WO2024070941A1 - Conducting wire, electric wire, and method for manufacturing conducting wire - Google Patents

Conducting wire, electric wire, and method for manufacturing conducting wire Download PDF

Info

Publication number
WO2024070941A1
WO2024070941A1 PCT/JP2023/034483 JP2023034483W WO2024070941A1 WO 2024070941 A1 WO2024070941 A1 WO 2024070941A1 JP 2023034483 W JP2023034483 W JP 2023034483W WO 2024070941 A1 WO2024070941 A1 WO 2024070941A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
conductor
cross
wire
less
Prior art date
Application number
PCT/JP2023/034483
Other languages
French (fr)
Japanese (ja)
Inventor
誠 藤本
功 岩山
紳哉 岡本
亮 丹治
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2024070941A1 publication Critical patent/WO2024070941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/08Dies; Selection of material therefor; Cleaning thereof with section defined by rollers, balls, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • a conductor wire with a rectangular cross section is produced by a wire drawing process using multiple dies.
  • the metal wire that is the raw material for the conductor wire has a circular cross section.
  • the metal wire is gradually processed into a wire rod with an elliptical cross section, and then finished with a finishing die to produce a conductor wire with a rectangular cross section.
  • the conductor of the present disclosure is a conductor made of a metal material, and has a rectangular cross section having a width and a thickness, the corners of the rectangular cross section are curved, the ratio S/SV of the area SV of a virtual rectangle circumscribing the rectangular cross section to the area S of the rectangular cross section is 0.975 or more, a first cross section of the conductor is spaced from a second cross section of the conductor along the longitudinal axis of the conductor, a first rate of change based on the width W1 of the first cross section and the width W2 of the second cross section is 0.5% or less, a second rate of change based on the thickness T1 of the first cross section and the thickness T2 of the second cross section is 0.5% or less, the first rate of change is
  • FIG. 1 is a schematic diagram of an electric wire according to an embodiment.
  • FIG. 2 is a cross-sectional view of a conductor included in the electric wire shown in FIG.
  • FIG. 3 is a first explanatory diagram of the method for manufacturing a conductor according to the embodiment.
  • FIG. 4 is a second explanatory diagram of the method for manufacturing a conductor according to the embodiment.
  • FIG. 5 is a third explanatory diagram of the method for manufacturing a conductor according to the embodiment.
  • FIG. 6 is a graph showing the relationship between the corner processing rate P and the cross-sectional area reduction rate for each sample in the test example.
  • FIG. 7 is a graph showing the relationship between the ratio S/SV and the arithmetic mean roughness Ra of the corners in each sample of the test example.
  • Conductors obtained by wire drawing tend to have rough corner surfaces, which can lead to defects where the insulation layer is insufficiently formed at the rough corners.
  • a conductor with a small radius of curvature at the corners is required, but the smaller the radius of curvature at the corners, the more likely the corner surfaces are to become rough and the more likely the number of defects is to increase.
  • An insulation layer with many defects may not be able to sufficiently insulate the conductor.
  • One of the objects of the present disclosure is to provide a conductor in which defects in the formation of an insulating layer are unlikely to occur at the corners of the rectangular cross section of the conductor.
  • One of the objects of the present disclosure is to provide an electric wire in which the insulating layer covering the corners of the rectangular cross section of the conductor has few defects.
  • One of the objects of the present disclosure is to provide a manufacturing method for a conductor that can produce the conductor of the present disclosure.
  • the conductor of the present disclosure when an insulating layer is formed around the outer periphery of the conductor, suppresses the occurrence of defective portions in the insulating layer covering the corners.
  • the conductor according to the embodiment is made of a metal material and has a rectangular cross section having a width and a thickness, the corners of the rectangular cross section are curved, the ratio S/SV of the area SV of a virtual rectangle circumscribing the rectangular cross section to the area S of the rectangular cross section is 0.975 or more, the first cross section of the conductor is separated from the second cross section of the conductor along the longitudinal axis of the conductor, the first rate of change based on the width W1 of the first cross section and the width W2 of the second cross section is 0.5% or less, the second rate of change based on the thickness T1 of the first cross section and the thickness T2 of the second cross section is 0.5% or less, the first rate of change is
  • a conductor with an S/SV ratio of 0.975 or more contributes to improving the space factor of the coil.
  • Space factor is the ratio of the cross-sectional area of the conductor to the cross-sectional area of the space occupied by the coil when the conductor is wound around it.
  • a conductor in which the first rate of change and the second rate of change are both 0.5% or less has a uniform rectangular cross section along the longitudinal axis of the conductor.
  • the longitudinal axis of the conductor is an axis line along the conductor connecting the first end and the second end of the conductor.
  • the conductor of the present disclosure has small dimensional variation in the direction along the longitudinal axis of the conductor. Products made from this conductor have reduced variation in electrical or magnetic properties. Such a conductor is obtained by wire drawing using a die.
  • the arithmetic mean roughness Ra of the surface of the corner is 0.2 ⁇ m or less
  • the arithmetic mean roughness Ra of the surface of the parts other than the corner is usually about 0.02 to 0.1 ⁇ m, so the difference in arithmetic mean roughness between the corner and the parts other than the corner can be made small. Therefore, when an insulating layer is formed around the outer periphery of the conductor, defects are unlikely to occur in the insulating layer covering the corner.
  • the metal material may be oxygen-free copper.
  • Conductors made of oxygen-free copper have excellent electrical conductivity. Oxygen-free copper is easy to process. Conductors made of oxygen-free copper have excellent weldability.
  • the area S may be 2 mm2 or more and 12 mm2 or less.
  • a conductor wire having an area S of 2 mm2 or more and 12 mm2 or less is suitable as a material for forming a coil.
  • the aspect ratio of the rectangular cross section may be 1 or more and 10 or less.
  • the aspect ratio is the width of a rectangular cross section divided by the thickness of the rectangular cross section.
  • a rectangular cross section with an aspect ratio of 1 is approximately square.
  • a conductor with a rectangular cross section whose aspect ratio is greater than 1 is known as a rectangular wire.
  • the difference between the width W1 and the width W2, and the difference between the thickness T1 and the thickness T2 may both be 16 ⁇ m or less.
  • the conductor ⁇ 5> above has a uniform rectangular cross section along the longitudinal axis of the conductor. Therefore, the conductor ⁇ 5> above suppresses the variation in performance of each turn in the coil made from this conductor. This conductor makes it possible to mass-produce coils that exhibit stable performance.
  • the electric wire according to the embodiment comprises a conductor wire described in any one of ⁇ 1> to ⁇ 5> above and an insulating layer covering the surface of the conductor wire.
  • An electric wire that has a conductor and an insulating layer can be used, for example, as material for a coil. Because the corners of the conductor are smooth, defects are unlikely to form in the insulating layer that covers the corners. Using such an electric wire, it is possible to create a coil that exhibits stable performance.
  • the manufacturing method of the conductor wire includes a step of performing final wire drawing of raw wire material, the raw wire material being a metal wire immediately prior to the final wire drawing step, the cross section of the raw wire material having four corners, the cross section having a width W0, a thickness T0, and a diagonal length L0, the rectangular cross section having a width W, a thickness T, and a diagonal length L, the processing ratio P of the corners in the final wire drawing is 20% or more, the processing ratio P is ⁇ (L0-L)/X ⁇ x 100, where X is the larger of W0-W and T0-T, and the cross-sectional area reduction rate in the final wire drawing is 35% or less.
  • the final wiredrawing process is a so-called finishing wiredrawing process. If the cross-sectional area reduction rate in the final wiredrawing process is 35% or less, the conductor is less likely to break. If the cross-sectional area reduction rate is small, the drawing force for pulling the raw wire from the die is smaller, and the stress acting on the raw wire is smaller. However, in a wiredrawing process with a small cross-sectional area reduction rate, the contact area between the die and the raw wire is smaller, and the stress per unit area acting on the surface of the raw wire, i.e., the surface pressure, is rather larger. If the surface pressure acting on the raw wire during drawing is higher, the surface of the conductor, including the corners, tends to become smooth.
  • the processing ratio P in the final wiredrawing process is 20% or more, sufficient processing is applied to the corners of the raw wire, and the surface of the corners of the conductor becomes smooth. As a result, a conductor is obtained that has corners with a surface with an arithmetic mean roughness Ra of 0.2 ⁇ m or less.
  • the electric wire 1 shown in Fig. 1 includes a conductor 2 made of a metal material and an insulating layer 3 covering the surface of the conductor 2.
  • the conductor 2 has a rectangular cross section 20.
  • the rectangular cross section 20 is a cross section of the conductor 2 cut along a plane perpendicular to the longitudinal axis of the conductor 2.
  • the conductor 2 has a substantially uniform rectangular cross section 20 along the longitudinal axis of the conductor 2.
  • the metal material constituting the conductor 2 is, for example, copper, a copper alloy, aluminum, or an aluminum alloy. These metal materials are relatively inexpensive and have excellent conductivity.
  • the conductor 2 made of oxygen-free copper has excellent conductivity.
  • Oxygen-free copper is pure copper containing 99.95% by mass or more of copper, with the remainder being unavoidable impurities.
  • the total content of unavoidable impurities in oxygen-free copper is, for example, 0.03% by mass or less.
  • the oxygen content in oxygen-free copper is, for example, 0.005% by mass (50 ppm by mass) or less, further 0.002% by mass (20 ppm by mass) or less, and further 0.001% by mass (10 ppm by mass) or less. The lower the oxygen content in oxygen-free copper, the higher the conductivity of the oxygen-free copper.
  • the corners 29 of the rectangular cross section 20 are curved.
  • the ratio S/SV of the area SV of the imaginary rectangle 25 circumscribing the rectangular cross section 20 to the area S of the rectangular cross section 20 is 0.975 or more.
  • the areas S and SV are obtained from a micrograph of the rectangular cross section 20. Specifically, the micrograph of the rectangular cross section 20 is subjected to image analysis to identify the outer contour of the rectangular cross section 20. The area of the portion surrounded by the outer contour is the area S.
  • the imaginary rectangle 25 shown by the two-dot chain line in Figure 2 is the smallest rectangle that circumscribing the outer contour of the rectangular cross section 20 in the micrograph of the rectangular cross section 20. The area inside the imaginary rectangle 25 in the micrograph is the area SV.
  • a conductor with a ratio S/SV of 0.975 or more contributes to improving the space factor of the coil.
  • the space factor is the ratio of the cross-sectional area of the conductor 2 to the cross-sectional area of the space occupied by the coil in which the conductor 2 is wound.
  • the ratio S/SV may be, for example, 0.990 or more, or even 0.995 or more.
  • the area S of the rectangular cross section 20 is, for example, 2 mm2 or more and 12 mm2 or less.
  • a conductor 2 having an area S of 2 mm2 or more and 12 mm2 or less can be used as a constituent material of a coil.
  • the larger the area S the larger the allowable current of the conductor 2.
  • the area S may be, for example, 3 mm2 or more and 10 mm2 or less, or 5 mm2 or more and 10 mm2 or less.
  • the corner 29 is an arc.
  • the radius of curvature of the arc-shaped corner 29 is, for example, 0.07 mm or more and 0.50 mm or less.
  • a corner 29 with a radius of curvature of 0.07 mm or more is not easily damaged because it is not too sharp.
  • the insulating layer 3 formed on the outer periphery of a corner 29 that is not too sharp is also not easily damaged. If the radius of curvature of the corner 29 is 0.50 mm or less, the area SV of the rectangular cross section 20 does not become too small.
  • the radius of curvature may be, for example, 0.09 mm or more and 0.40 mm or less, 0.10 mm or more and 0.25 mm or less, or 0.10 mm or more and 0.15 mm or less.
  • the rectangular cross section 20 has a width W and a thickness T.
  • the width W of the rectangular cross section 20 is equal to the length of the first side 251 of the imaginary rectangle 25.
  • the thickness of the rectangular cross section 20 is equal to the length of the second side 252 perpendicular to the first side 251 of the imaginary rectangle 25.
  • the width W and the thickness T may be the same or different. In this example, the width W is longer than the thickness T.
  • a conductor 2 having a different width W and thickness T is a so-called rectangular wire.
  • first cross section 21 and a second cross section 22 spaced apart along the longitudinal axis of the conductor 2 have almost the same shape and dimensions.
  • the first cross section 21 is a rectangular cross section 20 at the position of arrow A in FIG. 1.
  • the second cross section 22 is a rectangular cross section 20 at the position of arrow B in FIG. 1.
  • the distance between arrows A and B in FIG. 1 is short.
  • the distance between the first cross section 21 and the second cross section 22 is, for example, 100 m.
  • a first rate of change based on the width W1 of the first cross section 21 and the width W2 of the second cross section 22 is 0.5% (percent) or less
  • a second rate of change based on the thickness T1 of the first cross section 21 and the thickness T2 of the second cross section 22 is 0.5% or less.
  • a conductor 2 in which the first rate of change and the second rate of change are both 0.5% or less has a substantially uniform rectangular cross section 20 along the longitudinal axis of the conductor 2.
  • Wire drawing using a die can produce a conductor 2 with small dimensional variation along the longitudinal axis of the conductor 2. Therefore, it can be said that a conductor 2 in which the first rate of change and the second rate of change are both 0.5% or less has been obtained by wire drawing using a die.
  • the first rate of change and the second rate of change may each be 0.4% or less, or 0.2% or less.
  • the conductor 2 has a uniform rectangular cross section 20 along the longitudinal axis of the conductor 2, which suppresses the variation in performance of each turn in a coil made with the conductor 2.
  • the conductor 2 allows for the mass production of coils that exhibit stable performance.
  • the dimensional variation along the longitudinal axis of the conductor 2 may be evaluated in absolute values.
  • the difference W1-W2 between the width W1 of the first cross section 21 and the width W2 of the second cross section 22 may be 16 ⁇ m or less
  • the difference T1-T2 between the thickness T1 of the first cross section 21 and the thickness T2 of the second cross section 22 may be 16 ⁇ m or less.
  • the difference W1-W2 and the difference T1-T2 may be, for example, 12 ⁇ m or less, or 8 ⁇ m or less.
  • the surface of the corners 29 of the conductor 2 is very smooth.
  • the arithmetic mean roughness Ra of the surface of the corners 29 is 0.2 ⁇ m or less.
  • the arithmetic mean roughness Ra is the average of the measurement results measured at three points on each of the four corners 29.
  • the arithmetic mean roughness Ra is the average of the measurement results at 12 points.
  • the arithmetic mean roughness Ra complies with JIS B 0601:2013.
  • the arithmetic mean roughness Ra can be determined, for example, by a commercially available non-contact roughness measuring device, specifically, the LEXT OLS4100 manufactured by Olympus Corporation.
  • the surface of the corner 29, which has the arithmetic mean roughness Ra is as smooth as the surface of the parts other than the corner 29. Therefore, when the insulating layer 3 is formed around the outer periphery of the conductor 2, defects are unlikely to occur in the insulating layer 3 covering the corner 29.
  • the arithmetic mean roughness Ra may be, for example, 0.15 ⁇ m or less, 0.1 ⁇ m or less, or 0.08 ⁇ m or less.
  • the insulating layer 3 ensures insulation of the conductor 2.
  • the insulating layer 3 is, for example, enamel formed by solidifying insulating varnish.
