatic condensing agents include 4,4'-bishydroxymethylbiphenyl, 4,4'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, 4,4'-bismethoxymethylbiphenyl, and 4,4'-bisethoxymethylbiphenyl. From the viewpoint of reactivity, 4,4'-bishydroxymethylbiphenyl or 4,4'-bischloromethylbiphenyl is preferred, and from the viewpoint of reducing ionic impurities, 4,4'-bishydroxymethylbiphenyl or 4,4'-bismethoxymethylbiphenyl is preferred.
 フェノール類と芳香族系縮合剤とを反応させる際のモル比は、一般的にはフェノール類1モルに対して、芳香族系縮合剤0.2~0.7モルの範囲であり、より好ましくは0.4~0.7モルの範囲である。0.2モルより少ないと得られる多価ヒドロキシ樹脂のn=0体の比率が高くなり、結晶性を示すなど溶解性の低下が懸念される。一方、0.7モルよりも多いと高分子量成分が多くなり、安定的に製造することが困難となる。 The molar ratio when reacting phenols with an aromatic condensing agent is generally in the range of 0.2 to 0.7 moles of aromatic condensing agent per mole of phenols, and more preferably in the range of 0.4 to 0.7 moles. If it is less than 0.2 moles, the ratio of n=0 in the resulting polyhydric hydroxyl resin will be high, and there is concern that it will exhibit crystallinity and thus reduced solubility. On the other hand, if it is more than 0.7 moles, the amount of high molecular weight components will increase, making stable production difficult.
 フェノール類と芳香族系縮合剤との反応は、無触媒、又は無機酸、有機酸等の酸触媒の存在下に行うことができる。4,4’-ビスクロロメチルビフェニルを用いる際には、無触媒下で反応させることもできるが、一般的に、クロロメチル基と水酸基が反応してエーテル結合が生じるなどの副反応を抑えるために、酸性触媒の存在下に行うことがよい。この酸性触媒としては、周知の無機酸、有機酸より適宜選択することができ、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタスルホン酸、トリフルオロメタスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいは固体酸等が挙げられる。 The reaction between phenols and aromatic condensing agents can be carried out without a catalyst or in the presence of an acid catalyst such as an inorganic acid or an organic acid. When using 4,4'-bischloromethylbiphenyl, the reaction can be carried out without a catalyst, but it is generally better to carry out the reaction in the presence of an acid catalyst to suppress side reactions such as the reaction of a chloromethyl group with a hydroxyl group to form an ether bond. This acid catalyst can be appropriately selected from well-known inorganic and organic acids, and examples of such acid catalysts include mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
 通常、この反応は100~250℃で1~20時間行う。好ましくは100~180℃で、より好ましくは140~180℃で行うとよい。反応温度が低いと反応性が乏しく時間を要してしまい、反応温度が高いと樹脂の分解の恐れがある。 Normally, this reaction is carried out at 100 to 250°C for 1 to 20 hours. It is preferably carried out at 100 to 180°C, and more preferably at 140 to 180°C. If the reaction temperature is low, the reactivity will be poor and it will take time, and if the reaction temperature is high, there is a risk of the resin decomposing.
 反応の際に溶剤として、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライム等のアルコール類や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物などを使用することがよく、これらの中でエチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライムなどが特に好ましい。反応終了後、得られた多価ヒドロキシ樹脂は、減圧留去、水洗又は貧溶剤中での再沈殿等の方法により溶剤を除去してもよいが、溶剤を残したままビニル化反応の原料として用いてもよい。 The solvent used during the reaction may be, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, or aromatic compounds such as benzene, toluene, chlorobenzene, or dichlorobenzene, of which ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly preferred. After the reaction is complete, the solvent may be removed from the resulting polyhydric hydroxyl resin by methods such as vacuum distillation, washing with water, or reprecipitation in a poor solvent, but the solvent may also be left in the resin and used as a raw material for the vinylization reaction.
 本発明の多官能ビニル樹脂は、多価ヒドロキシ樹脂を芳香族ビニル化剤と反応させることにより、好適に得ることができる。例えば、上記式(6)で表される多価ヒドロキシ樹脂とクロロメチルスチレンとの反応により、上記式(2)で表される本発明のビニル樹脂を得ることができる。この反応は周知のビニル化反応と同様に行うことができる。 The polyfunctional vinyl resin of the present invention can be suitably obtained by reacting a polyhydric hydroxy resin with an aromatic vinylating agent. For example, the vinyl resin of the present invention represented by the above formula (2) can be obtained by reacting a polyhydric hydroxy resin represented by the above formula (6) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction.
 芳香族ビニル化剤としては、ハロメチルスチレン、特にクロロメチルスチレンが好ましい。その他、ブロモメチルスチレン及びその異性体、置換基を持ったものなどが挙げられる。ハロメチル体の置換位置について、例えば、ハロメチルスチレンの場合、4-位が好ましく、4-位体が全体の60重量%以上であることが好ましい。 Aromatic vinylating agents are preferably halomethylstyrenes, particularly chloromethylstyrene. Other examples include bromomethylstyrene and its isomers, and those with substituents. Regarding the substitution position of the halomethyl compound, for example, in the case of halomethylstyrene, the 4-position is preferred, and it is preferable that the 4-position compound accounts for 60% or more by weight of the total.
 多価ヒドロキシ樹脂と芳香族ビニル化剤との反応は、無溶剤下または溶媒の存在下行うことができる。多価ヒドロキシ樹脂に芳香族ビニル化剤を加え、水酸化金属を加えて反応を行い、生成した金属塩をろ過や水洗などの方法により除去して反応が可能である。
 溶媒はメチルエチルケトン、ベンゼン、トルエン、キシレン、メチルイソブチルケトン、ジエチレングリコールジメチルエーテル、シクロペンタノン、シクロヘキサノンなどが挙げられるがこれらに限定されるものではない。反応性の観点で、メチルエチルケトンが好ましい。水酸化金属の具体例としては水酸化ナトリウム、水酸化カリウムなどが挙げられるがこれらに限定されるものではない。
