WO2024070890A1 - 鋼板、部材およびそれらの製造方法 - Google Patents

鋼板、部材およびそれらの製造方法 Download PDF

Info

Publication number
WO2024070890A1
WO2024070890A1 PCT/JP2023/034300 JP2023034300W WO2024070890A1 WO 2024070890 A1 WO2024070890 A1 WO 2024070890A1 JP 2023034300 W JP2023034300 W JP 2023034300W WO 2024070890 A1 WO2024070890 A1 WO 2024070890A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel sheet
content
annealing
Prior art date
Application number
PCT/JP2023/034300
Other languages
English (en)
French (fr)
Inventor
大洋 浅川
英之 木村
真平 吉岡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024070890A1 publication Critical patent/WO2024070890A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel sheets and components used in various applications such as automobiles and home appliances, and to methods for manufacturing them.
  • Patent Document 1 discloses a high-strength cold-rolled steel sheet with excellent workability and impact resistance, containing, by mass%, C: 0.05-0.3%, Si: 0.3-2.5%, Mn: 0.5-3.5%, P: 0.003-0.100%, S: 0.02% or less, Al: 0.010-0.5%, ferrite: 20% or more, tempered martensite: 10-60%, martensite: 0-10%, retained austenite: 3-15%, and having a steel structure in which the average crystal grain size of the low-temperature transformation phase consisting of martensite, tempered martensite, and retained austenite is 3 ⁇ m or less.
  • Patent Document 1 utilizes a process known as Q&P (Quenching & Partitioning) in which the material is cooled to a temperature range between the martensite transformation start temperature (Ms) and the martensite transformation completion temperature (Mf) during the cooling process, and then reheated and held to stabilize the residual ⁇ .
  • Q&P Quenching & Partitioning
  • Ms martensite transformation start temperature
  • Mf martensite transformation completion temperature
  • Patent Document 2 discloses a high-strength steel plate with excellent workability, containing, by mass%, C: 0.05-0.5%, Si: 0.01-2.5%, Mn: 0.5-3.5%, P: 0.003-0.100%, S: 0.02% or less, and Al: 0.010-0.5%, with a steel structure containing, by area ratio, 0-10% ferrite, 0-10% martensite, 60-95% tempered martensite, and 5-20% retained austenite as determined by X-ray diffraction, with a tensile strength of 1200 MPa or more and a hole expansion ratio of 50% or more.
  • Patent Document 3 a steel plate containing, by mass%, C: 0.10% to 0.73%, Si: 3.0% or less, Mn: 0.5% to 3.0%, P: 0.1% or less, S: 0.07% or less, Al: 3.0% or less, and N: 0.010% or less is heated to the austenite single phase region or the (austenite + ferrite) two-phase region, and then, using the martensitic transformation start temperature Ms as an index, the target cooling stop temperature is set to a temperature range below Ms and above (Ms - 150°C).
  • This method of manufacturing high-strength steel plate has excellent workability and tensile strength (TS) and excellent stability of mechanical properties, and in which the coldest part of the steel plate in the width direction is held in a temperature range from the target cooling stop temperature to (cooling stop temperature + 15°C) for 15 seconds to 100 seconds, is disclosed.
  • TS tensile strength
  • control of the cooling stop temperature during annealing is extremely important in order to obtain excellent strength, ductility, and hole expandability.
  • the cooling rate is fast at 20°C/s or more, the cooling stop temperature is prone to variation, which can cause variation in the mechanical properties in the longitudinal direction of the coil and lead to reduced press formability.
  • Patent Document 3 provides a high-strength steel plate with excellent stability of mechanical properties in the width direction by heating to the austenite single-phase region or the (austenite + ferrite) two-phase region, followed by cooling with a target cooling stop temperature in a temperature range below Ms and above (Ms-150°C), and by holding the coldest part of the steel plate in the width direction in a temperature range from the target cooling stop temperature to (cooling stop temperature + 15°C) for a time of 15 to 100 seconds.
  • Ms and above Ms-150°C
  • the present invention was made to solve these problems, and aims to provide steel plates and components that are high in strength, have excellent ductility and hole expansion properties, and have excellent stability of mechanical properties in the longitudinal direction of the coil, as well as methods for manufacturing the same.
  • high strength refers to a tensile strength TS evaluated in accordance with JIS Z2241 (2011) of 1180 MPa or more.
  • Excellent ductility refers to a total elongation (EL) evaluated in accordance with JIS Z2241 (2011) of 11.0% or more.
  • Excellent stability of mechanical properties in the longitudinal direction of the coil refers to a standard deviation of TS evaluated in accordance with JIS Z2241 (2011) of 30 MPa or less using a total of 20 JIS No. 5 tensile test pieces taken at equal intervals in the longitudinal direction of the coil, including test pieces taken at positions 10 m from the leading and trailing ends of the coil, as JIS No. 5 tensile test pieces parallel to the rolling direction.
  • the inventors conducted extensive research to solve the above-mentioned problems. As a result, they discovered that it is possible to homogenize the structure of the hot-rolled sheet in the longitudinal direction of the coil by controlling the temperature during coiling, and to reduce the variation in the cooling stop temperature in the longitudinal direction of the coil by slowly cooling from near the Ms point to the cooling stop temperature in the annealing process, and as a result, it is possible to significantly reduce the variation in mechanical properties.
  • the present invention provides the following: [1] In mass%, C: 0.08 to 0.35%, Si: 0.4 to 3.0%, Mn: 1.5 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol. Al: 1.0% or less, N: 0.015% or less;
  • the balance has a composition consisting of Fe and unavoidable impurities, Ferrite area ratio: 5% or less (including 0%), Total area ratio of tempered martensite and lower bainite: 70% or more; Volume fraction of retained austenite: 5 to 15%; The area ratio of fresh martensite is 10% or less (including 0%).
  • the component composition in mass%, B: 0.01% or less, Ti: 0.1% or less, Cu: 1% or less, Ni: 1% or less, Cr: 1.5% or less, Mo: 1.0% or less, V: 0.5% or less, Nb: 0.1% or less, The steel plate according to [1], containing one or more selected from Zr: 0.2% or less and W: 0.2% or less.
  • the component composition in mass%, Ca: 0.0040% or less, Ce: 0.0040% or less, La: 0.0040% or less, Mg: 0.0040% or less, The steel sheet according to [1] or [2], containing one or more selected from Sb: 0.1% or less and Sn: 0.1% or less.
  • [4] The steel sheet according to any one of [1] to [3], having a plating layer on a surface of the steel sheet.
  • [5] A member made using the steel plate according to any one of [1] to [4].
  • [6] A steel slab having a component composition according to any one of [1] to [3], After holding the slab at a heating temperature of 1100°C or higher for 1800s or more, Finish hot rolling is performed at a finish rolling temperature of 850°C or higher, Cooling is performed in a temperature range from the finish rolling temperature to 650° C. at an average cooling rate of 40° C./s or more, a hot rolling process in which the hot-rolled steel sheet is obtained by coiling the steel sheet at a coiling temperature of 600° C.
  • the hot-rolled steel sheet A cold rolling process in which the steel sheet is cold-rolled at a rolling ratio of 30% or more to obtain a cold-rolled steel sheet;
  • the cold-rolled steel sheet After heating in the temperature range from 700° C. to (Ac 3 ⁇ 10° C.) at an average heating rate HR1 of 0.5° C./s or more, (Ac 3 -10 ° C) or higher for 30 seconds or more, Cooling is performed at an average cooling rate CR1 of 10 ° C./s or more in a temperature range from the annealing temperature to a slow cooling start temperature T1 which is equal to or higher than (Ms-30 ° C.) and equal to or lower than (Ms+30 ° C.),
  • the temperature range from the annealing start temperature T1 to the annealing stop temperature T2, which is equal to or higher than (Ms-220°C) and equal to or lower than (Ms-100°C) is cooled at an average cooling rate CR2 of 1 to 10°C/s,
  • the reheating holding temperature T3 is held for 20 s or more and 3000 s or less, and an annealing step of cooling the steel sheet in a temperature range from the reheating holding temperature T3 to 50°C at an average cooling rate CR3 of 0.1°C/s or more.
  • annealing step during cooling from the annealing temperature to the slow cooling start temperature T1, or during reheating and holding at the reheating holding temperature T3, hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment is performed.
  • a method for manufacturing a component comprising a step of subjecting the steel plate according to any one of [1] to [4] to at least one of forming and joining to form a component.
  • the present invention provides steel plates, components, and methods for manufacturing the same that are high strength, have excellent ductility and hole expansion properties, and have excellent stability of mechanical properties in the longitudinal direction of the coil.
  • the steel plate of the present invention contains, by mass%, C: 0.08-0.35%, Si: 0.4-3.0%, Mn: 1.5-3.5%, P: 0.02% or less, S: 0.01% or less, sol. Al: 1.0% or less, N: 0.015% or less, with the balance being Fe and unavoidable impurities. It has a steel structure with an area ratio of ferrite: 5% or less (including 0%), a combined area ratio of tempered martensite and lower bainite: 70% or more, a volume ratio of retained austenite: 5-15%, and an area ratio of fresh martensite: 10% or less (including 0%), and the standard deviation of the tensile strength (TS) in the longitudinal direction of the coil is 30 MPa or less.
  • TS tensile strength
  • the chemical composition of the steel sheet of the present invention will be described.
  • the unit of content “%” means “mass %.”
  • “high strength” refers to a tensile strength TS of 1180 MPa or more.
  • C (C: 0.08 to 0.35%) C is contained to increase the strength of tempered martensite or lower bainite and ensure a TS of 1180 MPa or more. If the C content is less than 0.08%, the strength of tempered martensite and lower bainite is low, and the desired TS cannot be stably obtained. If the C content is less than 0.08%, the desired ductility cannot be obtained. Therefore, the C content is set to 0.08% or more.
  • the C content is preferably 0.10% or more, and more preferably 0.14% or more.
  • the C content is set to 0.35% or less.
  • the C content is preferably 0.30% or less, and more preferably 0.25% or less.
  • Silicon improves the strength of the steel sheet by solid solution strengthening, and furthermore, by suppressing the coarsening of carbides, suppresses the decrease in strength due to tempering. If the silicon content is less than 0.4%, the desired TS cannot be obtained stably, so the silicon content is set to 0.4% or more.
  • the silicon content is preferably 1.0% or more, and more preferably 1.4% or more.
  • the Si content is set to 3.0% or less.
  • the Si content is preferably 2.5% or less, and more preferably 2.0% or less.
  • Mn is an element effective in improving hardenability. If the Mn content is less than 1.5%, ferrite or pearlite is generated excessively. As a result, the desired TS cannot be obtained because the tempered martensite and lower bainite are not sufficiently obtained. Also, if the Mn content is less than 1.5%, the desired hole expandability cannot be obtained. Therefore, the Mn content is set to 1.5% or more. The Mn content is preferably 2.0% or more, and more preferably 2.4% or more. On the other hand, excessive addition of Mn forms coarse MnS, which significantly reduces the hole expandability and bendability. Therefore, the Mn content is set to 3.5% or less, and preferably 3.0% or less.
  • P 0.02% or less
  • P is an effective element for strengthening steel, but excessive addition of P significantly reduces spot weldability. Therefore, the P content is set to 0.02% or less, and preferably 0.01% or less. There is no particular lower limit for the P content, but since a large amount of cost is required to make the P content less than 0.002%, the P content is preferably 0.002% or more.
  • S (S: 0.01% or less) S forms coarse sulfides with Mn, which reduces hole expandability and bendability. Therefore, the S content is set to 0.01% or less.
  • the S content is preferably 0.002% or less, and more preferably 0.001% or less. Although there is no particular restriction on the lower limit of the S content, a large amount of cost is required to make the S content less than 0.0002%, so the S content is preferably 0.0002% or more.
  • sol. Al is an element added as a deoxidizer in the steelmaking process. If the sol. Al content exceeds 1.0%, inclusions such as Al 2 O 3 and AlN increase, which reduces hole expandability and bendability. Therefore, the sol. Al content is set to 1.0% or less.
  • the sol. Al content is preferably 0.2% or less, and more preferably 0.05% or less. Although there is no particular lower limit for the sol. Al content, in order to obtain a sufficient deoxidizing effect, the sol. Al content is preferably 0.001% or more, more preferably 0.010% or more, and further preferably 0.020% or more.