  • the insulating layer 3 may be a resin having high electrical insulation properties, such as polyimide resin, fluororesin, polyethersulfone, or polyetheretherketone.
  • the thickness of the insulating layer 3 may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, or 10 ⁇ m or more and 50 ⁇ m or less.
  • the corners 29 of the conductor 2 in this example are very smooth, and defective parts are unlikely to occur in the insulating layer 3 formed on the outer periphery of the smooth corners 29. Therefore, even if the thickness of the insulating layer 3 is within the above range, defective parts are unlikely to occur in the insulating layer 3.
  • the insulating layer 3 covers part or all of the surface of the conductor 2.
  • the manufacturing method of the electric wire 1 includes a step of obtaining the conductor wire 2 by drawing a metal wire, a step of heat-treating the conductor wire 2, and a step of forming an insulating layer 3 on the outer periphery of the conductor wire 2 after the heat treatment.
  • the conductor wire 2 is obtained, for example, by the conductor wire manufacturing method of the present disclosure.
  • the conductor wire manufacturing method in this example is performed by a wire drawing device 6 shown in Fig. 3.
  • the wire drawing device 6 includes, for example, a plurality of dies 61, 62, 63, and 64. By passing the metal wire 9 through the dies 61, 62, 63, and 64, the metal wire 9 can be gradually brought closer to a desired shape and wire diameter.
  • At least the die 64 is a wire drawing die.
  • the dies 61, 62, and 63 may be roller dies.
  • One of the features of the manufacturing method of the conductor wire 2 is that in the final drawing in the wire drawing device 6, processing is performed under predetermined conditions.
  • processing is performed under predetermined conditions.
  • the characteristic points of the manufacturing method of the conductor wire 2 will be explained based on Figure 4.
  • the metal wire 9 that is fed to the final die 64 will be called the raw wire material 4.
  • the solid line in Figure 4 indicates the cross section of the raw wire 4.
  • the two-dot chain line indicates the cross section of the conductor 2 obtained by drawing the raw wire 4. Hatching has been omitted in Figure 4 for ease of explanation.
  • the raw wire 4 has a cross section 40 having four corners 49.
  • the cross section 40 is a cross section of the raw wire 4 cut by a plane perpendicular to the longitudinal axis of the raw wire 4.
  • the cross section 40 has a shape that is symmetrical both vertically and horizontally.
  • the corners 49 may be sharply pointed, formed by connecting two straight lines, or may be curved.
  • the corners 49 in this example are curved.
  • the contour line connecting the two adjacent corners 49 along the outer periphery of the cross section may be a straight line, or may be a curved line that is convex in a direction away from the center of the cross section. In this example, the contour line is a straight line.
  • the cross section 40 has a width W0 and a thickness T0.
  • the width W0 and thickness T0 are equal to the lengths of the first and second sides, respectively, of an imaginary rectangle circumscribing the cross section 40.
  • the first and second sides are two sides that are perpendicular to each other.
  • the width W0 and thickness T0 may be the same or different. In this example, the width W0 is longer than the thickness T0.
  • Corner portions 49 are, for example, portions from both ends of the first side that correspond to 10% of the total length of the first side. Corner portions 49 are, for example, portions from both ends of the second side that correspond to 10% of the total length of the second side.
  • the manufacturing method of the conductor 2 includes a step of drawing the raw wire material 4 to obtain the conductor 2 having a rectangular cross section 20.
  • the rectangular cross section 20 has a width W and a thickness T.
  • the outline of the rectangular cross section 20 in FIG. 4 can be considered to be approximately the same as the outline of the portion of the die hole of the die 64 (FIG. 3) that has the smallest inner diameter, i.e., the bearing of the die 64.
  • the rectangular cross section 20 has a shape that is symmetrical both vertically and horizontally.
  • the cross-sectional area reduction rate in the final wire drawing process is 35% or less. It is more preferable that the cross-sectional area reduction rate is 15% or more and 35% or less.
  • the cross-sectional area reduction rate is an index showing how much the area S of the rectangular cross section 20 has become smaller than the area S0 of the cross section 40. Specifically, the cross-sectional area reduction rate is calculated by ⁇ (S0-S)/S0 ⁇ 100. If the cross-sectional area reduction rate in the final wire drawing process is 35% or less, the surface of the corner 29 becomes smooth.
  • the die 64 may be an angle type die, a circle type die, or a hybrid die. As shown in FIG.
  • the angle type die is a die in which the shape of the approach 641 of the die 64 in the longitudinal section of the die 64 is linear.
  • the circle type die is a die in which the shape of the approach is curved.
  • the hybrid die is a die in which the approach shape is a combination of a straight line and a curve.
  • the approach angle ⁇ of the die 64 may be constant or may be different at different positions on the approach. In order to increase the degree of processing of the surface of the raw wire 4, it is desirable for the approach angle ⁇ to be high.
  • the approach 641 is a tapered portion located on the inlet side of the bearing 642, which is a hole inside the die that determines the dimensions of the conductor 2, and has the function of narrowing the outer diameter of the raw wire 4.
  • the approach angle ⁇ is the angle formed by the tapered approach 641 in the vertical cross section of the die 64, and is the sum of the angle formed at the top and the angle formed at the bottom with respect to the horizontal direction.
  • the processing rate P of the corners 49 in the wire drawing is 20% or more.
  • the processing rate P of the corners 49 is an index showing whether the corners 49 are significantly deformed when the raw wire 4 is drawn. Specifically, the processing rate P is calculated by ⁇ (L0-L)/X ⁇ 100.
  • L0 Diagonal length of cross section 40 of raw wire 4
  • L Diagonal length of rectangular cross section 20 of conductor 2
  • X Maximum deformation amount of portions other than corners 49
  • the diagonal length L is the length of the diagonal of the rectangular cross section 20, that is, the distance between the first corner 29 and the second corner 29 at diagonal positions in the rectangular cross section 20.
  • the diagonal length L0 is the length of the diagonal of the cross section 40.
  • the straight line connecting the first intersection point and the second intersection point in the cross section 40 is the diagonal of the cross section 40.
  • the first intersection point and the second intersection point are the intersection points between the extension of the diagonal of the rectangular cross section 20 and the contour line of the cross section 40.
  • the value obtained by subtracting the diagonal length L from the diagonal length L0 can be regarded as the deformation amount of the corner 49 due to the final wire drawing process.
  • the maximum deformation amount X is the larger of W0-W and T0-T.
  • the width W and thickness T are approximately the same as the dimensions of the portion of the die hole of the die 64 that has the smallest inner diameter.
  • the corners 49 are hardly deformed, and the portions other than the corners 49 are significantly deformed.
  • the maximum deformation amount X is significantly larger than the deformation amount L0-L of the corners 49.
  • the processing ratio P is 20% or more.
  • the corners 49 are sufficiently processed in the same manner as the other parts, and the surface of the corners 29 becomes as smooth as the other parts.
  • a conductor 2 is obtained that has corners 29 with a surface having an arithmetic mean roughness Ra of 0.2 ⁇ m or less.
  • the larger the processing ratio P the higher the processing degree of the corners 49 and the smoother the surface of the corners 29.
  • the processing ratio P may be, for example, 30% or more, 45% or more, or 60% or more.
  • the main purpose of the heat treatment performed after the final drawing is to remove the strain introduced into the conductor wire 2 by the drawing process.
  • the removal of the strain improves the electrical conductivity and elongation of the conductor wire 2.
  • the atmospheric temperature in the heat treatment is, for example, about 100° C. to 550° C., and the holding time is, for example, 0.2 seconds to 10 hours.
  • the heat treatment may be performed in a batch furnace or a continuous furnace. This heat treatment is not essential.
  • the insulating layer 3 is formed, for example, by a known enameled wire coating facility.
  • a first step is performed in which a resin constituting the insulating layer 3 is applied to the surface of the conductor 2
  • a second step is performed in which the resin applied to the conductor 2 is solidified in a baking oven.
  • the first and second steps are repeated until the insulating layer 3 reaches a desired thickness.
  • Each of the first and second steps may be performed once.
  • ⁇ Test Example> In the test example, a number of conductors 2 were produced with different cross-sectional area reduction rates in the final wiredrawing process and different processing ratios P of corners 49.
  • the die 64 used in the final wiredrawing process to produce each conductor 2 was an angle die or an arc die.
  • an insulating layer 3 was formed on the outer periphery of each conductor 2, and defects in the insulating layer 3 were confirmed.
  • the wiredrawing conditions and the dimensions of the conductors 2 are shown in Tables 1 and 2.
  • the “Die hole dimensions” in the table are the dimensions of the portion of the die hole of the die 64 that has the smallest inner diameter, i.e., the dimensions of the bearing of the die 64.
  • the dimensions of the bearing are approximately equal to the dimensions of the rectangular cross section 20 of the conductor 2. Therefore, the "thickness,” “width,” “curvature radius of corners,” and “area” listed in the “Die hole dimensions” column can be considered to be the “thickness T,” “width W,” “curvature radius of corners 29,” and “area S of rectangular cross section 20" in Figure 4, respectively.
  • the “aspect ratio” is "width/thickness.”
  • the “degree of pre-processing” in the “final wiredrawing conditions” column in the table indicates the amount of processing applied to the metal wire 9 after the last heat treatment and before the final wiredrawing process, expressed as a percentage. Specifically, the "degree of pre-processing” is ⁇ (S9-S0)/S9 ⁇ x 100.
  • S9 is the cross-sectional area of the metal wire 9 immediately before it is fed to the wiredrawing device 6, i.e., the cross-sectional area of the metal wire 9 immediately before the die 61.
  • S0 is the cross-sectional area of the cross section 40 of the raw wire 4, i.e., the cross-sectional area of the metal wire 9 immediately before the die 64.
  • T0-T", "W0-W”, “L0-L”, and “corner processing ratio P" are as explained in the above section [Conductor manufacturing method].
  • the "S/SV ratio" in the "Conductor” column in the table is as explained in the above section [Conductor].
  • the area S and area SV were determined by image analysis of cross-sectional images of the conductor 2 taken with a VHX-7000 manufactured by Keyence Corporation.
  • the "S/SV ratio” in the table is expressed as a percentage.
  • "Dimensional uniformity” is the result of evaluating whether the conductor 2 has a uniform rectangular cross-section 20 along the longitudinal axis.
  • the evaluation “A” means that the "first rate of change” and the "second rate of change” explained in the section [Conductor] are both 0.5% or less.
  • the distance between the first cross-section 21 and the second cross-section 22 for measuring the "first rate of change" and the "second rate of change” was 100 m.
  • the "corner Ra” in the table is the arithmetic mean roughness Ra of the surface of the corner 29 of the conductor 2.
  • the unit of arithmetic mean roughness is micrometers.
  • the arithmetic mean roughness Ra was measured using a LEXT OLS4100 manufactured by Olympus Corporation. Specifically, the arithmetic mean roughness Ra was measured at three locations on each of the four corners 29, and the arithmetic mean roughness Ra was calculated by averaging the 12 measurement results.
  • the three measurement locations on each corner 29 are separated from one another along the circular arc of the corner 29. In this example, each measurement location was measured over a length of 258 ⁇ m along the longitudinal axis of the conductor 2.
  • the "Defective point occurrence rate" in the table is the number of defective points in the insulating layer 3 in a 100 kg conductor 2.
  • the defective points in the insulating layer 3 were measured using a commercially available flaw detector. If the surface of the conductor 2 is rough, defects such as air pockets will occur between the rough part and the insulating layer 3.
  • a commercially available flaw detector was installed next to the coating equipment for the insulating layer 3, and the number of defective points was counted immediately after the insulating layer 3 was formed.
  • the weight of the conductor 2 is calculated from the specific gravity of the material of the conductor 2, the area S of the rectangular cross section 20, and the feed speed of the conductor 2 in the coating equipment. In this example, of the measured defective points, only the defective points in the parts corresponding to the corners 29 were counted.
  • Samples No. 1 to No. 15 are samples that differ mainly in the cross-sectional area reduction rate.
  • Die 64 was an angled die with an approach angle of 32°.
  • Samples No. 21 to No. 24 are samples that differ mainly in the radius of curvature of the corner 29 of the conductor 2.
  • Die 64 was an angled die with an approach angle of 32°.
  • Samples No. 31 to No. 33 are samples that differ mainly in the aspect ratio.
  • Die 64 was an angled die with an approach angle of 32°.
  • Samples No. 41 and No. 42 are samples that differ mainly in the area S of the rectangular cross section 20 of the conductor 2.
  • Die 64 was an angled die with an approach angle of 32°.
  • the die 64 was an angle-type die having an approach angle of 32°.
  • Samples No. 61 to No. 64 are samples with different die 64 configurations.
  • the die 64 of Sample No. 61 was an angle-type die having an approach angle of 24°.
  • the die 64 of Sample No. 62 was an angle-type die having an approach angle of 16°.
  • the die 64 of Sample No. 63 was an arc-type die having an arc-shaped approach with a radius of curvature of 6 mm.
  • the die 64 of Sample No. 64 was an arc-type die having an approach with a radius of curvature of 12 mm.
  • Samples No. 101 to No. 104 are samples in which the processing ratio P of the corner portion 29 is less than 20% or the cross-sectional area reduction rate is more than 35%.
  • the die 64 was an angle-type die having an approach angle of 32°.
  • samples No. 1 to No. 64 which have a cross-sectional area reduction rate of 35% or less and a processing rate P of the corner 49 of 20% or more, have smooth corners 29 and the occurrence rate of defective parts was 0.8 or less.
  • Samples No. 101 to No. 103 in which the processing ratio P of the corner 49 is less than 20%, have corners 29 with an arithmetic mean roughness Ra of more than 0.2 ⁇ m, and the incidence of defective parts was more than 1.2.
  • Sample No. 104 in which the cross-sectional area reduction rate is more than 35%, has corners 29 with an arithmetic mean roughness Ra of more than 0.2 ⁇ m, and the incidence of defective parts was more than 1.0.
  • Figure 6 is a graph showing the relationship between the processing rate P of the corner 49 and the cross-sectional area reduction rate for each sample in the test example.
  • the horizontal axis is the processing rate P of the corner 49 for each sample.
  • the vertical axis is the cross-sectional area reduction rate for each sample.
  • samples No. 101 to No. 104 are samples with a high incidence of defective parts.
  • the samples in the range excluding samples No. 101 to No. 104 are samples with a low incidence of defective parts. Therefore, when the processing rate P of the corner 49 is in the range of 20% to 140% and the cross-sectional area reduction rate is in the range of 7% to 35%, the incidence of defective parts is considered to be low.
  • the processing rate P of the corner 49 is in the range of 20% to 140% and the cross-sectional area reduction rate is in the range of 15% to 35%, the incidence of defective parts is considered to be even lower. It is believed that the occurrence rate of defects is even lower when the processing rate P of the corner portion 49 is in the range of 40% to 140% and the cross-sectional area reduction rate is in the range of 15% to 35%.
  • Figure 7 is a graph showing the relationship between the ratio S/SV and the arithmetic mean roughness Ra of the corners in each sample of the test example.
  • the horizontal axis is the ratio S/SV of each sample.
  • the vertical axis is the arithmetic mean roughness Ra of the corners 29.
  • the arithmetic mean roughness Ra of the corners 29 of samples No. 1 to No. 64 which satisfy the cross-sectional area reduction rate and processing ratio P shown in Figure 6, was 0.2 ⁇ m or less. Therefore, it can be said that the manufacturing method of the conductor 2 according to the embodiment is effective in forming corners 29 with a smooth surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)