The reaction between the polyhydric hydroxy resin and the aromatic vinylating agent can be carried out in the absence of a solvent or in the presence of a solvent. The reaction can be carried out by adding the aromatic vinylating agent to the polyhydric hydroxy resin, adding a metal hydroxide, and removing the generated metal salt by a method such as filtration or washing with water.
Examples of the solvent include, but are not limited to, methyl ethyl ketone, benzene, toluene, xylene, methyl isobutyl ketone, diethylene glycol dimethyl ether, cyclopentanone, cyclohexanone, etc. From the viewpoint of reactivity, methyl ethyl ketone is preferable. Specific examples of the metal hydroxide include, but are not limited to, sodium hydroxide, potassium hydroxide, etc.
 ビニル化の反応は90℃以下、好ましくは70℃以下の温度である。この温度より高い場合、ビニルベンジルエーテル基の熱による自己重合が進行して反応制御が困難となる。自己重合を抑えるためにキノン類、ニトロ化合物、ニトロフェノール類、ニトロソ,ニトロン化合物、酸素などの重合禁止剤を使用してもよい。 The vinylization reaction is carried out at a temperature of 90°C or less, preferably 70°C or less. If the temperature is higher than this, the heat of the vinyl benzyl ether group will cause self-polymerization, making it difficult to control the reaction. To suppress self-polymerization, polymerization inhibitors such as quinones, nitro compounds, nitrophenols, nitroso and nitrone compounds, and oxygen may be used.
 反応終点は、芳香族ビニル化剤としてのハロメチルスチレンの残存量をGPC等の各種クロマトグラムにて追跡を行うことで決定でき、反応速度は、水酸化金属の種類や量、添加速度、固形分濃度等で調整可能である。
 反応終了後、得られた多官能ビニル樹脂は、減圧留去、水洗又は貧溶剤中での再沈殿等の方法により溶剤等を除去し、精製することが望ましい。
The end point of the reaction can be determined by tracking the remaining amount of halomethylstyrene as an aromatic vinylating agent using various chromatograms such as GPC, and the reaction rate can be adjusted by the type and amount of metal hydroxide, the addition rate, solids concentration, etc.
After the reaction is completed, it is desirable to purify the resulting polyfunctional vinyl resin by removing the solvent, etc., by a method such as distillation under reduced pressure, washing with water, or reprecipitation in a poor solvent.
 本発明の多官能ビニル樹脂は単独でも硬化させることができるが、各種添加剤を配合した多官能樹脂組成物として使用することも好適である。
 例えば、硬化促進のためにアゾ化合物、有機過酸化物などのラジカル重合開始剤を配合して硬化させることができる。
Although the polyfunctional vinyl resin of the present invention can be cured alone, it is also suitable to use it as a polyfunctional resin composition containing various additives.
For example, in order to accelerate curing, a radical polymerization initiator such as an azo compound or an organic peroxide may be blended to effect curing.
 本発明の多官能ビニル樹脂は、それ以外のビニル樹脂や他の熱硬化性樹脂を配合でき、例えばエポキシ樹脂、オキセタン樹脂、マレイミド樹脂、アクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリフェニレンエーテル樹脂、ベンゾオキサジン樹脂などが挙げられる。 The polyfunctional vinyl resin of the present invention can be blended with other vinyl resins and other thermosetting resins, such as epoxy resins, oxetane resins, maleimide resins, acrylate resins, polyester resins, polyurethane resins, polyphenylene ether resins, and benzoxazine resins.
 多官能ビニル樹脂組成物としては、熱伝導率を高める為、例えば、ガラスクロス、カーボンファイバー、アルミナ、窒化ホウ素などの充填剤を配合してもよい。 The polyfunctional vinyl resin composition may contain fillers such as glass cloth, carbon fiber, alumina, and boron nitride to increase thermal conductivity.
 無機充填材は、より高い熱伝導率を付与する目的で、熱伝導率が高いものほど好ましい。好ましくは20W/m・K以上、より好ましくは30W/m・K以上、さらに好ましくは50W/m・K以上である。そして、無機充填材の少なくとも一部、好ましくは50wt%以上が20W/m・K以上の熱伝導率を有する。そして、無機充填材全体としての平均の熱伝導率が、20W/m・K以上、30W/m・K以上、及び50W/m・K以上の順に好ましさが向上する。 In order to provide a higher thermal conductivity, inorganic fillers with higher thermal conductivity are preferred. Thermal conductivity is preferably 20 W/m.K or more, more preferably 30 W/m.K or more, and even more preferably 50 W/m.K or more. At least a portion of the inorganic filler, preferably 50 wt% or more, has a thermal conductivity of 20 W/m.K or more. The average thermal conductivity of the inorganic filler as a whole increases in the order of desirability: 20 W/m.K or more, 30 W/m.K or more, and 50 W/m.K or more.
 このような熱伝導率を有する無機充填材の例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材等が挙げられる。 Examples of inorganic fillers with such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide.
 接着力の向上や組成物の取り扱い作業の向上の為、各種添加剤を添加してもよく、例えばシランカップリング剤や消泡剤、内部離型剤や流れ調整剤などが挙げられる。 Various additives may be added to improve adhesive strength and ease of handling of the composition, such as silane coupling agents, defoamers, internal release agents, and flow control agents.
 本発明の多官能ビニル樹脂または多官能ビニル樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、ガラス繊維,カ-ボン繊維,ポリエステル繊維,ポリアミド繊維,アルミナ繊維,紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。 The polyfunctional vinyl resin or polyfunctional vinyl resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone, impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper, and heated and dried to obtain a prepreg, which can then be hot-press molded to obtain a cured product.