  • the N content is set to 0.015% or less.
  • the N content is preferably 0.008% or less, and more preferably 0.005% or less.
  • the N content is preferably 0.001% or more.
  • the composition of the steel sheet of the present invention contains the above-mentioned components as basic components, and the balance other than the composition of the components contains iron (Fe) and inevitable impurities.
  • the balance has a composition consisting of Fe and inevitable impurities. Examples of unavoidable impurities include Zn, Co, etc., and in the present invention, even if these elements are contained within the range of a normal steel composition, the effect of the present invention is not impaired.
  • the component composition of the steel sheet of the present invention may appropriately contain the following (A) and/or (B) as optional elements.
  • the B content is 0.01% or less, when Ti is contained, the Ti content is 0.1% or less, when Cu is contained, the Cu content is 1% or less, when Ni is contained, the Ni content is 1% or less, when Cr is contained, the Cr content is 1.5% or less, when Mo is contained, the Mo content is 1.0% or less, when V is contained, the V content is 0.5% or less, when Nb is contained, the Nb content is 0.1% or less, when Zr is contained, the Zr content is 0.2% or less, and when W is contained, the W content is 0.2% or less.
  • the B content is preferably 0.0050% or less, more preferably 0.0030% or less, and more preferably 0.0003% or more.
  • the Ti content is preferably 0.080% or less, more preferably 0.050% or less.
  • the Ti content is preferably 0.001% or more, and more preferably 0.010% or more.
  • the Cu content is preferably 0.50% or less, more preferably 0.20% or less.
  • the Cu content is preferably 0.001% or more, and more preferably 0.030% or more.
  • the Ni content is preferably 0.50% or less, more preferably 0.20% or less.
  • the Ni content is preferably 0.001% or more, more preferably 0.030% or more.
  • the Cr content is preferably 1.2% or less, more preferably 1.0% or less.
  • the Cr content is preferably 0.001% or more, and more preferably 0.100% or more.
  • the Mo content is preferably 0.50% or less, more preferably 0.20% or less.
  • the Mo content is further preferably 0.10% or less.
  • the Mo content is preferably 0.001% or more.
  • the Mo content is more preferably 0.010% or more.
  • the V content is preferably 0.50% or less, more preferably 0.20% or less.
  • the V content is further preferably 0.05% or less.
  • the V content is preferably 0.001% or more.
  • the V content is more preferably 0.005% or more.
  • the Nb content is preferably 0.08% or less, more preferably 0.05% or less.
  • the Nb content is preferably 0.001% or more, and more preferably 0.010% or more.
  • the Zr content is preferably 0.1% or less, more preferably 0.05% or less.
  • the Zr content is preferably 0.001% or more, and more preferably 0.010% or more.
  • the W content is preferably 0.1% or less, more preferably 0.05% or less, and further preferably 0.03% or less.
  • the W content is preferably 0.001% or more, and more preferably 0.005% or more.
  • the amount of addition exceeds a certain amount, the effect is saturated, so when Ca is contained, the Ca content is 0.0040% or less, when Ce is contained, the Ce content is 0.0040% or less, when La is contained, the La content is 0.0040% or less, when Mg is contained, the Mg content is 0.0040% or less, when Sb is contained, the Sb content is 0.1% or less, and when Sn is contained, the Sn content is 0.1% or less.
  • the Ca content is preferably 0.0030% or less, more preferably 0.0010% or less, and preferably 0.0003% or more.
  • the Ce content is preferably 0.0030% or less, more preferably 0.0010% or less, and preferably 0.0003% or more.
  • the La content is preferably 0.0030% or less.
  • the La content is more preferably 0.0010% or less.
  • the La content is preferably 0.0003% or more.
  • the Mg content is preferably 0.0030% or less.
  • the Mg content is preferably 0.0003% or more.
  • the Mg content is further preferably 0.0010% or more.
  • the Sb content is preferably 0.05% or less, more preferably 0.02% or less, and more preferably 0.0003% or more.
  • the Sb content is further preferably 0.0020% or more.
  • the Sn content is preferably 0.05% or less, more preferably 0.02% or less, and more preferably 0.0003% or more.
  • the Sn content is further preferably
  • the optional elements contained in amounts less than the lower limit do not impair the effects of the present invention. If the optional elements are contained in amounts less than the lower limit, the optional elements are considered to be contained as unavoidable impurities.
  • the area ratio of ferrite is set to 5% or less, preferably 3% or less, and more preferably 0%.
  • Total area ratio of tempered martensite and lower bainite 70% or more
  • the total area ratio of tempered martensite and lower bainite is set to 70% or more, preferably 80% or more, and more preferably 85% or more.
  • tempered martensite and lower bainite have different transformation timings, they are low-temperature transformation products and have similar effects on mechanical properties, so they are evaluated based on the total area ratio.
  • the total area ratio of tempered martensite and lower bainite is preferably 95% or less, and more preferably 93% or less.
  • the retained austenite contributes to improving uniform elongation due to the TRIP effect.
  • the volume fraction of the retained austenite is set to 5% or more. If the volume fraction of the retained austenite is less than 5%, the desired ductility may not be obtained, the desired hole expandability may not be obtained, and the desired stability of mechanical properties in the longitudinal direction of the coil may not be obtained.
  • the volume fraction of the retained austenite is preferably 7% or more, more preferably 9% or more. On the other hand, if the retained austenite is excessively generated, the hole expandability may decrease. Also, if the retained austenite exceeds 15% by volume, the desired ductility cannot be obtained. Therefore, the retained austenite is set to 15% or less.
  • Fresh martensite is very hard, and therefore becomes the starting point of voids during punching or press molding, thereby reducing hole expandability. If the fresh martensite content exceeds 10%, the hole expandability is significantly deteriorated, so the fresh martensite content is set to 10% or less, preferably 5% or less, and more preferably 3% or less.
  • the fresh martensite content may be 0%.
  • the object of the present invention can be achieved if the above ferrite, tempered martensite, lower bainite, retained austenite, and fresh martensite are satisfied.
  • Other remaining structures, such as pearlite and upper bainite, may be included as long as the total amount is 5% or less.
  • the steel sheet of the present invention may also have a plating layer on the surface of the steel sheet.
  • the type of plating layer is not particularly limited, but may be a zinc plating layer, such as an electrolytic zinc plating layer, a hot-dip zinc plating layer, or an alloyed hot-dip zinc plating layer.
  • the area ratios of ferrite, tempered martensite, lower bainite, and fresh martensite are measured by cutting a cross section of the plate parallel to the rolling direction, mirror-polishing it, and then etching it with 1 vol% nital. Using an SEM, 10 fields of view are observed at 5,000x magnification at the 1/4 thickness position, and the area ratios are measured using the point count method (in accordance with ASTM E562-83 (1988)).
  • ferrite is the area that appears the blackest under the SEM, and is an equiaxed area with almost no carbides inside.
  • Tempered martensite and lower bainite are areas that appear gray under the SEM, and are areas where lath-shaped substructures and carbide precipitation are observed.
  • Fresh martensite is the area that appears white and lumpy under the SEM, and is an area where no substructures are observed inside.
  • the volume fraction of retained austenite is determined by X-ray diffraction using steel plates that have been mechanically ground and polished with oxalic acid to a depth of 100 ⁇ m or more so that the measurement position is on 1/4 of the plate thickness.
  • a Co-K ⁇ source is used for the incident X-rays, and the volume fraction of retained austenite is calculated from the intensity ratio of the (200), (211), and (220) planes of ferrite to the (200), (220), and (311) planes of austenite.
  • the volume fraction of retained austenite determined by X-ray diffraction is equal to the area fraction.
  • the steel plate of the present invention has a tensile strength TS evaluated in accordance with JIS Z2241 (2011) of 1180 MPa or more, and is therefore high in strength.
  • the steel sheet of the present invention has a total elongation (EL) evaluated in accordance with JIS Z2241 (2011) of 11.0% or more, and is excellent in ductility.
  • the steel sheet of the present invention has a JIS No.
  • the standard deviation of TS evaluated in accordance with JIS Z2241 (2011) is 30 MPa or less, and the steel sheet has excellent stability of mechanical properties in the longitudinal direction of the coil. Furthermore, the steel sheet of the present invention may have a standard deviation of EL in the longitudinal direction of the coil of 1.5% or less.
  • the temperatures when heating or cooling the steel slab (steel material), steel plate, etc. shown below refer to the surface temperatures of the steel slab (steel material), steel plate, etc., unless otherwise specified.
  • the method for producing a steel sheet of the present invention includes a hot rolling step in which a steel slab having the above-mentioned composition is held at a slab heating temperature of 1100°C or higher for 1800s or more, followed by finish hot rolling at a finish rolling temperature of 850°C or higher, cooling at an average cooling rate of 40°C/s or higher in the temperature range from the finish rolling temperature to 650°C, and coiling at a coiling temperature of 600°C or lower to obtain a hot-rolled steel sheet, a cold rolling step in which the hot-rolled steel sheet is cold-rolled at a rolling reduction rate of 30% or higher to obtain a cold-rolled steel sheet, and a cold rolling step in which the cold-rolled steel sheet is heated at an average heating rate of 0.5°C/s or higher in the temperature range from 700°C to (Ac 3 -10 ° C), followed by coiling at a coiling temperature of 600°C or lower.
  • the steelmaking process can be carried out according to a conventional method.
  • the hot rolling process, the pickling process, the cold rolling process, and the annealing process will be described below.
  • Methods for hot rolling a steel slab include a method of reheating a steel slab cooled to room temperature and then rolling it, a method of directly rolling a steel slab after continuous casting without heating it, and a method of rolling a steel slab after continuous casting by subjecting it to a short-term heat treatment.
  • the steel slab is held at a slab heating temperature of 1100°C or higher for 1800s or more by any of the above methods, and then finish hot rolling is performed at a finish rolling temperature of 850°C or higher. Then, the steel slab is cooled at an average cooling rate of 40°C/s or higher in the temperature range from the finish rolling temperature to 650°C, and coiled at a coiling temperature of 600°C or lower to obtain a hot-rolled steel sheet.
  • slab heating temperature 1100°C or higher
  • slab heating holding time 1800 s or more
  • the slab heating temperature is set to 1100° C. or higher.
  • the slab heating temperature is preferably 1180° C., and more preferably 1200° C. or higher.
  • the slab heating holding time is set to 1800 seconds or more.
  • the slab heating temperature is preferably 1,300° C. or less, and the slab heating holding time is preferably 3 hours or less.
  • the finish rolling temperature is set to 850°C or higher. There is no particular upper limit, but it is preferably 950° C. or less.
  • the average cooling rate from the finish rolling temperature to 650°C is set to 40°C/s or more. This average cooling rate is preferably 60°C/s or more.
  • the average cooling rate here is "(finish rolling temperature (°C)-650°C)/cooling time from the finish rolling temperature to 650°C (seconds)".
  • the coiling temperature is set to 600°C or less.
  • the coiling temperature is preferably 550°C or less.
  • the lower limit of the coiling temperature is not particularly specified, if the coiling temperature is less than 400°C, the hot-rolled structure may become hard due to the generation of martensite, and the cold rolling load may increase excessively. Therefore, the coiling temperature is preferably 400°C or more.
  • the hot-rolled steel sheet can be subjected to a heat treatment as necessary in order to reduce the cold rolling load.
  • pickling After the hot rolling step, pickling may be carried out to remove scale from the surface layer of the hot-rolled sheet.
  • the pickling method is not particularly limited, and may be carried out according to a conventional method.