Abstract

This conducting wire comprises a metallic material, and has a rectangular cross-section having a width and a thickness. Each corner portion of the rectangular cross-section is a curve, and the ratio S/SV between the area SV of a virtual rectangle circumscribing the rectangular cross-section and the area S of the rectangular cross-section is 0.975 or more. A first change rate based on the width W1 of a first cross-section and the width W2 of a second cross-section that are a predetermined length away from each other along the longitudinal axis of the conducting wire and a second change rate based on the thickness T1 of the first cross-section and the thickness T2 of the second cross-section are both 0.5% or less. The first change rate is |(W1-W2)/W1|×100, and the second change rate is |(T1-T2)/T1|×100. The arithmetic average roughness Ra of the surface of the corner portion is 0.2 μm or less.

Description

導線、電線、および導線の製造方法Conductive wire, electric wire, and method for manufacturing conductive wire
 本開示は、導線、電線、および導線の製造方法に関する。本出願は、2022年9月30日に出願した日本出願第2022-158710号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to conductors, electric wires, and methods for manufacturing conductors. This application claims priority to Japanese Application No. 2022-158710, filed on September 30, 2022, and incorporates by reference all of the contents of said Japanese application.
 特許文献1では、複数のダイスを用いた伸線加工によって矩形状断面を有する導線が作製される。導線の原料である金属線は円形断面を有する。金属線は徐々に楕円状断面を有する線材に加工され、仕上げダイスによって矩形状断面を有する導線となる。 In Patent Document 1, a conductor wire with a rectangular cross section is produced by a wire drawing process using multiple dies. The metal wire that is the raw material for the conductor wire has a circular cross section. The metal wire is gradually processed into a wire rod with an elliptical cross section, and then finished with a finishing die to produce a conductor wire with a rectangular cross section.
特開2013-4399号公報JP 2013-4399 A
 本開示の導線は、金属材料からなる導線であって、幅と厚さとを有する矩形状断面を備え、前記矩形状断面の角部は曲線であり、前記矩形状断面に外接する仮想矩形の面積SVと、前記矩形状断面の面積Sとの比S/SVが0.975以上であり、前記導線の第一断面は、前記導線の長手軸に沿って前記導線の第二断面から離隔しており、前記第一断面の幅W1と前記第二断面の幅W2とに基づく第一変化率は0.5%以下であり、前記第一断面の厚さT1と前記第二断面の厚さT2とに基づく第二変化率は0.5%以下であり、前記第一変化率は、|(W1-W2)/W1|×100であり、前記第二変化率は、|(T1-T2)/T1|×100であり、前記角部の表面の算術平均粗さRaが0.2μm以下である。 The conductor of the present disclosure is a conductor made of a metal material, and has a rectangular cross section having a width and a thickness, the corners of the rectangular cross section are curved, the ratio S/SV of the area SV of a virtual rectangle circumscribing the rectangular cross section to the area S of the rectangular cross section is 0.975 or more, a first cross section of the conductor is spaced from a second cross section of the conductor along the longitudinal axis of the conductor, a first rate of change based on the width W1 of the first cross section and the width W2 of the second cross section is 0.5% or less, a second rate of change based on the thickness T1 of the first cross section and the thickness T2 of the second cross section is 0.5% or less, the first rate of change is |(W1-W2)/W1| x 100, the second rate of change is |(T1-T2)/T1| x 100, and the arithmetic mean roughness Ra of the surface of the corners is 0.2 μm or less.
図1は、実施形態に係る電線の概略図である。FIG. 1 is a schematic diagram of an electric wire according to an embodiment. 図2は、図1に示される電線に備わる導線の断面図である。FIG. 2 is a cross-sectional view of a conductor included in the electric wire shown in FIG. 図3は、実施形態に係る導線の製造方法の第一の説明図である。FIG. 3 is a first explanatory diagram of the method for manufacturing a conductor according to the embodiment. 図4は、実施形態に係る導線の製造方法の第二の説明図である。FIG. 4 is a second explanatory diagram of the method for manufacturing a conductor according to the embodiment. 図5は、実施形態に係る導線の製造方法の第三の説明図である。FIG. 5 is a third explanatory diagram of the method for manufacturing a conductor according to the embodiment. 図6は、試験例の各試料における角部の加工割合Pと断面積減少率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the corner processing rate P and the cross-sectional area reduction rate for each sample in the test example. 図7は、試験例の各試料における比S/SVと角部の算術平均粗さRaとの関係を示すグラフである。FIG. 7 is a graph showing the relationship between the ratio S/SV and the arithmetic mean roughness Ra of the corners in each sample of the test example.
[本開示が解決しようとする課題]
 伸線加工によって得られた導線では、角部の表面が粗くなり易く、その粗くなった角部の位置で絶縁層の形成が不十分な不良箇所が発生することがあった。例えばコイルの占積率を高めるために、角部の曲率半径が小さい導線が求められているが、角部の曲率半径が小さくなるほど、角部の表面が粗くなり易く、不良箇所の数が多くなり易い。多くの不良箇所を有する絶縁層では、導線を十分に絶縁できないおそれがある。
[Problem to be solved by this disclosure]
Conductors obtained by wire drawing tend to have rough corner surfaces, which can lead to defects where the insulation layer is insufficiently formed at the rough corners. For example, to increase the space factor of a coil, a conductor with a small radius of curvature at the corners is required, but the smaller the radius of curvature at the corners, the more likely the corner surfaces are to become rough and the more likely the number of defects is to increase. An insulation layer with many defects may not be able to sufficiently insulate the conductor.
 本開示の目的の一つは、導線の矩形状断面の角部において絶縁層の形成不良が生じ難い導線を提供することにある。本開示の目的の一つは、導線の矩形状断面の角部を覆う絶縁層に不良箇所が少ない電線を提供することにある。本開示の目的の一つは、本開示の導線を作製できる導線の製造方法を提供することにある。 One of the objects of the present disclosure is to provide a conductor in which defects in the formation of an insulating layer are unlikely to occur at the corners of the rectangular cross section of the conductor. One of the objects of the present disclosure is to provide an electric wire in which the insulating layer covering the corners of the rectangular cross section of the conductor has few defects. One of the objects of the present disclosure is to provide a manufacturing method for a conductor that can produce the conductor of the present disclosure.
[本開示の効果]
 本開示の導線は、導線の外周に絶縁層を形成したとき、角部を覆う絶縁層に不良箇所が生じることを抑制する。
[Effects of the present disclosure]
The conductor of the present disclosure, when an insulating layer is formed around the outer periphery of the conductor, suppresses the occurrence of defective portions in the insulating layer covering the corners.
[本開示の実施形態の説明]
 以下、本開示の実施態様を列記して説明する。
[Description of the embodiments of the present disclosure]
The embodiments of the present disclosure are listed and described below.
<1>実施形態に係る導線は、金属材料からなる導線であって、幅と厚さとを有する矩形状断面を備え、前記矩形状断面の角部は曲線であり、前記矩形状断面に外接する仮想矩形の面積SVと、前記矩形状断面の面積Sとの比S/SVが0.975以上であり、前記導線の第一断面は、前記導線の長手軸に沿って前記導線の第二断面から離隔しており、前記第一断面の幅W1と前記第二断面の幅W2とに基づく第一変化率は0.5%以下であり、前記第一断面の厚さT1と前記第二断面の厚さT2とに基づく第二変化率は0.5%以下であり、前記第一変化率は、|(W1-W2)/W1|×100であり、前記第二変化率は、|(T1-T2)/T1|×100であり、前記角部の表面の算術平均粗さRaが0.2μm以下である。 <1> The conductor according to the embodiment is made of a metal material and has a rectangular cross section having a width and a thickness, the corners of the rectangular cross section are curved, the ratio S/SV of the area SV of a virtual rectangle circumscribing the rectangular cross section to the area S of the rectangular cross section is 0.975 or more, the first cross section of the conductor is separated from the second cross section of the conductor along the longitudinal axis of the conductor, the first rate of change based on the width W1 of the first cross section and the width W2 of the second cross section is 0.5% or less, the second rate of change based on the thickness T1 of the first cross section and the thickness T2 of the second cross section is 0.5% or less, the first rate of change is |(W1-W2)/W1|×100, the second rate of change is |(T1-T2)/T1|×100, and the arithmetic mean roughness Ra of the surface of the corners is 0.2 μm or less.
 比S/SVが0.975以上の導線は、コイルにおける占積率の向上に寄与する。占積率は、導線を巻回したコイルの占有空間の断面積に対する導線の断面積の割合である。 A conductor with an S/SV ratio of 0.975 or more contributes to improving the space factor of the coil. Space factor is the ratio of the cross-sectional area of the conductor to the cross-sectional area of the space occupied by the coil when the conductor is wound around it.
 第一変化率と第二変化率が共に0.5%以下である導線は、導線の長手軸に沿って一様な矩形状断面を有する。導線の長手軸は、導線に沿って導線の第一端と第二端とを結ぶ軸線である。つまり、本開示の導線は、導線の長手軸に沿った方向における寸法のばらつきが小さい導線である。この導線によって作製された製品は、電気的又は磁気的特性のばらつきが抑制される。このような導線は、ダイスを用いた伸線加工によって得られる。 A conductor in which the first rate of change and the second rate of change are both 0.5% or less has a uniform rectangular cross section along the longitudinal axis of the conductor. The longitudinal axis of the conductor is an axis line along the conductor connecting the first end and the second end of the conductor. In other words, the conductor of the present disclosure has small dimensional variation in the direction along the longitudinal axis of the conductor. Products made from this conductor have reduced variation in electrical or magnetic properties. Such a conductor is obtained by wire drawing using a die.
 角部の表面の算術平均粗さRaが0.2μm以下の場合、角部以外の部分の表面の算術平均粗さRaが通常0.02から0.1μm程度であることから、角部と角部以外の部分との算術平均粗さの差を小さくできる。従って、導線の外周に絶縁層を形成したときに、角部を覆う絶縁層に不良箇所が生じ難い。 When the arithmetic mean roughness Ra of the surface of the corner is 0.2 μm or less, the arithmetic mean roughness Ra of the surface of the parts other than the corner is usually about 0.02 to 0.1 μm, so the difference in arithmetic mean roughness between the corner and the parts other than the corner can be made small. Therefore, when an insulating layer is formed around the outer periphery of the conductor, defects are unlikely to occur in the insulating layer covering the corner.
<2>上記<1>に記載の導線において、前記金属材料は無酸素銅であっても良い。 <2> In the conductor described in <1> above, the metal material may be oxygen-free copper.
 無酸素銅からなる導線は導電性に優れる。無酸素銅は加工し易い。無酸素銅からなる導線は溶接性に優れる。 Conductors made of oxygen-free copper have excellent electrical conductivity. Oxygen-free copper is easy to process. Conductors made of oxygen-free copper have excellent weldability.
<3>上記<1>または<2>に記載の導線において、前記面積Sは2mm以上12mm以下であっても良い。 <3> In the conductor according to <1> or <2> above, the area S may be 2 mm2 or more and 12 mm2 or less.
 2mm以上12mm以下の面積Sを有する導線は、コイルの構成材料として好適である。面積Sが大きくなるほど、導線の許容電流が大きくなる。 A conductor wire having an area S of 2 mm2 or more and 12 mm2 or less is suitable as a material for forming a coil. The larger the area S, the higher the allowable current of the conductor wire.
<4>上記<1>から<3>のいずれかに記載の導線において、前記矩形状断面のアスペクト比は1以上10以下でも良い。 <4> In the conductor described in any one of <1> to <3> above, the aspect ratio of the rectangular cross section may be 1 or more and 10 or less.
 アスペクト比は、矩形状断面の幅を矩形状断面の厚さで割った値である。アスペクト比が1である矩形状断面は略正方形である。矩形状断面のアスペクト比が1超である導線は、いわゆる平角線である。平角線をエッジワイズ曲げすることで、コイルの軸に沿ったコイルの長さを長くすることなくコイルのターン数を増加させることができる。平角線はフラットワイズ曲げし易い。従って、平角線をフラットワイズ曲げすることで得られるコイルの生産は容易である。 The aspect ratio is the width of a rectangular cross section divided by the thickness of the rectangular cross section. A rectangular cross section with an aspect ratio of 1 is approximately square. A conductor with a rectangular cross section whose aspect ratio is greater than 1 is known as a rectangular wire. By bending rectangular wire edgewise, the number of turns in the coil can be increased without increasing the length of the coil along the coil axis. Rectangular wire is easy to bend flatwise. Therefore, coils obtained by bending rectangular wire flatwise are easy to produce.
<5>上記<1>から<4>のいずれかに記載の導線において、前記幅W1と前記幅W2との差、および前記厚さT1と前記厚さT2との差が共に、16μm以下であっても良い。 <5> In the conductor described in any of <1> to <4> above, the difference between the width W1 and the width W2, and the difference between the thickness T1 and the thickness T2 may both be 16 μm or less.
 上記<5>の導線は、導線の長手軸に沿って一様な矩形状断面を有する導線である。従って、上記<5>の導線は、この導線によって作製されたコイルにおける各ターンの性能のばらつきを抑制する。この導線によれば、安定した性能を発揮するコイルを量産できる。 The conductor <5> above has a uniform rectangular cross section along the longitudinal axis of the conductor. Therefore, the conductor <5> above suppresses the variation in performance of each turn in the coil made from this conductor. This conductor makes it possible to mass-produce coils that exhibit stable performance.
<6>実施形態に係る電線は、上記<1>から<5>のいずれかに記載の導線と、前記導線の表面を覆う絶縁層と、を備える。 <6> The electric wire according to the embodiment comprises a conductor wire described in any one of <1> to <5> above and an insulating layer covering the surface of the conductor wire.
 導線と絶縁層とを備える電線は例えば、コイルの材料となり得る。導線の角部は滑らかであるため、角部を覆う絶縁層に不良箇所が形成され難い。このような電線によれば、安定した性能を発揮するコイルを作製できる。 An electric wire that has a conductor and an insulating layer can be used, for example, as material for a coil. Because the corners of the conductor are smooth, defects are unlikely to form in the insulating layer that covers the corners. Using such an electric wire, it is possible to create a coil that exhibits stable performance.
<7>実施形態に係る導線の製造方法は、原料線材を最終伸線加工する工程を備え、前記原料線材は前記最終伸線加工する工程の直前の金属線であり、前記原料線材の断面は4つの角部を有し、前記断面は、幅W0、厚さT0、および対角長さL0を有し、前記矩形状断面は、幅W、厚さT、および対角長さLを有し、前記最終伸線加工における前記角部の加工割合Pが20%以上であり、前記加工割合Pは、{(L0-L)/X}×100であり、Xは、W0-W、およびT0-Tのうち、大きい方の値であり、前記最終伸線加工における断面積減少率が35%以下である。 <7> The manufacturing method of the conductor wire according to the embodiment includes a step of performing final wire drawing of raw wire material, the raw wire material being a metal wire immediately prior to the final wire drawing step, the cross section of the raw wire material having four corners, the cross section having a width W0, a thickness T0, and a diagonal length L0, the rectangular cross section having a width W, a thickness T, and a diagonal length L, the processing ratio P of the corners in the final wire drawing is 20% or more, the processing ratio P is {(L0-L)/X} x 100, where X is the larger of W0-W and T0-T, and the cross-sectional area reduction rate in the final wire drawing is 35% or less.