 また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができ、加熱乾燥して得た樹脂シートを熱プレス成形して硬化物を得ることもできる。 In some cases, the resin can be applied onto a sheet-like material such as copper foil, stainless steel foil, polyimide film, or polyester film to form a laminate, and the resin sheet obtained by heating and drying can be subjected to heat press molding to obtain a cured product.
 以下、実施例及び比較例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。特に断りがない限り、「部」は重量部を表し、「%」は重量%を表す。また、測定方法はそれぞれ以下の方法により測定した。 The present invention will be specifically explained below with reference to examples and comparative examples. However, the present invention is not limited to these. Unless otherwise specified, "parts" refers to parts by weight, and "%" refers to % by weight. In addition, the following methods were used for the measurement.
1)OH当量
 電位差滴定装置を用い、1,4-ジオキサンを溶媒に用い、1.5mol/L塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解して0.5mol/L-水酸化カリウムを使用して滴定した。
1) OH equivalent Using a potentiometric titrator, acetylation was carried out with 1.5 mol/L acetyl chloride using 1,4-dioxane as a solvent, and excess acetyl chloride was decomposed with water and titrated with 0.5 mol/L potassium hydroxide.
2)ビニル当量
 試料にウィイス液(一塩化ヨウ素溶液)を反応させ、暗所に放置し、その後、過剰の塩化ヨウ素をヨウ素に還元し、ヨウ素分をチオ硫酸ナトリウムで滴定してヨウ素価を算出した。ヨウ素価をビニル当量に換算した。
2) Vinyl equivalent The sample was reacted with Wies's solution (iodine monochloride solution) and left in the dark, after which the excess iodine chloride was reduced to iodine, and the iodine content was titrated with sodium thiosulfate to calculate the iodine value. The iodine value was converted to vinyl equivalent.
3)全塩素
 試料1.0gをブチルカルビトール25mlに溶解後、1N-KOHプロピレングリコール溶液25mlを加え10分間加熱還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO3水溶液で電位差滴定を行うことにより測定した。
3) Total chlorine: 1.0 g of a sample was dissolved in 25 ml of butyl carbitol, 25 ml of 1N KOH propylene glycol solution was added, and the mixture was heated under reflux for 10 minutes. The mixture was then cooled to room temperature, and 100 ml of 80% acetone water was added. The total chlorine was measured by potentiometric titration with a 0.002N AgNO3 aqueous solution.
4)GPC測定
 本体(東ソー株式会社製、HLC-8220GPC)にカラム(東ソー株式会社製、TSKgelSuperMultiporeHZ―N4本)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、0.35mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。
4) GPC Measurement A main body (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with four columns (TSKgel Super Multipore HZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set to 40°C. Tetrahydrofuran (THF) was used as the eluent, the flow rate was set to 0.35 mL/min, and a differential refractive index detector was used as the detector. 50 μL of the measurement sample was prepared by dissolving 0.1 g of sample in 10 mL of THF and filtering through a microfilter. Data processing was performed using GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation.
5)溶剤溶解性(析出温度)
 サンプル瓶に樹脂2g、シクロヘキサノン1gを秤量し、加熱溶解させた後、恒温槽内にて徐々に温度を低下させ、樹脂が析出した槽内の温度を測定した。析出温度(℃)が高いほど、溶剤溶解性が劣る。
5) Solvent solubility (precipitation temperature)
2 g of resin and 1 g of cyclohexanone were weighed and placed in a sample bottle, and after heating and dissolving, the temperature was gradually lowered in a thermostatic chamber, and the temperature in the chamber at which the resin precipitated was measured. The higher the precipitation temperature (°C), the poorer the solvent solubility.
6)ガラス転移点(Tg)
 熱機械測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR TMA/7100)により、昇温速度10℃/分の条件でTgを求めた。
6) Glass transition temperature (Tg)
The Tg was determined using a thermomechanical measurement device (EXSTAR TMA/7100 manufactured by SII NanoTechnology Inc.) at a temperature rise rate of 10° C./min.
7)5%重量減少温度(Td5)、残炭率
 熱重量/示差熱分析装置(エスアイアイ・ナノテクノロジー製 EXSTAR TG/DTA7300、)を用いて、窒素雰囲気下、昇温速度10℃/分の条件において、5%重量減少温度(Td5)を測定した。また、700℃における重量減少を測定し、残炭率として算出した。
7) 5% weight loss temperature (Td5), carbon residue ratio Using a thermogravimetric/differential thermal analyzer (EXSTAR TG/DTA7300, manufactured by SII Nano Technology), the 5% weight loss temperature (Td5) was measured under conditions of a nitrogen atmosphere and a heating rate of 10°C/min. The weight loss at 700°C was also measured and calculated as the carbon residue ratio.
8)熱伝導率
 熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
8) Thermal Conductivity The thermal conductivity was measured by a non-steady hot wire method using a NETZSCH LFA447 type thermal conductivity meter.
9)誘電率及び誘電正接
 JIS C 2138規格に従って測定した。測定周波数は1GHzの値で示した。
9) Dielectric constant and dielectric loss tangent Measured in accordance with JIS C 2138. The measurement frequency was 1 GHz.
実施例1
 1000mlの4口フラスコに、4,4’-ジヒドロキシビフェニル(下記構造式)65.3g(0.35モル)、
Figure JPOXMLDOC01-appb-C000022