  • the cold rolling reduction (cumulative cold rolling reduction) is set to 30% or more from the viewpoint of promoting recrystallization in the subsequent annealing heating and stabilizing the material. Although there is no particular upper limit for the cold rolling reduction, if it exceeds 95%, the cold rolling load may increase excessively. Therefore, the cold rolling reduction is preferably 95% or less.
  • the average heating rate HR1 from 700°C to (Ac 3 -10°C) is preferably 1.0°C/s or more, more preferably 1.5°C/s or more.
  • the average heating rate HR1 is preferably 50° C./s or less, and more preferably 20° C./s or less.
  • the average heating rate HR1 is "(Ac 3 -10° C.) -700° C.)/heating time (seconds) from 700° C. to (Ac 3 -10° C.)".
  • the annealing temperature is set to be equal to or higher than (Ac 3 - 10° C.). If the annealing temperature is lower than (Ac 3 - 10° C.), the desired stability of mechanical properties in the longitudinal direction of the coil may not be obtained. Although there is no upper limit for the annealing temperature, if it exceeds (Ac 3 +50° C.), the austenite grain size becomes significantly coarsened, and the balance between strength and ductility may deteriorate. Therefore, the annealing temperature is preferably (Ac 3 +50° C.) or lower.
  • the holding time (annealing time) is less than 30 seconds, the carbides will remain undissolved, resulting in reduced hole expansion and bendability. Therefore, the holding time should be 30 seconds or more.
  • the holding time is preferably 60 seconds or more.
  • Ac3 is calculated by the following formula.
  • the [element symbol] means the content (mass%) of each element.
  • Ac3 (°C) 910 - 203 x [C] 1/2 - 15.2 x [Ni] + 44.7 x [Si] + 104 x [V] + 31.5 x [Mo] + 13.1 x [W] - (30 x [Mn] + 11 x [Cr] + 20 x [Cu] - 700 x [P] - 400 x [sol. Al] - 120 x [As] - 400 x [Ti])
  • CR1 Average cooling rate CR1 from annealing temperature to slow cooling start temperature T1: 10 ° C./s or more
  • Slow cooling start temperature T1 martensite transformation start temperature Ms ⁇ 30°C ((Ms - 30°C) or more, (Ms + 30°C) or less)
  • CR1 is set to 10°C/s or more.
  • CR1 is preferably 15°C/s or more.
  • CR1 is preferably 100° C./s or less.
  • the average cooling rate CR1 is "(annealing temperature (°C) - slow cooling start temperature (T1) (°C)) / cooling time (seconds) from the annealing temperature to the slow cooling start temperature (T1)".
  • T1 exceeds (Ms+30°C)
  • ferrite and pearlite are generated excessively, and the desired tempered martensite and lower bainite are not obtained, and the desired strength may not be obtained.
  • T1 exceeds (Ms+30°C)
  • the desired hole expandability cannot be obtained. Therefore, T1 is set to (Ms+30°C) or less.
  • T1 is preferably (Ms+20°C) or less, and more preferably (Ms+10°C) or less.
  • T1 is less than (Ms-30°C)
  • the desired amount of retained austenite may not be obtained, and the desired ductility may not be obtained.
  • T1 is set to be equal to or greater than (Ms-30°C).
  • T1 is preferably equal to or greater than (Ms-20°C), and more preferably equal to or greater than (Ms-10°C).
  • the martensitic transformation start temperature Ms can be determined by using a Formaster testing machine, using a cylindrical test piece (diameter 3 mm ⁇ height 10 mm), holding the test piece at an annealing temperature of ( Ac3 -10°C) or higher, and then quenching the test piece at a cooling rate of 30°C/s or higher using helium gas, and measuring the volume change.
  • CR2 is set to 10°C/s or less. If CR2 is less than 1°C/s, the line length increases and the production efficiency decreases, so CR2 is set to 1°C/s or more.
  • the average cooling rate CR2 is "(slow cooling start temperature T1 (°C)-slow cooling stop temperature T2 (°C))/cooling time (seconds) from the slow cooling start temperature T1 to the slow cooling stop temperature T2.”
  • T2 is set to be (Ms-220°C) or more.
  • T2 is preferably (Ms-200°C) or more, and more preferably (Ms-180°C) or more.
  • T2 exceeds (Ms-100°C)
  • C is not sufficiently distributed from martensite and lower bainite to austenite during slow cooling, so decomposition of austenite occurs during the reheating and holding process, which causes variation in mechanical properties in the longitudinal direction of the coil. Therefore, T2 is set to (Ms-100°C) or less.
  • the average heating rate HR2 is set to 2°C/s or more.
  • HR2 is preferably 5°C/s or more, and more preferably 10°C/s or more.
  • HR2 is preferably 50°C/s or less, and more preferably 20°C/s or less.
  • the average heating rate HR2 is "reheating holding temperature T3 (°C) - slow cooling stop temperature T2 (°C) / heating time (seconds) from the slow cooling stop temperature T2 to the reheating holding temperature T3.”
  • the reheating is performed to stabilize austenite by C distribution. If the reheating temperature is less than 300°C, C distribution is not sufficient and the desired amount of retained austenite cannot be obtained, which may result in a decrease in ductility. Therefore, the reheating temperature T3 is set to 300°C or higher. T3 is preferably 330°C or higher, and more preferably 350°C or higher.
  • the reheating temperature T3 exceeds 450°C, austenite transforms into pearlite, and the desired amount of retained austenite is not obtained, which may lead to a decrease in ductility. If the reheating temperature T3 exceeds 450°C, the desired tensile strength cannot be obtained. Therefore, the reheating temperature T3 is set to 450°C or less. T3 is preferably 420°C or less.
  • the reheating holding time (holding time (residence time) at the reheating holding temperature T3) is less than 20 seconds, sufficient C distribution does not occur, and the desired amount of retained austenite cannot be obtained. Therefore, the reheating holding time is set to 20 seconds or more.
  • the reheating holding time is preferably 50 seconds or more, and more preferably 100 seconds or more. Since the effect of carbon distribution by reheating and holding is saturated at more than 3000 seconds, the reheating and holding time is set to 3000 seconds or less, preferably 1500 seconds or less, and more preferably 600 seconds or less.
  • the average cooling rate CR3 from the reheating holding temperature T3 to 50°C is set to 0.1°C/s or more.
  • CR3 is preferably 5°C/s or more, and more preferably 8°C/s or more.
  • CR3 is preferably 100° C./s or less, and more preferably 50° C./s or less.
  • the average cooling rate CR3 is "(reheating holding temperature T3) (°C) - 50°C) / cooling time from reheating holding temperature T3 to 50°C (seconds)".
  • hot-dip galvanizing treatment in the annealing step, hot-dip galvanizing treatment can be performed during cooling from the annealing temperature to the slow cooling start temperature T1, or during reheating and holding at the reheating and holding temperature T3.
  • the hot-dip galvanizing treatment may be hot-dip galvanizing treatment.
  • hot-dip galvanizing treatment it is preferable to immerse the steel sheet in a zinc plating bath at 440°C or more and 500°C or less, perform hot-dip galvanizing treatment, and then adjust the coating weight by gas wiping or the like.
  • a galvanizing alloying treatment can be performed after the hot dip galvanizing treatment.
  • a galvanizing alloying treatment it is preferable to perform the galvanizing alloying treatment in a temperature range of 480° C. or more and 600° C. or less after immersion in the galvanizing bath.
  • the steel sheet after annealing can be subjected to temper rolling.
  • the elongation rate is preferably 0.1% or more.
  • the elongation rate is preferably 0.5% or less.
  • the steel sheet after annealing may be subjected to leveller straightening.
  • the leveller straightening method is not particularly specified, and may be carried out according to a conventional method.
  • Electroplating process In the present invention, after the annealing step, a surface treatment such as electroplating can be carried out.
  • the thickness of the steel plate of the present invention thus obtained is preferably 0.5 mm or more. Also, the thickness of the steel plate of the present invention is preferably 2.0 mm or less. The plate width is preferably 600 mm or more, and 1700 mm or less. Furthermore, the steel sheet of the present invention may have, but is not particularly limited to, a sheet length (length in the longitudinal direction of the coil) of 100 m or more, and a sheet thickness of 4000 m or less.
  • the member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and joining processes.
  • the manufacturing method of the member of the present invention also includes a step of subjecting the steel plate of the present invention to at least one of forming and joining processes to form the member.
  • the steel plate of the present invention has a tensile strength of 1180 MPa or more, excellent ductility and hole expandability, and excellent stability of mechanical properties in the longitudinal direction of the coil. Therefore, members obtained using the steel plate of the present invention also have high strength, excellent ductility and hole expandability, and excellent stability of mechanical properties in the longitudinal direction of the coil. Furthermore, the use of the members of the present invention makes it possible to reduce weight. Therefore, the members of the present invention can be suitably used, for example, for vehicle body frame parts.
  • the members of the present invention also include welded joints.
  • general processing methods such as pressing can be used without restrictions.
  • general welding methods such as spot welding and arc welding, riveting, crimping, etc. can be used without restrictions.
  • a slab having the chemical composition shown in Table 1 was held at a slab heating temperature of 1210°C for 3000 seconds, then hot rolled at a finishing rolling temperature of 880°C, cooled at an average cooling rate of 65°C/s in the temperature range from the finishing rolling temperature to 650°C, and coiled at the coiling temperature shown in Table 2 to produce a hot-rolled steel sheet with a thickness of 2.8 mm.
  • the hot-rolled steel sheet was cold rolled at a reduction rate of 50%, producing a cold-rolled steel sheet with a thickness of 1.4 mm and a total length of 1500 m.
  • the cold-rolled steel sheet was annealed under the conditions shown in Table 2.
  • the average heating rate HR1 in heating from 700° C. to (Ac 3 ⁇ 10° C.) was set to 2.0° C./s.
  • No. 11 had a steel sheet surface subjected to electrolytic galvanizing treatment (EG), and
  • No. 12 had a steel sheet surface subjected to hot-dip galvanizing treatment.
  • No. 12 had a steel sheet surface subjected to alloying treatment (GA) at 510° C. for 10 seconds in order to make the plated layer into an alloyed hot-dip galvanized layer.
  • TS Tensile strength
  • EL total elongation
  • Df is the hole diameter (mm) when a crack occurs
  • D0 is the initial hole diameter (mm).
  • the stability of the mechanical properties in the longitudinal direction of the coil was evaluated as follows. First, a total of 20 JIS No. 5 tensile test pieces were taken parallel to the rolling direction, including test pieces taken 10 m from the leading and trailing ends of the coil, and test pieces located between these test pieces were taken at equal intervals in the longitudinal direction of the coil. The above-mentioned tensile test was then carried out on these 20 test pieces, and evaluation was carried out by finding the standard deviations of TS and EL. Coils with a standard deviation of TS in the longitudinal direction of the coil of 30 MPa or less were judged to have excellent stability of the mechanical properties in the longitudinal direction of the coil. There was no particular regulation on the standard deviation of EL in the longitudinal direction of the coil, but a standard deviation of 1.5% or less was judged to have excellent stability of the mechanical properties in the longitudinal direction of the coil.
  • the examples of the present invention shown in Tables 2 and 3 are excellent in strength, ductility, hole expansion property, and stability of mechanical properties, whereas the comparative examples are inferior in one or more of these. Furthermore, in the examples of the present invention, the standard deviation of TS in the longitudinal direction of the coil could be reduced to 30 MPa or less, and the standard deviation of EL in the longitudinal direction of the coil could be reduced to 1.5% or less.
  • the components obtained by molding, the components obtained by joining, and the components obtained by further molding and joining have high strength and excellent ductility, hole expandability, and stability of mechanical properties in the longitudinal direction of the coil, similar to the steel plate of the present invention, because the steel plate of the present invention has high strength and excellent ductility, hole expandability, and stability of mechanical properties in the longitudinal direction of the coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度であり、優れた延性および穴広げ性を有し、コイル長手方向の機械的特性の安定性に優れた鋼板およびその製造方法を提供する。 質量%で、C:0.08~0.35%、Si:0.4~3.0%、Mn:1.5~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:1.0%以下、N:0.015%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、フェライトの面積率:5%以下(0%を含む)であり、焼戻しマルテンサイトと下部ベイナイトの合計の面積率:70%以上であり、残留オーステナイトの体積率:5~15%であり、フレッシュマルテンサイトの面積率:10%以下(0%を含む)である鋼組織を有し、コイル長手方向の引張強さ(TS)の標準偏差が30MPa以下である、鋼板。