 最終伸線加工は、いわゆる仕上げ伸線加工である。最終伸線加工における断面積減少率が35%以下であれば、導線が断線し難い。断面積減少率が小さくなると、原料線材をダイスから引く抜くための引抜力が小さくなり、原料線材に作用する応力は小さくなる。しかし、断面積減少率が小さい伸線加工ではダイスと原料線材との接触面積が小さくなり、原料線材の表面に作用する単位面積あたりの応力、すなわち面圧はむしろ大きくなる。伸線時に原料線材に作用する面圧が高くなると、角部を含む導線の表面が滑らかになり易い。また、最終伸線加工における加工割合Pが20%以上であれば、原料線材の角部に十分な加工が加わるので、導線の角部の表面が滑らかになる。その結果、算術平均粗さRaが0.2μm以下の表面を有する角部を備える導線が得られる。 The final wiredrawing process is a so-called finishing wiredrawing process. If the cross-sectional area reduction rate in the final wiredrawing process is 35% or less, the conductor is less likely to break. If the cross-sectional area reduction rate is small, the drawing force for pulling the raw wire from the die is smaller, and the stress acting on the raw wire is smaller. However, in a wiredrawing process with a small cross-sectional area reduction rate, the contact area between the die and the raw wire is smaller, and the stress per unit area acting on the surface of the raw wire, i.e., the surface pressure, is rather larger. If the surface pressure acting on the raw wire during drawing is higher, the surface of the conductor, including the corners, tends to become smooth. Also, if the processing ratio P in the final wiredrawing process is 20% or more, sufficient processing is applied to the corners of the raw wire, and the surface of the corners of the conductor becomes smooth. As a result, a conductor is obtained that has corners with a surface with an arithmetic mean roughness Ra of 0.2 μm or less.
[本開示の実施形態の詳細]
 以下、本開示の実施形態に係る導線、その導線の製造方法、およびその導線を含む電線の具体例を図面に基づいて説明する。図中の同一符号は同一または相当部分を示す。各図面が示す部材の大きさは、説明を明確にする目的で表現されており、必ずしも実際の寸法を表すものではない。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present disclosure]
Hereinafter, specific examples of a conductor wire according to an embodiment of the present disclosure, a manufacturing method for the conductor wire, and an electric wire including the conductor wire will be described with reference to the drawings. The same reference numerals in the drawings indicate the same or equivalent parts. The size of the members shown in each drawing is expressed for the purpose of clarifying the description, and does not necessarily represent the actual dimensions. Note that the present invention is not limited to these examples, but is indicated by the claims, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
<実施形態1>
 ≪電線≫
 図1に示される電線1は、金属材料からなる導線2と、導線2の表面を覆う絶縁層3と、を備える。導線2は、図2に示されるように、矩形状断面20を有する。矩形状断面20は、導線2の長手軸に直交する平面で切断した導線2の断面である。導線2は、導線2の長手軸にほぼ一様な矩形状断面20を有する。
<Embodiment 1>
Electric Wires
The electric wire 1 shown in Fig. 1 includes a conductor 2 made of a metal material and an insulating layer 3 covering the surface of the conductor 2. As shown in Fig. 2, the conductor 2 has a rectangular cross section 20. The rectangular cross section 20 is a cross section of the conductor 2 cut along a plane perpendicular to the longitudinal axis of the conductor 2. The conductor 2 has a substantially uniform rectangular cross section 20 along the longitudinal axis of the conductor 2.
  [導線]
 導線2を構成する金属材料は例えば、銅、銅合金、アルミニウム、またはアルミニウム合金である。これらの金属材料は比較的安価で、かつ導電性に優れる。特に、無酸素銅によって構成される導線2は導電性に優れる。無酸素銅は、銅を99.95質量%以上含有し、残部が不可避不純物である純銅である。無酸素銅における不可避不純物の合計含有量は例えば、0.03質量%以下である。無酸素銅における酸素含有量は例えば、0.005質量%(50質量ppm)以下、更に0.002質量%(20質量ppm)以下、更に0.001質量%(10質量ppm)以下である。無酸素銅における酸素含有量が少ないほど、無酸素銅の導電率が高くなる。
[Conducting wire]
The metal material constituting the conductor 2 is, for example, copper, a copper alloy, aluminum, or an aluminum alloy. These metal materials are relatively inexpensive and have excellent conductivity. In particular, the conductor 2 made of oxygen-free copper has excellent conductivity. Oxygen-free copper is pure copper containing 99.95% by mass or more of copper, with the remainder being unavoidable impurities. The total content of unavoidable impurities in oxygen-free copper is, for example, 0.03% by mass or less. The oxygen content in oxygen-free copper is, for example, 0.005% by mass (50 ppm by mass) or less, further 0.002% by mass (20 ppm by mass) or less, and further 0.001% by mass (10 ppm by mass) or less. The lower the oxygen content in oxygen-free copper, the higher the conductivity of the oxygen-free copper.
 矩形状断面20の角部29は曲線である。矩形状断面20に外接する仮想矩形25の面積SVと、矩形状断面20の面積Sとの比S/SVは0.975以上である。面積Sおよび面積SVは、矩形状断面20の顕微鏡写真から求められる。具体的には、矩形状断面20の顕微鏡写真を画像解析して、矩形状断面20の外周輪郭を特定する。その外周輪郭で囲まれる部分の面積が面積Sである。図2に二点鎖線で示される仮想矩形25は、矩形状断面20の顕微鏡写真における矩形状断面20の外周輪郭に外接する最小の矩形である。顕微鏡写真における仮想矩形25の内側の面積が面積SVである。比S/SVが0.975以上の導線は、コイルにおける占積率の向上に寄与する。占積率は、導線2を巻回したコイルの占有空間の断面積に対する導線2の断面積の割合である。比S/SVが高くなるほど、占積率が高くなる。占積率を向上させるために、比S/SVは例えば、0.990以上、さらには0.995以上としても良い。 The corners 29 of the rectangular cross section 20 are curved. The ratio S/SV of the area SV of the imaginary rectangle 25 circumscribing the rectangular cross section 20 to the area S of the rectangular cross section 20 is 0.975 or more. The areas S and SV are obtained from a micrograph of the rectangular cross section 20. Specifically, the micrograph of the rectangular cross section 20 is subjected to image analysis to identify the outer contour of the rectangular cross section 20. The area of the portion surrounded by the outer contour is the area S. The imaginary rectangle 25 shown by the two-dot chain line in Figure 2 is the smallest rectangle that circumscribing the outer contour of the rectangular cross section 20 in the micrograph of the rectangular cross section 20. The area inside the imaginary rectangle 25 in the micrograph is the area SV. A conductor with a ratio S/SV of 0.975 or more contributes to improving the space factor of the coil. The space factor is the ratio of the cross-sectional area of the conductor 2 to the cross-sectional area of the space occupied by the coil in which the conductor 2 is wound. The higher the ratio S/SV, the higher the space factor. To improve the space factor, the ratio S/SV may be, for example, 0.990 or more, or even 0.995 or more.
 矩形状断面20の面積Sは例えば、2mm以上12mm以下である。2mm以上12mm以下の面積Sを有する導線2は、コイルの構成材料として利用可能である。面積Sが大きくなるほど、導線2の許容電流が大きくなる。面積Sは例えば、3mm以上10mm以下でも良いし、5mm以上10mm以下でも良い。 The area S of the rectangular cross section 20 is, for example, 2 mm2 or more and 12 mm2 or less. A conductor 2 having an area S of 2 mm2 or more and 12 mm2 or less can be used as a constituent material of a coil. The larger the area S, the larger the allowable current of the conductor 2. The area S may be, for example, 3 mm2 or more and 10 mm2 or less, or 5 mm2 or more and 10 mm2 or less.
 角部29は円弧である。円弧形状の角部29の曲率半径は例えば、0.07mm以上0.50mm以下である。0.07mm以上の曲率半径を有する角部29は、尖りすぎていないため、損傷し難い。また、尖りすぎていない角部29の外周に形成された絶縁層3も損傷し難い。角部29の曲率半径が0.50mm以下であれば、矩形状断面20の面積SVが小さくなり過ぎない。曲率半径は例えば、0.09mm以上0.40mm以下でも良いし、0.10mm以上0.25mm以下でも良いし、0.10mm以上0.15mm以下でも良い。 The corner 29 is an arc. The radius of curvature of the arc-shaped corner 29 is, for example, 0.07 mm or more and 0.50 mm or less. A corner 29 with a radius of curvature of 0.07 mm or more is not easily damaged because it is not too sharp. In addition, the insulating layer 3 formed on the outer periphery of a corner 29 that is not too sharp is also not easily damaged. If the radius of curvature of the corner 29 is 0.50 mm or less, the area SV of the rectangular cross section 20 does not become too small. The radius of curvature may be, for example, 0.09 mm or more and 0.40 mm or less, 0.10 mm or more and 0.25 mm or less, or 0.10 mm or more and 0.15 mm or less.
 矩形状断面20は幅Wと厚さTとを有する。矩形状断面20の幅Wは、仮想矩形25の第一辺251の長さに等しい。矩形状断面20の厚さは、仮想矩形25における第一辺251に直交する第二辺252の長さに等しい。幅Wと厚さTは同じでも良いし、異なっていても良い。本例では、幅Wは厚さTよりも長い。幅Wと厚さTとが異なる導線2はいわゆる平角線である。 The rectangular cross section 20 has a width W and a thickness T. The width W of the rectangular cross section 20 is equal to the length of the first side 251 of the imaginary rectangle 25. The thickness of the rectangular cross section 20 is equal to the length of the second side 252 perpendicular to the first side 251 of the imaginary rectangle 25. The width W and the thickness T may be the same or different. In this example, the width W is longer than the thickness T. A conductor 2 having a different width W and thickness T is a so-called rectangular wire.
 導線2では、導線2の長手軸に沿って離隔した第一断面21と第二断面22とがほとんど同じ形状および寸法を有する。第一断面21は、図1の矢印Aの位置における矩形状断面20である。第二断面22は、図1の矢印Bの位置における矩形状断面20である。図1における矢印Aと矢印Bとの距離は説明の便宜上、短い。第一断面21と第二断面22の距離は、例えば100mである。 In the conductor 2, a first cross section 21 and a second cross section 22 spaced apart along the longitudinal axis of the conductor 2 have almost the same shape and dimensions. The first cross section 21 is a rectangular cross section 20 at the position of arrow A in FIG. 1. The second cross section 22 is a rectangular cross section 20 at the position of arrow B in FIG. 1. For ease of explanation, the distance between arrows A and B in FIG. 1 is short. The distance between the first cross section 21 and the second cross section 22 is, for example, 100 m.
 第一断面21の幅W1と、第二断面22の幅W2とに基づく第一変化率が0.5%(パーセント)以下であり、かつ第一断面21の厚さT1と第二断面22の厚さT2とに基づく第二変化率が0.5%以下である。
  第一変化率…|(W1-W2)/W1|×100
  第二変化率…|(T1-T2)/T1|×100
A first rate of change based on the width W1 of the first cross section 21 and the width W2 of the second cross section 22 is 0.5% (percent) or less, and a second rate of change based on the thickness T1 of the first cross section 21 and the thickness T2 of the second cross section 22 is 0.5% or less.
First rate of change...|(W1-W2)/W1|×100
Second rate of change...|(T1-T2)/T1|×100
 第一変化率と第二変化率が共に0.5%以下である導線2は、導線2の長手軸に沿ってほぼ一様な矩形状断面20を備える。ダイスを用いた伸線加工は、導線2の長手軸に沿った寸法のばらつきが小さい導線2を作製できる。従って、第一変化率と第二変化率が共に0.5%以下である導線2は、ダイスを用いた伸線加工によって得られたものであるといえる。第一変化率と第二変化率はそれぞれ0.4%以下でも良いし、0.2%以下でも良い。 A conductor 2 in which the first rate of change and the second rate of change are both 0.5% or less has a substantially uniform rectangular cross section 20 along the longitudinal axis of the conductor 2. Wire drawing using a die can produce a conductor 2 with small dimensional variation along the longitudinal axis of the conductor 2. Therefore, it can be said that a conductor 2 in which the first rate of change and the second rate of change are both 0.5% or less has been obtained by wire drawing using a die. The first rate of change and the second rate of change may each be 0.4% or less, or 0.2% or less.
 導線2の長手軸に沿って一様な矩形状断面20を有する導線2は、導線2によって作製されたコイルにおける各ターンの性能のばらつきを抑制する。導線2によれば、安定した性能を発揮するコイルを量産できる。 The conductor 2 has a uniform rectangular cross section 20 along the longitudinal axis of the conductor 2, which suppresses the variation in performance of each turn in a coil made with the conductor 2. The conductor 2 allows for the mass production of coils that exhibit stable performance.
 導線2の長手軸に沿った寸法のばらつきは、絶対値で評価されても良い。例えば、第一断面21の幅W1と第二断面22の幅W2との差W1-W2が16μm以下で、かつ第一断面21の厚さT1と第二断面22の厚さT2との差T1-T2が16μm以下であっても良い。差W1-W2および差T1-T2が小さいほど、導線2によって作製されたコイルにおける各ターンの性能のばらつきが抑制される。差W1-W2および差T1-T2は例えば、12μm以下でも良いし、8μm以下でも良い。 The dimensional variation along the longitudinal axis of the conductor 2 may be evaluated in absolute values. For example, the difference W1-W2 between the width W1 of the first cross section 21 and the width W2 of the second cross section 22 may be 16 μm or less, and the difference T1-T2 between the thickness T1 of the first cross section 21 and the thickness T2 of the second cross section 22 may be 16 μm or less. The smaller the difference W1-W2 and the difference T1-T2 are, the more the variation in performance of each turn in the coil made from the conductor 2 is suppressed. The difference W1-W2 and the difference T1-T2 may be, for example, 12 μm or less, or 8 μm or less.
 導線2の角部29の表面は非常に滑らかである。具体的には、角部29の表面の算術平均粗さRaは0.2μm以下である。本例における算術平均粗さRaは、4つの角部29のそれぞれにおいて3箇所ずつ測定した測定結果の平均である。つまり、算術平均粗さRaは12箇所の測定結果の平均値である。本例における算術平均粗さRaは、JIS B 0601:2013に準拠する。算術平均粗さRaは例えば、市販の非接触式粗さ測定装置、具体的にはオリンパス株式会社製のLEXT OLS4100によって求められる。 The surface of the corners 29 of the conductor 2 is very smooth. Specifically, the arithmetic mean roughness Ra of the surface of the corners 29 is 0.2 μm or less. In this example, the arithmetic mean roughness Ra is the average of the measurement results measured at three points on each of the four corners 29. In other words, the arithmetic mean roughness Ra is the average of the measurement results at 12 points. In this example, the arithmetic mean roughness Ra complies with JIS B 0601:2013. The arithmetic mean roughness Ra can be determined, for example, by a commercially available non-contact roughness measuring device, specifically, the LEXT OLS4100 manufactured by Olympus Corporation.
 算術平均粗さRaを有する角部29の表面は、角部29以外の部分の表面と同程度に滑らかである。従って、導線2の外周に絶縁層3を形成された際、角部29を覆う絶縁層3に不良箇所が生じ難い。算術平均粗さRaは例えば、0.15μm以下でも良いし、0.1μm以下でも良いし、0.08μm以下でも良い。 The surface of the corner 29, which has the arithmetic mean roughness Ra, is as smooth as the surface of the parts other than the corner 29. Therefore, when the insulating layer 3 is formed around the outer periphery of the conductor 2, defects are unlikely to occur in the insulating layer 3 covering the corner 29. The arithmetic mean roughness Ra may be, for example, 0.15 μm or less, 0.1 μm or less, or 0.08 μm or less.