ジエチレングリコールジメチルエーテル121.2g、4,4’-ビスクロロメチルビフェニル(下記構造式)58.7g(0.23モル)
Figure JPOXMLDOC01-appb-C000023

を仕込み、窒素気流下、攪拌しながら170℃まで昇温して3時間反応させ、さらにジヒドロキシジフェニルメタン(4,4’-ジヒドロキシジフェニルメタン(下記構造式):36.2%、2,4’-ジヒドロキシジフェニルメタン:46.6%、2,2’―ジヒドロキシジフェニルメタン:17.2%)7.8g(0.04モル)
Figure JPOXMLDOC01-appb-C000024

を反応させ、多価ヒドロキシ樹脂(水酸基当量129g/eg)を生成させた。
 反応終了後、ジエチレングリコールジメチルエーテルを50.7g回収し、メチルエチルケトン320g、クロロメチルスチレン(下記構造式)135.5g
Figure JPOXMLDOC01-appb-C000025

を加え、60℃に昇温し、メタノール150gに溶解した水酸化カリウム49.8gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥により白色固体のビニル樹脂141gを得た(ビニル樹脂A)。ビニル樹脂Aのビニル当量は275g/eg.、水酸基当量は15000g/eg.、全塩素は300ppmであった。得られた多官能ビニル樹脂のGPCチャートを図1に示す。仕込み比率によれば、p/(p+q)の比率(モル比)は、0.93であり、pは4.2、qは0.3である。 
Example 1
Into a 1000 ml four-neck flask, 65.3 g (0.35 mol) of 4,4'-dihydroxybiphenyl (structural formula below),
Figure JPOXMLDOC01-appb-C000022

Diethylene glycol dimethyl ether 121.2 g, 4,4'-bischloromethylbiphenyl (structural formula below) 58.7 g (0.23 mol)
Figure JPOXMLDOC01-appb-C000023

The mixture was heated to 170° C. under a nitrogen stream while stirring and reacted for 3 hours, and then 7.8 g (0.04 mol) of dihydroxydiphenylmethane (4,4'-dihydroxydiphenylmethane (structural formula below): 36.2%, 2,4'-dihydroxydiphenylmethane: 46.6%, 2,2'-dihydroxydiphenylmethane: 17.2%) was added.
Figure JPOXMLDOC01-appb-C000024

was reacted to produce a polyhydric hydroxy resin (hydroxyl group equivalent: 129 g/eg).
After the reaction was completed, 50.7 g of diethylene glycol dimethyl ether was recovered, 320 g of methyl ethyl ketone, and 135.5 g of chloromethylstyrene (structure shown below).
Figure JPOXMLDOC01-appb-C000025