Description

鋼板、部材およびそれらの製造方法
 本発明は、自動車、家電等の各種の用途において使用される鋼板、部材およびそれらの製造方法に関する。
 近年、自動車車体の軽量化を目的に、自動車部材の高強度化が進んでおり、自動車の骨格部品やシート部品では、引張強さ(TS)が1180MPa以上の高強度鋼板が適用されている。一般的に、鋼板の延性や伸びフランジ成形性は高強度化に伴って低下するため、TSが1180MPa以上の鋼板ではプレス成型時の割れが生じやすくなる。
 TSが1180MPa以上の高強度鋼板において、優れたプレス成形性を得るためには、鋼板組織を均一な焼戻しマルテンサイトとし、穴広げ性を向上させることに加えて、残留オーステナイトを微細に分散させることで延性を向上させることが重要である。
 特許文献1では、質量%で、C:0.05~0.3%、Si:0.3~2.5%、Mn:0.5~3.5%、P:0.003~0.100%、S:0.02%以下、Al:0.010~0.5%を含有し、フェライト:20%以上、焼戻しマルテンサイト:10~60%、マルテンサイト:0~10%、残留オーステナイト:3~15%であり、マルテンサイト、焼戻しマルテンサイト、残留オーステナイトからなる低温変態相の平均結晶粒径が3μm以下である鋼組織を有する加工性および耐衝撃性に優れた高強度冷延鋼板が開示されている。特許文献1に記載の技術では、冷却過程でマルテンサイト変態開始温度(Ms)~マルテンサイト変態完了温度(Mf)の間の温度域まで冷却し、その後再加熱保持して残留γを安定化させる、所謂、Q&P;Quenching&Partitioning(焼入れとマルテンサイトからオーステナイトへの炭素の分配)というプロセスを利用している。近年、このプロセスを利用した、優れた延性と伸びフランジ成形性を有する高強度鋼およびその製造方法の開発が進んでいる。
 特許文献2では、質量%で、C:0.05~0.5%、Si:0.01~2.5%、Mn:0.5~3.5%、P:0.003~0.100%、S:0.02%以下、Al:0.010~0.5%を含有し、面積率で0~10%のフェライト、0~10%のマルテンサイト、60~95%の焼戻しマルテンサイトと、X線回折法により求めた割合で5~20%の残留オーステナイトを含む鋼組織を有し、引張強さが1200MPa以上、穴広げ率が50%以上である加工性に優れた高強度鋼板が開示されている。
 特許文献3では、質量%で、C:0.10%~0.73%、Si:3.0%以下、Mn:0.5%~3.0%、P:0.1%以下、S:0.07%以下、Al:3.0%以下およびN:0.010%以下を含有する鋼板を、オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、マルテンサイト変態開始温度Msを指標として、Ms未満、(Ms-150℃)以上の温度域に目標とする冷却停止温度を設けて冷却し、未変態オーステナイトの一部をマルテンサイト変態させた後、昇温してマルテンサイトの焼戻しを行うことによる高強度鋼板の製造に際し、上記鋼板の板幅方向にわたる最冷部位を、目標とする冷却停止温度から(冷却停止温度+15℃)の温度域に、15秒以上100秒以下の時間保持する、加工性および引張強さ(TS)に優れ、かつ機械的特性の安定性にも優れた高強度鋼板の製造方法が開示されている。
特許第5463685号公報 特許第5402007号公報 特許第5333298号公報
 上述した従来技術はそれぞれ以下の課題がある。
 特許文献1に記載の技術は、優れた強度、延性および穴広げ性を得るために、焼鈍中の冷却停止温度の制御が非常に重要であるが、冷却速度が速い場合には、冷却停止温度がばらつきやすく、コイル長手方向の機械的特性にばらつきが生じ、プレス成形性の低下を招く可能性がある。
 また、特許文献2に記載の技術も、優れた強度、延性および穴広げ性を得るために、焼鈍中の冷却停止温度の制御が非常に重要であるが、冷却速度が20℃/s以上と速いため、冷却停止温度がばらつきやすく、コイル長手方向の機械的特性にばらつきが生じ、プレス成形性の低下を招く可能性がある。
 また、特許文献3に記載の技術は、オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、Ms未満、(Ms-150℃)以上の温度域に目標とする冷却停止温度を設けて冷却する高強度鋼板の製造に際し、上記鋼板の板幅方向にわたる最冷部位を、目標とする冷却停止温度から(冷却停止温度+15℃)の温度域に、15秒以上100秒以下の時間保持することで、板幅方向の機械的特性の安定性に優れた高強度鋼板を提供するものであるが、コイル長手方向の機械的特性の安定性については記載されておらず、熱延組織や再加熱保持温度等のばらつきによってコイル長手方向の機械的特性にばらつきが生じ、プレス成形性の低下を招く可能性が残っている。
 本発明は、このような問題を解決するためになされたものであり、高強度であり、優れた延性および穴広げ性を有し、コイル長手方向の機械的特性の安定性に優れた鋼板、部材およびそれらの製造方法を提供することを目的とする。
 本発明において、高強度とは、JIS Z2241(2011)に準拠して評価した引張強度TSが1180MPa以上であることを指す。
 優れた延性とは、JIS Z2241(2011)に準拠して評価した全伸び(EL)が11.0%以上であることを指す。
 優れた穴広げ性とは、100mm×100mmの鋼板に、クリアランスを板厚の12%として直径:10mmの穴を打ち抜き、内径:75mmのダイスを用いて、しわ押さえ力:88.2kNで押さえた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、Df:亀裂発生時の穴径(mm)、D0:初期穴径(mm)として、限界穴拡げ率λ(%)={(Df-D0)/D0}×100が40%以上であることを指す。
 コイル長手方向の機械的特性の安定性に優れるとは、圧延方向に対して平行方向のJIS5号引張試験片として、コイル先尾端から10mの位置で採取した試験片を含め、コイル長手方向に等間隔に合計20枚採取し、JIS Z2241(2011)に準拠して評価したTSの標準偏差が30MPa以下であることを指す。
 本発明者らは、上述の課題を解決するために鋭意検討を重ねた。その結果、巻取時の温度制御によって熱延板の組織をコイル長手方向で均質化させるとともに、焼鈍工程において、Ms点付近から冷却停止温度までを徐冷することで、コイル長手方向における冷却停止温度のばらつきを低減でき、その結果、機械的特性のばらつきを大幅に低減可能なことを見出した。
 より具体的には、本発明は以下のものを提供する。
[1]質量%で、
C:0.08~0.35%、
Si:0.4~3.0%、
Mn:1.5~3.5%、
P:0.02%以下、
S:0.01%以下、
sol.Al:1.0%以下、
N:0.015%以下を含有し、
残部はFeおよび不可避的不純物からなる成分組成を有し、
フェライトの面積率:5%以下(0%を含む)であり、
焼戻しマルテンサイトと下部ベイナイトの合計の面積率:70%以上であり、
残留オーステナイトの体積率:5~15%であり、
フレッシュマルテンサイトの面積率:10%以下(0%を含む)である鋼組織を有し、
コイル長手方向の引張強さTSの標準偏差が30MPa以下である、鋼板。
[2]前記成分組成として、質量%で、
B:0.01%以下、
Ti:0.1%以下、
Cu:1%以下、
Ni:1%以下、
Cr:1.5%以下、
Mo:1.0%以下、
V:0.5%以下、
Nb:0.1%以下、
Zr:0.2%以下および
W:0.2%以下
のうちから選択される1種または2種以上を含有する、[1]に記載の鋼板。
[3]前記成分組成として、質量%で、
Ca:0.0040%以下、
Ce:0.0040%以下、
La:0.0040%以下、
Mg:0.0040%以下、
Sb:0.1%以下および
Sn:0.1%以下
のうちから選択される1種または2種以上を含有する、[1]または[2]に記載の鋼板。
[4]鋼板表面にめっき層を有する、[1]~[3]のいずれかに記載の鋼板。
[5][1]~[4]のいずれかに記載の鋼板を用いてなる部材。
[6][1]~[3]のいずれかに記載の成分組成を有する鋼スラブを、
1100℃以上のスラブ加熱温度で1800s以上保持した後、
850℃以上の仕上げ圧延温度で仕上げ熱間圧延を行い、
前記仕上げ圧延温度から650℃までの温度域を40℃/s以上の平均冷却速度で冷却し、
600℃以下の巻取温度で巻き取ることで熱延鋼板とする熱間圧延工程と、
前記熱延鋼板を、
30%以上の圧延率で冷間圧延して冷延鋼板とする冷間圧延工程と、
前記冷延鋼板を、
700℃から(Ac-10℃)までの温度域を0.5℃/s以上である平均加熱速度HR1で加熱した後、
(Ac-10℃)以上の焼鈍温度で30s以上保持し、
前記焼鈍温度から、(Ms-30℃)以上、(Ms+30℃)以下である徐冷開始温度T1までの温度域を10℃/s以上の平均冷却速度CR1で冷却し、
前記徐冷開始温度T1から、(Ms-220℃)以上、(Ms-100℃)以下である徐冷停止温度T2までの温度域を、1~10℃/sである平均冷却速度CR2で冷却し、
前記徐冷停止温度T2から、300℃以上、450℃以下である再加熱保持温度T3までの温度域を、2℃/s以上である平均加熱速度HR2で加熱し、
前記再加熱保持温度T3で、20s以上、3000s以下保持し、
前記再加熱保持温度T3から50℃までの温度域を、0.1℃/s以上である平均冷却速度CR3で冷却する焼鈍工程と、を含む、鋼板の製造方法。
[7]前記焼鈍工程において、前記焼鈍温度から前記徐冷開始温度T1までの冷却の際、または前記再加熱保持温度T3での再加熱保持の際、溶融めっき処理または合金化溶融めっき処理を行う、[6]に記載の鋼板の製造方法。
[8]前記焼鈍工程後、電気めっき処理を行う、[6]に記載の鋼板の製造方法。
[9][1]~[4]のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
 本発明によれば、高強度であり、優れた延性および穴広げ性を有し、コイル長手方向の機械的特性の安定性に優れた鋼板、部材およびそれらの製造方法を提供することができる。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の鋼板は、質量%で、C:0.08~0.35%、Si:0.4~3.0%、Mn:1.5~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:1.0%以下、N:0.015%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、フェライトの面積率:5%以下(0%を含む)であり、焼戻しマルテンサイトと下部ベイナイトの合計の面積率:70%以上であり、残留オーステナイトの体積率:5~15%であり、フレッシュマルテンサイトの面積率:10%以下(0%を含む)である鋼組織を有し、コイル長手方向の引張強さ(TS)の標準偏差が30MPa以下である。
 まず、本発明の鋼板の成分組成について説明する。
下記の成分組成の説明において成分の含有量の単位である「%」は「質量%」を意味する。また、本発明でいう高強度とは、引張強度TSが1180MPa以上のことをいう。
 (C:0.08~0.35%)
 Cは、焼戻しマルテンサイトもしくは下部ベイナイトの強度を増加させ、1180MPa以上のTSを確保するために含有する。C含有量が0.08%未満では焼戻しマルテンサイトおよび下部ベイナイトの強度が低く、所望のTSを安定して得られない。C含有量が0.08%未満では、所望の延性を得られない。よって、C含有量は0.08%以上とする。C含有量は、好ましくは0.10%以上であり、より好ましくは0.14%以上である。