  [絶縁層]
 絶縁層3は、導線2の絶縁を確保する。絶縁層3は例えば、絶縁ワニスが固化したエナメルである。その他、絶縁層3は例えば、ポリイミド(polyimide)樹脂、フッ素樹脂、ポリエーテルサルフォン(polyethersulfone)、またはポリエーテルエーテルケトン(polyetheretherketone)などの電気絶縁性の高い樹脂でも良い。
[Insulating layer]
The insulating layer 3 ensures insulation of the conductor 2. The insulating layer 3 is, for example, enamel formed by solidifying insulating varnish. Alternatively, the insulating layer 3 may be a resin having high electrical insulation properties, such as polyimide resin, fluororesin, polyethersulfone, or polyetheretherketone.
 絶縁層3の厚さは例えば1μm以上100μm以下でも良いし、10μm以上50μm以下でも良い。ここで、本例の導線2の角部29は非常に滑らかであり、滑らかな角部29の外周に形成された絶縁層3には不良箇所が生じ難い。従って、絶縁層3の厚さが上記範囲であっても、絶縁層3に不良箇所が発生し難い。絶縁層3は、導線2の表面の一部または全部を覆う。 The thickness of the insulating layer 3 may be, for example, 1 μm or more and 100 μm or less, or 10 μm or more and 50 μm or less. Here, the corners 29 of the conductor 2 in this example are very smooth, and defective parts are unlikely to occur in the insulating layer 3 formed on the outer periphery of the smooth corners 29. Therefore, even if the thickness of the insulating layer 3 is within the above range, defective parts are unlikely to occur in the insulating layer 3. The insulating layer 3 covers part or all of the surface of the conductor 2.
 ≪電線の製造方法≫
 電線1の製造方法は、金属線を伸線することで導線2を得る工程と、導線2を熱処理する工程と、熱処理後の導線2の外周に絶縁層3を形成する工程と、を備える。
<Electric wire manufacturing method>
The manufacturing method of the electric wire 1 includes a step of obtaining the conductor wire 2 by drawing a metal wire, a step of heat-treating the conductor wire 2, and a step of forming an insulating layer 3 on the outer periphery of the conductor wire 2 after the heat treatment.
  [導線を得る工程]
 導線2は例えば、本開示の導線の製造方法によって得られる。本例における導線の製造方法は、図3に示される伸線装置6によって実施される。伸線装置6は、例えば、複数のダイス61,62,63,64を備える。ダイス61,62,63,64に金属線9を挿通させることで金属線9を所望の形状および線径に徐々に近づけることができる。少なくともダイス64は線引きダイスである。ダイス61,62,63はローラダイスでも良い。
[Process for obtaining conductor wire]
The conductor wire 2 is obtained, for example, by the conductor wire manufacturing method of the present disclosure. The conductor wire manufacturing method in this example is performed by a wire drawing device 6 shown in Fig. 3. The wire drawing device 6 includes, for example, a plurality of dies 61, 62, 63, and 64. By passing the metal wire 9 through the dies 61, 62, 63, and 64, the metal wire 9 can be gradually brought closer to a desired shape and wire diameter. At least the die 64 is a wire drawing die. The dies 61, 62, and 63 may be roller dies.
 導線2の製造方法は、伸線装置6における最後の伸線において、所定条件の加工を施すことを特徴の一つとする。以下、導線2の製造方法の特徴的な箇所を図4に基づいて説明する。その説明において、最後のダイス64に供される金属線9を原料線材4と呼ぶ。 One of the features of the manufacturing method of the conductor wire 2 is that in the final drawing in the wire drawing device 6, processing is performed under predetermined conditions. Below, the characteristic points of the manufacturing method of the conductor wire 2 will be explained based on Figure 4. In this explanation, the metal wire 9 that is fed to the final die 64 will be called the raw wire material 4.
 図4における実線は原料線材4の断面を示す。二点鎖線は、原料線材4を伸線することで得られた導線2の断面を示す。図4では説明の便宜上、ハッチングを省略している。 The solid line in Figure 4 indicates the cross section of the raw wire 4. The two-dot chain line indicates the cross section of the conductor 2 obtained by drawing the raw wire 4. Hatching has been omitted in Figure 4 for ease of explanation.
 原料線材4は四つの角部49を有する断面40を備える。断面40は、原料線材4の長手軸に直交する平面で切断した原料線材4の断面である。本例の断面40は上下対称でかつ左右対称の形状を有する。角部49は、二つの直線がつながることで形成された尖った形状でも良いし、曲線でも良い。本例の角部49は曲線である。断面の外周に沿って隣接する二つの角部49をつなぐ輪郭線は直線でも良いし、断面の中心から離れる方向に凸となった曲線でも良い。本例の輪郭線は直線である。断面40は、幅W0および厚さT0を有する。幅W0および厚さT0はそれぞれ、断面40に外接する仮想矩形の第一辺の長さおよび第二辺の長さと同じである。第一辺および第二辺は、互いに直交する二つの辺である。幅W0と厚さT0は同じでも良いし、異なっていても良い。本例では、幅W0は厚さT0よりも長い。角部49は、例えば第一辺の両端部それぞれから、第一辺の全長に対して10%の長さに相当する部分である。角部49は、例えば第二辺の両端部それぞれから、第二辺の全長に対して10%の長さに相当する部分である。 The raw wire 4 has a cross section 40 having four corners 49. The cross section 40 is a cross section of the raw wire 4 cut by a plane perpendicular to the longitudinal axis of the raw wire 4. In this example, the cross section 40 has a shape that is symmetrical both vertically and horizontally. The corners 49 may be sharply pointed, formed by connecting two straight lines, or may be curved. The corners 49 in this example are curved. The contour line connecting the two adjacent corners 49 along the outer periphery of the cross section may be a straight line, or may be a curved line that is convex in a direction away from the center of the cross section. In this example, the contour line is a straight line. The cross section 40 has a width W0 and a thickness T0. The width W0 and thickness T0 are equal to the lengths of the first and second sides, respectively, of an imaginary rectangle circumscribing the cross section 40. The first and second sides are two sides that are perpendicular to each other. The width W0 and thickness T0 may be the same or different. In this example, the width W0 is longer than the thickness T0. Corner portions 49 are, for example, portions from both ends of the first side that correspond to 10% of the total length of the first side. Corner portions 49 are, for example, portions from both ends of the second side that correspond to 10% of the total length of the second side.
 導線2の製造方法は、原料線材4を伸線加工することで、矩形状断面20を備える導線2を得る工程を備える。既に説明したように、矩形状断面20は幅Wおよび厚さTを有する。図4における矩形状断面20の輪郭は、ダイス64(図3)のダイス孔における最小内径を有する部分、即ちダイス64のベアリングの輪郭にほぼ一致すると考えて良い。矩形状断面20は上下対称でかつ左右対称の形状を有する。 The manufacturing method of the conductor 2 includes a step of drawing the raw wire material 4 to obtain the conductor 2 having a rectangular cross section 20. As already explained, the rectangular cross section 20 has a width W and a thickness T. The outline of the rectangular cross section 20 in FIG. 4 can be considered to be approximately the same as the outline of the portion of the die hole of the die 64 (FIG. 3) that has the smallest inner diameter, i.e., the bearing of the die 64. The rectangular cross section 20 has a shape that is symmetrical both vertically and horizontally.
 最終伸線加工における断面積減少率は35%以下である。断面積減少率は、15%以上35%以下であることがより好ましい。断面積減少率は、断面40の面積S0に対して、矩形状断面20の面積Sがどれだけ小さくなったかを示す指標である。具体的には、断面積減少率は、{(S0-S)/S0}×100によって求められる。最終伸線加工における断面積減少率が35%以下であれば、角部29の表面が滑らかになる。ダイス64は、角度型ダイス(angle type die)でも良いし、円弧型ダイス(circle type die)でも良いし、ハイブリッドダイスでも良い。図5のように角度型ダイスは、ダイス64の縦断面におけるダイス64のアプローチ641の形状が直線状であるダイスである。円弧型ダイスは、アプローチの形状が曲線状であるダイスである。ハイブリッドダイスは、アプローチ形状が直線と曲線の組み合わせであるダイスである。ダイス64のアプローチ角θは一定でも良いし、アプローチにおける異なる位置において異なっていても良い。原料線材4の表面に対する加工度を高めるために、アプローチ角θが高いことが望ましい。図5のようにアプローチ641は、ダイスの内側で導線2の寸法を決定する孔であるベアリング642の入側に配置されたテーパ形状の部分であり、原料線材4の外径を細くする機能を備える。アプローチ角θは、ダイス64の縦断面においてテーパ形状のアプローチ641によって形成される角度であり、水平方向に対して上部に形成される角度と下部に形成される角度を足した角度である。 The cross-sectional area reduction rate in the final wire drawing process is 35% or less. It is more preferable that the cross-sectional area reduction rate is 15% or more and 35% or less. The cross-sectional area reduction rate is an index showing how much the area S of the rectangular cross section 20 has become smaller than the area S0 of the cross section 40. Specifically, the cross-sectional area reduction rate is calculated by {(S0-S)/S0}×100. If the cross-sectional area reduction rate in the final wire drawing process is 35% or less, the surface of the corner 29 becomes smooth. The die 64 may be an angle type die, a circle type die, or a hybrid die. As shown in FIG. 5, the angle type die is a die in which the shape of the approach 641 of the die 64 in the longitudinal section of the die 64 is linear. The circle type die is a die in which the shape of the approach is curved. The hybrid die is a die in which the approach shape is a combination of a straight line and a curve. The approach angle θ of the die 64 may be constant or may be different at different positions on the approach. In order to increase the degree of processing of the surface of the raw wire 4, it is desirable for the approach angle θ to be high. As shown in FIG. 5, the approach 641 is a tapered portion located on the inlet side of the bearing 642, which is a hole inside the die that determines the dimensions of the conductor 2, and has the function of narrowing the outer diameter of the raw wire 4. The approach angle θ is the angle formed by the tapered approach 641 in the vertical cross section of the die 64, and is the sum of the angle formed at the top and the angle formed at the bottom with respect to the horizontal direction.
 伸線加工における角部49の加工割合Pは20%以上である。角部49の加工割合Pは、原料線材4が伸線加工されたときに、角部49が大きく変形しているか否かを示す指標である。具体的には、加工割合Pは、{(L0-L)/X}×100によって求められる。
 L0…原料線材4の断面40の対角長さ
 L…導線2の矩形状断面20の対角長さ
 X…角部49以外の部分の最大変形量
The processing rate P of the corners 49 in the wire drawing is 20% or more. The processing rate P of the corners 49 is an index showing whether the corners 49 are significantly deformed when the raw wire 4 is drawn. Specifically, the processing rate P is calculated by {(L0-L)/X}×100.
L0: Diagonal length of cross section 40 of raw wire 4 L: Diagonal length of rectangular cross section 20 of conductor 2 X: Maximum deformation amount of portions other than corners 49
 対角長さLは、矩形状断面20の対角線の長さ、即ち矩形状断面20における対角位置にある第一の角部29と第二の角部29との距離である。本例のように角部29が円弧形状である場合、第一の円弧の中間点と第二の円弧の中間点とをつなぐ直線が、矩形状断面20の対角線である。一方、対角長さL0は、断面40の対角線の長さである。本例では、断面40における第一交点と第二交点とをつなぐ直線が、断面40の対角線である。第一交点と第二交点はそれぞれ、矩形状断面20の対角線の延長線と、断面40の輪郭線との交点である。対角長さL0から対角長さLを引いた値は、最終伸線加工による角部49の変形量とみなせる。 The diagonal length L is the length of the diagonal of the rectangular cross section 20, that is, the distance between the first corner 29 and the second corner 29 at diagonal positions in the rectangular cross section 20. When the corner 29 is arc-shaped as in this example, the straight line connecting the midpoint of the first arc and the midpoint of the second arc is the diagonal of the rectangular cross section 20. On the other hand, the diagonal length L0 is the length of the diagonal of the cross section 40. In this example, the straight line connecting the first intersection point and the second intersection point in the cross section 40 is the diagonal of the cross section 40. The first intersection point and the second intersection point are the intersection points between the extension of the diagonal of the rectangular cross section 20 and the contour line of the cross section 40. The value obtained by subtracting the diagonal length L from the diagonal length L0 can be regarded as the deformation amount of the corner 49 due to the final wire drawing process.
 最大変形量Xは、W0-W、およびT0-Tのうち、大きい方の値である。幅Wおよび厚さTは、ダイス64のダイス孔の最小内径を有する部分の寸法とほぼ同じである。従来の最終伸線加工では、角部49がほとんど変形せず、角部49以外の部分が大きく変形していた。即ち、従来の最終伸線加工では、最大変形量Xが、角部49の変形量L0-Lよりもかなり大きかった。 The maximum deformation amount X is the larger of W0-W and T0-T. The width W and thickness T are approximately the same as the dimensions of the portion of the die hole of the die 64 that has the smallest inner diameter. In conventional final wiredrawing, the corners 49 are hardly deformed, and the portions other than the corners 49 are significantly deformed. In other words, in conventional final wiredrawing, the maximum deformation amount X is significantly larger than the deformation amount L0-L of the corners 49.
 本例における加工割合Pは20%以上である。このような加工割合Pを有する最終伸線加工によれば、角部49が、角部49以外の箇所と同様に十分に加工され、角部29の表面が、角部29以外の部分と同様に滑らかになる。その結果、算術平均粗さRaが0.2μm以下の表面を有する角部29を備える導線2が得られる。加工割合Pが大きくなるほど、角部49の加工度が高くなり、角部29の表面が滑らかになる。加工割合Pは例えば、30%以上でも良いし、45%以上でも良いし、60%以上でも良い。 In this example, the processing ratio P is 20% or more. With the final wire drawing process having such a processing ratio P, the corners 49 are sufficiently processed in the same manner as the other parts, and the surface of the corners 29 becomes as smooth as the other parts. As a result, a conductor 2 is obtained that has corners 29 with a surface having an arithmetic mean roughness Ra of 0.2 μm or less. The larger the processing ratio P, the higher the processing degree of the corners 49 and the smoother the surface of the corners 29. The processing ratio P may be, for example, 30% or more, 45% or more, or 60% or more.
  [導線を熱処理する工程]
 最終伸線後に行われる熱処理の主目的は、伸線加工によって導線2に導入された歪みの除去である。歪みの除去によって、導線2の導電率および伸びが向上する。熱処理における雰囲気温度は例えば100℃以上550℃以下程度、保持時間は例えば0.2秒以上10時間以下である。熱処理は、バッチ炉によって実施されても良いし、連続炉によって実施されても良い。この熱処理は必須ではない。
[Process of heat treating conductor wire]
The main purpose of the heat treatment performed after the final drawing is to remove the strain introduced into the conductor wire 2 by the drawing process. The removal of the strain improves the electrical conductivity and elongation of the conductor wire 2. The atmospheric temperature in the heat treatment is, for example, about 100° C. to 550° C., and the holding time is, for example, 0.2 seconds to 10 hours. The heat treatment may be performed in a batch furnace or a continuous furnace. This heat treatment is not essential.
  [絶縁層を形成する工程]
 絶縁層3は例えば、公知のエナメル線の被覆設備によって形成される。当該被覆設備では、導線2の表面に絶縁層3を構成する樹脂を塗布する第一工程と、焼付炉において導線2に塗布された樹脂を固化させる第二工程とが実施される。第一工程と第二工程は、絶縁層3が所望の厚さに達するまで繰り返される。第一工程と第二工程とはそれぞれ1回ずつであっても良い。