The mixture was heated to 60°C, and 49.8 g of potassium hydroxide dissolved in 150 g of methanol was added dropwise over 3 hours, followed by further reaction for 6 hours. After the reaction was completed, the mixture was filtered, the solvent was removed, and the mixture was reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain 141 g of a white solid vinyl resin (vinyl resin A). The vinyl equivalent of vinyl resin A was 275 g/eg., the hydroxyl equivalent was 15,000 g/eg., and the total chlorine was 300 ppm. The GPC chart of the obtained multifunctional vinyl resin is shown in Figure 1. According to the charging ratio, the ratio (molar ratio) of p/(p+q) was 0.93, p was 4.2, and q was 0.3.
実施例2
 ジヒドロキシジフェニルメタンの代わりに、2,2’-ジヒドロキシビフェニル(下記構造式)7.3g(0.04モル)
Figure JPOXMLDOC01-appb-C000026

を用いた他は、実施例1と同様にして反応を行い、多価ヒドロキシ樹脂(水酸基当量116g/eg)、さらには多官能ビニル樹脂138gを得た(ビニル樹脂B)。ビニル樹脂Bのビニル当量は262g/eg.、水酸基当量は13000g/eg.、全塩素は340ppmであった。p/(p+q)の比率(モル比)は、0.93であり、pは4.0、qは0.3である。
Example 2
Instead of dihydroxydiphenylmethane, 7.3 g (0.04 mol) of 2,2'-dihydroxybiphenyl (structural formula below)
Figure JPOXMLDOC01-appb-C000026

The reaction was carried out in the same manner as in Example 1, except that polyhydric hydroxyl resin (hydroxyl equivalent: 116 g/eg) and further polyfunctional vinyl resin (138 g) were obtained (vinyl resin B). The vinyl equivalent of vinyl resin B was 262 g/eg., the hydroxyl equivalent was 13,000 g/eg., and the total chlorine was 340 ppm. The ratio (molar ratio) of p/(p+q) was 0.93, p was 4.0, and q was 0.3.
実施例3
 4,4’-ビスクロロメチルビフェニルの代わりに、p-キシリレンジクロライド40.2g(0.23モル)
Figure JPOXMLDOC01-appb-C000027

を用いた他は、実施例1と同様にして反応を行い、多価ヒドロキシ樹脂(水酸基当量105g/eg)、さらには多官能ビニル樹脂129gを得た(ビニル樹脂C)。ビニル樹脂Cのビニル当量は252g/eg.、水酸基当量は13400g/eg.、全塩素は320ppmであった。p/(p+q)の比率(モル比)は、0.93であり、pは3.7、qは0.3である。
Example 3
Instead of 4,4'-bischloromethylbiphenyl, 40.2 g (0.23 mol) of p-xylylene dichloride
Figure JPOXMLDOC01-appb-C000027