一方、Cの過剰な添加は、炭化物の数密度の増加による穴広げ性の低下や、延性の低下や、さらにはYSの過剰な増加による部品の形状凍結性の劣化を招く。したがって、C含有量は0.35%以下とする。C含有量は、好ましくは0.30%以下であり、より好ましくは0.25%以下である。
 (Si:0.4~3.0%)
 Siは、固溶強化により鋼板の強度を向上させ、さらに、炭化物の粗大化を抑制することで、焼戻しによる強度の低下を抑制する。Siが0.4%未満では、所望のTSが安定して得られないため、Si含有量は0.4%以上とする。Si含有量は、好ましくは1.0%以上であり、より好ましくは1.4%以上である。
一方、Siの過剰な添加は、化成処理性やめっき性の著しい低下を招く。したがって、Si含有量は3.0%以下とする。Si含有量は、好ましくは2.5%以下であり、より好ましくは2.0%以下である。
 (Mn:1.5~3.5%)
 Mnは焼入れ性の向上に有効な元素である。Mn含有量が1.5%未満では、フェライトまたはパーライトが過剰に生成する。その結果、焼戻しマルテンサイトおよび下部ベイナイトが十分に得られない場合等から、所望のTSが得られない。また、Mn含有量が1.5%未満では、所望の穴広げ性を得られない。よって、Mn含有量は1.5%以上とする。Mn含有量は、好ましくは2.0%以上であり、より好ましくは2.4%以上である。
一方、Mnを過剰に添加すると、粗大なMnSを形成し、穴広げ性および曲げ性が大幅に低下する。したがって、Mn含有量は3.5%以下とする。Mn含有量は、好ましくは3.0%以下である。
 (P:0.02%以下)
 Pは鋼の強化に有効な元素であるが、過剰な添加はスポット溶接性を著しく低下させる。したがって、P含有量は0.02%以下とする。P含有量は、好ましくは0.01%以下である。
P含有量の下限は特に規定しないが、0.002%未満にするには多大なコストが必要となるため、好ましくは0.002%以上とする。
 (S:0.01%以下)
 Sは、Mnと粗大な硫化物を形成し、穴広げ性および曲げ性を低下させる。したがって、S含有量は0.01%以下とする。S含有量は、好ましくは0.002%以下であり、より好ましくは0.001%以下である。
S含有量の下限は特に規定しないが、0.0002%未満にするには多大なコストが必要となるため、S含有量は、好ましくは0.0002%以上である。
 (sol.Al:1.0%以下)
 Alは、製鋼工程で脱酸材として添加される元素である。sol.Al含有量が1.0%超の場合、AlやAlNなどの介在物が増加し、穴広げ性や曲げ性を低下させる。したがって、sol.Al含有量は1.0%以下とする。sol.Al含有量は、好ましくは0.2%以下であり、より好ましくは0.05%以下である。
sol.Al含有量の下限は特に規定しないが、十分に脱酸の効果を得るために、sol.Al含有量は、好ましくは0.001%以上である。sol.Al含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。
 (N:0.015%以下)
 Nは、過剰に添加するとAlNなどの介在物を多量に生成し、穴広げ性や曲げ性を低下させる。したがって、N含有量は0.015%以下とする。N含有量は、好ましくは0.008%以下であり、より好ましくは0.005%以下である。
N含有量の下限は特に規定しないが、Nを0.001%未満とするには多大なコストが必要なため、N含有量は、好ましくは0.001%以上である。
 本発明における鋼板の成分組成は、上記の成分を基本成分として含有し、この成分組成以外の残部は鉄(Fe)および不可避的不純物を含む。本発明の鋼板において、残部はFeおよび不可避的不純物からなる成分組成を有することが好ましい。
不可避的不純物として、Zn、Co等が挙げられ、本発明において、これらの元素を通常の鋼組成の範囲内で含有しても、その効果は損なわれない。
 また、これらの基本成分に加えて、上記の鉄(Fe)および不可避的不純物の一部にかえて、必要に応じてB、Ti、Cu、Ni、Cr、Mo、V、Nb、Zr、Wのうちから選択される1種または2種以上を添加することができる。さらに、必要に応じてCa、Ce、La、Mg、Sb、Snのうちから選択される1種または2種以上を添加することができる。
 具体的には、本発明の鋼板の成分組成は、以下の(A)および/または(B)を任意元素として適宜含有することができる。
(A)質量%で、B:0.01%以下、Ti:0.1%以下、Cu:1%以下、Ni:1%以下、Cr:1.5%以下、Mo:1.0%以下、V:0.5%以下、Nb:0.1%以下、Zr:0.2%以下およびW:0.2%以下のうちから選択される1種または2種以上
(B)質量%で、Ca:0.0040%以下、Ce:0.0040%以下、La:0.0040%以下、Mg:0.0040%以下、Sb:0.1%以下およびSn:0.1%以下のうちから選択される1種または2種以上
 ([A群] B:0.01%以下、Ti:0.1%以下、Cu:1%以下、Ni:1%以下、Cr:1.5%以下、Mo:1.0%以下、V:0.5%以下、Nb:0.1%以下、Zr:0.2%以下、W:0.2%以下)
 これらの元素は結晶粒微細化、析出強化により所望のTSを安定して得ることを目的に添加してよい。一方、過度に添加した場合、粗大な析出物を生成し、穴広げ性、曲げ性を劣化させるため、Bを含有する場合、B含有量は0.01%以下とし、Tiを含有する場合、Ti含有量は0.1%以下とし、Cuを含有する場合、Cu含有量は1%以下とし、Niを含有する場合、Ni含有量は1%以下とし、Crを含有する場合、Cr含有量は1.5%以下とし、Moを含有する場合、Mo含有量は1.0%以下とし、Vを含有する場合、V含有量は0.5%以下、Nbを含有する場合、Nb含有量は0.1%以下とし、Zrを含有する場合、Zr含有量は0.2%以下とし、Wを含有する場合、W含有量は0.2%以下とする。
 B含有量は、好ましくは0.0050%以下であり、より好ましくは0.0030%以下である。また、B含有量は、好ましくは0.0003%以上である。
Ti含有量は、好ましくは0.080%以下であり、より好ましくは0.050%以下である。また、Ti含有量は、好ましくは0.001%以上である。Ti含有量は、より好ましくは0.010%以上である。
Cu含有量は、好ましくは0.50%以下であり、より好ましくは0.20%以下である。また、Cu含有量は、好ましくは0.001%以上である。Cu含有量は、より好ましくは0.030%以上である。
Ni含有量は、好ましくは0.50%以下であり、より好ましくは0.20%以下である。また、Ni含有量は、好ましくは0.001%以上である。Ni含有量は、より好ましくは0.030%以上である。
Cr含有量は、好ましくは1.2%以下であり、より好ましくは1.0%以下である。また、Cr含有量は、好ましくは0.001%以上である。Cr含有量は、より好ましくは0.100%以上である。
Mo含有量は、好ましくは0.50%以下であり、より好ましくは0.20%以下である。Mo含有量は、さらに好ましくは0.10%以下である。また、Mo含有量は、好ましくは0.001%以上である。Mo含有量は、より好ましくは0.010%以上である。
V含有量は、好ましくは0.50%以下であり、より好ましくは0.20%以下である。V含有量は、さらに好ましくは0.05%以下である。また、V含有量は、好ましくは0.001%以上である。V含有量は、より好ましくは0.005%以上である。
Nb含有量は、好ましくは0.08%以下であり、より好ましくは0.05%以下である。また、Nb含有量は、好ましくは0.001%以上である。Nb含有量は、より好ましくは0.010%以上である。
Zr含有量は、好ましくは0.1%以下であり、より好ましくは0.05%以下である。また、Zr含有量は、好ましくは0.001%以上である。Zr含有量は、より好ましくは0.010%以上である。
W含有量は、好ましくは0.1%以下であり、より好ましくは0.05%以下である。W含有量は、さらに好ましくは0.03%以下である。
また、W含有量は、好ましくは0.001%以上である。W含有量は、さらに好ましくは0.005%以上である。
 ([B群] Ca:0.0040%以下、Ce:0.0040%以下、La:0.0040%以下、Mg:0.0040%以下、Sb:0.1%以下、Sn:0.1%以下)
 これらの元素は、介在物の制御による穴広げ性、曲げ性の向上を目的に添加してよい。添加量が一定量を超えるとその効果は飽和するため、Caを含有する場合、Ca含有量は0.0040%以下とし、Ceを含有する場合、Ce含有量は0.0040%以下とし、Laを含有する場合、La含有量は0.0040%以下とし、Mgを含有する場合、Mg含有量は0.0040%以下とし、Sbを含有する場合、Sb含有量は0.1%以下とし、Snを含有する場合、Sn含有量は0.1%以下とする。
 Ca含有量は、好ましくは0.0030%以下である。Ca含有量は、より好ましくは0.0010%以下である。また、Ca含有量は、好ましくは0.0003%以上である。
Ce含有量は、好ましくは0.0030%以下である。Ce含有量は、より好ましくは0.0010%以下である。また、Ce含有量は、好ましくは0.0003%以上である。
La含有量は、好ましくは0.0030%以下である。La含有量は、より好ましくは0.0010%以下である。また、La含有量は、好ましくは0.0003%以上である。
Mg含有量は、好ましくは0.0030%以下である。また、Mg含有量は、好ましくは0.0003%以上である。Mg含有量は、さらに好ましくは0.0010%以上である。
Sb含有量は、好ましくは0.05%以下であり、より好ましくは0.02%以下である。また、Sb含有量は、好ましくは0.0003%以上である。Sb含有量は、さらに好ましくは0.0020%以上である。
Sn含有量は、好ましくは0.05%以下であり、より好ましくは0.02%以下である。また、Sn含有量は、好ましくは0.0003%以上である。Sn含有量は、さらに好ましくは0.0020%以上である。
 上記任意成分を下限値未満で含む場合、下限値未満で含まれる任意元素は本発明の効果を害さない。上記任意元素を下限値未満で含む場合、上記任意元素は、不可避的不純物として含まれるとする。
 次に、本発明の鋼板の組織(ミクロ組織)について説明する。
 (フェライトの面積率:5%以下(0%を含む))
 フェライトは延性の向上に寄与するが、焼戻しマルテンサイト等の硬質相との硬度差により、打ち抜き加工時やプレス成型時にボイドの起点となり、穴広げ性を劣化させる。フェライトが面積率で5%を超えると、所望の穴広げ性が得られない場合がある。
よって、フェライトは面積率で、5%以下とする。フェライトの面積率は、好ましくは3%以下であり、より好ましくは0%である。
 (焼戻しマルテンサイトと下部ベイナイトの合計の面積率:70%以上)
 焼戻しマルテンサイトと下部ベイナイトは1180MPa以上のTSを安定的に得るために、合計の面積率で70%以上とし、好ましくは80%以上であり、より好ましくは85%以上である。焼戻しマルテンサイトと下部ベイナイトは変態のタイミングが異なるが、低温変態生成物として機械的特性への影響は類似であるため、合計面積率で評価する。
上限は特に限定されなないが、焼戻しマルテンサイトと下部ベイナイトの合計の面積率は、95%以下であることが好ましく、93%以下であることがより好ましい。
 (残留オーステナイトの体積率:5~15%)
 残留オーステナイトはTRIP効果により均一伸びの向上に寄与する。所望の延性を得るために、残留オーステナイトは、体積率で5%以上とする。残留オーステナイトの体積率が5%未満の場合、所望の延性を得られない場合があり、また、所望の穴広げ性を得られない場合もあり、また、所望のコイル長手方向の機械的特性の安定性を得られない場合もある。残留オーステナイトの体積率は、好ましくは7%以上であり、より好ましくは9%以上である。