[Step of forming insulating layer]
The insulating layer 3 is formed, for example, by a known enameled wire coating facility. In the coating facility, a first step is performed in which a resin constituting the insulating layer 3 is applied to the surface of the conductor 2, and a second step is performed in which the resin applied to the conductor 2 is solidified in a baking oven. The first and second steps are repeated until the insulating layer 3 reaches a desired thickness. Each of the first and second steps may be performed once.
<試験例>
 試験例では、最終伸線加工における断面積減少率、および角部49の加工割合Pが異なる複数の導線2を作製した。各導線2の作製に使用された最終伸線加工におけるダイス64は、角度型ダイスまたは円弧型ダイスである。次いで、各導線2の外周に絶縁層3を形成し、その絶縁層3の不良箇所を確認した。伸線加工の条件、および導線2の寸法を表1,2に示す。
<Test Example>
In the test example, a number of conductors 2 were produced with different cross-sectional area reduction rates in the final wiredrawing process and different processing ratios P of corners 49. The die 64 used in the final wiredrawing process to produce each conductor 2 was an angle die or an arc die. Next, an insulating layer 3 was formed on the outer periphery of each conductor 2, and defects in the insulating layer 3 were confirmed. The wiredrawing conditions and the dimensions of the conductors 2 are shown in Tables 1 and 2.
 表中の『ダイス孔の寸法』は、ダイス64のダイス孔の最小内径を有する部分、即ちダイス64のベアリングの寸法である。ベアリングの寸法は、導線2の矩形状断面20の寸法にほぼ等しい。従って、『ダイス孔の寸法』の欄に記載される『厚さ』、『幅』、『角部の曲率半径』、および『面積』はそれぞれ、図4における『厚さT』、『幅W』、『角部29の曲率半径』、および『矩形状断面20の面積S』とみなして良い。『アスペクト比』は、『幅/厚さ』である。 The "Die hole dimensions" in the table are the dimensions of the portion of the die hole of the die 64 that has the smallest inner diameter, i.e., the dimensions of the bearing of the die 64. The dimensions of the bearing are approximately equal to the dimensions of the rectangular cross section 20 of the conductor 2. Therefore, the "thickness," "width," "curvature radius of corners," and "area" listed in the "Die hole dimensions" column can be considered to be the "thickness T," "width W," "curvature radius of corners 29," and "area S of rectangular cross section 20" in Figure 4, respectively. The "aspect ratio" is "width/thickness."
 表中の『最終伸線条件』の欄における『前加工度』は、最後に熱処理を行ってから最終伸線加工の前までに金属線9に加えられた加工量をパーセンテージで示したものである。具体的には、『前加工度』は、{(S9-S0)/S9}×100である。S9は、伸線装置6に供される直前の金属線9の断面積、即ちダイス61の直前における金属線9の断面積である。S0は、原料線材4の断面40の断面積、即ちダイス64の直前における金属線9の断面積である。『T0-T』、『W0-W』、『L0-L』、および『角部の加工割合P』は、上記項目[導線の製造方法]において説明したとおりである。 The "degree of pre-processing" in the "final wiredrawing conditions" column in the table indicates the amount of processing applied to the metal wire 9 after the last heat treatment and before the final wiredrawing process, expressed as a percentage. Specifically, the "degree of pre-processing" is {(S9-S0)/S9} x 100. S9 is the cross-sectional area of the metal wire 9 immediately before it is fed to the wiredrawing device 6, i.e., the cross-sectional area of the metal wire 9 immediately before the die 61. S0 is the cross-sectional area of the cross section 40 of the raw wire 4, i.e., the cross-sectional area of the metal wire 9 immediately before the die 64. "T0-T", "W0-W", "L0-L", and "corner processing ratio P" are as explained in the above section [Conductor manufacturing method].
 表中の『導線』の欄における『比S/SV』は、上記項目[導線]において説明した通りである。面積Sおよび面積SVは、株式会社キーエンス製のVHX-7000によって撮影した導線2の断面画像を画像解析することによって求めた。表中の『比S/SV』はパーセンテージによって表されている。『寸法の均一性』は、導線2の長手軸に沿って一様な矩形状断面20を備えるか否かを評価した結果である。評価『A』は、項目[導線]において説明した『第一変化率』と『第二変化率』が共に0.5%以下であることを意味する。『第一変化率』と『第二変化率』を測定するための第一断面21と第二断面22との間の距離は100mであった。 The "S/SV ratio" in the "Conductor" column in the table is as explained in the above section [Conductor]. The area S and area SV were determined by image analysis of cross-sectional images of the conductor 2 taken with a VHX-7000 manufactured by Keyence Corporation. The "S/SV ratio" in the table is expressed as a percentage. "Dimensional uniformity" is the result of evaluating whether the conductor 2 has a uniform rectangular cross-section 20 along the longitudinal axis. The evaluation "A" means that the "first rate of change" and the "second rate of change" explained in the section [Conductor] are both 0.5% or less. The distance between the first cross-section 21 and the second cross-section 22 for measuring the "first rate of change" and the "second rate of change" was 100 m.
 表中の『角部のRa』は、導線2の角部29の表面の算術平均粗さRaである。算術平均粗さの単位はマイクロメートルである。算術平均粗さRaは、オリンパス株式会社製のLEXT OLS4100によって測定した。具体的には、4つの角部29のそれぞれにおいて3箇所ずつ算術平均粗さRaを測定し、12個の測定結果を平均することで算術平均粗さRaを求めた。各角部29における三つの測定箇所は、角部29の円弧に沿って互いに離れた箇所である。本例では、各測定箇所を導線2の長手軸に沿って258μmの長さにわたって測定した。 The "corner Ra" in the table is the arithmetic mean roughness Ra of the surface of the corner 29 of the conductor 2. The unit of arithmetic mean roughness is micrometers. The arithmetic mean roughness Ra was measured using a LEXT OLS4100 manufactured by Olympus Corporation. Specifically, the arithmetic mean roughness Ra was measured at three locations on each of the four corners 29, and the arithmetic mean roughness Ra was calculated by averaging the 12 measurement results. The three measurement locations on each corner 29 are separated from one another along the circular arc of the corner 29. In this example, each measurement location was measured over a length of 258 μm along the longitudinal axis of the conductor 2.
 表中の『不良箇所の発生率』は、100kgの導線2における絶縁層3の不良箇所の数である。本例における絶縁層3の不良箇所は市販の探傷装置によって測定した。導線2の表面が粗いと、粗い部分と絶縁層3との間に空気溜まりなどの不良箇所が生じる。本例では、絶縁層3の被覆設備に併設して市販の探傷装置を配置し、絶縁層3の形成に連続して、不良箇所の発生数をカウントした。導線2の重量は、導線2の材質の比重と、矩形状断面20の面積Sと、被覆設備における導線2の送り速度とから計算によって求められる。本例では、測定した不良箇所のうち、角部29に対応する部分の不良箇所のみをカウントした。 The "Defective point occurrence rate" in the table is the number of defective points in the insulating layer 3 in a 100 kg conductor 2. In this example, the defective points in the insulating layer 3 were measured using a commercially available flaw detector. If the surface of the conductor 2 is rough, defects such as air pockets will occur between the rough part and the insulating layer 3. In this example, a commercially available flaw detector was installed next to the coating equipment for the insulating layer 3, and the number of defective points was counted immediately after the insulating layer 3 was formed. The weight of the conductor 2 is calculated from the specific gravity of the material of the conductor 2, the area S of the rectangular cross section 20, and the feed speed of the conductor 2 in the coating equipment. In this example, of the measured defective points, only the defective points in the parts corresponding to the corners 29 were counted.
 試料No.1から試料No.15は主に、断面積減少率が異なる試料である。ダイス64は、32°のアプローチ角を有する角度型ダイスであった。試料No.21から試料No.24は主に、導線2の角部29の曲率半径が異なる試料である。ダイス64は、32°のアプローチ角を有する角度型ダイスであった。試料No.31から試料No.33は主に、アスペクト比が異なる試料である。ダイス64は、32°のアプローチ角を有する角度型ダイスであった。試料No.41および試料No.42は主に、導線2の矩形状断面20の面積Sが異なる試料である。ダイス64は、32°のアプローチ角を有する角度型ダイスであった。試料No.51から試料No.56は主に、矩形状断面20の厚さTおよび幅Wのいずれかが異なる試料である。ダイス64は、32°のアプローチ角を有する角度型ダイスであった。試料No.61から試料No.64は、ダイス64の構成が異なる試料である。試料No.61のダイス64は、24°のアプローチ角を有する角度型ダイスであった。試料No.62のダイス64は、16°のアプローチ角を有する角度型ダイスであった。試料No.63のダイス64は、曲率半径が6mmの円弧状のアプローチを有する円弧型ダイスであった。試料No.64のダイス64は、曲率半径が12mmのアプローチを有する円弧型ダイスであった。試料No.101から試料No.104は、角部29の加工割合Pが20%未満、または断面積減少率が35%超である試料である。ダイス64は、32°のアプローチ角を有する角度型ダイスであった。 Samples No. 1 to No. 15 are samples that differ mainly in the cross-sectional area reduction rate. Die 64 was an angled die with an approach angle of 32°. Samples No. 21 to No. 24 are samples that differ mainly in the radius of curvature of the corner 29 of the conductor 2. Die 64 was an angled die with an approach angle of 32°. Samples No. 31 to No. 33 are samples that differ mainly in the aspect ratio. Die 64 was an angled die with an approach angle of 32°. Samples No. 41 and No. 42 are samples that differ mainly in the area S of the rectangular cross section 20 of the conductor 2. Die 64 was an angled die with an approach angle of 32°. Samples No. 51 to No. 56 are samples that differ mainly in either the thickness T or the width W of the rectangular cross section 20. The die 64 was an angle-type die having an approach angle of 32°. Samples No. 61 to No. 64 are samples with different die 64 configurations. The die 64 of Sample No. 61 was an angle-type die having an approach angle of 24°. The die 64 of Sample No. 62 was an angle-type die having an approach angle of 16°. The die 64 of Sample No. 63 was an arc-type die having an arc-shaped approach with a radius of curvature of 6 mm. The die 64 of Sample No. 64 was an arc-type die having an approach with a radius of curvature of 12 mm. Samples No. 101 to No. 104 are samples in which the processing ratio P of the corner portion 29 is less than 20% or the cross-sectional area reduction rate is more than 35%. The die 64 was an angle-type die having an approach angle of 32°.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2に示されるように、断面積減少率が35%以下で、かつ角部49の加工割合Pが20%以上である試料No.1から試料No.64は、滑らかな角部29を備えており、不良箇所の発生率が0.8以下であった。 As shown in Tables 1 and 2, samples No. 1 to No. 64, which have a cross-sectional area reduction rate of 35% or less and a processing rate P of the corner 49 of 20% or more, have smooth corners 29 and the occurrence rate of defective parts was 0.8 or less.
 角部49の加工割合Pが20%未満である試料No.101から試料No.103は、算術平均粗さRaが0.2μm超の角部29を備えており、不良箇所の発生率が1.2超であった。また、断面積減少率が35%超である試料No.104は、算術平均粗さRaが0.2μm超の角部29を備えており、不良箇所の発生率が1.0超であった。 Samples No. 101 to No. 103, in which the processing ratio P of the corner 49 is less than 20%, have corners 29 with an arithmetic mean roughness Ra of more than 0.2 μm, and the incidence of defective parts was more than 1.2. Sample No. 104, in which the cross-sectional area reduction rate is more than 35%, has corners 29 with an arithmetic mean roughness Ra of more than 0.2 μm, and the incidence of defective parts was more than 1.0.
 図6は、試験例の各試料における角部49の加工割合Pと断面積減少率との関係を示すグラフである。横軸は各試料の角部49の加工割合Pである。縦軸は各試料の断面積減少率である。試料No.101から試料No.104は、表2に示されるように、不良箇所の発生率が高い試料である。試料No.101から試料No.104が除外される範囲の試料は、不良箇所の発生率が低い試料である。従って、角部49の加工割合Pが20%以上140%以下の範囲、断面積減少率が7%以上35%以下の範囲では、不良箇所の発生率が低いと考えられる。角部49の加工割合Pが20%以上140%以下の範囲、断面積減少率が15%以上35%以下の範囲では、不良箇所の発生率がより低いと考えられる。角部49の加工割合Pが40%以上140%以下の範囲、断面積減少率が15%以上35%以下の範囲では、不良箇所の発生率がさらに低いと考えられる。 Figure 6 is a graph showing the relationship between the processing rate P of the corner 49 and the cross-sectional area reduction rate for each sample in the test example. The horizontal axis is the processing rate P of the corner 49 for each sample. The vertical axis is the cross-sectional area reduction rate for each sample. As shown in Table 2, samples No. 101 to No. 104 are samples with a high incidence of defective parts. The samples in the range excluding samples No. 101 to No. 104 are samples with a low incidence of defective parts. Therefore, when the processing rate P of the corner 49 is in the range of 20% to 140% and the cross-sectional area reduction rate is in the range of 7% to 35%, the incidence of defective parts is considered to be low. When the processing rate P of the corner 49 is in the range of 20% to 140% and the cross-sectional area reduction rate is in the range of 15% to 35%, the incidence of defective parts is considered to be even lower. It is believed that the occurrence rate of defects is even lower when the processing rate P of the corner portion 49 is in the range of 40% to 140% and the cross-sectional area reduction rate is in the range of 15% to 35%.
 図7は、試験例の各試料における比S/SVと角部の算術平均粗さRaとの関係を示すグラフである。横軸は各試料の比S/SVである。縦軸は角部29の算術平均粗さRaである。比S/SVが100%に近いほど、角部29の曲率半径が小さい、すなわち角部29が尖った形状である。比S/SVが100%に近いほど、角部29が尖った形状になるため、角部29の表面を滑らかにすることは難しい。しかし、図6に示される断面積減少率と加工割合Pとを満たす試料No.1から試料No.64の角部29の算術平均粗さRaは0.2μm以下であった。従って、実施形態に係る導線2の製造方法は、滑らかな表面を有する角部29を形成することに有効であるといえる。 Figure 7 is a graph showing the relationship between the ratio S/SV and the arithmetic mean roughness Ra of the corners in each sample of the test example. The horizontal axis is the ratio S/SV of each sample. The vertical axis is the arithmetic mean roughness Ra of the corners 29. The closer the ratio S/SV is to 100%, the smaller the radius of curvature of the corners 29, i.e., the sharper the shape of the corners 29. The closer the ratio S/SV is to 100%, the sharper the shape of the corners 29 becomes, so it is difficult to make the surface of the corners 29 smooth. However, the arithmetic mean roughness Ra of the corners 29 of samples No. 1 to No. 64, which satisfy the cross-sectional area reduction rate and processing ratio P shown in Figure 6, was 0.2 μm or less. Therefore, it can be said that the manufacturing method of the conductor 2 according to the embodiment is effective in forming corners 29 with a smooth surface.
1 電線
2 導線
 20 矩形状断面、21 第一断面、22 第二断面
 25 仮想矩形、251 第一辺、252 第二辺
 29 角部
3 絶縁層
4 原料線材
 40 断面
 49 角部
6 伸線装置
 61,62,63,64 ダイス
 641 アプローチ
 642 ベアリング
9 金属線
θ アプローチ角
T,T0,T1,T2 厚さ
W,W0,W1,W2 幅
REFERENCE SIGNS LIST 1 Electric wire 2 Conductor 20 Rectangular cross section, 21 First cross section, 22 Second cross section 25 Virtual rectangle, 251 First side, 252 Second side 29 Corner 3 Insulating layer 4 Raw wire material 40 Cross section 49 Corner 6 Wire drawing device 61, 62, 63, 64 Die 641 Approach 642 Bearing 9 Metal wire θ Approach angle T, T0, T1, T2 Thickness W, W0, W1, W2 Width