The reaction was carried out in the same manner as in Example 1, except that polyhydric hydroxyl resin (hydroxyl equivalent: 105 g/eg) and 129 g of polyfunctional vinyl resin were obtained (vinyl resin C). The vinyl equivalent of vinyl resin C was 252 g/eg., the hydroxyl equivalent was 13,400 g/eg., and the total chlorine was 320 ppm. The ratio (molar ratio) of p/(p+q) was 0.93, p was 3.7, and q was 0.3.
(比較例1)
 1000mlの4口フラスコに、4,4’-ビス(クロロメチル)ビフェニル40.8g、4,4’-ジヒドロキシビフェニル75.5g、ジエチレングリコールジメチルエーテル120gを仕込み、窒素気流下、攪拌しながら160℃まで昇温して10時間反応させた。続いて、70℃にし、ジエチレングリコールジメチルエーテルを280g、クロロメチルスチレンを129.5g加え、48%水酸化カリウム100.0gを滴下しながら反応を行い、ガスクロマトグラフィーにて残存クロロメチルスチレンが無いことを確認し溶剤を減圧回収した。得られた樹脂をトルエンに溶解し中和、水洗を行い、多官能ビニル樹脂172gを得た(ビニル樹脂D)。得られたビニル樹脂Dのビニル当量は256g/eq.、水酸基当量は1500g/eq.、全塩素は1270ppmであった。
(Comparative Example 1)
In a 1000 ml four-neck flask, 40.8 g of 4,4'-bis(chloromethyl)biphenyl, 75.5 g of 4,4'-dihydroxybiphenyl, and 120 g of diethylene glycol dimethyl ether were charged, and the mixture was heated to 160°C while stirring under a nitrogen stream and reacted for 10 hours. The temperature was then raised to 70°C, 280 g of diethylene glycol dimethyl ether and 129.5 g of chloromethylstyrene were added, and the reaction was carried out while dropping 100.0 g of 48% potassium hydroxide. It was confirmed by gas chromatography that there was no remaining chloromethylstyrene, and the solvent was recovered under reduced pressure. The obtained resin was dissolved in toluene, neutralized, and washed with water to obtain 172 g of a multifunctional vinyl resin (vinyl resin D). The vinyl equivalent of the obtained vinyl resin D was 256 g/eq., the hydroxyl equivalent was 1500 g/eq., and the total chlorine was 1270 ppm.
(比較例2)
 4,4’-ビス(クロロメチル)ビフェニル58.9gとし、4,4’-ジヒドロキシビフェニルの代わりにフェノール63.0gを用いた以外は、比較例1と同様の操作を行い、多官能ビニル樹脂160gを得た(ビニル樹脂E)。得られたビニル樹脂Eのビニル当量は331g/eq、水酸基当量は2100g/eq.、全塩素は1680ppmであった。
(Comparative Example 2)
The same procedure as in Comparative Example 1 was carried out except that 58.9 g of 4,4'-bis(chloromethyl)biphenyl was used and 63.0 g of phenol was used instead of 4,4'-dihydroxybiphenyl, to obtain 160 g of a multifunctional vinyl resin (vinyl resin E). The vinyl equivalent of the obtained vinyl resin E was 331 g/eq, the hydroxyl equivalent was 2100 g/eq, and the total chlorine was 1680 ppm.
(比較例3)
 メチルエチルケトン320gの代わりにジエチレングリコールジメチルエーテルを320g用いて、クロロメチルスチレンとの反応を80℃で行った以外は、実施例1と同様の操作を行い、多官能ビニル樹脂135gを得た(ビニル樹脂F)。ビニル樹脂Fのビニル当量は95g/eg.、水酸基当量は1000g/eg.、全塩素は260ppmであった。p/(p+q)の比率(モル比)は、0.90であり、pは0~10、qは0~4の範囲の混合物である。
(Comparative Example 3)
The same procedure as in Example 1 was carried out except that 320 g of diethylene glycol dimethyl ether was used instead of 320 g of methyl ethyl ketone, and the reaction with chloromethylstyrene was carried out at 80°C, to obtain 135 g of a multifunctional vinyl resin (vinyl resin F). The vinyl equivalent of vinyl resin F was 95 g/eg., the hydroxyl equivalent was 1000 g/eg., and the total chlorine was 260 ppm. The ratio (molar ratio) of p/(p+q) was 0.90, and the mixture was in the range of p to 10 and q to 4.
(比較例4)
 実施例1の反応終了後の操作においてメタノールによる再沈殿を実施しない以外は実施例1と同様の操作を実施し、多官能ビニル樹脂150gを得た(ビニル樹脂G)。ビニル樹脂Gのビニル当量は285g/eg.、水酸基当量は16000g/eg.、全塩素は3000ppmであった。p/(p+q)の比率(モル比)は、0.90であり、pは0~8、qは0~2の範囲の混合物である。
(比較例5)
 1000mlの4口フラスコに、ジヒドロキシジフェニルメタン(4,4’-ジヒドロキシジフェニルメタン:36.2%、2,4’-ジヒドロキシジフェニルメタン:46.6%、2,2’―ジヒドロキシジフェニルメタン:17.2%)50.0g、メチルエチルケトン400g、クロロメチルスチレン80.1gを加え、60℃に昇温し、メタノール88gに溶解した水酸化カリウム29.5gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥により多官能ビニル樹脂95.4gを得た(ビニル樹脂H)。ビニル樹脂Hのビニル当量は217g/eg.、水酸基当量は17000g/eg.、全塩素は400ppmであった。
(Comparative Example 4)
The same operation as in Example 1 was carried out, except that reprecipitation with methanol was not carried out in the operation after the end of the reaction in Example 1, to obtain 150 g of a multifunctional vinyl resin (vinyl resin G). The vinyl equivalent of vinyl resin G was 285 g/eg., the hydroxyl equivalent was 16,000 g/eg., and the total chlorine was 3,000 ppm. The ratio (molar ratio) of p/(p+q) was 0.90, and it was a mixture in which p was in the range of 0 to 8 and q was in the range of 0 to 2.
(Comparative Example 5)
In a 1000 ml four-neck flask, 50.0 g of dihydroxydiphenylmethane (4,4'-dihydroxydiphenylmethane: 36.2%, 2,4'-dihydroxydiphenylmethane: 46.6%, 2,2'-dihydroxydiphenylmethane: 17.2%), 400 g of methyl ethyl ketone, and 80.1 g of chloromethylstyrene were added, heated to 60°C, and 29.5 g of potassium hydroxide dissolved in 88 g of methanol was added dropwise over 3 hours, and the reaction was continued for another 6 hours. After the reaction was completed, the mixture was filtered, the solvent was distilled off, and the mixture was reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain 95.4 g of a multifunctional vinyl resin (vinyl resin H). The vinyl equivalent of vinyl resin H was 217 g/eg., the hydroxyl equivalent was 17000 g/eg., and the total chlorine was 400 ppm.
実施例4~6、比較例6~11
 多官能ビニル樹脂として、実施例1~3、比較例1~5で得たビニル樹脂A~H及びビニル樹脂I(OPE-2ST:三菱ガス化学株式会社製、ビニル基当量:590.0g/eq、数平均分子量1187)を使用し、硬化促進剤(ラジカル重合開始剤)として有機過酸化物であるパーブチルP(日油株式会社製)、酸化防止剤としてアデカスタブAO-60(株式会社ADEKA製)を表1に示す配合割合で混合し、溶剤に溶解して均一な組成物とした。本組成物をPETフィルムに塗布し、130℃で5分乾燥を行い、樹脂組成物を得た。PETフィルムから取り出した組成物を鏡面板に挟み、減圧下130℃で15分及び210℃で80分2MPaの圧力をかけながら硬化した。得られた硬化物の特性を表1に示す。
Examples 4 to 6, Comparative Examples 6 to 11
As the polyfunctional vinyl resin, vinyl resins A to H and vinyl resin I (OPE-2ST: manufactured by Mitsubishi Gas Chemical Company, Inc., vinyl group equivalent: 590.0 g / eq, number average molecular weight 1187) obtained in Examples 1 to 3 and Comparative Examples 1 to 5 were used, and Perbutyl P (manufactured by NOF Corporation), an organic peroxide, was used as a curing accelerator (radical polymerization initiator), and Adeka STAB AO-60 (manufactured by ADEKA Corporation) was used as an antioxidant in the blending ratio shown in Table 1. The composition was applied to a PET film and dried at 130 ° C. for 5 minutes to obtain a resin composition. The composition removed from the PET film was sandwiched between mirror plates and cured under reduced pressure at 130 ° C. for 15 minutes and at 210 ° C. for 80 minutes while applying a pressure of 2 MPa. The properties of the obtained cured product are shown in Table 1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 実施例の多官能ビニル樹脂は、比較例に比べて、熱伝導率が高く、尚且つ低誘電率、低誘電正接という優れた物性を示した。 Compared to the comparative example, the multifunctional vinyl resin of the example exhibited excellent physical properties, including high thermal conductivity, low dielectric constant, and low dielectric tangent.
 本発明の多官能ビニル樹脂は、高速通信機器の電子材料として電子部品や配線からの発熱を逃がしやすく信号損失か少ない材料として有用である。 The multifunctional vinyl resin of the present invention is useful as an electronic material for high-speed communication devices, as it easily dissipates heat from electronic components and wiring and has little signal loss.