 一方、残留オーステナイトが過剰に生成すると、穴広げ性が低下する場合がある。また、残留オーステナイトが体積率で15%を超えると所望の延性を得られなくなる。よって、残留オーステナイトは15%以下とする。
 (フレッシュマルテンサイトの面積率:10%以下(0%を含む))
 フレッシュマルテンサイトは非常に硬質なため、打ち抜き加工時やプレス成型時にボイドの起点となり、穴広げ性を低下させる。フレッシュマルテンサイトが10%を超えると、穴広げ性の劣化が顕著となるため、フレッシュマルテンサイトは10%以下とし、好ましくは5%以下、より好ましくは3%以下とする。なお、フレッシュマルテンサイトは0%であってもよい。
 本発明では、上記のフェライト、焼戻しマルテンサイト、下部ベイナイト、残留オーステナイト、フレッシュマルテンサイトが満足されれば、本発明の目的を達成できる。これら以外の残部組織として、例えば、パーライトや上部ベイナイトを合計で5%以下であれば含んでいても良い。
 また、本発明の鋼板は、鋼板表面にめっき層を有していてもよい。めっき層の種類は、特に限られないが、亜鉛めっき層とすることができ、例えば、電気亜鉛めっき層、溶融亜鉛めっき層、合金化溶融亜鉛めっき層である。
 次に、鋼板のミクロ組織の測定方法を説明する。
 フェライト、焼戻しマルテンサイト、下部ベイナイト、フレッシュマルテンサイトの面積率は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、1vol%ナイタールにて腐食し、SEMを用いて1/4厚み位置を5000倍で10視野観察し、ポイントカウント法(ASTM E562-83(1988)に準拠)により測定する。上記の観察において、フェライトはSEMで最も黒色に見える領域であり、内部に炭化物を殆ど伴わず、等軸な領域である。焼戻しマルテンサイトと下部ベイナイトは、SEMで灰色に見える領域であり、ラス状の下部組織と炭化物の析出が観察される領域である。フレッシュマルテンサイトは、SEMで白色かつ塊状に見える領域であり、内部に下部組織が観察されない領域である。
 残留オーステナイトの体積率は、機械研削と100μm以上のシュウ酸研磨により測定位置が板厚方向の1/4面となるよう調整した鋼板を用いて、X線回折法により求める。入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの体積率を計算する。ここで、残留オーステナイトはランダムに分布しているので、X線回折で求めた残留オーステナイトの体積率は、面積率と等しくなる。
 本発明の鋼板は、JIS Z2241(2011)に準拠して評価した引張強度TSが1180MPa以上であり、高強度である。
 また、本発明の鋼板は、JIS Z2241(2011)に準拠して評価した全伸び(EL)が11.0%以上であり、延性に優れる。
 また、本発明の鋼板は、100mm×100mmの鋼板に、クリアランスを板厚の12%として直径:10mmの穴を打ち抜き、内径:75mmのダイスを用いて、しわ押さえ力:88.2kNで押さえた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、Df:亀裂発生時の穴径(mm)、D0:初期穴径(mm)として、限界穴拡げ率λ(%)={(Df-D0)/D0}×100が40%以上であり、穴広げ性に優れる。
 また、本発明の鋼板は、圧延方向に対して平行方向のJIS5号引張試験片として、コイル先尾端から10mの位置で採取した試験片を含め、コイル長手方向に等間隔に合計20枚採取し、JIS Z2241(2011)に準拠して評価したTSの標準偏差が30MPa以下であり、コイル長手方向の機械的特性の安定性に優れる。
 また、本発明の鋼板は、コイル長手方向のELの標準偏差が1.5%以下であってもよい。
 次に、本発明の鋼板の製造方法について説明する。なお、以下に示す鋼スラブ(鋼素材)、鋼板等を加熱、又は冷却する際の温度は、特に説明がない限り、鋼スラブ(鋼素材)、鋼板等の表面温度を意味する。
 本発明の鋼板の製造方法は、前述した成分組成を有する鋼スラブを、1100℃以上のスラブ加熱温度で1800s以上保持した後、850℃以上の仕上げ圧延温度で仕上げ熱間圧延を行い、仕上げ圧延温度から650℃までの温度域を40℃/s以上の平均冷却速度で冷却し、600℃以下の巻取温度で巻き取ることで熱延鋼板とする熱間圧延工程と、上記熱延鋼板を、30%以上の圧延率で冷間圧延して冷延鋼板とする冷間圧延工程と、上記冷延鋼板を、700℃から(Ac-10℃)までの温度域を0.5℃/s以上である平均加熱速度HR1で加熱した後、(Ac-10℃)以上の焼鈍温度で30s以上保持し、上記焼鈍温度から、(Ms-30℃)以上、(Ms+30℃)以下である徐冷開始温度T1までの温度域を10℃/s以上の平均冷却速度CR1で冷却し、上記徐冷開始温度T1から、(Ms-220℃)以上、(Ms-100℃)以下である徐冷停止温度T2までの温度域を、1~10℃/sである平均冷却速度CR2で冷却し、上記徐冷停止温度T2から、300℃以上、450℃以下である再加熱保持温度T3までの温度域を、2℃/s以上である平均加熱速度HR2で加熱し、上記再加熱保持温度T3で、20s以上、3000s以下保持し、上記再加熱保持温度T3から50℃までの温度域を、0.1℃/s以上である平均冷却速度CR3で冷却する焼鈍工程と、を含む。
 本発明において、製鋼工程は常法に従って製造することができる。
以下、熱間圧延工程、酸洗工程、冷間圧延工程、焼鈍工程について説明する。
 [熱間圧延工程]
 鋼スラブを熱間圧延する方法としては、室温まで冷却した鋼スラブを再加熱後に圧延する方法や連続鋳造後の鋼スラブを加熱することなく直接圧延する方法、連続鋳造後の鋼スラブに短時間加熱処理を施して圧延する方法などがある。本発明は、上述のいずれかの方法で鋼スラブを1100℃以上のスラブ加熱温度で1800s以上保持した後、850℃以上の仕上げ圧延温度で仕上げ熱間圧延を行う。そして、仕上げ圧延温度から650℃までの温度域を40℃/s以上の平均冷却速度で冷却し、600℃以下の巻取温度で巻き取ることで熱延鋼板とする。
 (スラブ加熱温度:1100℃以上)
 (スラブ加熱保持時間:1800s以上)
 スラブ加熱温度が1100℃未満では、MnS等の介在物が残存し、穴広げ性が低下する。したがって、スラブ加熱温度は1100℃以上とする。スラブ加熱温度は、好ましくは1180℃であり、より好ましくは1200℃以上である。
 また、スラブ加熱保持時間が1800s未満の場合も、同様に、MnS等の介在物が多量に残存し、穴広げ性が低下する場合がある。したがって、スラブ加熱保持時間は1800s以上とする。
 スラブ加熱温度とスラブ加熱保持時間の上限は規定しないが、製造コストの観点から、スラブ加熱温度は1300℃以下であることが好ましく、スラブ加熱保持時間は3h以下であることが好ましい。
 (仕上げ圧延温度:850℃以上)
 仕上げ圧延温度が850℃未満では、熱間圧延中にフェライトが生成し、圧延後の組織が不均一となるため、焼鈍後のコイル長手方向の機械的特性にばらつきが生じる懸念がある。したがって、仕上げ圧延温度は850℃以上とする。
上限は特に限定されないが、950℃以下とすることが好ましい。
 (仕上げ圧延温度から650℃までの平均冷却速度:40℃/s以上)
 仕上げ圧延温度から650℃の平均冷却速度が40℃/s未満では、冷却中にフェライトやパーライトが生成し、熱延組織が不均一となりやすい。この場合、焼鈍後のコイル長手方向の粒径や残留オーステナイト量にばらつきが生じ、強度および延性のばらつきの原因となる。したがって、仕上げ圧延温度から650℃までの平均冷却速度は40℃/s以上ととする。この平均冷却速度は、好ましくは60℃/s以上である。
 なお、ここでの平均冷却速度は、「(仕上げ圧延温度(℃)-650℃)/仕上げ圧延温度から650℃までの冷却時間(秒)」である。
 (巻取温度:600℃以下)
 巻取温度が600℃超えでは、フェライトとパーライトが生成しやすく、コイル長手方向における巻取温度のばらつきによって、熱延組織が不均一になる。この場合、焼鈍後のコイル長手方向の粒径にばらつきが生じ、強度および延性のばらつきの原因となる。したがって、巻取温度は600℃以下とする。巻取温度は、好ましくは550℃以下である。巻取温度の下限は特に規定しないが、巻取温度が400℃未満では、マルテンサイトの生成により熱延組織が硬質化し、冷間圧延負荷が過度に増大する場合がある。よって、巻取温度は、好ましくは400℃以上である。
 また、熱間圧延工程後、冷間圧延荷重を低減する観点から必要に応じて熱延鋼板に加熱処理を施すことができる。
 [酸洗工程]
 熱間圧延工程後、酸洗を実施してもよく、これにより熱延板表層のスケールを除去することができる。酸洗処理方法は特に規定されず、常法に従って実施すればよい。
 [冷間圧延工程]
 (圧延率(冷間圧延率):30%以上)
 冷間圧延率(累積冷間圧延率)は、その後の焼鈍加熱における再結晶を促進し、材質を安定化させるという観点から、30%以上とする。冷間圧延率の上限は特に規定しないが、95%超えでは冷間圧延負荷が過度に増加する場合がある。よって、冷間圧延率は、好ましくは95%以下である。
 [焼鈍工程]
 (700℃から(Ac-10℃)までの平均加熱速度HR1:0.5℃/s以上)
 700℃から(Ac-10℃)までの平均加熱速度HR1が0.5℃/s未満では、加熱中にフェライトからオーステナイトへのC濃化が進行し、鋼板内でC濃度分布に偏りが生じるため、材質が不均一となる。また、鋼板内でC濃度分布に偏りが生じた場合、コイル長手方向における冷却停止温度や再加熱温度の変動により、機械的特性のばらつきがさらに大きくなる。したがって、700℃から(Ac-10℃)までの平均加熱速度HR1は0.5℃/s以上とする。700℃から(Ac-10℃)までの平均加熱速度HR1は、好ましくは1.0℃/s以上であり、より好ましくは1.5℃/s以上である。
平均加熱速度HR1は、好ましくは50℃/s以下であり、より好ましくは20℃/s以下である。
 なお、平均加熱速度HR1は、「(Ac-10℃)-700℃)/700℃から(Ac-10℃)までの加熱時間(秒)」である。
 (焼鈍温度:(Ac-10℃)以上)
 (保持時間(焼鈍時間):30s以上)
 フェライトの面積率を所望の範囲に制御するため、焼鈍温度は(Ac-10℃)以上とする。焼鈍温度が(Ac-10℃)未満では、所望のコイル長手方向の機械的特性の安定性が得られなくなる場合がある。
焼鈍温度の上限は規定しないが、(Ac+50℃)超えでは、オーステナイト粒径が顕著に粗大化し、強度と延性のバランスが低下する場合がある。
よって、焼鈍温度は、好ましくは(Ac+50℃)以下である。
 保持時間(焼鈍時間)が30s未満では、炭化物が未固溶で残存し、穴広げ性や曲げ性が低下する。したがって、保持時間は30s以上とする。保持時間は、好ましくは60s以上である。
 なお、Acは以下の式により算出する。また、下記式において[元素記号]は各元素の含有量(質量%)を意味する。(「レスリー鉄鋼材料学」(丸善株式会社、1985年5月31日発行、273頁))
Ac(℃)=910-203×[C]1/2-15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]-(30×[Mn]+11×[Cr]+20×[Cu]-700×[P]-400×[sol.Al]-120×[As]-400×[Ti])
 (焼鈍温度から徐冷開始温度T1までの平均冷却速度CR1:10℃/s以上)
 (徐冷開始温度T1:マルテンサイト変態開始温度Ms±30℃((Ms-30℃)以上、(Ms+30℃)以下))
 CR1が10℃/s未満の場合、フェライトが過度に生成し、所望の焼戻しマルテンサイトと下部ベイナイトが得られず、所望の強度が得られない場合がある。したがって、CR1は10℃/s以上とする。CR1は、好ましくは15℃/s以上である。