Claims (7)

  1.  金属材料からなる導線であって、
     幅と厚さとを有する矩形状断面を備え、
     前記矩形状断面の角部は曲線であり、
     前記矩形状断面に外接する仮想矩形の面積SVと、前記矩形状断面の面積Sとの比S/SVが0.975以上であり、
     前記導線の第一断面は、前記導線の長手軸に沿って前記導線の第二断面から離隔しており、
     前記第一断面の幅W1と前記第二断面の幅W2とに基づく第一変化率は、0.5%以下であり、
     前記前記第一断面の厚さT1と前記第二断面の厚さT2とに基づく第二変化率は、0.5%以下であり、
      前記第一変化率は、|(W1-W2)/W1|×100であり、
      前記第二変化率は、|(T1-T2)/T1|×100であり、
     前記角部の表面の算術平均粗さRaが0.2μm以下である、
     導線。
    A conductor made of a metal material,
    a rectangular cross-section having a width and a thickness;
    The corners of the rectangular cross section are curved,
    a ratio S/SV of an area SV of a virtual rectangle circumscribing the rectangular cross section to an area S of the rectangular cross section is 0.975 or more;
    the first cross-section of the conductor is spaced from the second cross-section of the conductor along a longitudinal axis of the conductor;
    a first rate of change based on the width W1 of the first cross section and the width W2 of the second cross section is 0.5% or less;
    a second change rate based on the thickness T1 of the first cross section and the thickness T2 of the second cross section is 0.5% or less;
    the first rate of change is |(W1-W2)/W1|×100,
    the second rate of change is |(T1-T2)/T1|×100,
    The arithmetic average roughness Ra of the surface of the corner is 0.2 μm or less.
    Conductor.
  2.  前記金属材料は無酸素銅である、請求項1に記載の導線。 The conductor of claim 1, wherein the metallic material is oxygen-free copper.
  3.  前記面積Sは2mm以上12mm以下である、請求項1または請求項2に記載の導線。 The conductor according to claim 1 or 2, wherein the area S is 2 mm2 or more and 12 mm2 or less.
  4.  前記矩形状断面のアスペクト比は1以上10以下である、請求項1から請求項3のいずれか一項に記載の導線。 The conductor according to any one of claims 1 to 3, wherein the aspect ratio of the rectangular cross section is 1 or more and 10 or less.
  5.  前記幅W1と前記幅W2との差、および前記厚さT1と前記厚さT2との差が共に、16μm以下である、請求項1から請求項4のいずれか一項に記載の導線。 The conductor according to any one of claims 1 to 4, wherein the difference between the width W1 and the width W2, and the difference between the thickness T1 and the thickness T2 are both 16 μm or less.
  6.  請求項1から請求項5のいずれか一項に記載の導線と、
     前記導線の表面を覆う絶縁層と、を備える、
     電線。
    The conductor wire according to any one of claims 1 to 5;
    and an insulating layer covering the surface of the conductor.
    Electrical wire.
  7.  矩形状断面を備える導線を得るための導線の製造方法であって、
     原料線材を最終伸線加工する工程を備え、
     前記原料線材は前記最終伸線加工する工程の直前の金属線であり、
     前記原料線材の断面は4つの角部を有し、
     前記断面は、幅W0、厚さT0、および対角長さL0を有し、
     前記矩形状断面は、幅W、厚さT、および対角長さLを有し、
     前記最終伸線加工における前記角部の加工割合Pが20%以上であり、
     前記加工割合Pは、{(L0-L)/X}×100であり、Xは、W0-W、およびT0-Tのうち、大きい方の値であり、
     前記最終伸線加工における断面積減少率が35%以下である、
     導線の製造方法。
    A method for producing a conductor to obtain a conductor having a rectangular cross section, comprising the steps of:
    The process includes a final wire drawing process for the raw wire material.
    The raw wire rod is a metal wire immediately before the final wiredrawing process,
    The cross section of the raw wire has four corners,
    The cross-section has a width W0, a thickness T0, and a diagonal length L0;
    The rectangular cross section has a width W, a thickness T, and a diagonal length L;
    The processing ratio P of the corner portion in the final wiredrawing process is 20% or more,
    The processing ratio P is {(L0-L)/X}×100, where X is the larger of W0-W and T0-T.
    The cross-sectional area reduction rate in the final wiredrawing process is 35% or less.
    A method for manufacturing conductor wire.
PCT/JP2023/034483 2022-09-30 2023-09-22 Conducting wire, electric wire, and method for manufacturing conducting wire WO2024070941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158710 2022-09-30
JP2022158710 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070941A1 true WO2024070941A1 (en) 2024-04-04