Claims (6)

  1.  下記一般式(1)で表される多官能ビニル樹脂であって、ビニル当量が200~450g/eqであり、水酸基当量が5000g/eq以上であり、全塩素量が1000ppm以下であることを特徴とする多官能ビニル樹脂。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-又は二価の炭素数1~6の炭化水素基を示し、Xはベンゼン環、ナフタレン環及びビフェニル環の群から選択される芳香環であり、nは0~20の数を示す。
    A polyfunctional vinyl resin represented by the following general formula (1), characterized in that the polyfunctional vinyl resin has a vinyl equivalent of 200 to 450 g/eq, a hydroxyl group equivalent of 5000 g/eq or more, and a total chlorine content of 1000 ppm or less.
    Figure JPOXMLDOC01-appb-C000001

    In formula (1), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO- or a divalent hydrocarbon group having 1 to 6 carbon atoms, X represents an aromatic ring selected from the group consisting of a benzene ring, a naphthalene ring and a biphenyl ring, and n represents a number from 0 to 20.
  2.  下記一般式(2)で表される請求項1に記載の多官能ビニル樹脂。
    Figure JPOXMLDOC01-appb-C000002

     式(2)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示し、少なくとも1つは単結合以外である。pおよびqはそれぞれ独立して0~20の数を示す。
    The polyfunctional vinyl resin according to claim 1 , represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002

    In formula (2), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond. p and q each independently represent a number from 0 to 20.
  3.  請求項2に記載の多官能ビニル樹脂を製造する方法であって、式(3)で表される4,4’-ジヒドロキシビフェニルと、式(4)で表される芳香族架橋剤を反応させた後、式(5)で表される二官能フェノール化合物を更に反応させて一般式(6)で表される多価ヒドロキシ樹脂を得て、この多価ヒドロキシ樹脂とクロロメチルスチレンと反応させることを特徴とする多官能ビニル樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

     式(4)において、Xは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。
    Figure JPOXMLDOC01-appb-C000005

     式(5)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示す。
    Figure JPOXMLDOC01-appb-C000006

     式(6)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示し、少なくとも1つは単結合以外である。pおよびqはそれぞれ独立して0~20の数を示す。
    A method for producing the polyfunctional vinyl resin according to claim 2, comprising reacting 4,4'-dihydroxybiphenyl represented by formula (3) with an aromatic crosslinking agent represented by formula (4), and then further reacting with a bifunctional phenol compound represented by formula (5) to obtain a polyhydric hydroxy resin represented by general formula (6), and then reacting this polyhydric hydroxy resin with chloromethylstyrene.
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    In formula (4), X represents a hydroxyl group, a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
    Figure JPOXMLDOC01-appb-C000005

    In formula (5), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms.
    Figure JPOXMLDOC01-appb-C000006

    In formula (6), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond. p and q each independently represent a number from 0 to 20.
  4.  下記一般式(6)で表され、水酸基当量が100~350g/eqであることを特徴とする多価ヒドロキシ樹脂。
    Figure JPOXMLDOC01-appb-C000007