CR1の上限は規定しないが、平均冷却速度の過度な増加は、コイル長手方向の冷却ムラを助長し、コイル長手方向の材質均一性の低下を招く場合がある。よって、CR1は、好ましくは100℃/s以下である。
 なお、平均冷却速度CR1は、「(焼鈍温度(℃)-徐冷開始温度(T1)(℃))/焼鈍温度から徐冷開始温度(T1)までの冷却時間(秒)」である。
 T1が(Ms+30℃)超えの場合も、フェライトおよびパーライトが過度に生成し、所望の焼戻しマルテンサイトと下部ベイナイトが得られず、所望の強度が得られない場合がある。また、T1が(Ms+30℃)超えの場合、所望の穴広げ性が得られなくなる。したがって、T1は(Ms+30℃)以下とする。T1は、好ましくは(Ms+20℃)以下であり、より好ましくは(Ms+10℃)以下である。
 一方で、T1が(Ms-30℃)未満の場合、所望の残留オーステナイト量が得られず、所望の延性が得られない場合がある。また、T1が(Ms-30℃)未満の場合、所望のコイル長手方向の機械的特性の安定性を得られなくなる。したがって、T1は(Ms-30℃)以上とする。T1は、好ましくは(Ms-20℃)以上であり、より好ましくは(Ms-10℃)以上である。
 なお、マルテンサイト変態開始温度Ms(℃)は、フォーマスタ試験機にて、円柱状の試験片(直径3mm×高さ10mm)を用いて、(Ac―10℃)以上の焼鈍温度で保持後、ヘリウムガスを用いて30℃/s以上の冷却速度で急冷したときの体積変化を測定することにより求めることができる。
 (徐冷開始温度T1から徐冷停止温度T2までの平均冷却速度CR2:1~10℃/s)
 (徐冷停止温度T2:(Ms-220℃)以上、(Ms-100℃)以下)
 T1からT2までの平均冷却速度CR2を10℃/s以下とすることより、冷却停止温度のばらつきが低減され、コイル長手方向でマルテンサイトおよび下部ベイナイトの変態量が均一となることで、コイル長手方向の機械的特性のばらつきを抑制できる。また、CR2を10℃/s以下とすることで、冷却中にマルテンサイトおよび下部ベイナイトからオーステナイトへのC分配が生じ、オーステナイトが安定化される。これにより、再加熱温度にばらつきが生じた場合にも、残留オーステナイトの分解が抑制され、コイル長手方向で機械的特性のばらつきが抑制される。したがって、CR2は10℃/s以下とする。CR2が1℃/s未満ではライン長が増加し、製造能率が低下するため、CR2は1℃/s以上とする。
 なお、平均冷却速度CR2は、「(徐冷開始温度T1(℃)-徐冷停止温度T2(℃))/徐冷開始温度T1から徐冷停止温度T2までの冷却時間(秒)」である。
 T2が(Ms-220℃)未満では、マルテンサイト変態が過度に進行し、所望の残留オーステナイト量が得られず、延性が低下する。したがって、T2は(Ms-220℃)以上とする。T2は、好ましくは(Ms-200℃)以上であり、より好ましくは(Ms-180℃)以上である。
一方で、T2が(Ms-100℃)超えでは、徐冷中にマルテンサイトおよび下部ベイナイトからオーステナイトへのC分配が十分に生じないため、再加熱保持過程でオーステナイトの分解が生じ、コイル長手方向の機械的特性のばらつきの原因となる。したがって、T2は(Ms-100℃)以下とする。
 (徐冷停止温度T2から再加熱保持温度T3までの平均加熱速度HR2:2℃/s以上)
 徐冷停止温度T2から再加熱保持温度T3までを短時間で加熱することで炭化物析出を抑制でき、高い延性を確保することができる。したがって、平均加熱速度HR2は2℃/s以上とする。HR2は、好ましくは5℃/s以上であり、より好ましくは10℃/s以上である。平均加熱速度HR2の上限は特に限定されないが、平均加熱速度HR2が高くなるほど鋼板温度の均一性を保持することが困難となる場合がある。よって、HR2は、好ましくは50℃/s以下であり、より好ましくは20℃/s以下である。
 なお、平均加熱速度HR2は、「再加熱保持温度T3(℃)-徐冷停止温度T2(℃))/徐冷停止温度T2から再加熱保持温度T3までの加熱時間(秒)」である。
 (再加熱保持温度T3:300℃以上、450℃以下)
 (再加熱保持時間:20s以上、3000s以下)
 再加熱保持はC分配によるオーステナイトの安定化のために行う。再加熱保持温度が300℃未満では、十分にC分配が生じず、所望の残留オーステナイト量が得られないため、延性の低下が懸念される。したがって、再加熱保持温度T3は300℃以上とする。T3は、好ましくは330℃以上であり、より好ましくは350℃以上である。
一方、再加熱保持温度T3が450℃を超えると、オーステナイトからパーライトへの変態が生じ、所望の残留オーステナイト量が得られず延性の低下が懸念される。また、再加熱保持温度T3が450℃超えでは、所望の引張強度が得られなくなる。したがって、再加熱保持温度T3は450℃以下とする。T3は、好ましくは420℃以下である。
 また、再加熱保持時間(再加熱保持温度T3での保持時間(滞留時間))が20s未満では、十分なC分配が生じず、所望の残留オーステナイト量が得られない。よって、再加熱保持時間は20s以上とする。再加熱保持時間は、好ましくは50s以上であり、より好ましくは100s以上である。
再加熱保持によるC分配の効果は3000s超えで飽和するため、再加熱保持時間は3000s以下とする。再加熱保持時間は、好ましくは1500s以下であり、より好ましくは600s以下である。
 (再加熱保持温度T3から50℃までの平均冷却速度CR3:0.1℃/s以上)
 再加熱保持温度T3から50℃までの平均冷却速度CR3が0.1℃/s未満の場合、過剰な焼戻しによる軟化や炭化物析出により延性が低下する懸念がある。したがって、再加熱保持温度T3から50℃までの平均冷却速度CR3は0.1℃/s以上とする。CR3は、好ましくは5℃/s以上であり、より好ましくは8℃/s以上である。
CR3は、好ましくは100℃/s以下であり、より好ましくは50℃/s以下である。
 なお、平均冷却速度CR3は、「(再加熱保持温度T3)(℃)-50℃)/再加熱保持温度T3から50℃までの冷却時間(秒)」である。
 [溶融めっき処理]
 本発明では、焼鈍工程において、焼鈍温度から徐冷開始温度T1までの冷却の際、または再加熱保持温度T3での再加熱保持の際、溶融めっき処理を施すことができる。溶融めっき処理は溶融亜鉛めっき処理としてもよい。溶融亜鉛めっき処理を施す場合は、440℃以上500℃以下の亜鉛めっき浴中に鋼板を浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整することが好ましい。溶融亜鉛めっきはAl量が0.10%以上、0.22%以下である亜鉛めっき浴を用いることが好ましい。
また、溶融亜鉛めっき処理後に亜鉛めっきの合金化処理を施すことができる。亜鉛めっきの合金化処理を施す場合は、めっき浴浸漬後に480℃以上、600℃以下の温度域で実施することが好ましい。
 [調質圧延]
 本発明では、プレス成形性の安定化やYS上昇の観点から、焼鈍後の鋼板に調質圧延を施すことができる。伸長率は、好ましくは0.1%以上とする。また、伸長率は、好ましくは0.5%以下とする。
 [レベラー矯正]
 本発明では、板形状を矯正するために、焼鈍後の鋼板にレベラー矯正を施すことができる。レベラー矯正方法は特に規定されず、常法に従って実施すればよい。
 [電気めっき処理]
 本発明では、焼鈍工程後に、電気めっき等の表面処理を施すことができる。
 以上のように得られた本発明の鋼板の板厚は0.5mm以上とすることが好ましい。また、本発明の鋼板の板厚は2.0mm以下とすることが好ましい。
また、板幅は600mm以上とすることが好ましい。また、板幅は1700mm以下とすることが好ましい。
また、本発明の鋼板は、特に限定されないが、板長(コイル長手方向の長さ)は、100m以上としてよい。また、板厚は、4000m以下としてよい。
 次に、本発明の部材およびその製造方法について説明する。
 本発明の部材は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施してなるものである。また、本発明の部材の製造方法は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む。
 本発明の鋼板は、引張強さが1180MPa以上であり、延性および穴広げ性に優れ、かつコイル長手方向の機械的特性の安定性に優れている。そのため、本発明の鋼板を用いて得た部材も高強度であり、延性および穴広げ性に優れ、かつコイル長手方向の機械的特性の安定性に優れている。また、本発明の部材を用いれば、軽量化が可能である。したがって、本発明の部材は、例えば、車体骨格部品に好適に用いることができる。本発明の部材は、溶接継手も含む。
 成形加工は、プレス加工等の一般的な加工方法を制限なく用いることができる。また、接合加工は、スポット溶接、アーク溶接等の一般的な溶接や、リベット接合、かしめ接合等を制限なく用いることができる。
 本発明を、実施例を参照しながら具体的に説明する。ただし、発明の範囲は実施例に限定されない。
 表1に示す成分組成を有するスラブを、1210℃のスラブ加熱温度で3000s保持した後、880℃の仕上げ圧延温度で熱間圧延を行い、仕上げ圧延温度から650℃までの温度域を65℃/sの平均冷却速度で冷却し、表2に示す巻取温度で巻き取ることで板厚2.8mmの熱延鋼板を製造した。前記熱延鋼板を50%の圧下率で冷間圧延し、板厚1.4mm、全長1500mの冷延鋼板を製造した。
 その後、前記冷延鋼板を表2に示す条件で焼鈍した。焼鈍条件のうち、700℃から(Ac-10℃)までの加熱における平均加熱速度HR1は2.0℃/sとした。
また、No.11は鋼板表面に電気亜鉛めっき処理(EG)、No.12は鋼板表面に溶融亜鉛めっき処理を施した。また、No.12はめっき層を合金化溶融亜鉛めっき層とするため、510℃で10秒保持する合金化処理(GA)を施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 鋼組織を上述の方法で測定し、測定結果を表3に示した。
 引張強さ(TS)と全伸び(EL)は、JIS Z2241(2011)に準拠して評価した。得られた鋼板からJIS5号引張試験片を作製し、引張試験を行い、TSが1180MPa以上であるものを強度に優れると判断し、ELが11.0%以上のものを延性に優れると判断した。
 また、穴広げ性は日本鉄鋼連盟規格JFST1001に準拠して評価した。得られた各鋼板を100mm×100mmに切断後、クリアランスを板厚の12%で直径:10mmの穴を打ち抜き、内径:75mmのダイスを用いて、しわ押さえ力:88.2kNで押さえた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、(1)の式から、限界穴拡げ率λ(%)を求めることで評価し、λが40%以上のものを穴広げ性に優れると判断した。
 限界穴拡げ率λ(%)={(Df-D0)/D0}×100 ・・・(1)
 ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)とする。
 コイル長手方向の機械的特性の安定性は、以下のように評価した。まず、圧延方向に対して平行方向のJIS5号引張試験片として、コイル先尾端から10mの位置で採取した試験片を含め、コイル長手方向にこれら試験片間に位置する試験片を等間隔に採取し、合計20枚採取する。そして、これらの20枚の試験片に対して、上述の引張試験を実施し、TSとELの標準偏差を求めることで評価した。コイル長手方向のTSの標準偏差が30MPa以下であるものをコイル長手方向の機械的特性の安定性に優れると判断した。コイル長手方向のELの標準偏差は特に規定しないが、1.5%以下であることでコイル長手方向の機械的特性の安定性により優れると判断した。
Figure JPOXMLDOC01-appb-T000003
 