Family

ID=90477778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034483 WO2024070941A1 (en) 2022-09-30 2023-09-22 Conducting wire, electric wire, and method for manufacturing conducting wire

Country Status (1)

Country Link
WO (1) WO2024070941A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305620A (en) * 2007-06-06 2008-12-18 Hitachi Cable Ltd Insulating electric wire
JP2009231065A (en) * 2008-03-24 2009-10-08 Fujikura Ltd Tin-system plated rectangular conductor and flexible flat cable
JP2012195212A (en) * 2011-03-17 2012-10-11 Mitsubishi Shindoh Co Ltd Square insulating conductor material for coil and method of manufacturing the same
JP2013004444A (en) * 2011-06-21 2013-01-07 Mitsubishi Cable Ind Ltd Insulated rectangular copper wire and coil using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305620A (en) * 2007-06-06 2008-12-18 Hitachi Cable Ltd Insulating electric wire
JP2009231065A (en) * 2008-03-24 2009-10-08 Fujikura Ltd Tin-system plated rectangular conductor and flexible flat cable
JP2012195212A (en) * 2011-03-17 2012-10-11 Mitsubishi Shindoh Co Ltd Square insulating conductor material for coil and method of manufacturing the same
JP2013004444A (en) * 2011-06-21 2013-01-07 Mitsubishi Cable Ind Ltd Insulated rectangular copper wire and coil using the same

Similar Documents

Publication Publication Date Title
US11682499B2 (en) Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
JP6382726B2 (en) Coil conductor wire and coil wire
US10461441B2 (en) Aluminum alloy element wire, aluminum alloy stranded wire and method for producing aluminum alloy stranded wire, automotive electric wire, and wire harness
KR102361777B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
US20140360756A1 (en) Electrically insulated wire
KR102361765B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
US11810687B2 (en) Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
WO2024070941A1 (en) Conducting wire, electric wire, and method for manufacturing conducting wire
JP5440951B2 (en) Manufacturing method of flat enameled wire and flat enameled wire
CN109906281B (en) Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, and electric wire with terminal
JP7011773B2 (en) Enamel wire and manufacturing method of enamel wire
JP7301930B2 (en) enamelled wire
JP5889598B2 (en) Manufacturing method of flat wire
JP2018032596A (en) Insulated wire and method for manufacturing the same
JP6315114B2 (en) Aluminum alloy stranded wire, automotive wire and wire harness
WO2024043284A1 (en) Aluminum-based wire, aluminum-based strand wire, and aluminum-based cable
RU213535U1 (en) HIGH STRENGTH ALUMINUM WINDING WIRE
JP7054076B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP6969569B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP2022091910A (en) Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872167

Country of ref document: EP

Kind code of ref document: A1