     式(6)において、Aは単結合、酸素原子、硫黄原子、-SO2-、-CO-、または二価の炭素数1~6の炭化水素を示し、少なくとも1つは単結合以外である。pおよびqはそれぞれ独立して0~20の数を示す。
    A polyhydric hydroxy resin represented by the following general formula (6) and having a hydroxyl group equivalent of 100 to 350 g/eq.
    Figure JPOXMLDOC01-appb-C000007

    In formula (6), A represents a single bond, an oxygen atom, a sulfur atom, -SO2-, -CO-, or a divalent hydrocarbon having 1 to 6 carbon atoms, at least one of which is other than a single bond. p and q each independently represent a number from 0 to 20.
  5.  請求項1または2に記載の多官能ビニル樹脂とラジカル重合開始剤とを必須成分として含有する多官能ビニル樹脂組成物。 A polyfunctional vinyl resin composition comprising the polyfunctional vinyl resin according to claim 1 or 2 and a radical polymerization initiator as essential components.
  6.  請求項5に記載の多官能ビニル樹脂組成物を硬化してなる多官能ビニル樹脂硬化物。 A multifunctional vinyl resin cured product obtained by curing the multifunctional vinyl resin composition according to claim 5.
PCT/JP2023/034756 2022-09-29 2023-09-25 Polyfunctional vinyl resin, and production method, composition, and cured product of same WO2024071047A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022155786 2022-09-29
JP2022-155786 2022-09-29
JP2022-180575 2022-11-10
JP2022180575 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024071047A1 true WO2024071047A1 (en) 2024-04-04

Family

ID=90477893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034756 WO2024071047A1 (en) 2022-09-29 2023-09-25 Polyfunctional vinyl resin, and production method, composition, and cured product of same

Country Status (1)

Country Link
WO (1) WO2024071047A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002293A (en) * 2018-06-29 2020-01-09 日鉄ケミカル&マテリアル株式会社 Manufacturing method of polyvalent hydroxy resin
WO2021200414A1 (en) * 2020-03-30 2021-10-07 日鉄ケミカル&マテリアル株式会社 Polyfunctional vinyl resin and production method therefor
WO2021241255A1 (en) * 2020-05-28 2021-12-02 日鉄ケミカル&マテリアル株式会社 Polyfunctional vinyl resin and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002293A (en) * 2018-06-29 2020-01-09 日鉄ケミカル&マテリアル株式会社 Manufacturing method of polyvalent hydroxy resin
WO2021200414A1 (en) * 2020-03-30 2021-10-07 日鉄ケミカル&マテリアル株式会社 Polyfunctional vinyl resin and production method therefor
WO2021241255A1 (en) * 2020-05-28 2021-12-02 日鉄ケミカル&マテリアル株式会社 Polyfunctional vinyl resin and method for producing same

Similar Documents

Publication Publication Date Title
WO2020054601A1 (en) Maleimide resin, curable resin composition, and cured product thereof
WO2007080998A1 (en) Cyanato-containing cyclic phosphazenes and process for production thereof
WO2015146606A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
CN110194843B (en) Phosphorus-containing phenoxy resin, resin composition, material for circuit board, and cured product
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP6799370B2 (en) Multivalent hydroxy resin, epoxy resin, their manufacturing method, epoxy resin composition and cured product thereof
WO2021241255A1 (en) Polyfunctional vinyl resin and method for producing same
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
KR101640856B1 (en) Naphtol resin, epoxy resin, epoxy resin composition and cured product thereof
WO2024071047A1 (en) Polyfunctional vinyl resin, and production method, composition, and cured product of same
JP5686512B2 (en) Phosphorus-containing epoxy resin, resin composition, and flame-retardant cured product thereof
WO2021200414A1 (en) Polyfunctional vinyl resin and production method therefor
JP7368551B2 (en) Method for producing epoxy resin composition and method for using biphenylaralkyl phenolic resin
WO2023032534A1 (en) Allyl ether compound, resin composition, and cured product thereof
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
WO2013157061A1 (en) Epoxy resin composition and cured product
TW202225251A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product thereof useful for making a cured product with excellent thermal decomposition stability, low dielectric properties, and reliability
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
WO2024070773A1 (en) Multifunctional vinyl compound, composition thereof, and cured product
TW202200651A (en) Polyhydroxy resin, manufacturing method thereof, epoxy resin composition containing the same, and epoxy resin cured product to provide a polyhydroxy resin with excellent reliability, excellent handleability as a solid at room temperature, low viscosity during molding, and solvent solubility
JP6292925B2 (en) Epoxy resin composition and cured product thereof
TW202413477A (en) Multifunctional vinyl resin, manufacturing method thereof, polyvalent hydroxyl resin, multifunctional vinyl resin composition and multifunctional vinyl resin cured product
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
US20220227942A1 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, and printed circuit board
WO2024029602A1 (en) Resin composition, and cured product