 表2、3に示す本発明例は、強度、延性、穴広げ性および機械的特性の安定性に優れているのに対して、比較例はいずれか1つ以上が劣っている。また、本発明例では、コイル長手方向のTSの標準偏差を30MPa以下とすることができると共に、コイル長手方向のELの標準偏差を1.5%以下とすることができた。
 また、本発明例の鋼板を用いて、成形加工を施して得た部材、接合加工を施して得た部材、さらに成形加工および接合加工を施して得た部材は、本発明例の鋼板が高強度であり、延性、穴広げ性およびコイル長手方向の機械的特性の安定性に優れていることから、本発明例の鋼板と同様に、高強度であり、延性、穴広げ性およびコイル長手方向の機械的特性の安定性に優れていることがわかった。
 

Claims (9)

  1.  質量%で、
    C:0.08~0.35%、
    Si:0.4~3.0%、
    Mn:1.5~3.5%、
    P:0.02%以下、
    S:0.01%以下、
    sol.Al:1.0%以下、
    N:0.015%以下を含有し、
    残部はFeおよび不可避的不純物からなる成分組成を有し、
    フェライトの面積率:5%以下(0%を含む)であり、
    焼戻しマルテンサイトと下部ベイナイトの合計の面積率:70%以上であり、
    残留オーステナイトの体積率:5~15%であり、
    フレッシュマルテンサイトの面積率:10%以下(0%を含む)である鋼組織を有し、
    コイル長手方向の引張強さの標準偏差が30MPa以下である、鋼板。
  2.  前記成分組成として、質量%で、
    B:0.01%以下、
    Ti:0.1%以下、
    Cu:1%以下、
    Ni:1%以下、
    Cr:1.5%以下、
    Mo:1.0%以下、
    V:0.5%以下、
    Nb:0.1%以下、
    Zr:0.2%以下および
    W:0.2%以下
    のうちから選択される1種または2種以上を含有する、請求項1に記載の鋼板。
  3.  前記成分組成として、質量%で、
    Ca:0.0040%以下、
    Ce:0.0040%以下、
    La:0.0040%以下、
    Mg:0.0040%以下、
    Sb:0.1%以下および
    Sn:0.1%以下
    のうちから選択される1種または2種以上を含有する、請求項1または2に記載の鋼板。
  4.  鋼板表面にめっき層を有する、請求項1~3のいずれかに記載の鋼板。
  5.  請求項1~4のいずれかに記載の鋼板を用いてなる部材。
  6.  請求項1~3のいずれかに記載の成分組成を有する鋼スラブを、
    1100℃以上のスラブ加熱温度で1800s以上保持した後、
    850℃以上の仕上げ圧延温度で仕上げ熱間圧延を行い、
    前記仕上げ圧延温度から650℃までの温度域を40℃/s以上の平均冷却速度で冷却し、
    600℃以下の巻取温度で巻き取ることで熱延鋼板とする熱間圧延工程と、
    前記熱延鋼板を、
    30%以上の圧延率で冷間圧延して冷延鋼板とする冷間圧延工程と、
    前記冷延鋼板を、
    700℃から(Ac-10℃)までの温度域を0.5℃/s以上である平均加熱速度HR1で加熱した後、
    (Ac-10℃)以上の焼鈍温度で30s以上保持し、
    前記焼鈍温度から、(Ms-30℃)以上、(Ms+30℃)以下である徐冷開始温度T1までの温度域を10℃/s以上の平均冷却速度CR1で冷却し、
    前記徐冷開始温度T1から、(Ms-220℃)以上、(Ms-100℃)以下である徐冷停止温度T2までの温度域を、1~10℃/sである平均冷却速度CR2で冷却し、
    前記徐冷停止温度T2から、300℃以上、450℃以下である再加熱保持温度T3までの温度域を、2℃/s以上である平均加熱速度HR2で加熱し、
    前記再加熱保持温度T3で、20s以上、3000s以下保持し、
    前記再加熱保持温度T3から50℃までの温度域を、0.1℃/s以上である平均冷却速度CR3で冷却する焼鈍工程と、を含む、鋼板の製造方法。
  7.  前記焼鈍工程において、前記焼鈍温度から前記徐冷開始温度T1までの冷却の際、または前記再加熱保持温度T3での再加熱保持の際、溶融めっき処理または合金化溶融めっき処理を行う、請求項6に記載の鋼板の製造方法。
  8.  前記焼鈍工程後、電気めっき処理を行う、請求項6に記載の鋼板の製造方法。
  9.  請求項1~4のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
     
PCT/JP2023/034300 2022-09-30 2023-09-21 鋼板、部材およびそれらの製造方法 WO2024070890A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157398 2022-09-30
JP2022-157398 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070890A1 true WO2024070890A1 (ja) 2024-04-04

Family

ID=90477625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034300 WO2024070890A1 (ja) 2022-09-30 2023-09-21 鋼板、部材およびそれらの製造方法

Country Status (1)

Country Link
WO (1) WO2024070890A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302734A (ja) * 2001-01-31 2002-10-18 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2015224359A (ja) * 2014-05-27 2015-12-14 Jfeスチール株式会社 高強度鋼板の製造方法
WO2017138504A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2017138503A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018055695A1 (ja) * 2016-09-21 2018-03-29 新日鐵住金株式会社 鋼板
WO2018147400A1 (ja) * 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019212047A1 (ja) * 2018-05-01 2019-11-07 日本製鉄株式会社 亜鉛系めっき鋼板及びその製造方法
JP2020509243A (ja) * 2016-12-20 2020-03-26 アルセロールミタル 熱的に処理された鋼板を製造するための方法
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板
WO2021070951A1 (ja) * 2019-10-10 2021-04-15 日本製鉄株式会社 冷延鋼板およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302734A (ja) * 2001-01-31 2002-10-18 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2015224359A (ja) * 2014-05-27 2015-12-14 Jfeスチール株式会社 高強度鋼板の製造方法
WO2017138504A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2017138503A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018055695A1 (ja) * 2016-09-21 2018-03-29 新日鐵住金株式会社 鋼板
JP2020509243A (ja) * 2016-12-20 2020-03-26 アルセロールミタル 熱的に処理された鋼板を製造するための方法
WO2018147400A1 (ja) * 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019212047A1 (ja) * 2018-05-01 2019-11-07 日本製鉄株式会社 亜鉛系めっき鋼板及びその製造方法
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板
WO2021070951A1 (ja) * 2019-10-10 2021-04-15 日本製鉄株式会社 冷延鋼板およびその製造方法

Similar Documents

Publication Publication Date Title
US11203795B2 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
CN111868284B (zh) 高强度冷轧钢板及其制造方法
CN107532266B (zh) 镀覆钢板
JP5493986B2 (ja) 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP6536294B2 (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
KR101313957B1 (ko) 피로 특성과 연신 및 충돌 특성이 우수한 고강도 강판, 용융 도금 강판, 합금화 용융 도금 강판 및 그들의 제조 방법
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
US10662496B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP4860784B2 (ja) 成形性に優れた高強度鋼板及びその製造方法
CN111315908A (zh) 冷轧钢板及其制造方法
CN109963958B (zh) 高强度钢板及其制造方法
US20180298462A1 (en) Galvannealed steel sheet and method for producing the same
JP2007302918A (ja) 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法
WO2018151023A1 (ja) 高強度鋼板およびその製造方法
US20170204490A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP2762581A1 (en) Hot-rolled steel sheet and method for producing same
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
CN114585766B (zh) 高强度钢板及其制造方法
CN113840930A (zh) 经冷轧和涂覆的钢板及其制造方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
CN114555845B (zh) 高强度钢板及其制造方法
US11447840B2 (en) High-strength steel sheet and method for producing same
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
KR20220066363A (ko) 고강도 강판 및 그의 제조 방법
JP7151936B1 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872116

Country of ref document: EP

Kind code of ref document: A1